hwcStress.cpp revision 734d8d898c6b0b315e431b231cc6759514da361b
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18/*
19 * Hardware Composer stress test
20 *
21 * Performs a pseudo-random (prandom) sequence of operations to the
22 * Hardware Composer (HWC), for a specified number of passes or for
23 * a specified period of time.  By default the period of time is FLT_MAX,
24 * so that the number of passes will take precedence.
25 *
26 * The passes are grouped together, where (pass / passesPerGroup) specifies
27 * which group a particular pass is in.  This causes every passesPerGroup
28 * worth of sequential passes to be within the same group.  Computationally
29 * intensive operations are performed just once at the beginning of a group
30 * of passes and then used by all the passes in that group.  This is done
31 * so as to increase both the average and peak rate of graphic operations,
32 * by moving computationally intensive operations to the beginning of a group.
33 * In particular, at the start of each group of passes a set of
34 * graphic buffers are created, then used by the first and remaining
35 * passes of that group of passes.
36 *
37 * The per-group initialization of the graphic buffers is performed
38 * by a function called initFrames.  This function creates an array
39 * of smart pointers to the graphic buffers, in the form of a vector
40 * of vectors.  The array is accessed in row major order, so each
41 * row is a vector of smart pointers.  All the pointers of a single
42 * row point to graphic buffers which use the same pixel format and
43 * have the same dimension, although it is likely that each one is
44 * filled with a different color.  This is done so that after doing
45 * the first HWC prepare then set call, subsequent set calls can
46 * be made with each of the layer handles changed to a different
47 * graphic buffer within the same row.  Since the graphic buffers
48 * in a particular row have the same pixel format and dimension,
49 * additional HWC set calls can be made, without having to perform
50 * an HWC prepare call.
51 *
52 * This test supports the following command-line options:
53 *
54 *   -v        Verbose
55 *   -s num    Starting pass
56 *   -e num    Ending pass
57 *   -p num    Execute the single pass specified by num
58 *   -n num    Number of set operations to perform after each prepare operation
59 *   -t float  Maximum time in seconds to execute the test
60 *   -d float  Delay in seconds performed after each set operation
61 *   -D float  Delay in seconds performed after the last pass is executed
62 *
63 * Typically the test is executed for a large range of passes.  By default
64 * passes 0 through 99999 (100,000 passes) are executed.  Although this test
65 * does not validate the generated image, at times it is useful to reexecute
66 * a particular pass and leave the displayed image on the screen for an
67 * extended period of time.  This can be done either by setting the -s
68 * and -e options to the desired pass, along with a large value for -D.
69 * This can also be done via the -p option, again with a large value for
70 * the -D options.
71 *
72 * So far this test only contains code to create graphic buffers with
73 * a continuous solid color.  Although this test is unable to validate the
74 * image produced, any image that contains other than rectangles of a solid
75 * color are incorrect.  Note that the rectangles may use a transparent
76 * color and have a blending operation that causes the color in overlapping
77 * rectangles to be mixed.  In such cases the overlapping portions may have
78 * a different color from the rest of the rectangle.
79 */
80
81#include <algorithm>
82#include <assert.h>
83#include <cerrno>
84#include <cmath>
85#include <cstdlib>
86#include <ctime>
87#include <libgen.h>
88#include <sched.h>
89#include <sstream>
90#include <stdint.h>
91#include <string.h>
92#include <unistd.h>
93#include <vector>
94
95#include <sys/syscall.h>
96#include <sys/types.h>
97#include <sys/wait.h>
98
99#include <EGL/egl.h>
100#include <EGL/eglext.h>
101#include <GLES2/gl2.h>
102#include <GLES2/gl2ext.h>
103
104#include <ui/FramebufferNativeWindow.h>
105#include <ui/GraphicBuffer.h>
106#include <ui/EGLUtils.h>
107
108#define LOG_TAG "hwcStressTest"
109#include <utils/Log.h>
110#include <testUtil.h>
111
112#include <hardware/hwcomposer.h>
113
114#include <glTestLib.h>
115#include <hwc/hwcTestLib.h>
116
117using namespace std;
118using namespace android;
119
120const float maxSizeRatio = 1.3;  // Graphic buffers can be upto this munch
121                                 // larger than the default screen size
122const unsigned int passesPerGroup = 10; // A group of passes all use the same
123                                        // graphic buffers
124
125// Ratios at which rare and frequent conditions should be produced
126const float rareRatio = 0.1;
127const float freqRatio = 0.9;
128
129// Defaults for command-line options
130const bool defaultVerbose = false;
131const unsigned int defaultStartPass = 0;
132const unsigned int defaultEndPass = 99999;
133const unsigned int defaultPerPassNumSet = 10;
134const float defaultPerSetDelay = 0.0; // Default delay after each set
135                                      // operation.  Default delay of
136                                      // zero used so as to perform the
137                                      // the set operations as quickly
138                                      // as possible.
