spaces.h revision 3ef787dbeca8a5fb1086949cda830dccee07bfbd
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SPACES_H_
29#define V8_SPACES_H_
30
31#include "allocation.h"
32#include "hashmap.h"
33#include "list.h"
34#include "log.h"
35
36namespace v8 {
37namespace internal {
38
39class Isolate;
40
41// -----------------------------------------------------------------------------
42// Heap structures:
43//
44// A JS heap consists of a young generation, an old generation, and a large
45// object space. The young generation is divided into two semispaces. A
46// scavenger implements Cheney's copying algorithm. The old generation is
47// separated into a map space and an old object space. The map space contains
48// all (and only) map objects, the rest of old objects go into the old space.
49// The old generation is collected by a mark-sweep-compact collector.
50//
51// The semispaces of the young generation are contiguous.  The old and map
52// spaces consists of a list of pages. A page has a page header and an object
53// area.
54//
55// There is a separate large object space for objects larger than
56// Page::kMaxHeapObjectSize, so that they do not have to move during
57// collection. The large object space is paged. Pages in large object space
58// may be larger than the page size.
59//
60// A store-buffer based write barrier is used to keep track of intergenerational
61// references.  See store-buffer.h.
62//
63// During scavenges and mark-sweep collections we sometimes (after a store
64// buffer overflow) iterate intergenerational pointers without decoding heap
65// object maps so if the page belongs to old pointer space or large object
66// space it is essential to guarantee that the page does not contain any
67// garbage pointers to new space: every pointer aligned word which satisfies
68// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
69// new space. Thus objects in old pointer and large object spaces should have a
70// special layout (e.g. no bare integer fields). This requirement does not
71// apply to map space which is iterated in a special fashion. However we still
72// require pointer fields of dead maps to be cleaned.
73//
74// To enable lazy cleaning of old space pages we can mark chunks of the page
75// as being garbage.  Garbage sections are marked with a special map.  These
76// sections are skipped when scanning the page, even if we are otherwise
77// scanning without regard for object boundaries.  Garbage sections are chained
78// together to form a free list after a GC.  Garbage sections created outside
79// of GCs by object trunctation etc. may not be in the free list chain.  Very
80// small free spaces are ignored, they need only be cleaned of bogus pointers
81// into new space.
82//
83// Each page may have up to one special garbage section.  The start of this
84// section is denoted by the top field in the space.  The end of the section
85// is denoted by the limit field in the space.  This special garbage section
86// is not marked with a free space map in the data.  The point of this section
87// is to enable linear allocation without having to constantly update the byte
88// array every time the top field is updated and a new object is created.  The
89// special garbage section is not in the chain of garbage sections.
90//
91// Since the top and limit fields are in the space, not the page, only one page
92// has a special garbage section, and if the top and limit are equal then there
93// is no special garbage section.
94
95// Some assertion macros used in the debugging mode.
96
97#define ASSERT_PAGE_ALIGNED(address)                                           \
98  ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
99
100#define ASSERT_OBJECT_ALIGNED(address)                                         \
101  ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0)
102
103#define ASSERT_MAP_ALIGNED(address)                                            \
104  ASSERT((OffsetFrom(address) & kMapAlignmentMask) == 0)
105
106#define ASSERT_OBJECT_SIZE(size)                                               \
107  ASSERT((0 < size) && (size <= Page::kMaxNonCodeHeapObjectSize))
108
109#define ASSERT_PAGE_OFFSET(offset)                                             \
110  ASSERT((Page::kObjectStartOffset <= offset)                                  \
111      && (offset <= Page::kPageSize))
112
113#define ASSERT_MAP_PAGE_INDEX(index)                                           \
114  ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))
115
116
117class PagedSpace;
118class MemoryAllocator;
119class AllocationInfo;
120class Space;
121class FreeList;
122class MemoryChunk;
123
124class MarkBit {
125 public:
126  typedef uint32_t CellType;
127
128  inline MarkBit(CellType* cell, CellType mask, bool data_only)
129      : cell_(cell), mask_(mask), data_only_(data_only) { }
130
131  inline CellType* cell() { return cell_; }
132  inline CellType mask() { return mask_; }
133
134#ifdef DEBUG
135  bool operator==(const MarkBit& other) {
136    return cell_ == other.cell_ && mask_ == other.mask_;
137  }
138#endif
139
140  inline void Set() { *cell_ |= mask_; }
141  inline bool Get() { return (*cell_ & mask_) != 0; }
142  inline void Clear() { *cell_ &= ~mask_; }
143
144  inline bool data_only() { return data_only_; }
145
146  inline MarkBit Next() {
147    CellType new_mask = mask_ << 1;
148    if (new_mask == 0) {
149      return MarkBit(cell_ + 1, 1, data_only_);
150    } else {
151      return MarkBit(cell_, new_mask, data_only_);
152    }
153  }
154
155 private:
156  CellType* cell_;
157  CellType mask_;
158  // This boolean indicates that the object is in a data-only space with no
159  // pointers.  This enables some optimizations when marking.
160  // It is expected that this field is inlined and turned into control flow
161  // at the place where the MarkBit object is created.
162  bool data_only_;
163};
164
165
166// Bitmap is a sequence of cells each containing fixed number of bits.
167class Bitmap {
168 public:
169  static const uint32_t kBitsPerCell = 32;
170  static const uint32_t kBitsPerCellLog2 = 5;
171  static const uint32_t kBitIndexMask = kBitsPerCell - 1;
172  static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
173  static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;
174
175  static const size_t kLength =
176    (1 << kPageSizeBits) >> (kPointerSizeLog2);
177
178  static const size_t kSize =
179    (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2);
180
181
182  static int CellsForLength(int length) {
183    return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
184  }
185
186  int CellsCount() {
187    return CellsForLength(kLength);
188  }
189
190  static int SizeFor(int cells_count) {
191    return sizeof(MarkBit::CellType) * cells_count;
192  }
193
194  INLINE(static uint32_t IndexToCell(uint32_t index)) {
195    return index >> kBitsPerCellLog2;
196  }
197
198  INLINE(static uint32_t CellToIndex(uint32_t index)) {
199    return index << kBitsPerCellLog2;
200  }
201
202  INLINE(static uint32_t CellAlignIndex(uint32_t index)) {
203    return (index + kBitIndexMask) & ~kBitIndexMask;
204  }
205
206  INLINE(MarkBit::CellType* cells()) {
207    return reinterpret_cast<MarkBit::CellType*>(this);
208  }
209
210  INLINE(Address address()) {
211    return reinterpret_cast<Address>(this);
212  }
213
214  INLINE(static Bitmap* FromAddress(Address addr)) {
215    return reinterpret_cast<Bitmap*>(addr);
216  }
217
218  inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) {
219    MarkBit::CellType mask = 1 << (index & kBitIndexMask);
220    MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
221    return MarkBit(cell, mask, data_only);
222  }
223
224  static inline void Clear(MemoryChunk* chunk);
225
226  static void PrintWord(uint32_t word, uint32_t himask = 0) {
227    for (uint32_t mask = 1; mask != 0; mask <<= 1) {
228      if ((mask & himask) != 0) PrintF("[");
229      PrintF((mask & word) ? "1" : "0");
230      if ((mask & himask) != 0) PrintF("]");
231    }
232  }
233
234  class CellPrinter {
235   public:
236    CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { }
237
238    void Print(uint32_t pos, uint32_t cell) {
239      if (cell == seq_type) {
240        seq_length++;
241        return;
242      }
243
244      Flush();
245
246      if (IsSeq(cell)) {
247        seq_start = pos;
248        seq_length = 0;
249        seq_type = cell;
250        return;
251      }
252
253      PrintF("%d: ", pos);
254      PrintWord(cell);
255      PrintF("\n");
256    }
257
258    void Flush() {
259      if (seq_length > 0) {
260        PrintF("%d: %dx%d\n",
261               seq_start,
262               seq_type == 0 ? 0 : 1,
263               seq_length * kBitsPerCell);
264        seq_length = 0;
265      }
266    }
267
268    static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; }
269
270   private:
271    uint32_t seq_start;
272    uint32_t seq_type;
273    uint32_t seq_length;
274  };
275
276  void Print() {
277    CellPrinter printer;
278    for (int i = 0; i < CellsCount(); i++) {
279      printer.Print(i, cells()[i]);
280    }
281    printer.Flush();
282    PrintF("\n");
283  }
284
285  bool IsClean() {
286    for (int i = 0; i < CellsCount(); i++) {
287      if (cells()[i] != 0) return false;
288    }
289    return true;
290  }
291};
292
293
294class SkipList;
295class SlotsBuffer;
296
297// MemoryChunk represents a memory region owned by a specific space.
298// It is divided into the header and the body. Chunk start is always
299// 1MB aligned. Start of the body is aligned so it can accommodate
300// any heap object.
301class MemoryChunk {
302 public:
303  // Only works if the pointer is in the first kPageSize of the MemoryChunk.
304  static MemoryChunk* FromAddress(Address a) {
305    return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask);
306  }
307
308  // Only works for addresses in pointer spaces, not data or code spaces.
309  static inline MemoryChunk* FromAnyPointerAddress(Address addr);
310
311  Address address() { return reinterpret_cast<Address>(this); }
312
313  bool is_valid() { return address() != NULL; }
314
315  MemoryChunk* next_chunk() const { return next_chunk_; }
316  MemoryChunk* prev_chunk() const { return prev_chunk_; }
317
318  void set_next_chunk(MemoryChunk* next) { next_chunk_ = next; }
319  void set_prev_chunk(MemoryChunk* prev) { prev_chunk_ = prev; }
320
321  Space* owner() const {
322    if ((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
323        kFailureTag) {
324      return reinterpret_cast<Space*>(owner_ - kFailureTag);
325    } else {
326      return NULL;
327    }
328  }
329
330  void set_owner(Space* space) {
331    ASSERT((reinterpret_cast<intptr_t>(space) & kFailureTagMask) == 0);
332    owner_ = reinterpret_cast<Address>(space) + kFailureTag;
333    ASSERT((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
334           kFailureTag);
335  }
336
337  VirtualMemory* reserved_memory() {
338    return &reservation_;
339  }
340
341  void InitializeReservedMemory() {
342    reservation_.Reset();
343  }
344
345  void set_reserved_memory(VirtualMemory* reservation) {
346    ASSERT_NOT_NULL(reservation);
347    reservation_.TakeControl(reservation);
348  }
349
350  bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); }
351  void initialize_scan_on_scavenge(bool scan) {
352    if (scan) {
353      SetFlag(SCAN_ON_SCAVENGE);
354    } else {
355      ClearFlag(SCAN_ON_SCAVENGE);
356    }
357  }
358  inline void set_scan_on_scavenge(bool scan);
359
360  int store_buffer_counter() { return store_buffer_counter_; }
361  void set_store_buffer_counter(int counter) {
362    store_buffer_counter_ = counter;
363  }
364
365  bool Contains(Address addr) {
366    return addr >= area_start() && addr < area_end();
367  }
368
369  // Checks whether addr can be a limit of addresses in this page.
370  // It's a limit if it's in the page, or if it's just after the
371  // last byte of the page.
