JSArray.cpp revision 2daae5fd11344eaa88a0d92b0f6d65f8d2255c00
1/*
2 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
4 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
5 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
6 *
7 *  This library is free software; you can redistribute it and/or
8 *  modify it under the terms of the GNU Lesser General Public
9 *  License as published by the Free Software Foundation; either
10 *  version 2 of the License, or (at your option) any later version.
11 *
12 *  This library is distributed in the hope that it will be useful,
13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 *  Lesser General Public License for more details.
16 *
17 *  You should have received a copy of the GNU Lesser General Public
18 *  License along with this library; if not, write to the Free Software
19 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
20 *
21 */
22
23#include "config.h"
24#include "JSArray.h"
25
26#include "ArrayPrototype.h"
27#include "CachedCall.h"
28#include "Error.h"
29#include "Executable.h"
30#include "PropertyNameArray.h"
31#include <wtf/AVLTree.h>
32#include <wtf/Assertions.h>
33#include <wtf/OwnPtr.h>
34#include <Operations.h>
35
36using namespace std;
37using namespace WTF;
38
39namespace JSC {
40
41ASSERT_CLASS_FITS_IN_CELL(JSArray);
42
43// Overview of JSArray
44//
45// Properties of JSArray objects may be stored in one of three locations:
46//   * The regular JSObject property map.
47//   * A storage vector.
48//   * A sparse map of array entries.
49//
50// Properties with non-numeric identifiers, with identifiers that are not representable
51// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
52// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
53// integer) are not considered array indices and will be stored in the JSObject property map.
54//
55// All properties with a numeric identifer, representable as an unsigned integer i,
56// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
57// storage vector or the sparse map.  An array index i will be handled in the following
58// fashion:
59//
60//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
61//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
62//     be stored in the storage vector or in the sparse array, depending on the density of
63//     data that would be stored in the vector (a vector being used where at least
64//     (1 / minDensityMultiplier) of the entries would be populated).
65//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
66//     in the sparse array.
67
68// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
69// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
70// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValue)) +
71// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
72#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
73
74// These values have to be macros to be used in max() and min() without introducing
75// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
76#define MIN_SPARSE_ARRAY_INDEX 10000U
77#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
78// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
79#define MAX_ARRAY_INDEX 0xFFFFFFFEU
80
81// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
82// for an array that was created with a sepcified length (e.g. a = new Array(123))
83#define BASE_VECTOR_LEN 4U
84
85// The upper bound to the size we'll grow a zero length array when the first element
86// is added.
87#define FIRST_VECTOR_GROW 4U
88
89// Our policy for when to use a vector and when to use a sparse map.
90// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
91// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
92// as long as it is 1/8 full. If more sparse than that, we use a map.
93static const unsigned minDensityMultiplier = 8;
94
95const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0};
96
97// We keep track of the size of the last array after it was grown.  We use this
98// as a simple heuristic for as the value to grow the next array from size 0.
99// This value is capped by the constant FIRST_VECTOR_GROW defined above.
100static unsigned lastArraySize = 0;
101
102static inline size_t storageSize(unsigned vectorLength)
103{
104    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
105
106    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
107    // - as asserted above - the following calculation cannot overflow.
108    size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
109    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
110    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
111    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
112
113    return size;
114}
115
116static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
117{
118    return length / minDensityMultiplier <= numValues;
119}
120
121#if !CHECK_ARRAY_CONSISTENCY
122
123inline void JSArray::checkConsistency(ConsistencyCheckType)
124{
125}
126
127#endif
128
129JSArray::JSArray(VPtrStealingHackType)
130    : JSNonFinalObject(VPtrStealingHack)
131{
132}
133
134JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
135    : JSNonFinalObject(globalData, structure)
136{
137    ASSERT(inherits(&s_info));
138
139    unsigned initialCapacity = 0;
140
141    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
142    m_storage->m_allocBase = m_storage;
143    m_indexBias = 0;
144    m_vectorLength = initialCapacity;
145
146    checkConsistency();
147
148    Heap::heap(this)->reportExtraMemoryCost(storageSize(0));
149}
150
151JSArray::JSArray(JSGlobalData& globalData, Structure* structure, unsigned initialLength, ArrayCreationMode creationMode)
152    : JSNonFinalObject(globalData, structure)
153{
154    ASSERT(inherits(&s_info));
155
156    unsigned initialCapacity;
157    if (creationMode == CreateCompact)
158        initialCapacity = initialLength;
159    else
160        initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
161
162    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
163    m_storage->m_allocBase = m_storage;
164    m_storage->m_length = initialLength;
165    m_indexBias = 0;
166    m_vectorLength = initialCapacity;
167    m_storage->m_sparseValueMap = 0;
168    m_storage->subclassData = 0;
169    m_storage->reportedMapCapacity = 0;
170
171    if (creationMode == CreateCompact) {
172#if CHECK_ARRAY_CONSISTENCY
173        m_storage->m_inCompactInitialization = !!initialCapacity;
174#endif
175        m_storage->m_length = 0;
176        m_storage->m_numValuesInVector = initialCapacity;
177    } else {
178#if CHECK_ARRAY_CONSISTENCY
179        storage->m_inCompactInitialization = false;
180#endif
181        m_storage->m_length = initialLength;
182        m_storage->m_numValuesInVector = 0;
183        WriteBarrier<Unknown>* vector = m_storage->m_vector;
184        for (size_t i = 0; i < initialCapacity; ++i)
185            vector[i].clear();
186    }
187
188    checkConsistency();
189
190    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
191}
192
193JSArray::JSArray(JSGlobalData& globalData, Structure* structure, const ArgList& list)
194    : JSNonFinalObject(globalData, structure)
195{
196    ASSERT(inherits(&s_info));
197
198    unsigned initialCapacity = list.size();
199    unsigned initialStorage;
200
201    // If the ArgList is empty, allocate space for 3 entries.  This value empirically
202    // works well for benchmarks.
