platform-win32.cc revision 756813857a4c2a4d8ad2e805969d5768d3cf43a0
1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Win32.
29#ifndef WIN32_LEAN_AND_MEAN
30// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31#define WIN32_LEAN_AND_MEAN
32#endif
33#ifndef NOMINMAX
34#define NOMINMAX
35#endif
36#ifndef NOKERNEL
37#define NOKERNEL
38#endif
39#ifndef NOUSER
40#define NOUSER
41#endif
42#ifndef NOSERVICE
43#define NOSERVICE
44#endif
45#ifndef NOSOUND
46#define NOSOUND
47#endif
48#ifndef NOMCX
49#define NOMCX
50#endif
51// Require Windows XP or higher (this is required for the RtlCaptureContext
52// function to be present).
53#ifndef _WIN32_WINNT
54#define _WIN32_WINNT 0x501
55#endif
56
57#include <windows.h>
58
59#include <time.h>  // For LocalOffset() implementation.
60#include <mmsystem.h>  // For timeGetTime().
61#ifdef __MINGW32__
62// Require Windows XP or higher when compiling with MinGW. This is for MinGW
63// header files to expose getaddrinfo.
64#undef _WIN32_WINNT
65#define _WIN32_WINNT 0x501
66#endif  // __MINGW32__
67#ifndef __MINGW32__
68#include <dbghelp.h>  // For SymLoadModule64 and al.
69#endif  // __MINGW32__
70#include <limits.h>  // For INT_MAX and al.
71#include <tlhelp32.h>  // For Module32First and al.
72
73// These additional WIN32 includes have to be right here as the #undef's below
74// makes it impossible to have them elsewhere.
75#include <winsock2.h>
76#include <ws2tcpip.h>
77#include <process.h>  // for _beginthreadex()
78#include <stdlib.h>
79
80#undef VOID
81#undef DELETE
82#undef IN
83#undef THIS
84#undef CONST
85#undef NAN
86#undef GetObject
87#undef CreateMutex
88#undef CreateSemaphore
89
90#include "v8.h"
91
92#include "platform.h"
93
94// Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
95// refer to The Open Group Base Specification for specification of the correct
96// semantics for these functions.
97// (http://www.opengroup.org/onlinepubs/000095399/)
98#ifdef _MSC_VER
99
100namespace v8 {
101namespace internal {
102
103// Test for finite value - usually defined in math.h
104int isfinite(double x) {
105  return _finite(x);
106}
107
108}  // namespace v8
109}  // namespace internal
110
111// Test for a NaN (not a number) value - usually defined in math.h
112int isnan(double x) {
113  return _isnan(x);
114}
115
116
117// Test for infinity - usually defined in math.h
118int isinf(double x) {
119  return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
120}
121
122
123// Test if x is less than y and both nominal - usually defined in math.h
124int isless(double x, double y) {
125  return isnan(x) || isnan(y) ? 0 : x < y;
126}
127
128
129// Test if x is greater than y and both nominal - usually defined in math.h
130int isgreater(double x, double y) {
131  return isnan(x) || isnan(y) ? 0 : x > y;
132}
133
134
135// Classify floating point number - usually defined in math.h
136int fpclassify(double x) {
137  // Use the MS-specific _fpclass() for classification.
138  int flags = _fpclass(x);
139
140  // Determine class. We cannot use a switch statement because
141  // the _FPCLASS_ constants are defined as flags.
142  if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
143  if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
144  if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
145  if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
146
147  // All cases should be covered by the code above.
148  ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
149  return FP_NAN;
150}
151
152
153// Test sign - usually defined in math.h
154int signbit(double x) {
155  // We need to take care of the special case of both positive
156  // and negative versions of zero.
157  if (x == 0)
158    return _fpclass(x) & _FPCLASS_NZ;
159  else
160    return x < 0;
161}
162
163
164// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
165// defined in strings.h.
166int strncasecmp(const char* s1, const char* s2, int n) {
167  return _strnicmp(s1, s2, n);
168}
169
170#endif  // _MSC_VER
171
172
173// Extra functions for MinGW. Most of these are the _s functions which are in
174// the Microsoft Visual Studio C++ CRT.
175#ifdef __MINGW32__
176
177int localtime_s(tm* out_tm, const time_t* time) {
178  tm* posix_local_time_struct = localtime(time);
179  if (posix_local_time_struct == NULL) return 1;
180  *out_tm = *posix_local_time_struct;
181  return 0;
182}
183
184
185// Not sure this the correct interpretation of _mkgmtime
186time_t _mkgmtime(tm* timeptr) {
187  return mktime(timeptr);
188}
189
190
191int fopen_s(FILE** pFile, const char* filename, const char* mode) {
192  *pFile = fopen(filename, mode);
193  return *pFile != NULL ? 0 : 1;
194}
195
196
197int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
198                 const char* format, va_list argptr) {
199  return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
200}
201#define _TRUNCATE 0
202
203
204int strncpy_s(char* strDest, size_t numberOfElements,
205              const char* strSource, size_t count) {
206  strncpy(strDest, strSource, count);
207  return 0;
208}
209
210#endif  // __MINGW32__
211
212// Generate a pseudo-random number in the range 0-2^31-1. Usually
213// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
214int random() {
215  return rand();
216}
217
218
219namespace v8 {
220namespace internal {
221
222double ceiling(double x) {
223  return ceil(x);
224}
225
226#ifdef _WIN64
227typedef double (*ModuloFunction)(double, double);
228
229// Defined in codegen-x64.cc.
230ModuloFunction CreateModuloFunction();
231
232double modulo(double x, double y) {
233  static ModuloFunction function = CreateModuloFunction();
234  return function(x, y);
235}
236#else  // Win32
237
238double modulo(double x, double y) {
239  // Workaround MS fmod bugs. ECMA-262 says:
240  // dividend is finite and divisor is an infinity => result equals dividend
241  // dividend is a zero and divisor is nonzero finite => result equals dividend
242  if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
243      !(x == 0 && (y != 0 && isfinite(y)))) {
244    x = fmod(x, y);
245  }
246  return x;
247}
248
249#endif  // _WIN64
250
251// ----------------------------------------------------------------------------
252// The Time class represents time on win32. A timestamp is represented as
253// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
254// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
255// January 1, 1970.
256
257class Time {
258 public:
259  // Constructors.
260  Time();
261  explicit Time(double jstime);
262  Time(int year, int mon, int day, int hour, int min, int sec);
263
264  // Convert timestamp to JavaScript representation.
265  double ToJSTime();
266
267  // Set timestamp to current time.
268  void SetToCurrentTime();
269
270  // Returns the local timezone offset in milliseconds east of UTC. This is
271  // the number of milliseconds you must add to UTC to get local time, i.e.
272  // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
273  // routine also takes into account whether daylight saving is effect
274  // at the time.
275  int64_t LocalOffset();
276
277  // Returns the daylight savings time offset for the time in milliseconds.
278  int64_t DaylightSavingsOffset();
279
280  // Returns a string identifying the current timezone for the
281  // timestamp taking into account daylight saving.
282  char* LocalTimezone();
283
284 private:
285  // Constants for time conversion.
286  static const int64_t kTimeEpoc = 116444736000000000LL;
287  static const int64_t kTimeScaler = 10000;
288  static const int64_t kMsPerMinute = 60000;
289
290  // Constants for timezone information.