372  bool ContainsLimit(Address addr) {
373    return addr >= area_start() && addr <= area_end();
374  }
375
376  enum MemoryChunkFlags {
377    IS_EXECUTABLE,
378    ABOUT_TO_BE_FREED,
379    POINTERS_TO_HERE_ARE_INTERESTING,
380    POINTERS_FROM_HERE_ARE_INTERESTING,
381    SCAN_ON_SCAVENGE,
382    IN_FROM_SPACE,  // Mutually exclusive with IN_TO_SPACE.
383    IN_TO_SPACE,    // All pages in new space has one of these two set.
384    NEW_SPACE_BELOW_AGE_MARK,
385    CONTAINS_ONLY_DATA,
386    EVACUATION_CANDIDATE,
387    RESCAN_ON_EVACUATION,
388
389    // Pages swept precisely can be iterated, hitting only the live objects.
390    // Whereas those swept conservatively cannot be iterated over. Both flags
391    // indicate that marking bits have been cleared by the sweeper, otherwise
392    // marking bits are still intact.
393    WAS_SWEPT_PRECISELY,
394    WAS_SWEPT_CONSERVATIVELY,
395
396    // Last flag, keep at bottom.
397    NUM_MEMORY_CHUNK_FLAGS
398  };
399
400
401  static const int kPointersToHereAreInterestingMask =
402      1 << POINTERS_TO_HERE_ARE_INTERESTING;
403
404  static const int kPointersFromHereAreInterestingMask =
405      1 << POINTERS_FROM_HERE_ARE_INTERESTING;
406
407  static const int kEvacuationCandidateMask =
408      1 << EVACUATION_CANDIDATE;
409
410  static const int kSkipEvacuationSlotsRecordingMask =
411      (1 << EVACUATION_CANDIDATE) |
412      (1 << RESCAN_ON_EVACUATION) |
413      (1 << IN_FROM_SPACE) |
414      (1 << IN_TO_SPACE);
415
416
417  void SetFlag(int flag) {
418    flags_ |= static_cast<uintptr_t>(1) << flag;
419  }
420
421  void ClearFlag(int flag) {
422    flags_ &= ~(static_cast<uintptr_t>(1) << flag);
423  }
424
425  void SetFlagTo(int flag, bool value) {
426    if (value) {
427      SetFlag(flag);
428    } else {
429      ClearFlag(flag);
430    }
431  }
432
433  bool IsFlagSet(int flag) {
434    return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0;
435  }
436
437  // Set or clear multiple flags at a time. The flags in the mask
438  // are set to the value in "flags", the rest retain the current value
439  // in flags_.
440  void SetFlags(intptr_t flags, intptr_t mask) {
441    flags_ = (flags_ & ~mask) | (flags & mask);
442  }
443
444  // Return all current flags.
445  intptr_t GetFlags() { return flags_; }
446
447  // Manage live byte count (count of bytes known to be live,
448  // because they are marked black).
449  void ResetLiveBytes() {
450    if (FLAG_gc_verbose) {
451      PrintF("ResetLiveBytes:%p:%x->0\n",
452             static_cast<void*>(this), live_byte_count_);
453    }
454    live_byte_count_ = 0;
455  }
456  void IncrementLiveBytes(int by) {
457    if (FLAG_gc_verbose) {
458      printf("UpdateLiveBytes:%p:%x%c=%x->%x\n",
459             static_cast<void*>(this), live_byte_count_,
460             ((by < 0) ? '-' : '+'), ((by < 0) ? -by : by),
461             live_byte_count_ + by);
462    }
463    live_byte_count_ += by;
464    ASSERT_LE(static_cast<unsigned>(live_byte_count_), size_);
465  }
466  int LiveBytes() {
467    ASSERT(static_cast<unsigned>(live_byte_count_) <= size_);
468    return live_byte_count_;
469  }
470
471  static void IncrementLiveBytesFromGC(Address address, int by) {
472    MemoryChunk::FromAddress(address)->IncrementLiveBytes(by);
473  }
474
475  static void IncrementLiveBytesFromMutator(Address address, int by);
476
477  static const intptr_t kAlignment =
478      (static_cast<uintptr_t>(1) << kPageSizeBits);
479
480  static const intptr_t kAlignmentMask = kAlignment - 1;
481
482  static const intptr_t kSizeOffset = kPointerSize + kPointerSize;
483
484  static const intptr_t kLiveBytesOffset =
485     kSizeOffset + kPointerSize + kPointerSize + kPointerSize +
486     kPointerSize + kPointerSize +
487     kPointerSize + kPointerSize + kPointerSize + kIntSize;
488
489  static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize;
490
491  static const size_t kHeaderSize =
492      kSlotsBufferOffset + kPointerSize + kPointerSize;
493
494  static const int kBodyOffset =
495    CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kHeaderSize + Bitmap::kSize));
496
497  // The start offset of the object area in a page. Aligned to both maps and
498  // code alignment to be suitable for both.  Also aligned to 32 words because
499  // the marking bitmap is arranged in 32 bit chunks.
500  static const int kObjectStartAlignment = 32 * kPointerSize;
501  static const int kObjectStartOffset = kBodyOffset - 1 +
502      (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);
503
504  size_t size() const { return size_; }
505
506  void set_size(size_t size) {
507    size_ = size;
508  }
509
510  void SetArea(Address area_start, Address area_end) {
511    area_start_ = area_start;
512    area_end_ = area_end;
513  }
514
515  Executability executable() {
516    return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
517  }
518
519  bool ContainsOnlyData() {
520    return IsFlagSet(CONTAINS_ONLY_DATA);
521  }
522
523  bool InNewSpace() {
524    return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0;
525  }
526
527  bool InToSpace() {
528    return IsFlagSet(IN_TO_SPACE);
529  }
530
531  bool InFromSpace() {
532    return IsFlagSet(IN_FROM_SPACE);
533  }
534
535  // ---------------------------------------------------------------------
536  // Markbits support
537
538  inline Bitmap* markbits() {
539    return Bitmap::FromAddress(address() + kHeaderSize);
540  }
541
542  void PrintMarkbits() { markbits()->Print(); }
543
544  inline uint32_t AddressToMarkbitIndex(Address addr) {
545    return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2;
546  }
547
548  inline static uint32_t FastAddressToMarkbitIndex(Address addr) {
549    const intptr_t offset =
550        reinterpret_cast<intptr_t>(addr) & kAlignmentMask;
551
552    return static_cast<uint32_t>(offset) >> kPointerSizeLog2;
553  }
554
555  inline Address MarkbitIndexToAddress(uint32_t index) {
556    return this->address() + (index << kPointerSizeLog2);
557  }
558
559  void InsertAfter(MemoryChunk* other);
560  void Unlink();
561
562  inline Heap* heap() { return heap_; }
563
564  static const int kFlagsOffset = kPointerSize * 3;
565
566  bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); }
567
568  bool ShouldSkipEvacuationSlotRecording() {
569    return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0;
570  }
571
572  inline SkipList* skip_list() {
573    return skip_list_;
574  }
575
576  inline void set_skip_list(SkipList* skip_list) {
577    skip_list_ = skip_list;
578  }
579
580  inline SlotsBuffer* slots_buffer() {
581    return slots_buffer_;
582  }
583
584  inline SlotsBuffer** slots_buffer_address() {
585    return &slots_buffer_;
586  }
587
588  void MarkEvacuationCandidate() {
589    ASSERT(slots_buffer_ == NULL);
590    SetFlag(EVACUATION_CANDIDATE);
591  }
592
593  void ClearEvacuationCandidate() {
594    ASSERT(slots_buffer_ == NULL);
595    ClearFlag(EVACUATION_CANDIDATE);
596  }
597
598  Address area_start() { return area_start_; }
599  Address area_end() { return area_end_; }
600  int area_size() {
601    return static_cast<int>(area_end() - area_start());
602  }
603
604 protected:
605  MemoryChunk* next_chunk_;
606  MemoryChunk* prev_chunk_;
607  size_t size_;
608  intptr_t flags_;
609
610  // Start and end of allocatable memory on this chunk.
611  Address area_start_;
612  Address area_end_;
613
614  // If the chunk needs to remember its memory reservation, it is stored here.
615  VirtualMemory reservation_;
616  // The identity of the owning space.  This is tagged as a failure pointer, but
617  // no failure can be in an object, so this can be distinguished from any entry
618  // in a fixed array.
619  Address owner_;
620  Heap* heap_;
621  // Used by the store buffer to keep track of which pages to mark scan-on-
622  // scavenge.
623  int store_buffer_counter_;
624  // Count of bytes marked black on page.
625  int live_byte_count_;
626  SlotsBuffer* slots_buffer_;
627  SkipList* skip_list_;
628
629  static MemoryChunk* Initialize(Heap* heap,
630                                 Address base,
631                                 size_t size,
632                                 Address area_start,
633                                 Address area_end,
634                                 Executability executable,
635                                 Space* owner);
636
637  friend class MemoryAllocator;
638};
639
640STATIC_CHECK(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);
641
642// -----------------------------------------------------------------------------
643// A page is a memory chunk of a size 1MB. Large object pages may be larger.
644//
645// The only way to get a page pointer is by calling factory methods:
646//   Page* p = Page::FromAddress(addr); or
647//   Page* p = Page::FromAllocationTop(top);
648class Page : public MemoryChunk {
649 public:
650  // Returns the page containing a given address. The address ranges
651  // from [page_addr .. page_addr + kPageSize[
652  // This only works if the object is in fact in a page.  See also MemoryChunk::
653  // FromAddress() and FromAnyAddress().
654  INLINE(static Page* FromAddress(Address a)) {
655    return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
656  }
657
658  // Returns the page containing an allocation top. Because an allocation
659  // top address can be the upper bound of the page, we need to subtract
660  // it with kPointerSize first. The address ranges from
661  // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
662  INLINE(static Page* FromAllocationTop(Address top)) {
663    Page* p = FromAddress(top - kPointerSize);
664    return p;
665  }
666
667  // Returns the next page in the chain of pages owned by a space.
668  inline Page* next_page();
669  inline Page* prev_page();
670  inline void set_next_page(Page* page);
671  inline void set_prev_page(Page* page);
672
673  // Checks whether an address is page aligned.
674  static bool IsAlignedToPageSize(Address a) {
675    return 0 == (OffsetFrom(a) & kPageAlignmentMask);
676  }
677
678  // Returns the offset of a given address to this page.
679  INLINE(int Offset(Address a)) {
680    int offset = static_cast<int>(a - address());
681    return offset;
682  }
683
684  // Returns the address for a given offset to the this page.
685  Address OffsetToAddress(int offset) {
686    ASSERT_PAGE_OFFSET(offset);
687    return address() + offset;
688  }
689
690  // ---------------------------------------------------------------------
691
692  // Page size in bytes.  This must be a multiple of the OS page size.
693  static const int kPageSize = 1 << kPageSizeBits;
694
695  // Object area size in bytes.
696  static const int kNonCodeObjectAreaSize = kPageSize - kObjectStartOffset;
697
698  // Maximum object size that fits in a page.
