objects.h revision 6ded16be15dd865a9b21ea304d5273c8be299c87
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
35#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
37#elif V8_TARGET_ARCH_MIPS
38#include "mips/constants-mips.h"
39#endif
40
41//
42// All object types in the V8 JavaScript are described in this file.
43//
44// Inheritance hierarchy:
45//   - Object
46//     - Smi          (immediate small integer)
47//     - Failure      (immediate for marking failed operation)
48//     - HeapObject   (superclass for everything allocated in the heap)
49//       - JSObject
50//         - JSArray
51//         - JSRegExp
52//         - JSFunction
53//         - GlobalObject
54//           - JSGlobalObject
55//           - JSBuiltinsObject
56//         - JSGlobalProxy
57//         - JSValue
58//       - Array
59//         - ByteArray
60//         - PixelArray
61//         - ExternalArray
62//           - ExternalByteArray
63//           - ExternalUnsignedByteArray
64//           - ExternalShortArray
65//           - ExternalUnsignedShortArray
66//           - ExternalIntArray
67//           - ExternalUnsignedIntArray
68//           - ExternalFloatArray
69//         - FixedArray
70//           - DescriptorArray
71//           - HashTable
72//             - Dictionary
73//             - SymbolTable
74//             - CompilationCacheTable
75//             - CodeCacheHashTable
76//             - MapCache
77//           - Context
78//           - GlobalContext
79//           - JSFunctionResultCache
80//       - String
81//         - SeqString
82//           - SeqAsciiString
83//           - SeqTwoByteString
84//         - ConsString
85//         - ExternalString
86//           - ExternalAsciiString
87//           - ExternalTwoByteString
88//       - HeapNumber
89//       - Code
90//       - Map
91//       - Oddball
92//       - Proxy
93//       - SharedFunctionInfo
94//       - Struct
95//         - AccessorInfo
96//         - AccessCheckInfo
97//         - InterceptorInfo
98//         - CallHandlerInfo
99//         - TemplateInfo
100//           - FunctionTemplateInfo
101//           - ObjectTemplateInfo
102//         - Script
103//         - SignatureInfo
104//         - TypeSwitchInfo
105//         - DebugInfo
106//         - BreakPointInfo
107//         - CodeCache
108//
109// Formats of Object*:
110//  Smi:        [31 bit signed int] 0
111//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
112//  Failure:    [30 bit signed int] 11
113
114// Ecma-262 3rd 8.6.1
115enum PropertyAttributes {
116  NONE              = v8::None,
117  READ_ONLY         = v8::ReadOnly,
118  DONT_ENUM         = v8::DontEnum,
119  DONT_DELETE       = v8::DontDelete,
120  ABSENT            = 16  // Used in runtime to indicate a property is absent.
121  // ABSENT can never be stored in or returned from a descriptor's attributes
122  // bitfield.  It is only used as a return value meaning the attributes of
123  // a non-existent property.
124};
125
126namespace v8 {
127namespace internal {
128
129
130// PropertyDetails captures type and attributes for a property.
131// They are used both in property dictionaries and instance descriptors.
132class PropertyDetails BASE_EMBEDDED {
133 public:
134
135  PropertyDetails(PropertyAttributes attributes,
136                  PropertyType type,
137                  int index = 0) {
138    ASSERT(TypeField::is_valid(type));
139    ASSERT(AttributesField::is_valid(attributes));
140    ASSERT(IndexField::is_valid(index));
141
142    value_ = TypeField::encode(type)
143        | AttributesField::encode(attributes)
144        | IndexField::encode(index);
145
146    ASSERT(type == this->type());
147    ASSERT(attributes == this->attributes());
148    ASSERT(index == this->index());
149  }
150
151  // Conversion for storing details as Object*.
152  inline PropertyDetails(Smi* smi);
153  inline Smi* AsSmi();
154
155  PropertyType type() { return TypeField::decode(value_); }
156
157  bool IsTransition() {
158    PropertyType t = type();
159    ASSERT(t != INTERCEPTOR);
160    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
161  }
162
163  bool IsProperty() {
164    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
165  }
166
167  PropertyAttributes attributes() { return AttributesField::decode(value_); }
168
169  int index() { return IndexField::decode(value_); }
170
171  inline PropertyDetails AsDeleted();
172
173  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
174
175  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
176  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
177  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
178  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
179
180  // Bit fields in value_ (type, shift, size). Must be public so the
181  // constants can be embedded in generated code.
182  class TypeField:       public BitField<PropertyType,       0, 3> {};
183  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
184  class DeletedField:    public BitField<uint32_t,           6, 1> {};
185  class IndexField:      public BitField<uint32_t,           7, 32-7> {};
186
187  static const int kInitialIndex = 1;
188 private:
189  uint32_t value_;
190};
191
192
193// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
194enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
195
196
197// PropertyNormalizationMode is used to specify whether to keep
198// inobject properties when normalizing properties of a JSObject.
199enum PropertyNormalizationMode {
200  CLEAR_INOBJECT_PROPERTIES,
201  KEEP_INOBJECT_PROPERTIES
202};
203
204
205// All Maps have a field instance_type containing a InstanceType.
206// It describes the type of the instances.
207//
208// As an example, a JavaScript object is a heap object and its map
209// instance_type is JS_OBJECT_TYPE.
210//
211// The names of the string instance types are intended to systematically
212// mirror their encoding in the instance_type field of the map.  The default
213// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
214// encoding is mentioned explicitly in the name.  Likewise, the default
215// representation is considered sequential.  It is not mentioned in the
216// name.  The other representations (eg, CONS, EXTERNAL) are explicitly
217// mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
218// symbol) or a STRING_TYPE (if it is not a symbol).
219//
220// NOTE: The following things are some that depend on the string types having
221// instance_types that are less than those of all other types:
222// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
223// Object::IsString.
224//
225// NOTE: Everything following JS_VALUE_TYPE is considered a
226// JSObject for GC purposes. The first four entries here have typeof
227// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
228#define INSTANCE_TYPE_LIST_ALL(V)                                              \
229  V(SYMBOL_TYPE)                                                               \
230  V(ASCII_SYMBOL_TYPE)                                                         \
231  V(CONS_SYMBOL_TYPE)                                                          \
232  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
233  V(EXTERNAL_SYMBOL_TYPE)                                                      \
234  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
235  V(STRING_TYPE)                                                               \
236  V(ASCII_STRING_TYPE)                                                         \
237  V(CONS_STRING_TYPE)                                                          \
238  V(CONS_ASCII_STRING_TYPE)                                                    \
239  V(EXTERNAL_STRING_TYPE)                                                      \
240  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
241  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
242                                                                               \
243  V(MAP_TYPE)                                                                  \
244  V(CODE_TYPE)                                                                 \
245  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
246  V(ODDBALL_TYPE)                                                              \
247                                                                               \
248  V(HEAP_NUMBER_TYPE)                                                          \
249  V(PROXY_TYPE)                                                                \
250  V(BYTE_ARRAY_TYPE)                                                           \
251  V(PIXEL_ARRAY_TYPE)                                                          \
252  /* Note: the order of these external array */                                \
253  /* types is relied upon in */                                                \
254  /* Object::IsExternalArray(). */                                             \
255  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
256  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
257  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
258  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
259  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
260  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
261  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
262  V(FILLER_TYPE)                                                               \
263                                                                               \
264  V(FIXED_ARRAY_TYPE)                                                          \
265  V(ACCESSOR_INFO_TYPE)                                                        \
266  V(ACCESS_CHECK_INFO_TYPE)                                                    \
267  V(INTERCEPTOR_INFO_TYPE)                                                     \
268  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
269  V(CALL_HANDLER_INFO_TYPE)                                                    \
270  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
271  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
272  V(SIGNATURE_INFO_TYPE)                                                       \
273  V(TYPE_SWITCH_INFO_TYPE)                                                     \
274  V(SCRIPT_TYPE)                                                               \
275  V(CODE_CACHE_TYPE)                                                           \
276                                                                               \
277  V(JS_VALUE_TYPE)                                                             \
278  V(JS_OBJECT_TYPE)                                                            \
279  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
280  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
281  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
282  V(JS_GLOBAL_PROXY_TYPE)                                                      \
283  V(JS_ARRAY_TYPE)                                                             \
284  V(JS_REGEXP_TYPE)                                                            \
285                                                                               \
286  V(JS_FUNCTION_TYPE)                                                          \
287
288#ifdef ENABLE_DEBUGGER_SUPPORT
289#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
290  V(DEBUG_INFO_TYPE)                                                           \
291  V(BREAK_POINT_INFO_TYPE)
292#else
293#define INSTANCE_TYPE_LIST_DEBUGGER(V)
294#endif
295
296#define INSTANCE_TYPE_LIST(V)                                                  \
297  INSTANCE_TYPE_LIST_ALL(V)                                                    \
298  INSTANCE_TYPE_LIST_DEBUGGER(V)
299
300
301// Since string types are not consecutive, this macro is used to
302// iterate over them.
303#define STRING_TYPE_LIST(V)                                                    \
304  V(SYMBOL_TYPE,                                                               \
305    SeqTwoByteString::kAlignedSize,                                            \
306    symbol,                                                                    \
307    Symbol)                                                                    \
308  V(ASCII_SYMBOL_TYPE,                                                         \
309    SeqAsciiString::kAlignedSize,                                              \
310    ascii_symbol,                                                              \
311    AsciiSymbol)                                                               \
312  V(CONS_SYMBOL_TYPE,                                                          \
313    ConsString::kSize,                                                         \
314    cons_symbol,                                                               \
315    ConsSymbol)                                                                \
316  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
317    ConsString::kSize,                                                         \
318    cons_ascii_symbol,                                                         \
319    ConsAsciiSymbol)                                                           \
320  V(EXTERNAL_SYMBOL_TYPE,                                                      \
321    ExternalTwoByteString::kSize,                                              \
322    external_symbol,                                                           \
323    ExternalSymbol)                                                            \
324  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
325    ExternalAsciiString::kSize,                                                \
326    external_ascii_symbol,                                                     \
327    ExternalAsciiSymbol)                                                       \
328  V(STRING_TYPE,                                                               \
329    SeqTwoByteString::kAlignedSize,                                            \
330    string,                                                                    \
331    String)                                                                    \
332  V(ASCII_STRING_TYPE,                                                         \
333    SeqAsciiString::kAlignedSize,                                              \
334    ascii_string,                                                              \
335    AsciiString)                                                               \
336  V(CONS_STRING_TYPE,                                                          \
337    ConsString::kSize,                                                         \
338    cons_string,                                                               \
339    ConsString)                                                                \
340  V(CONS_ASCII_STRING_TYPE,                                                    \
341    ConsString::kSize,                                                         \
342    cons_ascii_string,                                                         \
343    ConsAsciiString)                                                           \
344  V(EXTERNAL_STRING_TYPE,                                                      \
345    ExternalTwoByteString::kSize,                                              \
346    external_string,                                                           \
347    ExternalString)                                                            \
348  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
349    ExternalAsciiString::kSize,                                                \
350    external_ascii_string,                                                     \
351    ExternalAsciiString)                                                       \
352
353// A struct is a simple object a set of object-valued fields.  Including an
354// object type in this causes the compiler to generate most of the boilerplate
355// code for the class including allocation and garbage collection routines,
356// casts and predicates.  All you need to define is the class, methods and
357// object verification routines.  Easy, no?
358//
359// Note that for subtle reasons related to the ordering or numerical values of
360// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
361// manually.
362#define STRUCT_LIST_ALL(V)                                                     \
363  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
364  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
365  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
366  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
367  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
368  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
369  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
370  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
371  V(SCRIPT, Script, script)                                                    \
372  V(CODE_CACHE, CodeCache, code_cache)
373
374#ifdef ENABLE_DEBUGGER_SUPPORT
375#define STRUCT_LIST_DEBUGGER(V)                                                \
376  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
377  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
378#else
379#define STRUCT_LIST_DEBUGGER(V)
380#endif
381
382#define STRUCT_LIST(V)                                                         \
383  STRUCT_LIST_ALL(V)                                                           \
384  STRUCT_LIST_DEBUGGER(V)
385
386// We use the full 8 bits of the instance_type field to encode heap object
387// instance types.  The high-order bit (bit 7) is set if the object is not a
388// string, and cleared if it is a string.
389const uint32_t kIsNotStringMask = 0x80;
390const uint32_t kStringTag = 0x0;
391const uint32_t kNotStringTag = 0x80;
392
393// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
394// There are not enough types that the non-string types (with bit 7 set) can
395// have bit 6 set too.
396const uint32_t kIsSymbolMask = 0x40;
397const uint32_t kNotSymbolTag = 0x0;
398const uint32_t kSymbolTag = 0x40;
399
400// If bit 7 is clear then bit 2 indicates whether the string consists of
401// two-byte characters or one-byte characters.
402const uint32_t kStringEncodingMask = 0x4;
403const uint32_t kTwoByteStringTag = 0x0;
404const uint32_t kAsciiStringTag = 0x4;
405
406// If bit 7 is clear, the low-order 2 bits indicate the representation
407// of the string.
408const uint32_t kStringRepresentationMask = 0x03;
409enum StringRepresentationTag {
410  kSeqStringTag = 0x0,
411  kConsStringTag = 0x1,
412  kExternalStringTag = 0x3
413};
414
415
416// A ConsString with an empty string as the right side is a candidate
417// for being shortcut by the garbage collector unless it is a
418// symbol. It's not common to have non-flat symbols, so we do not
419// shortcut them thereby avoiding turning symbols into strings. See
420// heap.cc and mark-compact.cc.
421const uint32_t kShortcutTypeMask =
422    kIsNotStringMask |
423    kIsSymbolMask |
424    kStringRepresentationMask;
425const uint32_t kShortcutTypeTag = kConsStringTag;
426
427
428enum InstanceType {
429  // String types.
430  SYMBOL_TYPE = kSymbolTag | kSeqStringTag,
431  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
432  CONS_SYMBOL_TYPE = kSymbolTag | kConsStringTag,
433  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
434  EXTERNAL_SYMBOL_TYPE = kSymbolTag | kExternalStringTag,
435  EXTERNAL_ASCII_SYMBOL_TYPE =
436      kAsciiStringTag | kSymbolTag | kExternalStringTag,
437  STRING_TYPE = kSeqStringTag,
438  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
439  CONS_STRING_TYPE = kConsStringTag,
440  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
441  EXTERNAL_STRING_TYPE = kExternalStringTag,
442  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
443  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
444
445  // Objects allocated in their own spaces (never in new space).
446  MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
447  CODE_TYPE,
448  ODDBALL_TYPE,
449  JS_GLOBAL_PROPERTY_CELL_TYPE,
450
451  // "Data", objects that cannot contain non-map-word pointers to heap
452  // objects.
453  HEAP_NUMBER_TYPE,
454  PROXY_TYPE,
455  BYTE_ARRAY_TYPE,
456  PIXEL_ARRAY_TYPE,
457  EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
458  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
459  EXTERNAL_SHORT_ARRAY_TYPE,
460  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
461  EXTERNAL_INT_ARRAY_TYPE,
462  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
463  EXTERNAL_FLOAT_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
464  FILLER_TYPE,  // LAST_DATA_TYPE
465
466  // Structs.
467  ACCESSOR_INFO_TYPE,
468  ACCESS_CHECK_INFO_TYPE,
469  INTERCEPTOR_INFO_TYPE,
470  CALL_HANDLER_INFO_TYPE,
471  FUNCTION_TEMPLATE_INFO_TYPE,
472  OBJECT_TEMPLATE_INFO_TYPE,
473  SIGNATURE_INFO_TYPE,
474  TYPE_SWITCH_INFO_TYPE,
475  SCRIPT_TYPE,
476  CODE_CACHE_TYPE,
477#ifdef ENABLE_DEBUGGER_SUPPORT
478  DEBUG_INFO_TYPE,
479  BREAK_POINT_INFO_TYPE,
480#endif
481
482  FIXED_ARRAY_TYPE,
483  SHARED_FUNCTION_INFO_TYPE,
484
485  JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
486  JS_OBJECT_TYPE,
487  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
488  JS_GLOBAL_OBJECT_TYPE,
489  JS_BUILTINS_OBJECT_TYPE,
490  JS_GLOBAL_PROXY_TYPE,
491  JS_ARRAY_TYPE,
492  JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE
493
494  JS_FUNCTION_TYPE,
495
496  // Pseudo-types
497  FIRST_TYPE = 0x0,
498  LAST_TYPE = JS_FUNCTION_TYPE,
499  INVALID_TYPE = FIRST_TYPE - 1,
500  FIRST_NONSTRING_TYPE = MAP_TYPE,
501  // Boundaries for testing for an external array.
502  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
503  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
504  // Boundary for promotion to old data space/old pointer space.
505  LAST_DATA_TYPE = FILLER_TYPE,
506  // Boundaries for testing the type is a JavaScript "object".  Note that
507  // function objects are not counted as objects, even though they are
508  // implemented as such; only values whose typeof is "object" are included.
509  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
510  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
511};
512
513
514enum CompareResult {
515  LESS      = -1,
516  EQUAL     =  0,
517  GREATER   =  1,
518
519  NOT_EQUAL = GREATER
520};
521
522
523#define DECL_BOOLEAN_ACCESSORS(name)   \
524  inline bool name();                  \
525  inline void set_##name(bool value);  \
526
527
528#define DECL_ACCESSORS(name, type)                                      \
529  inline type* name();                                                  \
530  inline void set_##name(type* value,                                   \
531                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
532
533
534class StringStream;
535class ObjectVisitor;
536
537struct ValueInfo : public Malloced {
538  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
539  InstanceType type;
540  Object* ptr;
541  const char* str;
542  double number;
543};
544
545
546// A template-ized version of the IsXXX functions.
547template <class C> static inline bool Is(Object* obj);
548
549
550// Object is the abstract superclass for all classes in the
551// object hierarchy.
552// Object does not use any virtual functions to avoid the
553// allocation of the C++ vtable.
554// Since Smi and Failure are subclasses of Object no
555// data members can be present in Object.
556class Object BASE_EMBEDDED {
557 public:
558  // Type testing.
559  inline bool IsSmi();
560  inline bool IsHeapObject();
561  inline bool IsHeapNumber();
562  inline bool IsString();
563  inline bool IsSymbol();
564  // See objects-inl.h for more details
565  inline bool IsSeqString();
566  inline bool IsExternalString();
567  inline bool IsExternalTwoByteString();
568  inline bool IsExternalAsciiString();
569  inline bool IsSeqTwoByteString();
570  inline bool IsSeqAsciiString();
571  inline bool IsConsString();
572
573  inline bool IsNumber();
574  inline bool IsByteArray();
575  inline bool IsPixelArray();
576  inline bool IsExternalArray();
577  inline bool IsExternalByteArray();
578  inline bool IsExternalUnsignedByteArray();
579  inline bool IsExternalShortArray();
580  inline bool IsExternalUnsignedShortArray();
581  inline bool IsExternalIntArray();
582  inline bool IsExternalUnsignedIntArray();
583  inline bool IsExternalFloatArray();
584  inline bool IsFailure();
585  inline bool IsRetryAfterGC();
586  inline bool IsOutOfMemoryFailure();
587  inline bool IsException();
588  inline bool IsJSObject();
589  inline bool IsJSContextExtensionObject();
590  inline bool IsMap();
591  inline bool IsFixedArray();
592  inline bool IsDescriptorArray();
593  inline bool IsContext();
594  inline bool IsCatchContext();
595  inline bool IsGlobalContext();
596  inline bool IsJSFunction();
597  inline bool IsCode();
598  inline bool IsOddball();
599  inline bool IsSharedFunctionInfo();
600  inline bool IsJSValue();
601  inline bool IsStringWrapper();
602  inline bool IsProxy();
603  inline bool IsBoolean();
604  inline bool IsJSArray();
605  inline bool IsJSRegExp();
606  inline bool IsHashTable();
607  inline bool IsDictionary();
608  inline bool IsSymbolTable();
609  inline bool IsJSFunctionResultCache();
610  inline bool IsCompilationCacheTable();
611  inline bool IsCodeCacheHashTable();
612  inline bool IsMapCache();
613  inline bool IsPrimitive();
614  inline bool IsGlobalObject();
615  inline bool IsJSGlobalObject();
616  inline bool IsJSBuiltinsObject();
617  inline bool IsJSGlobalProxy();
618  inline bool IsUndetectableObject();
619  inline bool IsAccessCheckNeeded();
620  inline bool IsJSGlobalPropertyCell();
621
622  // Returns true if this object is an instance of the specified
623  // function template.
624  inline bool IsInstanceOf(FunctionTemplateInfo* type);
625
626  inline bool IsStruct();
627#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
628  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
629#undef DECLARE_STRUCT_PREDICATE
630
631  // Oddball testing.
632  INLINE(bool IsUndefined());
633  INLINE(bool IsTheHole());
634  INLINE(bool IsNull());
635  INLINE(bool IsTrue());
636  INLINE(bool IsFalse());
637
638  // Extract the number.
639  inline double Number();
640
641  inline bool HasSpecificClassOf(String* name);
642
643  Object* ToObject();             // ECMA-262 9.9.
644  Object* ToBoolean();            // ECMA-262 9.2.
645
646  // Convert to a JSObject if needed.
647  // global_context is used when creating wrapper object.
648  Object* ToObject(Context* global_context);
649
650  // Converts this to a Smi if possible.
651  // Failure is returned otherwise.
652  inline Object* ToSmi();
653
654  void Lookup(String* name, LookupResult* result);
655
656  // Property access.
