package jme3tools.android;
import java.util.Random;
/**
* Fixed point maths class. This can be tailored for specific needs by
* changing the bits allocated to the 'fraction' part (see FIXED_POINT
*
, which would also require SIN_PRECALC
and
* COS_PRECALC
updating).
*
*
* http://blog.numfum.com/2007/09/java-fixed-point-maths.html
* * @version 1.0 * @author CW * * @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use * floats instead of this class for decimal math. */ @Deprecated public final class Fixed { /** * Number of bits used for 'fraction'. */ public static final int FIXED_POINT = 16; /** * Decimal one as represented by the Fixed class. */ public static final int ONE = 1 << FIXED_POINT; /** * Half in fixed point. */ public static final int HALF = ONE >> 1; /** * Quarter circle resolution for trig functions (should be a power of * two). This is the number of discrete steps in 90 degrees. */ public static final int QUARTER_CIRCLE = 64; /** * Mask used to limit angles to one revolution. If a quarter circle is 64 * (i.e. 90 degrees is broken into 64 steps) then the mask is 255. */ public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1; /** * The trig table is generated at a higher precision than the typical * 16.16 format used for the rest of the fixed point maths. The table * values are then shifted to match the actual fixed point used. */ private static final int TABLE_SHIFT = 30; /** * Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4)) *
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
* will need recalculating (put the above formular into a calculator set
* radians, then shift the result by TABLE_SHIFT
).
*/
private static final int SIN_PRECALC = 26350943;
/**
* Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2
*
* Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
* will need recalculating ((put the above formular into a calculator set
* radians, then shift the result by TABLE_SHIFT
).
*/
private static final int COS_PRECALC = 2146836866;
/**
* One quarter sine wave as fixed point values.
*/
private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1];
/**
* Scale value for indexing ATAN_TABLE[].
*/
private static final int ATAN_SHIFT;
/**
* Reverse atan lookup table.
*/
private static final byte[] ATAN_TABLE;
/**
* ATAN_TABLE.length
*/
private static final int ATAN_TABLE_LEN;
/*
* Generates the tables and fills in any remaining static ints.
*/
static {
// Generate the sine table using recursive synthesis.
SINE_TABLE[0] = 0;
SINE_TABLE[1] = SIN_PRECALC;
for (int n = 2; n < QUARTER_CIRCLE + 1; n++) {
SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2];
}
// Scale the values to the fixed point format used.
for (int n = 0; n < QUARTER_CIRCLE + 1; n++) {
SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT;
}
// Calculate a shift used to scale atan lookups
int rotl = 0;
int tan0 = tan(0);
int tan1 = tan(1);
while (rotl < 32) {
if ((tan1 >>= 1) > (tan0 >>= 1)) {
rotl++;
} else {
break;
}
}
ATAN_SHIFT = rotl;
// Create the a table of tan values
int[] lut = new int[QUARTER_CIRCLE];
for (int n = 0; n < QUARTER_CIRCLE; n++) {
lut[n] = tan(n) >> rotl;
}
ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1];
// Then from the tan values create a reverse lookup
ATAN_TABLE = new byte[ATAN_TABLE_LEN];
for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) {
int min = lut[n];
int max = lut[n + 1];
for (int i = min; i < max; i++) {
ATAN_TABLE[i] = n;
}
}
}
/**
* How many decimal places to use when converting a fixed point value to
* a decimal string.
*
* @see #toString
*/
private static final int STRING_DECIMAL_PLACES = 2;
/**
* Value to add in order to round down a fixed point number when
* converting to a string.
*/
private static final int STRING_DECIMAL_PLACES_ROUND;
static {
int i = 10;
for (int n = 1; n < STRING_DECIMAL_PLACES; n++) {
i *= i;
}
if (STRING_DECIMAL_PLACES == 0) {
STRING_DECIMAL_PLACES_ROUND = ONE / 2;
} else {
STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i);
}
}
/**
* Random number generator. The standard java.utll.Random
is
* used since it is available to both J2ME and J2SE. If a guaranteed
* sequence is required this would not be adequate.
*/
private static Random rng = null;
/**
* Fixed can't be instantiated.
*/
private Fixed() {
}
/**
* Returns an integer as a fixed point value.
*/
public static int intToFixed(int n) {
return n << FIXED_POINT;
}
/**
* Returns a fixed point value as a float.
*/
public static float fixedToFloat(int i) {
float fp = i;
fp = fp / ((float) ONE);
return fp;
}
/**
* Returns a float as a fixed point value.
*/
public static int floatToFixed(float fp) {
return (int) (fp * ((float) ONE));
}
/**
* Converts a fixed point value into a decimal string.
*/
public static String toString(int n) {
StringBuffer sb = new StringBuffer(16);
sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT);
sb.append('.');
n &= ONE - 1;
for (int i = 0; i < STRING_DECIMAL_PLACES; i++) {
n *= 10;
sb.append((n / ONE) % 10);
}
return sb.toString();
}
/**
* Multiplies two fixed point values and returns the result.