203    if (!initialCapacity)
204        initialStorage = 3;
205    else
206        initialStorage = initialCapacity;
207
208    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialStorage)));
209    m_storage->m_allocBase = m_storage;
210    m_indexBias = 0;
211    m_storage->m_length = initialCapacity;
212    m_vectorLength = initialStorage;
213    m_storage->m_numValuesInVector = initialCapacity;
214    m_storage->m_sparseValueMap = 0;
215    m_storage->subclassData = 0;
216    m_storage->reportedMapCapacity = 0;
217#if CHECK_ARRAY_CONSISTENCY
218    m_storage->m_inCompactInitialization = false;
219#endif
220
221    size_t i = 0;
222    WriteBarrier<Unknown>* vector = m_storage->m_vector;
223    ArgList::const_iterator end = list.end();
224    for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
225        vector[i].set(globalData, this, *it);
226    for (; i < initialStorage; i++)
227        vector[i].clear();
228
229    checkConsistency();
230
231    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialStorage));
232}
233
234JSArray::~JSArray()
235{
236    ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
237    checkConsistency(DestructorConsistencyCheck);
238
239    delete m_storage->m_sparseValueMap;
240    fastFree(m_storage->m_allocBase);
241}
242
243bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
244{
245    ArrayStorage* storage = m_storage;
246
247    if (i >= storage->m_length) {
248        if (i > MAX_ARRAY_INDEX)
249            return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
250        return false;
251    }
252
253    if (i < m_vectorLength) {
254        JSValue value = storage->m_vector[i].get();
255        if (value) {
256            slot.setValue(value);
257            return true;
258        }
259    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
260        if (i >= MIN_SPARSE_ARRAY_INDEX) {
261            SparseArrayValueMap::iterator it = map->find(i);
262            if (it != map->end()) {
263                slot.setValue(it->second.get());
264                return true;
265            }
266        }
267    }
268
269    return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
270}
271
272bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
273{
274    if (propertyName == exec->propertyNames().length) {
275        slot.setValue(jsNumber(length()));
276        return true;
277    }
278
279    bool isArrayIndex;
280    unsigned i = propertyName.toArrayIndex(isArrayIndex);
281    if (isArrayIndex)
282        return JSArray::getOwnPropertySlot(exec, i, slot);
283
284    return JSObject::getOwnPropertySlot(exec, propertyName, slot);
285}
286
287bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
288{
289    if (propertyName == exec->propertyNames().length) {
290        descriptor.setDescriptor(jsNumber(length()), DontDelete | DontEnum);
291        return true;
292    }
293
294    ArrayStorage* storage = m_storage;
295
296    bool isArrayIndex;
297    unsigned i = propertyName.toArrayIndex(isArrayIndex);
298    if (isArrayIndex) {
299        if (i >= storage->m_length)
300            return false;
301        if (i < m_vectorLength) {
302            WriteBarrier<Unknown>& value = storage->m_vector[i];
303            if (value) {
304                descriptor.setDescriptor(value.get(), 0);
305                return true;
306            }
307        } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
308            if (i >= MIN_SPARSE_ARRAY_INDEX) {
309                SparseArrayValueMap::iterator it = map->find(i);
310                if (it != map->end()) {
311                    descriptor.setDescriptor(it->second.get(), 0);
312                    return true;
313                }
314            }
315        }
316    }
317    return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
318}
319
320// ECMA 15.4.5.1
321void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
322{
323    bool isArrayIndex;
324    unsigned i = propertyName.toArrayIndex(isArrayIndex);
325    if (isArrayIndex) {
326        put(exec, i, value);
327        return;
328    }
329
330    if (propertyName == exec->propertyNames().length) {
331        unsigned newLength = value.toUInt32(exec);
332        if (value.toNumber(exec) != static_cast<double>(newLength)) {
333            throwError(exec, createRangeError(exec, "Invalid array length."));
334            return;
335        }
336        setLength(newLength);
337        return;
338    }
339
340    JSObject::put(exec, propertyName, value, slot);
341}
342
343void JSArray::put(ExecState* exec, unsigned i, JSValue value)
344{
345    checkConsistency();
346
347    ArrayStorage* storage = m_storage;
348
349    unsigned length = storage->m_length;
350    if (i >= length && i <= MAX_ARRAY_INDEX) {
351        length = i + 1;
352        storage->m_length = length;
353    }
354
355    if (i < m_vectorLength) {
356        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
357        if (valueSlot) {
358            valueSlot.set(exec->globalData(), this, value);
359            checkConsistency();
360            return;
361        }
362        valueSlot.set(exec->globalData(), this, value);
363        ++storage->m_numValuesInVector;
364        checkConsistency();
365        return;
366    }
367
368    putSlowCase(exec, i, value);
369}
370
371NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
372{
373    ArrayStorage* storage = m_storage;
374
375    SparseArrayValueMap* map = storage->m_sparseValueMap;
376
377    if (i >= MIN_SPARSE_ARRAY_INDEX) {
378        if (i > MAX_ARRAY_INDEX) {
379            PutPropertySlot slot;
380            put(exec, Identifier::from(exec, i), value, slot);
381            return;
382        }
