objects.h revision 5913587db4c6bab03d97bfe44b06289fd6d7270d
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "smart-pointer.h"
33#include "unicode-inl.h"
34#if V8_TARGET_ARCH_ARM
35#include "arm/constants-arm.h"
36#elif V8_TARGET_ARCH_MIPS
37#include "mips/constants-mips.h"
38#endif
39
40//
41// Most object types in the V8 JavaScript are described in this file.
42//
43// Inheritance hierarchy:
44// - MaybeObject    (an object or a failure)
45//   - Failure      (immediate for marking failed operation)
46//   - Object
47//     - Smi          (immediate small integer)
48//     - HeapObject   (superclass for everything allocated in the heap)
49//       - JSObject
50//         - JSArray
51//         - JSRegExp
52//         - JSFunction
53//         - GlobalObject
54//           - JSGlobalObject
55//           - JSBuiltinsObject
56//         - JSGlobalProxy
57//        - JSValue
58//       - ByteArray
59//       - PixelArray
60//       - ExternalArray
61//         - ExternalByteArray
62//         - ExternalUnsignedByteArray
63//         - ExternalShortArray
64//         - ExternalUnsignedShortArray
65//         - ExternalIntArray
66//         - ExternalUnsignedIntArray
67//         - ExternalFloatArray
68//       - FixedArray
69//         - DescriptorArray
70//         - HashTable
71//           - Dictionary
72//           - SymbolTable
73//           - CompilationCacheTable
74//           - CodeCacheHashTable
75//           - MapCache
76//         - Context
77//         - JSFunctionResultCache
78//         - SerializedScopeInfo
79//       - String
80//         - SeqString
81//           - SeqAsciiString
82//           - SeqTwoByteString
83//         - ConsString
84//         - ExternalString
85//           - ExternalAsciiString
86//           - ExternalTwoByteString
87//       - HeapNumber
88//       - Code
89//       - Map
90//       - Oddball
91//       - Proxy
92//       - SharedFunctionInfo
93//       - Struct
94//         - AccessorInfo
95//         - AccessCheckInfo
96//         - InterceptorInfo
97//         - CallHandlerInfo
98//         - TemplateInfo
99//           - FunctionTemplateInfo
100//           - ObjectTemplateInfo
101//         - Script
102//         - SignatureInfo
103//         - TypeSwitchInfo
104//         - DebugInfo
105//         - BreakPointInfo
106//         - CodeCache
107//
108// Formats of Object*:
109//  Smi:        [31 bit signed int] 0
110//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
111//  Failure:    [30 bit signed int] 11
112
113// Ecma-262 3rd 8.6.1
114enum PropertyAttributes {
115  NONE              = v8::None,
116  READ_ONLY         = v8::ReadOnly,
117  DONT_ENUM         = v8::DontEnum,
118  DONT_DELETE       = v8::DontDelete,
119  ABSENT            = 16  // Used in runtime to indicate a property is absent.
120  // ABSENT can never be stored in or returned from a descriptor's attributes
121  // bitfield.  It is only used as a return value meaning the attributes of
122  // a non-existent property.
123};
124
125namespace v8 {
126namespace internal {
127
128
129// PropertyDetails captures type and attributes for a property.
130// They are used both in property dictionaries and instance descriptors.
131class PropertyDetails BASE_EMBEDDED {
132 public:
133
134  PropertyDetails(PropertyAttributes attributes,
135                  PropertyType type,
136                  int index = 0) {
137    ASSERT(TypeField::is_valid(type));
138    ASSERT(AttributesField::is_valid(attributes));
139    ASSERT(IndexField::is_valid(index));
140
141    value_ = TypeField::encode(type)
142        | AttributesField::encode(attributes)
143        | IndexField::encode(index);
144
145    ASSERT(type == this->type());
146    ASSERT(attributes == this->attributes());
147    ASSERT(index == this->index());
148  }
149
150  // Conversion for storing details as Object*.
151  inline PropertyDetails(Smi* smi);
152  inline Smi* AsSmi();
153
154  PropertyType type() { return TypeField::decode(value_); }
155
156  bool IsTransition() {
157    PropertyType t = type();
158    ASSERT(t != INTERCEPTOR);
159    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
160  }
161
162  bool IsProperty() {
163    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
164  }
165
166  PropertyAttributes attributes() { return AttributesField::decode(value_); }
167
168  int index() { return IndexField::decode(value_); }
169
170  inline PropertyDetails AsDeleted();
171
172  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
173
174  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
175  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
176  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
177  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
178
179  // Bit fields in value_ (type, shift, size). Must be public so the
180  // constants can be embedded in generated code.
181  class TypeField:       public BitField<PropertyType,       0, 3> {};
182  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
183  class DeletedField:    public BitField<uint32_t,           6, 1> {};
184  class IndexField:      public BitField<uint32_t,           7, 32-7> {};
185
186  static const int kInitialIndex = 1;
187 private:
188  uint32_t value_;
189};
190
191
192// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
193enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
194
195
196// PropertyNormalizationMode is used to specify whether to keep
197// inobject properties when normalizing properties of a JSObject.
198enum PropertyNormalizationMode {
199  CLEAR_INOBJECT_PROPERTIES,
200  KEEP_INOBJECT_PROPERTIES
201};
202
203
204// NormalizedMapSharingMode is used to specify whether a map may be shared
205// by different objects with normalized properties.
206enum NormalizedMapSharingMode {
207  UNIQUE_NORMALIZED_MAP,
208  SHARED_NORMALIZED_MAP
209};
210
211
212// Instance size sentinel for objects of variable size.
213static const int kVariableSizeSentinel = 0;
214
215
216// All Maps have a field instance_type containing a InstanceType.
217// It describes the type of the instances.
218//
219// As an example, a JavaScript object is a heap object and its map
220// instance_type is JS_OBJECT_TYPE.
221//
222// The names of the string instance types are intended to systematically
223// mirror their encoding in the instance_type field of the map.  The default
224// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
225// encoding is mentioned explicitly in the name.  Likewise, the default
226// representation is considered sequential.  It is not mentioned in the
227// name.  The other representations (eg, CONS, EXTERNAL) are explicitly
228// mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
229// symbol) or a STRING_TYPE (if it is not a symbol).
230//
231// NOTE: The following things are some that depend on the string types having
232// instance_types that are less than those of all other types:
233// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
234// Object::IsString.
235//
236// NOTE: Everything following JS_VALUE_TYPE is considered a
237// JSObject for GC purposes. The first four entries here have typeof
238// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
239#define INSTANCE_TYPE_LIST_ALL(V)                                              \
240  V(SYMBOL_TYPE)                                                               \
241  V(ASCII_SYMBOL_TYPE)                                                         \
242  V(CONS_SYMBOL_TYPE)                                                          \
243  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
244  V(EXTERNAL_SYMBOL_TYPE)                                                      \
245  V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE)                                      \
246  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
247  V(STRING_TYPE)                                                               \
248  V(ASCII_STRING_TYPE)                                                         \
249  V(CONS_STRING_TYPE)                                                          \
250  V(CONS_ASCII_STRING_TYPE)                                                    \
251  V(EXTERNAL_STRING_TYPE)                                                      \
252  V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE)                                      \
253  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
254  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
255                                                                               \
256  V(MAP_TYPE)                                                                  \
257  V(CODE_TYPE)                                                                 \
258  V(ODDBALL_TYPE)                                                              \
259  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
260                                                                               \
261  V(HEAP_NUMBER_TYPE)                                                          \
262  V(PROXY_TYPE)                                                                \
263  V(BYTE_ARRAY_TYPE)                                                           \
264  V(PIXEL_ARRAY_TYPE)                                                          \
265  /* Note: the order of these external array */                                \
266  /* types is relied upon in */                                                \
267  /* Object::IsExternalArray(). */                                             \
268  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
269  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
270  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
271  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
272  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
273  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
274  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
275  V(FILLER_TYPE)                                                               \
276                                                                               \
277  V(ACCESSOR_INFO_TYPE)                                                        \
278  V(ACCESS_CHECK_INFO_TYPE)                                                    \
279  V(INTERCEPTOR_INFO_TYPE)                                                     \
280  V(CALL_HANDLER_INFO_TYPE)                                                    \
281  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
282  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
283  V(SIGNATURE_INFO_TYPE)                                                       \
284  V(TYPE_SWITCH_INFO_TYPE)                                                     \
285  V(SCRIPT_TYPE)                                                               \
286  V(CODE_CACHE_TYPE)                                                           \
287                                                                               \
288  V(FIXED_ARRAY_TYPE)                                                          \
289  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
290                                                                               \
291  V(JS_VALUE_TYPE)                                                             \
292  V(JS_OBJECT_TYPE)                                                            \
293  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
294  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
295  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
296  V(JS_GLOBAL_PROXY_TYPE)                                                      \
297  V(JS_ARRAY_TYPE)                                                             \
298  V(JS_REGEXP_TYPE)                                                            \
299                                                                               \
300  V(JS_FUNCTION_TYPE)                                                          \
301
302#ifdef ENABLE_DEBUGGER_SUPPORT
303#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
304  V(DEBUG_INFO_TYPE)                                                           \
305  V(BREAK_POINT_INFO_TYPE)
306#else
307#define INSTANCE_TYPE_LIST_DEBUGGER(V)
308#endif
309
310#define INSTANCE_TYPE_LIST(V)                                                  \
311  INSTANCE_TYPE_LIST_ALL(V)                                                    \
312  INSTANCE_TYPE_LIST_DEBUGGER(V)
313
314
315// Since string types are not consecutive, this macro is used to
316// iterate over them.
317#define STRING_TYPE_LIST(V)                                                    \
318  V(SYMBOL_TYPE,                                                               \
319    kVariableSizeSentinel,                                                     \
320    symbol,                                                                    \
321    Symbol)                                                                    \
322  V(ASCII_SYMBOL_TYPE,                                                         \
323    kVariableSizeSentinel,                                                     \
324    ascii_symbol,                                                              \
325    AsciiSymbol)                                                               \
326  V(CONS_SYMBOL_TYPE,                                                          \
327    ConsString::kSize,                                                         \
328    cons_symbol,                                                               \
329    ConsSymbol)                                                                \
330  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
331    ConsString::kSize,                                                         \
332    cons_ascii_symbol,                                                         \
333    ConsAsciiSymbol)                                                           \
334  V(EXTERNAL_SYMBOL_TYPE,                                                      \
335    ExternalTwoByteString::kSize,                                              \
336    external_symbol,                                                           \
337    ExternalSymbol)                                                            \
338  V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                      \
339    ExternalTwoByteString::kSize,                                              \
340    external_symbol_with_ascii_data,                                           \
341    ExternalSymbolWithAsciiData)                                               \
342  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
343    ExternalAsciiString::kSize,                                                \
344    external_ascii_symbol,                                                     \
345    ExternalAsciiSymbol)                                                       \
346  V(STRING_TYPE,                                                               \
347    kVariableSizeSentinel,                                                     \
348    string,                                                                    \
349    String)                                                                    \
350  V(ASCII_STRING_TYPE,                                                         \
351    kVariableSizeSentinel,                                                     \
352    ascii_string,                                                              \
353    AsciiString)                                                               \
354  V(CONS_STRING_TYPE,                                                          \
355    ConsString::kSize,                                                         \
356    cons_string,                                                               \
357    ConsString)                                                                \
358  V(CONS_ASCII_STRING_TYPE,                                                    \
359    ConsString::kSize,                                                         \
360    cons_ascii_string,                                                         \
361    ConsAsciiString)                                                           \
362  V(EXTERNAL_STRING_TYPE,                                                      \
363    ExternalTwoByteString::kSize,                                              \
364    external_string,                                                           \
365    ExternalString)                                                            \
366  V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                      \
367    ExternalTwoByteString::kSize,                                              \
368    external_string_with_ascii_data,                                           \
369    ExternalStringWithAsciiData)                                               \
370  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
371    ExternalAsciiString::kSize,                                                \
372    external_ascii_string,                                                     \
373    ExternalAsciiString)
374
375// A struct is a simple object a set of object-valued fields.  Including an
376// object type in this causes the compiler to generate most of the boilerplate
377// code for the class including allocation and garbage collection routines,
378// casts and predicates.  All you need to define is the class, methods and
379// object verification routines.  Easy, no?
380//
381// Note that for subtle reasons related to the ordering or numerical values of
382// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
383// manually.
384#define STRUCT_LIST_ALL(V)                                                     \
385  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
386  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
387  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
388  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
389  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
390  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
391  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
392  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
393  V(SCRIPT, Script, script)                                                    \
394  V(CODE_CACHE, CodeCache, code_cache)
395
396#ifdef ENABLE_DEBUGGER_SUPPORT
397#define STRUCT_LIST_DEBUGGER(V)                                                \
398  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
399  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
400#else
401#define STRUCT_LIST_DEBUGGER(V)
402#endif
403
404#define STRUCT_LIST(V)                                                         \
405  STRUCT_LIST_ALL(V)                                                           \
406  STRUCT_LIST_DEBUGGER(V)
407
408// We use the full 8 bits of the instance_type field to encode heap object
409// instance types.  The high-order bit (bit 7) is set if the object is not a
410// string, and cleared if it is a string.
411const uint32_t kIsNotStringMask = 0x80;
412const uint32_t kStringTag = 0x0;
413const uint32_t kNotStringTag = 0x80;
414
415// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
416// There are not enough types that the non-string types (with bit 7 set) can
417// have bit 6 set too.
418const uint32_t kIsSymbolMask = 0x40;
419const uint32_t kNotSymbolTag = 0x0;
420const uint32_t kSymbolTag = 0x40;
421
422// If bit 7 is clear then bit 2 indicates whether the string consists of
423// two-byte characters or one-byte characters.
424const uint32_t kStringEncodingMask = 0x4;
425const uint32_t kTwoByteStringTag = 0x0;
426const uint32_t kAsciiStringTag = 0x4;
427
428// If bit 7 is clear, the low-order 2 bits indicate the representation
429// of the string.
430const uint32_t kStringRepresentationMask = 0x03;
431enum StringRepresentationTag {
432  kSeqStringTag = 0x0,
433  kConsStringTag = 0x1,
434  kExternalStringTag = 0x2
435};
436const uint32_t kIsConsStringMask = 0x1;
437
438// If bit 7 is clear, then bit 3 indicates whether this two-byte
439// string actually contains ascii data.
440const uint32_t kAsciiDataHintMask = 0x08;
441const uint32_t kAsciiDataHintTag = 0x08;
442
443
444// A ConsString with an empty string as the right side is a candidate
445// for being shortcut by the garbage collector unless it is a
446// symbol. It's not common to have non-flat symbols, so we do not
447// shortcut them thereby avoiding turning symbols into strings. See
448// heap.cc and mark-compact.cc.
449const uint32_t kShortcutTypeMask =
450    kIsNotStringMask |
451    kIsSymbolMask |
452    kStringRepresentationMask;
453const uint32_t kShortcutTypeTag = kConsStringTag;
454
455
456enum InstanceType {
457  // String types.
458  SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag,
459  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
460  CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag,
461  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
462  EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag,
463  EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
464      kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag,
465  EXTERNAL_ASCII_SYMBOL_TYPE =
466      kAsciiStringTag | kSymbolTag | kExternalStringTag,
467  STRING_TYPE = kTwoByteStringTag | kSeqStringTag,
468  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
469  CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag,
470  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
471  EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag,
472  EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
473      kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag,
474  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
475  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
476
477  // Objects allocated in their own spaces (never in new space).
478  MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
479  CODE_TYPE,
480  ODDBALL_TYPE,
481  JS_GLOBAL_PROPERTY_CELL_TYPE,
482
483  // "Data", objects that cannot contain non-map-word pointers to heap
484  // objects.
485  HEAP_NUMBER_TYPE,
486  PROXY_TYPE,
487  BYTE_ARRAY_TYPE,
488  PIXEL_ARRAY_TYPE,
489  EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
490  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
491  EXTERNAL_SHORT_ARRAY_TYPE,
492  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
493  EXTERNAL_INT_ARRAY_TYPE,
494  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
495  EXTERNAL_FLOAT_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
496  FILLER_TYPE,  // LAST_DATA_TYPE
497
498  // Structs.
499  ACCESSOR_INFO_TYPE,
500  ACCESS_CHECK_INFO_TYPE,
501  INTERCEPTOR_INFO_TYPE,
502  CALL_HANDLER_INFO_TYPE,
503  FUNCTION_TEMPLATE_INFO_TYPE,
504  OBJECT_TEMPLATE_INFO_TYPE,
505  SIGNATURE_INFO_TYPE,
506  TYPE_SWITCH_INFO_TYPE,
507  SCRIPT_TYPE,
508  CODE_CACHE_TYPE,
509  // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
510  // is defined. However as include/v8.h contain some of the instance type
511  // constants always having them avoids them getting different numbers
512  // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
513  DEBUG_INFO_TYPE,
514  BREAK_POINT_INFO_TYPE,
515
516  FIXED_ARRAY_TYPE,
517  SHARED_FUNCTION_INFO_TYPE,
518
519  JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
520  JS_OBJECT_TYPE,
521  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
522  JS_GLOBAL_OBJECT_TYPE,
523  JS_BUILTINS_OBJECT_TYPE,
524  JS_GLOBAL_PROXY_TYPE,
525  JS_ARRAY_TYPE,
526  JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE
527
528  JS_FUNCTION_TYPE,
529
530  // Pseudo-types
531  FIRST_TYPE = 0x0,
532  LAST_TYPE = JS_FUNCTION_TYPE,
533  INVALID_TYPE = FIRST_TYPE - 1,
534  FIRST_NONSTRING_TYPE = MAP_TYPE,
535  // Boundaries for testing for an external array.
536  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
537  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
538  // Boundary for promotion to old data space/old pointer space.
539  LAST_DATA_TYPE = FILLER_TYPE,
540  // Boundaries for testing the type is a JavaScript "object".  Note that
541  // function objects are not counted as objects, even though they are
542  // implemented as such; only values whose typeof is "object" are included.
543  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
544  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
545};
546
547
548STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
549STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
550STATIC_CHECK(PROXY_TYPE == Internals::kProxyType);
551
552
553enum CompareResult {
554  LESS      = -1,
555  EQUAL     =  0,
556  GREATER   =  1,
557
558  NOT_EQUAL = GREATER
559};
560
561
562#define DECL_BOOLEAN_ACCESSORS(name)   \
563  inline bool name();                  \
564  inline void set_##name(bool value);  \
565
566
567#define DECL_ACCESSORS(name, type)                                      \
568  inline type* name();                                                  \
569  inline void set_##name(type* value,                                   \
570                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
571
572
573class StringStream;
574class ObjectVisitor;
575
576struct ValueInfo : public Malloced {
577  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
578  InstanceType type;
579  Object* ptr;
580  const char* str;
581  double number;
582};
583
584
585// A template-ized version of the IsXXX functions.
586template <class C> static inline bool Is(Object* obj);
587
588class MaybeObject BASE_EMBEDDED {
589 public:
590  inline bool IsFailure();
591  inline bool IsRetryAfterGC();
592  inline bool IsOutOfMemory();
593  inline bool IsException();
594  INLINE(bool IsTheHole());
595  inline bool ToObject(Object** obj) {
596    if (IsFailure()) return false;
597    *obj = reinterpret_cast<Object*>(this);
598    return true;
599  }
600  inline Object* ToObjectUnchecked() {
601    ASSERT(!IsFailure());
602    return reinterpret_cast<Object*>(this);
603  }
604  inline Object* ToObjectChecked() {
605    CHECK(!IsFailure());
606    return reinterpret_cast<Object*>(this);
607  }
608
609#ifdef DEBUG
610  // Prints this object with details.
611  void Print();
612  void PrintLn();
613  // Verifies the object.
614  void Verify();
615#endif
616};
617
618// Object is the abstract superclass for all classes in the
619// object hierarchy.
620// Object does not use any virtual functions to avoid the
621// allocation of the C++ vtable.
622// Since Smi and Failure are subclasses of Object no
623// data members can be present in Object.
624class Object : public MaybeObject {
625 public:
626  // Type testing.
627  inline bool IsSmi();
628  inline bool IsHeapObject();
629  inline bool IsHeapNumber();
630  inline bool IsString();
631  inline bool IsSymbol();
632  // See objects-inl.h for more details
633  inline bool IsSeqString();
634  inline bool IsExternalString();
635  inline bool IsExternalTwoByteString();
636  inline bool IsExternalAsciiString();
637  inline bool IsSeqTwoByteString();
638  inline bool IsSeqAsciiString();
639  inline bool IsConsString();
640
641  inline bool IsNumber();
642  inline bool IsByteArray();
643  inline bool IsPixelArray();
644  inline bool IsExternalArray();
645  inline bool IsExternalByteArray();
646  inline bool IsExternalUnsignedByteArray();
647  inline bool IsExternalShortArray();
648  inline bool IsExternalUnsignedShortArray();
649  inline bool IsExternalIntArray();
650  inline bool IsExternalUnsignedIntArray();
651  inline bool IsExternalFloatArray();
652  inline bool IsJSObject();
653  inline bool IsJSContextExtensionObject();
654  inline bool IsMap();
655  inline bool IsFixedArray();
656  inline bool IsDescriptorArray();
657  inline bool IsContext();
658  inline bool IsCatchContext();
659  inline bool IsGlobalContext();
660  inline bool IsJSFunction();
661  inline bool IsCode();
662  inline bool IsOddball();
663  inline bool IsSharedFunctionInfo();
664  inline bool IsJSValue();
665  inline bool IsStringWrapper();
666  inline bool IsProxy();
667  inline bool IsBoolean();
668  inline bool IsJSArray();
669  inline bool IsJSRegExp();
670  inline bool IsHashTable();
671  inline bool IsDictionary();
672  inline bool IsSymbolTable();
673  inline bool IsJSFunctionResultCache();
674  inline bool IsNormalizedMapCache();
675  inline bool IsCompilationCacheTable();
676  inline bool IsCodeCacheHashTable();
677  inline bool IsMapCache();
678  inline bool IsPrimitive();
679  inline bool IsGlobalObject();
680  inline bool IsJSGlobalObject();
681  inline bool IsJSBuiltinsObject();
682  inline bool IsJSGlobalProxy();
683  inline bool IsUndetectableObject();
684  inline bool IsAccessCheckNeeded();
685  inline bool IsJSGlobalPropertyCell();
686
687  // Returns true if this object is an instance of the specified
688  // function template.
689  inline bool IsInstanceOf(FunctionTemplateInfo* type);
690
691  inline bool IsStruct();
692#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
693  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
694#undef DECLARE_STRUCT_PREDICATE
695
696  // Oddball testing.
697  INLINE(bool IsUndefined());
698  INLINE(bool IsNull());
699  INLINE(bool IsTrue());
700  INLINE(bool IsFalse());
701
702  // Extract the number.
703  inline double Number();
704
705  inline bool HasSpecificClassOf(String* name);
706
707  MUST_USE_RESULT MaybeObject* ToObject();             // ECMA-262 9.9.
708  Object* ToBoolean();                                 // ECMA-262 9.2.
709
710  // Convert to a JSObject if needed.
711  // global_context is used when creating wrapper object.
712  MUST_USE_RESULT MaybeObject* ToObject(Context* global_context);
713
714  // Converts this to a Smi if possible.
715  // Failure is returned otherwise.
716  MUST_USE_RESULT inline MaybeObject* ToSmi();
717
718  void Lookup(String* name, LookupResult* result);
719
720  // Property access.
721  MUST_USE_RESULT inline MaybeObject* GetProperty(String* key);
722  MUST_USE_RESULT inline MaybeObject* GetProperty(
723      String* key,
724      PropertyAttributes* attributes);
725  MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
726      Object* receiver,
727      String* key,
728      PropertyAttributes* attributes);
729  MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
730                                           LookupResult* result,
731                                           String* key,
732                                           PropertyAttributes* attributes);
733  MUST_USE_RESULT MaybeObject* GetPropertyWithCallback(Object* receiver,
734                                                       Object* structure,
735                                                       String* name,
736                                                       Object* holder);
737  MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
738                                                            JSFunction* getter);
739
740  inline MaybeObject* GetElement(uint32_t index);
741  // For use when we know that no exception can be thrown.
742  inline Object* GetElementNoExceptionThrown(uint32_t index);
743  MaybeObject* GetElementWithReceiver(Object* receiver, uint32_t index);
744
745  // Return the object's prototype (might be Heap::null_value()).
746  Object* GetPrototype();
747
748  // Tries to convert an object to an array index.  Returns true and sets
749  // the output parameter if it succeeds.
750  inline bool ToArrayIndex(uint32_t* index);
751
752  // Returns true if this is a JSValue containing a string and the index is
753  // < the length of the string.  Used to implement [] on strings.