699  static const int kMaxNonCodeHeapObjectSize = kNonCodeObjectAreaSize;
700
701  // Page size mask.
702  static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
703
704  inline void ClearGCFields();
705
706  static inline Page* Initialize(Heap* heap,
707                                 MemoryChunk* chunk,
708                                 Executability executable,
709                                 PagedSpace* owner);
710
711  void InitializeAsAnchor(PagedSpace* owner);
712
713  bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); }
714  bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); }
715  bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); }
716
717  void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); }
718  void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); }
719
720  void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); }
721  void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); }
722
723#ifdef DEBUG
724  void Print();
725#endif  // DEBUG
726
727  friend class MemoryAllocator;
728};
729
730
731STATIC_CHECK(sizeof(Page) <= MemoryChunk::kHeaderSize);
732
733
734class LargePage : public MemoryChunk {
735 public:
736  HeapObject* GetObject() {
737    return HeapObject::FromAddress(area_start());
738  }
739
740  inline LargePage* next_page() const {
741    return static_cast<LargePage*>(next_chunk());
742  }
743
744  inline void set_next_page(LargePage* page) {
745    set_next_chunk(page);
746  }
747 private:
748  static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk);
749
750  friend class MemoryAllocator;
751};
752
753STATIC_CHECK(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
754
755// ----------------------------------------------------------------------------
756// Space is the abstract superclass for all allocation spaces.
757class Space : public Malloced {
758 public:
759  Space(Heap* heap, AllocationSpace id, Executability executable)
760      : heap_(heap), id_(id), executable_(executable) {}
761
762  virtual ~Space() {}
763
764  Heap* heap() const { return heap_; }
765
766  // Does the space need executable memory?
767  Executability executable() { return executable_; }
768
769  // Identity used in error reporting.
770  AllocationSpace identity() { return id_; }
771
772  // Returns allocated size.
773  virtual intptr_t Size() = 0;
774
775  // Returns size of objects. Can differ from the allocated size
776  // (e.g. see LargeObjectSpace).
777  virtual intptr_t SizeOfObjects() { return Size(); }
778
779  virtual int RoundSizeDownToObjectAlignment(int size) {
780    if (id_ == CODE_SPACE) {
781      return RoundDown(size, kCodeAlignment);
782    } else {
783      return RoundDown(size, kPointerSize);
784    }
785  }
786
787#ifdef DEBUG
788  virtual void Print() = 0;
789#endif
790
791  // After calling this we can allocate a certain number of bytes using only
792  // linear allocation (with a LinearAllocationScope and an AlwaysAllocateScope)
793  // without using freelists or causing a GC.  This is used by partial
794  // snapshots.  It returns true of space was reserved or false if a GC is
795  // needed.  For paged spaces the space requested must include the space wasted
796  // at the end of each when allocating linearly.
797  virtual bool ReserveSpace(int bytes) = 0;
798
799 private:
800  Heap* heap_;
801  AllocationSpace id_;
802  Executability executable_;
803};
804
805
806// ----------------------------------------------------------------------------
807// All heap objects containing executable code (code objects) must be allocated
808// from a 2 GB range of memory, so that they can call each other using 32-bit
809// displacements.  This happens automatically on 32-bit platforms, where 32-bit
810// displacements cover the entire 4GB virtual address space.  On 64-bit
811// platforms, we support this using the CodeRange object, which reserves and
812// manages a range of virtual memory.
813class CodeRange {
814 public:
815  explicit CodeRange(Isolate* isolate);
816  ~CodeRange() { TearDown(); }
817
818  // Reserves a range of virtual memory, but does not commit any of it.
819  // Can only be called once, at heap initialization time.
820  // Returns false on failure.
821  bool SetUp(const size_t requested_size);
822
823  // Frees the range of virtual memory, and frees the data structures used to
824  // manage it.
825  void TearDown();
826
827  bool exists() { return this != NULL && code_range_ != NULL; }
828  bool contains(Address address) {
829    if (this == NULL || code_range_ == NULL) return false;
830    Address start = static_cast<Address>(code_range_->address());
831    return start <= address && address < start + code_range_->size();
832  }
833
834  // Allocates a chunk of memory from the large-object portion of
835  // the code range.  On platforms with no separate code range, should
836  // not be called.
837  MUST_USE_RESULT Address AllocateRawMemory(const size_t requested,
838                                            size_t* allocated);
839  void FreeRawMemory(Address buf, size_t length);
840
841 private:
842  Isolate* isolate_;
843
844  // The reserved range of virtual memory that all code objects are put in.
845  VirtualMemory* code_range_;
846  // Plain old data class, just a struct plus a constructor.
847  class FreeBlock {
848   public:
849    FreeBlock(Address start_arg, size_t size_arg)
850        : start(start_arg), size(size_arg) {
851      ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
852      ASSERT(size >= static_cast<size_t>(Page::kPageSize));
853    }
854    FreeBlock(void* start_arg, size_t size_arg)
855        : start(static_cast<Address>(start_arg)), size(size_arg) {
856      ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
857      ASSERT(size >= static_cast<size_t>(Page::kPageSize));
858    }
859
860    Address start;
861    size_t size;
862  };
863
864  // Freed blocks of memory are added to the free list.  When the allocation
865  // list is exhausted, the free list is sorted and merged to make the new
866  // allocation list.
867  List<FreeBlock> free_list_;
868  // Memory is allocated from the free blocks on the allocation list.
869  // The block at current_allocation_block_index_ is the current block.
870  List<FreeBlock> allocation_list_;
871  int current_allocation_block_index_;
872
873  // Finds a block on the allocation list that contains at least the
874  // requested amount of memory.  If none is found, sorts and merges
875  // the existing free memory blocks, and searches again.
876  // If none can be found, terminates V8 with FatalProcessOutOfMemory.
877  void GetNextAllocationBlock(size_t requested);
878  // Compares the start addresses of two free blocks.
879  static int CompareFreeBlockAddress(const FreeBlock* left,
880                                     const FreeBlock* right);
881
882  DISALLOW_COPY_AND_ASSIGN(CodeRange);
883};
884
885
886class SkipList {
887 public:
888  SkipList() {
889    Clear();
890  }
891
892  void Clear() {
893    for (int idx = 0; idx < kSize; idx++) {
894      starts_[idx] = reinterpret_cast<Address>(-1);
895    }
896  }
897
898  Address StartFor(Address addr) {
899    return starts_[RegionNumber(addr)];
900  }
901
902  void AddObject(Address addr, int size) {
903    int start_region = RegionNumber(addr);
904    int end_region = RegionNumber(addr + size - kPointerSize);
905    for (int idx = start_region; idx <= end_region; idx++) {
906      if (starts_[idx] > addr) starts_[idx] = addr;
907    }
908  }
909
910  static inline int RegionNumber(Address addr) {
911    return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2;
912  }
913
914  static void Update(Address addr, int size) {
915    Page* page = Page::FromAddress(addr);
916    SkipList* list = page->skip_list();
917    if (list == NULL) {
918      list = new SkipList();
919      page->set_skip_list(list);
920    }
921
922    list->AddObject(addr, size);
923  }
924
925 private:
926  static const int kRegionSizeLog2 = 13;
927  static const int kRegionSize = 1 << kRegionSizeLog2;
928  static const int kSize = Page::kPageSize / kRegionSize;
929
930  STATIC_ASSERT(Page::kPageSize % kRegionSize == 0);
931
932  Address starts_[kSize];
933};
934
935
936// ----------------------------------------------------------------------------
937// A space acquires chunks of memory from the operating system. The memory
938// allocator allocated and deallocates pages for the paged heap spaces and large
939// pages for large object space.
940//
941// Each space has to manage it's own pages.
942//
943class MemoryAllocator {
944 public:
945  explicit MemoryAllocator(Isolate* isolate);
946
947  // Initializes its internal bookkeeping structures.
948  // Max capacity of the total space and executable memory limit.
949  bool SetUp(intptr_t max_capacity, intptr_t capacity_executable);
950
951  void TearDown();
952
953  Page* AllocatePage(PagedSpace* owner, Executability executable);
954
955  LargePage* AllocateLargePage(intptr_t object_size,
956                                      Executability executable,
957                                      Space* owner);
958
959  void Free(MemoryChunk* chunk);
960
961  // Returns the maximum available bytes of heaps.
962  intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
963
964  // Returns allocated spaces in bytes.
965  intptr_t Size() { return size_; }
966
967  // Returns the maximum available executable bytes of heaps.
968  intptr_t AvailableExecutable() {
969    if (capacity_executable_ < size_executable_) return 0;
970    return capacity_executable_ - size_executable_;
971  }
972
973  // Returns allocated executable spaces in bytes.
974  intptr_t SizeExecutable() { return size_executable_; }
975
976  // Returns maximum available bytes that the old space can have.
977  intptr_t MaxAvailable() {
978    return (Available() / Page::kPageSize) * Page::kMaxNonCodeHeapObjectSize;
979  }
980
981#ifdef DEBUG
982  // Reports statistic info of the space.
983  void ReportStatistics();
984#endif
985
986  MemoryChunk* AllocateChunk(intptr_t body_size,
987                             Executability executable,
988                             Space* space);
989
990  Address ReserveAlignedMemory(size_t requested,
991                               size_t alignment,
992                               VirtualMemory* controller);
993  Address AllocateAlignedMemory(size_t requested,
994                                size_t alignment,
995                                Executability executable,
996                                VirtualMemory* controller);
997
998  void FreeMemory(VirtualMemory* reservation, Executability executable);
999  void FreeMemory(Address addr, size_t size, Executability executable);
1000
1001  // Commit a contiguous block of memory from the initial chunk.  Assumes that
1002  // the address is not NULL, the size is greater than zero, and that the
1003  // block is contained in the initial chunk.  Returns true if it succeeded
1004  // and false otherwise.
1005  bool CommitBlock(Address start, size_t size, Executability executable);
1006
1007  // Uncommit a contiguous block of memory [start..(start+size)[.
1008  // start is not NULL, the size is greater than zero, and the
1009  // block is contained in the initial chunk.  Returns true if it succeeded
1010  // and false otherwise.
1011  bool UncommitBlock(Address start, size_t size);
1012
1013  // Zaps a contiguous block of memory [start..(start+size)[ thus
1014  // filling it up with a recognizable non-NULL bit pattern.
1015  void ZapBlock(Address start, size_t size);
1016
1017  void PerformAllocationCallback(ObjectSpace space,
1018                                 AllocationAction action,
1019                                 size_t size);
1020
1021  void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
1022                                          ObjectSpace space,
1023                                          AllocationAction action);
1024
1025  void RemoveMemoryAllocationCallback(
1026      MemoryAllocationCallback callback);
1027
1028  bool MemoryAllocationCallbackRegistered(
1029      MemoryAllocationCallback callback);
1030
1031  static int CodePageGuardStartOffset();
1032
1033  static int CodePageGuardSize();
1034
1035  static int CodePageAreaStartOffset();
1036
1037  static int CodePageAreaEndOffset();
1038
1039  static int CodePageAreaSize() {
1040    return CodePageAreaEndOffset() - CodePageAreaStartOffset();
1041  }
1042
1043  static bool CommitCodePage(VirtualMemory* vm, Address start, size_t size);
1044
1045 private:
1046  Isolate* isolate_;
1047
1048  // Maximum space size in bytes.