383
384        // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
385        // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
386        if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
387            if (!map) {
388                map = new SparseArrayValueMap;
389                storage->m_sparseValueMap = map;
390            }
391
392            WriteBarrier<Unknown> temp;
393            pair<SparseArrayValueMap::iterator, bool> result = map->add(i, temp);
394            result.first->second.set(exec->globalData(), this, value);
395            if (!result.second) // pre-existing entry
396                return;
397
398            size_t capacity = map->capacity();
399            if (capacity != storage->reportedMapCapacity) {
400                Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
401                storage->reportedMapCapacity = capacity;
402            }
403            return;
404        }
405    }
406
407    // We have decided that we'll put the new item into the vector.
408    // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
409    if (!map || map->isEmpty()) {
410        if (increaseVectorLength(i + 1)) {
411            storage = m_storage;
412            storage->m_vector[i].set(exec->globalData(), this, value);
413            ++storage->m_numValuesInVector;
414            checkConsistency();
415        } else
416            throwOutOfMemoryError(exec);
417        return;
418    }
419
420    // Decide how many values it would be best to move from the map.
421    unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
422    unsigned newVectorLength = getNewVectorLength(i + 1);
423    for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
424        newNumValuesInVector += map->contains(j);
425    if (i >= MIN_SPARSE_ARRAY_INDEX)
426        newNumValuesInVector -= map->contains(i);
427    if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
428        unsigned needLength = max(i + 1, storage->m_length);
429        unsigned proposedNewNumValuesInVector = newNumValuesInVector;
430        // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
431        while ((newVectorLength < needLength) && (newVectorLength < MAX_STORAGE_VECTOR_LENGTH)) {
432            unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
433            for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
434                proposedNewNumValuesInVector += map->contains(j);
435            if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
436                break;
437            newVectorLength = proposedNewVectorLength;
438            newNumValuesInVector = proposedNewNumValuesInVector;
439        }
440    }
441
442    void* baseStorage = storage->m_allocBase;
443
444    if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
445        throwOutOfMemoryError(exec);
446        return;
447    }
448
449    m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
450    m_storage->m_allocBase = baseStorage;
451    storage = m_storage;
452
453    unsigned vectorLength = m_vectorLength;
454    WriteBarrier<Unknown>* vector = storage->m_vector;
455
456    if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
457        for (unsigned j = vectorLength; j < newVectorLength; ++j)
458            vector[j].clear();
459        if (i > MIN_SPARSE_ARRAY_INDEX)
460            map->remove(i);
461    } else {
462        for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
463            vector[j].clear();
464        JSGlobalData& globalData = exec->globalData();
465        for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
466            vector[j].set(globalData, this, map->take(j).get());
467    }
468
469    ASSERT(i < newVectorLength);
470
471    m_vectorLength = newVectorLength;
472    storage->m_numValuesInVector = newNumValuesInVector;
473
474    storage->m_vector[i].set(exec->globalData(), this, value);
475
476    checkConsistency();
477
478    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
479}
480
481bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
482{
483    bool isArrayIndex;
484    unsigned i = propertyName.toArrayIndex(isArrayIndex);
485    if (isArrayIndex)
486        return deleteProperty(exec, i);
487
488    if (propertyName == exec->propertyNames().length)
489        return false;
490
491    return JSObject::deleteProperty(exec, propertyName);
492}
493
494bool JSArray::deleteProperty(ExecState* exec, unsigned i)
495{
496    checkConsistency();
497
498    ArrayStorage* storage = m_storage;
499
500    if (i < m_vectorLength) {
501        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
502        if (!valueSlot) {
503            checkConsistency();
504            return false;
505        }
506        valueSlot.clear();
507        --storage->m_numValuesInVector;
508        checkConsistency();
509        return true;
510    }
511
512    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
513        if (i >= MIN_SPARSE_ARRAY_INDEX) {
514            SparseArrayValueMap::iterator it = map->find(i);
515            if (it != map->end()) {
516                map->remove(it);
517                checkConsistency();
518                return true;
519            }
520        }
521    }
522
523    checkConsistency();
524
525    if (i > MAX_ARRAY_INDEX)
526        return deleteProperty(exec, Identifier::from(exec, i));
527
528    return false;
529}
530
531void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
532{
533    // FIXME: Filling PropertyNameArray with an identifier for every integer
534    // is incredibly inefficient for large arrays. We need a different approach,
535    // which almost certainly means a different structure for PropertyNameArray.