754  inline bool IsStringObjectWithCharacterAt(uint32_t index);
755
756#ifdef DEBUG
757  // Verify a pointer is a valid object pointer.
758  static void VerifyPointer(Object* p);
759#endif
760
761  // Prints this object without details.
762  void ShortPrint();
763
764  // Prints this object without details to a message accumulator.
765  void ShortPrint(StringStream* accumulator);
766
767  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
768  static Object* cast(Object* value) { return value; }
769
770  // Layout description.
771  static const int kHeaderSize = 0;  // Object does not take up any space.
772
773 private:
774  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
775};
776
777
778// Smi represents integer Numbers that can be stored in 31 bits.
779// Smis are immediate which means they are NOT allocated in the heap.
780// The this pointer has the following format: [31 bit signed int] 0
781// For long smis it has the following format:
782//     [32 bit signed int] [31 bits zero padding] 0
783// Smi stands for small integer.
784class Smi: public Object {
785 public:
786  // Returns the integer value.
787  inline int value();
788
789  // Convert a value to a Smi object.
790  static inline Smi* FromInt(int value);
791
792  static inline Smi* FromIntptr(intptr_t value);
793
794  // Returns whether value can be represented in a Smi.
795  static inline bool IsValid(intptr_t value);
796
797  // Casting.
798  static inline Smi* cast(Object* object);
799
800  // Dispatched behavior.
801  void SmiPrint();
802  void SmiPrint(StringStream* accumulator);
803#ifdef DEBUG
804  void SmiVerify();
805#endif
806
807  static const int kMinValue = (-1 << (kSmiValueSize - 1));
808  static const int kMaxValue = -(kMinValue + 1);
809
810 private:
811  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
812};
813
814
815// Failure is used for reporting out of memory situations and
816// propagating exceptions through the runtime system.  Failure objects
817// are transient and cannot occur as part of the object graph.
818//
819// Failures are a single word, encoded as follows:
820// +-------------------------+---+--+--+
821// |.........unused..........|sss|tt|11|
822// +-------------------------+---+--+--+
823//                          7 6 4 32 10
824//
825//
826// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
827// 2-3, are a failure type tag 'tt' with possible values:
828//   00 RETRY_AFTER_GC
829//   01 EXCEPTION
830//   10 INTERNAL_ERROR
831//   11 OUT_OF_MEMORY_EXCEPTION
832//
833// The next three bits, 4-6, are an allocation space tag 'sss'.  The
834// allocation space tag is 000 for all failure types except
835// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
836// allocation spaces (the encoding is found in globals.h).
837
838// Failure type tag info.
839const int kFailureTypeTagSize = 2;
840const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
841
842class Failure: public MaybeObject {
843 public:
844  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
845  enum Type {
846    RETRY_AFTER_GC = 0,
847    EXCEPTION = 1,       // Returning this marker tells the real exception
848                         // is in Top::pending_exception.
849    INTERNAL_ERROR = 2,
850    OUT_OF_MEMORY_EXCEPTION = 3
851  };
852
853  inline Type type() const;
854
855  // Returns the space that needs to be collected for RetryAfterGC failures.
856  inline AllocationSpace allocation_space() const;
857
858  inline bool IsInternalError() const;
859  inline bool IsOutOfMemoryException() const;
860
861  static inline Failure* RetryAfterGC(AllocationSpace space);
862  static inline Failure* RetryAfterGC();  // NEW_SPACE
863  static inline Failure* Exception();
864  static inline Failure* InternalError();
865  static inline Failure* OutOfMemoryException();
866  // Casting.
867  static inline Failure* cast(MaybeObject* object);
868
869  // Dispatched behavior.
870  void FailurePrint();
871  void FailurePrint(StringStream* accumulator);
872#ifdef DEBUG
873  void FailureVerify();
874#endif
875
876 private:
877  inline intptr_t value() const;
878  static inline Failure* Construct(Type type, intptr_t value = 0);
879
880  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
881};
882
883
884// Heap objects typically have a map pointer in their first word.  However,
885// during GC other data (eg, mark bits, forwarding addresses) is sometimes
886// encoded in the first word.  The class MapWord is an abstraction of the
887// value in a heap object's first word.
888class MapWord BASE_EMBEDDED {
889 public:
890  // Normal state: the map word contains a map pointer.
891
892  // Create a map word from a map pointer.
893  static inline MapWord FromMap(Map* map);
894
895  // View this map word as a map pointer.
896  inline Map* ToMap();
897
898
899  // Scavenge collection: the map word of live objects in the from space
900  // contains a forwarding address (a heap object pointer in the to space).
901
902  // True if this map word is a forwarding address for a scavenge
903  // collection.  Only valid during a scavenge collection (specifically,
904  // when all map words are heap object pointers, ie. not during a full GC).
905  inline bool IsForwardingAddress();
906
907  // Create a map word from a forwarding address.
908  static inline MapWord FromForwardingAddress(HeapObject* object);
909
910  // View this map word as a forwarding address.
911  inline HeapObject* ToForwardingAddress();
912
913  // Marking phase of full collection: the map word of live objects is
914  // marked, and may be marked as overflowed (eg, the object is live, its
915  // children have not been visited, and it does not fit in the marking
916  // stack).
917
918  // True if this map word's mark bit is set.
919  inline bool IsMarked();
920
921  // Return this map word but with its mark bit set.
922  inline void SetMark();
923
924  // Return this map word but with its mark bit cleared.
925  inline void ClearMark();
926
927  // True if this map word's overflow bit is set.
928  inline bool IsOverflowed();
929
930  // Return this map word but with its overflow bit set.
931  inline void SetOverflow();
932
933  // Return this map word but with its overflow bit cleared.
934  inline void ClearOverflow();
935
936
937  // Compacting phase of a full compacting collection: the map word of live
938  // objects contains an encoding of the original map address along with the
939  // forwarding address (represented as an offset from the first live object
940  // in the same page as the (old) object address).
941
942  // Create a map word from a map address and a forwarding address offset.
943  static inline MapWord EncodeAddress(Address map_address, int offset);
944
945  // Return the map address encoded in this map word.
946  inline Address DecodeMapAddress(MapSpace* map_space);
947
948  // Return the forwarding offset encoded in this map word.
949  inline int DecodeOffset();
950
951
952  // During serialization: the map word is used to hold an encoded
953  // address, and possibly a mark bit (set and cleared with SetMark
954  // and ClearMark).
955
956  // Create a map word from an encoded address.
957  static inline MapWord FromEncodedAddress(Address address);
958
959  inline Address ToEncodedAddress();
960
961  // Bits used by the marking phase of the garbage collector.
962  //
963  // The first word of a heap object is normally a map pointer. The last two
964  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
965  // mark an object as live and/or overflowed:
966  //   last bit = 0, marked as alive
967  //   second bit = 1, overflowed
968  // An object is only marked as overflowed when it is marked as live while
969  // the marking stack is overflowed.
970  static const int kMarkingBit = 0;  // marking bit
971  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
972  static const int kOverflowBit = 1;  // overflow bit
973  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
974
975  // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
976  // used.
977  // +-----------------+------------------+-----------------+
978  // |forwarding offset|page offset of map|page index of map|
979  // +-----------------+------------------+-----------------+
980  //          ^                 ^                  ^
981  //          |                 |                  |
982  //          |                 |          kMapPageIndexBits
983  //          |         kMapPageOffsetBits
984  // kForwardingOffsetBits
985  static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
986  static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
987#ifdef V8_HOST_ARCH_64_BIT
988  static const int kMapPageIndexBits = 16;
989#else
990  // Use all the 32-bits to encode on a 32-bit platform.
991  static const int kMapPageIndexBits =
992      32 - (kMapPageOffsetBits + kForwardingOffsetBits);
993#endif
994
995  static const int kMapPageIndexShift = 0;
996  static const int kMapPageOffsetShift =
997      kMapPageIndexShift + kMapPageIndexBits;
998  static const int kForwardingOffsetShift =
999      kMapPageOffsetShift + kMapPageOffsetBits;
1000
1001  // Bit masks covering the different parts the encoding.
1002  static const uintptr_t kMapPageIndexMask =
1003      (1 << kMapPageOffsetShift) - 1;
1004  static const uintptr_t kMapPageOffsetMask =
1005      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
1006  static const uintptr_t kForwardingOffsetMask =
1007      ~(kMapPageIndexMask | kMapPageOffsetMask);
1008
1009 private:
1010  // HeapObject calls the private constructor and directly reads the value.
1011  friend class HeapObject;
1012
1013  explicit MapWord(uintptr_t value) : value_(value) {}
1014
1015  uintptr_t value_;
1016};
1017
1018
1019// HeapObject is the superclass for all classes describing heap allocated
1020// objects.
1021class HeapObject: public Object {
1022 public:
1023  // [map]: Contains a map which contains the object's reflective
1024  // information.
1025  inline Map* map();
1026  inline void set_map(Map* value);
1027
1028  // During garbage collection, the map word of a heap object does not
1029  // necessarily contain a map pointer.
1030  inline MapWord map_word();
1031  inline void set_map_word(MapWord map_word);
1032
1033  // Converts an address to a HeapObject pointer.
1034  static inline HeapObject* FromAddress(Address address);
1035
1036  // Returns the address of this HeapObject.
1037  inline Address address();
1038
1039  // Iterates over pointers contained in the object (including the Map)
1040  void Iterate(ObjectVisitor* v);
1041
1042  // Iterates over all pointers contained in the object except the
1043  // first map pointer.  The object type is given in the first
1044  // parameter. This function does not access the map pointer in the
1045  // object, and so is safe to call while the map pointer is modified.
1046  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1047
1048  // Returns the heap object's size in bytes
1049  inline int Size();
1050
1051  // Given a heap object's map pointer, returns the heap size in bytes
1052  // Useful when the map pointer field is used for other purposes.
1053  // GC internal.
1054  inline int SizeFromMap(Map* map);
1055
1056  // Support for the marking heap objects during the marking phase of GC.
1057  // True if the object is marked live.
1058  inline bool IsMarked();
1059
1060  // Mutate this object's map pointer to indicate that the object is live.
1061  inline void SetMark();
1062
1063  // Mutate this object's map pointer to remove the indication that the
1064  // object is live (ie, partially restore the map pointer).
1065  inline void ClearMark();
1066
1067  // True if this object is marked as overflowed.  Overflowed objects have
1068  // been reached and marked during marking of the heap, but their children
1069  // have not necessarily been marked and they have not been pushed on the
1070  // marking stack.
1071  inline bool IsOverflowed();
1072
1073  // Mutate this object's map pointer to indicate that the object is
1074  // overflowed.
1075  inline void SetOverflow();
1076
1077  // Mutate this object's map pointer to remove the indication that the
1078  // object is overflowed (ie, partially restore the map pointer).
1079  inline void ClearOverflow();
1080
1081  // Returns the field at offset in obj, as a read/write Object* reference.
1082  // Does no checking, and is safe to use during GC, while maps are invalid.
1083  // Does not invoke write barrier, so should only be assigned to
1084  // during marking GC.
1085  static inline Object** RawField(HeapObject* obj, int offset);
1086
1087  // Casting.
1088  static inline HeapObject* cast(Object* obj);
1089
1090  // Return the write barrier mode for this. Callers of this function
1091  // must be able to present a reference to an AssertNoAllocation
1092  // object as a sign that they are not going to use this function
1093  // from code that allocates and thus invalidates the returned write
1094  // barrier mode.
1095  inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
1096
1097  // Dispatched behavior.
1098  void HeapObjectShortPrint(StringStream* accumulator);
1099#ifdef DEBUG
1100  void HeapObjectPrint();
1101  void HeapObjectVerify();
1102  inline void VerifyObjectField(int offset);
1103  inline void VerifySmiField(int offset);
1104
1105  void PrintHeader(const char* id);
1106
1107  // Verify a pointer is a valid HeapObject pointer that points to object
1108  // areas in the heap.
1109  static void VerifyHeapPointer(Object* p);
1110#endif
1111
1112  // Layout description.
1113  // First field in a heap object is map.
1114  static const int kMapOffset = Object::kHeaderSize;
1115  static const int kHeaderSize = kMapOffset + kPointerSize;
1116
1117  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1118
1119 protected:
1120  // helpers for calling an ObjectVisitor to iterate over pointers in the
1121  // half-open range [start, end) specified as integer offsets
1122  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1123  // as above, for the single element at "offset"
1124  inline void IteratePointer(ObjectVisitor* v, int offset);
1125
1126 private:
1127  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1128};
1129
1130
1131#define SLOT_ADDR(obj, offset) \
1132  reinterpret_cast<Object**>((obj)->address() + offset)
1133
1134// This class describes a body of an object of a fixed size
1135// in which all pointer fields are located in the [start_offset, end_offset)
1136// interval.
1137template<int start_offset, int end_offset, int size>
1138class FixedBodyDescriptor {
1139 public:
1140  static const int kStartOffset = start_offset;
1141  static const int kEndOffset = end_offset;
1142  static const int kSize = size;
1143
1144  static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1145
1146  template<typename StaticVisitor>
1147  static inline void IterateBody(HeapObject* obj) {
1148    StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1149                                 SLOT_ADDR(obj, end_offset));
1150  }
1151};
1152
1153
1154// This class describes a body of an object of a variable size
1155// in which all pointer fields are located in the [start_offset, object_size)
1156// interval.
1157template<int start_offset>
1158class FlexibleBodyDescriptor {
1159 public:
1160  static const int kStartOffset = start_offset;
1161
1162  static inline void IterateBody(HeapObject* obj,
1163                                 int object_size,
1164                                 ObjectVisitor* v);
1165
1166  template<typename StaticVisitor>
1167  static inline void IterateBody(HeapObject* obj, int object_size) {
1168    StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1169                                 SLOT_ADDR(obj, object_size));
1170  }
1171};
1172
1173#undef SLOT_ADDR
1174
1175
1176// The HeapNumber class describes heap allocated numbers that cannot be
1177// represented in a Smi (small integer)
1178class HeapNumber: public HeapObject {
1179 public:
1180  // [value]: number value.
1181  inline double value();
1182  inline void set_value(double value);
1183
1184  // Casting.
1185  static inline HeapNumber* cast(Object* obj);
1186
1187  // Dispatched behavior.
1188  Object* HeapNumberToBoolean();
1189  void HeapNumberPrint();
1190  void HeapNumberPrint(StringStream* accumulator);
1191#ifdef DEBUG
1192  void HeapNumberVerify();
1193#endif
1194
1195  inline int get_exponent();
1196  inline int get_sign();
1197
1198  // Layout description.
1199  static const int kValueOffset = HeapObject::kHeaderSize;
1200  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1201  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1202  // little endian apart from non-EABI arm which is little endian with big
1203  // endian floating point word ordering!
1204#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1205  static const int kMantissaOffset = kValueOffset;
1206  static const int kExponentOffset = kValueOffset + 4;
1207#else
1208  static const int kMantissaOffset = kValueOffset + 4;
1209  static const int kExponentOffset = kValueOffset;
1210# define BIG_ENDIAN_FLOATING_POINT 1
1211#endif
1212  static const int kSize = kValueOffset + kDoubleSize;
1213  static const uint32_t kSignMask = 0x80000000u;
1214  static const uint32_t kExponentMask = 0x7ff00000u;
1215  static const uint32_t kMantissaMask = 0xfffffu;
1216  static const int kMantissaBits = 52;
1217  static const int kExponentBits = 11;
1218  static const int kExponentBias = 1023;
1219  static const int kExponentShift = 20;
1220  static const int kMantissaBitsInTopWord = 20;
1221  static const int kNonMantissaBitsInTopWord = 12;
1222
1223 private:
1224  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1225};
1226
1227
1228// The JSObject describes real heap allocated JavaScript objects with
1229// properties.
1230// Note that the map of JSObject changes during execution to enable inline
1231// caching.
1232class JSObject: public HeapObject {
1233 public:
1234  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1235  enum ElementsKind {
1236    // The only "fast" kind.
1237    FAST_ELEMENTS,
1238    // All the kinds below are "slow".
1239    DICTIONARY_ELEMENTS,
1240    PIXEL_ELEMENTS,
1241    EXTERNAL_BYTE_ELEMENTS,
1242    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1243    EXTERNAL_SHORT_ELEMENTS,
1244    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1245    EXTERNAL_INT_ELEMENTS,
1246    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1247    EXTERNAL_FLOAT_ELEMENTS
1248  };
1249
1250  // [properties]: Backing storage for properties.
1251  // properties is a FixedArray in the fast case and a Dictionary in the
1252  // slow case.
1253  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1254  inline void initialize_properties();
1255  inline bool HasFastProperties();
1256  inline StringDictionary* property_dictionary();  // Gets slow properties.
1257
1258  // [elements]: The elements (properties with names that are integers).
1259  //
1260  // Elements can be in two general modes: fast and slow. Each mode
1261  // corrensponds to a set of object representations of elements that
1262  // have something in common.
1263  //
1264  // In the fast mode elements is a FixedArray and so each element can
1265  // be quickly accessed. This fact is used in the generated code. The
1266  // elements array can have one of the two maps in this mode:
1267  // fixed_array_map or fixed_cow_array_map (for copy-on-write
1268  // arrays). In the latter case the elements array may be shared by a
1269  // few objects and so before writing to any element the array must
1270  // be copied. Use EnsureWritableFastElements in this case.
1271  //
1272  // In the slow mode elements is either a NumberDictionary or a
1273  // PixelArray or an ExternalArray.
1274  DECL_ACCESSORS(elements, HeapObject)
1275  inline void initialize_elements();
1276  MUST_USE_RESULT inline MaybeObject* ResetElements();
1277  inline ElementsKind GetElementsKind();
1278  inline bool HasFastElements();
1279  inline bool HasDictionaryElements();
1280  inline bool HasPixelElements();
1281  inline bool HasExternalArrayElements();
1282  inline bool HasExternalByteElements();
1283  inline bool HasExternalUnsignedByteElements();
1284  inline bool HasExternalShortElements();
1285  inline bool HasExternalUnsignedShortElements();
1286  inline bool HasExternalIntElements();
1287  inline bool HasExternalUnsignedIntElements();
1288  inline bool HasExternalFloatElements();
1289  inline bool AllowsSetElementsLength();
1290  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1291  // Requires: this->HasFastElements().
1292  MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
1293
1294  // Collects elements starting at index 0.
1295  // Undefined values are placed after non-undefined values.
1296  // Returns the number of non-undefined values.
1297  MUST_USE_RESULT MaybeObject* PrepareElementsForSort(uint32_t limit);
1298  // As PrepareElementsForSort, but only on objects where elements is
1299  // a dictionary, and it will stay a dictionary.
1300  MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
1301
1302  MUST_USE_RESULT MaybeObject* SetProperty(String* key,
1303                                           Object* value,
1304                                           PropertyAttributes attributes);
1305  MUST_USE_RESULT MaybeObject* SetProperty(LookupResult* result,
1306                                           String* key,
1307                                           Object* value,
1308                                           PropertyAttributes attributes);
1309  MUST_USE_RESULT MaybeObject* SetPropertyWithFailedAccessCheck(
1310      LookupResult* result,
1311      String* name,
1312      Object* value);
1313  MUST_USE_RESULT MaybeObject* SetPropertyWithCallback(Object* structure,
1314                                                       String* name,
1315                                                       Object* value,
1316                                                       JSObject* holder);
1317  MUST_USE_RESULT MaybeObject* SetPropertyWithDefinedSetter(JSFunction* setter,
1318                                                            Object* value);
1319  MUST_USE_RESULT MaybeObject* SetPropertyWithInterceptor(
1320      String* name,
1321      Object* value,
1322      PropertyAttributes attributes);
1323  MUST_USE_RESULT MaybeObject* SetPropertyPostInterceptor(
1324      String* name,
1325      Object* value,
1326      PropertyAttributes attributes);
1327  MUST_USE_RESULT MaybeObject* IgnoreAttributesAndSetLocalProperty(
1328      String* key,
1329      Object* value,
1330      PropertyAttributes attributes);
1331
1332  // Retrieve a value in a normalized object given a lookup result.
1333  // Handles the special representation of JS global objects.
1334  Object* GetNormalizedProperty(LookupResult* result);
1335
1336  // Sets the property value in a normalized object given a lookup result.
1337  // Handles the special representation of JS global objects.
1338  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1339
1340  // Sets the property value in a normalized object given (key, value, details).
1341  // Handles the special representation of JS global objects.
1342  MUST_USE_RESULT MaybeObject* SetNormalizedProperty(String* name,
1343                                                     Object* value,
1344                                                     PropertyDetails details);
1345
1346  // Deletes the named property in a normalized object.
1347  MUST_USE_RESULT MaybeObject* DeleteNormalizedProperty(String* name,
1348                                                        DeleteMode mode);
1349
1350  // Returns the class name ([[Class]] property in the specification).
1351  String* class_name();
1352
1353  // Returns the constructor name (the name (possibly, inferred name) of the
1354  // function that was used to instantiate the object).
1355  String* constructor_name();
1356
1357  // Retrieve interceptors.
1358  InterceptorInfo* GetNamedInterceptor();
1359  InterceptorInfo* GetIndexedInterceptor();
1360
1361  inline PropertyAttributes GetPropertyAttribute(String* name);
1362  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1363                                                      String* name);
1364  PropertyAttributes GetLocalPropertyAttribute(String* name);
1365
1366  MUST_USE_RESULT MaybeObject* DefineAccessor(String* name,
1367                                              bool is_getter,
1368                                              JSFunction* fun,
1369                                              PropertyAttributes attributes);
1370  Object* LookupAccessor(String* name, bool is_getter);
1371
1372  MUST_USE_RESULT MaybeObject* DefineAccessor(AccessorInfo* info);
1373
1374  // Used from Object::GetProperty().
1375  MaybeObject* GetPropertyWithFailedAccessCheck(
1376      Object* receiver,
1377      LookupResult* result,
1378      String* name,
1379      PropertyAttributes* attributes);
1380  MaybeObject* GetPropertyWithInterceptor(
1381      JSObject* receiver,
1382      String* name,
1383      PropertyAttributes* attributes);
1384  MaybeObject* GetPropertyPostInterceptor(
1385      JSObject* receiver,
1386      String* name,
1387      PropertyAttributes* attributes);
1388  MaybeObject* GetLocalPropertyPostInterceptor(JSObject* receiver,
1389                                               String* name,
1390                                               PropertyAttributes* attributes);
1391
1392  // Returns true if this is an instance of an api function and has
1393  // been modified since it was created.  May give false positives.
1394  bool IsDirty();
1395
1396  bool HasProperty(String* name) {
1397    return GetPropertyAttribute(name) != ABSENT;
1398  }
1399
1400  // Can cause a GC if it hits an interceptor.
1401  bool HasLocalProperty(String* name) {
1402    return GetLocalPropertyAttribute(name) != ABSENT;
1403  }
1404
1405  // If the receiver is a JSGlobalProxy this method will return its prototype,
1406  // otherwise the result is the receiver itself.
1407  inline Object* BypassGlobalProxy();
1408
1409  // Accessors for hidden properties object.
1410  //
1411  // Hidden properties are not local properties of the object itself.
1412  // Instead they are stored on an auxiliary JSObject stored as a local
1413  // property with a special name Heap::hidden_symbol(). But if the
1414  // receiver is a JSGlobalProxy then the auxiliary object is a property
1415  // of its prototype.
1416  //
1417  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1418  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1419  // holder.
1420  //
1421  // These accessors do not touch interceptors or accessors.
1422  inline bool HasHiddenPropertiesObject();
1423  inline Object* GetHiddenPropertiesObject();
1424  MUST_USE_RESULT inline MaybeObject* SetHiddenPropertiesObject(
1425      Object* hidden_obj);
1426
1427  MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode);
1428  MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode);
1429
1430  // Tests for the fast common case for property enumeration.
1431  bool IsSimpleEnum();
1432
1433  // Do we want to keep the elements in fast case when increasing the
1434  // capacity?
1435  bool ShouldConvertToSlowElements(int new_capacity);
1436  // Returns true if the backing storage for the slow-case elements of
1437  // this object takes up nearly as much space as a fast-case backing
1438  // storage would.  In that case the JSObject should have fast
1439  // elements.
1440  bool ShouldConvertToFastElements();
1441
1442  // Return the object's prototype (might be Heap::null_value()).
1443  inline Object* GetPrototype();
1444
1445  // Set the object's prototype (only JSObject and null are allowed).
1446  MUST_USE_RESULT MaybeObject* SetPrototype(Object* value,
1447                                            bool skip_hidden_prototypes);
1448
1449  // Tells whether the index'th element is present.