291  static const int kTzNameSize = 128;
292  static const bool kShortTzNames = false;
293
294  // Timezone information. We need to have static buffers for the
295  // timezone names because we return pointers to these in
296  // LocalTimezone().
297  static bool tz_initialized_;
298  static TIME_ZONE_INFORMATION tzinfo_;
299  static char std_tz_name_[kTzNameSize];
300  static char dst_tz_name_[kTzNameSize];
301
302  // Initialize the timezone information (if not already done).
303  static void TzSet();
304
305  // Guess the name of the timezone from the bias.
306  static const char* GuessTimezoneNameFromBias(int bias);
307
308  // Return whether or not daylight savings time is in effect at this time.
309  bool InDST();
310
311  // Return the difference (in milliseconds) between this timestamp and
312  // another timestamp.
313  int64_t Diff(Time* other);
314
315  // Accessor for FILETIME representation.
316  FILETIME& ft() { return time_.ft_; }
317
318  // Accessor for integer representation.
319  int64_t& t() { return time_.t_; }
320
321  // Although win32 uses 64-bit integers for representing timestamps,
322  // these are packed into a FILETIME structure. The FILETIME structure
323  // is just a struct representing a 64-bit integer. The TimeStamp union
324  // allows access to both a FILETIME and an integer representation of
325  // the timestamp.
326  union TimeStamp {
327    FILETIME ft_;
328    int64_t t_;
329  };
330
331  TimeStamp time_;
332};
333
334// Static variables.
335bool Time::tz_initialized_ = false;
336TIME_ZONE_INFORMATION Time::tzinfo_;
337char Time::std_tz_name_[kTzNameSize];
338char Time::dst_tz_name_[kTzNameSize];
339
340
341// Initialize timestamp to start of epoc.
342Time::Time() {
343  t() = 0;
344}
345
346
347// Initialize timestamp from a JavaScript timestamp.
348Time::Time(double jstime) {
349  t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
350}
351
352
353// Initialize timestamp from date/time components.
354Time::Time(int year, int mon, int day, int hour, int min, int sec) {
355  SYSTEMTIME st;
356  st.wYear = year;
357  st.wMonth = mon;
358  st.wDay = day;
359  st.wHour = hour;
360  st.wMinute = min;
361  st.wSecond = sec;
362  st.wMilliseconds = 0;
363  SystemTimeToFileTime(&st, &ft());
364}
365
366
367// Convert timestamp to JavaScript timestamp.
368double Time::ToJSTime() {
369  return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
370}
371
372
373// Guess the name of the timezone from the bias.
374// The guess is very biased towards the northern hemisphere.
375const char* Time::GuessTimezoneNameFromBias(int bias) {
376  static const int kHour = 60;
377  switch (-bias) {
378    case -9*kHour: return "Alaska";
379    case -8*kHour: return "Pacific";
380    case -7*kHour: return "Mountain";
381    case -6*kHour: return "Central";
382    case -5*kHour: return "Eastern";
383    case -4*kHour: return "Atlantic";
384    case  0*kHour: return "GMT";
385    case +1*kHour: return "Central Europe";
386    case +2*kHour: return "Eastern Europe";
387    case +3*kHour: return "Russia";
388    case +5*kHour + 30: return "India";
389    case +8*kHour: return "China";
390    case +9*kHour: return "Japan";
391    case +12*kHour: return "New Zealand";
392    default: return "Local";
393  }
394}
395
396
397// Initialize timezone information. The timezone information is obtained from
398// windows. If we cannot get the timezone information we fall back to CET.
399// Please notice that this code is not thread-safe.
400void Time::TzSet() {
401  // Just return if timezone information has already been initialized.
402  if (tz_initialized_) return;
403
404  // Initialize POSIX time zone data.
405  _tzset();
406  // Obtain timezone information from operating system.
407  memset(&tzinfo_, 0, sizeof(tzinfo_));
408  if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
409    // If we cannot get timezone information we fall back to CET.
410    tzinfo_.Bias = -60;
411    tzinfo_.StandardDate.wMonth = 10;
412    tzinfo_.StandardDate.wDay = 5;
413    tzinfo_.StandardDate.wHour = 3;
414    tzinfo_.StandardBias = 0;
415    tzinfo_.DaylightDate.wMonth = 3;
416    tzinfo_.DaylightDate.wDay = 5;
417    tzinfo_.DaylightDate.wHour = 2;
418    tzinfo_.DaylightBias = -60;
419  }
420
421  // Make standard and DST timezone names.
422  OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
423               "%S",
424               tzinfo_.StandardName);
425  std_tz_name_[kTzNameSize - 1] = '\0';
426  OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
427               "%S",
428               tzinfo_.DaylightName);
429  dst_tz_name_[kTzNameSize - 1] = '\0';
430
431  // If OS returned empty string or resource id (like "@tzres.dll,-211")
432  // simply guess the name from the UTC bias of the timezone.
433  // To properly resolve the resource identifier requires a library load,
434  // which is not possible in a sandbox.
435  if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
436    OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
437                 "%s Standard Time",
438                 GuessTimezoneNameFromBias(tzinfo_.Bias));
439  }
440  if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
441    OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
442                 "%s Daylight Time",
443                 GuessTimezoneNameFromBias(tzinfo_.Bias));
444  }
445
446  // Timezone information initialized.
447  tz_initialized_ = true;
448}
449
450
451// Return the difference in milliseconds between this and another timestamp.
452int64_t Time::Diff(Time* other) {
453  return (t() - other->t()) / kTimeScaler;
454}
455
456
457// Set timestamp to current time.
458void Time::SetToCurrentTime() {
459  // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
460  // Because we're fast, we like fast timers which have at least a
461  // 1ms resolution.
462  //
463  // timeGetTime() provides 1ms granularity when combined with
464  // timeBeginPeriod().  If the host application for v8 wants fast
465  // timers, it can use timeBeginPeriod to increase the resolution.
466  //
467  // Using timeGetTime() has a drawback because it is a 32bit value
468  // and hence rolls-over every ~49days.
469  //
470  // To use the clock, we use GetSystemTimeAsFileTime as our base;
471  // and then use timeGetTime to extrapolate current time from the
472  // start time.  To deal with rollovers, we resync the clock
473  // any time when more than kMaxClockElapsedTime has passed or
474  // whenever timeGetTime creates a rollover.
475
476  static bool initialized = false;
477  static TimeStamp init_time;
478  static DWORD init_ticks;
479  static const int64_t kHundredNanosecondsPerSecond = 10000000;
480  static const int64_t kMaxClockElapsedTime =
481      60*kHundredNanosecondsPerSecond;  // 1 minute
482
483  // If we are uninitialized, we need to resync the clock.
484  bool needs_resync = !initialized;
485
486  // Get the current time.
487  TimeStamp time_now;
488  GetSystemTimeAsFileTime(&time_now.ft_);
489  DWORD ticks_now = timeGetTime();
490
491  // Check if we need to resync due to clock rollover.
492  needs_resync |= ticks_now < init_ticks;
493
494  // Check if we need to resync due to elapsed time.
495  needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
496
497  // Resync the clock if necessary.
498  if (needs_resync) {
499    GetSystemTimeAsFileTime(&init_time.ft_);
500    init_ticks = ticks_now = timeGetTime();
501    initialized = true;
502  }
503
504  // Finally, compute the actual time.  Why is this so hard.