1049  size_t capacity_;
1050  // Maximum subset of capacity_ that can be executable
1051  size_t capacity_executable_;
1052
1053  // Allocated space size in bytes.
1054  size_t size_;
1055  // Allocated executable space size in bytes.
1056  size_t size_executable_;
1057
1058  struct MemoryAllocationCallbackRegistration {
1059    MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
1060                                         ObjectSpace space,
1061                                         AllocationAction action)
1062        : callback(callback), space(space), action(action) {
1063    }
1064    MemoryAllocationCallback callback;
1065    ObjectSpace space;
1066    AllocationAction action;
1067  };
1068
1069  // A List of callback that are triggered when memory is allocated or free'd
1070  List<MemoryAllocationCallbackRegistration>
1071      memory_allocation_callbacks_;
1072
1073  // Initializes pages in a chunk. Returns the first page address.
1074  // This function and GetChunkId() are provided for the mark-compact
1075  // collector to rebuild page headers in the from space, which is
1076  // used as a marking stack and its page headers are destroyed.
1077  Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
1078                               PagedSpace* owner);
1079
1080  DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
1081};
1082
1083
1084// -----------------------------------------------------------------------------
1085// Interface for heap object iterator to be implemented by all object space
1086// object iterators.
1087//
1088// NOTE: The space specific object iterators also implements the own next()
1089//       method which is used to avoid using virtual functions
1090//       iterating a specific space.
1091
1092class ObjectIterator : public Malloced {
1093 public:
1094  virtual ~ObjectIterator() { }
1095
1096  virtual HeapObject* next_object() = 0;
1097};
1098
1099
1100// -----------------------------------------------------------------------------
1101// Heap object iterator in new/old/map spaces.
1102//
1103// A HeapObjectIterator iterates objects from the bottom of the given space
1104// to its top or from the bottom of the given page to its top.
1105//
1106// If objects are allocated in the page during iteration the iterator may
1107// or may not iterate over those objects.  The caller must create a new
1108// iterator in order to be sure to visit these new objects.
1109class HeapObjectIterator: public ObjectIterator {
1110 public:
1111  // Creates a new object iterator in a given space.
1112  // If the size function is not given, the iterator calls the default
1113  // Object::Size().
1114  explicit HeapObjectIterator(PagedSpace* space);
1115  HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
1116  HeapObjectIterator(Page* page, HeapObjectCallback size_func);
1117
1118  // Advance to the next object, skipping free spaces and other fillers and
1119  // skipping the special garbage section of which there is one per space.
1120  // Returns NULL when the iteration has ended.
1121  inline HeapObject* Next() {
1122    do {
1123      HeapObject* next_obj = FromCurrentPage();
1124      if (next_obj != NULL) return next_obj;
1125    } while (AdvanceToNextPage());
1126    return NULL;
1127  }
1128
1129  virtual HeapObject* next_object() {
1130    return Next();
1131  }
1132
1133 private:
1134  enum PageMode { kOnePageOnly, kAllPagesInSpace };
1135
1136  Address cur_addr_;  // Current iteration point.
1137  Address cur_end_;   // End iteration point.
1138  HeapObjectCallback size_func_;  // Size function or NULL.
1139  PagedSpace* space_;
1140  PageMode page_mode_;
1141
1142  // Fast (inlined) path of next().
1143  inline HeapObject* FromCurrentPage();
1144
1145  // Slow path of next(), goes into the next page.  Returns false if the
1146  // iteration has ended.
1147  bool AdvanceToNextPage();
1148
1149  // Initializes fields.
1150  inline void Initialize(PagedSpace* owner,
1151                         Address start,
1152                         Address end,
1153                         PageMode mode,
1154                         HeapObjectCallback size_func);
1155};
1156
1157
1158// -----------------------------------------------------------------------------
1159// A PageIterator iterates the pages in a paged space.
1160
1161class PageIterator BASE_EMBEDDED {
1162 public:
1163  explicit inline PageIterator(PagedSpace* space);
1164
1165  inline bool has_next();
1166  inline Page* next();
1167
1168 private:
1169  PagedSpace* space_;
1170  Page* prev_page_;  // Previous page returned.
1171  // Next page that will be returned.  Cached here so that we can use this
1172  // iterator for operations that deallocate pages.
1173  Page* next_page_;
1174};
1175
1176
1177// -----------------------------------------------------------------------------
1178// A space has a circular list of pages. The next page can be accessed via
1179// Page::next_page() call.
1180
1181// An abstraction of allocation and relocation pointers in a page-structured
1182// space.
1183class AllocationInfo {
1184 public:
1185  AllocationInfo() : top(NULL), limit(NULL) {
1186  }
1187
1188  Address top;  // Current allocation top.
1189  Address limit;  // Current allocation limit.
1190
1191#ifdef DEBUG
1192  bool VerifyPagedAllocation() {
1193    return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit))
1194        && (top <= limit);
1195  }
1196#endif
1197};
1198
1199
1200// An abstraction of the accounting statistics of a page-structured space.
1201// The 'capacity' of a space is the number of object-area bytes (i.e., not
1202// including page bookkeeping structures) currently in the space. The 'size'
1203// of a space is the number of allocated bytes, the 'waste' in the space is
1204// the number of bytes that are not allocated and not available to
1205// allocation without reorganizing the space via a GC (e.g. small blocks due
1206// to internal fragmentation, top of page areas in map space), and the bytes
1207// 'available' is the number of unallocated bytes that are not waste.  The
1208// capacity is the sum of size, waste, and available.
1209//
1210// The stats are only set by functions that ensure they stay balanced. These
1211// functions increase or decrease one of the non-capacity stats in
1212// conjunction with capacity, or else they always balance increases and
1213// decreases to the non-capacity stats.
1214class AllocationStats BASE_EMBEDDED {
1215 public:
1216  AllocationStats() { Clear(); }
1217
1218  // Zero out all the allocation statistics (i.e., no capacity).
1219  void Clear() {
1220    capacity_ = 0;
1221    size_ = 0;
1222    waste_ = 0;
1223  }
1224
1225  void ClearSizeWaste() {
1226    size_ = capacity_;
1227    waste_ = 0;
1228  }
1229
1230  // Reset the allocation statistics (i.e., available = capacity with no
1231  // wasted or allocated bytes).
1232  void Reset() {
1233    size_ = 0;
1234    waste_ = 0;
1235  }
1236
1237  // Accessors for the allocation statistics.
1238  intptr_t Capacity() { return capacity_; }
1239  intptr_t Size() { return size_; }
1240  intptr_t Waste() { return waste_; }
1241
1242  // Grow the space by adding available bytes.  They are initially marked as
1243  // being in use (part of the size), but will normally be immediately freed,
1244  // putting them on the free list and removing them from size_.
1245  void ExpandSpace(int size_in_bytes) {
1246    capacity_ += size_in_bytes;
1247    size_ += size_in_bytes;
1248    ASSERT(size_ >= 0);
1249  }
1250
1251  // Shrink the space by removing available bytes.  Since shrinking is done
1252  // during sweeping, bytes have been marked as being in use (part of the size)
1253  // and are hereby freed.
1254  void ShrinkSpace(int size_in_bytes) {
1255    capacity_ -= size_in_bytes;
1256    size_ -= size_in_bytes;
1257    ASSERT(size_ >= 0);
1258  }
1259
1260  // Allocate from available bytes (available -> size).
1261  void AllocateBytes(intptr_t size_in_bytes) {
1262    size_ += size_in_bytes;
1263    ASSERT(size_ >= 0);
1264  }
1265
1266  // Free allocated bytes, making them available (size -> available).
1267  void DeallocateBytes(intptr_t size_in_bytes) {
1268    size_ -= size_in_bytes;
1269    ASSERT(size_ >= 0);
1270  }
1271
1272  // Waste free bytes (available -> waste).
1273  void WasteBytes(int size_in_bytes) {
1274    size_ -= size_in_bytes;
1275    waste_ += size_in_bytes;
1276    ASSERT(size_ >= 0);
1277  }
1278
1279 private:
1280  intptr_t capacity_;
1281  intptr_t size_;
1282  intptr_t waste_;
1283};
1284
1285
1286// -----------------------------------------------------------------------------
1287// Free lists for old object spaces
1288//
1289// Free-list nodes are free blocks in the heap.  They look like heap objects
1290// (free-list node pointers have the heap object tag, and they have a map like
1291// a heap object).  They have a size and a next pointer.  The next pointer is
1292// the raw address of the next free list node (or NULL).
1293class FreeListNode: public HeapObject {
1294 public:
1295  // Obtain a free-list node from a raw address.  This is not a cast because
1296  // it does not check nor require that the first word at the address is a map
1297  // pointer.
1298  static FreeListNode* FromAddress(Address address) {
1299    return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
1300  }
1301
1302  static inline bool IsFreeListNode(HeapObject* object);
1303
1304  // Set the size in bytes, which can be read with HeapObject::Size().  This
1305  // function also writes a map to the first word of the block so that it
1306  // looks like a heap object to the garbage collector and heap iteration
1307  // functions.
1308  void set_size(Heap* heap, int size_in_bytes);
1309
1310  // Accessors for the next field.
1311  inline FreeListNode* next();
1312  inline FreeListNode** next_address();
1313  inline void set_next(FreeListNode* next);
1314
1315  inline void Zap();
1316
1317 private:
1318  static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize);
1319
1320  DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
1321};
1322
1323
1324// The free list for the old space.  The free list is organized in such a way
1325// as to encourage objects allocated around the same time to be near each
1326// other.  The normal way to allocate is intended to be by bumping a 'top'
1327// pointer until it hits a 'limit' pointer.  When the limit is hit we need to
1328// find a new space to allocate from.  This is done with the free list, which
1329// is divided up into rough categories to cut down on waste.  Having finer
1330// categories would scatter allocation more.
1331
1332// The old space free list is organized in categories.
1333// 1-31 words:  Such small free areas are discarded for efficiency reasons.
1334//     They can be reclaimed by the compactor.  However the distance between top
1335//     and limit may be this small.
1336// 32-255 words: There is a list of spaces this large.  It is used for top and
1337//     limit when the object we need to allocate is 1-31 words in size.  These
1338//     spaces are called small.
1339// 256-2047 words: There is a list of spaces this large.  It is used for top and
1340//     limit when the object we need to allocate is 32-255 words in size.  These
1341//     spaces are called medium.
1342// 1048-16383 words: There is a list of spaces this large.  It is used for top
1343//     and limit when the object we need to allocate is 256-2047 words in size.
1344//     These spaces are call large.
1345// At least 16384 words.  This list is for objects of 2048 words or larger.
1346//     Empty pages are added to this list.  These spaces are called huge.
1347class FreeList BASE_EMBEDDED {
1348 public:
1349  explicit FreeList(PagedSpace* owner);
1350
1351  // Clear the free list.
1352  void Reset();
1353
1354  // Return the number of bytes available on the free list.