1450  inline bool HasElement(uint32_t index);
1451  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1452
1453  // Tells whether the index'th element is present and how it is stored.
1454  enum LocalElementType {
1455    // There is no element with given index.
1456    UNDEFINED_ELEMENT,
1457
1458    // Element with given index is handled by interceptor.
1459    INTERCEPTED_ELEMENT,
1460
1461    // Element with given index is character in string.
1462    STRING_CHARACTER_ELEMENT,
1463
1464    // Element with given index is stored in fast backing store.
1465    FAST_ELEMENT,
1466
1467    // Element with given index is stored in slow backing store.
1468    DICTIONARY_ELEMENT
1469  };
1470
1471  LocalElementType HasLocalElement(uint32_t index);
1472
1473  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1474  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1475
1476  MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index, Object* value);
1477
1478  // Set the index'th array element.
1479  // A Failure object is returned if GC is needed.
1480  MUST_USE_RESULT MaybeObject* SetElement(uint32_t index, Object* value);
1481
1482  // Returns the index'th element.
1483  // The undefined object if index is out of bounds.
1484  MaybeObject* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1485  MaybeObject* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1486
1487  MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(int capacity,
1488                                                                int length);
1489  MUST_USE_RESULT MaybeObject* SetSlowElements(Object* length);
1490
1491  // Lookup interceptors are used for handling properties controlled by host
1492  // objects.
1493  inline bool HasNamedInterceptor();
1494  inline bool HasIndexedInterceptor();
1495
1496  // Support functions for v8 api (needed for correct interceptor behavior).
1497  bool HasRealNamedProperty(String* key);
1498  bool HasRealElementProperty(uint32_t index);
1499  bool HasRealNamedCallbackProperty(String* key);
1500
1501  // Initializes the array to a certain length
1502  MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
1503
1504  // Get the header size for a JSObject.  Used to compute the index of
1505  // internal fields as well as the number of internal fields.
1506  inline int GetHeaderSize();
1507
1508  inline int GetInternalFieldCount();
1509  inline Object* GetInternalField(int index);
1510  inline void SetInternalField(int index, Object* value);
1511
1512  // Lookup a property.  If found, the result is valid and has
1513  // detailed information.
1514  void LocalLookup(String* name, LookupResult* result);
1515  void Lookup(String* name, LookupResult* result);
1516
1517  // The following lookup functions skip interceptors.
1518  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1519  void LookupRealNamedProperty(String* name, LookupResult* result);
1520  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1521  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1522  bool SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value);
1523  void LookupCallback(String* name, LookupResult* result);
1524
1525  // Returns the number of properties on this object filtering out properties
1526  // with the specified attributes (ignoring interceptors).
1527  int NumberOfLocalProperties(PropertyAttributes filter);
1528  // Returns the number of enumerable properties (ignoring interceptors).
1529  int NumberOfEnumProperties();
1530  // Fill in details for properties into storage starting at the specified
1531  // index.
1532  void GetLocalPropertyNames(FixedArray* storage, int index);
1533
1534  // Returns the number of properties on this object filtering out properties
1535  // with the specified attributes (ignoring interceptors).
1536  int NumberOfLocalElements(PropertyAttributes filter);
1537  // Returns the number of enumerable elements (ignoring interceptors).
1538  int NumberOfEnumElements();
1539  // Returns the number of elements on this object filtering out elements
1540  // with the specified attributes (ignoring interceptors).
1541  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1542  // Count and fill in the enumerable elements into storage.
1543  // (storage->length() == NumberOfEnumElements()).
1544  // If storage is NULL, will count the elements without adding
1545  // them to any storage.
1546  // Returns the number of enumerable elements.
1547  int GetEnumElementKeys(FixedArray* storage);
1548
1549  // Add a property to a fast-case object using a map transition to
1550  // new_map.
1551  MUST_USE_RESULT MaybeObject* AddFastPropertyUsingMap(Map* new_map,
1552                                                       String* name,
1553                                                       Object* value);
1554
1555  // Add a constant function property to a fast-case object.
1556  // This leaves a CONSTANT_TRANSITION in the old map, and
1557  // if it is called on a second object with this map, a
1558  // normal property is added instead, with a map transition.
1559  // This avoids the creation of many maps with the same constant
1560  // function, all orphaned.
1561  MUST_USE_RESULT MaybeObject* AddConstantFunctionProperty(
1562      String* name,
1563      JSFunction* function,
1564      PropertyAttributes attributes);
1565
1566  MUST_USE_RESULT MaybeObject* ReplaceSlowProperty(
1567      String* name,
1568      Object* value,
1569      PropertyAttributes attributes);
1570
1571  // Converts a descriptor of any other type to a real field,
1572  // backed by the properties array.  Descriptors of visible
1573  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1574  // Converts the descriptor on the original object's map to a
1575  // map transition, and the the new field is on the object's new map.
1576  MUST_USE_RESULT MaybeObject* ConvertDescriptorToFieldAndMapTransition(
1577      String* name,
1578      Object* new_value,
1579      PropertyAttributes attributes);
1580
1581  // Converts a descriptor of any other type to a real field,
1582  // backed by the properties array.  Descriptors of visible
1583  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1584  MUST_USE_RESULT MaybeObject* ConvertDescriptorToField(
1585      String* name,
1586      Object* new_value,
1587      PropertyAttributes attributes);
1588
1589  // Add a property to a fast-case object.
1590  MUST_USE_RESULT MaybeObject* AddFastProperty(String* name,
1591                                               Object* value,
1592                                               PropertyAttributes attributes);
1593
1594  // Add a property to a slow-case object.
1595  MUST_USE_RESULT MaybeObject* AddSlowProperty(String* name,
1596                                               Object* value,
1597                                               PropertyAttributes attributes);
1598
1599  // Add a property to an object.
1600  MUST_USE_RESULT MaybeObject* AddProperty(String* name,
1601                                           Object* value,
1602                                           PropertyAttributes attributes);
1603
1604  // Convert the object to use the canonical dictionary
1605  // representation. If the object is expected to have additional properties
1606  // added this number can be indicated to have the backing store allocated to
1607  // an initial capacity for holding these properties.
1608  MUST_USE_RESULT MaybeObject* NormalizeProperties(
1609      PropertyNormalizationMode mode,
1610      int expected_additional_properties);
1611  MUST_USE_RESULT MaybeObject* NormalizeElements();
1612
1613  MUST_USE_RESULT MaybeObject* UpdateMapCodeCache(String* name, Code* code);
1614
1615  // Transform slow named properties to fast variants.
1616  // Returns failure if allocation failed.
1617  MUST_USE_RESULT MaybeObject* TransformToFastProperties(
1618      int unused_property_fields);
1619
1620  // Access fast-case object properties at index.
1621  inline Object* FastPropertyAt(int index);
1622  inline Object* FastPropertyAtPut(int index, Object* value);
1623
1624  // Access to in object properties.
1625  inline Object* InObjectPropertyAt(int index);
1626  inline Object* InObjectPropertyAtPut(int index,
1627                                       Object* value,
1628                                       WriteBarrierMode mode
1629                                       = UPDATE_WRITE_BARRIER);
1630
1631  // initializes the body after properties slot, properties slot is
1632  // initialized by set_properties
1633  // Note: this call does not update write barrier, it is caller's
1634  // reponsibility to ensure that *v* can be collected without WB here.
1635  inline void InitializeBody(int object_size, Object* value);
1636
1637  // Check whether this object references another object
1638  bool ReferencesObject(Object* obj);
1639
1640  // Casting.
1641  static inline JSObject* cast(Object* obj);
1642
1643  // Disalow further properties to be added to the object.
1644  MUST_USE_RESULT MaybeObject* PreventExtensions();
1645
1646
1647  // Dispatched behavior.
1648  void JSObjectShortPrint(StringStream* accumulator);
1649#ifdef DEBUG
1650  void JSObjectPrint();
1651  void JSObjectVerify();
1652  void PrintProperties();
1653  void PrintElements();
1654
1655  // Structure for collecting spill information about JSObjects.
1656  class SpillInformation {
1657   public:
1658    void Clear();
1659    void Print();
1660    int number_of_objects_;
1661    int number_of_objects_with_fast_properties_;
1662    int number_of_objects_with_fast_elements_;
1663    int number_of_fast_used_fields_;
1664    int number_of_fast_unused_fields_;
1665    int number_of_slow_used_properties_;
1666    int number_of_slow_unused_properties_;
1667    int number_of_fast_used_elements_;
1668    int number_of_fast_unused_elements_;
1669    int number_of_slow_used_elements_;
1670    int number_of_slow_unused_elements_;
1671  };
1672
1673  void IncrementSpillStatistics(SpillInformation* info);
1674#endif
1675  Object* SlowReverseLookup(Object* value);
1676
1677  // Maximal number of fast properties for the JSObject. Used to
1678  // restrict the number of map transitions to avoid an explosion in
1679  // the number of maps for objects used as dictionaries.
1680  inline int MaxFastProperties();
1681
1682  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1683  // Also maximal value of JSArray's length property.
1684  static const uint32_t kMaxElementCount = 0xffffffffu;
1685
1686  static const uint32_t kMaxGap = 1024;
1687  static const int kMaxFastElementsLength = 5000;
1688  static const int kInitialMaxFastElementArray = 100000;
1689  static const int kMaxFastProperties = 8;
1690  static const int kMaxInstanceSize = 255 * kPointerSize;
1691  // When extending the backing storage for property values, we increase
1692  // its size by more than the 1 entry necessary, so sequentially adding fields
1693  // to the same object requires fewer allocations and copies.
1694  static const int kFieldsAdded = 3;
1695
1696  // Layout description.
1697  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1698  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1699  static const int kHeaderSize = kElementsOffset + kPointerSize;
1700
1701  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1702
1703  class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
1704   public:
1705    static inline int SizeOf(Map* map, HeapObject* object);
1706  };
1707
1708 private:
1709  MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
1710                                                      Object* structure,
1711                                                      uint32_t index,
1712                                                      Object* holder);
1713  MaybeObject* SetElementWithCallback(Object* structure,
1714                                      uint32_t index,
1715                                      Object* value,
1716                                      JSObject* holder);
1717  MUST_USE_RESULT MaybeObject* SetElementWithInterceptor(uint32_t index,
1718                                                         Object* value);
1719  MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor(uint32_t index,
1720                                                            Object* value);
1721
1722  MaybeObject* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1723
1724  MUST_USE_RESULT MaybeObject* DeletePropertyPostInterceptor(String* name,
1725                                                             DeleteMode mode);
1726  MUST_USE_RESULT MaybeObject* DeletePropertyWithInterceptor(String* name);
1727
1728  MUST_USE_RESULT MaybeObject* DeleteElementPostInterceptor(uint32_t index,
1729                                                            DeleteMode mode);
1730  MUST_USE_RESULT MaybeObject* DeleteElementWithInterceptor(uint32_t index);
1731
1732  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1733                                                         String* name,
1734                                                         bool continue_search);
1735  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1736                                                         String* name,
1737                                                         bool continue_search);
1738  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1739      Object* receiver,
1740      LookupResult* result,
1741      String* name,
1742      bool continue_search);
1743  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1744                                          LookupResult* result,
1745                                          String* name,
1746                                          bool continue_search);
1747
1748  // Returns true if most of the elements backing storage is used.
1749  bool HasDenseElements();
1750
1751  bool CanSetCallback(String* name);
1752  MUST_USE_RESULT MaybeObject* SetElementCallback(
1753      uint32_t index,
1754      Object* structure,
1755      PropertyAttributes attributes);
1756  MUST_USE_RESULT MaybeObject* SetPropertyCallback(
1757      String* name,
1758      Object* structure,
1759      PropertyAttributes attributes);
1760  MUST_USE_RESULT MaybeObject* DefineGetterSetter(
1761      String* name,
1762      PropertyAttributes attributes);
1763
1764  void LookupInDescriptor(String* name, LookupResult* result);
1765
1766  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1767};
1768
1769
1770// FixedArray describes fixed-sized arrays with element type Object*.
1771class FixedArray: public HeapObject {
1772 public:
1773  // [length]: length of the array.
1774  inline int length();
1775  inline void set_length(int value);
1776
1777  // Setter and getter for elements.
1778  inline Object* get(int index);
1779  // Setter that uses write barrier.
1780  inline void set(int index, Object* value);
1781
1782  // Setter that doesn't need write barrier).
1783  inline void set(int index, Smi* value);
1784  // Setter with explicit barrier mode.
1785  inline void set(int index, Object* value, WriteBarrierMode mode);
1786
1787  // Setters for frequently used oddballs located in old space.
1788  inline void set_undefined(int index);
1789  inline void set_null(int index);
1790  inline void set_the_hole(int index);
1791
1792  // Setters with less debug checks for the GC to use.
1793  inline void set_unchecked(int index, Smi* value);
1794  inline void set_null_unchecked(int index);
1795  inline void set_unchecked(int index, Object* value, WriteBarrierMode mode);
1796
1797  // Gives access to raw memory which stores the array's data.
1798  inline Object** data_start();
1799
1800  // Copy operations.
1801  MUST_USE_RESULT inline MaybeObject* Copy();
1802  MUST_USE_RESULT MaybeObject* CopySize(int new_length);
1803
1804  // Add the elements of a JSArray to this FixedArray.
1805  MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
1806
1807  // Compute the union of this and other.
1808  MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
1809
1810  // Copy a sub array from the receiver to dest.
1811  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1812
1813  // Garbage collection support.
1814  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1815
1816  // Code Generation support.
1817  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1818
1819  // Casting.
1820  static inline FixedArray* cast(Object* obj);
1821
1822  // Layout description.
1823  // Length is smi tagged when it is stored.
1824  static const int kLengthOffset = HeapObject::kHeaderSize;
1825  static const int kHeaderSize = kLengthOffset + kPointerSize;
1826
1827  // Maximal allowed size, in bytes, of a single FixedArray.
1828  // Prevents overflowing size computations, as well as extreme memory
1829  // consumption.
1830  static const int kMaxSize = 512 * MB;
1831  // Maximally allowed length of a FixedArray.
1832  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
1833
1834  // Dispatched behavior.
1835#ifdef DEBUG
1836  void FixedArrayPrint();
1837  void FixedArrayVerify();
1838  // Checks if two FixedArrays have identical contents.
1839  bool IsEqualTo(FixedArray* other);
1840#endif
1841
1842  // Swap two elements in a pair of arrays.  If this array and the
1843  // numbers array are the same object, the elements are only swapped
1844  // once.
1845  void SwapPairs(FixedArray* numbers, int i, int j);
1846
1847  // Sort prefix of this array and the numbers array as pairs wrt. the
1848  // numbers.  If the numbers array and the this array are the same
1849  // object, the prefix of this array is sorted.
1850  void SortPairs(FixedArray* numbers, uint32_t len);
1851
1852  class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
1853   public:
1854    static inline int SizeOf(Map* map, HeapObject* object) {
1855      return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
1856    }
1857  };
1858
1859 protected:
1860  // Set operation on FixedArray without using write barriers. Can
1861  // only be used for storing old space objects or smis.
1862  static inline void fast_set(FixedArray* array, int index, Object* value);
1863
1864 private:
1865  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1866};
1867
1868
1869// DescriptorArrays are fixed arrays used to hold instance descriptors.
1870// The format of the these objects is:
1871//   [0]: point to a fixed array with (value, detail) pairs.
1872//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1873//          [0]: next enumeration index (Smi)
1874//          [1]: pointer to fixed array with enum cache
1875//   [2]: first key
1876//   [length() - 1]: last key
1877//
1878class DescriptorArray: public FixedArray {
1879 public:
1880  // Is this the singleton empty_descriptor_array?
1881  inline bool IsEmpty();
1882
1883  // Returns the number of descriptors in the array.
1884  int number_of_descriptors() {
1885    return IsEmpty() ? 0 : length() - kFirstIndex;
1886  }
1887
1888  int NextEnumerationIndex() {
1889    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1890    Object* obj = get(kEnumerationIndexIndex);
1891    if (obj->IsSmi()) {
1892      return Smi::cast(obj)->value();
1893    } else {
1894      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1895      return Smi::cast(index)->value();
1896    }
1897  }
1898
1899  // Set next enumeration index and flush any enum cache.
1900  void SetNextEnumerationIndex(int value) {
1901    if (!IsEmpty()) {
1902      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1903    }
1904  }
1905  bool HasEnumCache() {
1906    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1907  }
1908
1909  Object* GetEnumCache() {
1910    ASSERT(HasEnumCache());
1911    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1912    return bridge->get(kEnumCacheBridgeCacheIndex);
1913  }
1914
1915  // Initialize or change the enum cache,
1916  // using the supplied storage for the small "bridge".
1917  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1918
1919  // Accessors for fetching instance descriptor at descriptor number.
1920  inline String* GetKey(int descriptor_number);
1921  inline Object* GetValue(int descriptor_number);
1922  inline Smi* GetDetails(int descriptor_number);
1923  inline PropertyType GetType(int descriptor_number);
1924  inline int GetFieldIndex(int descriptor_number);
1925  inline JSFunction* GetConstantFunction(int descriptor_number);
1926  inline Object* GetCallbacksObject(int descriptor_number);
1927  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1928  inline bool IsProperty(int descriptor_number);
1929  inline bool IsTransition(int descriptor_number);
1930  inline bool IsNullDescriptor(int descriptor_number);
1931  inline bool IsDontEnum(int descriptor_number);
1932
1933  // Accessor for complete descriptor.
1934  inline void Get(int descriptor_number, Descriptor* desc);
1935  inline void Set(int descriptor_number, Descriptor* desc);
1936
1937  // Transfer complete descriptor from another descriptor array to
1938  // this one.
1939  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1940
1941  // Copy the descriptor array, insert a new descriptor and optionally
1942  // remove map transitions.  If the descriptor is already present, it is
1943  // replaced.  If a replaced descriptor is a real property (not a transition
1944  // or null), its enumeration index is kept as is.
1945  // If adding a real property, map transitions must be removed.  If adding
1946  // a transition, they must not be removed.  All null descriptors are removed.
1947  MUST_USE_RESULT MaybeObject* CopyInsert(Descriptor* descriptor,
1948                                          TransitionFlag transition_flag);
1949
1950  // Remove all transitions.  Return  a copy of the array with all transitions
1951  // removed, or a Failure object if the new array could not be allocated.
1952  MUST_USE_RESULT MaybeObject* RemoveTransitions();
1953
1954  // Sort the instance descriptors by the hash codes of their keys.
1955  // Does not check for duplicates.
1956  void SortUnchecked();
1957
1958  // Sort the instance descriptors by the hash codes of their keys.
1959  // Checks the result for duplicates.
1960  void Sort();
1961
1962  // Search the instance descriptors for given name.
1963  inline int Search(String* name);
1964
1965  // As the above, but uses DescriptorLookupCache and updates it when
1966  // necessary.
1967  inline int SearchWithCache(String* name);
1968
1969  // Tells whether the name is present int the array.
1970  bool Contains(String* name) { return kNotFound != Search(name); }
1971
1972  // Perform a binary search in the instance descriptors represented
1973  // by this fixed array.  low and high are descriptor indices.  If there
1974  // are three instance descriptors in this array it should be called
1975  // with low=0 and high=2.
1976  int BinarySearch(String* name, int low, int high);
1977
1978  // Perform a linear search in the instance descriptors represented
1979  // by this fixed array.  len is the number of descriptor indices that are
1980  // valid.  Does not require the descriptors to be sorted.
1981  int LinearSearch(String* name, int len);
1982
1983  // Allocates a DescriptorArray, but returns the singleton
1984  // empty descriptor array object if number_of_descriptors is 0.
1985  MUST_USE_RESULT static MaybeObject* Allocate(int number_of_descriptors);
1986
1987  // Casting.
1988  static inline DescriptorArray* cast(Object* obj);
1989
1990  // Constant for denoting key was not found.
1991  static const int kNotFound = -1;
1992
1993  static const int kContentArrayIndex = 0;
1994  static const int kEnumerationIndexIndex = 1;
1995  static const int kFirstIndex = 2;
1996
1997  // The length of the "bridge" to the enum cache.
1998  static const int kEnumCacheBridgeLength = 2;
1999  static const int kEnumCacheBridgeEnumIndex = 0;
2000  static const int kEnumCacheBridgeCacheIndex = 1;
2001
2002  // Layout description.
2003  static const int kContentArrayOffset = FixedArray::kHeaderSize;
2004  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
2005  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
2006
2007  // Layout description for the bridge array.
2008  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
2009  static const int kEnumCacheBridgeCacheOffset =
2010    kEnumCacheBridgeEnumOffset + kPointerSize;
2011
2012#ifdef DEBUG
2013  // Print all the descriptors.
2014  void PrintDescriptors();
2015
2016  // Is the descriptor array sorted and without duplicates?
2017  bool IsSortedNoDuplicates();
2018
2019  // Are two DescriptorArrays equal?
2020  bool IsEqualTo(DescriptorArray* other);
2021#endif
2022
2023  // The maximum number of descriptors we want in a descriptor array (should
2024  // fit in a page).
2025  static const int kMaxNumberOfDescriptors = 1024 + 512;
2026
2027 private:
2028  // Conversion from descriptor number to array indices.
2029  static int ToKeyIndex(int descriptor_number) {
2030    return descriptor_number+kFirstIndex;
2031  }
2032
2033  static int ToDetailsIndex(int descriptor_number) {
2034    return (descriptor_number << 1) + 1;
2035  }
2036
2037  static int ToValueIndex(int descriptor_number) {
2038    return descriptor_number << 1;
2039  }
2040
2041  bool is_null_descriptor(int descriptor_number) {
2042    return PropertyDetails(GetDetails(descriptor_number)).type() ==
2043        NULL_DESCRIPTOR;
2044  }
2045  // Swap operation on FixedArray without using write barriers.
2046  static inline void fast_swap(FixedArray* array, int first, int second);
2047
2048  // Swap descriptor first and second.
2049  inline void Swap(int first, int second);
2050
2051  FixedArray* GetContentArray() {
2052    return FixedArray::cast(get(kContentArrayIndex));
2053  }
2054  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2055};
2056
2057
2058// HashTable is a subclass of FixedArray that implements a hash table
2059// that uses open addressing and quadratic probing.
2060//
2061// In order for the quadratic probing to work, elements that have not
2062// yet been used and elements that have been deleted are
2063// distinguished.  Probing continues when deleted elements are
2064// encountered and stops when unused elements are encountered.
2065//
2066// - Elements with key == undefined have not been used yet.
2067// - Elements with key == null have been deleted.
2068//
2069// The hash table class is parameterized with a Shape and a Key.
2070// Shape must be a class with the following interface:
2071//   class ExampleShape {
2072//    public:
2073//      // Tells whether key matches other.
2074//     static bool IsMatch(Key key, Object* other);
2075//     // Returns the hash value for key.
2076//     static uint32_t Hash(Key key);
2077//     // Returns the hash value for object.
2078//     static uint32_t HashForObject(Key key, Object* object);
2079//     // Convert key to an object.
2080//     static inline Object* AsObject(Key key);
2081//     // The prefix size indicates number of elements in the beginning
2082//     // of the backing storage.
2083//     static const int kPrefixSize = ..;
2084//     // The Element size indicates number of elements per entry.
2085//     static const int kEntrySize = ..;
2086//   };
2087// The prefix size indicates an amount of memory in the
2088// beginning of the backing storage that can be used for non-element
2089// information by subclasses.
2090
2091template<typename Shape, typename Key>
2092class HashTable: public FixedArray {
2093 public:
2094  // Returns the number of elements in the hash table.
2095  int NumberOfElements() {
2096    return Smi::cast(get(kNumberOfElementsIndex))->value();
2097  }
2098
2099  // Returns the number of deleted elements in the hash table.
2100  int NumberOfDeletedElements() {
2101    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
2102  }
2103
2104  // Returns the capacity of the hash table.
2105  int Capacity() {
2106    return Smi::cast(get(kCapacityIndex))->value();
2107  }
2108
2109  // ElementAdded should be called whenever an element is added to a
2110  // hash table.
2111  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
2112
2113  // ElementRemoved should be called whenever an element is removed from
2114  // a hash table.
2115  void ElementRemoved() {
2116    SetNumberOfElements(NumberOfElements() - 1);
2117    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
2118  }
2119  void ElementsRemoved(int n) {
2120    SetNumberOfElements(NumberOfElements() - n);
2121    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
2122  }
2123
2124  // Returns a new HashTable object. Might return Failure.
2125  MUST_USE_RESULT static MaybeObject* Allocate(
2126      int at_least_space_for,
2127      PretenureFlag pretenure = NOT_TENURED);
2128
2129  // Returns the key at entry.