657  inline Object* GetProperty(String* key);
658  inline Object* GetProperty(String* key, PropertyAttributes* attributes);
659  Object* GetPropertyWithReceiver(Object* receiver,
660                                  String* key,
661                                  PropertyAttributes* attributes);
662  Object* GetProperty(Object* receiver,
663                      LookupResult* result,
664                      String* key,
665                      PropertyAttributes* attributes);
666  Object* GetPropertyWithCallback(Object* receiver,
667                                  Object* structure,
668                                  String* name,
669                                  Object* holder);
670  Object* GetPropertyWithDefinedGetter(Object* receiver,
671                                       JSFunction* getter);
672
673  inline Object* GetElement(uint32_t index);
674  Object* GetElementWithReceiver(Object* receiver, uint32_t index);
675
676  // Return the object's prototype (might be Heap::null_value()).
677  Object* GetPrototype();
678
679  // Returns true if this is a JSValue containing a string and the index is
680  // < the length of the string.  Used to implement [] on strings.
681  inline bool IsStringObjectWithCharacterAt(uint32_t index);
682
683#ifdef DEBUG
684  // Prints this object with details.
685  void Print();
686  void PrintLn();
687  // Verifies the object.
688  void Verify();
689
690  // Verify a pointer is a valid object pointer.
691  static void VerifyPointer(Object* p);
692#endif
693
694  // Prints this object without details.
695  void ShortPrint();
696
697  // Prints this object without details to a message accumulator.
698  void ShortPrint(StringStream* accumulator);
699
700  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
701  static Object* cast(Object* value) { return value; }
702
703  // Layout description.
704  static const int kHeaderSize = 0;  // Object does not take up any space.
705
706 private:
707  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
708};
709
710
711// Smi represents integer Numbers that can be stored in 31 bits.
712// Smis are immediate which means they are NOT allocated in the heap.
713// The this pointer has the following format: [31 bit signed int] 0
714// For long smis it has the following format:
715//     [32 bit signed int] [31 bits zero padding] 0
716// Smi stands for small integer.
717class Smi: public Object {
718 public:
719  // Returns the integer value.
720  inline int value();
721
722  // Convert a value to a Smi object.
723  static inline Smi* FromInt(int value);
724
725  static inline Smi* FromIntptr(intptr_t value);
726
727  // Returns whether value can be represented in a Smi.
728  static inline bool IsValid(intptr_t value);
729
730  // Casting.
731  static inline Smi* cast(Object* object);
732
733  // Dispatched behavior.
734  void SmiPrint();
735  void SmiPrint(StringStream* accumulator);
736#ifdef DEBUG
737  void SmiVerify();
738#endif
739
740  static const int kMinValue = (-1 << (kSmiValueSize - 1));
741  static const int kMaxValue = -(kMinValue + 1);
742
743 private:
744  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
745};
746
747
748// Failure is used for reporting out of memory situations and
749// propagating exceptions through the runtime system.  Failure objects
750// are transient and cannot occur as part of the object graph.
751//
752// Failures are a single word, encoded as follows:
753// +-------------------------+---+--+--+
754// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
755// +-------------------------+---+--+--+
756//                          7 6 4 32 10
757//
758//
759// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
760// 2-3, are a failure type tag 'tt' with possible values:
761//   00 RETRY_AFTER_GC
762//   01 EXCEPTION
763//   10 INTERNAL_ERROR
764//   11 OUT_OF_MEMORY_EXCEPTION
765//
766// The next three bits, 4-6, are an allocation space tag 'sss'.  The
767// allocation space tag is 000 for all failure types except
768// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
769// allocation spaces (the encoding is found in globals.h).
770//
771// The remaining bits is the size of the allocation request in units
772// of the pointer size, and is zeroed except for RETRY_AFTER_GC
773// failures.  The 25 bits (on a 32 bit platform) gives a representable
774// range of 2^27 bytes (128MB).
775
776// Failure type tag info.
777const int kFailureTypeTagSize = 2;
778const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
779
780class Failure: public Object {
781 public:
782  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
783  enum Type {
784    RETRY_AFTER_GC = 0,
785    EXCEPTION = 1,       // Returning this marker tells the real exception
786                         // is in Top::pending_exception.
787    INTERNAL_ERROR = 2,
788    OUT_OF_MEMORY_EXCEPTION = 3
789  };
790
791  inline Type type() const;
792
793  // Returns the space that needs to be collected for RetryAfterGC failures.
794  inline AllocationSpace allocation_space() const;
795
796  // Returns the number of bytes requested (up to the representable maximum)
797  // for RetryAfterGC failures.
798  inline int requested() const;
799
800  inline bool IsInternalError() const;
801  inline bool IsOutOfMemoryException() const;
802
803  static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
804  static inline Failure* RetryAfterGC(int requested_bytes);  // NEW_SPACE
805  static inline Failure* Exception();
806  static inline Failure* InternalError();
807  static inline Failure* OutOfMemoryException();
808  // Casting.
809  static inline Failure* cast(Object* object);
810
811  // Dispatched behavior.
812  void FailurePrint();
813  void FailurePrint(StringStream* accumulator);
814#ifdef DEBUG
815  void FailureVerify();
816#endif
817
818 private:
819  inline intptr_t value() const;
820  static inline Failure* Construct(Type type, intptr_t value = 0);
821
822  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
823};
824
825
826// Heap objects typically have a map pointer in their first word.  However,
827// during GC other data (eg, mark bits, forwarding addresses) is sometimes
828// encoded in the first word.  The class MapWord is an abstraction of the
829// value in a heap object's first word.
830class MapWord BASE_EMBEDDED {
831 public:
832  // Normal state: the map word contains a map pointer.
833
834  // Create a map word from a map pointer.
835  static inline MapWord FromMap(Map* map);
836
837  // View this map word as a map pointer.
838  inline Map* ToMap();
839
840
841  // Scavenge collection: the map word of live objects in the from space
842  // contains a forwarding address (a heap object pointer in the to space).
843
844  // True if this map word is a forwarding address for a scavenge
845  // collection.  Only valid during a scavenge collection (specifically,
846  // when all map words are heap object pointers, ie. not during a full GC).
847  inline bool IsForwardingAddress();
848
849  // Create a map word from a forwarding address.
850  static inline MapWord FromForwardingAddress(HeapObject* object);
851
852  // View this map word as a forwarding address.
853  inline HeapObject* ToForwardingAddress();
854
855  // Marking phase of full collection: the map word of live objects is
856  // marked, and may be marked as overflowed (eg, the object is live, its
857  // children have not been visited, and it does not fit in the marking
858  // stack).
859
860  // True if this map word's mark bit is set.
861  inline bool IsMarked();
862
863  // Return this map word but with its mark bit set.
864  inline void SetMark();
865
866  // Return this map word but with its mark bit cleared.
867  inline void ClearMark();
868
869  // True if this map word's overflow bit is set.
870  inline bool IsOverflowed();
871
872  // Return this map word but with its overflow bit set.
873  inline void SetOverflow();
874
875  // Return this map word but with its overflow bit cleared.
876  inline void ClearOverflow();
877
878
879  // Compacting phase of a full compacting collection: the map word of live
880  // objects contains an encoding of the original map address along with the
881  // forwarding address (represented as an offset from the first live object
882  // in the same page as the (old) object address).
883
884  // Create a map word from a map address and a forwarding address offset.
885  static inline MapWord EncodeAddress(Address map_address, int offset);
886
887  // Return the map address encoded in this map word.
888  inline Address DecodeMapAddress(MapSpace* map_space);
889
890  // Return the forwarding offset encoded in this map word.
891  inline int DecodeOffset();
892
893
894  // During serialization: the map word is used to hold an encoded
895  // address, and possibly a mark bit (set and cleared with SetMark
896  // and ClearMark).
897
898  // Create a map word from an encoded address.
899  static inline MapWord FromEncodedAddress(Address address);
900
901  inline Address ToEncodedAddress();
902
903  // Bits used by the marking phase of the garbage collector.
904  //
905  // The first word of a heap object is normally a map pointer. The last two
906  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
907  // mark an object as live and/or overflowed:
908  //   last bit = 0, marked as alive
909  //   second bit = 1, overflowed
910  // An object is only marked as overflowed when it is marked as live while
911  // the marking stack is overflowed.
912  static const int kMarkingBit = 0;  // marking bit
913  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
914  static const int kOverflowBit = 1;  // overflow bit
915  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
916
917  // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
918  // used.
919  // +-----------------+------------------+-----------------+
920  // |forwarding offset|page offset of map|page index of map|
921  // +-----------------+------------------+-----------------+
922  //          ^                 ^                  ^
923  //          |                 |                  |
924  //          |                 |          kMapPageIndexBits
925  //          |         kMapPageOffsetBits
926  // kForwardingOffsetBits
927  static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
928  static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
929#ifdef V8_HOST_ARCH_64_BIT
930  static const int kMapPageIndexBits = 16;
931#else
932  // Use all the 32-bits to encode on a 32-bit platform.
933  static const int kMapPageIndexBits =
934      32 - (kMapPageOffsetBits + kForwardingOffsetBits);
935#endif
936
937  static const int kMapPageIndexShift = 0;
938  static const int kMapPageOffsetShift =
939      kMapPageIndexShift + kMapPageIndexBits;
940  static const int kForwardingOffsetShift =
941      kMapPageOffsetShift + kMapPageOffsetBits;
942
943  // Bit masks covering the different parts the encoding.
944  static const uintptr_t kMapPageIndexMask =
945      (1 << kMapPageOffsetShift) - 1;
946  static const uintptr_t kMapPageOffsetMask =
947      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
948  static const uintptr_t kForwardingOffsetMask =
949      ~(kMapPageIndexMask | kMapPageOffsetMask);
950
951 private:
952  // HeapObject calls the private constructor and directly reads the value.
953  friend class HeapObject;
954
955  explicit MapWord(uintptr_t value) : value_(value) {}
956
957  uintptr_t value_;
958};
959
960
961// HeapObject is the superclass for all classes describing heap allocated
962// objects.
963class HeapObject: public Object {
964 public:
965  // [map]: Contains a map which contains the object's reflective
966  // information.
967  inline Map* map();
968  inline void set_map(Map* value);
969
970  // During garbage collection, the map word of a heap object does not
971  // necessarily contain a map pointer.
972  inline MapWord map_word();
973  inline void set_map_word(MapWord map_word);
974
975  // Converts an address to a HeapObject pointer.
976  static inline HeapObject* FromAddress(Address address);
977
978  // Returns the address of this HeapObject.
979  inline Address address();
980
981  // Iterates over pointers contained in the object (including the Map)
982  void Iterate(ObjectVisitor* v);
983
984  // Iterates over all pointers contained in the object except the
985  // first map pointer.  The object type is given in the first
986  // parameter. This function does not access the map pointer in the
987  // object, and so is safe to call while the map pointer is modified.
988  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
989
990  // This method only applies to struct objects.  Iterates over all the fields
991  // of this struct.
992  void IterateStructBody(int object_size, ObjectVisitor* v);
993
994  // Returns the heap object's size in bytes
995  inline int Size();
996
997  // Given a heap object's map pointer, returns the heap size in bytes
998  // Useful when the map pointer field is used for other purposes.
999  // GC internal.
1000  inline int SizeFromMap(Map* map);
1001
1002  // Support for the marking heap objects during the marking phase of GC.
1003  // True if the object is marked live.
1004  inline bool IsMarked();
1005
1006  // Mutate this object's map pointer to indicate that the object is live.
1007  inline void SetMark();
1008
1009  // Mutate this object's map pointer to remove the indication that the
1010  // object is live (ie, partially restore the map pointer).
1011  inline void ClearMark();
1012
1013  // True if this object is marked as overflowed.  Overflowed objects have
1014  // been reached and marked during marking of the heap, but their children
1015  // have not necessarily been marked and they have not been pushed on the
1016  // marking stack.
1017  inline bool IsOverflowed();
1018
1019  // Mutate this object's map pointer to indicate that the object is
1020  // overflowed.
1021  inline void SetOverflow();
1022
1023  // Mutate this object's map pointer to remove the indication that the
1024  // object is overflowed (ie, partially restore the map pointer).
1025  inline void ClearOverflow();
1026
1027  // Returns the field at offset in obj, as a read/write Object* reference.
1028  // Does no checking, and is safe to use during GC, while maps are invalid.
1029  // Does not update remembered sets, so should only be assigned to
1030  // during marking GC.
1031  static inline Object** RawField(HeapObject* obj, int offset);
1032
1033  // Casting.
1034  static inline HeapObject* cast(Object* obj);
1035
1036  // Return the write barrier mode for this. Callers of this function
1037  // must be able to present a reference to an AssertNoAllocation
1038  // object as a sign that they are not going to use this function
1039  // from code that allocates and thus invalidates the returned write
1040  // barrier mode.
1041  inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
1042
1043  // Dispatched behavior.
1044  void HeapObjectShortPrint(StringStream* accumulator);
1045#ifdef DEBUG
1046  void HeapObjectPrint();
1047  void HeapObjectVerify();
1048  inline void VerifyObjectField(int offset);
1049
1050  void PrintHeader(const char* id);
1051
1052  // Verify a pointer is a valid HeapObject pointer that points to object
1053  // areas in the heap.
1054  static void VerifyHeapPointer(Object* p);
1055#endif
1056
1057  // Layout description.
1058  // First field in a heap object is map.
1059  static const int kMapOffset = Object::kHeaderSize;
1060  static const int kHeaderSize = kMapOffset + kPointerSize;
1061
1062  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1063
1064 protected:
1065  // helpers for calling an ObjectVisitor to iterate over pointers in the
1066  // half-open range [start, end) specified as integer offsets
1067  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1068  // as above, for the single element at "offset"
1069  inline void IteratePointer(ObjectVisitor* v, int offset);
1070
1071  // Computes the object size from the map.
1072  // Should only be used from SizeFromMap.
1073  int SlowSizeFromMap(Map* map);
1074
1075 private:
1076  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1077};
1078
1079
1080// The HeapNumber class describes heap allocated numbers that cannot be
1081// represented in a Smi (small integer)
1082class HeapNumber: public HeapObject {
1083 public:
1084  // [value]: number value.
1085  inline double value();
1086  inline void set_value(double value);
1087
1088  // Casting.
1089  static inline HeapNumber* cast(Object* obj);
1090
1091  // Dispatched behavior.
1092  Object* HeapNumberToBoolean();
1093  void HeapNumberPrint();
1094  void HeapNumberPrint(StringStream* accumulator);
1095#ifdef DEBUG
1096  void HeapNumberVerify();
1097#endif
1098
1099  inline int get_exponent();
1100  inline int get_sign();
1101
1102  // Layout description.
1103  static const int kValueOffset = HeapObject::kHeaderSize;
1104  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1105  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1106  // little endian apart from non-EABI arm which is little endian with big
1107  // endian floating point word ordering!
1108#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1109  static const int kMantissaOffset = kValueOffset;
1110  static const int kExponentOffset = kValueOffset + 4;
1111#else
1112  static const int kMantissaOffset = kValueOffset + 4;
1113  static const int kExponentOffset = kValueOffset;
1114# define BIG_ENDIAN_FLOATING_POINT 1
1115#endif
1116  static const int kSize = kValueOffset + kDoubleSize;
1117  static const uint32_t kSignMask = 0x80000000u;
1118  static const uint32_t kExponentMask = 0x7ff00000u;
1119  static const uint32_t kMantissaMask = 0xfffffu;
1120  static const int kMantissaBits = 52;
1121  static const int KExponentBits = 11;
1122  static const int kExponentBias = 1023;
1123  static const int kExponentShift = 20;
1124  static const int kMantissaBitsInTopWord = 20;
1125  static const int kNonMantissaBitsInTopWord = 12;
1126
1127 private:
1128  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1129};
1130
1131
1132// The JSObject describes real heap allocated JavaScript objects with
1133// properties.
1134// Note that the map of JSObject changes during execution to enable inline
1135// caching.
1136class JSObject: public HeapObject {
1137 public:
1138  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1139  enum ElementsKind {
1140    FAST_ELEMENTS,
1141    DICTIONARY_ELEMENTS,
1142    PIXEL_ELEMENTS,
1143    EXTERNAL_BYTE_ELEMENTS,
1144    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1145    EXTERNAL_SHORT_ELEMENTS,
1146    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1147    EXTERNAL_INT_ELEMENTS,
1148    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1149    EXTERNAL_FLOAT_ELEMENTS
1150  };
1151
1152  // [properties]: Backing storage for properties.
1153  // properties is a FixedArray in the fast case, and a Dictionary in the
1154  // slow case.
1155  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1156  inline void initialize_properties();
1157  inline bool HasFastProperties();
1158  inline StringDictionary* property_dictionary();  // Gets slow properties.
1159
1160  // [elements]: The elements (properties with names that are integers).
1161  // elements is a FixedArray in the fast case, and a Dictionary in the slow
1162  // case or a PixelArray in a special case.
1163  DECL_ACCESSORS(elements, Array)  // Get and set fast elements.
1164  inline void initialize_elements();
1165  inline ElementsKind GetElementsKind();
1166  inline bool HasFastElements();
1167  inline bool HasDictionaryElements();
1168  inline bool HasPixelElements();
1169  inline bool HasExternalArrayElements();
1170  inline bool HasExternalByteElements();
1171  inline bool HasExternalUnsignedByteElements();
1172  inline bool HasExternalShortElements();
1173  inline bool HasExternalUnsignedShortElements();
1174  inline bool HasExternalIntElements();
1175  inline bool HasExternalUnsignedIntElements();
1176  inline bool HasExternalFloatElements();
1177  inline bool AllowsSetElementsLength();
1178  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1179
1180  // Collects elements starting at index 0.
1181  // Undefined values are placed after non-undefined values.
1182  // Returns the number of non-undefined values.
1183  Object* PrepareElementsForSort(uint32_t limit);
1184  // As PrepareElementsForSort, but only on objects where elements is
1185  // a dictionary, and it will stay a dictionary.
1186  Object* PrepareSlowElementsForSort(uint32_t limit);
1187
1188  Object* SetProperty(String* key,
1189                      Object* value,
1190                      PropertyAttributes attributes);
1191  Object* SetProperty(LookupResult* result,
1192                      String* key,
1193                      Object* value,
1194                      PropertyAttributes attributes);
1195  Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1196                                           String* name,
1197                                           Object* value);
1198  Object* SetPropertyWithCallback(Object* structure,
1199                                  String* name,
1200                                  Object* value,
1201                                  JSObject* holder);
1202  Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1203                                       Object* value);
1204  Object* SetPropertyWithInterceptor(String* name,
1205                                     Object* value,
1206                                     PropertyAttributes attributes);
1207  Object* SetPropertyPostInterceptor(String* name,
1208                                     Object* value,
1209                                     PropertyAttributes attributes);
1210  Object* IgnoreAttributesAndSetLocalProperty(String* key,
1211                                              Object* value,
1212                                              PropertyAttributes attributes);
1213
1214  // Retrieve a value in a normalized object given a lookup result.
1215  // Handles the special representation of JS global objects.
1216  Object* GetNormalizedProperty(LookupResult* result);
1217
1218  // Sets the property value in a normalized object given a lookup result.
1219  // Handles the special representation of JS global objects.
1220  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1221
1222  // Sets the property value in a normalized object given (key, value, details).
1223  // Handles the special representation of JS global objects.
1224  Object* SetNormalizedProperty(String* name,
1225                                Object* value,
1226                                PropertyDetails details);
1227
1228  // Deletes the named property in a normalized object.
1229  Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1230
1231  // Returns the class name ([[Class]] property in the specification).
1232  String* class_name();
1233
1234  // Returns the constructor name (the name (possibly, inferred name) of the
1235  // function that was used to instantiate the object).
1236  String* constructor_name();
1237
1238  // Retrieve interceptors.
1239  InterceptorInfo* GetNamedInterceptor();
1240  InterceptorInfo* GetIndexedInterceptor();
1241
1242  inline PropertyAttributes GetPropertyAttribute(String* name);
1243  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1244                                                      String* name);
1245  PropertyAttributes GetLocalPropertyAttribute(String* name);
1246
1247  Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1248                         PropertyAttributes attributes);
1249  Object* LookupAccessor(String* name, bool is_getter);
1250
1251  // Used from Object::GetProperty().
1252  Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1253                                           LookupResult* result,
1254                                           String* name,
1255                                           PropertyAttributes* attributes);
1256  Object* GetPropertyWithInterceptor(JSObject* receiver,
1257                                     String* name,
1258                                     PropertyAttributes* attributes);
1259  Object* GetPropertyPostInterceptor(JSObject* receiver,
1260                                     String* name,
1261                                     PropertyAttributes* attributes);
1262  Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1263                                          String* name,
1264                                          PropertyAttributes* attributes);
1265
1266  // Returns true if this is an instance of an api function and has
1267  // been modified since it was created.  May give false positives.
1268  bool IsDirty();
1269
1270  bool HasProperty(String* name) {
1271    return GetPropertyAttribute(name) != ABSENT;
1272  }
1273
1274  // Can cause a GC if it hits an interceptor.
1275  bool HasLocalProperty(String* name) {
1276    return GetLocalPropertyAttribute(name) != ABSENT;
1277  }
1278
1279  // If the receiver is a JSGlobalProxy this method will return its prototype,
1280  // otherwise the result is the receiver itself.
1281  inline Object* BypassGlobalProxy();
1282
1283  // Accessors for hidden properties object.
1284  //
1285  // Hidden properties are not local properties of the object itself.
1286  // Instead they are stored on an auxiliary JSObject stored as a local
1287  // property with a special name Heap::hidden_symbol(). But if the
1288  // receiver is a JSGlobalProxy then the auxiliary object is a property
1289  // of its prototype.