1355  intptr_t available() { return available_; }
1356
1357  // Place a node on the free list.  The block of size 'size_in_bytes'
1358  // starting at 'start' is placed on the free list.  The return value is the
1359  // number of bytes that have been lost due to internal fragmentation by
1360  // freeing the block.  Bookkeeping information will be written to the block,
1361  // i.e., its contents will be destroyed.  The start address should be word
1362  // aligned, and the size should be a non-zero multiple of the word size.
1363  int Free(Address start, int size_in_bytes);
1364
1365  // Allocate a block of size 'size_in_bytes' from the free list.  The block
1366  // is unitialized.  A failure is returned if no block is available.  The
1367  // number of bytes lost to fragmentation is returned in the output parameter
1368  // 'wasted_bytes'.  The size should be a non-zero multiple of the word size.
1369  MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes);
1370
1371#ifdef DEBUG
1372  void Zap();
1373  static intptr_t SumFreeList(FreeListNode* node);
1374  static int FreeListLength(FreeListNode* cur);
1375  intptr_t SumFreeLists();
1376  bool IsVeryLong();
1377#endif
1378
1379  struct SizeStats {
1380    intptr_t Total() {
1381      return small_size_ + medium_size_ + large_size_ + huge_size_;
1382    }
1383
1384    intptr_t small_size_;
1385    intptr_t medium_size_;
1386    intptr_t large_size_;
1387    intptr_t huge_size_;
1388  };
1389
1390  void CountFreeListItems(Page* p, SizeStats* sizes);
1391
1392  intptr_t EvictFreeListItems(Page* p);
1393
1394 private:
1395  // The size range of blocks, in bytes.
1396  static const int kMinBlockSize = 3 * kPointerSize;
1397  static const int kMaxBlockSize = Page::kMaxNonCodeHeapObjectSize;
1398
1399  FreeListNode* PickNodeFromList(FreeListNode** list, int* node_size);
1400
1401  FreeListNode* FindNodeFor(int size_in_bytes, int* node_size);
1402
1403  PagedSpace* owner_;
1404  Heap* heap_;
1405
1406  // Total available bytes in all blocks on this free list.
1407  int available_;
1408
1409  static const int kSmallListMin = 0x20 * kPointerSize;
1410  static const int kSmallListMax = 0xff * kPointerSize;
1411  static const int kMediumListMax = 0x7ff * kPointerSize;
1412  static const int kLargeListMax = 0x3fff * kPointerSize;
1413  static const int kSmallAllocationMax = kSmallListMin - kPointerSize;
1414  static const int kMediumAllocationMax = kSmallListMax;
1415  static const int kLargeAllocationMax = kMediumListMax;
1416  FreeListNode* small_list_;
1417  FreeListNode* medium_list_;
1418  FreeListNode* large_list_;
1419  FreeListNode* huge_list_;
1420
1421  DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList);
1422};
1423
1424
1425class PagedSpace : public Space {
1426 public:
1427  // Creates a space with a maximum capacity, and an id.
1428  PagedSpace(Heap* heap,
1429             intptr_t max_capacity,
1430             AllocationSpace id,
1431             Executability executable);
1432
1433  virtual ~PagedSpace() {}
1434
1435  // Set up the space using the given address range of virtual memory (from
1436  // the memory allocator's initial chunk) if possible.  If the block of
1437  // addresses is not big enough to contain a single page-aligned page, a
1438  // fresh chunk will be allocated.
1439  bool SetUp();
1440
1441  // Returns true if the space has been successfully set up and not
1442  // subsequently torn down.
1443  bool HasBeenSetUp();
1444
1445  // Cleans up the space, frees all pages in this space except those belonging
1446  // to the initial chunk, uncommits addresses in the initial chunk.
1447  void TearDown();
1448
1449  // Checks whether an object/address is in this space.
1450  inline bool Contains(Address a);
1451  bool Contains(HeapObject* o) { return Contains(o->address()); }
1452
1453  // Given an address occupied by a live object, return that object if it is
1454  // in this space, or Failure::Exception() if it is not. The implementation
1455  // iterates over objects in the page containing the address, the cost is
1456  // linear in the number of objects in the page. It may be slow.
1457  MUST_USE_RESULT MaybeObject* FindObject(Address addr);
1458
1459  // Prepares for a mark-compact GC.
1460  virtual void PrepareForMarkCompact();
1461
1462  // Current capacity without growing (Size() + Available()).
1463  intptr_t Capacity() { return accounting_stats_.Capacity(); }
1464
1465  // Total amount of memory committed for this space.  For paged
1466  // spaces this equals the capacity.
1467  intptr_t CommittedMemory() { return Capacity(); }
1468
1469  // Sets the capacity, the available space and the wasted space to zero.
1470  // The stats are rebuilt during sweeping by adding each page to the
1471  // capacity and the size when it is encountered.  As free spaces are
1472  // discovered during the sweeping they are subtracted from the size and added
1473  // to the available and wasted totals.
1474  void ClearStats() {
1475    accounting_stats_.ClearSizeWaste();
1476  }
1477
1478  // Available bytes without growing.  These are the bytes on the free list.
1479  // The bytes in the linear allocation area are not included in this total
1480  // because updating the stats would slow down allocation.  New pages are
1481  // immediately added to the free list so they show up here.
1482  intptr_t Available() { return free_list_.available(); }
1483
1484  // Allocated bytes in this space.  Garbage bytes that were not found due to
1485  // lazy sweeping are counted as being allocated!  The bytes in the current
1486  // linear allocation area (between top and limit) are also counted here.
1487  virtual intptr_t Size() { return accounting_stats_.Size(); }
1488
1489  // As size, but the bytes in lazily swept pages are estimated and the bytes
1490  // in the current linear allocation area are not included.
1491  virtual intptr_t SizeOfObjects() {
1492    ASSERT(!IsSweepingComplete() || (unswept_free_bytes_ == 0));
1493    return Size() - unswept_free_bytes_ - (limit() - top());
1494  }
1495
1496  // Wasted bytes in this space.  These are just the bytes that were thrown away
1497  // due to being too small to use for allocation.  They do not include the
1498  // free bytes that were not found at all due to lazy sweeping.
1499  virtual intptr_t Waste() { return accounting_stats_.Waste(); }
1500
1501  // Returns the allocation pointer in this space.
1502  Address top() { return allocation_info_.top; }
1503  Address limit() { return allocation_info_.limit; }
1504
1505  // Allocate the requested number of bytes in the space if possible, return a
1506  // failure object if not.
1507  MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes);
1508
1509  virtual bool ReserveSpace(int bytes);
1510
1511  // Give a block of memory to the space's free list.  It might be added to
1512  // the free list or accounted as waste.
1513  // If add_to_freelist is false then just accounting stats are updated and
1514  // no attempt to add area to free list is made.
1515  int Free(Address start, int size_in_bytes) {
1516    int wasted = free_list_.Free(start, size_in_bytes);
1517    accounting_stats_.DeallocateBytes(size_in_bytes - wasted);
1518    return size_in_bytes - wasted;
1519  }
1520
1521  // Set space allocation info.
1522  void SetTop(Address top, Address limit) {
1523    ASSERT(top == limit ||
1524           Page::FromAddress(top) == Page::FromAddress(limit - 1));
1525    allocation_info_.top = top;
1526    allocation_info_.limit = limit;
1527  }
1528
1529  void Allocate(int bytes) {
1530    accounting_stats_.AllocateBytes(bytes);
1531  }
1532
1533  void IncreaseCapacity(int size) {
1534    accounting_stats_.ExpandSpace(size);
1535  }
1536
1537  // Releases an unused page and shrinks the space.
1538  void ReleasePage(Page* page);
1539
1540  // Releases all of the unused pages.
1541  void ReleaseAllUnusedPages();
1542
1543  // The dummy page that anchors the linked list of pages.
1544  Page* anchor() { return &anchor_; }
1545
1546#ifdef DEBUG
1547  // Print meta info and objects in this space.
1548  virtual void Print();
1549
1550  // Verify integrity of this space.
1551  virtual void Verify(ObjectVisitor* visitor);
1552
1553  // Reports statistics for the space
1554  void ReportStatistics();
1555
1556  // Overridden by subclasses to verify space-specific object
1557  // properties (e.g., only maps or free-list nodes are in map space).
1558  virtual void VerifyObject(HeapObject* obj) {}
1559
1560  // Report code object related statistics
1561  void CollectCodeStatistics();
1562  static void ReportCodeStatistics();
1563  static void ResetCodeStatistics();
1564#endif
1565
1566  bool was_swept_conservatively() { return was_swept_conservatively_; }
1567  void set_was_swept_conservatively(bool b) { was_swept_conservatively_ = b; }
1568
1569  // Evacuation candidates are swept by evacuator.  Needs to return a valid
1570  // result before _and_ after evacuation has finished.
1571  static bool ShouldBeSweptLazily(Page* p) {
1572    return !p->IsEvacuationCandidate() &&
1573           !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) &&
1574           !p->WasSweptPrecisely();
1575  }
1576
1577  void SetPagesToSweep(Page* first) {
1578    ASSERT(unswept_free_bytes_ == 0);
1579    if (first == &anchor_) first = NULL;
1580    first_unswept_page_ = first;
1581  }
1582
1583  void IncrementUnsweptFreeBytes(int by) {
1584    unswept_free_bytes_ += by;
1585  }
1586
1587  void IncreaseUnsweptFreeBytes(Page* p) {
1588    ASSERT(ShouldBeSweptLazily(p));
1589    unswept_free_bytes_ += (p->area_size() - p->LiveBytes());
1590  }
1591
1592  void DecreaseUnsweptFreeBytes(Page* p) {
1593    ASSERT(ShouldBeSweptLazily(p));
1594    unswept_free_bytes_ -= (p->area_size() - p->LiveBytes());
1595  }
1596
1597  bool AdvanceSweeper(intptr_t bytes_to_sweep);
1598
1599  bool IsSweepingComplete() {
1600    return !first_unswept_page_->is_valid();
1601  }
1602
1603  Page* FirstPage() { return anchor_.next_page(); }
1604  Page* LastPage() { return anchor_.prev_page(); }
1605
1606  void CountFreeListItems(Page* p, FreeList::SizeStats* sizes) {
1607    free_list_.CountFreeListItems(p, sizes);
1608  }
1609
1610  void EvictEvacuationCandidatesFromFreeLists();
1611
1612  bool CanExpand();
1613
1614  // Returns the number of total pages in this space.
1615  int CountTotalPages();
1616
1617  // Return size of allocatable area on a page in this space.
1618  inline int AreaSize() {
1619    return area_size_;
1620  }
1621
1622 protected:
1623  int area_size_;
1624
1625  // Maximum capacity of this space.
1626  intptr_t max_capacity_;
1627
1628  // Accounting information for this space.
1629  AllocationStats accounting_stats_;
1630
1631  // The dummy page that anchors the double linked list of pages.
1632  Page anchor_;
1633
1634  // The space's free list.
1635  FreeList free_list_;
1636
1637  // Normal allocation information.
1638  AllocationInfo allocation_info_;
1639
1640  // Bytes of each page that cannot be allocated.  Possibly non-zero
1641  // for pages in spaces with only fixed-size objects.  Always zero
1642  // for pages in spaces with variable sized objects (those pages are
1643  // padded with free-list nodes).