2130  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
2131
2132  // Tells whether k is a real key.  Null and undefined are not allowed
2133  // as keys and can be used to indicate missing or deleted elements.
2134  bool IsKey(Object* k) {
2135    return !k->IsNull() && !k->IsUndefined();
2136  }
2137
2138  // Garbage collection support.
2139  void IteratePrefix(ObjectVisitor* visitor);
2140  void IterateElements(ObjectVisitor* visitor);
2141
2142  // Casting.
2143  static inline HashTable* cast(Object* obj);
2144
2145  // Compute the probe offset (quadratic probing).
2146  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2147    return (n + n * n) >> 1;
2148  }
2149
2150  static const int kNumberOfElementsIndex = 0;
2151  static const int kNumberOfDeletedElementsIndex = 1;
2152  static const int kCapacityIndex = 2;
2153  static const int kPrefixStartIndex = 3;
2154  static const int kElementsStartIndex =
2155      kPrefixStartIndex + Shape::kPrefixSize;
2156  static const int kEntrySize = Shape::kEntrySize;
2157  static const int kElementsStartOffset =
2158      kHeaderSize + kElementsStartIndex * kPointerSize;
2159  static const int kCapacityOffset =
2160      kHeaderSize + kCapacityIndex * kPointerSize;
2161
2162  // Constant used for denoting a absent entry.
2163  static const int kNotFound = -1;
2164
2165  // Maximal capacity of HashTable. Based on maximal length of underlying
2166  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
2167  // cannot overflow.
2168  static const int kMaxCapacity =
2169      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
2170
2171  // Find entry for key otherwise return kNotFound.
2172  int FindEntry(Key key);
2173
2174 protected:
2175
2176  // Find the entry at which to insert element with the given key that
2177  // has the given hash value.
2178  uint32_t FindInsertionEntry(uint32_t hash);
2179
2180  // Returns the index for an entry (of the key)
2181  static inline int EntryToIndex(int entry) {
2182    return (entry * kEntrySize) + kElementsStartIndex;
2183  }
2184
2185  // Update the number of elements in the hash table.
2186  void SetNumberOfElements(int nof) {
2187    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
2188  }
2189
2190  // Update the number of deleted elements in the hash table.
2191  void SetNumberOfDeletedElements(int nod) {
2192    fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2193  }
2194
2195  // Sets the capacity of the hash table.
2196  void SetCapacity(int capacity) {
2197    // To scale a computed hash code to fit within the hash table, we
2198    // use bit-wise AND with a mask, so the capacity must be positive
2199    // and non-zero.
2200    ASSERT(capacity > 0);
2201    ASSERT(capacity <= kMaxCapacity);
2202    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2203  }
2204
2205
2206  // Returns probe entry.
2207  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2208    ASSERT(IsPowerOf2(size));
2209    return (hash + GetProbeOffset(number)) & (size - 1);
2210  }
2211
2212  static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2213    return hash & (size - 1);
2214  }
2215
2216  static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2217    return (last + number) & (size - 1);
2218  }
2219
2220  // Ensure enough space for n additional elements.
2221  MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
2222};
2223
2224
2225
2226// HashTableKey is an abstract superclass for virtual key behavior.
2227class HashTableKey {
2228 public:
2229  // Returns whether the other object matches this key.
2230  virtual bool IsMatch(Object* other) = 0;
2231  // Returns the hash value for this key.
2232  virtual uint32_t Hash() = 0;
2233  // Returns the hash value for object.
2234  virtual uint32_t HashForObject(Object* key) = 0;
2235  // Returns the key object for storing into the hash table.
2236  // If allocations fails a failure object is returned.
2237  MUST_USE_RESULT virtual MaybeObject* AsObject() = 0;
2238  // Required.
2239  virtual ~HashTableKey() {}
2240};
2241
2242class SymbolTableShape {
2243 public:
2244  static bool IsMatch(HashTableKey* key, Object* value) {
2245    return key->IsMatch(value);
2246  }
2247  static uint32_t Hash(HashTableKey* key) {
2248    return key->Hash();
2249  }
2250  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2251    return key->HashForObject(object);
2252  }
2253  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
2254    return key->AsObject();
2255  }
2256
2257  static const int kPrefixSize = 0;
2258  static const int kEntrySize = 1;
2259};
2260
2261// SymbolTable.
2262//
2263// No special elements in the prefix and the element size is 1
2264// because only the symbol itself (the key) needs to be stored.
2265class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2266 public:
2267  // Find symbol in the symbol table.  If it is not there yet, it is
2268  // added.  The return value is the symbol table which might have
2269  // been enlarged.  If the return value is not a failure, the symbol
2270  // pointer *s is set to the symbol found.
2271  MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str, Object** s);
2272  MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
2273
2274  // Looks up a symbol that is equal to the given string and returns
2275  // true if it is found, assigning the symbol to the given output
2276  // parameter.
2277  bool LookupSymbolIfExists(String* str, String** symbol);
2278  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2279
2280  // Casting.
2281  static inline SymbolTable* cast(Object* obj);
2282
2283 private:
2284  MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
2285
2286  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2287};
2288
2289
2290class MapCacheShape {
2291 public:
2292  static bool IsMatch(HashTableKey* key, Object* value) {
2293    return key->IsMatch(value);
2294  }
2295  static uint32_t Hash(HashTableKey* key) {
2296    return key->Hash();
2297  }
2298
2299  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2300    return key->HashForObject(object);
2301  }
2302
2303  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
2304    return key->AsObject();
2305  }
2306
2307  static const int kPrefixSize = 0;
2308  static const int kEntrySize = 2;
2309};
2310
2311
2312// MapCache.
2313//
2314// Maps keys that are a fixed array of symbols to a map.
2315// Used for canonicalize maps for object literals.
2316class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2317 public:
2318  // Find cached value for a string key, otherwise return null.
2319  Object* Lookup(FixedArray* key);
2320  MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
2321  static inline MapCache* cast(Object* obj);
2322
2323 private:
2324  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2325};
2326
2327
2328template <typename Shape, typename Key>
2329class Dictionary: public HashTable<Shape, Key> {
2330 public:
2331
2332  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2333    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2334  }
2335
2336  // Returns the value at entry.
2337  Object* ValueAt(int entry) {
2338    return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2339  }
2340
2341  // Set the value for entry.
2342  void ValueAtPut(int entry, Object* value) {
2343    // Check that this value can actually be written.
2344    PropertyDetails details = DetailsAt(entry);
2345    // If a value has not been initilized we allow writing to it even if
2346    // it is read only (a declared const that has not been initialized).
2347    if (details.IsReadOnly() && !ValueAt(entry)->IsTheHole()) return;
2348    this->set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2349  }
2350
2351  // Returns the property details for the property at entry.
2352  PropertyDetails DetailsAt(int entry) {
2353    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2354    return PropertyDetails(
2355        Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2356  }
2357
2358  // Set the details for entry.
2359  void DetailsAtPut(int entry, PropertyDetails value) {
2360    this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2361  }
2362
2363  // Sorting support
2364  void CopyValuesTo(FixedArray* elements);
2365
2366  // Delete a property from the dictionary.
2367  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2368
2369  // Returns the number of elements in the dictionary filtering out properties
2370  // with the specified attributes.
2371  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2372
2373  // Returns the number of enumerable elements in the dictionary.
2374  int NumberOfEnumElements();
2375
2376  // Copies keys to preallocated fixed array.
2377  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2378  // Fill in details for properties into storage.
2379  void CopyKeysTo(FixedArray* storage);
2380
2381  // Accessors for next enumeration index.
2382  void SetNextEnumerationIndex(int index) {
2383    this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2384  }
2385
2386  int NextEnumerationIndex() {
2387    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2388  }
2389
2390  // Returns a new array for dictionary usage. Might return Failure.
2391  MUST_USE_RESULT static MaybeObject* Allocate(int at_least_space_for);
2392
2393  // Ensure enough space for n additional elements.
2394  MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
2395
2396#ifdef DEBUG
2397  void Print();
2398#endif
2399  // Returns the key (slow).
2400  Object* SlowReverseLookup(Object* value);
2401
2402  // Sets the entry to (key, value) pair.
2403  inline void SetEntry(int entry,
2404                       Object* key,
2405                       Object* value,
2406                       PropertyDetails details);
2407
2408  MUST_USE_RESULT MaybeObject* Add(Key key,
2409                                   Object* value,
2410                                   PropertyDetails details);
2411
2412 protected:
2413  // Generic at put operation.
2414  MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
2415
2416  // Add entry to dictionary.
2417  MUST_USE_RESULT MaybeObject* AddEntry(Key key,
2418                                        Object* value,
2419                                        PropertyDetails details,
2420                                        uint32_t hash);
2421
2422  // Generate new enumeration indices to avoid enumeration index overflow.
2423  MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
2424  static const int kMaxNumberKeyIndex =
2425      HashTable<Shape, Key>::kPrefixStartIndex;
2426  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2427};
2428
2429
2430class StringDictionaryShape {
2431 public:
2432  static inline bool IsMatch(String* key, Object* other);
2433  static inline uint32_t Hash(String* key);
2434  static inline uint32_t HashForObject(String* key, Object* object);
2435  MUST_USE_RESULT static inline MaybeObject* AsObject(String* key);
2436  static const int kPrefixSize = 2;
2437  static const int kEntrySize = 3;
2438  static const bool kIsEnumerable = true;
2439};
2440
2441
2442class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2443 public:
2444  static inline StringDictionary* cast(Object* obj) {
2445    ASSERT(obj->IsDictionary());
2446    return reinterpret_cast<StringDictionary*>(obj);
2447  }
2448
2449  // Copies enumerable keys to preallocated fixed array.
2450  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2451
2452  // For transforming properties of a JSObject.
2453  MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
2454      JSObject* obj,
2455      int unused_property_fields);
2456
2457  // Find entry for key otherwise return kNotFound. Optimzed version of
2458  // HashTable::FindEntry.
2459  int FindEntry(String* key);
2460};
2461
2462
2463class NumberDictionaryShape {
2464 public:
2465  static inline bool IsMatch(uint32_t key, Object* other);
2466  static inline uint32_t Hash(uint32_t key);
2467  static inline uint32_t HashForObject(uint32_t key, Object* object);
2468  MUST_USE_RESULT static inline MaybeObject* AsObject(uint32_t key);
2469  static const int kPrefixSize = 2;
2470  static const int kEntrySize = 3;
2471  static const bool kIsEnumerable = false;
2472};
2473
2474
2475class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2476 public:
2477  static NumberDictionary* cast(Object* obj) {
2478    ASSERT(obj->IsDictionary());
2479    return reinterpret_cast<NumberDictionary*>(obj);
2480  }
2481
2482  // Type specific at put (default NONE attributes is used when adding).
2483  MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
2484  MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
2485                                              Object* value,
2486                                              PropertyDetails details);
2487
2488  // Set an existing entry or add a new one if needed.
2489  MUST_USE_RESULT MaybeObject* Set(uint32_t key,
2490                                   Object* value,
2491                                   PropertyDetails details);
2492
2493  void UpdateMaxNumberKey(uint32_t key);
2494
2495  // If slow elements are required we will never go back to fast-case
2496  // for the elements kept in this dictionary.  We require slow
2497  // elements if an element has been added at an index larger than
2498  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2499  // when defining a getter or setter with a number key.
2500  inline bool requires_slow_elements();
2501  inline void set_requires_slow_elements();
2502
2503  // Get the value of the max number key that has been added to this
2504  // dictionary.  max_number_key can only be called if
2505  // requires_slow_elements returns false.
2506  inline uint32_t max_number_key();
2507
2508  // Remove all entries were key is a number and (from <= key && key < to).
2509  void RemoveNumberEntries(uint32_t from, uint32_t to);
2510
2511  // Bit masks.
2512  static const int kRequiresSlowElementsMask = 1;
2513  static const int kRequiresSlowElementsTagSize = 1;
2514  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2515};
2516
2517
2518// JSFunctionResultCache caches results of some JSFunction invocation.
2519// It is a fixed array with fixed structure:
2520//   [0]: factory function
2521//   [1]: finger index
2522//   [2]: current cache size
2523//   [3]: dummy field.
2524// The rest of array are key/value pairs.
2525class JSFunctionResultCache: public FixedArray {
2526 public:
2527  static const int kFactoryIndex = 0;
2528  static const int kFingerIndex = kFactoryIndex + 1;
2529  static const int kCacheSizeIndex = kFingerIndex + 1;
2530  static const int kDummyIndex = kCacheSizeIndex + 1;
2531  static const int kEntriesIndex = kDummyIndex + 1;
2532
2533  static const int kEntrySize = 2;  // key + value
2534
2535  static const int kFactoryOffset = kHeaderSize;
2536  static const int kFingerOffset = kFactoryOffset + kPointerSize;
2537  static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
2538
2539  inline void MakeZeroSize();
2540  inline void Clear();
2541
2542  // Casting
2543  static inline JSFunctionResultCache* cast(Object* obj);
2544
2545#ifdef DEBUG
2546  void JSFunctionResultCacheVerify();
2547#endif
2548};
2549
2550
2551// The cache for maps used by normalized (dictionary mode) objects.
2552// Such maps do not have property descriptors, so a typical program
2553// needs very limited number of distinct normalized maps.
2554class NormalizedMapCache: public FixedArray {
2555 public:
2556  static const int kEntries = 64;
2557
2558  MUST_USE_RESULT MaybeObject* Get(JSObject* object,
2559                                   PropertyNormalizationMode mode);
2560
2561  void Clear();
2562
2563  // Casting
2564  static inline NormalizedMapCache* cast(Object* obj);
2565
2566#ifdef DEBUG
2567  void NormalizedMapCacheVerify();
2568#endif
2569
2570 private:
2571  static int Hash(Map* fast);
2572
2573  static bool CheckHit(Map* slow, Map* fast, PropertyNormalizationMode mode);
2574};
2575
2576
2577// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2578// such as PCRE, and also by the memory allocator and garbage collector to
2579// fill in free blocks in the heap.
2580class ByteArray: public HeapObject {
2581 public:
2582  // [length]: length of the array.
2583  inline int length();
2584  inline void set_length(int value);
2585
2586  // Setter and getter.
2587  inline byte get(int index);
2588  inline void set(int index, byte value);
2589
2590  // Treat contents as an int array.
2591  inline int get_int(int index);
2592
2593  static int SizeFor(int length) {
2594    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
2595  }
2596  // We use byte arrays for free blocks in the heap.  Given a desired size in
2597  // bytes that is a multiple of the word size and big enough to hold a byte
2598  // array, this function returns the number of elements a byte array should
2599  // have.
2600  static int LengthFor(int size_in_bytes) {
2601    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2602    ASSERT(size_in_bytes >= kHeaderSize);
2603    return size_in_bytes - kHeaderSize;
2604  }
2605
2606  // Returns data start address.
2607  inline Address GetDataStartAddress();
2608
2609  // Returns a pointer to the ByteArray object for a given data start address.
2610  static inline ByteArray* FromDataStartAddress(Address address);
2611
2612  // Casting.
2613  static inline ByteArray* cast(Object* obj);
2614
2615  // Dispatched behavior.
2616  inline int ByteArraySize() {
2617    return SizeFor(this->length());
2618  }
2619#ifdef DEBUG
2620  void ByteArrayPrint();
2621  void ByteArrayVerify();
2622#endif
2623
2624  // Layout description.
2625  // Length is smi tagged when it is stored.
2626  static const int kLengthOffset = HeapObject::kHeaderSize;
2627  static const int kHeaderSize = kLengthOffset + kPointerSize;
2628
2629  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2630
2631  // Maximal memory consumption for a single ByteArray.
2632  static const int kMaxSize = 512 * MB;
2633  // Maximal length of a single ByteArray.
2634  static const int kMaxLength = kMaxSize - kHeaderSize;
2635
2636 private:
2637  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2638};
2639
2640
2641// A PixelArray represents a fixed-size byte array with special semantics
2642// used for implementing the CanvasPixelArray object. Please see the
2643// specification at:
2644// http://www.whatwg.org/specs/web-apps/current-work/
2645//                      multipage/the-canvas-element.html#canvaspixelarray
2646// In particular, write access clamps the value written to 0 or 255 if the
2647// value written is outside this range.
2648class PixelArray: public HeapObject {
2649 public:
2650  // [length]: length of the array.
2651  inline int length();
2652  inline void set_length(int value);
2653
2654  // [external_pointer]: The pointer to the external memory area backing this
2655  // pixel array.
2656  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2657
2658  // Setter and getter.
2659  inline uint8_t get(int index);
2660  inline void set(int index, uint8_t value);
2661
2662  // This accessor applies the correct conversion from Smi, HeapNumber and
2663  // undefined and clamps the converted value between 0 and 255.
2664  Object* SetValue(uint32_t index, Object* value);
2665
2666  // Casting.
2667  static inline PixelArray* cast(Object* obj);
2668
2669#ifdef DEBUG
2670  void PixelArrayPrint();
2671  void PixelArrayVerify();
2672#endif  // DEBUG
2673
2674  // Maximal acceptable length for a pixel array.
2675  static const int kMaxLength = 0x3fffffff;
2676
2677  // PixelArray headers are not quadword aligned.
2678  static const int kLengthOffset = HeapObject::kHeaderSize;
2679  static const int kExternalPointerOffset =
2680      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2681  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2682  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2683
2684 private:
2685  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2686};
2687
2688
2689// An ExternalArray represents a fixed-size array of primitive values
2690// which live outside the JavaScript heap. Its subclasses are used to
2691// implement the CanvasArray types being defined in the WebGL
2692// specification. As of this writing the first public draft is not yet
2693// available, but Khronos members can access the draft at:
2694//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2695//
2696// The semantics of these arrays differ from CanvasPixelArray.
2697// Out-of-range values passed to the setter are converted via a C
2698// cast, not clamping. Out-of-range indices cause exceptions to be
2699// raised rather than being silently ignored.
2700class ExternalArray: public HeapObject {
2701 public:
2702  // [length]: length of the array.
2703  inline int length();
2704  inline void set_length(int value);
2705
2706  // [external_pointer]: The pointer to the external memory area backing this
2707  // external array.
2708  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2709
2710  // Casting.
2711  static inline ExternalArray* cast(Object* obj);
2712
2713  // Maximal acceptable length for an external array.
2714  static const int kMaxLength = 0x3fffffff;
2715
2716  // ExternalArray headers are not quadword aligned.
2717  static const int kLengthOffset = HeapObject::kHeaderSize;
2718  static const int kExternalPointerOffset =
2719      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2720  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2721  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2722
2723 private:
2724  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2725};
2726
2727
2728class ExternalByteArray: public ExternalArray {
2729 public:
2730  // Setter and getter.
2731  inline int8_t get(int index);
2732  inline void set(int index, int8_t value);
2733
2734  // This accessor applies the correct conversion from Smi, HeapNumber
2735  // and undefined.
2736  MaybeObject* SetValue(uint32_t index, Object* value);
2737
2738  // Casting.
2739  static inline ExternalByteArray* cast(Object* obj);
2740
2741#ifdef DEBUG
2742  void ExternalByteArrayPrint();
2743  void ExternalByteArrayVerify();
2744#endif  // DEBUG
2745
2746 private:
2747  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2748};
2749
2750
2751class ExternalUnsignedByteArray: public ExternalArray {
2752 public:
2753  // Setter and getter.
2754  inline uint8_t get(int index);
2755  inline void set(int index, uint8_t value);
2756
2757  // This accessor applies the correct conversion from Smi, HeapNumber
2758  // and undefined.
2759  MaybeObject* SetValue(uint32_t index, Object* value);
2760
2761  // Casting.
2762  static inline ExternalUnsignedByteArray* cast(Object* obj);
2763
2764#ifdef DEBUG
2765  void ExternalUnsignedByteArrayPrint();
2766  void ExternalUnsignedByteArrayVerify();
2767#endif  // DEBUG
2768
2769 private:
2770  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2771};
2772
2773
2774class ExternalShortArray: public ExternalArray {
2775 public:
2776  // Setter and getter.
2777  inline int16_t get(int index);
2778  inline void set(int index, int16_t value);
2779
2780  // This accessor applies the correct conversion from Smi, HeapNumber
2781  // and undefined.
2782  MaybeObject* SetValue(uint32_t index, Object* value);
2783
2784  // Casting.
2785  static inline ExternalShortArray* cast(Object* obj);
2786
2787#ifdef DEBUG
2788  void ExternalShortArrayPrint();
2789  void ExternalShortArrayVerify();
2790#endif  // DEBUG
2791
2792 private:
2793  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2794};
2795
2796
2797class ExternalUnsignedShortArray: public ExternalArray {
2798 public:
2799  // Setter and getter.
2800  inline uint16_t get(int index);
2801  inline void set(int index, uint16_t value);
2802
2803  // This accessor applies the correct conversion from Smi, HeapNumber
2804  // and undefined.
2805  MaybeObject* SetValue(uint32_t index, Object* value);
2806
2807  // Casting.
2808  static inline ExternalUnsignedShortArray* cast(Object* obj);
2809
2810#ifdef DEBUG
2811  void ExternalUnsignedShortArrayPrint();
2812  void ExternalUnsignedShortArrayVerify();
2813#endif  // DEBUG
2814
2815 private:
2816  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2817};
2818
2819
2820class ExternalIntArray: public ExternalArray {
2821 public:
2822  // Setter and getter.
2823  inline int32_t get(int index);
2824  inline void set(int index, int32_t value);
2825
2826  // This accessor applies the correct conversion from Smi, HeapNumber
2827  // and undefined.
2828  MaybeObject* SetValue(uint32_t index, Object* value);
2829
2830  // Casting.
2831  static inline ExternalIntArray* cast(Object* obj);
2832
2833#ifdef DEBUG
2834  void ExternalIntArrayPrint();
2835  void ExternalIntArrayVerify();
2836#endif  // DEBUG
2837
2838 private:
2839  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2840};
2841
2842
2843class ExternalUnsignedIntArray: public ExternalArray {
2844 public:
2845  // Setter and getter.
2846  inline uint32_t get(int index);
2847  inline void set(int index, uint32_t value);
2848
2849  // This accessor applies the correct conversion from Smi, HeapNumber
2850  // and undefined.
2851  MaybeObject* SetValue(uint32_t index, Object* value);
2852
2853  // Casting.
2854  static inline ExternalUnsignedIntArray* cast(Object* obj);
2855
2856#ifdef DEBUG
2857  void ExternalUnsignedIntArrayPrint();
2858  void ExternalUnsignedIntArrayVerify();
2859#endif  // DEBUG
2860
2861 private:
2862  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2863};
2864
2865
2866class ExternalFloatArray: public ExternalArray {
2867 public:
2868  // Setter and getter.
2869  inline float get(int index);
2870  inline void set(int index, float value);
2871
2872  // This accessor applies the correct conversion from Smi, HeapNumber
2873  // and undefined.
2874  MaybeObject* SetValue(uint32_t index, Object* value);
2875
2876  // Casting.
2877  static inline ExternalFloatArray* cast(Object* obj);
2878
2879#ifdef DEBUG
2880  void ExternalFloatArrayPrint();
2881  void ExternalFloatArrayVerify();
2882#endif  // DEBUG
2883
2884 private:
2885  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2886};
2887
2888
2889// Code describes objects with on-the-fly generated machine code.
2890class Code: public HeapObject {
2891 public:
2892  // Opaque data type for encapsulating code flags like kind, inline
2893  // cache state, and arguments count.
2894  // FLAGS_MIN_VALUE and FLAGS_MAX_VALUE are specified to ensure that
2895  // enumeration type has correct value range (see Issue 830 for more details).
2896  enum Flags {
2897    FLAGS_MIN_VALUE = kMinInt,
2898    FLAGS_MAX_VALUE = kMaxInt
2899  };
2900
2901  enum Kind {
2902    FUNCTION,
2903    STUB,
2904    BUILTIN,
2905    LOAD_IC,
2906    KEYED_LOAD_IC,
2907    CALL_IC,
2908    KEYED_CALL_IC,
2909    STORE_IC,
2910    KEYED_STORE_IC,
2911    BINARY_OP_IC,
2912    // No more than 16 kinds. The value currently encoded in four bits in
2913    // Flags.
2914
2915    // Pseudo-kinds.
2916    REGEXP = BUILTIN,
2917    FIRST_IC_KIND = LOAD_IC,
2918    LAST_IC_KIND = BINARY_OP_IC
2919  };
2920
2921  enum {
2922    NUMBER_OF_KINDS = LAST_IC_KIND + 1
2923  };
2924
2925#ifdef ENABLE_DISASSEMBLER
2926  // Printing
2927  static const char* Kind2String(Kind kind);
2928  static const char* ICState2String(InlineCacheState state);
2929  static const char* PropertyType2String(PropertyType type);
2930  void Disassemble(const char* name);
2931#endif  // ENABLE_DISASSEMBLER
2932
2933  // [instruction_size]: Size of the native instructions
2934  inline int instruction_size();
2935  inline void set_instruction_size(int value);
2936
2937  // [relocation_info]: Code relocation information
2938  DECL_ACCESSORS(relocation_info, ByteArray)
2939
2940  // Unchecked accessor to be used during GC.