1290  //
1291  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1292  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1293  // holder.
1294  //
1295  // These accessors do not touch interceptors or accessors.
1296  inline bool HasHiddenPropertiesObject();
1297  inline Object* GetHiddenPropertiesObject();
1298  inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1299
1300  Object* DeleteProperty(String* name, DeleteMode mode);
1301  Object* DeleteElement(uint32_t index, DeleteMode mode);
1302
1303  // Tests for the fast common case for property enumeration.
1304  bool IsSimpleEnum();
1305
1306  // Do we want to keep the elements in fast case when increasing the
1307  // capacity?
1308  bool ShouldConvertToSlowElements(int new_capacity);
1309  // Returns true if the backing storage for the slow-case elements of
1310  // this object takes up nearly as much space as a fast-case backing
1311  // storage would.  In that case the JSObject should have fast
1312  // elements.
1313  bool ShouldConvertToFastElements();
1314
1315  // Return the object's prototype (might be Heap::null_value()).
1316  inline Object* GetPrototype();
1317
1318  // Set the object's prototype (only JSObject and null are allowed).
1319  Object* SetPrototype(Object* value, bool skip_hidden_prototypes);
1320
1321  // Tells whether the index'th element is present.
1322  inline bool HasElement(uint32_t index);
1323  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1324  bool HasLocalElement(uint32_t index);
1325
1326  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1327  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1328
1329  Object* SetFastElement(uint32_t index, Object* value);
1330
1331  // Set the index'th array element.
1332  // A Failure object is returned if GC is needed.
1333  Object* SetElement(uint32_t index, Object* value);
1334
1335  // Returns the index'th element.
1336  // The undefined object if index is out of bounds.
1337  Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1338
1339  void SetFastElements(FixedArray* elements);
1340  Object* SetSlowElements(Object* length);
1341
1342  // Lookup interceptors are used for handling properties controlled by host
1343  // objects.
1344  inline bool HasNamedInterceptor();
1345  inline bool HasIndexedInterceptor();
1346
1347  // Support functions for v8 api (needed for correct interceptor behavior).
1348  bool HasRealNamedProperty(String* key);
1349  bool HasRealElementProperty(uint32_t index);
1350  bool HasRealNamedCallbackProperty(String* key);
1351
1352  // Initializes the array to a certain length
1353  Object* SetElementsLength(Object* length);
1354
1355  // Get the header size for a JSObject.  Used to compute the index of
1356  // internal fields as well as the number of internal fields.
1357  inline int GetHeaderSize();
1358
1359  inline int GetInternalFieldCount();
1360  inline Object* GetInternalField(int index);
1361  inline void SetInternalField(int index, Object* value);
1362
1363  // Lookup a property.  If found, the result is valid and has
1364  // detailed information.
1365  void LocalLookup(String* name, LookupResult* result);
1366  void Lookup(String* name, LookupResult* result);
1367
1368  // The following lookup functions skip interceptors.
1369  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1370  void LookupRealNamedProperty(String* name, LookupResult* result);
1371  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1372  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1373  Object* LookupCallbackSetterInPrototypes(uint32_t index);
1374  void LookupCallback(String* name, LookupResult* result);
1375
1376  // Returns the number of properties on this object filtering out properties
1377  // with the specified attributes (ignoring interceptors).
1378  int NumberOfLocalProperties(PropertyAttributes filter);
1379  // Returns the number of enumerable properties (ignoring interceptors).
1380  int NumberOfEnumProperties();
1381  // Fill in details for properties into storage starting at the specified
1382  // index.
1383  void GetLocalPropertyNames(FixedArray* storage, int index);
1384
1385  // Returns the number of properties on this object filtering out properties
1386  // with the specified attributes (ignoring interceptors).
1387  int NumberOfLocalElements(PropertyAttributes filter);
1388  // Returns the number of enumerable elements (ignoring interceptors).
1389  int NumberOfEnumElements();
1390  // Returns the number of elements on this object filtering out elements
1391  // with the specified attributes (ignoring interceptors).
1392  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1393  // Count and fill in the enumerable elements into storage.
1394  // (storage->length() == NumberOfEnumElements()).
1395  // If storage is NULL, will count the elements without adding
1396  // them to any storage.
1397  // Returns the number of enumerable elements.
1398  int GetEnumElementKeys(FixedArray* storage);
1399
1400  // Add a property to a fast-case object using a map transition to
1401  // new_map.
1402  Object* AddFastPropertyUsingMap(Map* new_map,
1403                                  String* name,
1404                                  Object* value);
1405
1406  // Add a constant function property to a fast-case object.
1407  // This leaves a CONSTANT_TRANSITION in the old map, and
1408  // if it is called on a second object with this map, a
1409  // normal property is added instead, with a map transition.
1410  // This avoids the creation of many maps with the same constant
1411  // function, all orphaned.
1412  Object* AddConstantFunctionProperty(String* name,
1413                                      JSFunction* function,
1414                                      PropertyAttributes attributes);
1415
1416  Object* ReplaceSlowProperty(String* name,
1417                              Object* value,
1418                              PropertyAttributes attributes);
1419
1420  // Converts a descriptor of any other type to a real field,
1421  // backed by the properties array.  Descriptors of visible
1422  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1423  // Converts the descriptor on the original object's map to a
1424  // map transition, and the the new field is on the object's new map.
1425  Object* ConvertDescriptorToFieldAndMapTransition(
1426      String* name,
1427      Object* new_value,
1428      PropertyAttributes attributes);
1429
1430  // Converts a descriptor of any other type to a real field,
1431  // backed by the properties array.  Descriptors of visible
1432  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1433  Object* ConvertDescriptorToField(String* name,
1434                                   Object* new_value,
1435                                   PropertyAttributes attributes);
1436
1437  // Add a property to a fast-case object.
1438  Object* AddFastProperty(String* name,
1439                          Object* value,
1440                          PropertyAttributes attributes);
1441
1442  // Add a property to a slow-case object.
1443  Object* AddSlowProperty(String* name,
1444                          Object* value,
1445                          PropertyAttributes attributes);
1446
1447  // Add a property to an object.
1448  Object* AddProperty(String* name,
1449                      Object* value,
1450                      PropertyAttributes attributes);
1451
1452  // Convert the object to use the canonical dictionary
1453  // representation. If the object is expected to have additional properties
1454  // added this number can be indicated to have the backing store allocated to
1455  // an initial capacity for holding these properties.
1456  Object* NormalizeProperties(PropertyNormalizationMode mode,
1457                              int expected_additional_properties);
1458  Object* NormalizeElements();
1459
1460  // Transform slow named properties to fast variants.
1461  // Returns failure if allocation failed.
1462  Object* TransformToFastProperties(int unused_property_fields);
1463
1464  // Access fast-case object properties at index.
1465  inline Object* FastPropertyAt(int index);
1466  inline Object* FastPropertyAtPut(int index, Object* value);
1467
1468  // Access to in object properties.
1469  inline Object* InObjectPropertyAt(int index);
1470  inline Object* InObjectPropertyAtPut(int index,
1471                                       Object* value,
1472                                       WriteBarrierMode mode
1473                                       = UPDATE_WRITE_BARRIER);
1474
1475  // initializes the body after properties slot, properties slot is
1476  // initialized by set_properties
1477  // Note: this call does not update write barrier, it is caller's
1478  // reponsibility to ensure that *v* can be collected without WB here.
1479  inline void InitializeBody(int object_size);
1480
1481  // Check whether this object references another object
1482  bool ReferencesObject(Object* obj);
1483
1484  // Casting.
1485  static inline JSObject* cast(Object* obj);
1486
1487  // Dispatched behavior.
1488  void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1489  void JSObjectShortPrint(StringStream* accumulator);
1490#ifdef DEBUG
1491  void JSObjectPrint();
1492  void JSObjectVerify();
1493  void PrintProperties();
1494  void PrintElements();
1495
1496  // Structure for collecting spill information about JSObjects.
1497  class SpillInformation {
1498   public:
1499    void Clear();
1500    void Print();
1501    int number_of_objects_;
1502    int number_of_objects_with_fast_properties_;
1503    int number_of_objects_with_fast_elements_;
1504    int number_of_fast_used_fields_;
1505    int number_of_fast_unused_fields_;
1506    int number_of_slow_used_properties_;
1507    int number_of_slow_unused_properties_;
1508    int number_of_fast_used_elements_;
1509    int number_of_fast_unused_elements_;
1510    int number_of_slow_used_elements_;
1511    int number_of_slow_unused_elements_;
1512  };
1513
1514  void IncrementSpillStatistics(SpillInformation* info);
1515#endif
1516  Object* SlowReverseLookup(Object* value);
1517
1518  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1519  // Also maximal value of JSArray's length property.
1520  static const uint32_t kMaxElementCount = 0xffffffffu;
1521
1522  static const uint32_t kMaxGap = 1024;
1523  static const int kMaxFastElementsLength = 5000;
1524  static const int kInitialMaxFastElementArray = 100000;
1525  static const int kMaxFastProperties = 8;
1526  static const int kMaxInstanceSize = 255 * kPointerSize;
1527  // When extending the backing storage for property values, we increase
1528  // its size by more than the 1 entry necessary, so sequentially adding fields
1529  // to the same object requires fewer allocations and copies.
1530  static const int kFieldsAdded = 3;
1531
1532  // Layout description.
1533  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1534  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1535  static const int kHeaderSize = kElementsOffset + kPointerSize;
1536
1537  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1538
1539  Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1540
1541 private:
1542  Object* SetElementWithInterceptor(uint32_t index, Object* value);
1543  Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1544
1545  Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1546
1547  Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1548  Object* DeletePropertyWithInterceptor(String* name);
1549
1550  Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1551  Object* DeleteElementWithInterceptor(uint32_t index);
1552
1553  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1554                                                         String* name,
1555                                                         bool continue_search);
1556  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1557                                                         String* name,
1558                                                         bool continue_search);
1559  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1560      Object* receiver,
1561      LookupResult* result,
1562      String* name,
1563      bool continue_search);
1564  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1565                                          LookupResult* result,
1566                                          String* name,
1567                                          bool continue_search);
1568
1569  // Returns true if most of the elements backing storage is used.
1570  bool HasDenseElements();
1571
1572  Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1573
1574  void LookupInDescriptor(String* name, LookupResult* result);
1575
1576  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1577};
1578
1579
1580// Abstract super class arrays. It provides length behavior.
1581class Array: public HeapObject {
1582 public:
1583  // [length]: length of the array.
1584  inline int length();
1585  inline void set_length(int value);
1586
1587  // Convert an object to an array index.
1588  // Returns true if the conversion succeeded.
1589  static inline bool IndexFromObject(Object* object, uint32_t* index);
1590
1591  // Layout descriptor.
1592  static const int kLengthOffset = HeapObject::kHeaderSize;
1593
1594 protected:
1595  // No code should use the Array class directly, only its subclasses.
1596  // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1597  static const int kHeaderSize = kLengthOffset + kIntSize;
1598  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1599
1600 private:
1601  DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1602};
1603
1604
1605// FixedArray describes fixed sized arrays where element
1606// type is Object*.
1607
1608class FixedArray: public Array {
1609 public:
1610
1611  // Setter and getter for elements.
1612  inline Object* get(int index);
1613  // Setter that uses write barrier.
1614  inline void set(int index, Object* value);
1615
1616  // Setter that doesn't need write barrier).
1617  inline void set(int index, Smi* value);
1618  // Setter with explicit barrier mode.
1619  inline void set(int index, Object* value, WriteBarrierMode mode);
1620
1621  // Setters for frequently used oddballs located in old space.
1622  inline void set_undefined(int index);
1623  inline void set_null(int index);
1624  inline void set_the_hole(int index);
1625
1626  // Gives access to raw memory which stores the array's data.
1627  inline Object** data_start();
1628
1629  // Copy operations.
1630  inline Object* Copy();
1631  Object* CopySize(int new_length);
1632
1633  // Add the elements of a JSArray to this FixedArray.
1634  Object* AddKeysFromJSArray(JSArray* array);
1635
1636  // Compute the union of this and other.
1637  Object* UnionOfKeys(FixedArray* other);
1638
1639  // Copy a sub array from the receiver to dest.
1640  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1641
1642  // Garbage collection support.
1643  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1644
1645  // Code Generation support.
1646  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1647
1648  // Casting.
1649  static inline FixedArray* cast(Object* obj);
1650
1651  static const int kHeaderSize = Array::kAlignedSize;
1652
1653  // Maximal allowed size, in bytes, of a single FixedArray.
1654  // Prevents overflowing size computations, as well as extreme memory
1655  // consumption.
1656  static const int kMaxSize = 512 * MB;
1657  // Maximally allowed length of a FixedArray.
1658  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
1659
1660  // Dispatched behavior.
1661  int FixedArraySize() { return SizeFor(length()); }
1662  void FixedArrayIterateBody(ObjectVisitor* v);
1663#ifdef DEBUG
1664  void FixedArrayPrint();
1665  void FixedArrayVerify();
1666  // Checks if two FixedArrays have identical contents.
1667  bool IsEqualTo(FixedArray* other);
1668#endif
1669
1670  // Swap two elements in a pair of arrays.  If this array and the
1671  // numbers array are the same object, the elements are only swapped
1672  // once.
1673  void SwapPairs(FixedArray* numbers, int i, int j);
1674
1675  // Sort prefix of this array and the numbers array as pairs wrt. the
1676  // numbers.  If the numbers array and the this array are the same
1677  // object, the prefix of this array is sorted.
1678  void SortPairs(FixedArray* numbers, uint32_t len);
1679
1680 protected:
1681  // Set operation on FixedArray without using write barriers. Can
1682  // only be used for storing old space objects or smis.
1683  static inline void fast_set(FixedArray* array, int index, Object* value);
1684
1685 private:
1686  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1687};
1688
1689
1690// DescriptorArrays are fixed arrays used to hold instance descriptors.
1691// The format of the these objects is:
1692//   [0]: point to a fixed array with (value, detail) pairs.
1693//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1694//          [0]: next enumeration index (Smi)
1695//          [1]: pointer to fixed array with enum cache
1696//   [2]: first key
1697//   [length() - 1]: last key
1698//
1699class DescriptorArray: public FixedArray {
1700 public:
1701  // Is this the singleton empty_descriptor_array?
1702  inline bool IsEmpty();
1703
1704  // Returns the number of descriptors in the array.
1705  int number_of_descriptors() {
1706    return IsEmpty() ? 0 : length() - kFirstIndex;
1707  }
1708
1709  int NextEnumerationIndex() {
1710    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1711    Object* obj = get(kEnumerationIndexIndex);
1712    if (obj->IsSmi()) {
1713      return Smi::cast(obj)->value();
1714    } else {
1715      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1716      return Smi::cast(index)->value();
1717    }
1718  }
1719
1720  // Set next enumeration index and flush any enum cache.
1721  void SetNextEnumerationIndex(int value) {
1722    if (!IsEmpty()) {
1723      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1724    }
1725  }
1726  bool HasEnumCache() {
1727    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1728  }
1729
1730  Object* GetEnumCache() {
1731    ASSERT(HasEnumCache());
1732    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1733    return bridge->get(kEnumCacheBridgeCacheIndex);
1734  }
1735
1736  // Initialize or change the enum cache,
1737  // using the supplied storage for the small "bridge".
1738  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1739
1740  // Accessors for fetching instance descriptor at descriptor number.
1741  inline String* GetKey(int descriptor_number);
1742  inline Object* GetValue(int descriptor_number);
1743  inline Smi* GetDetails(int descriptor_number);
1744  inline PropertyType GetType(int descriptor_number);
1745  inline int GetFieldIndex(int descriptor_number);
1746  inline JSFunction* GetConstantFunction(int descriptor_number);
1747  inline Object* GetCallbacksObject(int descriptor_number);
1748  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1749  inline bool IsProperty(int descriptor_number);
1750  inline bool IsTransition(int descriptor_number);
1751  inline bool IsNullDescriptor(int descriptor_number);
1752  inline bool IsDontEnum(int descriptor_number);
1753
1754  // Accessor for complete descriptor.
1755  inline void Get(int descriptor_number, Descriptor* desc);
1756  inline void Set(int descriptor_number, Descriptor* desc);
1757
1758  // Transfer complete descriptor from another descriptor array to
1759  // this one.
1760  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1761
1762  // Copy the descriptor array, insert a new descriptor and optionally
1763  // remove map transitions.  If the descriptor is already present, it is
1764  // replaced.  If a replaced descriptor is a real property (not a transition
1765  // or null), its enumeration index is kept as is.
1766  // If adding a real property, map transitions must be removed.  If adding
1767  // a transition, they must not be removed.  All null descriptors are removed.
1768  Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1769
1770  // Remove all transitions.  Return  a copy of the array with all transitions
1771  // removed, or a Failure object if the new array could not be allocated.
1772  Object* RemoveTransitions();
1773
1774  // Sort the instance descriptors by the hash codes of their keys.
1775  void Sort();
1776
1777  // Search the instance descriptors for given name.
1778  inline int Search(String* name);
1779
1780  // Tells whether the name is present int the array.
1781  bool Contains(String* name) { return kNotFound != Search(name); }
1782
1783  // Perform a binary search in the instance descriptors represented
1784  // by this fixed array.  low and high are descriptor indices.  If there
1785  // are three instance descriptors in this array it should be called
1786  // with low=0 and high=2.
1787  int BinarySearch(String* name, int low, int high);
1788
1789  // Perform a linear search in the instance descriptors represented
1790  // by this fixed array.  len is the number of descriptor indices that are
1791  // valid.  Does not require the descriptors to be sorted.
1792  int LinearSearch(String* name, int len);
1793
1794  // Allocates a DescriptorArray, but returns the singleton
1795  // empty descriptor array object if number_of_descriptors is 0.
1796  static Object* Allocate(int number_of_descriptors);
1797
1798  // Casting.
1799  static inline DescriptorArray* cast(Object* obj);
1800
1801  // Constant for denoting key was not found.
1802  static const int kNotFound = -1;
1803
1804  static const int kContentArrayIndex = 0;
1805  static const int kEnumerationIndexIndex = 1;
1806  static const int kFirstIndex = 2;
1807
1808  // The length of the "bridge" to the enum cache.
1809  static const int kEnumCacheBridgeLength = 2;
1810  static const int kEnumCacheBridgeEnumIndex = 0;
1811  static const int kEnumCacheBridgeCacheIndex = 1;
1812
1813  // Layout description.
1814  static const int kContentArrayOffset = FixedArray::kHeaderSize;
1815  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1816  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1817
1818  // Layout description for the bridge array.
1819  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1820  static const int kEnumCacheBridgeCacheOffset =
1821    kEnumCacheBridgeEnumOffset + kPointerSize;
1822
1823#ifdef DEBUG
1824  // Print all the descriptors.
1825  void PrintDescriptors();
1826
1827  // Is the descriptor array sorted and without duplicates?
1828  bool IsSortedNoDuplicates();
1829
1830  // Are two DescriptorArrays equal?
1831  bool IsEqualTo(DescriptorArray* other);
1832#endif
1833
1834  // The maximum number of descriptors we want in a descriptor array (should
1835  // fit in a page).
1836  static const int kMaxNumberOfDescriptors = 1024 + 512;
1837
1838 private:
1839  // Conversion from descriptor number to array indices.
1840  static int ToKeyIndex(int descriptor_number) {
1841    return descriptor_number+kFirstIndex;
1842  }
1843
1844  static int ToDetailsIndex(int descriptor_number) {
1845    return (descriptor_number << 1) + 1;
1846  }
1847
1848  static int ToValueIndex(int descriptor_number) {
1849    return descriptor_number << 1;
1850  }
1851
1852  bool is_null_descriptor(int descriptor_number) {
1853    return PropertyDetails(GetDetails(descriptor_number)).type() ==
1854        NULL_DESCRIPTOR;
1855  }
1856  // Swap operation on FixedArray without using write barriers.
1857  static inline void fast_swap(FixedArray* array, int first, int second);
1858
1859  // Swap descriptor first and second.
1860  inline void Swap(int first, int second);
1861
1862  FixedArray* GetContentArray() {
1863    return FixedArray::cast(get(kContentArrayIndex));
1864  }
1865  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1866};
1867
1868
1869// HashTable is a subclass of FixedArray that implements a hash table
1870// that uses open addressing and quadratic probing.
1871//
1872// In order for the quadratic probing to work, elements that have not
1873// yet been used and elements that have been deleted are
1874// distinguished.  Probing continues when deleted elements are
1875// encountered and stops when unused elements are encountered.
1876//
1877// - Elements with key == undefined have not been used yet.
1878// - Elements with key == null have been deleted.
1879//
1880// The hash table class is parameterized with a Shape and a Key.
1881// Shape must be a class with the following interface:
1882//   class ExampleShape {
1883//    public:
1884//      // Tells whether key matches other.
1885//     static bool IsMatch(Key key, Object* other);
1886//     // Returns the hash value for key.
1887//     static uint32_t Hash(Key key);
1888//     // Returns the hash value for object.
1889//     static uint32_t HashForObject(Key key, Object* object);
1890//     // Convert key to an object.
1891//     static inline Object* AsObject(Key key);
1892//     // The prefix size indicates number of elements in the beginning
1893//     // of the backing storage.
1894//     static const int kPrefixSize = ..;
1895//     // The Element size indicates number of elements per entry.
1896//     static const int kEntrySize = ..;
1897//   };
1898// The prefix size indicates an amount of memory in the
1899// beginning of the backing storage that can be used for non-element
1900// information by subclasses.