505  DWORD elapsed = ticks_now - init_ticks;
506  this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
507}
508
509
510// Return the local timezone offset in milliseconds east of UTC. This
511// takes into account whether daylight saving is in effect at the time.
512// Only times in the 32-bit Unix range may be passed to this function.
513// Also, adding the time-zone offset to the input must not overflow.
514// The function EquivalentTime() in date.js guarantees this.
515int64_t Time::LocalOffset() {
516  // Initialize timezone information, if needed.
517  TzSet();
518
519  Time rounded_to_second(*this);
520  rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
521      1000 * kTimeScaler;
522  // Convert to local time using POSIX localtime function.
523  // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
524  // very slow.  Other browsers use localtime().
525
526  // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
527  // POSIX seconds past 1/1/1970 0:00:00.
528  double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
529  if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
530    return 0;
531  }
532  // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
533  time_t posix_time = static_cast<time_t>(unchecked_posix_time);
534
535  // Convert to local time, as struct with fields for day, hour, year, etc.
536  tm posix_local_time_struct;
537  if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
538  // Convert local time in struct to POSIX time as if it were a UTC time.
539  time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
540  Time localtime(1000.0 * local_posix_time);
541
542  return localtime.Diff(&rounded_to_second);
543}
544
545
546// Return whether or not daylight savings time is in effect at this time.
547bool Time::InDST() {
548  // Initialize timezone information, if needed.
549  TzSet();
550
551  // Determine if DST is in effect at the specified time.
552  bool in_dst = false;
553  if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
554    // Get the local timezone offset for the timestamp in milliseconds.
555    int64_t offset = LocalOffset();
556
557    // Compute the offset for DST. The bias parameters in the timezone info
558    // are specified in minutes. These must be converted to milliseconds.
559    int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
560
561    // If the local time offset equals the timezone bias plus the daylight
562    // bias then DST is in effect.
563    in_dst = offset == dstofs;
564  }
565
566  return in_dst;
567}
568
569
570// Return the daylight savings time offset for this time.
571int64_t Time::DaylightSavingsOffset() {
572  return InDST() ? 60 * kMsPerMinute : 0;
573}
574
575
576// Returns a string identifying the current timezone for the
577// timestamp taking into account daylight saving.
578char* Time::LocalTimezone() {
579  // Return the standard or DST time zone name based on whether daylight
580  // saving is in effect at the given time.
581  return InDST() ? dst_tz_name_ : std_tz_name_;
582}
583
584
585void OS::Setup() {
586  // Seed the random number generator.
587  // Convert the current time to a 64-bit integer first, before converting it
588  // to an unsigned. Going directly can cause an overflow and the seed to be
589  // set to all ones. The seed will be identical for different instances that
590  // call this setup code within the same millisecond.
591  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
592  srand(static_cast<unsigned int>(seed));
593}
594
595
596// Returns the accumulated user time for thread.
597int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
598  FILETIME dummy;
599  uint64_t usertime;
600
601  // Get the amount of time that the thread has executed in user mode.
602  if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
603                      reinterpret_cast<FILETIME*>(&usertime))) return -1;
604
605  // Adjust the resolution to micro-seconds.
606  usertime /= 10;
607
608  // Convert to seconds and microseconds
609  *secs = static_cast<uint32_t>(usertime / 1000000);
610  *usecs = static_cast<uint32_t>(usertime % 1000000);
611  return 0;
612}
613
614
615// Returns current time as the number of milliseconds since
616// 00:00:00 UTC, January 1, 1970.
617double OS::TimeCurrentMillis() {
618  Time t;
619  t.SetToCurrentTime();
620  return t.ToJSTime();
621}
622
623// Returns the tickcounter based on timeGetTime.
624int64_t OS::Ticks() {
625  return timeGetTime() * 1000;  // Convert to microseconds.
626}
627
628
629// Returns a string identifying the current timezone taking into
630// account daylight saving.
631const char* OS::LocalTimezone(double time) {
632  return Time(time).LocalTimezone();
633}
634
635
636// Returns the local time offset in milliseconds east of UTC without
637// taking daylight savings time into account.
638double OS::LocalTimeOffset() {
639  // Use current time, rounded to the millisecond.
640  Time t(TimeCurrentMillis());
641  // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
642  return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
643}
644
645
646// Returns the daylight savings offset in milliseconds for the given
647// time.
648double OS::DaylightSavingsOffset(double time) {
649  int64_t offset = Time(time).DaylightSavingsOffset();
650  return static_cast<double>(offset);
651}
652
653
654int OS::GetLastError() {
655  return ::GetLastError();
656}
657
658
659// ----------------------------------------------------------------------------
660// Win32 console output.
661//
662// If a Win32 application is linked as a console application it has a normal
663// standard output and standard error. In this case normal printf works fine
664// for output. However, if the application is linked as a GUI application,
665// the process doesn't have a console, and therefore (debugging) output is lost.
666// This is the case if we are embedded in a windows program (like a browser).
667// In order to be able to get debug output in this case the the debugging
668// facility using OutputDebugString. This output goes to the active debugger
669// for the process (if any). Else the output can be monitored using DBMON.EXE.
670
671enum OutputMode {
672  UNKNOWN,  // Output method has not yet been determined.
673  CONSOLE,  // Output is written to stdout.
674  ODS       // Output is written to debug facility.
675};
676
677static OutputMode output_mode = UNKNOWN;  // Current output mode.
678
679
680// Determine if the process has a console for output.
681static bool HasConsole() {
682  // Only check the first time. Eventual race conditions are not a problem,
683  // because all threads will eventually determine the same mode.
684  if (output_mode == UNKNOWN) {
685    // We cannot just check that the standard output is attached to a console
686    // because this would fail if output is redirected to a file. Therefore we
687    // say that a process does not have an output console if either the
688    // standard output handle is invalid or its file type is unknown.
689    if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
690        GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
691      output_mode = CONSOLE;
692    else
693      output_mode = ODS;
694  }
695  return output_mode == CONSOLE;
696}
697
698
699static void VPrintHelper(FILE* stream, const char* format, va_list args) {
700  if (HasConsole()) {
701    vfprintf(stream, format, args);
702  } else {
703    // It is important to use safe print here in order to avoid
704    // overflowing the buffer. We might truncate the output, but this
705    // does not crash.
706    EmbeddedVector<char, 4096> buffer;
707    OS::VSNPrintF(buffer, format, args);
708    OutputDebugStringA(buffer.start());
709  }
710}
711
712
713FILE* OS::FOpen(const char* path, const char* mode) {
714  FILE* result;
715  if (fopen_s(&result, path, mode) == 0) {
716    return result;
717  } else {
718    return NULL;
719  }
720}
721
722
723// Open log file in binary mode to avoid /n -> /r/n conversion.
724const char* OS::LogFileOpenMode = "wb";
725
726
727// Print (debug) message to console.
728void OS::Print(const char* format, ...) {
729  va_list args;
730  va_start(args, format);
731  VPrint(format, args);
732  va_end(args);
733}
734
735
736void OS::VPrint(const char* format, va_list args) {
737  VPrintHelper(stdout, format, args);
738}
739
740
741// Print error message to console.