139const float defaultEndDelay = 2.0; // Default delay between completion of
140                                   // final pass and restart of framework
141const float defaultDuration = FLT_MAX; // A fairly long time, so that
142                                       // range of passes will have
143                                       // precedence
144
145// Command-line option settings
146static bool verbose = defaultVerbose;
147static unsigned int startPass = defaultStartPass;
148static unsigned int endPass = defaultEndPass;
149static unsigned int numSet = defaultPerPassNumSet;
150static float perSetDelay = defaultPerSetDelay;
151static float endDelay = defaultEndDelay;
152static float duration = defaultDuration;
153
154// Command-line mutual exclusion detection flags.
155// Corresponding flag set true once an option is used.
156bool eFlag, sFlag, pFlag;
157
158#define MAXSTR               100
159#define MAXCMD               200
160#define BITSPERBYTE            8 // TODO: Obtain from <values.h>, once
161                                 // it has been added
162
163#define CMD_STOP_FRAMEWORK   "stop 2>&1"
164#define CMD_START_FRAMEWORK  "start 2>&1"
165
166#define NUMA(a) (sizeof(a) / sizeof(a [0]))
167#define MEMCLR(addr, size) do { \
168        memset((addr), 0, (size)); \
169    } while (0)
170
171// File scope constants
172const unsigned int blendingOps[] = {
173    HWC_BLENDING_NONE,
174    HWC_BLENDING_PREMULT,
175    HWC_BLENDING_COVERAGE,
176};
177const unsigned int layerFlags[] = {
178    HWC_SKIP_LAYER,
179};
180const vector<unsigned int> vecLayerFlags(layerFlags,
181    layerFlags + NUMA(layerFlags));
182
183const unsigned int transformFlags[] = {
184    HWC_TRANSFORM_FLIP_H,
185    HWC_TRANSFORM_FLIP_V,
186    HWC_TRANSFORM_ROT_90,
187    // ROT_180 & ROT_270 intentionally not listed, because they
188    // they are formed from combinations of the flags already listed.
189};
190const vector<unsigned int> vecTransformFlags(transformFlags,
191    transformFlags + NUMA(transformFlags));
192
193// File scope globals
194static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
195        GraphicBuffer::USAGE_SW_WRITE_RARELY;
196static hwc_composer_device_t *hwcDevice;
197static EGLDisplay dpy;
198static EGLSurface surface;
199static EGLint width, height;
200static vector <vector <sp<GraphicBuffer> > > frames;
201
202// File scope prototypes
203void init(void);
204void initFrames(unsigned int seed);
205template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
206template <class T> T vectorOr(const vector<T>& vec);
207
208/*
209 * Main
210 *
211 * Performs the following high-level sequence of operations:
212 *
213 *   1. Command-line parsing
214 *
215 *   2. Initialization
216 *
217 *   3. For each pass:
218 *
219 *        a. If pass is first pass or in a different group from the
220 *           previous pass, initialize the array of graphic buffers.
221 *
222 *        b. Create a HWC list with room to specify a prandomly
223 *           selected number of layers.
224 *
225 *        c. Select a subset of the rows from the graphic buffer array,
226 *           such that there is a unique row to be used for each
227 *           of the layers in the HWC list.
228 *
229 *        d. Prandomly fill in the HWC list with handles
230 *           selected from any of the columns of the selected row.
231 *
232 *        e. Pass the populated list to the HWC prepare call.
233 *
234 *        f. Pass the populated list to the HWC set call.
235 *
236 *        g. If additional set calls are to be made, then for each
237 *           additional set call, select a new set of handles and
238 *           perform the set call.