1901
1902template<typename Shape, typename Key>
1903class HashTable: public FixedArray {
1904 public:
1905  // Returns the number of elements in the hash table.
1906  int NumberOfElements() {
1907    return Smi::cast(get(kNumberOfElementsIndex))->value();
1908  }
1909
1910  // Returns the number of deleted elements in the hash table.
1911  int NumberOfDeletedElements() {
1912    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
1913  }
1914
1915  // Returns the capacity of the hash table.
1916  int Capacity() {
1917    return Smi::cast(get(kCapacityIndex))->value();
1918  }
1919
1920  // ElementAdded should be called whenever an element is added to a
1921  // hash table.
1922  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1923
1924  // ElementRemoved should be called whenever an element is removed from
1925  // a hash table.
1926  void ElementRemoved() {
1927    SetNumberOfElements(NumberOfElements() - 1);
1928    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
1929  }
1930  void ElementsRemoved(int n) {
1931    SetNumberOfElements(NumberOfElements() - n);
1932    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
1933  }
1934
1935  // Returns a new HashTable object. Might return Failure.
1936  static Object* Allocate(int at_least_space_for,
1937                          PretenureFlag pretenure = NOT_TENURED);
1938
1939  // Returns the key at entry.
1940  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1941
1942  // Tells whether k is a real key.  Null and undefined are not allowed
1943  // as keys and can be used to indicate missing or deleted elements.
1944  bool IsKey(Object* k) {
1945    return !k->IsNull() && !k->IsUndefined();
1946  }
1947
1948  // Garbage collection support.
1949  void IteratePrefix(ObjectVisitor* visitor);
1950  void IterateElements(ObjectVisitor* visitor);
1951
1952  // Casting.
1953  static inline HashTable* cast(Object* obj);
1954
1955  // Compute the probe offset (quadratic probing).
1956  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1957    return (n + n * n) >> 1;
1958  }
1959
1960  static const int kNumberOfElementsIndex = 0;
1961  static const int kNumberOfDeletedElementsIndex = 1;
1962  static const int kCapacityIndex = 2;
1963  static const int kPrefixStartIndex = 3;
1964  static const int kElementsStartIndex =
1965      kPrefixStartIndex + Shape::kPrefixSize;
1966  static const int kEntrySize = Shape::kEntrySize;
1967  static const int kElementsStartOffset =
1968      kHeaderSize + kElementsStartIndex * kPointerSize;
1969  static const int kCapacityOffset =
1970      kHeaderSize + kCapacityIndex * kPointerSize;
1971
1972  // Constant used for denoting a absent entry.
1973  static const int kNotFound = -1;
1974
1975  // Maximal capacity of HashTable. Based on maximal length of underlying
1976  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
1977  // cannot overflow.
1978  static const int kMaxCapacity =
1979      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
1980
1981  // Find entry for key otherwise return -1.
1982  int FindEntry(Key key);
1983
1984 protected:
1985
1986  // Find the entry at which to insert element with the given key that
1987  // has the given hash value.
1988  uint32_t FindInsertionEntry(uint32_t hash);
1989
1990  // Returns the index for an entry (of the key)
1991  static inline int EntryToIndex(int entry) {
1992    return (entry * kEntrySize) + kElementsStartIndex;
1993  }
1994
1995  // Update the number of elements in the hash table.
1996  void SetNumberOfElements(int nof) {
1997    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
1998  }
1999
2000  // Update the number of deleted elements in the hash table.
2001  void SetNumberOfDeletedElements(int nod) {
2002    fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2003  }
2004
2005  // Sets the capacity of the hash table.
2006  void SetCapacity(int capacity) {
2007    // To scale a computed hash code to fit within the hash table, we
2008    // use bit-wise AND with a mask, so the capacity must be positive
2009    // and non-zero.
2010    ASSERT(capacity > 0);
2011    ASSERT(capacity <= kMaxCapacity);
2012    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2013  }
2014
2015
2016  // Returns probe entry.
2017  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2018    ASSERT(IsPowerOf2(size));
2019    return (hash + GetProbeOffset(number)) & (size - 1);
2020  }
2021
2022  static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2023    return hash & (size - 1);
2024  }
2025
2026  static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2027    return (last + number) & (size - 1);
2028  }
2029
2030  // Ensure enough space for n additional elements.
2031  Object* EnsureCapacity(int n, Key key);
2032};
2033
2034
2035
2036// HashTableKey is an abstract superclass for virtual key behavior.
2037class HashTableKey {
2038 public:
2039  // Returns whether the other object matches this key.
2040  virtual bool IsMatch(Object* other) = 0;
2041  // Returns the hash value for this key.
2042  virtual uint32_t Hash() = 0;
2043  // Returns the hash value for object.
2044  virtual uint32_t HashForObject(Object* key) = 0;
2045  // Returns the key object for storing into the hash table.
2046  // If allocations fails a failure object is returned.
2047  virtual Object* AsObject() = 0;
2048  // Required.
2049  virtual ~HashTableKey() {}
2050};
2051
2052class SymbolTableShape {
2053 public:
2054  static bool IsMatch(HashTableKey* key, Object* value) {
2055    return key->IsMatch(value);
2056  }
2057  static uint32_t Hash(HashTableKey* key) {
2058    return key->Hash();
2059  }
2060  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2061    return key->HashForObject(object);
2062  }
2063  static Object* AsObject(HashTableKey* key) {
2064    return key->AsObject();
2065  }
2066
2067  static const int kPrefixSize = 0;
2068  static const int kEntrySize = 1;
2069};
2070
2071// SymbolTable.
2072//
2073// No special elements in the prefix and the element size is 1
2074// because only the symbol itself (the key) needs to be stored.
2075class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2076 public:
2077  // Find symbol in the symbol table.  If it is not there yet, it is
2078  // added.  The return value is the symbol table which might have
2079  // been enlarged.  If the return value is not a failure, the symbol
2080  // pointer *s is set to the symbol found.
2081  Object* LookupSymbol(Vector<const char> str, Object** s);
2082  Object* LookupString(String* key, Object** s);
2083
2084  // Looks up a symbol that is equal to the given string and returns
2085  // true if it is found, assigning the symbol to the given output
2086  // parameter.
2087  bool LookupSymbolIfExists(String* str, String** symbol);
2088  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2089
2090  // Casting.
2091  static inline SymbolTable* cast(Object* obj);
2092
2093 private:
2094  Object* LookupKey(HashTableKey* key, Object** s);
2095
2096  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2097};
2098
2099
2100class MapCacheShape {
2101 public:
2102  static bool IsMatch(HashTableKey* key, Object* value) {
2103    return key->IsMatch(value);
2104  }
2105  static uint32_t Hash(HashTableKey* key) {
2106    return key->Hash();
2107  }
2108
2109  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2110    return key->HashForObject(object);
2111  }
2112
2113  static Object* AsObject(HashTableKey* key) {
2114    return key->AsObject();
2115  }
2116
2117  static const int kPrefixSize = 0;
2118  static const int kEntrySize = 2;
2119};
2120
2121
2122// MapCache.
2123//
2124// Maps keys that are a fixed array of symbols to a map.
2125// Used for canonicalize maps for object literals.
2126class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2127 public:
2128  // Find cached value for a string key, otherwise return null.
2129  Object* Lookup(FixedArray* key);
2130  Object* Put(FixedArray* key, Map* value);
2131  static inline MapCache* cast(Object* obj);
2132
2133 private:
2134  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2135};
2136
2137
2138template <typename Shape, typename Key>
2139class Dictionary: public HashTable<Shape, Key> {
2140 public:
2141
2142  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2143    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2144  }
2145
2146  // Returns the value at entry.
2147  Object* ValueAt(int entry) {
2148    return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2149  }
2150
2151  // Set the value for entry.
2152  void ValueAtPut(int entry, Object* value) {
2153    this->set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2154  }
2155
2156  // Returns the property details for the property at entry.
2157  PropertyDetails DetailsAt(int entry) {
2158    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2159    return PropertyDetails(
2160        Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2161  }
2162
2163  // Set the details for entry.
2164  void DetailsAtPut(int entry, PropertyDetails value) {
2165    this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2166  }
2167
2168  // Sorting support
2169  void CopyValuesTo(FixedArray* elements);
2170
2171  // Delete a property from the dictionary.
2172  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2173
2174  // Returns the number of elements in the dictionary filtering out properties
2175  // with the specified attributes.
2176  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2177
2178  // Returns the number of enumerable elements in the dictionary.
2179  int NumberOfEnumElements();
2180
2181  // Copies keys to preallocated fixed array.
2182  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2183  // Fill in details for properties into storage.
2184  void CopyKeysTo(FixedArray* storage);
2185
2186  // Accessors for next enumeration index.
2187  void SetNextEnumerationIndex(int index) {
2188    this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2189  }
2190
2191  int NextEnumerationIndex() {
2192    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2193  }
2194
2195  // Returns a new array for dictionary usage. Might return Failure.
2196  static Object* Allocate(int at_least_space_for);
2197
2198  // Ensure enough space for n additional elements.
2199  Object* EnsureCapacity(int n, Key key);
2200
2201#ifdef DEBUG
2202  void Print();
2203#endif
2204  // Returns the key (slow).
2205  Object* SlowReverseLookup(Object* value);
2206
2207  // Sets the entry to (key, value) pair.
2208  inline void SetEntry(int entry,
2209                       Object* key,
2210                       Object* value,
2211                       PropertyDetails details);
2212
2213  Object* Add(Key key, Object* value, PropertyDetails details);
2214
2215 protected:
2216  // Generic at put operation.
2217  Object* AtPut(Key key, Object* value);
2218
2219  // Add entry to dictionary.
2220  Object* AddEntry(Key key,
2221                   Object* value,
2222                   PropertyDetails details,
2223                   uint32_t hash);
2224
2225  // Generate new enumeration indices to avoid enumeration index overflow.
2226  Object* GenerateNewEnumerationIndices();
2227  static const int kMaxNumberKeyIndex =
2228      HashTable<Shape, Key>::kPrefixStartIndex;
2229  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2230};
2231
2232
2233class StringDictionaryShape {
2234 public:
2235  static inline bool IsMatch(String* key, Object* other);
2236  static inline uint32_t Hash(String* key);
2237  static inline uint32_t HashForObject(String* key, Object* object);
2238  static inline Object* AsObject(String* key);
2239  static const int kPrefixSize = 2;
2240  static const int kEntrySize = 3;
2241  static const bool kIsEnumerable = true;
2242};
2243
2244
2245class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2246 public:
2247  static inline StringDictionary* cast(Object* obj) {
2248    ASSERT(obj->IsDictionary());
2249    return reinterpret_cast<StringDictionary*>(obj);
2250  }
2251
2252  // Copies enumerable keys to preallocated fixed array.
2253  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2254
2255  // For transforming properties of a JSObject.
2256  Object* TransformPropertiesToFastFor(JSObject* obj,
2257                                       int unused_property_fields);
2258};
2259
2260
2261class NumberDictionaryShape {
2262 public:
2263  static inline bool IsMatch(uint32_t key, Object* other);
2264  static inline uint32_t Hash(uint32_t key);
2265  static inline uint32_t HashForObject(uint32_t key, Object* object);
2266  static inline Object* AsObject(uint32_t key);
2267  static const int kPrefixSize = 2;
2268  static const int kEntrySize = 3;
2269  static const bool kIsEnumerable = false;
2270};
2271
2272
2273class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2274 public:
2275  static NumberDictionary* cast(Object* obj) {
2276    ASSERT(obj->IsDictionary());
2277    return reinterpret_cast<NumberDictionary*>(obj);
2278  }
2279
2280  // Type specific at put (default NONE attributes is used when adding).
2281  Object* AtNumberPut(uint32_t key, Object* value);
2282  Object* AddNumberEntry(uint32_t key,
2283                         Object* value,
2284                         PropertyDetails details);
2285
2286  // Set an existing entry or add a new one if needed.
2287  Object* Set(uint32_t key, Object* value, PropertyDetails details);
2288
2289  void UpdateMaxNumberKey(uint32_t key);
2290
2291  // If slow elements are required we will never go back to fast-case
2292  // for the elements kept in this dictionary.  We require slow
2293  // elements if an element has been added at an index larger than
2294  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2295  // when defining a getter or setter with a number key.
2296  inline bool requires_slow_elements();
2297  inline void set_requires_slow_elements();
2298
2299  // Get the value of the max number key that has been added to this
2300  // dictionary.  max_number_key can only be called if
2301  // requires_slow_elements returns false.
2302  inline uint32_t max_number_key();
2303
2304  // Remove all entries were key is a number and (from <= key && key < to).
2305  void RemoveNumberEntries(uint32_t from, uint32_t to);
2306
2307  // Bit masks.
2308  static const int kRequiresSlowElementsMask = 1;
2309  static const int kRequiresSlowElementsTagSize = 1;
2310  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2311};
2312
2313
2314// JSFunctionResultCache caches results of some JSFunction invocation.
2315// It is a fixed array with fixed structure:
2316//   [0]: factory function
2317//   [1]: finger index
2318//   [2]: current cache size
2319//   [3]: dummy field.
2320// The rest of array are key/value pairs.
2321class JSFunctionResultCache: public FixedArray {
2322 public:
2323  static const int kFactoryIndex = 0;
2324  static const int kFingerIndex = kFactoryIndex + 1;
2325  static const int kCacheSizeIndex = kFingerIndex + 1;
2326  static const int kDummyIndex = kCacheSizeIndex + 1;
2327  static const int kEntriesIndex = kDummyIndex + 1;
2328
2329  static const int kEntrySize = 2;  // key + value
2330
2331  inline void MakeZeroSize();
2332  inline void Clear();
2333
2334  // Casting
2335  static inline JSFunctionResultCache* cast(Object* obj);
2336
2337#ifdef DEBUG
2338  void JSFunctionResultCacheVerify();
2339#endif
2340};
2341
2342
2343// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2344// such as PCRE, and also by the memory allocator and garbage collector to
2345// fill in free blocks in the heap.
2346class ByteArray: public Array {
2347 public:
2348  // Setter and getter.
2349  inline byte get(int index);
2350  inline void set(int index, byte value);
2351
2352  // Treat contents as an int array.
2353  inline int get_int(int index);
2354
2355  static int SizeFor(int length) {
2356    return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2357  }
2358  // We use byte arrays for free blocks in the heap.  Given a desired size in
2359  // bytes that is a multiple of the word size and big enough to hold a byte
2360  // array, this function returns the number of elements a byte array should
2361  // have.
2362  static int LengthFor(int size_in_bytes) {
2363    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2364    ASSERT(size_in_bytes >= kHeaderSize);
2365    return size_in_bytes - kHeaderSize;
2366  }
2367
2368  // Returns data start address.
2369  inline Address GetDataStartAddress();
2370
2371  // Returns a pointer to the ByteArray object for a given data start address.
2372  static inline ByteArray* FromDataStartAddress(Address address);
2373
2374  // Casting.
2375  static inline ByteArray* cast(Object* obj);
2376
2377  // Dispatched behavior.
2378  int ByteArraySize() { return SizeFor(length()); }
2379#ifdef DEBUG
2380  void ByteArrayPrint();
2381  void ByteArrayVerify();
2382#endif
2383
2384  // ByteArray headers are not quadword aligned.
2385  static const int kHeaderSize = Array::kHeaderSize;
2386  static const int kAlignedSize = Array::kAlignedSize;
2387
2388  // Maximal memory consumption for a single ByteArray.
2389  static const int kMaxSize = 512 * MB;
2390  // Maximal length of a single ByteArray.
2391  static const int kMaxLength = kMaxSize - kHeaderSize;
2392
2393 private:
2394  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2395};
2396
2397
2398// A PixelArray represents a fixed-size byte array with special semantics
2399// used for implementing the CanvasPixelArray object. Please see the
2400// specification at:
2401// http://www.whatwg.org/specs/web-apps/current-work/
2402//                      multipage/the-canvas-element.html#canvaspixelarray
2403// In particular, write access clamps the value written to 0 or 255 if the
2404// value written is outside this range.
2405class PixelArray: public Array {
2406 public:
2407  // [external_pointer]: The pointer to the external memory area backing this
2408  // pixel array.
2409  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2410
2411  // Setter and getter.
2412  inline uint8_t get(int index);
2413  inline void set(int index, uint8_t value);
2414
2415  // This accessor applies the correct conversion from Smi, HeapNumber and
2416  // undefined and clamps the converted value between 0 and 255.
2417  Object* SetValue(uint32_t index, Object* value);
2418
2419  // Casting.
2420  static inline PixelArray* cast(Object* obj);
2421
2422#ifdef DEBUG
2423  void PixelArrayPrint();
2424  void PixelArrayVerify();
2425#endif  // DEBUG
2426
2427  // Maximal acceptable length for a pixel array.
2428  static const int kMaxLength = 0x3fffffff;
2429
2430  // PixelArray headers are not quadword aligned.
2431  static const int kExternalPointerOffset = Array::kAlignedSize;
2432  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2433  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2434
2435 private:
2436  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2437};
2438
2439
2440// An ExternalArray represents a fixed-size array of primitive values
2441// which live outside the JavaScript heap. Its subclasses are used to
2442// implement the CanvasArray types being defined in the WebGL
2443// specification. As of this writing the first public draft is not yet
2444// available, but Khronos members can access the draft at:
2445//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2446//
2447// The semantics of these arrays differ from CanvasPixelArray.
2448// Out-of-range values passed to the setter are converted via a C
2449// cast, not clamping. Out-of-range indices cause exceptions to be
2450// raised rather than being silently ignored.
2451class ExternalArray: public Array {
2452 public:
2453  // [external_pointer]: The pointer to the external memory area backing this
2454  // external array.
2455  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2456
2457  // Casting.
2458  static inline ExternalArray* cast(Object* obj);
2459
2460  // Maximal acceptable length for an external array.
2461  static const int kMaxLength = 0x3fffffff;
2462
2463  // ExternalArray headers are not quadword aligned.
2464  static const int kExternalPointerOffset = Array::kAlignedSize;
2465  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2466  static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2467
2468 private:
2469  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2470};
2471
2472
2473class ExternalByteArray: public ExternalArray {
2474 public:
2475  // Setter and getter.
2476  inline int8_t get(int index);
2477  inline void set(int index, int8_t value);
2478
2479  // This accessor applies the correct conversion from Smi, HeapNumber
2480  // and undefined.
2481  Object* SetValue(uint32_t index, Object* value);
2482
2483  // Casting.
2484  static inline ExternalByteArray* cast(Object* obj);
2485
2486#ifdef DEBUG
2487  void ExternalByteArrayPrint();
2488  void ExternalByteArrayVerify();
2489#endif  // DEBUG
2490
2491 private:
2492  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2493};
2494
2495
2496class ExternalUnsignedByteArray: public ExternalArray {
2497 public:
2498  // Setter and getter.
2499  inline uint8_t get(int index);
2500  inline void set(int index, uint8_t value);
2501
2502  // This accessor applies the correct conversion from Smi, HeapNumber
2503  // and undefined.
2504  Object* SetValue(uint32_t index, Object* value);
2505
2506  // Casting.
2507  static inline ExternalUnsignedByteArray* cast(Object* obj);
2508
2509#ifdef DEBUG
2510  void ExternalUnsignedByteArrayPrint();
2511  void ExternalUnsignedByteArrayVerify();
2512#endif  // DEBUG
2513
2514 private:
2515  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2516};
2517
2518
2519class ExternalShortArray: public ExternalArray {
2520 public:
2521  // Setter and getter.
2522  inline int16_t get(int index);
2523  inline void set(int index, int16_t value);
2524
2525  // This accessor applies the correct conversion from Smi, HeapNumber
2526  // and undefined.
2527  Object* SetValue(uint32_t index, Object* value);
2528
2529  // Casting.
2530  static inline ExternalShortArray* cast(Object* obj);
2531
2532#ifdef DEBUG
2533  void ExternalShortArrayPrint();
2534  void ExternalShortArrayVerify();
2535#endif  // DEBUG
2536
2537 private:
2538  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2539};
2540
2541
2542class ExternalUnsignedShortArray: public ExternalArray {
2543 public:
2544  // Setter and getter.
2545  inline uint16_t get(int index);
2546  inline void set(int index, uint16_t value);
2547
2548  // This accessor applies the correct conversion from Smi, HeapNumber
2549  // and undefined.
2550  Object* SetValue(uint32_t index, Object* value);
2551
2552  // Casting.
2553  static inline ExternalUnsignedShortArray* cast(Object* obj);
2554
2555#ifdef DEBUG
2556  void ExternalUnsignedShortArrayPrint();
2557  void ExternalUnsignedShortArrayVerify();
2558#endif  // DEBUG
2559
2560 private:
2561  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2562};
2563
2564
2565class ExternalIntArray: public ExternalArray {
2566 public:
2567  // Setter and getter.
2568  inline int32_t get(int index);
2569  inline void set(int index, int32_t value);
2570
2571  // This accessor applies the correct conversion from Smi, HeapNumber
2572  // and undefined.
2573  Object* SetValue(uint32_t index, Object* value);
2574
2575  // Casting.
2576  static inline ExternalIntArray* cast(Object* obj);
2577
2578#ifdef DEBUG
2579  void ExternalIntArrayPrint();
2580  void ExternalIntArrayVerify();
2581#endif  // DEBUG
2582
2583 private:
2584  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2585};
2586
2587
2588class ExternalUnsignedIntArray: public ExternalArray {
2589 public:
2590  // Setter and getter.
2591  inline uint32_t get(int index);
2592  inline void set(int index, uint32_t value);
2593
2594  // This accessor applies the correct conversion from Smi, HeapNumber
2595  // and undefined.
