package jme3tools.android; import java.util.Random; /** * Fixed point maths class. This can be tailored for specific needs by * changing the bits allocated to the 'fraction' part (see FIXED_POINT * , which would also require SIN_PRECALC and * COS_PRECALC updating). * *

* http://blog.numfum.com/2007/09/java-fixed-point-maths.html

* * @version 1.0 * @author CW * * @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use * floats instead of this class for decimal math. */ @Deprecated public final class Fixed { /** * Number of bits used for 'fraction'. */ public static final int FIXED_POINT = 16; /** * Decimal one as represented by the Fixed class. */ public static final int ONE = 1 << FIXED_POINT; /** * Half in fixed point. */ public static final int HALF = ONE >> 1; /** * Quarter circle resolution for trig functions (should be a power of * two). This is the number of discrete steps in 90 degrees. */ public static final int QUARTER_CIRCLE = 64; /** * Mask used to limit angles to one revolution. If a quarter circle is 64 * (i.e. 90 degrees is broken into 64 steps) then the mask is 255. */ public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1; /** * The trig table is generated at a higher precision than the typical * 16.16 format used for the rest of the fixed point maths. The table * values are then shifted to match the actual fixed point used. */ private static final int TABLE_SHIFT = 30; /** * Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4)) *

* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value * will need recalculating (put the above formular into a calculator set * radians, then shift the result by TABLE_SHIFT). */ private static final int SIN_PRECALC = 26350943; /** * Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2 * * Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value * will need recalculating ((put the above formular into a calculator set * radians, then shift the result by TABLE_SHIFT). */ private static final int COS_PRECALC = 2146836866; /** * One quarter sine wave as fixed point values. */ private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1]; /** * Scale value for indexing ATAN_TABLE[]. */ private static final int ATAN_SHIFT; /** * Reverse atan lookup table. */ private static final byte[] ATAN_TABLE; /** * ATAN_TABLE.length */ private static final int ATAN_TABLE_LEN; /* * Generates the tables and fills in any remaining static ints. */ static { // Generate the sine table using recursive synthesis. SINE_TABLE[0] = 0; SINE_TABLE[1] = SIN_PRECALC; for (int n = 2; n < QUARTER_CIRCLE + 1; n++) { SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2]; } // Scale the values to the fixed point format used. for (int n = 0; n < QUARTER_CIRCLE + 1; n++) { SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT; } // Calculate a shift used to scale atan lookups int rotl = 0; int tan0 = tan(0); int tan1 = tan(1); while (rotl < 32) { if ((tan1 >>= 1) > (tan0 >>= 1)) { rotl++; } else { break; } } ATAN_SHIFT = rotl; // Create the a table of tan values int[] lut = new int[QUARTER_CIRCLE]; for (int n = 0; n < QUARTER_CIRCLE; n++) { lut[n] = tan(n) >> rotl; } ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1]; // Then from the tan values create a reverse lookup ATAN_TABLE = new byte[ATAN_TABLE_LEN]; for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) { int min = lut[n]; int max = lut[n + 1]; for (int i = min; i < max; i++) { ATAN_TABLE[i] = n; } } } /** * How many decimal places to use when converting a fixed point value to * a decimal string. * * @see #toString */ private static final int STRING_DECIMAL_PLACES = 2; /** * Value to add in order to round down a fixed point number when * converting to a string. */ private static final int STRING_DECIMAL_PLACES_ROUND; static { int i = 10; for (int n = 1; n < STRING_DECIMAL_PLACES; n++) { i *= i; } if (STRING_DECIMAL_PLACES == 0) { STRING_DECIMAL_PLACES_ROUND = ONE / 2; } else { STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i); } } /** * Random number generator. The standard java.utll.Random is * used since it is available to both J2ME and J2SE. If a guaranteed * sequence is required this would not be adequate. */ private static Random rng = null; /** * Fixed can't be instantiated. */ private Fixed() { } /** * Returns an integer as a fixed point value. */ public static int intToFixed(int n) { return n << FIXED_POINT; } /** * Returns a fixed point value as a float. */ public static float fixedToFloat(int i) { float fp = i; fp = fp / ((float) ONE); return fp; } /** * Returns a float as a fixed point value. */ public static int floatToFixed(float fp) { return (int) (fp * ((float) ONE)); } /** * Converts a fixed point value into a decimal string. */ public static String toString(int n) { StringBuffer sb = new StringBuffer(16); sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT); sb.append('.'); n &= ONE - 1; for (int i = 0; i < STRING_DECIMAL_PLACES; i++) { n *= 10; sb.append((n / ONE) % 10); } return sb.toString(); } /** * Multiplies two fixed point values and returns the result. */ public static int mul(int a, int b) { return (int) ((long) a * (long) b >> FIXED_POINT); } /** * Divides two fixed point values and returns the result. */ public static int div(int a, int b) { return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT); } /** * Sine of an angle. * * @see #QUARTER_CIRCLE */ public static int sin(int n) { n &= FULL_CIRCLE_MASK; if (n < QUARTER_CIRCLE * 2) { if (n < QUARTER_CIRCLE) { return SINE_TABLE[n]; } else { return SINE_TABLE[QUARTER_CIRCLE * 2 - n]; } } else { if (n < QUARTER_CIRCLE * 3) { return -SINE_TABLE[n - QUARTER_CIRCLE * 2]; } else { return -SINE_TABLE[QUARTER_CIRCLE * 4 - n]; } } } /** * Cosine of an angle. * * @see #QUARTER_CIRCLE */ public static int cos(int n) { n &= FULL_CIRCLE_MASK; if (n < QUARTER_CIRCLE * 2) { if (n < QUARTER_CIRCLE) { return SINE_TABLE[QUARTER_CIRCLE - n]; } else { return -SINE_TABLE[n - QUARTER_CIRCLE]; } } else { if (n < QUARTER_CIRCLE * 3) { return -SINE_TABLE[QUARTER_CIRCLE * 3 - n]; } else { return SINE_TABLE[n - QUARTER_CIRCLE * 3]; } } } /** * Tangent of an angle. * * @see #QUARTER_CIRCLE */ public static int tan(int n) { return div(sin(n), cos(n)); } /** * Returns the arc tangent of an angle. */ public static int atan(int n) { n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT; if (n < 0) { if (n <= -ATAN_TABLE_LEN) { return -(QUARTER_CIRCLE - 1); } return -ATAN_TABLE[-n]; } else { if (n >= ATAN_TABLE_LEN) { return QUARTER_CIRCLE - 1; } return ATAN_TABLE[n]; } } /** * Returns the polar angle of a rectangular coordinate. */ public static int atan(int x, int y) { int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException if (y > 0) { return n; } if (y < 0) { if (x < 0) { return -QUARTER_CIRCLE * 2 - n; } if (x > 0) { return QUARTER_CIRCLE * 2 - n; } return QUARTER_CIRCLE * 2; } if (x > 0) { return QUARTER_CIRCLE; } return -QUARTER_CIRCLE; } /** * Rough calculation of the hypotenuse. Whilst not accurate it is very fast. *