2941  inline ByteArray* unchecked_relocation_info();
2942
2943  inline int relocation_size();
2944
2945  // [flags]: Various code flags.
2946  inline Flags flags();
2947  inline void set_flags(Flags flags);
2948
2949  // [flags]: Access to specific code flags.
2950  inline Kind kind();
2951  inline InlineCacheState ic_state();  // Only valid for IC stubs.
2952  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2953  inline PropertyType type();  // Only valid for monomorphic IC stubs.
2954  inline int arguments_count();  // Only valid for call IC stubs.
2955
2956  // Testers for IC stub kinds.
2957  inline bool is_inline_cache_stub();
2958  inline bool is_load_stub() { return kind() == LOAD_IC; }
2959  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2960  inline bool is_store_stub() { return kind() == STORE_IC; }
2961  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2962  inline bool is_call_stub() { return kind() == CALL_IC; }
2963  inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
2964
2965  // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
2966  inline int major_key();
2967  inline void set_major_key(int major);
2968
2969  // Flags operations.
2970  static inline Flags ComputeFlags(Kind kind,
2971                                   InLoopFlag in_loop = NOT_IN_LOOP,
2972                                   InlineCacheState ic_state = UNINITIALIZED,
2973                                   PropertyType type = NORMAL,
2974                                   int argc = -1,
2975                                   InlineCacheHolderFlag holder = OWN_MAP);
2976
2977  static inline Flags ComputeMonomorphicFlags(
2978      Kind kind,
2979      PropertyType type,
2980      InlineCacheHolderFlag holder = OWN_MAP,
2981      InLoopFlag in_loop = NOT_IN_LOOP,
2982      int argc = -1);
2983
2984  static inline Kind ExtractKindFromFlags(Flags flags);
2985  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2986  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2987  static inline PropertyType ExtractTypeFromFlags(Flags flags);
2988  static inline int ExtractArgumentsCountFromFlags(Flags flags);
2989  static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
2990  static inline Flags RemoveTypeFromFlags(Flags flags);
2991
2992  // Convert a target address into a code object.
2993  static inline Code* GetCodeFromTargetAddress(Address address);
2994
2995  // Convert an entry address into an object.
2996  static inline Object* GetObjectFromEntryAddress(Address location_of_address);
2997
2998  // Returns the address of the first instruction.
2999  inline byte* instruction_start();
3000
3001  // Returns the address right after the last instruction.
3002  inline byte* instruction_end();
3003
3004  // Returns the size of the instructions, padding, and relocation information.
3005  inline int body_size();
3006
3007  // Returns the address of the first relocation info (read backwards!).
3008  inline byte* relocation_start();
3009
3010  // Code entry point.
3011  inline byte* entry();
3012
3013  // Returns true if pc is inside this object's instructions.
3014  inline bool contains(byte* pc);
3015
3016  // Relocate the code by delta bytes. Called to signal that this code
3017  // object has been moved by delta bytes.
3018  void Relocate(intptr_t delta);
3019
3020  // Migrate code described by desc.
3021  void CopyFrom(const CodeDesc& desc);
3022
3023  // Returns the object size for a given body (used for allocation).
3024  static int SizeFor(int body_size) {
3025    ASSERT_SIZE_TAG_ALIGNED(body_size);
3026    return RoundUp(kHeaderSize + body_size, kCodeAlignment);
3027  }
3028
3029  // Calculate the size of the code object to report for log events. This takes
3030  // the layout of the code object into account.
3031  int ExecutableSize() {
3032    // Check that the assumptions about the layout of the code object holds.
3033    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
3034              Code::kHeaderSize);
3035    return instruction_size() + Code::kHeaderSize;
3036  }
3037
3038  // Locating source position.
3039  int SourcePosition(Address pc);
3040  int SourceStatementPosition(Address pc);
3041
3042  // Casting.
3043  static inline Code* cast(Object* obj);
3044
3045  // Dispatched behavior.
3046  int CodeSize() { return SizeFor(body_size()); }
3047  inline void CodeIterateBody(ObjectVisitor* v);
3048
3049  template<typename StaticVisitor>
3050  inline void CodeIterateBody();
3051#ifdef DEBUG
3052  void CodePrint();
3053  void CodeVerify();
3054#endif
3055  // Layout description.
3056  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
3057  static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
3058  static const int kFlagsOffset = kRelocationInfoOffset + kPointerSize;
3059  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
3060  // Add padding to align the instruction start following right after
3061  // the Code object header.
3062  static const int kHeaderSize =
3063      CODE_POINTER_ALIGN(kKindSpecificFlagsOffset + kIntSize);
3064
3065  // Byte offsets within kKindSpecificFlagsOffset.
3066  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
3067
3068  // Flags layout.
3069  static const int kFlagsICStateShift        = 0;
3070  static const int kFlagsICInLoopShift       = 3;
3071  static const int kFlagsTypeShift           = 4;
3072  static const int kFlagsKindShift           = 7;
3073  static const int kFlagsICHolderShift       = 11;
3074  static const int kFlagsArgumentsCountShift = 12;
3075
3076  static const int kFlagsICStateMask        = 0x00000007;  // 00000000111
3077  static const int kFlagsICInLoopMask       = 0x00000008;  // 00000001000
3078  static const int kFlagsTypeMask           = 0x00000070;  // 00001110000
3079  static const int kFlagsKindMask           = 0x00000780;  // 11110000000
3080  static const int kFlagsCacheInPrototypeMapMask = 0x00000800;
3081  static const int kFlagsArgumentsCountMask = 0xFFFFF000;
3082
3083  static const int kFlagsNotUsedInLookup =
3084      (kFlagsICInLoopMask | kFlagsTypeMask | kFlagsCacheInPrototypeMapMask);
3085
3086 private:
3087  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
3088};
3089
3090
3091// All heap objects have a Map that describes their structure.
3092//  A Map contains information about:
3093//  - Size information about the object
3094//  - How to iterate over an object (for garbage collection)
3095class Map: public HeapObject {
3096 public:
3097  // Instance size.
3098  // Size in bytes or kVariableSizeSentinel if instances do not have
3099  // a fixed size.
3100  inline int instance_size();
3101  inline void set_instance_size(int value);
3102
3103  // Count of properties allocated in the object.
3104  inline int inobject_properties();
3105  inline void set_inobject_properties(int value);
3106
3107  // Count of property fields pre-allocated in the object when first allocated.
3108  inline int pre_allocated_property_fields();
3109  inline void set_pre_allocated_property_fields(int value);
3110
3111  // Instance type.
3112  inline InstanceType instance_type();
3113  inline void set_instance_type(InstanceType value);
3114
3115  // Tells how many unused property fields are available in the
3116  // instance (only used for JSObject in fast mode).
3117  inline int unused_property_fields();
3118  inline void set_unused_property_fields(int value);
3119
3120  // Bit field.
3121  inline byte bit_field();
3122  inline void set_bit_field(byte value);
3123
3124  // Bit field 2.
3125  inline byte bit_field2();
3126  inline void set_bit_field2(byte value);
3127
3128  // Tells whether the object in the prototype property will be used
3129  // for instances created from this function.  If the prototype
3130  // property is set to a value that is not a JSObject, the prototype
3131  // property will not be used to create instances of the function.
3132  // See ECMA-262, 13.2.2.
3133  inline void set_non_instance_prototype(bool value);
3134  inline bool has_non_instance_prototype();
3135
3136  // Tells whether function has special prototype property. If not, prototype
3137  // property will not be created when accessed (will return undefined),
3138  // and construction from this function will not be allowed.
3139  inline void set_function_with_prototype(bool value);
3140  inline bool function_with_prototype();
3141
3142  // Tells whether the instance with this map should be ignored by the
3143  // __proto__ accessor.
3144  inline void set_is_hidden_prototype() {
3145    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
3146  }
3147
3148  inline bool is_hidden_prototype() {
3149    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
3150  }
3151
3152  // Records and queries whether the instance has a named interceptor.
3153  inline void set_has_named_interceptor() {
3154    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
3155  }
3156
3157  inline bool has_named_interceptor() {
3158    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
3159  }
3160
3161  // Records and queries whether the instance has an indexed interceptor.
3162  inline void set_has_indexed_interceptor() {
3163    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
3164  }
3165
3166  inline bool has_indexed_interceptor() {
3167    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
3168  }
3169
3170  // Tells whether the instance is undetectable.
3171  // An undetectable object is a special class of JSObject: 'typeof' operator
3172  // returns undefined, ToBoolean returns false. Otherwise it behaves like
3173  // a normal JS object.  It is useful for implementing undetectable
3174  // document.all in Firefox & Safari.
3175  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
3176  inline void set_is_undetectable() {
3177    set_bit_field(bit_field() | (1 << kIsUndetectable));
3178  }
3179
3180  inline bool is_undetectable() {
3181    return ((1 << kIsUndetectable) & bit_field()) != 0;
3182  }
3183
3184  // Tells whether the instance has a call-as-function handler.
3185  inline void set_has_instance_call_handler() {
3186    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
3187  }
3188
3189  inline bool has_instance_call_handler() {
3190    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
3191  }
3192
3193  inline void set_is_extensible(bool value);
3194  inline bool is_extensible();
3195
3196  // Tells whether the instance has fast elements.
3197  // Equivalent to instance->GetElementsKind() == FAST_ELEMENTS.
3198  inline void set_has_fast_elements(bool value) {
3199    if (value) {
3200      set_bit_field2(bit_field2() | (1 << kHasFastElements));
3201    } else {
3202      set_bit_field2(bit_field2() & ~(1 << kHasFastElements));
3203    }
3204  }
3205
3206  inline bool has_fast_elements() {
3207    return ((1 << kHasFastElements) & bit_field2()) != 0;
3208  }
3209
3210  // Tells whether the map is attached to SharedFunctionInfo
3211  // (for inobject slack tracking).
3212  inline void set_attached_to_shared_function_info(bool value);
3213
3214  inline bool attached_to_shared_function_info();
3215
3216  // Tells whether the map is shared between objects that may have different
3217  // behavior. If true, the map should never be modified, instead a clone
3218  // should be created and modified.
3219  inline void set_is_shared(bool value);
3220
3221  inline bool is_shared();
3222
3223  // Tells whether the instance needs security checks when accessing its
3224  // properties.
3225  inline void set_is_access_check_needed(bool access_check_needed);
3226  inline bool is_access_check_needed();
3227
3228  // [prototype]: implicit prototype object.
3229  DECL_ACCESSORS(prototype, Object)
3230
3231  // [constructor]: points back to the function responsible for this map.
3232  DECL_ACCESSORS(constructor, Object)
3233
3234  inline JSFunction* unchecked_constructor();
3235
3236  // [instance descriptors]: describes the object.
3237  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
3238
3239  // [stub cache]: contains stubs compiled for this map.
3240  DECL_ACCESSORS(code_cache, Object)
3241
3242  MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
3243
3244  MUST_USE_RESULT MaybeObject* CopyNormalized(PropertyNormalizationMode mode,
3245                                              NormalizedMapSharingMode sharing);
3246
3247  // Returns a copy of the map, with all transitions dropped from the
3248  // instance descriptors.
3249  MUST_USE_RESULT MaybeObject* CopyDropTransitions();
3250
3251  // Returns this map if it has the fast elements bit set, otherwise
3252  // returns a copy of the map, with all transitions dropped from the
3253  // descriptors and the fast elements bit set.
3254  MUST_USE_RESULT inline MaybeObject* GetFastElementsMap();
3255
3256  // Returns this map if it has the fast elements bit cleared,
3257  // otherwise returns a copy of the map, with all transitions dropped
3258  // from the descriptors and the fast elements bit cleared.
3259  MUST_USE_RESULT inline MaybeObject* GetSlowElementsMap();
3260
3261  // Returns the property index for name (only valid for FAST MODE).
3262  int PropertyIndexFor(String* name);
3263
3264  // Returns the next free property index (only valid for FAST MODE).
3265  int NextFreePropertyIndex();
3266
3267  // Returns the number of properties described in instance_descriptors.
3268  int NumberOfDescribedProperties();
3269
3270  // Casting.
3271  static inline Map* cast(Object* obj);
3272
3273  // Locate an accessor in the instance descriptor.
3274  AccessorDescriptor* FindAccessor(String* name);
3275
3276  // Code cache operations.
3277
3278  // Clears the code cache.
3279  inline void ClearCodeCache();
3280
3281  // Update code cache.
3282  MUST_USE_RESULT MaybeObject* UpdateCodeCache(String* name, Code* code);
3283
3284  // Returns the found code or undefined if absent.
3285  Object* FindInCodeCache(String* name, Code::Flags flags);
3286
3287  // Returns the non-negative index of the code object if it is in the
3288  // cache and -1 otherwise.
3289  int IndexInCodeCache(Object* name, Code* code);
3290
3291  // Removes a code object from the code cache at the given index.
3292  void RemoveFromCodeCache(String* name, Code* code, int index);
3293
3294  // For every transition in this map, makes the transition's
3295  // target's prototype pointer point back to this map.
3296  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
3297  void CreateBackPointers();
3298
3299  // Set all map transitions from this map to dead maps to null.
3300  // Also, restore the original prototype on the targets of these
3301  // transitions, so that we do not process this map again while
3302  // following back pointers.
3303  void ClearNonLiveTransitions(Object* real_prototype);
3304
3305  // Dispatched behavior.
3306#ifdef DEBUG
3307  void MapPrint();
3308  void MapVerify();
3309  void SharedMapVerify();
3310#endif
3311
3312  inline int visitor_id();
3313  inline void set_visitor_id(int visitor_id);
3314
3315  typedef void (*TraverseCallback)(Map* map, void* data);
3316
3317  void TraverseTransitionTree(TraverseCallback callback, void* data);
3318
3319  static const int kMaxPreAllocatedPropertyFields = 255;
3320
3321  // Layout description.
3322  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
3323  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
3324  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
3325  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
3326  static const int kInstanceDescriptorsOffset =
3327      kConstructorOffset + kPointerSize;
3328  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
3329  static const int kPadStart = kCodeCacheOffset + kPointerSize;
3330  static const int kSize = MAP_POINTER_ALIGN(kPadStart);
3331
3332  // Layout of pointer fields. Heap iteration code relies on them
3333  // being continiously allocated.
3334  static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
3335  static const int kPointerFieldsEndOffset =
3336      Map::kCodeCacheOffset + kPointerSize;
3337
3338  // Byte offsets within kInstanceSizesOffset.
3339  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
3340  static const int kInObjectPropertiesByte = 1;
3341  static const int kInObjectPropertiesOffset =
3342      kInstanceSizesOffset + kInObjectPropertiesByte;
3343  static const int kPreAllocatedPropertyFieldsByte = 2;
3344  static const int kPreAllocatedPropertyFieldsOffset =
3345      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
3346  static const int kVisitorIdByte = 3;
3347  static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
3348
3349  // Byte offsets within kInstanceAttributesOffset attributes.
3350  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
3351  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3352  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3353  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3354
3355  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3356
3357  // Bit positions for bit field.
3358  static const int kUnused = 0;  // To be used for marking recently used maps.
3359  static const int kHasNonInstancePrototype = 1;
3360  static const int kIsHiddenPrototype = 2;
3361  static const int kHasNamedInterceptor = 3;
3362  static const int kHasIndexedInterceptor = 4;
3363  static const int kIsUndetectable = 5;
3364  static const int kHasInstanceCallHandler = 6;
3365  static const int kIsAccessCheckNeeded = 7;
3366
3367  // Bit positions for bit field 2
3368  static const int kIsExtensible = 0;
3369  static const int kFunctionWithPrototype = 1;
3370  static const int kHasFastElements = 2;
3371  static const int kStringWrapperSafeForDefaultValueOf = 3;
3372  static const int kAttachedToSharedFunctionInfo = 4;
3373  static const int kIsShared = 5;
3374
3375  // Layout of the default cache. It holds alternating name and code objects.
3376  static const int kCodeCacheEntrySize = 2;
3377  static const int kCodeCacheEntryNameOffset = 0;
3378  static const int kCodeCacheEntryCodeOffset = 1;
3379
3380  typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
3381                              kPointerFieldsEndOffset,
3382                              kSize> BodyDescriptor;
3383
3384 private:
3385  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3386};
3387
3388
3389// An abstract superclass, a marker class really, for simple structure classes.
3390// It doesn't carry much functionality but allows struct classes to me
3391// identified in the type system.
3392class Struct: public HeapObject {
3393 public:
3394  inline void InitializeBody(int object_size);
3395  static inline Struct* cast(Object* that);
3396};
3397
3398
3399// Script describes a script which has been added to the VM.
3400class Script: public Struct {
3401 public:
3402  // Script types.
3403  enum Type {
3404    TYPE_NATIVE = 0,
3405    TYPE_EXTENSION = 1,
3406    TYPE_NORMAL = 2
3407  };
3408
3409  // Script compilation types.
3410  enum CompilationType {
3411    COMPILATION_TYPE_HOST = 0,
3412    COMPILATION_TYPE_EVAL = 1,
3413    COMPILATION_TYPE_JSON = 2
3414  };
3415
3416  // [source]: the script source.
3417  DECL_ACCESSORS(source, Object)
3418
3419  // [name]: the script name.
3420  DECL_ACCESSORS(name, Object)
3421
3422  // [id]: the script id.
3423  DECL_ACCESSORS(id, Object)
3424
3425  // [line_offset]: script line offset in resource from where it was extracted.
3426  DECL_ACCESSORS(line_offset, Smi)
3427
3428  // [column_offset]: script column offset in resource from where it was
3429  // extracted.
3430  DECL_ACCESSORS(column_offset, Smi)
3431
3432  // [data]: additional data associated with this script.
3433  DECL_ACCESSORS(data, Object)
3434
3435  // [context_data]: context data for the context this script was compiled in.
3436  DECL_ACCESSORS(context_data, Object)
3437
3438  // [wrapper]: the wrapper cache.
3439  DECL_ACCESSORS(wrapper, Proxy)
3440
3441  // [type]: the script type.
3442  DECL_ACCESSORS(type, Smi)
3443
3444  // [compilation]: how the the script was compiled.
3445  DECL_ACCESSORS(compilation_type, Smi)
3446
3447  // [line_ends]: FixedArray of line ends positions.
3448  DECL_ACCESSORS(line_ends, Object)
3449
3450  // [eval_from_shared]: for eval scripts the shared funcion info for the
3451  // function from which eval was called.
3452  DECL_ACCESSORS(eval_from_shared, Object)
3453
3454  // [eval_from_instructions_offset]: the instruction offset in the code for the
3455  // function from which eval was called where eval was called.
3456  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3457
3458  static inline Script* cast(Object* obj);
3459
3460  // If script source is an external string, check that the underlying
3461  // resource is accessible. Otherwise, always return true.
3462  inline bool HasValidSource();
3463
3464#ifdef DEBUG
3465  void ScriptPrint();
3466  void ScriptVerify();
3467#endif
3468
3469  static const int kSourceOffset = HeapObject::kHeaderSize;
3470  static const int kNameOffset = kSourceOffset + kPointerSize;
3471  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3472  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3473  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3474  static const int kContextOffset = kDataOffset + kPointerSize;
3475  static const int kWrapperOffset = kContextOffset + kPointerSize;
3476  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3477  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3478  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3479  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3480  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3481  static const int kEvalFrominstructionsOffsetOffset =
3482      kEvalFromSharedOffset + kPointerSize;
3483  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3484
3485 private:
3486  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3487};
3488
3489
3490// SharedFunctionInfo describes the JSFunction information that can be
3491// shared by multiple instances of the function.
3492class SharedFunctionInfo: public HeapObject {
3493 public:
3494  // [name]: Function name.
3495  DECL_ACCESSORS(name, Object)
3496
3497  // [code]: Function code.
3498  DECL_ACCESSORS(code, Code)
3499
3500  // [scope_info]: Scope info.
3501  DECL_ACCESSORS(scope_info, SerializedScopeInfo)
3502
3503  // [construct stub]: Code stub for constructing instances of this function.
3504  DECL_ACCESSORS(construct_stub, Code)
3505
3506  inline Code* unchecked_code();
3507
3508  // Returns if this function has been compiled to native code yet.
3509  inline bool is_compiled();
3510
3511  // [length]: The function length - usually the number of declared parameters.
3512  // Use up to 2^30 parameters.
3513  inline int length();
3514  inline void set_length(int value);
3515
3516  // [formal parameter count]: The declared number of parameters.
3517  inline int formal_parameter_count();
3518  inline void set_formal_parameter_count(int value);
3519
3520  // Set the formal parameter count so the function code will be
3521  // called without using argument adaptor frames.
3522  inline void DontAdaptArguments();
3523
3524  // [expected_nof_properties]: Expected number of properties for the function.
3525  inline int expected_nof_properties();
3526  inline void set_expected_nof_properties(int value);
3527
3528  // Inobject slack tracking is the way to reclaim unused inobject space.
3529  //
3530  // The instance size is initially determined by adding some slack to
3531  // expected_nof_properties (to allow for a few extra properties added
3532  // after the constructor). There is no guarantee that the extra space
3533  // will not be wasted.
3534  //
3535  // Here is the algorithm to reclaim the unused inobject space:
3536  // - Detect the first constructor call for this SharedFunctionInfo.
3537  //   When it happens enter the "in progress" state: remember the
3538  //   constructor's initial_map and install a special construct stub that
3539  //   counts constructor calls.
3540  // - While the tracking is in progress create objects filled with
3541  //   one_pointer_filler_map instead of undefined_value. This way they can be
3542  //   resized quickly and safely.
3543  // - Once enough (kGenerousAllocationCount) objects have been created
3544  //   compute the 'slack' (traverse the map transition tree starting from the
3545  //   initial_map and find the lowest value of unused_property_fields).
3546  // - Traverse the transition tree again and decrease the instance size
3547  //   of every map. Existing objects will resize automatically (they are
3548  //   filled with one_pointer_filler_map). All further allocations will
3549  //   use the adjusted instance size.
3550  // - Decrease expected_nof_properties so that an allocations made from
3551  //   another context will use the adjusted instance size too.
3552  // - Exit "in progress" state by clearing the reference to the initial_map
3553  //   and setting the regular construct stub (generic or inline).
3554  //
3555  //  The above is the main event sequence. Some special cases are possible
3556  //  while the tracking is in progress:
3557  //
3558  // - GC occurs.
3559  //   Check if the initial_map is referenced by any live objects (except this
3560  //   SharedFunctionInfo). If it is, continue tracking as usual.
3561  //   If it is not, clear the reference and reset the tracking state. The
3562  //   tracking will be initiated again on the next constructor call.
3563  //
3564  // - The constructor is called from another context.
3565  //   Immediately complete the tracking, perform all the necessary changes
3566  //   to maps. This is  necessary because there is no efficient way to track
3567  //   multiple initial_maps.
3568  //   Proceed to create an object in the current context (with the adjusted
3569  //   size).
3570  //
3571  // - A different constructor function sharing the same SharedFunctionInfo is
3572  //   called in the same context. This could be another closure in the same
3573  //   context, or the first function could have been disposed.
3574  //   This is handled the same way as the previous case.
3575  //
3576  //  Important: inobject slack tracking is not attempted during the snapshot
3577  //  creation.
3578
3579  static const int kGenerousAllocationCount = 8;
3580
3581  // [construction_count]: Counter for constructor calls made during
3582  // the tracking phase.
3583  inline int construction_count();
3584  inline void set_construction_count(int value);
3585
3586  // [initial_map]: initial map of the first function called as a constructor.
3587  // Saved for the duration of the tracking phase.
3588  // This is a weak link (GC resets it to undefined_value if no other live
3589  // object reference this map).
3590  DECL_ACCESSORS(initial_map, Object)
3591
3592  // True if the initial_map is not undefined and the countdown stub is
3593  // installed.
3594  inline bool IsInobjectSlackTrackingInProgress();
3595
3596  // Starts the tracking.
3597  // Stores the initial map and installs the countdown stub.
3598  // IsInobjectSlackTrackingInProgress is normally true after this call,
3599  // except when tracking have not been started (e.g. the map has no unused
3600  // properties or the snapshot is being built).
3601  void StartInobjectSlackTracking(Map* map);
3602
3603  // Completes the tracking.
3604  // IsInobjectSlackTrackingInProgress is false after this call.