2596  Object* SetValue(uint32_t index, Object* value);
2597
2598  // Casting.
2599  static inline ExternalUnsignedIntArray* cast(Object* obj);
2600
2601#ifdef DEBUG
2602  void ExternalUnsignedIntArrayPrint();
2603  void ExternalUnsignedIntArrayVerify();
2604#endif  // DEBUG
2605
2606 private:
2607  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2608};
2609
2610
2611class ExternalFloatArray: public ExternalArray {
2612 public:
2613  // Setter and getter.
2614  inline float get(int index);
2615  inline void set(int index, float value);
2616
2617  // This accessor applies the correct conversion from Smi, HeapNumber
2618  // and undefined.
2619  Object* SetValue(uint32_t index, Object* value);
2620
2621  // Casting.
2622  static inline ExternalFloatArray* cast(Object* obj);
2623
2624#ifdef DEBUG
2625  void ExternalFloatArrayPrint();
2626  void ExternalFloatArrayVerify();
2627#endif  // DEBUG
2628
2629 private:
2630  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2631};
2632
2633
2634// Code describes objects with on-the-fly generated machine code.
2635class Code: public HeapObject {
2636 public:
2637  // Opaque data type for encapsulating code flags like kind, inline
2638  // cache state, and arguments count.
2639  enum Flags { };
2640
2641  enum Kind {
2642    FUNCTION,
2643    STUB,
2644    BUILTIN,
2645    LOAD_IC,
2646    KEYED_LOAD_IC,
2647    CALL_IC,
2648    STORE_IC,
2649    KEYED_STORE_IC,
2650    BINARY_OP_IC,
2651    // No more than 16 kinds. The value currently encoded in four bits in
2652    // Flags.
2653
2654    // Pseudo-kinds.
2655    REGEXP = BUILTIN,
2656    FIRST_IC_KIND = LOAD_IC,
2657    LAST_IC_KIND = BINARY_OP_IC
2658  };
2659
2660  enum {
2661    NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2662  };
2663
2664#ifdef ENABLE_DISASSEMBLER
2665  // Printing
2666  static const char* Kind2String(Kind kind);
2667  static const char* ICState2String(InlineCacheState state);
2668  static const char* PropertyType2String(PropertyType type);
2669  void Disassemble(const char* name);
2670#endif  // ENABLE_DISASSEMBLER
2671
2672  // [instruction_size]: Size of the native instructions
2673  inline int instruction_size();
2674  inline void set_instruction_size(int value);
2675
2676  // [relocation_size]: Size of relocation information.
2677  inline int relocation_size();
2678  inline void set_relocation_size(int value);
2679
2680  // [sinfo_size]: Size of scope information.
2681  inline int sinfo_size();
2682  inline void set_sinfo_size(int value);
2683
2684  // [flags]: Various code flags.
2685  inline Flags flags();
2686  inline void set_flags(Flags flags);
2687
2688  // [flags]: Access to specific code flags.
2689  inline Kind kind();
2690  inline InlineCacheState ic_state();  // Only valid for IC stubs.
2691  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2692  inline PropertyType type();  // Only valid for monomorphic IC stubs.
2693  inline int arguments_count();  // Only valid for call IC stubs.
2694
2695  // Testers for IC stub kinds.
2696  inline bool is_inline_cache_stub();
2697  inline bool is_load_stub() { return kind() == LOAD_IC; }
2698  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2699  inline bool is_store_stub() { return kind() == STORE_IC; }
2700  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2701  inline bool is_call_stub() { return kind() == CALL_IC; }
2702
2703  // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
2704  inline CodeStub::Major major_key();
2705  inline void set_major_key(CodeStub::Major major);
2706
2707  // Flags operations.
2708  static inline Flags ComputeFlags(Kind kind,
2709                                   InLoopFlag in_loop = NOT_IN_LOOP,
2710                                   InlineCacheState ic_state = UNINITIALIZED,
2711                                   PropertyType type = NORMAL,
2712                                   int argc = -1);
2713
2714  static inline Flags ComputeMonomorphicFlags(
2715      Kind kind,
2716      PropertyType type,
2717      InLoopFlag in_loop = NOT_IN_LOOP,
2718      int argc = -1);
2719
2720  static inline Kind ExtractKindFromFlags(Flags flags);
2721  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2722  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2723  static inline PropertyType ExtractTypeFromFlags(Flags flags);
2724  static inline int ExtractArgumentsCountFromFlags(Flags flags);
2725  static inline Flags RemoveTypeFromFlags(Flags flags);
2726
2727  // Convert a target address into a code object.
2728  static inline Code* GetCodeFromTargetAddress(Address address);
2729
2730  // Returns the address of the first instruction.
2731  inline byte* instruction_start();
2732
2733  // Returns the size of the instructions, padding, and relocation information.
2734  inline int body_size();
2735
2736  // Returns the address of the first relocation info (read backwards!).
2737  inline byte* relocation_start();
2738
2739  // Code entry point.
2740  inline byte* entry();
2741
2742  // Returns true if pc is inside this object's instructions.
2743  inline bool contains(byte* pc);
2744
2745  // Returns the address of the scope information.
2746  inline byte* sinfo_start();
2747
2748  // Relocate the code by delta bytes. Called to signal that this code
2749  // object has been moved by delta bytes.
2750  void Relocate(intptr_t delta);
2751
2752  // Migrate code described by desc.
2753  void CopyFrom(const CodeDesc& desc);
2754
2755  // Returns the object size for a given body and sinfo size (Used for
2756  // allocation).
2757  static int SizeFor(int body_size, int sinfo_size) {
2758    ASSERT_SIZE_TAG_ALIGNED(body_size);
2759    ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2760    return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2761  }
2762
2763  // Calculate the size of the code object to report for log events. This takes
2764  // the layout of the code object into account.
2765  int ExecutableSize() {
2766    // Check that the assumptions about the layout of the code object holds.
2767    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2768              Code::kHeaderSize);
2769    return instruction_size() + Code::kHeaderSize;
2770  }
2771
2772  // Locating source position.
2773  int SourcePosition(Address pc);
2774  int SourceStatementPosition(Address pc);
2775
2776  // Casting.
2777  static inline Code* cast(Object* obj);
2778
2779  // Dispatched behavior.
2780  int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2781  void CodeIterateBody(ObjectVisitor* v);
2782#ifdef DEBUG
2783  void CodePrint();
2784  void CodeVerify();
2785#endif
2786  // Code entry points are aligned to 32 bytes.
2787  static const int kCodeAlignmentBits = 5;
2788  static const int kCodeAlignment = 1 << kCodeAlignmentBits;
2789  static const int kCodeAlignmentMask = kCodeAlignment - 1;
2790
2791  // Layout description.
2792  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2793  static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2794  static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2795  static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2796  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
2797  // Add padding to align the instruction start following right after
2798  // the Code object header.
2799  static const int kHeaderSize =
2800      (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2801          ~kCodeAlignmentMask;
2802
2803  // Byte offsets within kKindSpecificFlagsOffset.
2804  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2805
2806  // Flags layout.
2807  static const int kFlagsICStateShift        = 0;
2808  static const int kFlagsICInLoopShift       = 3;
2809  static const int kFlagsKindShift           = 4;
2810  static const int kFlagsTypeShift           = 8;
2811  static const int kFlagsArgumentsCountShift = 11;
2812
2813  static const int kFlagsICStateMask        = 0x00000007;  // 00000000111
2814  static const int kFlagsICInLoopMask       = 0x00000008;  // 00000001000
2815  static const int kFlagsKindMask           = 0x000000F0;  // 00011110000
2816  static const int kFlagsTypeMask           = 0x00000700;  // 11100000000
2817  static const int kFlagsArgumentsCountMask = 0xFFFFF800;
2818
2819  static const int kFlagsNotUsedInLookup =
2820      (kFlagsICInLoopMask | kFlagsTypeMask);
2821
2822 private:
2823  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2824};
2825
2826
2827// All heap objects have a Map that describes their structure.
2828//  A Map contains information about:
2829//  - Size information about the object
2830//  - How to iterate over an object (for garbage collection)
2831class Map: public HeapObject {
2832 public:
2833  // Instance size.
2834  inline int instance_size();
2835  inline void set_instance_size(int value);
2836
2837  // Count of properties allocated in the object.
2838  inline int inobject_properties();
2839  inline void set_inobject_properties(int value);
2840
2841  // Count of property fields pre-allocated in the object when first allocated.
2842  inline int pre_allocated_property_fields();
2843  inline void set_pre_allocated_property_fields(int value);
2844
2845  // Instance type.
2846  inline InstanceType instance_type();
2847  inline void set_instance_type(InstanceType value);
2848
2849  // Tells how many unused property fields are available in the
2850  // instance (only used for JSObject in fast mode).
2851  inline int unused_property_fields();
2852  inline void set_unused_property_fields(int value);
2853
2854  // Bit field.
2855  inline byte bit_field();
2856  inline void set_bit_field(byte value);
2857
2858  // Bit field 2.
2859  inline byte bit_field2();
2860  inline void set_bit_field2(byte value);
2861
2862  // Tells whether the object in the prototype property will be used
2863  // for instances created from this function.  If the prototype
2864  // property is set to a value that is not a JSObject, the prototype
2865  // property will not be used to create instances of the function.
2866  // See ECMA-262, 13.2.2.
2867  inline void set_non_instance_prototype(bool value);
2868  inline bool has_non_instance_prototype();
2869
2870  // Tells whether function has special prototype property. If not, prototype
2871  // property will not be created when accessed (will return undefined),
2872  // and construction from this function will not be allowed.
2873  inline void set_function_with_prototype(bool value);
2874  inline bool function_with_prototype();
2875
2876  // Tells whether the instance with this map should be ignored by the
2877  // __proto__ accessor.
2878  inline void set_is_hidden_prototype() {
2879    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2880  }
2881
2882  inline bool is_hidden_prototype() {
2883    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2884  }
2885
2886  // Records and queries whether the instance has a named interceptor.
2887  inline void set_has_named_interceptor() {
2888    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2889  }
2890
2891  inline bool has_named_interceptor() {
2892    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2893  }
2894
2895  // Records and queries whether the instance has an indexed interceptor.
2896  inline void set_has_indexed_interceptor() {
2897    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2898  }
2899
2900  inline bool has_indexed_interceptor() {
2901    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2902  }
2903
2904  // Tells whether the instance is undetectable.
2905  // An undetectable object is a special class of JSObject: 'typeof' operator
2906  // returns undefined, ToBoolean returns false. Otherwise it behaves like
2907  // a normal JS object.  It is useful for implementing undetectable
2908  // document.all in Firefox & Safari.
2909  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2910  inline void set_is_undetectable() {
2911    set_bit_field(bit_field() | (1 << kIsUndetectable));
2912  }
2913
2914  inline bool is_undetectable() {
2915    return ((1 << kIsUndetectable) & bit_field()) != 0;
2916  }
2917
2918  // Tells whether the instance has a call-as-function handler.
2919  inline void set_has_instance_call_handler() {
2920    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2921  }
2922
2923  inline bool has_instance_call_handler() {
2924    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2925  }
2926
2927  inline void set_is_extensible() {
2928    set_bit_field2(bit_field2() | (1 << kIsExtensible));
2929  }
2930
2931  inline bool is_extensible() {
2932    return ((1 << kIsExtensible) & bit_field2()) != 0;
2933  }
2934
2935  // Tells whether the instance needs security checks when accessing its
2936  // properties.
2937  inline void set_is_access_check_needed(bool access_check_needed);
2938  inline bool is_access_check_needed();
2939
2940  // [prototype]: implicit prototype object.
2941  DECL_ACCESSORS(prototype, Object)
2942
2943  // [constructor]: points back to the function responsible for this map.
2944  DECL_ACCESSORS(constructor, Object)
2945
2946  // [instance descriptors]: describes the object.
2947  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2948
2949  // [stub cache]: contains stubs compiled for this map.
2950  DECL_ACCESSORS(code_cache, Object)
2951
2952  Object* CopyDropDescriptors();
2953
2954  // Returns a copy of the map, with all transitions dropped from the
2955  // instance descriptors.
2956  Object* CopyDropTransitions();
2957
2958  // Returns the property index for name (only valid for FAST MODE).
2959  int PropertyIndexFor(String* name);
2960
2961  // Returns the next free property index (only valid for FAST MODE).
2962  int NextFreePropertyIndex();
2963
2964  // Returns the number of properties described in instance_descriptors.
2965  int NumberOfDescribedProperties();
2966
2967  // Casting.
2968  static inline Map* cast(Object* obj);
2969
2970  // Locate an accessor in the instance descriptor.
2971  AccessorDescriptor* FindAccessor(String* name);
2972
2973  // Code cache operations.
2974
2975  // Clears the code cache.
2976  inline void ClearCodeCache();
2977
2978  // Update code cache.
2979  Object* UpdateCodeCache(String* name, Code* code);
2980
2981  // Returns the found code or undefined if absent.
2982  Object* FindInCodeCache(String* name, Code::Flags flags);
2983
2984  // Returns the non-negative index of the code object if it is in the
2985  // cache and -1 otherwise.
2986  int IndexInCodeCache(Object* name, Code* code);
2987
2988  // Removes a code object from the code cache at the given index.
2989  void RemoveFromCodeCache(String* name, Code* code, int index);
2990
2991  // For every transition in this map, makes the transition's
2992  // target's prototype pointer point back to this map.
2993  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
2994  void CreateBackPointers();
2995
2996  // Set all map transitions from this map to dead maps to null.
2997  // Also, restore the original prototype on the targets of these
2998  // transitions, so that we do not process this map again while
2999  // following back pointers.
3000  void ClearNonLiveTransitions(Object* real_prototype);
3001
3002  // Dispatched behavior.
3003  void MapIterateBody(ObjectVisitor* v);
3004#ifdef DEBUG
3005  void MapPrint();
3006  void MapVerify();
3007#endif
3008
3009  static const int kMaxPreAllocatedPropertyFields = 255;
3010
3011  // Layout description.
3012  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
3013  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
3014  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
3015  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
3016  static const int kInstanceDescriptorsOffset =
3017      kConstructorOffset + kPointerSize;
3018  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
3019  static const int kPadStart = kCodeCacheOffset + kPointerSize;
3020  static const int kSize = MAP_SIZE_ALIGN(kPadStart);
3021
3022  // Byte offsets within kInstanceSizesOffset.
3023  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
3024  static const int kInObjectPropertiesByte = 1;
3025  static const int kInObjectPropertiesOffset =
3026      kInstanceSizesOffset + kInObjectPropertiesByte;
3027  static const int kPreAllocatedPropertyFieldsByte = 2;
3028  static const int kPreAllocatedPropertyFieldsOffset =
3029      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
3030  // The byte at position 3 is not in use at the moment.
3031
3032  // Byte offsets within kInstanceAttributesOffset attributes.
3033  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
3034  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3035  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3036  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3037
3038  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3039
3040  // Bit positions for bit field.
3041  static const int kUnused = 0;  // To be used for marking recently used maps.
3042  static const int kHasNonInstancePrototype = 1;
3043  static const int kIsHiddenPrototype = 2;
3044  static const int kHasNamedInterceptor = 3;
3045  static const int kHasIndexedInterceptor = 4;
3046  static const int kIsUndetectable = 5;
3047  static const int kHasInstanceCallHandler = 6;
3048  static const int kIsAccessCheckNeeded = 7;
3049
3050  // Bit positions for bit field 2
3051  static const int kIsExtensible = 0;
3052  static const int kFunctionWithPrototype = 1;
3053
3054  // Layout of the default cache. It holds alternating name and code objects.
3055  static const int kCodeCacheEntrySize = 2;
3056  static const int kCodeCacheEntryNameOffset = 0;
3057  static const int kCodeCacheEntryCodeOffset = 1;
3058
3059 private:
3060  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3061};
3062
3063
3064// An abstract superclass, a marker class really, for simple structure classes.
3065// It doesn't carry much functionality but allows struct classes to me
3066// identified in the type system.
3067class Struct: public HeapObject {
3068 public:
3069  inline void InitializeBody(int object_size);
3070  static inline Struct* cast(Object* that);
3071};
3072
3073
3074// Script describes a script which has been added to the VM.
3075class Script: public Struct {
3076 public:
3077  // Script types.
3078  enum Type {
3079    TYPE_NATIVE = 0,
3080    TYPE_EXTENSION = 1,
3081    TYPE_NORMAL = 2
3082  };
3083
3084  // Script compilation types.
3085  enum CompilationType {
3086    COMPILATION_TYPE_HOST = 0,
3087    COMPILATION_TYPE_EVAL = 1,
3088    COMPILATION_TYPE_JSON = 2
3089  };
3090
3091  // [source]: the script source.
3092  DECL_ACCESSORS(source, Object)
3093
3094  // [name]: the script name.
3095  DECL_ACCESSORS(name, Object)
3096
3097  // [id]: the script id.
3098  DECL_ACCESSORS(id, Object)
3099
3100  // [line_offset]: script line offset in resource from where it was extracted.
3101  DECL_ACCESSORS(line_offset, Smi)
3102
3103  // [column_offset]: script column offset in resource from where it was
3104  // extracted.
3105  DECL_ACCESSORS(column_offset, Smi)
3106
3107  // [data]: additional data associated with this script.
3108  DECL_ACCESSORS(data, Object)
3109
3110  // [context_data]: context data for the context this script was compiled in.
3111  DECL_ACCESSORS(context_data, Object)
3112
3113  // [wrapper]: the wrapper cache.
3114  DECL_ACCESSORS(wrapper, Proxy)
3115
3116  // [type]: the script type.
3117  DECL_ACCESSORS(type, Smi)
3118
3119  // [compilation]: how the the script was compiled.
3120  DECL_ACCESSORS(compilation_type, Smi)
3121
3122  // [line_ends]: FixedArray of line ends positions.
3123  DECL_ACCESSORS(line_ends, Object)
3124
3125  // [eval_from_shared]: for eval scripts the shared funcion info for the
3126  // function from which eval was called.
3127  DECL_ACCESSORS(eval_from_shared, Object)
3128
3129  // [eval_from_instructions_offset]: the instruction offset in the code for the
3130  // function from which eval was called where eval was called.
3131  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3132
3133  static inline Script* cast(Object* obj);
3134
3135  // If script source is an external string, check that the underlying
3136  // resource is accessible. Otherwise, always return true.
3137  inline bool HasValidSource();
3138
3139#ifdef DEBUG
3140  void ScriptPrint();
3141  void ScriptVerify();
3142#endif
3143
3144  static const int kSourceOffset = HeapObject::kHeaderSize;
3145  static const int kNameOffset = kSourceOffset + kPointerSize;
3146  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3147  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3148  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3149  static const int kContextOffset = kDataOffset + kPointerSize;
3150  static const int kWrapperOffset = kContextOffset + kPointerSize;
3151  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3152  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3153  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3154  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3155  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3156  static const int kEvalFrominstructionsOffsetOffset =
3157      kEvalFromSharedOffset + kPointerSize;
3158  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3159
3160 private:
3161  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3162};
3163
3164
3165// SharedFunctionInfo describes the JSFunction information that can be
3166// shared by multiple instances of the function.
3167class SharedFunctionInfo: public HeapObject {
3168 public:
3169  // [name]: Function name.
3170  DECL_ACCESSORS(name, Object)
3171
3172  // [code]: Function code.
3173  DECL_ACCESSORS(code, Code)
3174
3175  // [construct stub]: Code stub for constructing instances of this function.
3176  DECL_ACCESSORS(construct_stub, Code)
3177
3178  // Returns if this function has been compiled to native code yet.
3179  inline bool is_compiled();
3180
3181  // [length]: The function length - usually the number of declared parameters.
3182  // Use up to 2^30 parameters.
3183  inline int length();
3184  inline void set_length(int value);
3185
3186  // [formal parameter count]: The declared number of parameters.
3187  inline int formal_parameter_count();
3188  inline void set_formal_parameter_count(int value);
3189
3190  // Set the formal parameter count so the function code will be
3191  // called without using argument adaptor frames.
3192  inline void DontAdaptArguments();
3193
3194  // [expected_nof_properties]: Expected number of properties for the function.
3195  inline int expected_nof_properties();
3196  inline void set_expected_nof_properties(int value);
3197
3198  // [instance class name]: class name for instances.
3199  DECL_ACCESSORS(instance_class_name, Object)
3200
3201  // [function data]: This field holds some additional data for function.
3202  // Currently it either has FunctionTemplateInfo to make benefit the API
3203  // or Proxy wrapping CustomCallGenerator.
3204  // In the long run we don't want all functions to have this field but
3205  // we can fix that when we have a better model for storing hidden data
3206  // on objects.
3207  DECL_ACCESSORS(function_data, Object)
3208
3209  inline bool IsApiFunction();
3210  inline FunctionTemplateInfo* get_api_func_data();
3211  inline bool HasCustomCallGenerator();
3212
3213  // [script info]: Script from which the function originates.
3214  DECL_ACCESSORS(script, Object)
3215
3216  // [num_literals]: Number of literals used by this function.
3217  inline int num_literals();
3218  inline void set_num_literals(int value);
3219
3220  // [start_position_and_type]: Field used to store both the source code
3221  // position, whether or not the function is a function expression,
3222  // and whether or not the function is a toplevel function. The two
3223  // least significants bit indicates whether the function is an
3224  // expression and the rest contains the source code position.
3225  inline int start_position_and_type();
3226  inline void set_start_position_and_type(int value);
3227
3228  // [debug info]: Debug information.