1644  int page_extra_;
1645
1646  bool was_swept_conservatively_;
1647
1648  // The first page to be swept when the lazy sweeper advances. Is set
1649  // to NULL when all pages have been swept.
1650  Page* first_unswept_page_;
1651
1652  // The number of free bytes which could be reclaimed by advancing the
1653  // lazy sweeper.  This is only an estimation because lazy sweeping is
1654  // done conservatively.
1655  intptr_t unswept_free_bytes_;
1656
1657  // Expands the space by allocating a fixed number of pages. Returns false if
1658  // it cannot allocate requested number of pages from OS, or if the hard heap
1659  // size limit has been hit.
1660  bool Expand();
1661
1662  // Generic fast case allocation function that tries linear allocation at the
1663  // address denoted by top in allocation_info_.
1664  inline HeapObject* AllocateLinearly(int size_in_bytes);
1665
1666  // Slow path of AllocateRaw.  This function is space-dependent.
1667  MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes);
1668
1669  friend class PageIterator;
1670};
1671
1672
1673class NumberAndSizeInfo BASE_EMBEDDED {
1674 public:
1675  NumberAndSizeInfo() : number_(0), bytes_(0) {}
1676
1677  int number() const { return number_; }
1678  void increment_number(int num) { number_ += num; }
1679
1680  int bytes() const { return bytes_; }
1681  void increment_bytes(int size) { bytes_ += size; }
1682
1683  void clear() {
1684    number_ = 0;
1685    bytes_ = 0;
1686  }
1687
1688 private:
1689  int number_;
1690  int bytes_;
1691};
1692
1693
1694// HistogramInfo class for recording a single "bar" of a histogram.  This
1695// class is used for collecting statistics to print to the log file.
1696class HistogramInfo: public NumberAndSizeInfo {
1697 public:
1698  HistogramInfo() : NumberAndSizeInfo() {}
1699
1700  const char* name() { return name_; }
1701  void set_name(const char* name) { name_ = name; }
1702
1703 private:
1704  const char* name_;
1705};
1706
1707
1708enum SemiSpaceId {
1709  kFromSpace = 0,
1710  kToSpace = 1
1711};
1712
1713
1714class SemiSpace;
1715
1716
1717class NewSpacePage : public MemoryChunk {
1718 public:
1719  // GC related flags copied from from-space to to-space when
1720  // flipping semispaces.
1721  static const intptr_t kCopyOnFlipFlagsMask =
1722    (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
1723    (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) |
1724    (1 << MemoryChunk::SCAN_ON_SCAVENGE);
1725
1726  static const int kAreaSize = Page::kNonCodeObjectAreaSize;
1727
1728  inline NewSpacePage* next_page() const {
1729    return static_cast<NewSpacePage*>(next_chunk());
1730  }
1731
1732  inline void set_next_page(NewSpacePage* page) {
1733    set_next_chunk(page);
1734  }
1735
1736  inline NewSpacePage* prev_page() const {
1737    return static_cast<NewSpacePage*>(prev_chunk());
1738  }
1739
1740  inline void set_prev_page(NewSpacePage* page) {
1741    set_prev_chunk(page);
1742  }
1743
1744  SemiSpace* semi_space() {
1745    return reinterpret_cast<SemiSpace*>(owner());
1746  }
1747
1748  bool is_anchor() { return !this->InNewSpace(); }
1749
1750  static bool IsAtStart(Address addr) {
1751    return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask)
1752        == kObjectStartOffset;
1753  }
1754
1755  static bool IsAtEnd(Address addr) {
1756    return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0;
1757  }
1758
1759  Address address() {
1760    return reinterpret_cast<Address>(this);
1761  }
1762
1763  // Finds the NewSpacePage containg the given address.
1764  static inline NewSpacePage* FromAddress(Address address_in_page) {
1765    Address page_start =
1766        reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) &
1767                                  ~Page::kPageAlignmentMask);
1768    NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start);
1769    return page;
1770  }
1771
1772  // Find the page for a limit address. A limit address is either an address
1773  // inside a page, or the address right after the last byte of a page.
1774  static inline NewSpacePage* FromLimit(Address address_limit) {
1775    return NewSpacePage::FromAddress(address_limit - 1);
1776  }
1777
1778 private:
1779  // Create a NewSpacePage object that is only used as anchor
1780  // for the doubly-linked list of real pages.
1781  explicit NewSpacePage(SemiSpace* owner) {
1782    InitializeAsAnchor(owner);
1783  }
1784
1785  static NewSpacePage* Initialize(Heap* heap,
1786                                  Address start,
1787                                  SemiSpace* semi_space);
1788
1789  // Intialize a fake NewSpacePage used as sentinel at the ends
1790  // of a doubly-linked list of real NewSpacePages.
1791  // Only uses the prev/next links, and sets flags to not be in new-space.
1792  void InitializeAsAnchor(SemiSpace* owner);
1793
1794  friend class SemiSpace;
1795  friend class SemiSpaceIterator;
1796};
1797
1798
1799// -----------------------------------------------------------------------------
1800// SemiSpace in young generation
1801//
1802// A semispace is a contiguous chunk of memory holding page-like memory
1803// chunks. The mark-compact collector  uses the memory of the first page in
1804// the from space as a marking stack when tracing live objects.
1805
1806class SemiSpace : public Space {
1807 public:
1808  // Constructor.
1809  SemiSpace(Heap* heap, SemiSpaceId semispace)
1810    : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
1811      start_(NULL),
1812      age_mark_(NULL),
1813      id_(semispace),
1814      anchor_(this),
1815      current_page_(NULL) { }
1816
1817  // Sets up the semispace using the given chunk.
1818  void SetUp(Address start, int initial_capacity, int maximum_capacity);
1819
1820  // Tear down the space.  Heap memory was not allocated by the space, so it
1821  // is not deallocated here.
1822  void TearDown();
1823
1824  // True if the space has been set up but not torn down.
1825  bool HasBeenSetUp() { return start_ != NULL; }
1826
1827  // Grow the semispace to the new capacity.  The new capacity
1828  // requested must be larger than the current capacity and less than
1829  // the maximum capacity.
1830  bool GrowTo(int new_capacity);
1831
1832  // Shrinks the semispace to the new capacity.  The new capacity
1833  // requested must be more than the amount of used memory in the
1834  // semispace and less than the current capacity.
1835  bool ShrinkTo(int new_capacity);
1836
1837  // Returns the start address of the first page of the space.
1838  Address space_start() {
1839    ASSERT(anchor_.next_page() != &anchor_);
1840    return anchor_.next_page()->area_start();
1841  }
1842
1843  // Returns the start address of the current page of the space.
1844  Address page_low() {
1845    return current_page_->area_start();
1846  }
1847
1848  // Returns one past the end address of the space.
1849  Address space_end() {
1850    return anchor_.prev_page()->area_end();
1851  }
1852
1853  // Returns one past the end address of the current page of the space.
1854  Address page_high() {
1855    return current_page_->area_end();
1856  }
1857
1858  bool AdvancePage() {
1859    NewSpacePage* next_page = current_page_->next_page();
1860    if (next_page == anchor()) return false;
1861    current_page_ = next_page;
1862    return true;
1863  }
1864
1865  // Resets the space to using the first page.
1866  void Reset();
1867
1868  // Age mark accessors.
1869  Address age_mark() { return age_mark_; }
1870  void set_age_mark(Address mark);
1871
1872  // True if the address is in the address range of this semispace (not
1873  // necessarily below the allocation pointer).
1874  bool Contains(Address a) {
1875    return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1876           == reinterpret_cast<uintptr_t>(start_);
1877  }
1878
1879  // True if the object is a heap object in the address range of this
1880  // semispace (not necessarily below the allocation pointer).
1881  bool Contains(Object* o) {
1882    return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
1883  }
1884
1885  // If we don't have these here then SemiSpace will be abstract.  However
1886  // they should never be called.
1887  virtual intptr_t Size() {
1888    UNREACHABLE();
1889    return 0;
1890  }
1891
1892  virtual bool ReserveSpace(int bytes) {
1893    UNREACHABLE();
1894    return false;
1895  }
1896
1897  bool is_committed() { return committed_; }
1898  bool Commit();
1899  bool Uncommit();
1900
1901  NewSpacePage* first_page() { return anchor_.next_page(); }
1902  NewSpacePage* current_page() { return current_page_; }
1903
1904#ifdef DEBUG
1905  virtual void Print();
1906  virtual void Verify();
1907  // Validate a range of of addresses in a SemiSpace.
1908  // The "from" address must be on a page prior to the "to" address,
1909  // in the linked page order, or it must be earlier on the same page.
1910  static void AssertValidRange(Address from, Address to);
1911#else
1912  // Do nothing.
1913  inline static void AssertValidRange(Address from, Address to) {}
1914#endif
1915
1916  // Returns the current capacity of the semi space.
1917  int Capacity() { return capacity_; }
1918
1919  // Returns the maximum capacity of the semi space.
1920  int MaximumCapacity() { return maximum_capacity_; }
1921
1922  // Returns the initial capacity of the semi space.
1923  int InitialCapacity() { return initial_capacity_; }
1924
1925  SemiSpaceId id() { return id_; }
1926
1927  static void Swap(SemiSpace* from, SemiSpace* to);
1928
1929 private:
1930  // Flips the semispace between being from-space and to-space.
1931  // Copies the flags into the masked positions on all pages in the space.
1932  void FlipPages(intptr_t flags, intptr_t flag_mask);
1933
1934  NewSpacePage* anchor() { return &anchor_; }
1935
1936  // The current and maximum capacity of the space.
1937  int capacity_;
1938  int maximum_capacity_;
1939  int initial_capacity_;
1940
1941  // The start address of the space.
1942  Address start_;
1943  // Used to govern object promotion during mark-compact collection.
1944  Address age_mark_;
1945
1946  // Masks and comparison values to test for containment in this semispace.
1947  uintptr_t address_mask_;
1948  uintptr_t object_mask_;
1949  uintptr_t object_expected_;
1950
1951  bool committed_;
1952  SemiSpaceId id_;
1953
1954  NewSpacePage anchor_;
1955  NewSpacePage* current_page_;
1956
1957  friend class SemiSpaceIterator;
1958  friend class NewSpacePageIterator;
1959 public:
1960  TRACK_MEMORY("SemiSpace")
1961};
1962
1963
1964// A SemiSpaceIterator is an ObjectIterator that iterates over the active
1965// semispace of the heap's new space.  It iterates over the objects in the
1966// semispace from a given start address (defaulting to the bottom of the
1967// semispace) to the top of the semispace.  New objects allocated after the
1968// iterator is created are not iterated.
1969class SemiSpaceIterator : public ObjectIterator {
1970 public:
1971  // Create an iterator over the objects in the given space.  If no start
1972  // address is given, the iterator starts from the bottom of the space.  If
1973  // no size function is given, the iterator calls Object::Size().
1974
1975  // Iterate over all of allocated to-space.
1976  explicit SemiSpaceIterator(NewSpace* space);
1977  // Iterate over all of allocated to-space, with a custome size function.