3605  void CompleteInobjectSlackTracking();
3606
3607  // Clears the initial_map before the GC marking phase to ensure the reference
3608  // is weak. IsInobjectSlackTrackingInProgress is false after this call.
3609  void DetachInitialMap();
3610
3611  // Restores the link to the initial map after the GC marking phase.
3612  // IsInobjectSlackTrackingInProgress is true after this call.
3613  void AttachInitialMap(Map* map);
3614
3615  // False if there are definitely no live objects created from this function.
3616  // True if live objects _may_ exist (existence not guaranteed).
3617  // May go back from true to false after GC.
3618  inline bool live_objects_may_exist();
3619
3620  inline void set_live_objects_may_exist(bool value);
3621
3622  // [instance class name]: class name for instances.
3623  DECL_ACCESSORS(instance_class_name, Object)
3624
3625  // [function data]: This field holds some additional data for function.
3626  // Currently it either has FunctionTemplateInfo to make benefit the API
3627  // or Smi identifying a custom call generator.
3628  // In the long run we don't want all functions to have this field but
3629  // we can fix that when we have a better model for storing hidden data
3630  // on objects.
3631  DECL_ACCESSORS(function_data, Object)
3632
3633  inline bool IsApiFunction();
3634  inline FunctionTemplateInfo* get_api_func_data();
3635  inline bool HasCustomCallGenerator();
3636  inline int custom_call_generator_id();
3637
3638  // [script info]: Script from which the function originates.
3639  DECL_ACCESSORS(script, Object)
3640
3641  // [num_literals]: Number of literals used by this function.
3642  inline int num_literals();
3643  inline void set_num_literals(int value);
3644
3645  // [start_position_and_type]: Field used to store both the source code
3646  // position, whether or not the function is a function expression,
3647  // and whether or not the function is a toplevel function. The two
3648  // least significants bit indicates whether the function is an
3649  // expression and the rest contains the source code position.
3650  inline int start_position_and_type();
3651  inline void set_start_position_and_type(int value);
3652
3653  // [debug info]: Debug information.
3654  DECL_ACCESSORS(debug_info, Object)
3655
3656  // [inferred name]: Name inferred from variable or property
3657  // assignment of this function. Used to facilitate debugging and
3658  // profiling of JavaScript code written in OO style, where almost
3659  // all functions are anonymous but are assigned to object
3660  // properties.
3661  DECL_ACCESSORS(inferred_name, String)
3662
3663  // The function's name if it is non-empty, otherwise the inferred name.
3664  String* DebugName();
3665
3666  // Position of the 'function' token in the script source.
3667  inline int function_token_position();
3668  inline void set_function_token_position(int function_token_position);
3669
3670  // Position of this function in the script source.
3671  inline int start_position();
3672  inline void set_start_position(int start_position);
3673
3674  // End position of this function in the script source.
3675  inline int end_position();
3676  inline void set_end_position(int end_position);
3677
3678  // Is this function a function expression in the source code.
3679  inline bool is_expression();
3680  inline void set_is_expression(bool value);
3681
3682  // Is this function a top-level function (scripts, evals).
3683  inline bool is_toplevel();
3684  inline void set_is_toplevel(bool value);
3685
3686  // Bit field containing various information collected by the compiler to
3687  // drive optimization.
3688  inline int compiler_hints();
3689  inline void set_compiler_hints(int value);
3690
3691  // Add information on assignments of the form this.x = ...;
3692  void SetThisPropertyAssignmentsInfo(
3693      bool has_only_simple_this_property_assignments,
3694      FixedArray* this_property_assignments);
3695
3696  // Clear information on assignments of the form this.x = ...;
3697  void ClearThisPropertyAssignmentsInfo();
3698
3699  // Indicate that this function only consists of assignments of the form
3700  // this.x = y; where y is either a constant or refers to an argument.
3701  inline bool has_only_simple_this_property_assignments();
3702
3703  inline bool try_full_codegen();
3704  inline void set_try_full_codegen(bool flag);
3705
3706  // Indicates if this function can be lazy compiled.
3707  // This is used to determine if we can safely flush code from a function
3708  // when doing GC if we expect that the function will no longer be used.
3709  inline bool allows_lazy_compilation();
3710  inline void set_allows_lazy_compilation(bool flag);
3711
3712  // Indicates how many full GCs this function has survived with assigned
3713  // code object. Used to determine when it is relatively safe to flush
3714  // this code object and replace it with lazy compilation stub.
3715  // Age is reset when GC notices that the code object is referenced
3716  // from the stack or compilation cache.
3717  inline int code_age();
3718  inline void set_code_age(int age);
3719
3720
3721  // Check whether a inlined constructor can be generated with the given
3722  // prototype.
3723  bool CanGenerateInlineConstructor(Object* prototype);
3724
3725  // Prevents further attempts to generate inline constructors.
3726  // To be called if generation failed for any reason.
3727  void ForbidInlineConstructor();
3728
3729  // For functions which only contains this property assignments this provides
3730  // access to the names for the properties assigned.
3731  DECL_ACCESSORS(this_property_assignments, Object)
3732  inline int this_property_assignments_count();
3733  inline void set_this_property_assignments_count(int value);
3734  String* GetThisPropertyAssignmentName(int index);
3735  bool IsThisPropertyAssignmentArgument(int index);
3736  int GetThisPropertyAssignmentArgument(int index);
3737  Object* GetThisPropertyAssignmentConstant(int index);
3738
3739  // [source code]: Source code for the function.
3740  bool HasSourceCode();
3741  Object* GetSourceCode();
3742
3743  // Calculate the instance size.
3744  int CalculateInstanceSize();
3745
3746  // Calculate the number of in-object properties.
3747  int CalculateInObjectProperties();
3748
3749  // Dispatched behavior.
3750  // Set max_length to -1 for unlimited length.
3751  void SourceCodePrint(StringStream* accumulator, int max_length);
3752#ifdef DEBUG
3753  void SharedFunctionInfoPrint();
3754  void SharedFunctionInfoVerify();
3755#endif
3756
3757  // Casting.
3758  static inline SharedFunctionInfo* cast(Object* obj);
3759
3760  // Constants.
3761  static const int kDontAdaptArgumentsSentinel = -1;
3762
3763  // Layout description.
3764  // Pointer fields.
3765  static const int kNameOffset = HeapObject::kHeaderSize;
3766  static const int kCodeOffset = kNameOffset + kPointerSize;
3767  static const int kScopeInfoOffset = kCodeOffset + kPointerSize;
3768  static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
3769  static const int kInstanceClassNameOffset =
3770      kConstructStubOffset + kPointerSize;
3771  static const int kFunctionDataOffset =
3772      kInstanceClassNameOffset + kPointerSize;
3773  static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
3774  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3775  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3776  static const int kInitialMapOffset =
3777      kInferredNameOffset + kPointerSize;
3778  static const int kThisPropertyAssignmentsOffset =
3779      kInitialMapOffset + kPointerSize;
3780#if V8_HOST_ARCH_32_BIT
3781  // Smi fields.
3782  static const int kLengthOffset =
3783      kThisPropertyAssignmentsOffset + kPointerSize;
3784  static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
3785  static const int kExpectedNofPropertiesOffset =
3786      kFormalParameterCountOffset + kPointerSize;
3787  static const int kNumLiteralsOffset =
3788      kExpectedNofPropertiesOffset + kPointerSize;
3789  static const int kStartPositionAndTypeOffset =
3790      kNumLiteralsOffset + kPointerSize;
3791  static const int kEndPositionOffset =
3792      kStartPositionAndTypeOffset + kPointerSize;
3793  static const int kFunctionTokenPositionOffset =
3794      kEndPositionOffset + kPointerSize;
3795  static const int kCompilerHintsOffset =
3796      kFunctionTokenPositionOffset + kPointerSize;
3797  static const int kThisPropertyAssignmentsCountOffset =
3798      kCompilerHintsOffset + kPointerSize;
3799  // Total size.
3800  static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3801#else
3802  // The only reason to use smi fields instead of int fields
3803  // is to allow iteration without maps decoding during
3804  // garbage collections.
3805  // To avoid wasting space on 64-bit architectures we use
3806  // the following trick: we group integer fields into pairs
3807  // First integer in each pair is shifted left by 1.
3808  // By doing this we guarantee that LSB of each kPointerSize aligned
3809  // word is not set and thus this word cannot be treated as pointer
3810  // to HeapObject during old space traversal.
3811  static const int kLengthOffset =
3812      kThisPropertyAssignmentsOffset + kPointerSize;
3813  static const int kFormalParameterCountOffset =
3814      kLengthOffset + kIntSize;
3815
3816  static const int kExpectedNofPropertiesOffset =
3817      kFormalParameterCountOffset + kIntSize;
3818  static const int kNumLiteralsOffset =
3819      kExpectedNofPropertiesOffset + kIntSize;
3820
3821  static const int kEndPositionOffset =
3822      kNumLiteralsOffset + kIntSize;
3823  static const int kStartPositionAndTypeOffset =
3824      kEndPositionOffset + kIntSize;
3825
3826  static const int kFunctionTokenPositionOffset =
3827      kStartPositionAndTypeOffset + kIntSize;
3828  static const int kCompilerHintsOffset =
3829      kFunctionTokenPositionOffset + kIntSize;
3830
3831  static const int kThisPropertyAssignmentsCountOffset =
3832      kCompilerHintsOffset + kIntSize;
3833
3834  // Total size.
3835  static const int kSize = kThisPropertyAssignmentsCountOffset + kIntSize;
3836
3837#endif
3838
3839  // The construction counter for inobject slack tracking is stored in the
3840  // most significant byte of compiler_hints which is otherwise unused.
3841  // Its offset depends on the endian-ness of the architecture.
3842#if __BYTE_ORDER == __LITTLE_ENDIAN
3843  static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
3844#elif __BYTE_ORDER == __BIG_ENDIAN
3845  static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
3846#else
3847#error Unknown byte ordering
3848#endif
3849
3850  static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
3851
3852  typedef FixedBodyDescriptor<kNameOffset,
3853                              kThisPropertyAssignmentsOffset + kPointerSize,
3854                              kSize> BodyDescriptor;
3855
3856 private:
3857  // Bit positions in start_position_and_type.
3858  // The source code start position is in the 30 most significant bits of
3859  // the start_position_and_type field.
3860  static const int kIsExpressionBit = 0;
3861  static const int kIsTopLevelBit   = 1;
3862  static const int kStartPositionShift = 2;
3863  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3864
3865  // Bit positions in compiler_hints.
3866  static const int kHasOnlySimpleThisPropertyAssignments = 0;
3867  static const int kTryFullCodegen = 1;
3868  static const int kAllowLazyCompilation = 2;
3869  static const int kLiveObjectsMayExist = 3;
3870  static const int kCodeAgeShift = 4;
3871  static const int kCodeAgeMask = 7;
3872
3873  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3874};
3875
3876
3877// JSFunction describes JavaScript functions.
3878class JSFunction: public JSObject {
3879 public:
3880  // [prototype_or_initial_map]:
3881  DECL_ACCESSORS(prototype_or_initial_map, Object)
3882
3883  // [shared_function_info]: The information about the function that
3884  // can be shared by instances.
3885  DECL_ACCESSORS(shared, SharedFunctionInfo)
3886
3887  inline SharedFunctionInfo* unchecked_shared();
3888
3889  // [context]: The context for this function.
3890  inline Context* context();
3891  inline Object* unchecked_context();
3892  inline void set_context(Object* context);
3893
3894  // [code]: The generated code object for this function.  Executed
3895  // when the function is invoked, e.g. foo() or new foo(). See
3896  // [[Call]] and [[Construct]] description in ECMA-262, section
3897  // 8.6.2, page 27.
3898  inline Code* code();
3899  inline void set_code(Code* value);
3900
3901  inline Code* unchecked_code();
3902
3903  // Tells whether this function is builtin.
3904  inline bool IsBuiltin();
3905
3906  // [literals]: Fixed array holding the materialized literals.
3907  //
3908  // If the function contains object, regexp or array literals, the
3909  // literals array prefix contains the object, regexp, and array
3910  // function to be used when creating these literals.  This is
3911  // necessary so that we do not dynamically lookup the object, regexp
3912  // or array functions.  Performing a dynamic lookup, we might end up
3913  // using the functions from a new context that we should not have
3914  // access to.
3915  DECL_ACCESSORS(literals, FixedArray)
3916
3917  // The initial map for an object created by this constructor.
3918  inline Map* initial_map();
3919  inline void set_initial_map(Map* value);
3920  inline bool has_initial_map();
3921
3922  // Get and set the prototype property on a JSFunction. If the
3923  // function has an initial map the prototype is set on the initial
3924  // map. Otherwise, the prototype is put in the initial map field
3925  // until an initial map is needed.
3926  inline bool has_prototype();
3927  inline bool has_instance_prototype();
3928  inline Object* prototype();
3929  inline Object* instance_prototype();
3930  Object* SetInstancePrototype(Object* value);
3931  MUST_USE_RESULT MaybeObject* SetPrototype(Object* value);
3932
3933  // After prototype is removed, it will not be created when accessed, and
3934  // [[Construct]] from this function will not be allowed.
3935  Object* RemovePrototype();
3936  inline bool should_have_prototype();
3937
3938  // Accessor for this function's initial map's [[class]]
3939  // property. This is primarily used by ECMA native functions.  This
3940  // method sets the class_name field of this function's initial map
3941  // to a given value. It creates an initial map if this function does
3942  // not have one. Note that this method does not copy the initial map
3943  // if it has one already, but simply replaces it with the new value.
3944  // Instances created afterwards will have a map whose [[class]] is
3945  // set to 'value', but there is no guarantees on instances created
3946  // before.
3947  Object* SetInstanceClassName(String* name);
3948
3949  // Returns if this function has been compiled to native code yet.
3950  inline bool is_compiled();
3951
3952  // Casting.
3953  static inline JSFunction* cast(Object* obj);
3954
3955  // Iterates the objects, including code objects indirectly referenced
3956  // through pointers to the first instruction in the code object.
3957  void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
3958
3959  // Dispatched behavior.
3960#ifdef DEBUG
3961  void JSFunctionPrint();
3962  void JSFunctionVerify();
3963#endif
3964
3965  // Returns the number of allocated literals.
3966  inline int NumberOfLiterals();
3967
3968  // Retrieve the global context from a function's literal array.
3969  static Context* GlobalContextFromLiterals(FixedArray* literals);
3970
3971  // Layout descriptors.
3972  static const int kCodeEntryOffset = JSObject::kHeaderSize;
3973  static const int kPrototypeOrInitialMapOffset =
3974      kCodeEntryOffset + kPointerSize;
3975  static const int kSharedFunctionInfoOffset =
3976      kPrototypeOrInitialMapOffset + kPointerSize;
3977  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3978  static const int kLiteralsOffset = kContextOffset + kPointerSize;
3979  static const int kSize = kLiteralsOffset + kPointerSize;
3980
3981  // Layout of the literals array.
3982  static const int kLiteralsPrefixSize = 1;
3983  static const int kLiteralGlobalContextIndex = 0;
3984 private:
3985  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3986};
3987
3988
3989// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3990// and the prototype is hidden. JSGlobalProxy always delegates
3991// property accesses to its prototype if the prototype is not null.
3992//
3993// A JSGlobalProxy can be reinitialized which will preserve its identity.
3994//
3995// Accessing a JSGlobalProxy requires security check.
3996
3997class JSGlobalProxy : public JSObject {
3998 public:
3999  // [context]: the owner global context of this proxy object.
4000  // It is null value if this object is not used by any context.
4001  DECL_ACCESSORS(context, Object)
4002
4003  // Casting.
4004  static inline JSGlobalProxy* cast(Object* obj);
4005
4006  // Dispatched behavior.
4007#ifdef DEBUG
4008  void JSGlobalProxyPrint();
4009  void JSGlobalProxyVerify();
4010#endif
4011
4012  // Layout description.
4013  static const int kContextOffset = JSObject::kHeaderSize;
4014  static const int kSize = kContextOffset + kPointerSize;
4015
4016 private:
4017
4018  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
4019};
4020
4021
4022// Forward declaration.
4023class JSBuiltinsObject;
4024
4025// Common super class for JavaScript global objects and the special
4026// builtins global objects.
4027class GlobalObject: public JSObject {
4028 public:
4029  // [builtins]: the object holding the runtime routines written in JS.
4030  DECL_ACCESSORS(builtins, JSBuiltinsObject)
4031
4032  // [global context]: the global context corresponding to this global object.
4033  DECL_ACCESSORS(global_context, Context)
4034
4035  // [global receiver]: the global receiver object of the context
4036  DECL_ACCESSORS(global_receiver, JSObject)
4037
4038  // Retrieve the property cell used to store a property.
4039  Object* GetPropertyCell(LookupResult* result);
4040
4041  // This is like GetProperty, but is used when you know the lookup won't fail
4042  // by throwing an exception.  This is for the debug and builtins global
4043  // objects, where it is known which properties can be expected to be present
4044  // on the object.
4045  Object* GetPropertyNoExceptionThrown(String* key) {
4046    Object* answer = GetProperty(key)->ToObjectUnchecked();
4047    return answer;
4048  }
4049
4050  // Ensure that the global object has a cell for the given property name.
4051  MUST_USE_RESULT MaybeObject* EnsurePropertyCell(String* name);
4052
4053  // Casting.
4054  static inline GlobalObject* cast(Object* obj);
4055
4056  // Layout description.
4057  static const int kBuiltinsOffset = JSObject::kHeaderSize;
4058  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
4059  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
4060  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
4061
4062 private:
4063  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4064
4065  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
4066};
4067
4068
4069// JavaScript global object.
4070class JSGlobalObject: public GlobalObject {
4071 public:
4072
4073  // Casting.
4074  static inline JSGlobalObject* cast(Object* obj);
4075
4076  // Dispatched behavior.
4077#ifdef DEBUG
4078  void JSGlobalObjectPrint();
4079  void JSGlobalObjectVerify();
4080#endif
4081
4082  // Layout description.
4083  static const int kSize = GlobalObject::kHeaderSize;
4084
4085 private:
4086  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
4087};
4088
4089
4090// Builtins global object which holds the runtime routines written in
4091// JavaScript.
4092class JSBuiltinsObject: public GlobalObject {
4093 public:
4094  // Accessors for the runtime routines written in JavaScript.
4095  inline Object* javascript_builtin(Builtins::JavaScript id);
4096  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
4097
4098  // Accessors for code of the runtime routines written in JavaScript.
4099  inline Code* javascript_builtin_code(Builtins::JavaScript id);
4100  inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
4101
4102  // Casting.
4103  static inline JSBuiltinsObject* cast(Object* obj);
4104
4105  // Dispatched behavior.
4106#ifdef DEBUG
4107  void JSBuiltinsObjectPrint();
4108  void JSBuiltinsObjectVerify();
4109#endif
4110
4111  // Layout description.  The size of the builtins object includes
4112  // room for two pointers per runtime routine written in javascript
4113  // (function and code object).
4114  static const int kJSBuiltinsCount = Builtins::id_count;
4115  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
4116  static const int kJSBuiltinsCodeOffset =
4117      GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
4118  static const int kSize =
4119      kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
4120
4121  static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
4122    return kJSBuiltinsOffset + id * kPointerSize;
4123  }
4124
4125  static int OffsetOfCodeWithId(Builtins::JavaScript id) {
4126    return kJSBuiltinsCodeOffset + id * kPointerSize;
4127  }
4128
4129 private:
4130  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
4131};
4132
4133
4134// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
4135class JSValue: public JSObject {
4136 public:
4137  // [value]: the object being wrapped.
4138  DECL_ACCESSORS(value, Object)
4139
4140  // Casting.
4141  static inline JSValue* cast(Object* obj);
4142
4143  // Dispatched behavior.
4144#ifdef DEBUG
4145  void JSValuePrint();
4146  void JSValueVerify();
4147#endif
4148
4149  // Layout description.
4150  static const int kValueOffset = JSObject::kHeaderSize;
4151  static const int kSize = kValueOffset + kPointerSize;
4152
4153 private:
4154  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
4155};
4156
4157// Regular expressions
4158// The regular expression holds a single reference to a FixedArray in
4159// the kDataOffset field.
4160// The FixedArray contains the following data:
4161// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
4162// - reference to the original source string
4163// - reference to the original flag string
4164// If it is an atom regexp
4165// - a reference to a literal string to search for
4166// If it is an irregexp regexp:
4167// - a reference to code for ASCII inputs (bytecode or compiled).
4168// - a reference to code for UC16 inputs (bytecode or compiled).
4169// - max number of registers used by irregexp implementations.
4170// - number of capture registers (output values) of the regexp.
4171class JSRegExp: public JSObject {
4172 public:
4173  // Meaning of Type:
4174  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
4175  // ATOM: A simple string to match against using an indexOf operation.
4176  // IRREGEXP: Compiled with Irregexp.
4177  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
4178  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
4179  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
4180
4181  class Flags {
4182   public:
4183    explicit Flags(uint32_t value) : value_(value) { }
4184    bool is_global() { return (value_ & GLOBAL) != 0; }
4185    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
4186    bool is_multiline() { return (value_ & MULTILINE) != 0; }
4187    uint32_t value() { return value_; }
4188   private:
4189    uint32_t value_;
4190  };
4191
4192  DECL_ACCESSORS(data, Object)
4193
4194  inline Type TypeTag();
4195  inline int CaptureCount();
4196  inline Flags GetFlags();
4197  inline String* Pattern();
4198  inline Object* DataAt(int index);
4199  // Set implementation data after the object has been prepared.
4200  inline void SetDataAt(int index, Object* value);
4201  static int code_index(bool is_ascii) {
4202    if (is_ascii) {
4203      return kIrregexpASCIICodeIndex;
4204    } else {
4205      return kIrregexpUC16CodeIndex;
4206    }
4207  }
4208
4209  static inline JSRegExp* cast(Object* obj);
4210
4211  // Dispatched behavior.
4212#ifdef DEBUG
4213  void JSRegExpVerify();
4214#endif
4215
4216  static const int kDataOffset = JSObject::kHeaderSize;
4217  static const int kSize = kDataOffset + kPointerSize;
4218
4219  // Indices in the data array.
4220  static const int kTagIndex = 0;
4221  static const int kSourceIndex = kTagIndex + 1;
4222  static const int kFlagsIndex = kSourceIndex + 1;
4223  static const int kDataIndex = kFlagsIndex + 1;
4224  // The data fields are used in different ways depending on the
4225  // value of the tag.
4226  // Atom regexps (literal strings).
4227  static const int kAtomPatternIndex = kDataIndex;
4228
4229  static const int kAtomDataSize = kAtomPatternIndex + 1;
4230
4231  // Irregexp compiled code or bytecode for ASCII. If compilation
4232  // fails, this fields hold an exception object that should be
4233  // thrown if the regexp is used again.
4234  static const int kIrregexpASCIICodeIndex = kDataIndex;
4235  // Irregexp compiled code or bytecode for UC16.  If compilation
4236  // fails, this fields hold an exception object that should be
4237  // thrown if the regexp is used again.
4238  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
4239  // Maximal number of registers used by either ASCII or UC16.
4240  // Only used to check that there is enough stack space
4241  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
4242  // Number of captures in the compiled regexp.
4243  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
4244
4245  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
4246
4247  // Offsets directly into the data fixed array.
4248  static const int kDataTagOffset =
4249      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
4250  static const int kDataAsciiCodeOffset =
4251      FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
4252  static const int kDataUC16CodeOffset =
4253      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
4254  static const int kIrregexpCaptureCountOffset =
4255      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
4256
4257  // In-object fields.
4258  static const int kSourceFieldIndex = 0;
4259  static const int kGlobalFieldIndex = 1;
4260  static const int kIgnoreCaseFieldIndex = 2;
4261  static const int kMultilineFieldIndex = 3;
4262  static const int kLastIndexFieldIndex = 4;
4263  static const int kInObjectFieldCount = 5;
4264};
4265
4266
4267class CompilationCacheShape {
4268 public:
4269  static inline bool IsMatch(HashTableKey* key, Object* value) {
4270    return key->IsMatch(value);
4271  }
4272
4273  static inline uint32_t Hash(HashTableKey* key) {
4274    return key->Hash();
4275  }
4276
4277  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
4278    return key->HashForObject(object);
4279  }
4280
4281  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
4282    return key->AsObject();
4283  }
4284
4285  static const int kPrefixSize = 0;
4286  static const int kEntrySize = 2;
4287};
4288
4289
4290class CompilationCacheTable: public HashTable<CompilationCacheShape,
4291                                              HashTableKey*> {
4292 public:
4293  // Find cached value for a string key, otherwise return null.