742void OS::PrintError(const char* format, ...) {
743  va_list args;
744  va_start(args, format);
745  VPrintError(format, args);
746  va_end(args);
747}
748
749
750void OS::VPrintError(const char* format, va_list args) {
751  VPrintHelper(stderr, format, args);
752}
753
754
755int OS::SNPrintF(Vector<char> str, const char* format, ...) {
756  va_list args;
757  va_start(args, format);
758  int result = VSNPrintF(str, format, args);
759  va_end(args);
760  return result;
761}
762
763
764int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
765  int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
766  // Make sure to zero-terminate the string if the output was
767  // truncated or if there was an error.
768  if (n < 0 || n >= str.length()) {
769    str[str.length() - 1] = '\0';
770    return -1;
771  } else {
772    return n;
773  }
774}
775
776
777char* OS::StrChr(char* str, int c) {
778  return const_cast<char*>(strchr(str, c));
779}
780
781
782void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
783  int result = strncpy_s(dest.start(), dest.length(), src, n);
784  USE(result);
785  ASSERT(result == 0);
786}
787
788
789// We keep the lowest and highest addresses mapped as a quick way of
790// determining that pointers are outside the heap (used mostly in assertions
791// and verification).  The estimate is conservative, ie, not all addresses in
792// 'allocated' space are actually allocated to our heap.  The range is
793// [lowest, highest), inclusive on the low and and exclusive on the high end.
794static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
795static void* highest_ever_allocated = reinterpret_cast<void*>(0);
796
797
798static void UpdateAllocatedSpaceLimits(void* address, int size) {
799  lowest_ever_allocated = Min(lowest_ever_allocated, address);
800  highest_ever_allocated =
801      Max(highest_ever_allocated,
802          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
803}
804
805
806bool OS::IsOutsideAllocatedSpace(void* pointer) {
807  if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
808    return true;
809  // Ask the Windows API
810  if (IsBadWritePtr(pointer, 1))
811    return true;
812  return false;
813}
814
815
816// Get the system's page size used by VirtualAlloc() or the next power
817// of two. The reason for always returning a power of two is that the
818// rounding up in OS::Allocate expects that.
819static size_t GetPageSize() {
820  static size_t page_size = 0;
821  if (page_size == 0) {
822    SYSTEM_INFO info;
823    GetSystemInfo(&info);
824    page_size = RoundUpToPowerOf2(info.dwPageSize);
825  }
826  return page_size;
827}
828
829
830// The allocation alignment is the guaranteed alignment for
831// VirtualAlloc'ed blocks of memory.
832size_t OS::AllocateAlignment() {
833  static size_t allocate_alignment = 0;
834  if (allocate_alignment == 0) {
835    SYSTEM_INFO info;
836    GetSystemInfo(&info);
837    allocate_alignment = info.dwAllocationGranularity;
838  }
839  return allocate_alignment;
840}
841
842
843void* OS::Allocate(const size_t requested,
844                   size_t* allocated,
845                   bool is_executable) {
846  // The address range used to randomize RWX allocations in OS::Allocate
847  // Try not to map pages into the default range that windows loads DLLs
848  // Note: This does not guarantee RWX regions will be within the
849  // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
850#ifdef V8_HOST_ARCH_64_BIT
851  static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
852  static const intptr_t kAllocationRandomAddressMax = 0x000004FFFFFFFFFF;
853#else
854  static const intptr_t kAllocationRandomAddressMin = 0x04000000;
855  static const intptr_t kAllocationRandomAddressMax = 0x4FFFFFFF;
856#endif
857
858  // VirtualAlloc rounds allocated size to page size automatically.
859  size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
860  intptr_t address = NULL;
861
862  // Windows XP SP2 allows Data Excution Prevention (DEP).
863  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
864
865  // For exectutable pages try and randomize the allocation address
866  if (prot == PAGE_EXECUTE_READWRITE && msize >= Page::kPageSize) {
867      address = (V8::Random() << kPageSizeBits) | kAllocationRandomAddressMin;
868      address &= kAllocationRandomAddressMax;
869  }
870
871  LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
872                              msize,
873                              MEM_COMMIT | MEM_RESERVE,
874                              prot);
875  if (mbase == NULL && address != NULL)
876    mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
877
878  if (mbase == NULL) {
879    LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
880    return NULL;
881  }
882
883  ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
884
885  *allocated = msize;
886  UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
887  return mbase;
888}
889
890
891void OS::Free(void* address, const size_t size) {
892  // TODO(1240712): VirtualFree has a return value which is ignored here.
893  VirtualFree(address, 0, MEM_RELEASE);
894  USE(size);
895}
896
897
898#ifdef ENABLE_HEAP_PROTECTION
899
900void OS::Protect(void* address, size_t size) {
901  // TODO(1240712): VirtualProtect has a return value which is ignored here.
902  DWORD old_protect;
903  VirtualProtect(address, size, PAGE_READONLY, &old_protect);
904}
905
906
907void OS::Unprotect(void* address, size_t size, bool is_executable) {
908  // TODO(1240712): VirtualProtect has a return value which is ignored here.
909  DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
910  DWORD old_protect;
911  VirtualProtect(address, size, new_protect, &old_protect);
912}
913
914#endif
915
916
917void OS::Sleep(int milliseconds) {
918  ::Sleep(milliseconds);
919}
920
921
922void OS::Abort() {
923  if (!IsDebuggerPresent()) {
924#ifdef _MSC_VER
925    // Make the MSVCRT do a silent abort.
926    _set_abort_behavior(0, _WRITE_ABORT_MSG);
927    _set_abort_behavior(0, _CALL_REPORTFAULT);
928#endif  // _MSC_VER
929    abort();
930  } else {
931    DebugBreak();
932  }
933}
934
935
936void OS::DebugBreak() {
937#ifdef _MSC_VER
938  __debugbreak();
939#else
940  ::DebugBreak();
941#endif
942}
943
944
945class Win32MemoryMappedFile : public OS::MemoryMappedFile {
946 public:
947  Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
948    : file_(file), file_mapping_(file_mapping), memory_(memory) { }
949  virtual ~Win32MemoryMappedFile();
950  virtual void* memory() { return memory_; }
951 private:
952  HANDLE file_;
953  HANDLE file_mapping_;
954  void* memory_;
955};
956
957
958OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
959    void* initial) {
960  // Open a physical file
961  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
962      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
963  if (file == NULL) return NULL;
964  // Create a file mapping for the physical file
965  HANDLE file_mapping = CreateFileMapping(file, NULL,
966      PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
967  if (file_mapping == NULL) return NULL;
968  // Map a view of the file into memory
969  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
970  if (memory) memmove(memory, initial, size);
971  return new Win32MemoryMappedFile(file, file_mapping, memory);
972}
973
974
975Win32MemoryMappedFile::~Win32MemoryMappedFile() {
976  if (memory_ != NULL)
977    UnmapViewOfFile(memory_);
978  CloseHandle(file_mapping_);
979  CloseHandle(file_);
980}
981
982
983// The following code loads functions defined in DbhHelp.h and TlHelp32.h
984// dynamically. This is to avoid being depending on dbghelp.dll and
985// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
986// kernel32.dll at some point so loading functions defines in TlHelp32.h
987// dynamically might not be necessary any more - for some versions of Windows?).
988
989// Function pointers to functions dynamically loaded from dbghelp.dll.