3229  DECL_ACCESSORS(debug_info, Object)
3230
3231  // [inferred name]: Name inferred from variable or property
3232  // assignment of this function. Used to facilitate debugging and
3233  // profiling of JavaScript code written in OO style, where almost
3234  // all functions are anonymous but are assigned to object
3235  // properties.
3236  DECL_ACCESSORS(inferred_name, String)
3237
3238  // Position of the 'function' token in the script source.
3239  inline int function_token_position();
3240  inline void set_function_token_position(int function_token_position);
3241
3242  // Position of this function in the script source.
3243  inline int start_position();
3244  inline void set_start_position(int start_position);
3245
3246  // End position of this function in the script source.
3247  inline int end_position();
3248  inline void set_end_position(int end_position);
3249
3250  // Is this function a function expression in the source code.
3251  inline bool is_expression();
3252  inline void set_is_expression(bool value);
3253
3254  // Is this function a top-level function (scripts, evals).
3255  inline bool is_toplevel();
3256  inline void set_is_toplevel(bool value);
3257
3258  // Bit field containing various information collected by the compiler to
3259  // drive optimization.
3260  inline int compiler_hints();
3261  inline void set_compiler_hints(int value);
3262
3263  // Add information on assignments of the form this.x = ...;
3264  void SetThisPropertyAssignmentsInfo(
3265      bool has_only_simple_this_property_assignments,
3266      FixedArray* this_property_assignments);
3267
3268  // Clear information on assignments of the form this.x = ...;
3269  void ClearThisPropertyAssignmentsInfo();
3270
3271  // Indicate that this function only consists of assignments of the form
3272  // this.x = y; where y is either a constant or refers to an argument.
3273  inline bool has_only_simple_this_property_assignments();
3274
3275  inline bool try_full_codegen();
3276  inline void set_try_full_codegen(bool flag);
3277
3278  // Check whether a inlined constructor can be generated with the given
3279  // prototype.
3280  bool CanGenerateInlineConstructor(Object* prototype);
3281
3282  // For functions which only contains this property assignments this provides
3283  // access to the names for the properties assigned.
3284  DECL_ACCESSORS(this_property_assignments, Object)
3285  inline int this_property_assignments_count();
3286  inline void set_this_property_assignments_count(int value);
3287  String* GetThisPropertyAssignmentName(int index);
3288  bool IsThisPropertyAssignmentArgument(int index);
3289  int GetThisPropertyAssignmentArgument(int index);
3290  Object* GetThisPropertyAssignmentConstant(int index);
3291
3292  // [source code]: Source code for the function.
3293  bool HasSourceCode();
3294  Object* GetSourceCode();
3295
3296  // Calculate the instance size.
3297  int CalculateInstanceSize();
3298
3299  // Calculate the number of in-object properties.
3300  int CalculateInObjectProperties();
3301
3302  // Dispatched behavior.
3303  void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3304  // Set max_length to -1 for unlimited length.
3305  void SourceCodePrint(StringStream* accumulator, int max_length);
3306#ifdef DEBUG
3307  void SharedFunctionInfoPrint();
3308  void SharedFunctionInfoVerify();
3309#endif
3310
3311  // Casting.
3312  static inline SharedFunctionInfo* cast(Object* obj);
3313
3314  // Constants.
3315  static const int kDontAdaptArgumentsSentinel = -1;
3316
3317  // Layout description.
3318  // Pointer fields.
3319  static const int kNameOffset = HeapObject::kHeaderSize;
3320  static const int kCodeOffset = kNameOffset + kPointerSize;
3321  static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3322  static const int kInstanceClassNameOffset =
3323      kConstructStubOffset + kPointerSize;
3324  static const int kFunctionDataOffset =
3325      kInstanceClassNameOffset + kPointerSize;
3326  static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
3327  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3328  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3329  static const int kThisPropertyAssignmentsOffset =
3330      kInferredNameOffset + kPointerSize;
3331  // Integer fields.
3332  static const int kLengthOffset =
3333      kThisPropertyAssignmentsOffset + kPointerSize;
3334  static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3335  static const int kExpectedNofPropertiesOffset =
3336      kFormalParameterCountOffset + kIntSize;
3337  static const int kNumLiteralsOffset = kExpectedNofPropertiesOffset + kIntSize;
3338  static const int kStartPositionAndTypeOffset =
3339      kNumLiteralsOffset + kIntSize;
3340  static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3341  static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
3342  static const int kCompilerHintsOffset =
3343      kFunctionTokenPositionOffset + kIntSize;
3344  static const int kThisPropertyAssignmentsCountOffset =
3345      kCompilerHintsOffset + kIntSize;
3346  // Total size.
3347  static const int kSize = kThisPropertyAssignmentsCountOffset + kIntSize;
3348  static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
3349
3350 private:
3351  // Bit positions in start_position_and_type.
3352  // The source code start position is in the 30 most significant bits of
3353  // the start_position_and_type field.
3354  static const int kIsExpressionBit = 0;
3355  static const int kIsTopLevelBit   = 1;
3356  static const int kStartPositionShift = 2;
3357  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3358
3359  // Bit positions in compiler_hints.
3360  static const int kHasOnlySimpleThisPropertyAssignments = 0;
3361  static const int kTryFullCodegen = 1;
3362
3363  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3364};
3365
3366
3367// JSFunction describes JavaScript functions.
3368class JSFunction: public JSObject {
3369 public:
3370  // [prototype_or_initial_map]:
3371  DECL_ACCESSORS(prototype_or_initial_map, Object)
3372
3373  // [shared_function_info]: The information about the function that
3374  // can be shared by instances.
3375  DECL_ACCESSORS(shared, SharedFunctionInfo)
3376
3377  // [context]: The context for this function.
3378  inline Context* context();
3379  inline Object* unchecked_context();
3380  inline void set_context(Object* context);
3381
3382  // [code]: The generated code object for this function.  Executed
3383  // when the function is invoked, e.g. foo() or new foo(). See
3384  // [[Call]] and [[Construct]] description in ECMA-262, section
3385  // 8.6.2, page 27.
3386  inline Code* code();
3387  inline void set_code(Code* value);
3388
3389  // Tells whether this function is builtin.
3390  inline bool IsBuiltin();
3391
3392  // [literals]: Fixed array holding the materialized literals.
3393  //
3394  // If the function contains object, regexp or array literals, the
3395  // literals array prefix contains the object, regexp, and array
3396  // function to be used when creating these literals.  This is
3397  // necessary so that we do not dynamically lookup the object, regexp
3398  // or array functions.  Performing a dynamic lookup, we might end up
3399  // using the functions from a new context that we should not have
3400  // access to.
3401  DECL_ACCESSORS(literals, FixedArray)
3402
3403  // The initial map for an object created by this constructor.
3404  inline Map* initial_map();
3405  inline void set_initial_map(Map* value);
3406  inline bool has_initial_map();
3407
3408  // Get and set the prototype property on a JSFunction. If the
3409  // function has an initial map the prototype is set on the initial
3410  // map. Otherwise, the prototype is put in the initial map field
3411  // until an initial map is needed.
3412  inline bool has_prototype();
3413  inline bool has_instance_prototype();
3414  inline Object* prototype();
3415  inline Object* instance_prototype();
3416  Object* SetInstancePrototype(Object* value);
3417  Object* SetPrototype(Object* value);
3418
3419  // After prototype is removed, it will not be created when accessed, and
3420  // [[Construct]] from this function will not be allowed.
3421  Object* RemovePrototype();
3422  inline bool should_have_prototype();
3423
3424  // Accessor for this function's initial map's [[class]]
3425  // property. This is primarily used by ECMA native functions.  This
3426  // method sets the class_name field of this function's initial map
3427  // to a given value. It creates an initial map if this function does
3428  // not have one. Note that this method does not copy the initial map
3429  // if it has one already, but simply replaces it with the new value.
3430  // Instances created afterwards will have a map whose [[class]] is
3431  // set to 'value', but there is no guarantees on instances created
3432  // before.
3433  Object* SetInstanceClassName(String* name);
3434
3435  // Returns if this function has been compiled to native code yet.
3436  inline bool is_compiled();
3437
3438  // Casting.
3439  static inline JSFunction* cast(Object* obj);
3440
3441  // Dispatched behavior.
3442#ifdef DEBUG
3443  void JSFunctionPrint();
3444  void JSFunctionVerify();
3445#endif
3446
3447  // Returns the number of allocated literals.
3448  inline int NumberOfLiterals();
3449
3450  // Retrieve the global context from a function's literal array.
3451  static Context* GlobalContextFromLiterals(FixedArray* literals);
3452
3453  // Layout descriptors.
3454  static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3455  static const int kSharedFunctionInfoOffset =
3456      kPrototypeOrInitialMapOffset + kPointerSize;
3457  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3458  static const int kLiteralsOffset = kContextOffset + kPointerSize;
3459  static const int kSize = kLiteralsOffset + kPointerSize;
3460
3461  // Layout of the literals array.
3462  static const int kLiteralsPrefixSize = 1;
3463  static const int kLiteralGlobalContextIndex = 0;
3464 private:
3465  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3466};
3467
3468
3469// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3470// and the prototype is hidden. JSGlobalProxy always delegates
3471// property accesses to its prototype if the prototype is not null.
3472//
3473// A JSGlobalProxy can be reinitialized which will preserve its identity.
3474//
3475// Accessing a JSGlobalProxy requires security check.
3476
3477class JSGlobalProxy : public JSObject {
3478 public:
3479  // [context]: the owner global context of this proxy object.
3480  // It is null value if this object is not used by any context.
3481  DECL_ACCESSORS(context, Object)
3482
3483  // Casting.
3484  static inline JSGlobalProxy* cast(Object* obj);
3485
3486  // Dispatched behavior.
3487#ifdef DEBUG
3488  void JSGlobalProxyPrint();
3489  void JSGlobalProxyVerify();
3490#endif
3491
3492  // Layout description.
3493  static const int kContextOffset = JSObject::kHeaderSize;
3494  static const int kSize = kContextOffset + kPointerSize;
3495
3496 private:
3497
3498  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3499};
3500
3501
3502// Forward declaration.
3503class JSBuiltinsObject;
3504
3505// Common super class for JavaScript global objects and the special
3506// builtins global objects.
3507class GlobalObject: public JSObject {
3508 public:
3509  // [builtins]: the object holding the runtime routines written in JS.
3510  DECL_ACCESSORS(builtins, JSBuiltinsObject)
3511
3512  // [global context]: the global context corresponding to this global object.
3513  DECL_ACCESSORS(global_context, Context)
3514
3515  // [global receiver]: the global receiver object of the context
3516  DECL_ACCESSORS(global_receiver, JSObject)
3517
3518  // Retrieve the property cell used to store a property.
3519  Object* GetPropertyCell(LookupResult* result);
3520
3521  // Ensure that the global object has a cell for the given property name.
3522  Object* EnsurePropertyCell(String* name);
3523
3524  // Casting.
3525  static inline GlobalObject* cast(Object* obj);
3526
3527  // Layout description.
3528  static const int kBuiltinsOffset = JSObject::kHeaderSize;
3529  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3530  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3531  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3532
3533 private:
3534  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3535
3536  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3537};
3538
3539
3540// JavaScript global object.
3541class JSGlobalObject: public GlobalObject {
3542 public:
3543
3544  // Casting.
3545  static inline JSGlobalObject* cast(Object* obj);
3546
3547  // Dispatched behavior.
3548#ifdef DEBUG
3549  void JSGlobalObjectPrint();
3550  void JSGlobalObjectVerify();
3551#endif
3552
3553  // Layout description.
3554  static const int kSize = GlobalObject::kHeaderSize;
3555
3556 private:
3557  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3558};
3559
3560
3561// Builtins global object which holds the runtime routines written in
3562// JavaScript.
3563class JSBuiltinsObject: public GlobalObject {
3564 public:
3565  // Accessors for the runtime routines written in JavaScript.
3566  inline Object* javascript_builtin(Builtins::JavaScript id);
3567  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3568
3569  // Accessors for code of the runtime routines written in JavaScript.
3570  inline Code* javascript_builtin_code(Builtins::JavaScript id);
3571  inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
3572
3573  // Casting.
3574  static inline JSBuiltinsObject* cast(Object* obj);
3575
3576  // Dispatched behavior.
3577#ifdef DEBUG
3578  void JSBuiltinsObjectPrint();
3579  void JSBuiltinsObjectVerify();
3580#endif
3581
3582  // Layout description.  The size of the builtins object includes
3583  // room for two pointers per runtime routine written in javascript
3584  // (function and code object).
3585  static const int kJSBuiltinsCount = Builtins::id_count;
3586  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3587  static const int kJSBuiltinsCodeOffset =
3588      GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
3589  static const int kSize =
3590      kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
3591
3592  static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
3593    return kJSBuiltinsOffset + id * kPointerSize;
3594  }
3595
3596  static int OffsetOfCodeWithId(Builtins::JavaScript id) {
3597    return kJSBuiltinsCodeOffset + id * kPointerSize;
3598  }
3599
3600 private:
3601  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3602};
3603
3604
3605// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3606class JSValue: public JSObject {
3607 public:
3608  // [value]: the object being wrapped.
3609  DECL_ACCESSORS(value, Object)
3610
3611  // Casting.
3612  static inline JSValue* cast(Object* obj);
3613
3614  // Dispatched behavior.
3615#ifdef DEBUG
3616  void JSValuePrint();
3617  void JSValueVerify();
3618#endif
3619
3620  // Layout description.
3621  static const int kValueOffset = JSObject::kHeaderSize;
3622  static const int kSize = kValueOffset + kPointerSize;
3623
3624 private:
3625  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3626};
3627
3628// Regular expressions
3629// The regular expression holds a single reference to a FixedArray in
3630// the kDataOffset field.
3631// The FixedArray contains the following data:
3632// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3633// - reference to the original source string
3634// - reference to the original flag string
3635// If it is an atom regexp
3636// - a reference to a literal string to search for
3637// If it is an irregexp regexp:
3638// - a reference to code for ASCII inputs (bytecode or compiled).
3639// - a reference to code for UC16 inputs (bytecode or compiled).
3640// - max number of registers used by irregexp implementations.
3641// - number of capture registers (output values) of the regexp.
3642class JSRegExp: public JSObject {
3643 public:
3644  // Meaning of Type:
3645  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3646  // ATOM: A simple string to match against using an indexOf operation.
3647  // IRREGEXP: Compiled with Irregexp.
3648  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3649  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3650  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3651
3652  class Flags {
3653   public:
3654    explicit Flags(uint32_t value) : value_(value) { }
3655    bool is_global() { return (value_ & GLOBAL) != 0; }
3656    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3657    bool is_multiline() { return (value_ & MULTILINE) != 0; }
3658    uint32_t value() { return value_; }
3659   private:
3660    uint32_t value_;
3661  };
3662
3663  DECL_ACCESSORS(data, Object)
3664
3665  inline Type TypeTag();
3666  inline int CaptureCount();
3667  inline Flags GetFlags();
3668  inline String* Pattern();
3669  inline Object* DataAt(int index);
3670  // Set implementation data after the object has been prepared.
3671  inline void SetDataAt(int index, Object* value);
3672  static int code_index(bool is_ascii) {
3673    if (is_ascii) {
3674      return kIrregexpASCIICodeIndex;
3675    } else {
3676      return kIrregexpUC16CodeIndex;
3677    }
3678  }
3679
3680  static inline JSRegExp* cast(Object* obj);
3681
3682  // Dispatched behavior.
3683#ifdef DEBUG
3684  void JSRegExpVerify();
3685#endif
3686
3687  static const int kDataOffset = JSObject::kHeaderSize;
3688  static const int kSize = kDataOffset + kPointerSize;
3689
3690  // Indices in the data array.
3691  static const int kTagIndex = 0;
3692  static const int kSourceIndex = kTagIndex + 1;
3693  static const int kFlagsIndex = kSourceIndex + 1;
3694  static const int kDataIndex = kFlagsIndex + 1;
3695  // The data fields are used in different ways depending on the
3696  // value of the tag.
3697  // Atom regexps (literal strings).
3698  static const int kAtomPatternIndex = kDataIndex;
3699
3700  static const int kAtomDataSize = kAtomPatternIndex + 1;
3701
3702  // Irregexp compiled code or bytecode for ASCII. If compilation
3703  // fails, this fields hold an exception object that should be
3704  // thrown if the regexp is used again.
3705  static const int kIrregexpASCIICodeIndex = kDataIndex;
3706  // Irregexp compiled code or bytecode for UC16.  If compilation
3707  // fails, this fields hold an exception object that should be
3708  // thrown if the regexp is used again.
3709  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3710  // Maximal number of registers used by either ASCII or UC16.
3711  // Only used to check that there is enough stack space
3712  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3713  // Number of captures in the compiled regexp.
3714  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3715
3716  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
3717
3718  // Offsets directly into the data fixed array.
3719  static const int kDataTagOffset =
3720      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
3721  static const int kDataAsciiCodeOffset =
3722      FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
3723  static const int kDataUC16CodeOffset =
3724      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
3725  static const int kIrregexpCaptureCountOffset =
3726      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
3727
3728  // In-object fields.
3729  static const int kSourceFieldIndex = 0;
3730  static const int kGlobalFieldIndex = 1;
3731  static const int kIgnoreCaseFieldIndex = 2;
3732  static const int kMultilineFieldIndex = 3;
3733  static const int kLastIndexFieldIndex = 4;
3734};
3735
3736
3737class CompilationCacheShape {
3738 public:
3739  static inline bool IsMatch(HashTableKey* key, Object* value) {
3740    return key->IsMatch(value);
3741  }
3742
3743  static inline uint32_t Hash(HashTableKey* key) {
3744    return key->Hash();
3745  }
3746
3747  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3748    return key->HashForObject(object);
3749  }
3750
3751  static Object* AsObject(HashTableKey* key) {
3752    return key->AsObject();
3753  }
3754
3755  static const int kPrefixSize = 0;
3756  static const int kEntrySize = 2;
3757};
3758
3759
3760class CompilationCacheTable: public HashTable<CompilationCacheShape,
3761                                              HashTableKey*> {
3762 public:
3763  // Find cached value for a string key, otherwise return null.
3764  Object* Lookup(String* src);
3765  Object* LookupEval(String* src, Context* context);
3766  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3767  Object* Put(String* src, Object* value);
3768  Object* PutEval(String* src, Context* context, Object* value);
3769  Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3770
3771  static inline CompilationCacheTable* cast(Object* obj);
3772
3773 private:
3774  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3775};
3776
3777
3778class CodeCache: public Struct {
3779 public:
3780  DECL_ACCESSORS(default_cache, FixedArray)
3781  DECL_ACCESSORS(normal_type_cache, Object)
3782
3783  // Add the code object to the cache.
3784  Object* Update(String* name, Code* code);
3785
3786  // Lookup code object in the cache. Returns code object if found and undefined
3787  // if not.
3788  Object* Lookup(String* name, Code::Flags flags);
3789
3790  // Get the internal index of a code object in the cache. Returns -1 if the
3791  // code object is not in that cache. This index can be used to later call
3792  // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
3793  // RemoveByIndex.
3794  int GetIndex(Object* name, Code* code);
3795
3796  // Remove an object from the cache with the provided internal index.
3797  void RemoveByIndex(Object* name, Code* code, int index);
3798
3799  static inline CodeCache* cast(Object* obj);
3800
3801#ifdef DEBUG
3802  void CodeCachePrint();
3803  void CodeCacheVerify();
3804#endif
3805
3806  static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
3807  static const int kNormalTypeCacheOffset =
3808      kDefaultCacheOffset + kPointerSize;
3809  static const int kSize = kNormalTypeCacheOffset + kPointerSize;
3810
3811 private:
3812  Object* UpdateDefaultCache(String* name, Code* code);
3813  Object* UpdateNormalTypeCache(String* name, Code* code);
3814  Object* LookupDefaultCache(String* name, Code::Flags flags);
3815  Object* LookupNormalTypeCache(String* name, Code::Flags flags);
3816
3817  // Code cache layout of the default cache. Elements are alternating name and
3818  // code objects for non normal load/store/call IC's.
3819  static const int kCodeCacheEntrySize = 2;
3820  static const int kCodeCacheEntryNameOffset = 0;
3821  static const int kCodeCacheEntryCodeOffset = 1;
3822
3823  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
3824};
3825
3826
3827class CodeCacheHashTableShape {
3828 public:
3829  static inline bool IsMatch(HashTableKey* key, Object* value) {
3830    return key->IsMatch(value);
3831  }
3832
3833  static inline uint32_t Hash(HashTableKey* key) {
3834    return key->Hash();
3835  }
3836
3837  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3838    return key->HashForObject(object);
3839  }
3840
3841  static Object* AsObject(HashTableKey* key) {
3842    return key->AsObject();
3843  }
3844
3845  static const int kPrefixSize = 0;
3846  static const int kEntrySize = 2;
3847};
3848
3849
3850class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
3851                                           HashTableKey*> {
3852 public:
3853  Object* Lookup(String* name, Code::Flags flags);
3854  Object* Put(String* name, Code* code);
3855
3856  int GetIndex(String* name, Code::Flags flags);
3857  void RemoveByIndex(int index);
3858
3859  static inline CodeCacheHashTable* cast(Object* obj);
3860
3861  // Initial size of the fixed array backing the hash table.
3862  static const int kInitialSize = 64;
3863
3864 private:
3865  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
3866};
3867
3868
3869enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3870enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3871
3872
3873class StringHasher {
3874 public:
3875  inline StringHasher(int length);
3876
3877  // Returns true if the hash of this string can be computed without
3878  // looking at the contents.