4294  Object* Lookup(String* src);
4295  Object* LookupEval(String* src, Context* context);
4296  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
4297  MaybeObject* Put(String* src, Object* value);
4298  MaybeObject* PutEval(String* src, Context* context, Object* value);
4299  MaybeObject* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
4300
4301  static inline CompilationCacheTable* cast(Object* obj);
4302
4303 private:
4304  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
4305};
4306
4307
4308class CodeCache: public Struct {
4309 public:
4310  DECL_ACCESSORS(default_cache, FixedArray)
4311  DECL_ACCESSORS(normal_type_cache, Object)
4312
4313  // Add the code object to the cache.
4314  MUST_USE_RESULT MaybeObject* Update(String* name, Code* code);
4315
4316  // Lookup code object in the cache. Returns code object if found and undefined
4317  // if not.
4318  Object* Lookup(String* name, Code::Flags flags);
4319
4320  // Get the internal index of a code object in the cache. Returns -1 if the
4321  // code object is not in that cache. This index can be used to later call
4322  // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
4323  // RemoveByIndex.
4324  int GetIndex(Object* name, Code* code);
4325
4326  // Remove an object from the cache with the provided internal index.
4327  void RemoveByIndex(Object* name, Code* code, int index);
4328
4329  static inline CodeCache* cast(Object* obj);
4330
4331#ifdef DEBUG
4332  void CodeCachePrint();
4333  void CodeCacheVerify();
4334#endif
4335
4336  static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
4337  static const int kNormalTypeCacheOffset =
4338      kDefaultCacheOffset + kPointerSize;
4339  static const int kSize = kNormalTypeCacheOffset + kPointerSize;
4340
4341 private:
4342  MUST_USE_RESULT MaybeObject* UpdateDefaultCache(String* name, Code* code);
4343  MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(String* name, Code* code);
4344  Object* LookupDefaultCache(String* name, Code::Flags flags);
4345  Object* LookupNormalTypeCache(String* name, Code::Flags flags);
4346
4347  // Code cache layout of the default cache. Elements are alternating name and
4348  // code objects for non normal load/store/call IC's.
4349  static const int kCodeCacheEntrySize = 2;
4350  static const int kCodeCacheEntryNameOffset = 0;
4351  static const int kCodeCacheEntryCodeOffset = 1;
4352
4353  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
4354};
4355
4356
4357class CodeCacheHashTableShape {
4358 public:
4359  static inline bool IsMatch(HashTableKey* key, Object* value) {
4360    return key->IsMatch(value);
4361  }
4362
4363  static inline uint32_t Hash(HashTableKey* key) {
4364    return key->Hash();
4365  }
4366
4367  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
4368    return key->HashForObject(object);
4369  }
4370
4371  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
4372    return key->AsObject();
4373  }
4374
4375  static const int kPrefixSize = 0;
4376  static const int kEntrySize = 2;
4377};
4378
4379
4380class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
4381                                           HashTableKey*> {
4382 public:
4383  Object* Lookup(String* name, Code::Flags flags);
4384  MUST_USE_RESULT MaybeObject* Put(String* name, Code* code);
4385
4386  int GetIndex(String* name, Code::Flags flags);
4387  void RemoveByIndex(int index);
4388
4389  static inline CodeCacheHashTable* cast(Object* obj);
4390
4391  // Initial size of the fixed array backing the hash table.
4392  static const int kInitialSize = 64;
4393
4394 private:
4395  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
4396};
4397
4398
4399enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
4400enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
4401
4402
4403class StringHasher {
4404 public:
4405  inline StringHasher(int length);
4406
4407  // Returns true if the hash of this string can be computed without
4408  // looking at the contents.
4409  inline bool has_trivial_hash();
4410
4411  // Add a character to the hash and update the array index calculation.
4412  inline void AddCharacter(uc32 c);
4413
4414  // Adds a character to the hash but does not update the array index
4415  // calculation.  This can only be called when it has been verified
4416  // that the input is not an array index.
4417  inline void AddCharacterNoIndex(uc32 c);
4418
4419  // Returns the value to store in the hash field of a string with
4420  // the given length and contents.
4421  uint32_t GetHashField();
4422
4423  // Returns true if the characters seen so far make up a legal array
4424  // index.
4425  bool is_array_index() { return is_array_index_; }
4426
4427  bool is_valid() { return is_valid_; }
4428
4429  void invalidate() { is_valid_ = false; }
4430
4431  // Calculated hash value for a string consisting of 1 to
4432  // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
4433  // value is represented decimal value.
4434  static uint32_t MakeArrayIndexHash(uint32_t value, int length);
4435
4436 private:
4437
4438  uint32_t array_index() {
4439    ASSERT(is_array_index());
4440    return array_index_;
4441  }
4442
4443  inline uint32_t GetHash();
4444
4445  int length_;
4446  uint32_t raw_running_hash_;
4447  uint32_t array_index_;
4448  bool is_array_index_;
4449  bool is_first_char_;
4450  bool is_valid_;
4451  friend class TwoCharHashTableKey;
4452};
4453
4454
4455// The characteristics of a string are stored in its map.  Retrieving these
4456// few bits of information is moderately expensive, involving two memory
4457// loads where the second is dependent on the first.  To improve efficiency
4458// the shape of the string is given its own class so that it can be retrieved
4459// once and used for several string operations.  A StringShape is small enough
4460// to be passed by value and is immutable, but be aware that flattening a
4461// string can potentially alter its shape.  Also be aware that a GC caused by
4462// something else can alter the shape of a string due to ConsString
4463// shortcutting.  Keeping these restrictions in mind has proven to be error-
4464// prone and so we no longer put StringShapes in variables unless there is a
4465// concrete performance benefit at that particular point in the code.
4466class StringShape BASE_EMBEDDED {
4467 public:
4468  inline explicit StringShape(String* s);
4469  inline explicit StringShape(Map* s);
4470  inline explicit StringShape(InstanceType t);
4471  inline bool IsSequential();
4472  inline bool IsExternal();
4473  inline bool IsCons();
4474  inline bool IsExternalAscii();
4475  inline bool IsExternalTwoByte();
4476  inline bool IsSequentialAscii();
4477  inline bool IsSequentialTwoByte();
4478  inline bool IsSymbol();
4479  inline StringRepresentationTag representation_tag();
4480  inline uint32_t full_representation_tag();
4481  inline uint32_t size_tag();
4482#ifdef DEBUG
4483  inline uint32_t type() { return type_; }
4484  inline void invalidate() { valid_ = false; }
4485  inline bool valid() { return valid_; }
4486#else
4487  inline void invalidate() { }
4488#endif
4489 private:
4490  uint32_t type_;
4491#ifdef DEBUG
4492  inline void set_valid() { valid_ = true; }
4493  bool valid_;
4494#else
4495  inline void set_valid() { }
4496#endif
4497};
4498
4499
4500// The String abstract class captures JavaScript string values:
4501//
4502// Ecma-262:
4503//  4.3.16 String Value
4504//    A string value is a member of the type String and is a finite
4505//    ordered sequence of zero or more 16-bit unsigned integer values.
4506//
4507// All string values have a length field.
4508class String: public HeapObject {
4509 public:
4510  // Get and set the length of the string.
4511  inline int length();
4512  inline void set_length(int value);
4513
4514  // Get and set the hash field of the string.
4515  inline uint32_t hash_field();
4516  inline void set_hash_field(uint32_t value);
4517
4518  inline bool IsAsciiRepresentation();
4519  inline bool IsTwoByteRepresentation();
4520
4521  // Returns whether this string has ascii chars, i.e. all of them can
4522  // be ascii encoded.  This might be the case even if the string is
4523  // two-byte.  Such strings may appear when the embedder prefers
4524  // two-byte external representations even for ascii data.
4525  //
4526  // NOTE: this should be considered only a hint.  False negatives are
4527  // possible.
4528  inline bool HasOnlyAsciiChars();
4529
4530  // Get and set individual two byte chars in the string.
4531  inline void Set(int index, uint16_t value);
4532  // Get individual two byte char in the string.  Repeated calls
4533  // to this method are not efficient unless the string is flat.
4534  inline uint16_t Get(int index);
4535
4536  // Try to flatten the string.  Checks first inline to see if it is
4537  // necessary.  Does nothing if the string is not a cons string.
4538  // Flattening allocates a sequential string with the same data as
4539  // the given string and mutates the cons string to a degenerate
4540  // form, where the first component is the new sequential string and
4541  // the second component is the empty string.  If allocation fails,
4542  // this function returns a failure.  If flattening succeeds, this
4543  // function returns the sequential string that is now the first
4544  // component of the cons string.
4545  //
4546  // Degenerate cons strings are handled specially by the garbage
4547  // collector (see IsShortcutCandidate).
4548  //
4549  // Use FlattenString from Handles.cc to flatten even in case an
4550  // allocation failure happens.
4551  inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
4552
4553  // Convenience function.  Has exactly the same behavior as
4554  // TryFlatten(), except in the case of failure returns the original
4555  // string.
4556  inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
4557
4558  Vector<const char> ToAsciiVector();
4559  Vector<const uc16> ToUC16Vector();
4560
4561  // Mark the string as an undetectable object. It only applies to
4562  // ascii and two byte string types.
4563  bool MarkAsUndetectable();
4564
4565  // Return a substring.
4566  MUST_USE_RESULT MaybeObject* SubString(int from,
4567                                         int to,
4568                                         PretenureFlag pretenure = NOT_TENURED);
4569
4570  // String equality operations.
4571  inline bool Equals(String* other);
4572  bool IsEqualTo(Vector<const char> str);
4573
4574  // Return a UTF8 representation of the string.  The string is null
4575  // terminated but may optionally contain nulls.  Length is returned
4576  // in length_output if length_output is not a null pointer  The string
4577  // should be nearly flat, otherwise the performance of this method may
4578  // be very slow (quadratic in the length).  Setting robustness_flag to
4579  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4580  // handles unexpected data without causing assert failures and it does not
4581  // do any heap allocations.  This is useful when printing stack traces.
4582  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
4583                               RobustnessFlag robustness_flag,
4584                               int offset,
4585                               int length,
4586                               int* length_output = 0);
4587  SmartPointer<char> ToCString(
4588      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
4589      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
4590      int* length_output = 0);
4591
4592  int Utf8Length();
4593
4594  // Return a 16 bit Unicode representation of the string.
4595  // The string should be nearly flat, otherwise the performance of
4596  // of this method may be very bad.  Setting robustness_flag to
4597  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4598  // handles unexpected data without causing assert failures and it does not
4599  // do any heap allocations.  This is useful when printing stack traces.
4600  SmartPointer<uc16> ToWideCString(
4601      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
4602
4603  // Tells whether the hash code has been computed.
4604  inline bool HasHashCode();
4605
4606  // Returns a hash value used for the property table
4607  inline uint32_t Hash();
4608
4609  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
4610                                   int length);
4611
4612  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
4613                                uint32_t* index,
4614                                int length);
4615
4616  // Externalization.
4617  bool MakeExternal(v8::String::ExternalStringResource* resource);
4618  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
4619
4620  // Conversion.
4621  inline bool AsArrayIndex(uint32_t* index);
4622
4623  // Casting.
4624  static inline String* cast(Object* obj);
4625
4626  void PrintOn(FILE* out);
4627
4628  // For use during stack traces.  Performs rudimentary sanity check.
4629  bool LooksValid();
4630
4631  // Dispatched behavior.
4632  void StringShortPrint(StringStream* accumulator);
4633#ifdef DEBUG
4634  void StringPrint();
4635  void StringVerify();
4636#endif
4637  inline bool IsFlat();
4638
4639  // Layout description.
4640  static const int kLengthOffset = HeapObject::kHeaderSize;
4641  static const int kHashFieldOffset = kLengthOffset + kPointerSize;
4642  static const int kSize = kHashFieldOffset + kPointerSize;
4643
4644  // Maximum number of characters to consider when trying to convert a string
4645  // value into an array index.
4646  static const int kMaxArrayIndexSize = 10;
4647
4648  // Max ascii char code.
4649  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
4650  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
4651  static const int kMaxUC16CharCode = 0xffff;
4652
4653  // Minimum length for a cons string.
4654  static const int kMinNonFlatLength = 13;
4655
4656  // Mask constant for checking if a string has a computed hash code
4657  // and if it is an array index.  The least significant bit indicates
4658  // whether a hash code has been computed.  If the hash code has been
4659  // computed the 2nd bit tells whether the string can be used as an
4660  // array index.
4661  static const int kHashNotComputedMask = 1;
4662  static const int kIsNotArrayIndexMask = 1 << 1;
4663  static const int kNofHashBitFields = 2;
4664
4665  // Shift constant retrieving hash code from hash field.
4666  static const int kHashShift = kNofHashBitFields;
4667
4668  // Array index strings this short can keep their index in the hash
4669  // field.
4670  static const int kMaxCachedArrayIndexLength = 7;
4671
4672  // For strings which are array indexes the hash value has the string length
4673  // mixed into the hash, mainly to avoid a hash value of zero which would be
4674  // the case for the string '0'. 24 bits are used for the array index value.
4675  static const int kArrayIndexValueBits = 24;
4676  static const int kArrayIndexLengthBits =
4677      kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
4678
4679  STATIC_CHECK((kArrayIndexLengthBits > 0));
4680  STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
4681
4682  static const int kArrayIndexHashLengthShift =
4683      kArrayIndexValueBits + kNofHashBitFields;
4684
4685  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
4686
4687  static const int kArrayIndexValueMask =
4688      ((1 << kArrayIndexValueBits) - 1) << kHashShift;
4689
4690  // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
4691  // could use a mask to test if the length of string is less than or equal to
4692  // kMaxCachedArrayIndexLength.
4693  STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
4694
4695  static const int kContainsCachedArrayIndexMask =
4696      (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
4697      kIsNotArrayIndexMask;
4698
4699  // Value of empty hash field indicating that the hash is not computed.
4700  static const int kEmptyHashField =
4701      kIsNotArrayIndexMask | kHashNotComputedMask;
4702
4703  // Value of hash field containing computed hash equal to zero.
4704  static const int kZeroHash = kIsNotArrayIndexMask;
4705
4706  // Maximal string length.
4707  static const int kMaxLength = (1 << (32 - 2)) - 1;
4708
4709  // Max length for computing hash. For strings longer than this limit the
4710  // string length is used as the hash value.
4711  static const int kMaxHashCalcLength = 16383;
4712
4713  // Limit for truncation in short printing.
4714  static const int kMaxShortPrintLength = 1024;
4715
4716  // Support for regular expressions.
4717  const uc16* GetTwoByteData();
4718  const uc16* GetTwoByteData(unsigned start);
4719
4720  // Support for StringInputBuffer
4721  static const unibrow::byte* ReadBlock(String* input,
4722                                        unibrow::byte* util_buffer,
4723                                        unsigned capacity,
4724                                        unsigned* remaining,
4725                                        unsigned* offset);
4726  static const unibrow::byte* ReadBlock(String** input,
4727                                        unibrow::byte* util_buffer,
4728                                        unsigned capacity,
4729                                        unsigned* remaining,
4730                                        unsigned* offset);
4731
4732  // Helper function for flattening strings.
4733  template <typename sinkchar>
4734  static void WriteToFlat(String* source,
4735                          sinkchar* sink,
4736                          int from,
4737                          int to);
4738
4739 protected:
4740  class ReadBlockBuffer {
4741   public:
4742    ReadBlockBuffer(unibrow::byte* util_buffer_,
4743                    unsigned cursor_,
4744                    unsigned capacity_,
4745                    unsigned remaining_) :
4746      util_buffer(util_buffer_),
4747      cursor(cursor_),
4748      capacity(capacity_),
4749      remaining(remaining_) {
4750    }
4751    unibrow::byte* util_buffer;
4752    unsigned       cursor;
4753    unsigned       capacity;
4754    unsigned       remaining;
4755  };
4756
4757  static inline const unibrow::byte* ReadBlock(String* input,
4758                                               ReadBlockBuffer* buffer,
4759                                               unsigned* offset,
4760                                               unsigned max_chars);
4761  static void ReadBlockIntoBuffer(String* input,
4762                                  ReadBlockBuffer* buffer,
4763                                  unsigned* offset_ptr,
4764                                  unsigned max_chars);
4765
4766 private:
4767  // Try to flatten the top level ConsString that is hiding behind this
4768  // string.  This is a no-op unless the string is a ConsString.  Flatten
4769  // mutates the ConsString and might return a failure.
4770  MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
4771
4772  static inline bool IsHashFieldComputed(uint32_t field);
4773
4774  // Slow case of String::Equals.  This implementation works on any strings
4775  // but it is most efficient on strings that are almost flat.
4776  bool SlowEquals(String* other);
4777
4778  // Slow case of AsArrayIndex.
4779  bool SlowAsArrayIndex(uint32_t* index);
4780
4781  // Compute and set the hash code.
4782  uint32_t ComputeAndSetHash();
4783
4784  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4785};
4786
4787
4788// The SeqString abstract class captures sequential string values.
4789class SeqString: public String {
4790 public:
4791
4792  // Casting.
4793  static inline SeqString* cast(Object* obj);
4794
4795 private:
4796  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4797};
4798
4799
4800// The AsciiString class captures sequential ascii string objects.
4801// Each character in the AsciiString is an ascii character.
4802class SeqAsciiString: public SeqString {
4803 public:
4804  static const bool kHasAsciiEncoding = true;
4805
4806  // Dispatched behavior.
4807  inline uint16_t SeqAsciiStringGet(int index);
4808  inline void SeqAsciiStringSet(int index, uint16_t value);
4809
4810  // Get the address of the characters in this string.
4811  inline Address GetCharsAddress();
4812
4813  inline char* GetChars();
4814
4815  // Casting
4816  static inline SeqAsciiString* cast(Object* obj);
4817
4818  // Garbage collection support.  This method is called by the
4819  // garbage collector to compute the actual size of an AsciiString
4820  // instance.
4821  inline int SeqAsciiStringSize(InstanceType instance_type);
4822
4823  // Computes the size for an AsciiString instance of a given length.
4824  static int SizeFor(int length) {
4825    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
4826  }
4827
4828  // Layout description.
4829  static const int kHeaderSize = String::kSize;
4830  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4831
4832  // Maximal memory usage for a single sequential ASCII string.
4833  static const int kMaxSize = 512 * MB;
4834  // Maximal length of a single sequential ASCII string.
4835  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4836  static const int kMaxLength = (kMaxSize - kHeaderSize);
4837
4838  // Support for StringInputBuffer.
4839  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4840                                                unsigned* offset,
4841                                                unsigned chars);
4842  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4843                                                      unsigned* offset,
4844                                                      unsigned chars);
4845
4846 private:
4847  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4848};
4849
4850
4851// The TwoByteString class captures sequential unicode string objects.
4852// Each character in the TwoByteString is a two-byte uint16_t.
4853class SeqTwoByteString: public SeqString {
4854 public:
4855  static const bool kHasAsciiEncoding = false;
4856
4857  // Dispatched behavior.
4858  inline uint16_t SeqTwoByteStringGet(int index);
4859  inline void SeqTwoByteStringSet(int index, uint16_t value);
4860
4861  // Get the address of the characters in this string.
4862  inline Address GetCharsAddress();
4863
4864  inline uc16* GetChars();
4865
4866  // For regexp code.
4867  const uint16_t* SeqTwoByteStringGetData(unsigned start);
4868
4869  // Casting
4870  static inline SeqTwoByteString* cast(Object* obj);
4871
4872  // Garbage collection support.  This method is called by the
4873  // garbage collector to compute the actual size of a TwoByteString
4874  // instance.
4875  inline int SeqTwoByteStringSize(InstanceType instance_type);
4876
4877  // Computes the size for a TwoByteString instance of a given length.
4878  static int SizeFor(int length) {
4879    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
4880  }
4881
4882  // Layout description.
4883  static const int kHeaderSize = String::kSize;
4884  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4885
4886  // Maximal memory usage for a single sequential two-byte string.
4887  static const int kMaxSize = 512 * MB;
4888  // Maximal length of a single sequential two-byte string.
4889  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4890  static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4891
4892  // Support for StringInputBuffer.
4893  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4894                                                  unsigned* offset_ptr,
4895                                                  unsigned chars);
4896
4897 private:
4898  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4899};
4900
4901
4902// The ConsString class describes string values built by using the
4903// addition operator on strings.  A ConsString is a pair where the
4904// first and second components are pointers to other string values.
4905// One or both components of a ConsString can be pointers to other
4906// ConsStrings, creating a binary tree of ConsStrings where the leaves
4907// are non-ConsString string values.  The string value represented by
4908// a ConsString can be obtained by concatenating the leaf string
4909// values in a left-to-right depth-first traversal of the tree.
4910class ConsString: public String {
4911 public:
4912  // First string of the cons cell.
4913  inline String* first();
4914  // Doesn't check that the result is a string, even in debug mode.  This is
4915  // useful during GC where the mark bits confuse the checks.
4916  inline Object* unchecked_first();
4917  inline void set_first(String* first,
4918                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4919
4920  // Second string of the cons cell.
4921  inline String* second();
4922  // Doesn't check that the result is a string, even in debug mode.  This is
4923  // useful during GC where the mark bits confuse the checks.
4924  inline Object* unchecked_second();
4925  inline void set_second(String* second,
4926                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4927
4928  // Dispatched behavior.
4929  uint16_t ConsStringGet(int index);
4930
4931  // Casting.
4932  static inline ConsString* cast(Object* obj);
4933
4934  // Layout description.
4935  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4936  static const int kSecondOffset = kFirstOffset + kPointerSize;
4937  static const int kSize = kSecondOffset + kPointerSize;
4938
4939  // Support for StringInputBuffer.
4940  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4941                                                  unsigned* offset_ptr,
4942                                                  unsigned chars);
4943  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4944                                            unsigned* offset_ptr,
4945                                            unsigned chars);
4946
4947  // Minimum length for a cons string.
4948  static const int kMinLength = 13;
4949
4950  typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
4951          BodyDescriptor;
4952
4953 private:
4954  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4955};
4956
4957
4958// The ExternalString class describes string values that are backed by
4959// a string resource that lies outside the V8 heap.  ExternalStrings
4960// consist of the length field common to all strings, a pointer to the
4961// external resource.  It is important to ensure (externally) that the
4962// resource is not deallocated while the ExternalString is live in the
4963// V8 heap.
4964//
4965// The API expects that all ExternalStrings are created through the
4966// API.  Therefore, ExternalStrings should not be used internally.
4967class ExternalString: public String {
4968 public:
4969  // Casting
4970  static inline ExternalString* cast(Object* obj);
4971
4972  // Layout description.
4973  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4974  static const int kSize = kResourceOffset + kPointerSize;
4975
4976  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4977
4978 private:
4979  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4980};
4981
4982
4983// The ExternalAsciiString class is an external string backed by an
4984// ASCII string.
4985class ExternalAsciiString: public ExternalString {
4986 public:
4987  static const bool kHasAsciiEncoding = true;
4988
4989  typedef v8::String::ExternalAsciiStringResource Resource;
4990
4991  // The underlying resource.
4992  inline Resource* resource();
4993  inline void set_resource(Resource* buffer);
4994
4995  // Dispatched behavior.
4996  uint16_t ExternalAsciiStringGet(int index);
4997
4998  // Casting.
4999  static inline ExternalAsciiString* cast(Object* obj);
5000
5001  // Garbage collection support.
5002  inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
5003
5004  template<typename StaticVisitor>
5005  inline void ExternalAsciiStringIterateBody();
5006
5007  // Support for StringInputBuffer.
5008  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
5009                                                    unsigned* offset,
5010                                                    unsigned chars);
5011  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5012                                                     unsigned* offset,
5013                                                     unsigned chars);
5014
5015 private:
5016  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
5017};
5018
5019
5020// The ExternalTwoByteString class is an external string backed by a UTF-16
5021// encoded string.
5022class ExternalTwoByteString: public ExternalString {
5023 public:
5024  static const bool kHasAsciiEncoding = false;
5025
5026  typedef v8::String::ExternalStringResource Resource;
5027
5028  // The underlying string resource.
5029  inline Resource* resource();
5030  inline void set_resource(Resource* buffer);
5031
5032  // Dispatched behavior.
5033  uint16_t ExternalTwoByteStringGet(int index);
5034
5035  // For regexp code.
5036  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
5037
5038  // Casting.
5039  static inline ExternalTwoByteString* cast(Object* obj);
5040
5041  // Garbage collection support.
5042  inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
5043
5044  template<typename StaticVisitor>
5045  inline void ExternalTwoByteStringIterateBody();
5046
5047
5048  // Support for StringInputBuffer.
5049  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5050                                                unsigned* offset_ptr,
5051                                                unsigned chars);
5052
5053 private:
5054  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
5055};
5056
5057
5058// Utility superclass for stack-allocated objects that must be updated
5059// on gc.  It provides two ways for the gc to update instances, either
5060// iterating or updating after gc.