990#define DBGHELP_FUNCTION_LIST(V)  \
991  V(SymInitialize)                \
992  V(SymGetOptions)                \
993  V(SymSetOptions)                \
994  V(SymGetSearchPath)             \
995  V(SymLoadModule64)              \
996  V(StackWalk64)                  \
997  V(SymGetSymFromAddr64)          \
998  V(SymGetLineFromAddr64)         \
999  V(SymFunctionTableAccess64)     \
1000  V(SymGetModuleBase64)
1001
1002// Function pointers to functions dynamically loaded from dbghelp.dll.
1003#define TLHELP32_FUNCTION_LIST(V)  \
1004  V(CreateToolhelp32Snapshot)      \
1005  V(Module32FirstW)                \
1006  V(Module32NextW)
1007
1008// Define the decoration to use for the type and variable name used for
1009// dynamically loaded DLL function..
1010#define DLL_FUNC_TYPE(name) _##name##_
1011#define DLL_FUNC_VAR(name) _##name
1012
1013// Define the type for each dynamically loaded DLL function. The function
1014// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1015// from the Windows include files are redefined here to have the function
1016// definitions to be as close to the ones in the original .h files as possible.
1017#ifndef IN
1018#define IN
1019#endif
1020#ifndef VOID
1021#define VOID void
1022#endif
1023
1024// DbgHelp isn't supported on MinGW yet
1025#ifndef __MINGW32__
1026// DbgHelp.h functions.
1027typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1028                                                       IN PSTR UserSearchPath,
1029                                                       IN BOOL fInvadeProcess);
1030typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1031typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1032typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1033    IN HANDLE hProcess,
1034    OUT PSTR SearchPath,
1035    IN DWORD SearchPathLength);
1036typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1037    IN HANDLE hProcess,
1038    IN HANDLE hFile,
1039    IN PSTR ImageName,
1040    IN PSTR ModuleName,
1041    IN DWORD64 BaseOfDll,
1042    IN DWORD SizeOfDll);
1043typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1044    DWORD MachineType,
1045    HANDLE hProcess,
1046    HANDLE hThread,
1047    LPSTACKFRAME64 StackFrame,
1048    PVOID ContextRecord,
1049    PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1050    PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1051    PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1052    PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1053typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1054    IN HANDLE hProcess,
1055    IN DWORD64 qwAddr,
1056    OUT PDWORD64 pdwDisplacement,
1057    OUT PIMAGEHLP_SYMBOL64 Symbol);
1058typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1059    IN HANDLE hProcess,
1060    IN DWORD64 qwAddr,
1061    OUT PDWORD pdwDisplacement,
1062    OUT PIMAGEHLP_LINE64 Line64);
1063// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1064typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1065    HANDLE hProcess,
1066    DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1067typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1068    HANDLE hProcess,
1069    DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1070
1071// TlHelp32.h functions.
1072typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1073    DWORD dwFlags,
1074    DWORD th32ProcessID);
1075typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1076                                                        LPMODULEENTRY32W lpme);
1077typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1078                                                       LPMODULEENTRY32W lpme);
1079
1080#undef IN
1081#undef VOID
1082
1083// Declare a variable for each dynamically loaded DLL function.
1084#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1085DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1086TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1087#undef DEF_DLL_FUNCTION
1088
1089// Load the functions. This function has a lot of "ugly" macros in order to
1090// keep down code duplication.
1091
1092static bool LoadDbgHelpAndTlHelp32() {
1093  static bool dbghelp_loaded = false;
1094
1095  if (dbghelp_loaded) return true;
1096
1097  HMODULE module;
1098
1099  // Load functions from the dbghelp.dll module.
1100  module = LoadLibrary(TEXT("dbghelp.dll"));
1101  if (module == NULL) {
1102    return false;
1103  }
1104
1105#define LOAD_DLL_FUNC(name)                                                 \
1106  DLL_FUNC_VAR(name) =                                                      \
1107      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1108
1109DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1110
1111#undef LOAD_DLL_FUNC
1112
1113  // Load functions from the kernel32.dll module (the TlHelp32.h function used
1114  // to be in tlhelp32.dll but are now moved to kernel32.dll).
1115  module = LoadLibrary(TEXT("kernel32.dll"));
1116  if (module == NULL) {
1117    return false;
1118  }
1119
1120#define LOAD_DLL_FUNC(name)                                                 \
1121  DLL_FUNC_VAR(name) =                                                      \
1122      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1123
1124TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1125
1126#undef LOAD_DLL_FUNC
1127
1128  // Check that all functions where loaded.
1129  bool result =
1130#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1131
1132DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1133TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1134
1135#undef DLL_FUNC_LOADED
1136  true;
1137
1138  dbghelp_loaded = result;
1139  return result;
1140  // NOTE: The modules are never unloaded and will stay around until the
1141  // application is closed.
1142}
1143
1144
1145// Load the symbols for generating stack traces.
1146static bool LoadSymbols(HANDLE process_handle) {
1147  static bool symbols_loaded = false;
1148
1149  if (symbols_loaded) return true;
1150
1151  BOOL ok;
1152
1153  // Initialize the symbol engine.
1154  ok = _SymInitialize(process_handle,  // hProcess
1155                      NULL,            // UserSearchPath
1156                      FALSE);          // fInvadeProcess
1157  if (!ok) return false;
1158
1159  DWORD options = _SymGetOptions();
1160  options |= SYMOPT_LOAD_LINES;
1161  options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1162  options = _SymSetOptions(options);
1163
1164  char buf[OS::kStackWalkMaxNameLen] = {0};
1165  ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1166  if (!ok) {
1167    int err = GetLastError();
1168    PrintF("%d\n", err);
1169    return false;
1170  }
1171
1172  HANDLE snapshot = _CreateToolhelp32Snapshot(
1173      TH32CS_SNAPMODULE,       // dwFlags
1174      GetCurrentProcessId());  // th32ProcessId
1175  if (snapshot == INVALID_HANDLE_VALUE) return false;
1176  MODULEENTRY32W module_entry;
1177  module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1178  BOOL cont = _Module32FirstW(snapshot, &module_entry);
1179  while (cont) {
1180    DWORD64 base;
1181    // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1182    // both unicode and ASCII strings even though the parameter is PSTR.
1183    base = _SymLoadModule64(
1184        process_handle,                                       // hProcess
1185        0,                                                    // hFile
1186        reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1187        reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1188        reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1189        module_entry.modBaseSize);                            // SizeOfDll
1190    if (base == 0) {
1191      int err = GetLastError();
1192      if (err != ERROR_MOD_NOT_FOUND &&
1193          err != ERROR_INVALID_HANDLE) return false;
1194    }
1195    LOG(SharedLibraryEvent(
1196            module_entry.szExePath,
1197            reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1198            reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1199                                           module_entry.modBaseSize)));
1200    cont = _Module32NextW(snapshot, &module_entry);
1201  }
1202  CloseHandle(snapshot);
1203
1204  symbols_loaded = true;
1205  return true;
1206}
1207
1208
1209void OS::LogSharedLibraryAddresses() {
1210  // SharedLibraryEvents are logged when loading symbol information.
1211  // Only the shared libraries loaded at the time of the call to
1212  // LogSharedLibraryAddresses are logged.  DLLs loaded after
1213  // initialization are not accounted for.