536
537    ArrayStorage* storage = m_storage;
538
539    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
540    for (unsigned i = 0; i < usedVectorLength; ++i) {
541        if (storage->m_vector[i])
542            propertyNames.add(Identifier::from(exec, i));
543    }
544
545    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
546        SparseArrayValueMap::iterator end = map->end();
547        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
548            propertyNames.add(Identifier::from(exec, it->first));
549    }
550
551    if (mode == IncludeDontEnumProperties)
552        propertyNames.add(exec->propertyNames().length);
553
554    JSObject::getOwnPropertyNames(exec, propertyNames, mode);
555}
556
557ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
558{
559    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
560
561    unsigned increasedLength;
562    unsigned maxInitLength = min(m_storage->m_length, 100000U);
563
564    if (desiredLength < maxInitLength)
565        increasedLength = maxInitLength;
566    else if (!m_vectorLength)
567        increasedLength = max(desiredLength, lastArraySize);
568    else {
569        // Mathematically equivalent to:
570        //   increasedLength = (newLength * 3 + 1) / 2;
571        // or:
572        //   increasedLength = (unsigned)ceil(newLength * 1.5));
573        // This form is not prone to internal overflow.
574        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
575    }
576
577    ASSERT(increasedLength >= desiredLength);
578
579    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
580
581    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
582}
583
584bool JSArray::increaseVectorLength(unsigned newLength)
585{
586    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
587    // to the vector. Callers have to account for that, because they can do it more efficiently.
588
589    ArrayStorage* storage = m_storage;
590
591    unsigned vectorLength = m_vectorLength;
592    ASSERT(newLength > vectorLength);
593    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
594    unsigned newVectorLength = getNewVectorLength(newLength);
595    void* baseStorage = storage->m_allocBase;
596
597    if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
598        return false;
599
600    storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
601    m_storage->m_allocBase = baseStorage;
602
603    WriteBarrier<Unknown>* vector = storage->m_vector;
604    for (unsigned i = vectorLength; i < newVectorLength; ++i)
605        vector[i].clear();
606
607    m_vectorLength = newVectorLength;
608
609    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
610
611    return true;
612}
613
614bool JSArray::increaseVectorPrefixLength(unsigned newLength)
615{
616    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
617    // to the vector. Callers have to account for that, because they can do it more efficiently.