239 */
240int
241main(int argc, char *argv[])
242{
243    int rv, opt;
244    char *chptr;
245    unsigned int pass;
246    char cmd[MAXCMD];
247    struct timeval startTime, currentTime, delta;
248
249    testSetLogCatTag(LOG_TAG);
250
251    // Parse command line arguments
252    while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
253        switch (opt) {
254          case 'd': // Delay after each set operation
255            perSetDelay = strtod(optarg, &chptr);
256            if ((*chptr != '\0') || (perSetDelay < 0.0)) {
257                testPrintE("Invalid command-line specified per pass delay of: "
258                           "%s", optarg);
259                exit(1);
260            }
261            break;
262
263          case 'D': // End of test delay
264                    // Delay between completion of final pass and restart
265                    // of framework
266            endDelay = strtod(optarg, &chptr);
267            if ((*chptr != '\0') || (endDelay < 0.0)) {
268                testPrintE("Invalid command-line specified end of test delay "
269                           "of: %s", optarg);
270                exit(2);
271            }
272            break;
273
274          case 't': // Duration
275            duration = strtod(optarg, &chptr);
276            if ((*chptr != '\0') || (duration < 0.0)) {
277                testPrintE("Invalid command-line specified duration of: %s",
278                           optarg);
279                exit(3);
280            }
281            break;
282
283          case 'n': // Num set operations per pass
284            numSet = strtoul(optarg, &chptr, 10);
285            if (*chptr != '\0') {
286                testPrintE("Invalid command-line specified num set per pass "
287                           "of: %s", optarg);
288                exit(4);
289            }
290            break;
291
292          case 's': // Starting Pass
293            sFlag = true;
294            if (pFlag) {
295                testPrintE("Invalid combination of command-line options.");
296                testPrintE("  The -p option is mutually exclusive from the");
297                testPrintE("  -s and -e options.");
298                exit(5);
299            }
300            startPass = strtoul(optarg, &chptr, 10);
301            if (*chptr != '\0') {
302                testPrintE("Invalid command-line specified starting pass "
303                           "of: %s", optarg);
304                exit(6);
305            }
306            break;
307
308          case 'e': // Ending Pass
309            eFlag = true;
310            if (pFlag) {
311                testPrintE("Invalid combination of command-line options.");
312                testPrintE("  The -p option is mutually exclusive from the");
313                testPrintE("  -s and -e options.");
314                exit(7);
315            }
316            endPass = strtoul(optarg, &chptr, 10);
317            if (*chptr != '\0') {
318                testPrintE("Invalid command-line specified ending pass "
319                           "of: %s", optarg);
320                exit(8);
321            }
322            break;
323
324          case 'p': // Run a single specified pass
325            pFlag = true;
326            if (sFlag || eFlag) {
327                testPrintE("Invalid combination of command-line options.");
328                testPrintE("  The -p option is mutually exclusive from the");
329                testPrintE("  -s and -e options.");
330                exit(9);
331            }
332            startPass = endPass = strtoul(optarg, &chptr, 10);
333            if (*chptr != '\0') {
334                testPrintE("Invalid command-line specified pass of: %s",
335                           optarg);
336                exit(10);
337            }
338            break;
339
340          case 'v': // Verbose
341            verbose = true;
342            break;
343
344          case 'h': // Help
345          case '?':
346          default:
347            testPrintE("  %s [options]", basename(argv[0]));
348            testPrintE("    options:");
349            testPrintE("      -p Execute specified pass");
350            testPrintE("      -s Starting pass");
351            testPrintE("      -e Ending pass");
352            testPrintE("      -t Duration");
353            testPrintE("      -d Delay after each set operation");
354            testPrintE("      -D End of test delay");
355            testPrintE("      -n Num set operations per pass");
356            testPrintE("      -v Verbose");
357            exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
358        }
359    }
360    if (endPass < startPass) {
361        testPrintE("Unexpected ending pass before starting pass");
362        testPrintE("  startPass: %u endPass: %u", startPass, endPass);
363        exit(12);
364    }
365    if (argc != optind) {
366        testPrintE("Unexpected command-line postional argument");
367        testPrintE("  %s [-s start_pass] [-e end_pass] [-t duration]",
368            basename(argv[0]));
369        exit(13);
370    }
371    testPrintI("duration: %g", duration);
372    testPrintI("startPass: %u", startPass);
373    testPrintI("endPass: %u", endPass);
374    testPrintI("numSet: %u", numSet);
375
376    // Stop framework
377    rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
378    if (rv >= (signed) sizeof(cmd) - 1) {
379        testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
380        exit(14);
381    }
382    testExecCmd(cmd);
383    testDelay(1.0); // TODO - need means to query whether asyncronous stop
384                    // framework operation has completed.  For now, just wait
385                    // a long time.