1978  SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
1979  // Iterate over part of allocated to-space, from start to the end
1980  // of allocation.
1981  SemiSpaceIterator(NewSpace* space, Address start);
1982  // Iterate from one address to another in the same semi-space.
1983  SemiSpaceIterator(Address from, Address to);
1984
1985  HeapObject* Next() {
1986    if (current_ == limit_) return NULL;
1987    if (NewSpacePage::IsAtEnd(current_)) {
1988      NewSpacePage* page = NewSpacePage::FromLimit(current_);
1989      page = page->next_page();
1990      ASSERT(!page->is_anchor());
1991      current_ = page->area_start();
1992      if (current_ == limit_) return NULL;
1993    }
1994
1995    HeapObject* object = HeapObject::FromAddress(current_);
1996    int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
1997
1998    current_ += size;
1999    return object;
2000  }
2001
2002  // Implementation of the ObjectIterator functions.
2003  virtual HeapObject* next_object() { return Next(); }
2004
2005 private:
2006  void Initialize(Address start,
2007                  Address end,
2008                  HeapObjectCallback size_func);
2009
2010  // The current iteration point.
2011  Address current_;
2012  // The end of iteration.
2013  Address limit_;
2014  // The callback function.
2015  HeapObjectCallback size_func_;
2016};
2017
2018
2019// -----------------------------------------------------------------------------
2020// A PageIterator iterates the pages in a semi-space.
2021class NewSpacePageIterator BASE_EMBEDDED {
2022 public:
2023  // Make an iterator that runs over all pages in to-space.
2024  explicit inline NewSpacePageIterator(NewSpace* space);
2025
2026  // Make an iterator that runs over all pages in the given semispace,
2027  // even those not used in allocation.
2028  explicit inline NewSpacePageIterator(SemiSpace* space);
2029
2030  // Make iterator that iterates from the page containing start
2031  // to the page that contains limit in the same semispace.
2032  inline NewSpacePageIterator(Address start, Address limit);
2033
2034  inline bool has_next();
2035  inline NewSpacePage* next();
2036
2037 private:
2038  NewSpacePage* prev_page_;  // Previous page returned.
2039  // Next page that will be returned.  Cached here so that we can use this
2040  // iterator for operations that deallocate pages.
2041  NewSpacePage* next_page_;
2042  // Last page returned.
2043  NewSpacePage* last_page_;
2044};
2045
2046
2047// -----------------------------------------------------------------------------
2048// The young generation space.
2049//
2050// The new space consists of a contiguous pair of semispaces.  It simply
2051// forwards most functions to the appropriate semispace.
2052
2053class NewSpace : public Space {
2054 public:
2055  // Constructor.
2056  explicit NewSpace(Heap* heap)
2057    : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
2058      to_space_(heap, kToSpace),
2059      from_space_(heap, kFromSpace),
2060      reservation_(),
2061      inline_allocation_limit_step_(0) {}
2062
2063  // Sets up the new space using the given chunk.
2064  bool SetUp(int reserved_semispace_size_, int max_semispace_size);
2065
2066  // Tears down the space.  Heap memory was not allocated by the space, so it
2067  // is not deallocated here.
2068  void TearDown();
2069
2070  // True if the space has been set up but not torn down.
2071  bool HasBeenSetUp() {
2072    return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp();
2073  }
2074
2075  // Flip the pair of spaces.
2076  void Flip();
2077
2078  // Grow the capacity of the semispaces.  Assumes that they are not at
2079  // their maximum capacity.
2080  void Grow();
2081
2082  // Shrink the capacity of the semispaces.
2083  void Shrink();
2084
2085  // True if the address or object lies in the address range of either
2086  // semispace (not necessarily below the allocation pointer).
2087  bool Contains(Address a) {
2088    return (reinterpret_cast<uintptr_t>(a) & address_mask_)
2089        == reinterpret_cast<uintptr_t>(start_);
2090  }
2091
2092  bool Contains(Object* o) {
2093    Address a = reinterpret_cast<Address>(o);
2094    return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_;
2095  }
2096
2097  // Return the allocated bytes in the active semispace.
2098  virtual intptr_t Size() {
2099    return pages_used_ * NewSpacePage::kAreaSize +
2100        static_cast<int>(top() - to_space_.page_low());
2101  }
2102
2103  // The same, but returning an int.  We have to have the one that returns
2104  // intptr_t because it is inherited, but if we know we are dealing with the
2105  // new space, which can't get as big as the other spaces then this is useful:
2106  int SizeAsInt() { return static_cast<int>(Size()); }
2107
2108  // Return the current capacity of a semispace.
2109  intptr_t EffectiveCapacity() {
2110    SLOW_ASSERT(to_space_.Capacity() == from_space_.Capacity());
2111    return (to_space_.Capacity() / Page::kPageSize) * NewSpacePage::kAreaSize;
2112  }
2113
2114  // Return the current capacity of a semispace.
2115  intptr_t Capacity() {
2116    ASSERT(to_space_.Capacity() == from_space_.Capacity());
2117    return to_space_.Capacity();
2118  }
2119
2120  // Return the total amount of memory committed for new space.
2121  intptr_t CommittedMemory() {
2122    if (from_space_.is_committed()) return 2 * Capacity();
2123    return Capacity();
2124  }
2125
2126  // Return the available bytes without growing.
2127  intptr_t Available() {
2128    return Capacity() - Size();
2129  }
2130
2131  // Return the maximum capacity of a semispace.
2132  int MaximumCapacity() {
2133    ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
2134    return to_space_.MaximumCapacity();
2135  }
2136
2137  // Returns the initial capacity of a semispace.
2138  int InitialCapacity() {
2139    ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity());
2140    return to_space_.InitialCapacity();
2141  }
2142
2143  // Return the address of the allocation pointer in the active semispace.
2144  Address top() {
2145    ASSERT(to_space_.current_page()->ContainsLimit(allocation_info_.top));
2146    return allocation_info_.top;
2147  }
2148  // Return the address of the first object in the active semispace.
2149  Address bottom() { return to_space_.space_start(); }
2150
2151  // Get the age mark of the inactive semispace.
2152  Address age_mark() { return from_space_.age_mark(); }
2153  // Set the age mark in the active semispace.
2154  void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
2155
2156  // The start address of the space and a bit mask. Anding an address in the
2157  // new space with the mask will result in the start address.
2158  Address start() { return start_; }
2159  uintptr_t mask() { return address_mask_; }
2160
2161  INLINE(uint32_t AddressToMarkbitIndex(Address addr)) {
2162    ASSERT(Contains(addr));
2163    ASSERT(IsAligned(OffsetFrom(addr), kPointerSize) ||
2164           IsAligned(OffsetFrom(addr) - 1, kPointerSize));
2165    return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2;
2166  }
2167
2168  INLINE(Address MarkbitIndexToAddress(uint32_t index)) {
2169    return reinterpret_cast<Address>(index << kPointerSizeLog2);
2170  }
2171
2172  // The allocation top and limit addresses.
2173  Address* allocation_top_address() { return &allocation_info_.top; }
2174  Address* allocation_limit_address() { return &allocation_info_.limit; }
2175
2176  MUST_USE_RESULT INLINE(MaybeObject* AllocateRaw(int size_in_bytes));
2177
2178  // Reset the allocation pointer to the beginning of the active semispace.
2179  void ResetAllocationInfo();
2180
2181  void LowerInlineAllocationLimit(intptr_t step) {
2182    inline_allocation_limit_step_ = step;
2183    if (step == 0) {
2184      allocation_info_.limit = to_space_.page_high();
2185    } else {
2186      allocation_info_.limit = Min(
2187          allocation_info_.top + inline_allocation_limit_step_,
2188          allocation_info_.limit);
2189    }
2190    top_on_previous_step_ = allocation_info_.top;
2191  }
2192
2193  // Get the extent of the inactive semispace (for use as a marking stack,
2194  // or to zap it). Notice: space-addresses are not necessarily on the
2195  // same page, so FromSpaceStart() might be above FromSpaceEnd().
2196  Address FromSpacePageLow() { return from_space_.page_low(); }
2197  Address FromSpacePageHigh() { return from_space_.page_high(); }
2198  Address FromSpaceStart() { return from_space_.space_start(); }
2199  Address FromSpaceEnd() { return from_space_.space_end(); }
2200
2201  // Get the extent of the active semispace's pages' memory.
2202  Address ToSpaceStart() { return to_space_.space_start(); }
2203  Address ToSpaceEnd() { return to_space_.space_end(); }
2204
2205  inline bool ToSpaceContains(Address address) {
2206    return to_space_.Contains(address);
2207  }
2208  inline bool FromSpaceContains(Address address) {
2209    return from_space_.Contains(address);
2210  }
2211
2212  // True if the object is a heap object in the address range of the
2213  // respective semispace (not necessarily below the allocation pointer of the
2214  // semispace).
2215  inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
2216  inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
2217
2218  // Try to switch the active semispace to a new, empty, page.
2219  // Returns false if this isn't possible or reasonable (i.e., there
2220  // are no pages, or the current page is already empty), or true
2221  // if successful.
2222  bool AddFreshPage();
2223
2224  virtual bool ReserveSpace(int bytes);
2225
2226  // Resizes a sequential string which must be the most recent thing that was
2227  // allocated in new space.
2228  template <typename StringType>
2229  inline void ShrinkStringAtAllocationBoundary(String* string, int len);
2230
2231#ifdef DEBUG
2232  // Verify the active semispace.
2233  virtual void Verify();
2234  // Print the active semispace.
2235  virtual void Print() { to_space_.Print(); }
2236#endif
2237
2238  // Iterates the active semispace to collect statistics.
2239  void CollectStatistics();
2240  // Reports previously collected statistics of the active semispace.
2241  void ReportStatistics();
2242  // Clears previously collected statistics.
2243  void ClearHistograms();
2244
2245  // Record the allocation or promotion of a heap object.  Note that we don't
2246  // record every single allocation, but only those that happen in the
2247  // to space during a scavenge GC.
2248  void RecordAllocation(HeapObject* obj);
2249  void RecordPromotion(HeapObject* obj);
2250
2251  // Return whether the operation succeded.
2252  bool CommitFromSpaceIfNeeded() {
2253    if (from_space_.is_committed()) return true;
2254    return from_space_.Commit();
2255  }
2256
2257  bool UncommitFromSpace() {
2258    if (!from_space_.is_committed()) return true;
2259    return from_space_.Uncommit();
2260  }
2261
2262  inline intptr_t inline_allocation_limit_step() {
2263    return inline_allocation_limit_step_;
2264  }
2265
2266  SemiSpace* active_space() { return &to_space_; }
2267
2268 private:
2269  // Update allocation info to match the current to-space page.
2270  void UpdateAllocationInfo();
2271
2272  Address chunk_base_;
2273  uintptr_t chunk_size_;
2274
2275  // The semispaces.
2276  SemiSpace to_space_;
2277  SemiSpace from_space_;
2278  VirtualMemory reservation_;
2279  int pages_used_;
2280
2281  // Start address and bit mask for containment testing.