618
619    ArrayStorage* storage = m_storage;
620
621    unsigned vectorLength = m_vectorLength;
622    ASSERT(newLength > vectorLength);
623    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
624    unsigned newVectorLength = getNewVectorLength(newLength);
625
626    void* newBaseStorage = fastMalloc(storageSize(newVectorLength + m_indexBias));
627    if (!newBaseStorage)
628        return false;
629
630    m_indexBias += newVectorLength - newLength;
631
632    m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newBaseStorage) + m_indexBias * sizeof(JSValue));
633
634    memcpy(m_storage, storage, storageSize(0));
635    memcpy(&m_storage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], vectorLength * sizeof(JSValue));
636
637    m_storage->m_allocBase = newBaseStorage;
638    m_vectorLength = newLength;
639
640    fastFree(storage->m_allocBase);
641
642    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
643
644    return true;
645}
646
647
648void JSArray::setLength(unsigned newLength)
649{
650    ArrayStorage* storage = m_storage;
651
652#if CHECK_ARRAY_CONSISTENCY
653    if (!storage->m_inCompactInitialization)
654        checkConsistency();
655    else
656        storage->m_inCompactInitialization = false;
657#endif
658
659    unsigned length = storage->m_length;
660
661    if (newLength < length) {
662        unsigned usedVectorLength = min(length, m_vectorLength);
663        for (unsigned i = newLength; i < usedVectorLength; ++i) {
664            WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
665            bool hadValue = valueSlot;
666            valueSlot.clear();
667            storage->m_numValuesInVector -= hadValue;
668        }
669
670        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
671            SparseArrayValueMap copy = *map;
672            SparseArrayValueMap::iterator end = copy.end();
673            for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
674                if (it->first >= newLength)
675                    map->remove(it->first);
676            }
677            if (map->isEmpty()) {
678                delete map;
679                storage->m_sparseValueMap = 0;
680            }
681        }
682    }
683
684    storage->m_length = newLength;
685
686    checkConsistency();
687}
688
689JSValue JSArray::pop()
690{
691    checkConsistency();
692
693    ArrayStorage* storage = m_storage;
694
695    unsigned length = storage->m_length;
696    if (!length)
697        return jsUndefined();
698
699    --length;
700
701    JSValue result;
702
703    if (length < m_vectorLength) {
704        WriteBarrier<Unknown>& valueSlot = storage->m_vector[length];
705        if (valueSlot) {
706            --storage->m_numValuesInVector;
707            result = valueSlot.get();
708            valueSlot.clear();
709        } else
710            result = jsUndefined();
711    } else {
712        result = jsUndefined();
713        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
714            SparseArrayValueMap::iterator it = map->find(length);
715            if (it != map->end()) {
716                result = it->second.get();
717                map->remove(it);
718                if (map->isEmpty()) {
719                    delete map;
720                    storage->m_sparseValueMap = 0;
721                }
722            }
723        }
724    }
725
726    storage->m_length = length;
727
728    checkConsistency();
729
730    return result;
731}
732
733void JSArray::push(ExecState* exec, JSValue value)
734{
735    checkConsistency();
736
737    ArrayStorage* storage = m_storage;
738
739    if (storage->m_length < m_vectorLength) {
740        storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
741        ++storage->m_numValuesInVector;
742        ++storage->m_length;
743        checkConsistency();
744        return;
745    }
746
747    if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
748        SparseArrayValueMap* map = storage->m_sparseValueMap;
749        if (!map || map->isEmpty()) {
750            if (increaseVectorLength(storage->m_length + 1)) {
751                storage = m_storage;
752                storage->m_vector[storage->m_length].set(exec->globalData(), this, value);
753                ++storage->m_numValuesInVector;
754                ++storage->m_length;
755                checkConsistency();
756                return;
757            }
758            checkConsistency();
759            throwOutOfMemoryError(exec);
760            return;
761        }
762    }
763
764    putSlowCase(exec, storage->m_length++, value);
765}
766
767void JSArray::shiftCount(ExecState* exec, int count)
768{
769    ASSERT(count > 0);
770
771    ArrayStorage* storage = m_storage;
772
773    unsigned oldLength = storage->m_length;
774
775    if (!oldLength)
776        return;
777
778    if (oldLength != storage->m_numValuesInVector) {
779        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
780        // which means we need to go through each entry looking for the the "empty"
781        // slots and then fill them with possible properties.  See ECMA spec.
782        // 15.4.4.9 steps 11 through 13.
783        for (unsigned i = count; i < oldLength; ++i) {
784            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
785                PropertySlot slot(this);
786                JSValue p = prototype();
787                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
788                    put(exec, i, slot.getValue(exec, i));
789            }
790        }
791
792        storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
793
794        // Need to decrement numValuesInvector based on number of real entries
795        for (unsigned i = 0; i < (unsigned)count; ++i)
796            if ((i < m_vectorLength) && (storage->m_vector[i]))
797                --storage->m_numValuesInVector;
798    } else
799        storage->m_numValuesInVector -= count;
800
801    storage->m_length -= count;
802
803    if (m_vectorLength) {
804        count = min(m_vectorLength, (unsigned)count);
805
806        m_vectorLength -= count;
807
808        if (m_vectorLength) {
809            char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
810            memmove(newBaseStorage, storage, storageSize(0));
811            m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
812
813            m_indexBias += count;
814        }
815    }
816}
817
818void JSArray::unshiftCount(ExecState* exec, int count)
819{
820    ArrayStorage* storage = m_storage;
821
822    ASSERT(m_indexBias >= 0);
823    ASSERT(count >= 0);
824
825    unsigned length = storage->m_length;
826
827    if (length != storage->m_numValuesInVector) {
828        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
829        // which means we need to go through each entry looking for the the "empty"
830        // slots and then fill them with possible properties.  See ECMA spec.
831        // 15.4.4.13 steps 8 through 10.