*/
public static int mul(int a, int b) {
return (int) ((long) a * (long) b >> FIXED_POINT);
}
/**
* Divides two fixed point values and returns the result.
*/
public static int div(int a, int b) {
return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT);
}
/**
* Sine of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int sin(int n) {
n &= FULL_CIRCLE_MASK;
if (n < QUARTER_CIRCLE * 2) {
if (n < QUARTER_CIRCLE) {
return SINE_TABLE[n];
} else {
return SINE_TABLE[QUARTER_CIRCLE * 2 - n];
}
} else {
if (n < QUARTER_CIRCLE * 3) {
return -SINE_TABLE[n - QUARTER_CIRCLE * 2];
} else {
return -SINE_TABLE[QUARTER_CIRCLE * 4 - n];
}
}
}
/**
* Cosine of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int cos(int n) {
n &= FULL_CIRCLE_MASK;
if (n < QUARTER_CIRCLE * 2) {
if (n < QUARTER_CIRCLE) {
return SINE_TABLE[QUARTER_CIRCLE - n];
} else {
return -SINE_TABLE[n - QUARTER_CIRCLE];
}
} else {
if (n < QUARTER_CIRCLE * 3) {
return -SINE_TABLE[QUARTER_CIRCLE * 3 - n];
} else {
return SINE_TABLE[n - QUARTER_CIRCLE * 3];
}
}
}
/**
* Tangent of an angle.
*
* @see #QUARTER_CIRCLE
*/
public static int tan(int n) {
return div(sin(n), cos(n));
}
/**
* Returns the arc tangent of an angle.
*/
public static int atan(int n) {
n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT;
if (n < 0) {
if (n <= -ATAN_TABLE_LEN) {
return -(QUARTER_CIRCLE - 1);
}
return -ATAN_TABLE[-n];
} else {
if (n >= ATAN_TABLE_LEN) {
return QUARTER_CIRCLE - 1;
}
return ATAN_TABLE[n];
}
}
/**
* Returns the polar angle of a rectangular coordinate.
*/
public static int atan(int x, int y) {
int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
if (y > 0) {
return n;
}
if (y < 0) {
if (x < 0) {
return -QUARTER_CIRCLE * 2 - n;
}
if (x > 0) {
return QUARTER_CIRCLE * 2 - n;
}
return QUARTER_CIRCLE * 2;
}
if (x > 0) {
return QUARTER_CIRCLE;
}
return -QUARTER_CIRCLE;
}
/**
* Rough calculation of the hypotenuse. Whilst not accurate it is very fast.
*
* Derived from a piece in Graphics Gems. */ public static int hyp(int x1, int y1, int x2, int y2) { if ((x2 -= x1) < 0) { x2 = -x2; } if ((y2 -= y1) < 0) { y2 = -y2; } return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1); } /** * Fixed point square root. *
* Derived from a 1993 Usenet algorithm posted by Christophe Meessen.
*/
public static int sqrt(int n) {
if (n <= 0) {
return 0;
}
long sum = 0;
int bit = 0x40000000;
while (bit >= 0x100) { // lower values give more accurate results
long tmp = sum | bit;
if (n >= tmp) {
n -= tmp;
sum = tmp + bit;
}
bit >>= 1;
n <<= 1;
}
return (int) (sum >> 16 - (FIXED_POINT / 2));
}
/**
* Returns the absolute value.
*/
public static int abs(int n) {
return (n < 0) ? -n : n;
}
/**
* Returns the sign of a value, -1 for negative numbers, otherwise 1.
*/
public static int sgn(int n) {
return (n < 0) ? -1 : 1;
}
/**
* Returns the minimum of two values.
*/
public static int min(int a, int b) {
return (a < b) ? a : b;
}
/**
* Returns the maximum of two values.
*/
public static int max(int a, int b) {
return (a > b) ? a : b;
}
/**
* Clamps the value n between min and max.
*/
public static int clamp(int n, int min, int max) {
return (n < min) ? min : (n > max) ? max : n;
}
/**
* Wraps the value n between 0 and the required limit.
*/
public static int wrap(int n, int limit) {
return ((n %= limit) < 0) ? limit + n : n;
}
/**
* Returns the nearest int to a fixed point value. Equivalent to
* Math.round()
in the standard library.
*/
public static int round(int n) {
return n + HALF >> FIXED_POINT;
}
/**
* Returns the nearest int rounded down from a fixed point value.
* Equivalent to Math.floor()
in the standard library.
*/
public static int floor(int n) {
return n >> FIXED_POINT;
}
/**
* Returns the nearest int rounded up from a fixed point value.
* Equivalent to Math.ceil()
in the standard library.
*/
public static int ceil(int n) {
return n + (ONE - 1) >> FIXED_POINT;
}
/**
* Returns a fixed point value greater than or equal to decimal 0.0 and
* less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive).
*/
public static int rand() {
if (rng == null) {
rng = new Random();
}
return rng.nextInt() >>> (32 - FIXED_POINT);
}
/**
* Returns a random number between 0 and n
(exclusive).
*/
public static int rand(int n) {
return (rand() * n) >> FIXED_POINT;
}
}