3879  inline bool has_trivial_hash();
3880
3881  // Add a character to the hash and update the array index calculation.
3882  inline void AddCharacter(uc32 c);
3883
3884  // Adds a character to the hash but does not update the array index
3885  // calculation.  This can only be called when it has been verified
3886  // that the input is not an array index.
3887  inline void AddCharacterNoIndex(uc32 c);
3888
3889  // Returns the value to store in the hash field of a string with
3890  // the given length and contents.
3891  uint32_t GetHashField();
3892
3893  // Returns true if the characters seen so far make up a legal array
3894  // index.
3895  bool is_array_index() { return is_array_index_; }
3896
3897  bool is_valid() { return is_valid_; }
3898
3899  void invalidate() { is_valid_ = false; }
3900
3901 private:
3902
3903  uint32_t array_index() {
3904    ASSERT(is_array_index());
3905    return array_index_;
3906  }
3907
3908  inline uint32_t GetHash();
3909
3910  int length_;
3911  uint32_t raw_running_hash_;
3912  uint32_t array_index_;
3913  bool is_array_index_;
3914  bool is_first_char_;
3915  bool is_valid_;
3916  friend class TwoCharHashTableKey;
3917};
3918
3919
3920// The characteristics of a string are stored in its map.  Retrieving these
3921// few bits of information is moderately expensive, involving two memory
3922// loads where the second is dependent on the first.  To improve efficiency
3923// the shape of the string is given its own class so that it can be retrieved
3924// once and used for several string operations.  A StringShape is small enough
3925// to be passed by value and is immutable, but be aware that flattening a
3926// string can potentially alter its shape.  Also be aware that a GC caused by
3927// something else can alter the shape of a string due to ConsString
3928// shortcutting.  Keeping these restrictions in mind has proven to be error-
3929// prone and so we no longer put StringShapes in variables unless there is a
3930// concrete performance benefit at that particular point in the code.
3931class StringShape BASE_EMBEDDED {
3932 public:
3933  inline explicit StringShape(String* s);
3934  inline explicit StringShape(Map* s);
3935  inline explicit StringShape(InstanceType t);
3936  inline bool IsSequential();
3937  inline bool IsExternal();
3938  inline bool IsCons();
3939  inline bool IsExternalAscii();
3940  inline bool IsExternalTwoByte();
3941  inline bool IsSequentialAscii();
3942  inline bool IsSequentialTwoByte();
3943  inline bool IsSymbol();
3944  inline StringRepresentationTag representation_tag();
3945  inline uint32_t full_representation_tag();
3946  inline uint32_t size_tag();
3947#ifdef DEBUG
3948  inline uint32_t type() { return type_; }
3949  inline void invalidate() { valid_ = false; }
3950  inline bool valid() { return valid_; }
3951#else
3952  inline void invalidate() { }
3953#endif
3954 private:
3955  uint32_t type_;
3956#ifdef DEBUG
3957  inline void set_valid() { valid_ = true; }
3958  bool valid_;
3959#else
3960  inline void set_valid() { }
3961#endif
3962};
3963
3964
3965// The String abstract class captures JavaScript string values:
3966//
3967// Ecma-262:
3968//  4.3.16 String Value
3969//    A string value is a member of the type String and is a finite
3970//    ordered sequence of zero or more 16-bit unsigned integer values.
3971//
3972// All string values have a length field.
3973class String: public HeapObject {
3974 public:
3975  // Get and set the length of the string.
3976  inline int length();
3977  inline void set_length(int value);
3978
3979  // Get and set the hash field of the string.
3980  inline uint32_t hash_field();
3981  inline void set_hash_field(uint32_t value);
3982
3983  inline bool IsAsciiRepresentation();
3984  inline bool IsTwoByteRepresentation();
3985
3986  // Check whether this string is an external two-byte string that in
3987  // fact contains only ascii characters.
3988  //
3989  // Such strings may appear when the embedder prefers two-byte
3990  // representations even for ascii data.
3991  inline bool IsExternalTwoByteStringWithAsciiChars();
3992
3993  // Get and set individual two byte chars in the string.
3994  inline void Set(int index, uint16_t value);
3995  // Get individual two byte char in the string.  Repeated calls
3996  // to this method are not efficient unless the string is flat.
3997  inline uint16_t Get(int index);
3998
3999  // Try to flatten the top level ConsString that is hiding behind this
4000  // string.  This is a no-op unless the string is a ConsString.  Flatten
4001  // mutates the ConsString and might return a failure.
4002  Object* SlowTryFlatten(PretenureFlag pretenure);
4003
4004  // Try to flatten the string.  Checks first inline to see if it is necessary.
4005  // Do not handle allocation failures.  After calling TryFlatten, the
4006  // string could still be a ConsString, in which case a failure is returned.
4007  // Use FlattenString from Handles.cc to be sure to flatten.
4008  inline Object* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
4009
4010  Vector<const char> ToAsciiVector();
4011  Vector<const uc16> ToUC16Vector();
4012
4013  // Mark the string as an undetectable object. It only applies to
4014  // ascii and two byte string types.
4015  bool MarkAsUndetectable();
4016
4017  // Return a substring.
4018  Object* SubString(int from, int to, PretenureFlag pretenure = NOT_TENURED);
4019
4020  // String equality operations.
4021  inline bool Equals(String* other);
4022  bool IsEqualTo(Vector<const char> str);
4023
4024  // Return a UTF8 representation of the string.  The string is null
4025  // terminated but may optionally contain nulls.  Length is returned
4026  // in length_output if length_output is not a null pointer  The string
4027  // should be nearly flat, otherwise the performance of this method may
4028  // be very slow (quadratic in the length).  Setting robustness_flag to
4029  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4030  // handles unexpected data without causing assert failures and it does not
4031  // do any heap allocations.  This is useful when printing stack traces.
4032  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
4033                               RobustnessFlag robustness_flag,
4034                               int offset,
4035                               int length,
4036                               int* length_output = 0);
4037  SmartPointer<char> ToCString(
4038      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
4039      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
4040      int* length_output = 0);
4041
4042  int Utf8Length();
4043
4044  // Return a 16 bit Unicode representation of the string.
4045  // The string should be nearly flat, otherwise the performance of
4046  // of this method may be very bad.  Setting robustness_flag to
4047  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4048  // handles unexpected data without causing assert failures and it does not
4049  // do any heap allocations.  This is useful when printing stack traces.
4050  SmartPointer<uc16> ToWideCString(
4051      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
4052
4053  // Tells whether the hash code has been computed.
4054  inline bool HasHashCode();
4055
4056  // Returns a hash value used for the property table
4057  inline uint32_t Hash();
4058
4059  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
4060                                   int length);
4061
4062  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
4063                                uint32_t* index,
4064                                int length);
4065
4066  // Externalization.
4067  bool MakeExternal(v8::String::ExternalStringResource* resource);
4068  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
4069
4070  // Conversion.
4071  inline bool AsArrayIndex(uint32_t* index);
4072
4073  // Casting.
4074  static inline String* cast(Object* obj);
4075
4076  void PrintOn(FILE* out);
4077
4078  // For use during stack traces.  Performs rudimentary sanity check.
4079  bool LooksValid();
4080
4081  // Dispatched behavior.
4082  void StringShortPrint(StringStream* accumulator);
4083#ifdef DEBUG
4084  void StringPrint();
4085  void StringVerify();
4086#endif
4087  inline bool IsFlat();
4088
4089  // Layout description.
4090  static const int kLengthOffset = HeapObject::kHeaderSize;
4091  static const int kHashFieldOffset = kLengthOffset + kPointerSize;
4092  static const int kSize = kHashFieldOffset + kIntSize;
4093  // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
4094
4095  // Maximum number of characters to consider when trying to convert a string
4096  // value into an array index.
4097  static const int kMaxArrayIndexSize = 10;
4098
4099  // Max ascii char code.
4100  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
4101  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
4102  static const int kMaxUC16CharCode = 0xffff;
4103
4104  // Minimum length for a cons string.
4105  static const int kMinNonFlatLength = 13;
4106
4107  // Mask constant for checking if a string has a computed hash code
4108  // and if it is an array index.  The least significant bit indicates
4109  // whether a hash code has been computed.  If the hash code has been
4110  // computed the 2nd bit tells whether the string can be used as an
4111  // array index.
4112  static const int kHashComputedMask = 1;
4113  static const int kIsArrayIndexMask = 1 << 1;
4114  static const int kNofLengthBitFields = 2;
4115
4116  // Shift constant retrieving hash code from hash field.
4117  static const int kHashShift = kNofLengthBitFields;
4118
4119  // Array index strings this short can keep their index in the hash
4120  // field.
4121  static const int kMaxCachedArrayIndexLength = 7;
4122
4123  // For strings which are array indexes the hash value has the string length
4124  // mixed into the hash, mainly to avoid a hash value of zero which would be
4125  // the case for the string '0'. 24 bits are used for the array index value.
4126  static const int kArrayIndexHashLengthShift = 24 + kNofLengthBitFields;
4127  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
4128  static const int kArrayIndexValueBits =
4129      kArrayIndexHashLengthShift - kHashShift;
4130
4131  // Value of empty hash field indicating that the hash is not computed.
4132  static const int kEmptyHashField = 0;
4133
4134  // Maximal string length.
4135  static const int kMaxLength = (1 << (32 - 2)) - 1;
4136
4137  // Max length for computing hash. For strings longer than this limit the
4138  // string length is used as the hash value.
4139  static const int kMaxHashCalcLength = 16383;
4140
4141  // Limit for truncation in short printing.
4142  static const int kMaxShortPrintLength = 1024;
4143
4144  // Support for regular expressions.
4145  const uc16* GetTwoByteData();
4146  const uc16* GetTwoByteData(unsigned start);
4147
4148  // Support for StringInputBuffer
4149  static const unibrow::byte* ReadBlock(String* input,
4150                                        unibrow::byte* util_buffer,
4151                                        unsigned capacity,
4152                                        unsigned* remaining,
4153                                        unsigned* offset);
4154  static const unibrow::byte* ReadBlock(String** input,
4155                                        unibrow::byte* util_buffer,
4156                                        unsigned capacity,
4157                                        unsigned* remaining,
4158                                        unsigned* offset);
4159
4160  // Helper function for flattening strings.
4161  template <typename sinkchar>
4162  static void WriteToFlat(String* source,
4163                          sinkchar* sink,
4164                          int from,
4165                          int to);
4166
4167 protected:
4168  class ReadBlockBuffer {
4169   public:
4170    ReadBlockBuffer(unibrow::byte* util_buffer_,
4171                    unsigned cursor_,
4172                    unsigned capacity_,
4173                    unsigned remaining_) :
4174      util_buffer(util_buffer_),
4175      cursor(cursor_),
4176      capacity(capacity_),
4177      remaining(remaining_) {
4178    }
4179    unibrow::byte* util_buffer;
4180    unsigned       cursor;
4181    unsigned       capacity;
4182    unsigned       remaining;
4183  };
4184
4185  static inline const unibrow::byte* ReadBlock(String* input,
4186                                               ReadBlockBuffer* buffer,
4187                                               unsigned* offset,
4188                                               unsigned max_chars);
4189  static void ReadBlockIntoBuffer(String* input,
4190                                  ReadBlockBuffer* buffer,
4191                                  unsigned* offset_ptr,
4192                                  unsigned max_chars);
4193
4194 private:
4195  // Slow case of String::Equals.  This implementation works on any strings
4196  // but it is most efficient on strings that are almost flat.
4197  bool SlowEquals(String* other);
4198
4199  // Slow case of AsArrayIndex.
4200  bool SlowAsArrayIndex(uint32_t* index);
4201
4202  // Compute and set the hash code.
4203  uint32_t ComputeAndSetHash();
4204
4205  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4206};
4207
4208
4209// The SeqString abstract class captures sequential string values.
4210class SeqString: public String {
4211 public:
4212
4213  // Casting.
4214  static inline SeqString* cast(Object* obj);
4215
4216 private:
4217  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4218};
4219
4220
4221// The AsciiString class captures sequential ascii string objects.
4222// Each character in the AsciiString is an ascii character.
4223class SeqAsciiString: public SeqString {
4224 public:
4225  // Dispatched behavior.
4226  inline uint16_t SeqAsciiStringGet(int index);
4227  inline void SeqAsciiStringSet(int index, uint16_t value);
4228
4229  // Get the address of the characters in this string.
4230  inline Address GetCharsAddress();
4231
4232  inline char* GetChars();
4233
4234  // Casting
4235  static inline SeqAsciiString* cast(Object* obj);
4236
4237  // Garbage collection support.  This method is called by the
4238  // garbage collector to compute the actual size of an AsciiString
4239  // instance.
4240  inline int SeqAsciiStringSize(InstanceType instance_type);
4241
4242  // Computes the size for an AsciiString instance of a given length.
4243  static int SizeFor(int length) {
4244    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
4245  }
4246
4247  // Layout description.
4248  static const int kHeaderSize = String::kSize;
4249  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4250
4251  // Maximal memory usage for a single sequential ASCII string.
4252  static const int kMaxSize = 512 * MB;
4253  // Maximal length of a single sequential ASCII string.
4254  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4255  static const int kMaxLength = (kMaxSize - kHeaderSize);
4256
4257  // Support for StringInputBuffer.
4258  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4259                                                unsigned* offset,
4260                                                unsigned chars);
4261  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4262                                                      unsigned* offset,
4263                                                      unsigned chars);
4264
4265 private:
4266  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4267};
4268
4269
4270// The TwoByteString class captures sequential unicode string objects.
4271// Each character in the TwoByteString is a two-byte uint16_t.
4272class SeqTwoByteString: public SeqString {
4273 public:
4274  // Dispatched behavior.
4275  inline uint16_t SeqTwoByteStringGet(int index);
4276  inline void SeqTwoByteStringSet(int index, uint16_t value);
4277
4278  // Get the address of the characters in this string.
4279  inline Address GetCharsAddress();
4280
4281  inline uc16* GetChars();
4282
4283  // For regexp code.
4284  const uint16_t* SeqTwoByteStringGetData(unsigned start);
4285
4286  // Casting
4287  static inline SeqTwoByteString* cast(Object* obj);
4288
4289  // Garbage collection support.  This method is called by the
4290  // garbage collector to compute the actual size of a TwoByteString
4291  // instance.
4292  inline int SeqTwoByteStringSize(InstanceType instance_type);
4293
4294  // Computes the size for a TwoByteString instance of a given length.
4295  static int SizeFor(int length) {
4296    return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4297  }
4298
4299  // Layout description.
4300  static const int kHeaderSize = String::kSize;
4301  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4302
4303  // Maximal memory usage for a single sequential two-byte string.
4304  static const int kMaxSize = 512 * MB;
4305  // Maximal length of a single sequential two-byte string.
4306  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4307  static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4308
4309  // Support for StringInputBuffer.
4310  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4311                                                  unsigned* offset_ptr,
4312                                                  unsigned chars);
4313
4314 private:
4315  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4316};
4317
4318
4319// The ConsString class describes string values built by using the
4320// addition operator on strings.  A ConsString is a pair where the
4321// first and second components are pointers to other string values.
4322// One or both components of a ConsString can be pointers to other
4323// ConsStrings, creating a binary tree of ConsStrings where the leaves
4324// are non-ConsString string values.  The string value represented by
4325// a ConsString can be obtained by concatenating the leaf string
4326// values in a left-to-right depth-first traversal of the tree.
4327class ConsString: public String {
4328 public:
4329  // First string of the cons cell.
4330  inline String* first();
4331  // Doesn't check that the result is a string, even in debug mode.  This is
4332  // useful during GC where the mark bits confuse the checks.
4333  inline Object* unchecked_first();
4334  inline void set_first(String* first,
4335                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4336
4337  // Second string of the cons cell.
4338  inline String* second();
4339  // Doesn't check that the result is a string, even in debug mode.  This is
4340  // useful during GC where the mark bits confuse the checks.
4341  inline Object* unchecked_second();
4342  inline void set_second(String* second,
4343                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4344
4345  // Dispatched behavior.
4346  uint16_t ConsStringGet(int index);
4347
4348  // Casting.
4349  static inline ConsString* cast(Object* obj);
4350
4351  // Garbage collection support.  This method is called during garbage
4352  // collection to iterate through the heap pointers in the body of
4353  // the ConsString.
4354  void ConsStringIterateBody(ObjectVisitor* v);
4355
4356  // Layout description.
4357  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4358  static const int kSecondOffset = kFirstOffset + kPointerSize;
4359  static const int kSize = kSecondOffset + kPointerSize;
4360
4361  // Support for StringInputBuffer.
4362  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4363                                                  unsigned* offset_ptr,
4364                                                  unsigned chars);
4365  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4366                                            unsigned* offset_ptr,
4367                                            unsigned chars);
4368
4369  // Minimum length for a cons string.
4370  static const int kMinLength = 13;
4371
4372 private:
4373  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4374};
4375
4376
4377// The ExternalString class describes string values that are backed by
4378// a string resource that lies outside the V8 heap.  ExternalStrings
4379// consist of the length field common to all strings, a pointer to the
4380// external resource.  It is important to ensure (externally) that the
4381// resource is not deallocated while the ExternalString is live in the
4382// V8 heap.
4383//
4384// The API expects that all ExternalStrings are created through the
4385// API.  Therefore, ExternalStrings should not be used internally.
4386class ExternalString: public String {
4387 public:
4388  // Casting
4389  static inline ExternalString* cast(Object* obj);
4390
4391  // Layout description.
4392  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4393  static const int kSize = kResourceOffset + kPointerSize;
4394
4395  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4396
4397 private:
4398  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4399};
4400
4401
4402// The ExternalAsciiString class is an external string backed by an
4403// ASCII string.
4404class ExternalAsciiString: public ExternalString {
4405 public:
4406  typedef v8::String::ExternalAsciiStringResource Resource;
4407
4408  // The underlying resource.
4409  inline Resource* resource();
4410  inline void set_resource(Resource* buffer);
4411
4412  // Dispatched behavior.
4413  uint16_t ExternalAsciiStringGet(int index);
4414
4415  // Casting.
4416  static inline ExternalAsciiString* cast(Object* obj);
4417
4418  // Garbage collection support.
4419  void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4420
4421  // Support for StringInputBuffer.
4422  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4423                                                    unsigned* offset,
4424                                                    unsigned chars);
4425  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4426                                                     unsigned* offset,
4427                                                     unsigned chars);
4428
4429 private:
4430  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4431};
4432
4433
4434// The ExternalTwoByteString class is an external string backed by a UTF-16
4435// encoded string.
4436class ExternalTwoByteString: public ExternalString {
4437 public:
4438  typedef v8::String::ExternalStringResource Resource;
4439
4440  // The underlying string resource.
4441  inline Resource* resource();
4442  inline void set_resource(Resource* buffer);
4443
4444  // Dispatched behavior.
4445  uint16_t ExternalTwoByteStringGet(int index);
4446
4447  // For regexp code.
4448  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4449
4450  // Casting.
4451  static inline ExternalTwoByteString* cast(Object* obj);
4452
4453  // Garbage collection support.
4454  void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4455
4456  // Support for StringInputBuffer.
4457  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4458                                                unsigned* offset_ptr,
4459                                                unsigned chars);
4460
4461 private:
4462  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4463};
4464
4465
4466// Utility superclass for stack-allocated objects that must be updated
4467// on gc.  It provides two ways for the gc to update instances, either
4468// iterating or updating after gc.
4469class Relocatable BASE_EMBEDDED {
4470 public:
4471  inline Relocatable() : prev_(top_) { top_ = this; }
4472  virtual ~Relocatable() {
4473    ASSERT_EQ(top_, this);
4474    top_ = prev_;
4475  }
4476  virtual void IterateInstance(ObjectVisitor* v) { }
4477  virtual void PostGarbageCollection() { }
4478
4479  static void PostGarbageCollectionProcessing();
4480  static int ArchiveSpacePerThread();
4481  static char* ArchiveState(char* to);
4482  static char* RestoreState(char* from);
4483  static void Iterate(ObjectVisitor* v);
4484  static void Iterate(ObjectVisitor* v, Relocatable* top);
4485  static char* Iterate(ObjectVisitor* v, char* t);
4486 private:
4487  static Relocatable* top_;
4488  Relocatable* prev_;
4489};
4490
4491
4492// A flat string reader provides random access to the contents of a
4493// string independent of the character width of the string.  The handle
4494// must be valid as long as the reader is being used.
4495class FlatStringReader : public Relocatable {
4496 public:
4497  explicit FlatStringReader(Handle<String> str);
4498  explicit FlatStringReader(Vector<const char> input);
4499  void PostGarbageCollection();
4500  inline uc32 Get(int index);
4501  int length() { return length_; }
4502 private:
4503  String** str_;
4504  bool is_ascii_;
4505  int length_;
4506  const void* start_;
4507};
4508
4509
4510// Note that StringInputBuffers are not valid across a GC!  To fix this
4511// it would have to store a String Handle instead of a String* and
4512// AsciiStringReadBlock would have to be modified to use memcpy.
4513//
4514// StringInputBuffer is able to traverse any string regardless of how
4515// deeply nested a sequence of ConsStrings it is made of.  However,
4516// performance will be better if deep strings are flattened before they
4517// are traversed.  Since flattening requires memory allocation this is
4518// not always desirable, however (esp. in debugging situations).