832        for (unsigned i = 0; i < length; ++i) {
833            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
834                PropertySlot slot(this);
835                JSValue p = prototype();
836                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
837                    put(exec, i, slot.getValue(exec, i));
838            }
839        }
840    }
841
842    storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
843
844    if (m_indexBias >= count) {
845        m_indexBias -= count;
846        char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
847        memmove(newBaseStorage, storage, storageSize(0));
848        m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
849        m_vectorLength += count;
850    } else if (!increaseVectorPrefixLength(m_vectorLength + count)) {
851        throwOutOfMemoryError(exec);
852        return;
853    }
854
855    WriteBarrier<Unknown>* vector = m_storage->m_vector;
856    for (int i = 0; i < count; i++)
857        vector[i].clear();
858}
859
860void JSArray::markChildren(MarkStack& markStack)
861{
862    markChildrenDirect(markStack);
863}
864
865static int compareNumbersForQSort(const void* a, const void* b)
866{
867    double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
868    double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
869    return (da > db) - (da < db);
870}
871
872static int compareByStringPairForQSort(const void* a, const void* b)
873{
874    const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
875    const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
876    return codePointCompare(va->second, vb->second);
877}
878
879void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
880{
881    ArrayStorage* storage = m_storage;
882
883    unsigned lengthNotIncludingUndefined = compactForSorting();
884    if (storage->m_sparseValueMap) {
885        throwOutOfMemoryError(exec);
886        return;
887    }
888
889    if (!lengthNotIncludingUndefined)
890        return;
891
892    bool allValuesAreNumbers = true;
893    size_t size = storage->m_numValuesInVector;
894    for (size_t i = 0; i < size; ++i) {
895        if (!storage->m_vector[i].isNumber()) {
896            allValuesAreNumbers = false;
897            break;
898        }
899    }
900
901    if (!allValuesAreNumbers)
902        return sort(exec, compareFunction, callType, callData);
903
904    // For numeric comparison, which is fast, qsort is faster than mergesort. We
905    // also don't require mergesort's stability, since there's no user visible
906    // side-effect from swapping the order of equal primitive values.
907    qsort(storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
908
909    checkConsistency(SortConsistencyCheck);
910}
911
912void JSArray::sort(ExecState* exec)
913{
914    ArrayStorage* storage = m_storage;
915
916    unsigned lengthNotIncludingUndefined = compactForSorting();
917    if (storage->m_sparseValueMap) {
918        throwOutOfMemoryError(exec);
919        return;
920    }
921
922    if (!lengthNotIncludingUndefined)
923        return;
924
925    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
926    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
927    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
928    // random or otherwise changing results, effectively making compare function inconsistent.
929
930    Vector<ValueStringPair> values(lengthNotIncludingUndefined);
931    if (!values.begin()) {
932        throwOutOfMemoryError(exec);
933        return;
934    }
935
936    Heap::heap(this)->pushTempSortVector(&values);
937
938    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
939        JSValue value = storage->m_vector[i].get();
940        ASSERT(!value.isUndefined());
941        values[i].first = value;
942    }
943
944    // FIXME: The following loop continues to call toString on subsequent values even after
945    // a toString call raises an exception.
946
947    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
948        values[i].second = values[i].first.toString(exec);
949
950    if (exec->hadException()) {
951        Heap::heap(this)->popTempSortVector(&values);
952        return;
953    }
954
955    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
956    // than O(N log N).
957
958#if HAVE(MERGESORT)
959    mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
960#else
961    // FIXME: The qsort library function is likely to not be a stable sort.
962    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
963    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
964#endif
965
966    // If the toString function changed the length of the array or vector storage,
967    // increase the length to handle the orignal number of actual values.
968    if (m_vectorLength < lengthNotIncludingUndefined)
969        increaseVectorLength(lengthNotIncludingUndefined);
970    if (storage->m_length < lengthNotIncludingUndefined)
971        storage->m_length = lengthNotIncludingUndefined;
972
973    JSGlobalData& globalData = exec->globalData();
974    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
975        storage->m_vector[i].set(globalData, this, values[i].first);
976
977    Heap::heap(this)->popTempSortVector(&values);
978
979    checkConsistency(SortConsistencyCheck);
980}
981
982struct AVLTreeNodeForArrayCompare {
983    JSValue value;
984
985    // Child pointers.  The high bit of gt is robbed and used as the
986    // balance factor sign.  The high bit of lt is robbed and used as
987    // the magnitude of the balance factor.
988    int32_t gt;
989    int32_t lt;
990};
991
992struct AVLTreeAbstractorForArrayCompare {
993    typedef int32_t handle; // Handle is an index into m_nodes vector.