2282  Address start_;
2283  uintptr_t address_mask_;
2284  uintptr_t object_mask_;
2285  uintptr_t object_expected_;
2286
2287  // Allocation pointer and limit for normal allocation and allocation during
2288  // mark-compact collection.
2289  AllocationInfo allocation_info_;
2290
2291  // When incremental marking is active we will set allocation_info_.limit
2292  // to be lower than actual limit and then will gradually increase it
2293  // in steps to guarantee that we do incremental marking steps even
2294  // when all allocation is performed from inlined generated code.
2295  intptr_t inline_allocation_limit_step_;
2296
2297  Address top_on_previous_step_;
2298
2299  HistogramInfo* allocated_histogram_;
2300  HistogramInfo* promoted_histogram_;
2301
2302  MUST_USE_RESULT MaybeObject* SlowAllocateRaw(int size_in_bytes);
2303
2304  friend class SemiSpaceIterator;
2305
2306 public:
2307  TRACK_MEMORY("NewSpace")
2308};
2309
2310
2311// -----------------------------------------------------------------------------
2312// Old object space (excluding map objects)
2313
2314class OldSpace : public PagedSpace {
2315 public:
2316  // Creates an old space object with a given maximum capacity.
2317  // The constructor does not allocate pages from OS.
2318  OldSpace(Heap* heap,
2319           intptr_t max_capacity,
2320           AllocationSpace id,
2321           Executability executable)
2322      : PagedSpace(heap, max_capacity, id, executable) {
2323    page_extra_ = 0;
2324  }
2325
2326  // The limit of allocation for a page in this space.
2327  virtual Address PageAllocationLimit(Page* page) {
2328    return page->area_end();
2329  }
2330
2331 public:
2332  TRACK_MEMORY("OldSpace")
2333};
2334
2335
2336// For contiguous spaces, top should be in the space (or at the end) and limit
2337// should be the end of the space.
2338#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
2339  SLOW_ASSERT((space).page_low() <= (info).top             \
2340              && (info).top <= (space).page_high()         \
2341              && (info).limit <= (space).page_high())
2342
2343
2344// -----------------------------------------------------------------------------
2345// Old space for objects of a fixed size
2346
2347class FixedSpace : public PagedSpace {
2348 public:
2349  FixedSpace(Heap* heap,
2350             intptr_t max_capacity,
2351             AllocationSpace id,
2352             int object_size_in_bytes,
2353             const char* name)
2354      : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
2355        object_size_in_bytes_(object_size_in_bytes),
2356        name_(name) {
2357    page_extra_ = Page::kNonCodeObjectAreaSize % object_size_in_bytes;
2358  }
2359
2360  // The limit of allocation for a page in this space.
2361  virtual Address PageAllocationLimit(Page* page) {
2362    return page->area_end() - page_extra_;
2363  }
2364
2365  int object_size_in_bytes() { return object_size_in_bytes_; }
2366
2367  // Prepares for a mark-compact GC.
2368  virtual void PrepareForMarkCompact();
2369
2370 protected:
2371  void ResetFreeList() {
2372    free_list_.Reset();
2373  }
2374
2375 private:
2376  // The size of objects in this space.
2377  int object_size_in_bytes_;
2378
2379  // The name of this space.
2380  const char* name_;
2381};
2382
2383
2384// -----------------------------------------------------------------------------
2385// Old space for all map objects
2386
2387class MapSpace : public FixedSpace {
2388 public:
2389  // Creates a map space object with a maximum capacity.
2390  MapSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
2391      : FixedSpace(heap, max_capacity, id, Map::kSize, "map"),
2392        max_map_space_pages_(kMaxMapPageIndex - 1) {
2393  }
2394
2395  // Given an index, returns the page address.
2396  // TODO(1600): this limit is artifical just to keep code compilable
2397  static const int kMaxMapPageIndex = 1 << 16;
2398
2399  virtual int RoundSizeDownToObjectAlignment(int size) {
2400    if (IsPowerOf2(Map::kSize)) {
2401      return RoundDown(size, Map::kSize);
2402    } else {
2403      return (size / Map::kSize) * Map::kSize;
2404    }
2405  }
2406
2407 protected:
2408#ifdef DEBUG
2409  virtual void VerifyObject(HeapObject* obj);
2410#endif
2411
2412 private:
2413  static const int kMapsPerPage = Page::kNonCodeObjectAreaSize / Map::kSize;
2414
2415  // Do map space compaction if there is a page gap.
2416  int CompactionThreshold() {
2417    return kMapsPerPage * (max_map_space_pages_ - 1);
2418  }
2419
2420  const int max_map_space_pages_;
2421
2422 public:
2423  TRACK_MEMORY("MapSpace")
2424};
2425
2426
2427// -----------------------------------------------------------------------------
2428// Old space for all global object property cell objects
2429
2430class CellSpace : public FixedSpace {
2431 public:
2432  // Creates a property cell space object with a maximum capacity.
2433  CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id)
2434      : FixedSpace(heap, max_capacity, id, JSGlobalPropertyCell::kSize, "cell")
2435  {}
2436
2437  virtual int RoundSizeDownToObjectAlignment(int size) {
2438    if (IsPowerOf2(JSGlobalPropertyCell::kSize)) {
2439      return RoundDown(size, JSGlobalPropertyCell::kSize);
2440    } else {
2441      return (size / JSGlobalPropertyCell::kSize) * JSGlobalPropertyCell::kSize;
2442    }
2443  }
2444
2445 protected:
2446#ifdef DEBUG
2447  virtual void VerifyObject(HeapObject* obj);
2448#endif
2449
2450 public:
2451  TRACK_MEMORY("CellSpace")
2452};
2453
2454
2455// -----------------------------------------------------------------------------
2456// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
2457// the large object space. A large object is allocated from OS heap with
2458// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
2459// A large object always starts at Page::kObjectStartOffset to a page.
2460// Large objects do not move during garbage collections.
2461
2462class LargeObjectSpace : public Space {
2463 public:
2464  LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id);
2465  virtual ~LargeObjectSpace() {}
2466
2467  // Initializes internal data structures.
2468  bool SetUp();
2469
2470  // Releases internal resources, frees objects in this space.
2471  void TearDown();
2472
2473  static intptr_t ObjectSizeFor(intptr_t chunk_size) {
2474    if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
2475    return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
2476  }
2477
2478  // Shared implementation of AllocateRaw, AllocateRawCode and
2479  // AllocateRawFixedArray.
2480  MUST_USE_RESULT MaybeObject* AllocateRaw(int object_size,
2481                                           Executability executable);
2482
2483  // Available bytes for objects in this space.
2484  inline intptr_t Available();
2485
2486  virtual intptr_t Size() {
2487    return size_;
2488  }
2489
2490  virtual intptr_t SizeOfObjects() {
2491    return objects_size_;
2492  }
2493
2494  int PageCount() {
2495    return page_count_;
2496  }
2497
2498  // Finds an object for a given address, returns Failure::Exception()
2499  // if it is not found. The function iterates through all objects in this
2500  // space, may be slow.
2501  MaybeObject* FindObject(Address a);
2502
2503  // Finds a large object page containing the given address, returns NULL
2504  // if such a page doesn't exist.
2505  LargePage* FindPage(Address a);
2506
2507  // Frees unmarked objects.
2508  void FreeUnmarkedObjects();
2509
2510  // Checks whether a heap object is in this space; O(1).
2511  bool Contains(HeapObject* obj);
2512
2513  // Checks whether the space is empty.
2514  bool IsEmpty() { return first_page_ == NULL; }
2515
2516  // See the comments for ReserveSpace in the Space class.  This has to be
2517  // called after ReserveSpace has been called on the paged spaces, since they
2518  // may use some memory, leaving less for large objects.
2519  virtual bool ReserveSpace(int bytes);
2520
2521  LargePage* first_page() { return first_page_; }
2522
2523#ifdef DEBUG
2524  virtual void Verify();
2525  virtual void Print();
2526  void ReportStatistics();
2527  void CollectCodeStatistics();
2528#endif
2529  // Checks whether an address is in the object area in this space.  It
2530  // iterates all objects in the space. May be slow.
2531  bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); }
2532
2533 private:
2534  intptr_t max_capacity_;
2535  // The head of the linked list of large object chunks.
2536  LargePage* first_page_;
2537  intptr_t size_;  // allocated bytes
2538  int page_count_;  // number of chunks
2539  intptr_t objects_size_;  // size of objects
2540  // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them
2541  HashMap chunk_map_;
2542
2543  friend class LargeObjectIterator;
2544
2545 public:
2546  TRACK_MEMORY("LargeObjectSpace")
2547};
2548
2549
2550class LargeObjectIterator: public ObjectIterator {
2551 public:
2552  explicit LargeObjectIterator(LargeObjectSpace* space);
2553  LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
2554
2555  HeapObject* Next();
2556
2557  // implementation of ObjectIterator.
2558  virtual HeapObject* next_object() { return Next(); }
2559
2560 private:
2561  LargePage* current_;
2562  HeapObjectCallback size_func_;
2563};
2564
2565
2566// Iterates over the chunks (pages and large object pages) that can contain
2567// pointers to new space.
2568class PointerChunkIterator BASE_EMBEDDED {
2569 public:
2570  inline explicit PointerChunkIterator(Heap* heap);
2571
2572  // Return NULL when the iterator is done.
2573  MemoryChunk* next() {
2574    switch (state_) {
2575      case kOldPointerState: {
2576        if (old_pointer_iterator_.has_next()) {
2577          return old_pointer_iterator_.next();
2578        }
2579        state_ = kMapState;
2580        // Fall through.
2581      }
2582      case kMapState: {
2583        if (map_iterator_.has_next()) {
2584          return map_iterator_.next();
2585        }
2586        state_ = kLargeObjectState;
2587        // Fall through.
2588      }
2589      case kLargeObjectState: {
2590        HeapObject* heap_object;
2591        do {
2592          heap_object = lo_iterator_.Next();
2593          if (heap_object == NULL) {
2594            state_ = kFinishedState;
2595            return NULL;
2596          }
2597          // Fixed arrays are the only pointer-containing objects in large
2598          // object space.
2599        } while (!heap_object->IsFixedArray());
2600        MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address());
2601        return answer;
2602      }
2603      case kFinishedState:
2604        return NULL;
2605      default:
2606        break;
2607    }
2608    UNREACHABLE();
2609    return NULL;
2610  }
2611
2612
2613 private:
2614  enum State {
2615    kOldPointerState,
2616    kMapState,
2617    kLargeObjectState,
2618    kFinishedState
2619  };
2620  State state_;
2621  PageIterator old_pointer_iterator_;
2622  PageIterator map_iterator_;
2623  LargeObjectIterator lo_iterator_;
2624};
2625
2626
2627#ifdef DEBUG
2628struct CommentStatistic {
2629  const char* comment;
2630  int size;
2631  int count;
2632  void Clear() {
2633    comment = NULL;
2634    size = 0;
2635    count = 0;
2636  }
2637  // Must be small, since an iteration is used for lookup.
2638  static const int kMaxComments = 64;
2639};
2640#endif
2641
2642
2643} }  // namespace v8::internal
2644
2645#endif  // V8_SPACES_H_
2646