* Derived from a piece in Graphics Gems. */ public static int hyp(int x1, int y1, int x2, int y2) { if ((x2 -= x1) < 0) { x2 = -x2; } if ((y2 -= y1) < 0) { y2 = -y2; } return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1); } /** * Fixed point square root. *

* Derived from a 1993 Usenet algorithm posted by Christophe Meessen. */ public static int sqrt(int n) { if (n <= 0) { return 0; } long sum = 0; int bit = 0x40000000; while (bit >= 0x100) { // lower values give more accurate results long tmp = sum | bit; if (n >= tmp) { n -= tmp; sum = tmp + bit; } bit >>= 1; n <<= 1; } return (int) (sum >> 16 - (FIXED_POINT / 2)); } /** * Returns the absolute value. */ public static int abs(int n) { return (n < 0) ? -n : n; } /** * Returns the sign of a value, -1 for negative numbers, otherwise 1. */ public static int sgn(int n) { return (n < 0) ? -1 : 1; } /** * Returns the minimum of two values. */ public static int min(int a, int b) { return (a < b) ? a : b; } /** * Returns the maximum of two values. */ public static int max(int a, int b) { return (a > b) ? a : b; } /** * Clamps the value n between min and max. */ public static int clamp(int n, int min, int max) { return (n < min) ? min : (n > max) ? max : n; } /** * Wraps the value n between 0 and the required limit. */ public static int wrap(int n, int limit) { return ((n %= limit) < 0) ? limit + n : n; } /** * Returns the nearest int to a fixed point value. Equivalent to * Math.round() in the standard library. */ public static int round(int n) { return n + HALF >> FIXED_POINT; } /** * Returns the nearest int rounded down from a fixed point value. * Equivalent to Math.floor() in the standard library. */ public static int floor(int n) { return n >> FIXED_POINT; } /** * Returns the nearest int rounded up from a fixed point value. * Equivalent to Math.ceil() in the standard library. */ public static int ceil(int n) { return n + (ONE - 1) >> FIXED_POINT; } /** * Returns a fixed point value greater than or equal to decimal 0.0 and * less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive). */ public static int rand() { if (rng == null) { rng = new Random(); } return rng.nextInt() >>> (32 - FIXED_POINT); } /** * Returns a random number between 0 and n (exclusive). */ public static int rand(int n) { return (rand() * n) >> FIXED_POINT; } }