994    typedef JSValue key;
995    typedef int32_t size;
996
997    Vector<AVLTreeNodeForArrayCompare> m_nodes;
998    ExecState* m_exec;
999    JSValue m_compareFunction;
1000    CallType m_compareCallType;
1001    const CallData* m_compareCallData;
1002    JSValue m_globalThisValue;
1003    OwnPtr<CachedCall> m_cachedCall;
1004
1005    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
1006    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
1007    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
1008    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
1009
1010    int get_balance_factor(handle h)
1011    {
1012        if (m_nodes[h].gt & 0x80000000)
1013            return -1;
1014        return static_cast<unsigned>(m_nodes[h].lt) >> 31;
1015    }
1016
1017    void set_balance_factor(handle h, int bf)
1018    {
1019        if (bf == 0) {
1020            m_nodes[h].lt &= 0x7FFFFFFF;
1021            m_nodes[h].gt &= 0x7FFFFFFF;
1022        } else {
1023            m_nodes[h].lt |= 0x80000000;
1024            if (bf < 0)
1025                m_nodes[h].gt |= 0x80000000;
1026            else
1027                m_nodes[h].gt &= 0x7FFFFFFF;
1028        }
1029    }
1030
1031    int compare_key_key(key va, key vb)
1032    {
1033        ASSERT(!va.isUndefined());
1034        ASSERT(!vb.isUndefined());
1035
1036        if (m_exec->hadException())
1037            return 1;
1038
1039        double compareResult;
1040        if (m_cachedCall) {
1041            m_cachedCall->setThis(m_globalThisValue);
1042            m_cachedCall->setArgument(0, va);
1043            m_cachedCall->setArgument(1, vb);
1044            compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
1045        } else {
1046            MarkedArgumentBuffer arguments;
1047            arguments.append(va);
1048            arguments.append(vb);
1049            compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
1050        }
1051        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
1052    }
1053
1054    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
1055    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
1056
1057    static handle null() { return 0x7FFFFFFF; }
1058};
1059
1060void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
1061{
1062    checkConsistency();
1063
1064    ArrayStorage* storage = m_storage;
1065
1066    // FIXME: This ignores exceptions raised in the compare function or in toNumber.
1067
1068    // The maximum tree depth is compiled in - but the caller is clearly up to no good
1069    // if a larger array is passed.
1070    ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
1071    if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
1072        return;
1073
1074    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
1075    unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);
1076
1077    if (!nodeCount)
1078        return;
1079
1080    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
1081    tree.abstractor().m_exec = exec;
1082    tree.abstractor().m_compareFunction = compareFunction;
1083    tree.abstractor().m_compareCallType = callType;
1084    tree.abstractor().m_compareCallData = &callData;
1085    tree.abstractor().m_globalThisValue = exec->globalThisValue();
1086    tree.abstractor().m_nodes.grow(nodeCount);
1087
1088    if (callType == CallTypeJS)
1089        tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));
1090
1091    if (!tree.abstractor().m_nodes.begin()) {
1092        throwOutOfMemoryError(exec);
1093        return;
1094    }
1095
1096    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
1097    // right out from under us while we're building the tree here.
1098
1099    unsigned numDefined = 0;
1100    unsigned numUndefined = 0;
1101
1102    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
1103    for (; numDefined < usedVectorLength; ++numDefined) {
1104        JSValue v = storage->m_vector[numDefined].get();
1105        if (!v || v.isUndefined())
1106            break;
1107        tree.abstractor().m_nodes[numDefined].value = v;
1108        tree.insert(numDefined);
1109    }
1110    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
1111        JSValue v = storage->m_vector[i].get();
1112        if (v) {
1113            if (v.isUndefined())
1114                ++numUndefined;
1115            else {
1116                tree.abstractor().m_nodes[numDefined].value = v;
1117                tree.insert(numDefined);
1118                ++numDefined;
1119            }
1120        }
1121    }
1122
1123    unsigned newUsedVectorLength = numDefined + numUndefined;
1124
1125    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
1126        newUsedVectorLength += map->size();
1127        if (newUsedVectorLength > m_vectorLength) {
1128            // Check that it is possible to allocate an array large enough to hold all the entries.
1129            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
1130                throwOutOfMemoryError(exec);
1131                return;
1132            }
1133        }
1134
1135        storage = m_storage;
1136
1137        SparseArrayValueMap::iterator end = map->end();
1138        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
1139            tree.abstractor().m_nodes[numDefined].value = it->second.get();
1140            tree.insert(numDefined);
1141            ++numDefined;
1142        }
1143
1144        delete map;
1145        storage->m_sparseValueMap = 0;
1146    }
1147
1148    ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
1149
1150    // FIXME: If the compare function changed the length of the array, the following might be
1151    // modifying the vector incorrectly.
1152
1153    // Copy the values back into m_storage.
1154    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
1155    iter.start_iter_least(tree);
1156    JSGlobalData& globalData = exec->globalData();
1157    for (unsigned i = 0; i < numDefined; ++i) {
1158        storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
1159        ++iter;
1160    }
1161
1162    // Put undefined values back in.
1163    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
1164        storage->m_vector[i].setUndefined();
1165
1166    // Ensure that unused values in the vector are zeroed out.