1214  if (!LoadDbgHelpAndTlHelp32()) return;
1215  HANDLE process_handle = GetCurrentProcess();
1216  LoadSymbols(process_handle);
1217}
1218
1219
1220// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1221
1222// Switch off warning 4748 (/GS can not protect parameters and local variables
1223// from local buffer overrun because optimizations are disabled in function) as
1224// it is triggered by the use of inline assembler.
1225#pragma warning(push)
1226#pragma warning(disable : 4748)
1227int OS::StackWalk(Vector<OS::StackFrame> frames) {
1228  BOOL ok;
1229
1230  // Load the required functions from DLL's.
1231  if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1232
1233  // Get the process and thread handles.
1234  HANDLE process_handle = GetCurrentProcess();
1235  HANDLE thread_handle = GetCurrentThread();
1236
1237  // Read the symbols.
1238  if (!LoadSymbols(process_handle)) return kStackWalkError;
1239
1240  // Capture current context.
1241  CONTEXT context;
1242  RtlCaptureContext(&context);
1243
1244  // Initialize the stack walking
1245  STACKFRAME64 stack_frame;
1246  memset(&stack_frame, 0, sizeof(stack_frame));
1247#ifdef  _WIN64
1248  stack_frame.AddrPC.Offset = context.Rip;
1249  stack_frame.AddrFrame.Offset = context.Rbp;
1250  stack_frame.AddrStack.Offset = context.Rsp;
1251#else
1252  stack_frame.AddrPC.Offset = context.Eip;
1253  stack_frame.AddrFrame.Offset = context.Ebp;
1254  stack_frame.AddrStack.Offset = context.Esp;
1255#endif
1256  stack_frame.AddrPC.Mode = AddrModeFlat;
1257  stack_frame.AddrFrame.Mode = AddrModeFlat;
1258  stack_frame.AddrStack.Mode = AddrModeFlat;
1259  int frames_count = 0;
1260
1261  // Collect stack frames.
1262  int frames_size = frames.length();
1263  while (frames_count < frames_size) {
1264    ok = _StackWalk64(
1265        IMAGE_FILE_MACHINE_I386,    // MachineType
1266        process_handle,             // hProcess
1267        thread_handle,              // hThread
1268        &stack_frame,               // StackFrame
1269        &context,                   // ContextRecord
1270        NULL,                       // ReadMemoryRoutine
1271        _SymFunctionTableAccess64,  // FunctionTableAccessRoutine
1272        _SymGetModuleBase64,        // GetModuleBaseRoutine
1273        NULL);                      // TranslateAddress
1274    if (!ok) break;
1275
1276    // Store the address.
1277    ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address.
1278    frames[frames_count].address =
1279        reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1280
1281    // Try to locate a symbol for this frame.
1282    DWORD64 symbol_displacement;
1283    SmartPointer<IMAGEHLP_SYMBOL64> symbol(
1284        NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1285    if (symbol.is_empty()) return kStackWalkError;  // Out of memory.
1286    memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1287    (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1288    (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
1289    ok = _SymGetSymFromAddr64(process_handle,             // hProcess
1290                              stack_frame.AddrPC.Offset,  // Address
1291                              &symbol_displacement,       // Displacement
1292                              *symbol);                   // Symbol
1293    if (ok) {
1294      // Try to locate more source information for the symbol.
1295      IMAGEHLP_LINE64 Line;
1296      memset(&Line, 0, sizeof(Line));
1297      Line.SizeOfStruct = sizeof(Line);
1298      DWORD line_displacement;
1299      ok = _SymGetLineFromAddr64(
1300          process_handle,             // hProcess
1301          stack_frame.AddrPC.Offset,  // dwAddr
1302          &line_displacement,         // pdwDisplacement
1303          &Line);                     // Line
1304      // Format a text representation of the frame based on the information
1305      // available.
1306      if (ok) {
1307        SNPrintF(MutableCStrVector(frames[frames_count].text,
1308                                   kStackWalkMaxTextLen),
1309                 "%s %s:%d:%d",
1310                 (*symbol)->Name, Line.FileName, Line.LineNumber,
1311                 line_displacement);
1312      } else {
1313        SNPrintF(MutableCStrVector(frames[frames_count].text,
1314                                   kStackWalkMaxTextLen),
1315                 "%s",
1316                 (*symbol)->Name);
1317      }
1318      // Make sure line termination is in place.
1319      frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1320    } else {
1321      // No text representation of this frame
1322      frames[frames_count].text[0] = '\0';
1323
1324      // Continue if we are just missing a module (for non C/C++ frames a
1325      // module will never be found).
1326      int err = GetLastError();
1327      if (err != ERROR_MOD_NOT_FOUND) {
1328        break;
1329      }
1330    }
1331
1332    frames_count++;
1333  }
1334
1335  // Return the number of frames filled in.
1336  return frames_count;
1337}
1338
1339// Restore warnings to previous settings.
1340#pragma warning(pop)
1341
1342#else  // __MINGW32__
1343void OS::LogSharedLibraryAddresses() { }
1344int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1345#endif  // __MINGW32__
1346
1347
1348uint64_t OS::CpuFeaturesImpliedByPlatform() {
1349  return 0;  // Windows runs on anything.
1350}
1351
1352
1353double OS::nan_value() {
1354#ifdef _MSC_VER
1355  // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1356  // in mask set, so value equals mask.
1357  static const __int64 nanval = kQuietNaNMask;
1358  return *reinterpret_cast<const double*>(&nanval);
1359#else  // _MSC_VER
1360  return NAN;
1361#endif  // _MSC_VER
1362}
1363
1364
1365int OS::ActivationFrameAlignment() {
1366#ifdef _WIN64
1367  return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1368#else
1369  return 8;  // Floating-point math runs faster with 8-byte alignment.
1370#endif
1371}
1372
1373
1374void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1375  MemoryBarrier();
1376  *ptr = value;
1377}
1378
1379
1380bool VirtualMemory::IsReserved() {
1381  return address_ != NULL;
1382}
1383
1384
1385VirtualMemory::VirtualMemory(size_t size) {
1386  address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1387  size_ = size;
1388}
1389
1390
1391VirtualMemory::~VirtualMemory() {
1392  if (IsReserved()) {
1393    if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1394  }
1395}
1396
1397
1398bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1399  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1400  if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1401    return false;
1402  }
1403
1404  UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1405  return true;
1406}
1407
1408
1409bool VirtualMemory::Uncommit(void* address, size_t size) {
1410  ASSERT(IsReserved());
1411  return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
1412}
1413
1414
1415// ----------------------------------------------------------------------------
1416// Win32 thread support.
1417
1418// Definition of invalid thread handle and id.
1419static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1420static const DWORD kNoThreadId = 0;
1421
1422
1423class ThreadHandle::PlatformData : public Malloced {
1424 public:
1425  explicit PlatformData(ThreadHandle::Kind kind) {
1426    Initialize(kind);
1427  }
1428
1429  void Initialize(ThreadHandle::Kind kind) {
1430    switch (kind) {
1431      case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1432      case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1433    }
1434  }
1435  DWORD tid_;  // Win32 thread identifier.
1436};
1437
1438
1439// Entry point for threads. The supplied argument is a pointer to the thread
1440// object. The entry function dispatches to the run method in the thread
1441// object. It is important that this function has __stdcall calling
1442// convention.