386
387    init();
388
389    // For each pass
390    gettimeofday(&startTime, NULL);
391    for (pass = startPass; pass <= endPass; pass++) {
392        // Stop if duration of work has already been performed
393        gettimeofday(&currentTime, NULL);
394        delta = tvDelta(&startTime, &currentTime);
395        if (tv2double(&delta) > duration) { break; }
396
397        // Regenerate a new set of test frames when this pass is
398        // either the first pass or is in a different group then
399        // the previous pass.  A group of passes are passes that
400        // all have the same quotient when their pass number is
401        // divided by passesPerGroup.
402        if ((pass == startPass)
403            || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
404            initFrames(pass / passesPerGroup);
405        }
406
407        testPrintI("==== Starting pass: %u", pass);
408
409        // Cause deterministic sequence of prandom numbers to be
410        // generated for this pass.
411        srand48(pass);
412
413        hwc_layer_list_t *list;
414        list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
415        if (list == NULL) {
416            testPrintE("hwcTestCreateLayerList failed");
417            exit(20);
418        }
419
420        // Prandomly select a subset of frames to be used by this pass.
421        vector <vector <sp<GraphicBuffer> > > selectedFrames;
422        selectedFrames = vectorRandSelect(frames, list->numHwLayers);
423
424        // Any transform tends to create a layer that the hardware
425        // composer is unable to support and thus has to leave for
426        // SurfaceFlinger.  Place heavy bias on specifying no transforms.
427        bool noTransform = testRandFract() > rareRatio;
428
429        for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
430            unsigned int idx = testRandMod(selectedFrames[n1].size());
431            sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
432            hwc_layer_t *layer = &list->hwLayers[n1];
433            layer->handle = gBuf->handle;
434
435            layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
436            layer->flags = (testRandFract() > rareRatio) ? 0
437                : vectorOr(vectorRandSelect(vecLayerFlags,
438                           testRandMod(vecLayerFlags.size() + 1)));
439            layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
440                : vectorOr(vectorRandSelect(vecTransformFlags,
441                           testRandMod(vecTransformFlags.size() + 1)));
442            layer->sourceCrop.left = testRandMod(gBuf->getWidth());
443            layer->sourceCrop.top = testRandMod(gBuf->getHeight());
444            layer->sourceCrop.right = layer->sourceCrop.left
445                + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
446            layer->sourceCrop.bottom = layer->sourceCrop.top
447                + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
448            layer->displayFrame.left = testRandMod(width);
449            layer->displayFrame.top = testRandMod(height);
450            layer->displayFrame.right = layer->displayFrame.left
451                + testRandMod(width - layer->displayFrame.left) + 1;
452            layer->displayFrame.bottom = layer->displayFrame.top
453                + testRandMod(height - layer->displayFrame.top) + 1;
454
455            // Increase the frequency that a scale factor of 1.0 from
456            // the sourceCrop to displayFrame occurs.  This is the
457            // most common scale factor used by applications and would
458            // be rarely produced by this stress test without this
459            // logic.
460            if (testRandFract() <= freqRatio) {
461                // Only change to scale factor to 1.0 if both the
462                // width and height will fit.
463                int sourceWidth = layer->sourceCrop.right
464                                  - layer->sourceCrop.left;
465                int sourceHeight = layer->sourceCrop.bottom
466                                   - layer->sourceCrop.top;
467                if (((layer->displayFrame.left + sourceWidth) <= width)
468                    && ((layer->displayFrame.top + sourceHeight) <= height)) {
469                    layer->displayFrame.right = layer->displayFrame.left
470                                                + sourceWidth;
471                    layer->displayFrame.bottom = layer->displayFrame.top
472                                                 + sourceHeight;
473                }
474            }
475
476            layer->visibleRegionScreen.numRects = 1;
477            layer->visibleRegionScreen.rects = &layer->displayFrame;
478        }
479
480        // Perform prepare operation
481        if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
482        hwcDevice->prepare(hwcDevice, list);
483        if (verbose) {
484            testPrintI("Post Prepare:");
485            hwcTestDisplayListPrepareModifiable(list);
486        }
487
488        // Turn off the geometry changed flag
489        list->flags &= ~HWC_GEOMETRY_CHANGED;
490
491        // Perform the set operation(s)
492        if (verbose) {testPrintI("Set:"); }
493        for (unsigned int n1 = 0; n1 < numSet; n1++) {
494            if (verbose) { hwcTestDisplayListHandles(list); }
495            hwcDevice->set(hwcDevice, dpy, surface, list);
496
497            // Prandomly select a new set of handles
498            for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
499                unsigned int idx = testRandMod(selectedFrames[n1].size());
500                sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
501                hwc_layer_t *layer = &list->hwLayers[n1];
502                layer->handle = (native_handle_t *) gBuf->handle;
503            }
504
505            testDelay(perSetDelay);
506        }
507
508        hwcTestFreeLayerList(list);
509        testPrintI("==== Completed pass: %u", pass);
510    }
511
512    testDelay(endDelay);
513
514    // Start framework
515    rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
516    if (rv >= (signed) sizeof(cmd) - 1) {
517        testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
518        exit(21);
519    }
520    testExecCmd(cmd);
521
522    testPrintI("Successfully completed %u passes", pass - startPass);
523
524    return 0;
525}
526
527void init(void)
528{
529    srand48(0); // Defensively set pseudo random number generator.