1167    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
1168        storage->m_vector[i].clear();
1169
1170    storage->m_numValuesInVector = newUsedVectorLength;
1171
1172    checkConsistency(SortConsistencyCheck);
1173}
1174
1175void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
1176{
1177    ArrayStorage* storage = m_storage;
1178
1179    WriteBarrier<Unknown>* vector = storage->m_vector;
1180    unsigned vectorEnd = min(storage->m_length, m_vectorLength);
1181    unsigned i = 0;
1182    for (; i < vectorEnd; ++i) {
1183        WriteBarrier<Unknown>& v = vector[i];
1184        if (!v)
1185            break;
1186        args.append(v.get());
1187    }
1188
1189    for (; i < storage->m_length; ++i)
1190        args.append(get(exec, i));
1191}
1192
1193void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
1194{
1195    ASSERT(m_storage->m_length >= maxSize);
1196    UNUSED_PARAM(maxSize);
1197    WriteBarrier<Unknown>* vector = m_storage->m_vector;
1198    unsigned vectorEnd = min(maxSize, m_vectorLength);
1199    unsigned i = 0;
1200    for (; i < vectorEnd; ++i) {
1201        WriteBarrier<Unknown>& v = vector[i];
1202        if (!v)
1203            break;
1204        buffer[i] = v.get();
1205    }
1206
1207    for (; i < maxSize; ++i)
1208        buffer[i] = get(exec, i);
1209}
1210
1211unsigned JSArray::compactForSorting()
1212{
1213    checkConsistency();
1214
1215    ArrayStorage* storage = m_storage;
1216
1217    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
1218
1219    unsigned numDefined = 0;
1220    unsigned numUndefined = 0;
1221
1222    for (; numDefined < usedVectorLength; ++numDefined) {
1223        JSValue v = storage->m_vector[numDefined].get();
1224        if (!v || v.isUndefined())
1225            break;
1226    }
1227
1228    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
1229        JSValue v = storage->m_vector[i].get();
1230        if (v) {
1231            if (v.isUndefined())
1232                ++numUndefined;
1233            else
1234                storage->m_vector[numDefined++].setWithoutWriteBarrier(v);
1235        }
1236    }
1237
1238    unsigned newUsedVectorLength = numDefined + numUndefined;
1239
1240    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
1241        newUsedVectorLength += map->size();
1242        if (newUsedVectorLength > m_vectorLength) {
1243            // Check that it is possible to allocate an array large enough to hold all the entries - if not,
1244            // exception is thrown by caller.
1245            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
1246                return 0;
1247
1248            storage = m_storage;
1249        }
1250
1251        SparseArrayValueMap::iterator end = map->end();
1252        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
1253            storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get());
1254
1255        delete map;
1256        storage->m_sparseValueMap = 0;
1257    }
1258
1259    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
1260        storage->m_vector[i].setUndefined();
1261    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
1262        storage->m_vector[i].clear();
1263
1264    storage->m_numValuesInVector = newUsedVectorLength;
1265
1266    checkConsistency(SortConsistencyCheck);
1267
1268    return numDefined;
1269}
1270
1271void* JSArray::subclassData() const
1272{
1273    return m_storage->subclassData;
1274}
1275
1276void JSArray::setSubclassData(void* d)
1277{
1278    m_storage->subclassData = d;
1279}
1280
1281#if CHECK_ARRAY_CONSISTENCY
1282
1283void JSArray::checkConsistency(ConsistencyCheckType type)
1284{
1285    ArrayStorage* storage = m_storage;
1286
1287    ASSERT(storage);
1288    if (type == SortConsistencyCheck)
1289        ASSERT(!storage->m_sparseValueMap);
1290
1291    unsigned numValuesInVector = 0;
1292    for (unsigned i = 0; i < m_vectorLength; ++i) {
1293        if (JSValue value = storage->m_vector[i]) {
1294            ASSERT(i < storage->m_length);
1295            if (type != DestructorConsistencyCheck)
1296                value.isUndefined(); // Likely to crash if the object was deallocated.
1297            ++numValuesInVector;
1298        } else {
1299            if (type == SortConsistencyCheck)
1300                ASSERT(i >= storage->m_numValuesInVector);
1301        }
1302    }
1303    ASSERT(numValuesInVector == storage->m_numValuesInVector);
1304    ASSERT(numValuesInVector <= storage->m_length);
1305
1306    if (storage->m_sparseValueMap) {
1307        SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
1308        for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
1309            unsigned index = it->first;
1310            ASSERT(index < storage->m_length);
1311            ASSERT(index >= storage->m_vectorLength);
1312            ASSERT(index <= MAX_ARRAY_INDEX);
1313            ASSERT(it->second);
1314            if (type != DestructorConsistencyCheck)
1315                it->second.isUndefined(); // Likely to crash if the object was deallocated.
1316        }
1317    }
1318}
1319
1320#endif
1321
1322} // namespace JSC
1323