1443static unsigned int __stdcall ThreadEntry(void* arg) {
1444  Thread* thread = reinterpret_cast<Thread*>(arg);
1445  // This is also initialized by the last parameter to _beginthreadex() but we
1446  // don't know which thread will run first (the original thread or the new
1447  // one) so we initialize it here too.
1448  thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1449  thread->Run();
1450  return 0;
1451}
1452
1453
1454// Initialize thread handle to invalid handle.
1455ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1456  data_ = new PlatformData(kind);
1457}
1458
1459
1460ThreadHandle::~ThreadHandle() {
1461  delete data_;
1462}
1463
1464
1465// The thread is running if it has the same id as the current thread.
1466bool ThreadHandle::IsSelf() const {
1467  return GetCurrentThreadId() == data_->tid_;
1468}
1469
1470
1471// Test for invalid thread handle.
1472bool ThreadHandle::IsValid() const {
1473  return data_->tid_ != kNoThreadId;
1474}
1475
1476
1477void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1478  data_->Initialize(kind);
1479}
1480
1481
1482class Thread::PlatformData : public Malloced {
1483 public:
1484  explicit PlatformData(HANDLE thread) : thread_(thread) {}
1485  HANDLE thread_;
1486};
1487
1488
1489// Initialize a Win32 thread object. The thread has an invalid thread
1490// handle until it is started.
1491
1492Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1493  data_ = new PlatformData(kNoThread);
1494}
1495
1496
1497// Close our own handle for the thread.
1498Thread::~Thread() {
1499  if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1500  delete data_;
1501}
1502
1503
1504// Create a new thread. It is important to use _beginthreadex() instead of
1505// the Win32 function CreateThread(), because the CreateThread() does not
1506// initialize thread specific structures in the C runtime library.
1507void Thread::Start() {
1508  data_->thread_ = reinterpret_cast<HANDLE>(
1509      _beginthreadex(NULL,
1510                     0,
1511                     ThreadEntry,
1512                     this,
1513                     0,
1514                     reinterpret_cast<unsigned int*>(
1515                         &thread_handle_data()->tid_)));
1516  ASSERT(IsValid());
1517}
1518
1519
1520// Wait for thread to terminate.
1521void Thread::Join() {
1522  WaitForSingleObject(data_->thread_, INFINITE);
1523}
1524
1525
1526Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1527  DWORD result = TlsAlloc();
1528  ASSERT(result != TLS_OUT_OF_INDEXES);
1529  return static_cast<LocalStorageKey>(result);
1530}
1531
1532
1533void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1534  BOOL result = TlsFree(static_cast<DWORD>(key));
1535  USE(result);
1536  ASSERT(result);
1537}
1538
1539
1540void* Thread::GetThreadLocal(LocalStorageKey key) {
1541  return TlsGetValue(static_cast<DWORD>(key));
1542}
1543
1544
1545void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1546  BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1547  USE(result);
1548  ASSERT(result);
1549}
1550
1551
1552
1553void Thread::YieldCPU() {
1554  Sleep(0);
1555}
1556
1557
1558// ----------------------------------------------------------------------------
1559// Win32 mutex support.
1560//
1561// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1562// faster than Win32 Mutex objects because they are implemented using user mode
1563// atomic instructions. Therefore we only do ring transitions if there is lock
1564// contention.
1565
1566class Win32Mutex : public Mutex {
1567 public:
1568
1569  Win32Mutex() { InitializeCriticalSection(&cs_); }
1570
1571  ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1572
1573  int Lock() {
1574    EnterCriticalSection(&cs_);
1575    return 0;
1576  }
1577
1578  int Unlock() {
1579    LeaveCriticalSection(&cs_);
1580    return 0;
1581  }
1582
1583 private:
1584  CRITICAL_SECTION cs_;  // Critical section used for mutex
1585};
1586
1587
1588Mutex* OS::CreateMutex() {
1589  return new Win32Mutex();
1590}
1591
1592
1593// ----------------------------------------------------------------------------
1594// Win32 semaphore support.
1595//
1596// On Win32 semaphores are implemented using Win32 Semaphore objects. The
1597// semaphores are anonymous. Also, the semaphores are initialized to have
1598// no upper limit on count.
1599
1600
1601class Win32Semaphore : public Semaphore {
1602 public:
1603  explicit Win32Semaphore(int count) {
1604    sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1605  }
1606
1607  ~Win32Semaphore() {
1608    CloseHandle(sem);
1609  }
1610
1611  void Wait() {
1612    WaitForSingleObject(sem, INFINITE);
1613  }
1614
1615  bool Wait(int timeout) {
1616    // Timeout in Windows API is in milliseconds.
1617    DWORD millis_timeout = timeout / 1000;
1618    return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1619  }
1620
1621  void Signal() {
1622    LONG dummy;
1623    ReleaseSemaphore(sem, 1, &dummy);
1624  }
1625
1626 private:
1627  HANDLE sem;
1628};
1629
1630
1631Semaphore* OS::CreateSemaphore(int count) {
1632  return new Win32Semaphore(count);
1633}
1634
1635
1636// ----------------------------------------------------------------------------
1637// Win32 socket support.
1638//
1639
1640class Win32Socket : public Socket {
1641 public:
1642  explicit Win32Socket() {
1643    // Create the socket.
1644    socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1645  }
1646  explicit Win32Socket(SOCKET socket): socket_(socket) { }
1647  virtual ~Win32Socket() { Shutdown(); }
1648
1649  // Server initialization.
1650  bool Bind(const int port);
1651  bool Listen(int backlog) const;
1652  Socket* Accept() const;
1653
1654  // Client initialization.
1655  bool Connect(const char* host, const char* port);
1656
1657  // Shutdown socket for both read and write.
1658  bool Shutdown();
1659
1660  // Data Transimission
1661  int Send(const char* data, int len) const;
1662  int Receive(char* data, int len) const;
1663
1664  bool SetReuseAddress(bool reuse_address);
1665
1666  bool IsValid() const { return socket_ != INVALID_SOCKET; }
1667
1668 private:
1669  SOCKET socket_;
1670};
1671
1672
1673bool Win32Socket::Bind(const int port) {
1674  if (!IsValid())  {
1675    return false;
1676  }
1677
1678  sockaddr_in addr;
1679  memset(&addr, 0, sizeof(addr));
1680  addr.sin_family = AF_INET;
1681  addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1682  addr.sin_port = htons(port);
1683  int status = bind(socket_,
1684                    reinterpret_cast<struct sockaddr *>(&addr),
1685                    sizeof(addr));
1686  return status == 0;
1687}
1688
1689
1690bool Win32Socket::Listen(int backlog) const {
1691  if (!IsValid()) {
1692    return false;
1693  }
1694
1695  int status = listen(socket_, backlog);
1696  return status == 0;
1697}
1698
1699
1700Socket* Win32Socket::Accept() const {
1701  if (!IsValid()) {
1702    return NULL;
1703  }
1704
1705  SOCKET socket = accept(socket_, NULL, NULL);
1706  if (socket == INVALID_SOCKET) {
1707    return NULL;
1708  } else {
1709    return new Win32Socket(socket);
1710  }
1711}
1712
1713
1714bool Win32Socket::Connect(const char* host, const char* port) {
1715  if (!IsValid()) {
1716    return false;
1717  }
1718
1719  // Lookup host and port.