530                // Should not need to set this, because a stress test
531                // sets the seed on each pass.  Defensively set it here
532                // so that future code that uses pseudo random numbers
533                // before the first pass will be deterministic.
534
535    hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
536
537    hwcTestOpenHwc(&hwcDevice);
538}
539
540/*
541 * Initialize Frames
542 *
543 * Creates an array of graphic buffers, within the global variable
544 * named frames.  The graphic buffers are contained within a vector of
545 * vectors.  All the graphic buffers in a particular row are of the same
546 * format and dimension.  Each graphic buffer is uniformly filled with a
547 * prandomly selected color.  It is likely that each buffer, even
548 * in the same row, will be filled with a unique color.
549 */
550void initFrames(unsigned int seed)
551{
552    int rv;
553    const size_t maxRows = 5;
554    const size_t minCols = 2;  // Need at least double buffering
555    const size_t maxCols = 4;  // One more than triple buffering
556
557    if (verbose) { testPrintI("initFrames seed: %u", seed); }
558    srand48(seed);
559    size_t rows = testRandMod(maxRows) + 1;
560
561    frames.clear();
562    frames.resize(rows);
563
564    for (unsigned int row = 0; row < rows; row++) {
565        // All frames within a row have to have the same format and
566        // dimensions.  Width and height need to be >= 1.
567        unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
568        const struct hwcTestGraphicFormat *formatPtr
569            = &hwcTestGraphicFormat[formatIdx];
570        int format = formatPtr->format;
571
572        // Pick width and height, which must be >= 1 and the size
573        // mod the wMod/hMod value must be equal to 0.
574        size_t w = (width * maxSizeRatio) * testRandFract();
575        size_t h = (height * maxSizeRatio) * testRandFract();
576        w = max(1u, w);
577        h = max(1u, h);
578        if ((w % formatPtr->wMod) != 0) {
579            w += formatPtr->wMod - (w % formatPtr->wMod);
580        }
581        if ((h % formatPtr->hMod) != 0) {
582            h += formatPtr->hMod - (h % formatPtr->hMod);
583        }
584        if (verbose) {
585            testPrintI("  frame %u width: %u height: %u format: %u %s",
586                       row, w, h, format, hwcTestGraphicFormat2str(format));
587        }
588
589        size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
590        frames[row].resize(cols);
591        for (unsigned int col = 0; col < cols; col++) {
592            ColorFract color(testRandFract(), testRandFract(), testRandFract());
593            float alpha = testRandFract();
594
595            frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
596            if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
597                testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
598                testPrintE("  frame %u width: %u height: %u format: %u %s",
599                           row, w, h, format, hwcTestGraphicFormat2str(format));
600                exit(80);
601            }
602
603            hwcTestFillColor(frames[row][col].get(), color, alpha);
604            if (verbose) {
605                testPrintI("    buf: %p handle: %p color: %s alpha: %f",
606                           frames[row][col].get(), frames[row][col]->handle,
607                           string(color).c_str(), alpha);
608            }
609        }
610    }
611}
612
613/*
614 * Vector Random Select
615 *
616 * Prandomly selects and returns num elements from vec.
617 */
618template <class T>
619vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
620{
621    vector<T> rv = vec;
622
623    while (rv.size() > num) {
624        rv.erase(rv.begin() + testRandMod(rv.size()));
625    }
626
627    return rv;
628}
629
630/*
631 * Vector Or
632 *
633 * Or's togethen the values of each element of vec and returns the result.
634 */
635template <class T>
636T vectorOr(const vector<T>& vec)
637{
638    T rv = 0;
639
640    for (size_t n1 = 0; n1 < vec.size(); n1++) {
641        rv |= vec[n1];
642    }
643
644    return rv;
645}
646