5061class Relocatable BASE_EMBEDDED {
5062 public:
5063  inline Relocatable() : prev_(top_) { top_ = this; }
5064  virtual ~Relocatable() {
5065    ASSERT_EQ(top_, this);
5066    top_ = prev_;
5067  }
5068  virtual void IterateInstance(ObjectVisitor* v) { }
5069  virtual void PostGarbageCollection() { }
5070
5071  static void PostGarbageCollectionProcessing();
5072  static int ArchiveSpacePerThread();
5073  static char* ArchiveState(char* to);
5074  static char* RestoreState(char* from);
5075  static void Iterate(ObjectVisitor* v);
5076  static void Iterate(ObjectVisitor* v, Relocatable* top);
5077  static char* Iterate(ObjectVisitor* v, char* t);
5078 private:
5079  static Relocatable* top_;
5080  Relocatable* prev_;
5081};
5082
5083
5084// A flat string reader provides random access to the contents of a
5085// string independent of the character width of the string.  The handle
5086// must be valid as long as the reader is being used.
5087class FlatStringReader : public Relocatable {
5088 public:
5089  explicit FlatStringReader(Handle<String> str);
5090  explicit FlatStringReader(Vector<const char> input);
5091  void PostGarbageCollection();
5092  inline uc32 Get(int index);
5093  int length() { return length_; }
5094 private:
5095  String** str_;
5096  bool is_ascii_;
5097  int length_;
5098  const void* start_;
5099};
5100
5101
5102// Note that StringInputBuffers are not valid across a GC!  To fix this
5103// it would have to store a String Handle instead of a String* and
5104// AsciiStringReadBlock would have to be modified to use memcpy.
5105//
5106// StringInputBuffer is able to traverse any string regardless of how
5107// deeply nested a sequence of ConsStrings it is made of.  However,
5108// performance will be better if deep strings are flattened before they
5109// are traversed.  Since flattening requires memory allocation this is
5110// not always desirable, however (esp. in debugging situations).
5111class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
5112 public:
5113  virtual void Seek(unsigned pos);
5114  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
5115  inline StringInputBuffer(String* backing):
5116      unibrow::InputBuffer<String, String*, 1024>(backing) {}
5117};
5118
5119
5120class SafeStringInputBuffer
5121  : public unibrow::InputBuffer<String, String**, 256> {
5122 public:
5123  virtual void Seek(unsigned pos);
5124  inline SafeStringInputBuffer()
5125      : unibrow::InputBuffer<String, String**, 256>() {}
5126  inline SafeStringInputBuffer(String** backing)
5127      : unibrow::InputBuffer<String, String**, 256>(backing) {}
5128};
5129
5130
5131template <typename T>
5132class VectorIterator {
5133 public:
5134  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
5135  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
5136  T GetNext() { return data_[index_++]; }
5137  bool has_more() { return index_ < data_.length(); }
5138 private:
5139  Vector<const T> data_;
5140  int index_;
5141};
5142
5143
5144// The Oddball describes objects null, undefined, true, and false.
5145class Oddball: public HeapObject {
5146 public:
5147  // [to_string]: Cached to_string computed at startup.
5148  DECL_ACCESSORS(to_string, String)
5149
5150  // [to_number]: Cached to_number computed at startup.
5151  DECL_ACCESSORS(to_number, Object)
5152
5153  // Casting.
5154  static inline Oddball* cast(Object* obj);
5155
5156  // Dispatched behavior.
5157#ifdef DEBUG
5158  void OddballVerify();
5159#endif
5160
5161  // Initialize the fields.
5162  MUST_USE_RESULT MaybeObject* Initialize(const char* to_string,
5163                                          Object* to_number);
5164
5165  // Layout description.
5166  static const int kToStringOffset = HeapObject::kHeaderSize;
5167  static const int kToNumberOffset = kToStringOffset + kPointerSize;
5168  static const int kSize = kToNumberOffset + kPointerSize;
5169
5170  typedef FixedBodyDescriptor<kToStringOffset,
5171                              kToNumberOffset + kPointerSize,
5172                              kSize> BodyDescriptor;
5173
5174 private:
5175  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
5176};
5177
5178
5179class JSGlobalPropertyCell: public HeapObject {
5180 public:
5181  // [value]: value of the global property.
5182  DECL_ACCESSORS(value, Object)
5183
5184  // Casting.
5185  static inline JSGlobalPropertyCell* cast(Object* obj);
5186
5187#ifdef DEBUG
5188  void JSGlobalPropertyCellVerify();
5189  void JSGlobalPropertyCellPrint();
5190#endif
5191
5192  // Layout description.
5193  static const int kValueOffset = HeapObject::kHeaderSize;
5194  static const int kSize = kValueOffset + kPointerSize;
5195
5196  typedef FixedBodyDescriptor<kValueOffset,
5197                              kValueOffset + kPointerSize,
5198                              kSize> BodyDescriptor;
5199
5200 private:
5201  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
5202};
5203
5204
5205
5206// Proxy describes objects pointing from JavaScript to C structures.
5207// Since they cannot contain references to JS HeapObjects they can be
5208// placed in old_data_space.
5209class Proxy: public HeapObject {
5210 public:
5211  // [proxy]: field containing the address.
5212  inline Address proxy();
5213  inline void set_proxy(Address value);
5214
5215  // Casting.
5216  static inline Proxy* cast(Object* obj);
5217
5218  // Dispatched behavior.
5219  inline void ProxyIterateBody(ObjectVisitor* v);
5220
5221  template<typename StaticVisitor>
5222  inline void ProxyIterateBody();
5223
5224#ifdef DEBUG
5225  void ProxyPrint();
5226  void ProxyVerify();
5227#endif
5228
5229  // Layout description.
5230
5231  static const int kProxyOffset = HeapObject::kHeaderSize;
5232  static const int kSize = kProxyOffset + kPointerSize;
5233
5234  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
5235
5236 private:
5237  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
5238};
5239
5240
5241// The JSArray describes JavaScript Arrays
5242//  Such an array can be in one of two modes:
5243//    - fast, backing storage is a FixedArray and length <= elements.length();
5244//       Please note: push and pop can be used to grow and shrink the array.
5245//    - slow, backing storage is a HashTable with numbers as keys.
5246class JSArray: public JSObject {
5247 public:
5248  // [length]: The length property.
5249  DECL_ACCESSORS(length, Object)
5250
5251  // Overload the length setter to skip write barrier when the length
5252  // is set to a smi. This matches the set function on FixedArray.
5253  inline void set_length(Smi* length);
5254
5255  MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
5256                                                            Object* value);
5257
5258  // Initialize the array with the given capacity. The function may
5259  // fail due to out-of-memory situations, but only if the requested
5260  // capacity is non-zero.
5261  MUST_USE_RESULT MaybeObject* Initialize(int capacity);
5262
5263  // Set the content of the array to the content of storage.
5264  inline void SetContent(FixedArray* storage);
5265
5266  // Casting.
5267  static inline JSArray* cast(Object* obj);
5268
5269  // Uses handles.  Ensures that the fixed array backing the JSArray has at
5270  // least the stated size.
5271  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
5272
5273  // Dispatched behavior.
5274#ifdef DEBUG
5275  void JSArrayPrint();
5276  void JSArrayVerify();
5277#endif
5278
5279  // Number of element slots to pre-allocate for an empty array.
5280  static const int kPreallocatedArrayElements = 4;
5281
5282  // Layout description.
5283  static const int kLengthOffset = JSObject::kHeaderSize;
5284  static const int kSize = kLengthOffset + kPointerSize;
5285
5286 private:
5287  // Expand the fixed array backing of a fast-case JSArray to at least
5288  // the requested size.
5289  void Expand(int minimum_size_of_backing_fixed_array);
5290
5291  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
5292};
5293
5294
5295// JSRegExpResult is just a JSArray with a specific initial map.
5296// This initial map adds in-object properties for "index" and "input"
5297// properties, as assigned by RegExp.prototype.exec, which allows
5298// faster creation of RegExp exec results.
5299// This class just holds constants used when creating the result.
5300// After creation the result must be treated as a JSArray in all regards.
5301class JSRegExpResult: public JSArray {
5302 public:
5303  // Offsets of object fields.
5304  static const int kIndexOffset = JSArray::kSize;
5305  static const int kInputOffset = kIndexOffset + kPointerSize;
5306  static const int kSize = kInputOffset + kPointerSize;
5307  // Indices of in-object properties.
5308  static const int kIndexIndex = 0;
5309  static const int kInputIndex = 1;
5310 private:
5311  DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
5312};
5313
5314
5315// An accessor must have a getter, but can have no setter.
5316//
5317// When setting a property, V8 searches accessors in prototypes.
5318// If an accessor was found and it does not have a setter,
5319// the request is ignored.
5320//
5321// If the accessor in the prototype has the READ_ONLY property attribute, then
5322// a new value is added to the local object when the property is set.
5323// This shadows the accessor in the prototype.
5324class AccessorInfo: public Struct {
5325 public:
5326  DECL_ACCESSORS(getter, Object)
5327  DECL_ACCESSORS(setter, Object)
5328  DECL_ACCESSORS(data, Object)
5329  DECL_ACCESSORS(name, Object)
5330  DECL_ACCESSORS(flag, Smi)
5331  DECL_ACCESSORS(load_stub_cache, Object)
5332
5333  inline bool all_can_read();
5334  inline void set_all_can_read(bool value);
5335
5336  inline bool all_can_write();
5337  inline void set_all_can_write(bool value);
5338
5339  inline bool prohibits_overwriting();
5340  inline void set_prohibits_overwriting(bool value);
5341
5342  inline PropertyAttributes property_attributes();
5343  inline void set_property_attributes(PropertyAttributes attributes);
5344
5345  static inline AccessorInfo* cast(Object* obj);
5346
5347#ifdef DEBUG
5348  void AccessorInfoPrint();
5349  void AccessorInfoVerify();
5350#endif
5351
5352  static const int kGetterOffset = HeapObject::kHeaderSize;
5353  static const int kSetterOffset = kGetterOffset + kPointerSize;
5354  static const int kDataOffset = kSetterOffset + kPointerSize;
5355  static const int kNameOffset = kDataOffset + kPointerSize;
5356  static const int kFlagOffset = kNameOffset + kPointerSize;
5357  static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
5358  static const int kSize = kLoadStubCacheOffset + kPointerSize;
5359
5360 private:
5361  // Bit positions in flag.
5362  static const int kAllCanReadBit = 0;
5363  static const int kAllCanWriteBit = 1;
5364  static const int kProhibitsOverwritingBit = 2;
5365  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
5366
5367  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
5368};
5369
5370
5371class AccessCheckInfo: public Struct {
5372 public:
5373  DECL_ACCESSORS(named_callback, Object)
5374  DECL_ACCESSORS(indexed_callback, Object)
5375  DECL_ACCESSORS(data, Object)
5376
5377  static inline AccessCheckInfo* cast(Object* obj);
5378
5379#ifdef DEBUG
5380  void AccessCheckInfoPrint();
5381  void AccessCheckInfoVerify();
5382#endif
5383
5384  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
5385  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
5386  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
5387  static const int kSize = kDataOffset + kPointerSize;
5388
5389 private:
5390  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
5391};
5392
5393
5394class InterceptorInfo: public Struct {
5395 public:
5396  DECL_ACCESSORS(getter, Object)
5397  DECL_ACCESSORS(setter, Object)
5398  DECL_ACCESSORS(query, Object)
5399  DECL_ACCESSORS(deleter, Object)
5400  DECL_ACCESSORS(enumerator, Object)
5401  DECL_ACCESSORS(data, Object)
5402
5403  static inline InterceptorInfo* cast(Object* obj);
5404
5405#ifdef DEBUG
5406  void InterceptorInfoPrint();
5407  void InterceptorInfoVerify();
5408#endif
5409
5410  static const int kGetterOffset = HeapObject::kHeaderSize;
5411  static const int kSetterOffset = kGetterOffset + kPointerSize;
5412  static const int kQueryOffset = kSetterOffset + kPointerSize;
5413  static const int kDeleterOffset = kQueryOffset + kPointerSize;
5414  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
5415  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
5416  static const int kSize = kDataOffset + kPointerSize;
5417
5418 private:
5419  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
5420};
5421
5422
5423class CallHandlerInfo: public Struct {
5424 public:
5425  DECL_ACCESSORS(callback, Object)
5426  DECL_ACCESSORS(data, Object)
5427
5428  static inline CallHandlerInfo* cast(Object* obj);
5429
5430#ifdef DEBUG
5431  void CallHandlerInfoPrint();
5432  void CallHandlerInfoVerify();
5433#endif
5434
5435  static const int kCallbackOffset = HeapObject::kHeaderSize;
5436  static const int kDataOffset = kCallbackOffset + kPointerSize;
5437  static const int kSize = kDataOffset + kPointerSize;
5438
5439 private:
5440  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
5441};
5442
5443
5444class TemplateInfo: public Struct {
5445 public:
5446  DECL_ACCESSORS(tag, Object)
5447  DECL_ACCESSORS(property_list, Object)
5448
5449#ifdef DEBUG
5450  void TemplateInfoVerify();
5451#endif
5452
5453  static const int kTagOffset          = HeapObject::kHeaderSize;
5454  static const int kPropertyListOffset = kTagOffset + kPointerSize;
5455  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
5456 protected:
5457  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
5458  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
5459};
5460
5461
5462class FunctionTemplateInfo: public TemplateInfo {
5463 public:
5464  DECL_ACCESSORS(serial_number, Object)
5465  DECL_ACCESSORS(call_code, Object)
5466  DECL_ACCESSORS(property_accessors, Object)
5467  DECL_ACCESSORS(prototype_template, Object)
5468  DECL_ACCESSORS(parent_template, Object)
5469  DECL_ACCESSORS(named_property_handler, Object)
5470  DECL_ACCESSORS(indexed_property_handler, Object)
5471  DECL_ACCESSORS(instance_template, Object)
5472  DECL_ACCESSORS(class_name, Object)
5473  DECL_ACCESSORS(signature, Object)
5474  DECL_ACCESSORS(instance_call_handler, Object)
5475  DECL_ACCESSORS(access_check_info, Object)
5476  DECL_ACCESSORS(flag, Smi)
5477
5478  // Following properties use flag bits.
5479  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
5480  DECL_BOOLEAN_ACCESSORS(undetectable)
5481  // If the bit is set, object instances created by this function
5482  // requires access check.
5483  DECL_BOOLEAN_ACCESSORS(needs_access_check)
5484
5485  static inline FunctionTemplateInfo* cast(Object* obj);
5486
5487#ifdef DEBUG
5488  void FunctionTemplateInfoPrint();
5489  void FunctionTemplateInfoVerify();
5490#endif
5491
5492  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
5493  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
5494  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
5495  static const int kPrototypeTemplateOffset =
5496      kPropertyAccessorsOffset + kPointerSize;
5497  static const int kParentTemplateOffset =
5498      kPrototypeTemplateOffset + kPointerSize;
5499  static const int kNamedPropertyHandlerOffset =
5500      kParentTemplateOffset + kPointerSize;
5501  static const int kIndexedPropertyHandlerOffset =
5502      kNamedPropertyHandlerOffset + kPointerSize;
5503  static const int kInstanceTemplateOffset =
5504      kIndexedPropertyHandlerOffset + kPointerSize;
5505  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
5506  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
5507  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
5508  static const int kAccessCheckInfoOffset =
5509      kInstanceCallHandlerOffset + kPointerSize;
5510  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
5511  static const int kSize = kFlagOffset + kPointerSize;
5512
5513 private:
5514  // Bit position in the flag, from least significant bit position.
5515  static const int kHiddenPrototypeBit   = 0;
5516  static const int kUndetectableBit      = 1;
5517  static const int kNeedsAccessCheckBit  = 2;
5518
5519  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
5520};
5521
5522
5523class ObjectTemplateInfo: public TemplateInfo {
5524 public:
5525  DECL_ACCESSORS(constructor, Object)
5526  DECL_ACCESSORS(internal_field_count, Object)
5527
5528  static inline ObjectTemplateInfo* cast(Object* obj);
5529
5530#ifdef DEBUG
5531  void ObjectTemplateInfoPrint();
5532  void ObjectTemplateInfoVerify();
5533#endif
5534
5535  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
5536  static const int kInternalFieldCountOffset =
5537      kConstructorOffset + kPointerSize;
5538  static const int kSize = kInternalFieldCountOffset + kPointerSize;
5539};
5540
5541
5542class SignatureInfo: public Struct {
5543 public:
5544  DECL_ACCESSORS(receiver, Object)
5545  DECL_ACCESSORS(args, Object)
5546
5547  static inline SignatureInfo* cast(Object* obj);
5548
5549#ifdef DEBUG
5550  void SignatureInfoPrint();
5551  void SignatureInfoVerify();
5552#endif
5553
5554  static const int kReceiverOffset = Struct::kHeaderSize;
5555  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
5556  static const int kSize           = kArgsOffset + kPointerSize;
5557
5558 private:
5559  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
5560};
5561
5562
5563class TypeSwitchInfo: public Struct {
5564 public:
5565  DECL_ACCESSORS(types, Object)
5566
5567  static inline TypeSwitchInfo* cast(Object* obj);
5568
5569#ifdef DEBUG
5570  void TypeSwitchInfoPrint();
5571  void TypeSwitchInfoVerify();
5572#endif
5573
5574  static const int kTypesOffset = Struct::kHeaderSize;
5575  static const int kSize        = kTypesOffset + kPointerSize;
5576};
5577
5578
5579#ifdef ENABLE_DEBUGGER_SUPPORT
5580// The DebugInfo class holds additional information for a function being
5581// debugged.
5582class DebugInfo: public Struct {
5583 public:
5584  // The shared function info for the source being debugged.
5585  DECL_ACCESSORS(shared, SharedFunctionInfo)
5586  // Code object for the original code.
5587  DECL_ACCESSORS(original_code, Code)
5588  // Code object for the patched code. This code object is the code object
5589  // currently active for the function.
5590  DECL_ACCESSORS(code, Code)
5591  // Fixed array holding status information for each active break point.
5592  DECL_ACCESSORS(break_points, FixedArray)
5593
5594  // Check if there is a break point at a code position.
5595  bool HasBreakPoint(int code_position);
5596  // Get the break point info object for a code position.
5597  Object* GetBreakPointInfo(int code_position);
5598  // Clear a break point.
5599  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
5600                              int code_position,
5601                              Handle<Object> break_point_object);
5602  // Set a break point.
5603  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
5604                            int source_position, int statement_position,
5605                            Handle<Object> break_point_object);
5606  // Get the break point objects for a code position.
5607  Object* GetBreakPointObjects(int code_position);
5608  // Find the break point info holding this break point object.
5609  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
5610                                    Handle<Object> break_point_object);
5611  // Get the number of break points for this function.
5612  int GetBreakPointCount();
5613
5614  static inline DebugInfo* cast(Object* obj);
5615
5616#ifdef DEBUG
5617  void DebugInfoPrint();
5618  void DebugInfoVerify();
5619#endif
5620
5621  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
5622  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
5623  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
5624  static const int kActiveBreakPointsCountIndex =
5625      kPatchedCodeIndex + kPointerSize;
5626  static const int kBreakPointsStateIndex =
5627      kActiveBreakPointsCountIndex + kPointerSize;
5628  static const int kSize = kBreakPointsStateIndex + kPointerSize;
5629
5630 private:
5631  static const int kNoBreakPointInfo = -1;
5632
5633  // Lookup the index in the break_points array for a code position.
5634  int GetBreakPointInfoIndex(int code_position);
5635
5636  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
5637};
5638
5639
5640// The BreakPointInfo class holds information for break points set in a
5641// function. The DebugInfo object holds a BreakPointInfo object for each code
5642// position with one or more break points.
5643class BreakPointInfo: public Struct {
5644 public:
5645  // The position in the code for the break point.
5646  DECL_ACCESSORS(code_position, Smi)
5647  // The position in the source for the break position.
5648  DECL_ACCESSORS(source_position, Smi)
5649  // The position in the source for the last statement before this break
5650  // position.
5651  DECL_ACCESSORS(statement_position, Smi)
5652  // List of related JavaScript break points.
5653  DECL_ACCESSORS(break_point_objects, Object)
5654
5655  // Removes a break point.
5656  static void ClearBreakPoint(Handle<BreakPointInfo> info,
5657                              Handle<Object> break_point_object);
5658  // Set a break point.
5659  static void SetBreakPoint(Handle<BreakPointInfo> info,
5660                            Handle<Object> break_point_object);
5661  // Check if break point info has this break point object.
5662  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
5663                                  Handle<Object> break_point_object);
5664  // Get the number of break points for this code position.
5665  int GetBreakPointCount();
5666
5667  static inline BreakPointInfo* cast(Object* obj);
5668
5669#ifdef DEBUG
5670  void BreakPointInfoPrint();
5671  void BreakPointInfoVerify();
5672#endif
5673
5674  static const int kCodePositionIndex = Struct::kHeaderSize;
5675  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
5676  static const int kStatementPositionIndex =
5677      kSourcePositionIndex + kPointerSize;
5678  static const int kBreakPointObjectsIndex =
5679      kStatementPositionIndex + kPointerSize;
5680  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
5681
5682 private:
5683  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
5684};
5685#endif  // ENABLE_DEBUGGER_SUPPORT
5686
5687
5688#undef DECL_BOOLEAN_ACCESSORS
5689#undef DECL_ACCESSORS
5690
5691
5692// Abstract base class for visiting, and optionally modifying, the
5693// pointers contained in Objects. Used in GC and serialization/deserialization.
5694class ObjectVisitor BASE_EMBEDDED {
5695 public:
5696  virtual ~ObjectVisitor() {}
5697
5698  // Visits a contiguous arrays of pointers in the half-open range
5699  // [start, end). Any or all of the values may be modified on return.
5700  virtual void VisitPointers(Object** start, Object** end) = 0;
5701
5702  // To allow lazy clearing of inline caches the visitor has
5703  // a rich interface for iterating over Code objects..
5704
5705  // Visits a code target in the instruction stream.
5706  virtual void VisitCodeTarget(RelocInfo* rinfo);
5707
5708  // Visits a code entry in a JS function.
5709  virtual void VisitCodeEntry(Address entry_address);
5710
5711  // Visits a runtime entry in the instruction stream.
5712  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
5713
5714  // Visits the resource of an ASCII or two-byte string.
5715  virtual void VisitExternalAsciiString(
5716      v8::String::ExternalAsciiStringResource** resource) {}
5717  virtual void VisitExternalTwoByteString(
5718      v8::String::ExternalStringResource** resource) {}
5719
5720  // Visits a debug call target in the instruction stream.
5721  virtual void VisitDebugTarget(RelocInfo* rinfo);
5722
5723  // Handy shorthand for visiting a single pointer.
5724  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
5725
5726  // Visits a contiguous arrays of external references (references to the C++
5727  // heap) in the half-open range [start, end). Any or all of the values
5728  // may be modified on return.
5729  virtual void VisitExternalReferences(Address* start, Address* end) {}
5730
5731  inline void VisitExternalReference(Address* p) {
5732    VisitExternalReferences(p, p + 1);
5733  }
5734
5735#ifdef DEBUG
5736  // Intended for serialization/deserialization checking: insert, or
5737  // check for the presence of, a tag at this position in the stream.
5738  virtual void Synchronize(const char* tag) {}
5739#else
5740  inline void Synchronize(const char* tag) {}
5741#endif
5742};
5743
5744
5745class StructBodyDescriptor : public
5746  FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
5747 public:
5748  static inline int SizeOf(Map* map, HeapObject* object) {
5749    return map->instance_size();
5750  }
5751};
5752
5753
5754// BooleanBit is a helper class for setting and getting a bit in an
5755// integer or Smi.
5756class BooleanBit : public AllStatic {
5757 public:
5758  static inline bool get(Smi* smi, int bit_position) {
5759    return get(smi->value(), bit_position);
5760  }
5761
5762  static inline bool get(int value, int bit_position) {
5763    return (value & (1 << bit_position)) != 0;
5764  }
5765
5766  static inline Smi* set(Smi* smi, int bit_position, bool v) {
5767    return Smi::FromInt(set(smi->value(), bit_position, v));
5768  }
5769
5770  static inline int set(int value, int bit_position, bool v) {
5771    if (v) {
5772      value |= (1 << bit_position);
5773    } else {
5774      value &= ~(1 << bit_position);
5775    }
5776    return value;
5777  }
5778};
5779
5780} }  // namespace v8::internal
5781
5782#endif  // V8_OBJECTS_H_
5783