1720  struct addrinfo *result = NULL;
1721  struct addrinfo hints;
1722  memset(&hints, 0, sizeof(addrinfo));
1723  hints.ai_family = AF_INET;
1724  hints.ai_socktype = SOCK_STREAM;
1725  hints.ai_protocol = IPPROTO_TCP;
1726  int status = getaddrinfo(host, port, &hints, &result);
1727  if (status != 0) {
1728    return false;
1729  }
1730
1731  // Connect.
1732  status = connect(socket_,
1733                   result->ai_addr,
1734                   static_cast<int>(result->ai_addrlen));
1735  freeaddrinfo(result);
1736  return status == 0;
1737}
1738
1739
1740bool Win32Socket::Shutdown() {
1741  if (IsValid()) {
1742    // Shutdown socket for both read and write.
1743    int status = shutdown(socket_, SD_BOTH);
1744    closesocket(socket_);
1745    socket_ = INVALID_SOCKET;
1746    return status == SOCKET_ERROR;
1747  }
1748  return true;
1749}
1750
1751
1752int Win32Socket::Send(const char* data, int len) const {
1753  int status = send(socket_, data, len, 0);
1754  return status;
1755}
1756
1757
1758int Win32Socket::Receive(char* data, int len) const {
1759  int status = recv(socket_, data, len, 0);
1760  return status;
1761}
1762
1763
1764bool Win32Socket::SetReuseAddress(bool reuse_address) {
1765  BOOL on = reuse_address ? TRUE : FALSE;
1766  int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1767                          reinterpret_cast<char*>(&on), sizeof(on));
1768  return status == SOCKET_ERROR;
1769}
1770
1771
1772bool Socket::Setup() {
1773  // Initialize Winsock32
1774  int err;
1775  WSADATA winsock_data;
1776  WORD version_requested = MAKEWORD(1, 0);
1777  err = WSAStartup(version_requested, &winsock_data);
1778  if (err != 0) {
1779    PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1780  }
1781
1782  return err == 0;
1783}
1784
1785
1786int Socket::LastError() {
1787  return WSAGetLastError();
1788}
1789
1790
1791uint16_t Socket::HToN(uint16_t value) {
1792  return htons(value);
1793}
1794
1795
1796uint16_t Socket::NToH(uint16_t value) {
1797  return ntohs(value);
1798}
1799
1800
1801uint32_t Socket::HToN(uint32_t value) {
1802  return htonl(value);
1803}
1804
1805
1806uint32_t Socket::NToH(uint32_t value) {
1807  return ntohl(value);
1808}
1809
1810
1811Socket* OS::CreateSocket() {
1812  return new Win32Socket();
1813}
1814
1815
1816#ifdef ENABLE_LOGGING_AND_PROFILING
1817
1818// ----------------------------------------------------------------------------
1819// Win32 profiler support.
1820//
1821// On win32 we use a sampler thread with high priority to sample the program
1822// counter for the profiled thread.
1823
1824class Sampler::PlatformData : public Malloced {
1825 public:
1826  explicit PlatformData(Sampler* sampler) {
1827    sampler_ = sampler;
1828    sampler_thread_ = INVALID_HANDLE_VALUE;
1829    profiled_thread_ = INVALID_HANDLE_VALUE;
1830  }
1831
1832  Sampler* sampler_;
1833  HANDLE sampler_thread_;
1834  HANDLE profiled_thread_;
1835
1836  // Sampler thread handler.
1837  void Runner() {
1838    // Context used for sampling the register state of the profiled thread.
1839    CONTEXT context;
1840    memset(&context, 0, sizeof(context));
1841    // Loop until the sampler is disengaged, keeping the specified samling freq.
1842    for ( ; sampler_->IsActive(); Sleep(sampler_->interval_)) {
1843      TickSample sample_obj;
1844      TickSample* sample = CpuProfiler::TickSampleEvent();
1845      if (sample == NULL) sample = &sample_obj;
1846
1847      // We always sample the VM state.
1848      sample->state = VMState::current_state();
1849      // If profiling, we record the pc and sp of the profiled thread.
1850      if (sampler_->IsProfiling()
1851          && SuspendThread(profiled_thread_) != (DWORD)-1) {
1852        context.ContextFlags = CONTEXT_FULL;
1853        if (GetThreadContext(profiled_thread_, &context) != 0) {
1854#if V8_HOST_ARCH_X64
1855          sample->pc = reinterpret_cast<Address>(context.Rip);
1856          sample->sp = reinterpret_cast<Address>(context.Rsp);
1857          sample->fp = reinterpret_cast<Address>(context.Rbp);
1858#else
1859          sample->pc = reinterpret_cast<Address>(context.Eip);
1860          sample->sp = reinterpret_cast<Address>(context.Esp);
1861          sample->fp = reinterpret_cast<Address>(context.Ebp);
1862#endif
1863          sampler_->SampleStack(sample);
1864        }
1865        ResumeThread(profiled_thread_);
1866      }
1867
1868      // Invoke tick handler with program counter and stack pointer.
1869      sampler_->Tick(sample);
1870    }
1871  }
1872};
1873
1874
1875// Entry point for sampler thread.
1876static unsigned int __stdcall SamplerEntry(void* arg) {
1877  Sampler::PlatformData* data =
1878      reinterpret_cast<Sampler::PlatformData*>(arg);
1879  data->Runner();
1880  return 0;
1881}
1882
1883
1884// Initialize a profile sampler.
1885Sampler::Sampler(int interval, bool profiling)
1886    : interval_(interval), profiling_(profiling), active_(false) {
1887  data_ = new PlatformData(this);
1888}
1889
1890
1891Sampler::~Sampler() {
1892  delete data_;
1893}
1894
1895
1896// Start profiling.
1897void Sampler::Start() {
1898  // If we are profiling, we need to be able to access the calling
1899  // thread.
1900  if (IsProfiling()) {
1901    // Get a handle to the calling thread. This is the thread that we are
1902    // going to profile. We need to make a copy of the handle because we are
1903    // going to use it in the sampler thread. Using GetThreadHandle() will
1904    // not work in this case. We're using OpenThread because DuplicateHandle
1905    // for some reason doesn't work in Chrome's sandbox.
1906    data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
1907                                         THREAD_SUSPEND_RESUME |
1908                                         THREAD_QUERY_INFORMATION,
1909                                         FALSE,
1910                                         GetCurrentThreadId());
1911    BOOL ok = data_->profiled_thread_ != NULL;
1912    if (!ok) return;
1913  }
1914
1915  // Start sampler thread.
1916  unsigned int tid;
1917  active_ = true;
1918  data_->sampler_thread_ = reinterpret_cast<HANDLE>(
1919      _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
1920  // Set thread to high priority to increase sampling accuracy.
1921  SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1922}
1923
1924
1925// Stop profiling.
1926void Sampler::Stop() {
1927  // Seting active to false triggers termination of the sampler
1928  // thread.
1929  active_ = false;
1930
1931  // Wait for sampler thread to terminate.
1932  WaitForSingleObject(data_->sampler_thread_, INFINITE);
1933
1934  // Release the thread handles
1935  CloseHandle(data_->sampler_thread_);
1936  CloseHandle(data_->profiled_thread_);
1937}
1938
1939
1940#endif  // ENABLE_LOGGING_AND_PROFILING
1941
1942} }  // namespace v8::internal
1943