4519class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4520 public:
4521  virtual void Seek(unsigned pos);
4522  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4523  inline StringInputBuffer(String* backing):
4524      unibrow::InputBuffer<String, String*, 1024>(backing) {}
4525};
4526
4527
4528class SafeStringInputBuffer
4529  : public unibrow::InputBuffer<String, String**, 256> {
4530 public:
4531  virtual void Seek(unsigned pos);
4532  inline SafeStringInputBuffer()
4533      : unibrow::InputBuffer<String, String**, 256>() {}
4534  inline SafeStringInputBuffer(String** backing)
4535      : unibrow::InputBuffer<String, String**, 256>(backing) {}
4536};
4537
4538
4539template <typename T>
4540class VectorIterator {
4541 public:
4542  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4543  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4544  T GetNext() { return data_[index_++]; }
4545  bool has_more() { return index_ < data_.length(); }
4546 private:
4547  Vector<const T> data_;
4548  int index_;
4549};
4550
4551
4552// The Oddball describes objects null, undefined, true, and false.
4553class Oddball: public HeapObject {
4554 public:
4555  // [to_string]: Cached to_string computed at startup.
4556  DECL_ACCESSORS(to_string, String)
4557
4558  // [to_number]: Cached to_number computed at startup.
4559  DECL_ACCESSORS(to_number, Object)
4560
4561  // Casting.
4562  static inline Oddball* cast(Object* obj);
4563
4564  // Dispatched behavior.
4565  void OddballIterateBody(ObjectVisitor* v);
4566#ifdef DEBUG
4567  void OddballVerify();
4568#endif
4569
4570  // Initialize the fields.
4571  Object* Initialize(const char* to_string, Object* to_number);
4572
4573  // Layout description.
4574  static const int kToStringOffset = HeapObject::kHeaderSize;
4575  static const int kToNumberOffset = kToStringOffset + kPointerSize;
4576  static const int kSize = kToNumberOffset + kPointerSize;
4577
4578 private:
4579  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4580};
4581
4582
4583class JSGlobalPropertyCell: public HeapObject {
4584 public:
4585  // [value]: value of the global property.
4586  DECL_ACCESSORS(value, Object)
4587
4588  // Casting.
4589  static inline JSGlobalPropertyCell* cast(Object* obj);
4590
4591  // Dispatched behavior.
4592  void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4593#ifdef DEBUG
4594  void JSGlobalPropertyCellVerify();
4595  void JSGlobalPropertyCellPrint();
4596#endif
4597
4598  // Layout description.
4599  static const int kValueOffset = HeapObject::kHeaderSize;
4600  static const int kSize = kValueOffset + kPointerSize;
4601
4602 private:
4603  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4604};
4605
4606
4607
4608// Proxy describes objects pointing from JavaScript to C structures.
4609// Since they cannot contain references to JS HeapObjects they can be
4610// placed in old_data_space.
4611class Proxy: public HeapObject {
4612 public:
4613  // [proxy]: field containing the address.
4614  inline Address proxy();
4615  inline void set_proxy(Address value);
4616
4617  // Casting.
4618  static inline Proxy* cast(Object* obj);
4619
4620  // Dispatched behavior.
4621  inline void ProxyIterateBody(ObjectVisitor* v);
4622#ifdef DEBUG
4623  void ProxyPrint();
4624  void ProxyVerify();
4625#endif
4626
4627  // Layout description.
4628
4629  static const int kProxyOffset = HeapObject::kHeaderSize;
4630  static const int kSize = kProxyOffset + kPointerSize;
4631
4632  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4633
4634 private:
4635  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4636};
4637
4638
4639// The JSArray describes JavaScript Arrays
4640//  Such an array can be in one of two modes:
4641//    - fast, backing storage is a FixedArray and length <= elements.length();
4642//       Please note: push and pop can be used to grow and shrink the array.
4643//    - slow, backing storage is a HashTable with numbers as keys.
4644class JSArray: public JSObject {
4645 public:
4646  // [length]: The length property.
4647  DECL_ACCESSORS(length, Object)
4648
4649  // Overload the length setter to skip write barrier when the length
4650  // is set to a smi. This matches the set function on FixedArray.
4651  inline void set_length(Smi* length);
4652
4653  Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4654
4655  // Initialize the array with the given capacity. The function may
4656  // fail due to out-of-memory situations, but only if the requested
4657  // capacity is non-zero.
4658  Object* Initialize(int capacity);
4659
4660  // Set the content of the array to the content of storage.
4661  inline void SetContent(FixedArray* storage);
4662
4663  // Casting.
4664  static inline JSArray* cast(Object* obj);
4665
4666  // Uses handles.  Ensures that the fixed array backing the JSArray has at
4667  // least the stated size.
4668  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4669
4670  // Dispatched behavior.
4671#ifdef DEBUG
4672  void JSArrayPrint();
4673  void JSArrayVerify();
4674#endif
4675
4676  // Number of element slots to pre-allocate for an empty array.
4677  static const int kPreallocatedArrayElements = 4;
4678
4679  // Layout description.
4680  static const int kLengthOffset = JSObject::kHeaderSize;
4681  static const int kSize = kLengthOffset + kPointerSize;
4682
4683 private:
4684  // Expand the fixed array backing of a fast-case JSArray to at least
4685  // the requested size.
4686  void Expand(int minimum_size_of_backing_fixed_array);
4687
4688  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4689};
4690
4691
4692// JSRegExpResult is just a JSArray with a specific initial map.
4693// This initial map adds in-object properties for "index" and "input"
4694// properties, as assigned by RegExp.prototype.exec, which allows
4695// faster creation of RegExp exec results.
4696// This class just holds constants used when creating the result.
4697// After creation the result must be treated as a JSArray in all regards.
4698class JSRegExpResult: public JSArray {
4699 public:
4700  // Offsets of object fields.
4701  static const int kIndexOffset = JSArray::kSize;
4702  static const int kInputOffset = kIndexOffset + kPointerSize;
4703  static const int kSize = kInputOffset + kPointerSize;
4704  // Indices of in-object properties.
4705  static const int kIndexIndex = 0;
4706  static const int kInputIndex = 1;
4707 private:
4708  DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
4709};
4710
4711
4712// An accessor must have a getter, but can have no setter.
4713//
4714// When setting a property, V8 searches accessors in prototypes.
4715// If an accessor was found and it does not have a setter,
4716// the request is ignored.
4717//
4718// If the accessor in the prototype has the READ_ONLY property attribute, then
4719// a new value is added to the local object when the property is set.
4720// This shadows the accessor in the prototype.
4721class AccessorInfo: public Struct {
4722 public:
4723  DECL_ACCESSORS(getter, Object)
4724  DECL_ACCESSORS(setter, Object)
4725  DECL_ACCESSORS(data, Object)
4726  DECL_ACCESSORS(name, Object)
4727  DECL_ACCESSORS(flag, Smi)
4728  DECL_ACCESSORS(load_stub_cache, Object)
4729
4730  inline bool all_can_read();
4731  inline void set_all_can_read(bool value);
4732
4733  inline bool all_can_write();
4734  inline void set_all_can_write(bool value);
4735
4736  inline bool prohibits_overwriting();
4737  inline void set_prohibits_overwriting(bool value);
4738
4739  inline PropertyAttributes property_attributes();
4740  inline void set_property_attributes(PropertyAttributes attributes);
4741
4742  static inline AccessorInfo* cast(Object* obj);
4743
4744#ifdef DEBUG
4745  void AccessorInfoPrint();
4746  void AccessorInfoVerify();
4747#endif
4748
4749  static const int kGetterOffset = HeapObject::kHeaderSize;
4750  static const int kSetterOffset = kGetterOffset + kPointerSize;
4751  static const int kDataOffset = kSetterOffset + kPointerSize;
4752  static const int kNameOffset = kDataOffset + kPointerSize;
4753  static const int kFlagOffset = kNameOffset + kPointerSize;
4754  static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4755  static const int kSize = kLoadStubCacheOffset + kPointerSize;
4756
4757 private:
4758  // Bit positions in flag.
4759  static const int kAllCanReadBit = 0;
4760  static const int kAllCanWriteBit = 1;
4761  static const int kProhibitsOverwritingBit = 2;
4762  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4763
4764  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4765};
4766
4767
4768class AccessCheckInfo: public Struct {
4769 public:
4770  DECL_ACCESSORS(named_callback, Object)
4771  DECL_ACCESSORS(indexed_callback, Object)
4772  DECL_ACCESSORS(data, Object)
4773
4774  static inline AccessCheckInfo* cast(Object* obj);
4775
4776#ifdef DEBUG
4777  void AccessCheckInfoPrint();
4778  void AccessCheckInfoVerify();
4779#endif
4780
4781  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
4782  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4783  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4784  static const int kSize = kDataOffset + kPointerSize;
4785
4786 private:
4787  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4788};
4789
4790
4791class InterceptorInfo: public Struct {
4792 public:
4793  DECL_ACCESSORS(getter, Object)
4794  DECL_ACCESSORS(setter, Object)
4795  DECL_ACCESSORS(query, Object)
4796  DECL_ACCESSORS(deleter, Object)
4797  DECL_ACCESSORS(enumerator, Object)
4798  DECL_ACCESSORS(data, Object)
4799
4800  static inline InterceptorInfo* cast(Object* obj);
4801
4802#ifdef DEBUG
4803  void InterceptorInfoPrint();
4804  void InterceptorInfoVerify();
4805#endif
4806
4807  static const int kGetterOffset = HeapObject::kHeaderSize;
4808  static const int kSetterOffset = kGetterOffset + kPointerSize;
4809  static const int kQueryOffset = kSetterOffset + kPointerSize;
4810  static const int kDeleterOffset = kQueryOffset + kPointerSize;
4811  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4812  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4813  static const int kSize = kDataOffset + kPointerSize;
4814
4815 private:
4816  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4817};
4818
4819
4820class CallHandlerInfo: public Struct {
4821 public:
4822  DECL_ACCESSORS(callback, Object)
4823  DECL_ACCESSORS(data, Object)
4824
4825  static inline CallHandlerInfo* cast(Object* obj);
4826
4827#ifdef DEBUG
4828  void CallHandlerInfoPrint();
4829  void CallHandlerInfoVerify();
4830#endif
4831
4832  static const int kCallbackOffset = HeapObject::kHeaderSize;
4833  static const int kDataOffset = kCallbackOffset + kPointerSize;
4834  static const int kSize = kDataOffset + kPointerSize;
4835
4836 private:
4837  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4838};
4839
4840
4841class TemplateInfo: public Struct {
4842 public:
4843  DECL_ACCESSORS(tag, Object)
4844  DECL_ACCESSORS(property_list, Object)
4845
4846#ifdef DEBUG
4847  void TemplateInfoVerify();
4848#endif
4849
4850  static const int kTagOffset          = HeapObject::kHeaderSize;
4851  static const int kPropertyListOffset = kTagOffset + kPointerSize;
4852  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
4853 protected:
4854  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4855  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4856};
4857
4858
4859class FunctionTemplateInfo: public TemplateInfo {
4860 public:
4861  DECL_ACCESSORS(serial_number, Object)
4862  DECL_ACCESSORS(call_code, Object)
4863  DECL_ACCESSORS(property_accessors, Object)
4864  DECL_ACCESSORS(prototype_template, Object)
4865  DECL_ACCESSORS(parent_template, Object)
4866  DECL_ACCESSORS(named_property_handler, Object)
4867  DECL_ACCESSORS(indexed_property_handler, Object)
4868  DECL_ACCESSORS(instance_template, Object)
4869  DECL_ACCESSORS(class_name, Object)
4870  DECL_ACCESSORS(signature, Object)
4871  DECL_ACCESSORS(instance_call_handler, Object)
4872  DECL_ACCESSORS(access_check_info, Object)
4873  DECL_ACCESSORS(flag, Smi)
4874
4875  // Following properties use flag bits.
4876  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4877  DECL_BOOLEAN_ACCESSORS(undetectable)
4878  // If the bit is set, object instances created by this function
4879  // requires access check.
4880  DECL_BOOLEAN_ACCESSORS(needs_access_check)
4881
4882  static inline FunctionTemplateInfo* cast(Object* obj);
4883
4884#ifdef DEBUG
4885  void FunctionTemplateInfoPrint();
4886  void FunctionTemplateInfoVerify();
4887#endif
4888
4889  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4890  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4891  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4892  static const int kPrototypeTemplateOffset =
4893      kPropertyAccessorsOffset + kPointerSize;
4894  static const int kParentTemplateOffset =
4895      kPrototypeTemplateOffset + kPointerSize;
4896  static const int kNamedPropertyHandlerOffset =
4897      kParentTemplateOffset + kPointerSize;
4898  static const int kIndexedPropertyHandlerOffset =
4899      kNamedPropertyHandlerOffset + kPointerSize;
4900  static const int kInstanceTemplateOffset =
4901      kIndexedPropertyHandlerOffset + kPointerSize;
4902  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4903  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4904  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4905  static const int kAccessCheckInfoOffset =
4906      kInstanceCallHandlerOffset + kPointerSize;
4907  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4908  static const int kSize = kFlagOffset + kPointerSize;
4909
4910 private:
4911  // Bit position in the flag, from least significant bit position.
4912  static const int kHiddenPrototypeBit   = 0;
4913  static const int kUndetectableBit      = 1;
4914  static const int kNeedsAccessCheckBit  = 2;
4915
4916  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4917};
4918
4919
4920class ObjectTemplateInfo: public TemplateInfo {
4921 public:
4922  DECL_ACCESSORS(constructor, Object)
4923  DECL_ACCESSORS(internal_field_count, Object)
4924
4925  static inline ObjectTemplateInfo* cast(Object* obj);
4926
4927#ifdef DEBUG
4928  void ObjectTemplateInfoPrint();
4929  void ObjectTemplateInfoVerify();
4930#endif
4931
4932  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4933  static const int kInternalFieldCountOffset =
4934      kConstructorOffset + kPointerSize;
4935  static const int kSize = kInternalFieldCountOffset + kPointerSize;
4936};
4937
4938
4939class SignatureInfo: public Struct {
4940 public:
4941  DECL_ACCESSORS(receiver, Object)
4942  DECL_ACCESSORS(args, Object)
4943
4944  static inline SignatureInfo* cast(Object* obj);
4945
4946#ifdef DEBUG
4947  void SignatureInfoPrint();
4948  void SignatureInfoVerify();
4949#endif
4950
4951  static const int kReceiverOffset = Struct::kHeaderSize;
4952  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
4953  static const int kSize           = kArgsOffset + kPointerSize;
4954
4955 private:
4956  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4957};
4958
4959
4960class TypeSwitchInfo: public Struct {
4961 public:
4962  DECL_ACCESSORS(types, Object)
4963
4964  static inline TypeSwitchInfo* cast(Object* obj);
4965
4966#ifdef DEBUG
4967  void TypeSwitchInfoPrint();
4968  void TypeSwitchInfoVerify();
4969#endif
4970
4971  static const int kTypesOffset = Struct::kHeaderSize;
4972  static const int kSize        = kTypesOffset + kPointerSize;
4973};
4974
4975
4976#ifdef ENABLE_DEBUGGER_SUPPORT
4977// The DebugInfo class holds additional information for a function being
4978// debugged.
4979class DebugInfo: public Struct {
4980 public:
4981  // The shared function info for the source being debugged.
4982  DECL_ACCESSORS(shared, SharedFunctionInfo)
4983  // Code object for the original code.
4984  DECL_ACCESSORS(original_code, Code)
4985  // Code object for the patched code. This code object is the code object
4986  // currently active for the function.
4987  DECL_ACCESSORS(code, Code)
4988  // Fixed array holding status information for each active break point.
4989  DECL_ACCESSORS(break_points, FixedArray)
4990
4991  // Check if there is a break point at a code position.
4992  bool HasBreakPoint(int code_position);
4993  // Get the break point info object for a code position.
4994  Object* GetBreakPointInfo(int code_position);
4995  // Clear a break point.
4996  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
4997                              int code_position,
4998                              Handle<Object> break_point_object);
4999  // Set a break point.
5000  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
5001                            int source_position, int statement_position,
5002                            Handle<Object> break_point_object);
5003  // Get the break point objects for a code position.
5004  Object* GetBreakPointObjects(int code_position);
5005  // Find the break point info holding this break point object.
5006  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
5007                                    Handle<Object> break_point_object);
5008  // Get the number of break points for this function.
5009  int GetBreakPointCount();
5010
5011  static inline DebugInfo* cast(Object* obj);
5012
5013#ifdef DEBUG
5014  void DebugInfoPrint();
5015  void DebugInfoVerify();
5016#endif
5017
5018  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
5019  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
5020  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
5021  static const int kActiveBreakPointsCountIndex =
5022      kPatchedCodeIndex + kPointerSize;
5023  static const int kBreakPointsStateIndex =
5024      kActiveBreakPointsCountIndex + kPointerSize;
5025  static const int kSize = kBreakPointsStateIndex + kPointerSize;
5026
5027 private:
5028  static const int kNoBreakPointInfo = -1;
5029
5030  // Lookup the index in the break_points array for a code position.
5031  int GetBreakPointInfoIndex(int code_position);
5032
5033  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
5034};
5035
5036
5037// The BreakPointInfo class holds information for break points set in a
5038// function. The DebugInfo object holds a BreakPointInfo object for each code
5039// position with one or more break points.
5040class BreakPointInfo: public Struct {
5041 public:
5042  // The position in the code for the break point.
5043  DECL_ACCESSORS(code_position, Smi)
5044  // The position in the source for the break position.
5045  DECL_ACCESSORS(source_position, Smi)
5046  // The position in the source for the last statement before this break
5047  // position.
5048  DECL_ACCESSORS(statement_position, Smi)
5049  // List of related JavaScript break points.
5050  DECL_ACCESSORS(break_point_objects, Object)
5051
5052  // Removes a break point.
5053  static void ClearBreakPoint(Handle<BreakPointInfo> info,
5054                              Handle<Object> break_point_object);
5055  // Set a break point.
5056  static void SetBreakPoint(Handle<BreakPointInfo> info,
5057                            Handle<Object> break_point_object);
5058  // Check if break point info has this break point object.
5059  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
5060                                  Handle<Object> break_point_object);
5061  // Get the number of break points for this code position.
5062  int GetBreakPointCount();
5063
5064  static inline BreakPointInfo* cast(Object* obj);
5065
5066#ifdef DEBUG
5067  void BreakPointInfoPrint();
5068  void BreakPointInfoVerify();
5069#endif
5070
5071  static const int kCodePositionIndex = Struct::kHeaderSize;
5072  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
5073  static const int kStatementPositionIndex =
5074      kSourcePositionIndex + kPointerSize;
5075  static const int kBreakPointObjectsIndex =
5076      kStatementPositionIndex + kPointerSize;
5077  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
5078
5079 private:
5080  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
5081};
5082#endif  // ENABLE_DEBUGGER_SUPPORT
5083
5084
5085#undef DECL_BOOLEAN_ACCESSORS
5086#undef DECL_ACCESSORS
5087
5088
5089// Abstract base class for visiting, and optionally modifying, the
5090// pointers contained in Objects. Used in GC and serialization/deserialization.
5091class ObjectVisitor BASE_EMBEDDED {
5092 public:
5093  virtual ~ObjectVisitor() {}
5094
5095  // Visits a contiguous arrays of pointers in the half-open range
5096  // [start, end). Any or all of the values may be modified on return.
5097  virtual void VisitPointers(Object** start, Object** end) = 0;
5098
5099  // To allow lazy clearing of inline caches the visitor has
5100  // a rich interface for iterating over Code objects..
5101
5102  // Visits a code target in the instruction stream.
5103  virtual void VisitCodeTarget(RelocInfo* rinfo);
5104
5105  // Visits a runtime entry in the instruction stream.
5106  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
5107
5108  // Visits the resource of an ASCII or two-byte string.
5109  virtual void VisitExternalAsciiString(
5110      v8::String::ExternalAsciiStringResource** resource) {}
5111  virtual void VisitExternalTwoByteString(
5112      v8::String::ExternalStringResource** resource) {}
5113
5114  // Visits a debug call target in the instruction stream.
5115  virtual void VisitDebugTarget(RelocInfo* rinfo);
5116
5117  // Handy shorthand for visiting a single pointer.
5118  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
5119
5120  // Visits a contiguous arrays of external references (references to the C++
5121  // heap) in the half-open range [start, end). Any or all of the values
5122  // may be modified on return.
5123  virtual void VisitExternalReferences(Address* start, Address* end) {}
5124
5125  inline void VisitExternalReference(Address* p) {
5126    VisitExternalReferences(p, p + 1);
5127  }
5128
5129#ifdef DEBUG
5130  // Intended for serialization/deserialization checking: insert, or
5131  // check for the presence of, a tag at this position in the stream.
5132  virtual void Synchronize(const char* tag) {}
5133#else
5134  inline void Synchronize(const char* tag) {}
5135#endif
5136};
5137
5138
5139// BooleanBit is a helper class for setting and getting a bit in an
5140// integer or Smi.
5141class BooleanBit : public AllStatic {
5142 public:
5143  static inline bool get(Smi* smi, int bit_position) {
5144    return get(smi->value(), bit_position);
5145  }
5146
5147  static inline bool get(int value, int bit_position) {
5148    return (value & (1 << bit_position)) != 0;
5149  }
5150
5151  static inline Smi* set(Smi* smi, int bit_position, bool v) {
5152    return Smi::FromInt(set(smi->value(), bit_position, v));
5153  }
5154
5155  static inline int set(int value, int bit_position, bool v) {
5156    if (v) {
5157      value |= (1 << bit_position);
5158    } else {
5159      value &= ~(1 << bit_position);
5160    }
5161    return value;
5162  }
5163};
5164
5165} }  // namespace v8::internal
5166
5167#endif  // V8_OBJECTS_H_
5168