Decl.h revision 381d34e0b205ca27bcc7e7c1652561941c437965
1//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/Redeclarable.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/Basic/Linkage.h"
23
24namespace clang {
25class CXXTemporary;
26class Expr;
27class FunctionTemplateDecl;
28class Stmt;
29class CompoundStmt;
30class StringLiteral;
31class NestedNameSpecifier;
32class TemplateParameterList;
33class TemplateArgumentList;
34class MemberSpecializationInfo;
35class FunctionTemplateSpecializationInfo;
36class DependentFunctionTemplateSpecializationInfo;
37class TypeLoc;
38class UnresolvedSetImpl;
39
40/// \brief A container of type source information.
41///
42/// A client can read the relevant info using TypeLoc wrappers, e.g:
43/// @code
44/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
45/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
46///   PL->getStarLoc().print(OS, SrcMgr);
47/// @endcode
48///
49class TypeSourceInfo {
50  QualType Ty;
51  // Contains a memory block after the class, used for type source information,
52  // allocated by ASTContext.
53  friend class ASTContext;
54  TypeSourceInfo(QualType ty) : Ty(ty) { }
55public:
56  /// \brief Return the type wrapped by this type source info.
57  QualType getType() const { return Ty; }
58
59  /// \brief Return the TypeLoc wrapper for the type source info.
60  TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
61};
62
63/// TranslationUnitDecl - The top declaration context.
64class TranslationUnitDecl : public Decl, public DeclContext {
65  ASTContext &Ctx;
66
67  /// The (most recently entered) anonymous namespace for this
68  /// translation unit, if one has been created.
69  NamespaceDecl *AnonymousNamespace;
70
71  explicit TranslationUnitDecl(ASTContext &ctx)
72    : Decl(TranslationUnit, 0, SourceLocation()),
73      DeclContext(TranslationUnit),
74      Ctx(ctx), AnonymousNamespace(0) {}
75public:
76  ASTContext &getASTContext() const { return Ctx; }
77
78  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
79  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
80
81  static TranslationUnitDecl *Create(ASTContext &C);
82  // Implement isa/cast/dyncast/etc.
83  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
84  static bool classof(const TranslationUnitDecl *D) { return true; }
85  static bool classofKind(Kind K) { return K == TranslationUnit; }
86  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
87    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
88  }
89  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
90    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
91  }
92};
93
94/// NamedDecl - This represents a decl with a name.  Many decls have names such
95/// as ObjCMethodDecl, but not @class, etc.
96class NamedDecl : public Decl {
97  /// Name - The name of this declaration, which is typically a normal
98  /// identifier but may also be a special kind of name (C++
99  /// constructor, Objective-C selector, etc.)
100  DeclarationName Name;
101
102protected:
103  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
104    : Decl(DK, DC, L), Name(N) { }
105
106public:
107  /// getIdentifier - Get the identifier that names this declaration,
108  /// if there is one. This will return NULL if this declaration has
109  /// no name (e.g., for an unnamed class) or if the name is a special
110  /// name (C++ constructor, Objective-C selector, etc.).
111  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
112
113  /// getName - Get the name of identifier for this declaration as a StringRef.
114  /// This requires that the declaration have a name and that it be a simple
115  /// identifier.
116  llvm::StringRef getName() const {
117    assert(Name.isIdentifier() && "Name is not a simple identifier");
118    return getIdentifier() ? getIdentifier()->getName() : "";
119  }
120
121  /// getNameAsString - Get a human-readable name for the declaration, even if
122  /// it is one of the special kinds of names (C++ constructor, Objective-C
123  /// selector, etc).  Creating this name requires expensive string
124  /// manipulation, so it should be called only when performance doesn't matter.
125  /// For simple declarations, getNameAsCString() should suffice.
126  //
127  // FIXME: This function should be renamed to indicate that it is not just an
128  // alternate form of getName(), and clients should move as appropriate.
129  //
130  // FIXME: Deprecated, move clients to getName().
131  std::string getNameAsString() const { return Name.getAsString(); }
132
133  void printName(llvm::raw_ostream &os) const { return Name.printName(os); }
134
135  /// getDeclName - Get the actual, stored name of the declaration,
136  /// which may be a special name.
137  DeclarationName getDeclName() const { return Name; }
138
139  /// \brief Set the name of this declaration.
140  void setDeclName(DeclarationName N) { Name = N; }
141
142  /// getQualifiedNameAsString - Returns human-readable qualified name for
143  /// declaration, like A::B::i, for i being member of namespace A::B.
144  /// If declaration is not member of context which can be named (record,
145  /// namespace), it will return same result as getNameAsString().
146  /// Creating this name is expensive, so it should be called only when
147  /// performance doesn't matter.
148  std::string getQualifiedNameAsString() const;
149  std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
150
151  /// getNameForDiagnostic - Appends a human-readable name for this
152  /// declaration into the given string.
153  ///
154  /// This is the method invoked by Sema when displaying a NamedDecl
155  /// in a diagnostic.  It does not necessarily produce the same
156  /// result as getNameAsString(); for example, class template
157  /// specializations are printed with their template arguments.
158  ///
159  /// TODO: use an API that doesn't require so many temporary strings
160  virtual void getNameForDiagnostic(std::string &S,
161                                    const PrintingPolicy &Policy,
162                                    bool Qualified) const {
163    if (Qualified)
164      S += getQualifiedNameAsString(Policy);
165    else
166      S += getNameAsString();
167  }
168
169  /// declarationReplaces - Determine whether this declaration, if
170  /// known to be well-formed within its context, will replace the
171  /// declaration OldD if introduced into scope. A declaration will
172  /// replace another declaration if, for example, it is a
173  /// redeclaration of the same variable or function, but not if it is
174  /// a declaration of a different kind (function vs. class) or an
175  /// overloaded function.
176  bool declarationReplaces(NamedDecl *OldD) const;
177
178  /// \brief Determine whether this declaration has linkage.
179  bool hasLinkage() const;
180
181  /// \brief Determine whether this declaration is a C++ class member.
182  bool isCXXClassMember() const {
183    const DeclContext *DC = getDeclContext();
184
185    // C++0x [class.mem]p1:
186    //   The enumerators of an unscoped enumeration defined in
187    //   the class are members of the class.
188    // FIXME: support C++0x scoped enumerations.
189    if (isa<EnumDecl>(DC))
190      DC = DC->getParent();
191
192    return DC->isRecord();
193  }
194
195  /// \brief Given that this declaration is a C++ class member,
196  /// determine whether it's an instance member of its class.
197  bool isCXXInstanceMember() const;
198
199  class LinkageInfo {
200    Linkage linkage_;
201    Visibility visibility_;
202    bool explicit_;
203
204  public:
205    LinkageInfo() : linkage_(ExternalLinkage), visibility_(DefaultVisibility),
206                    explicit_(false) {}
207    LinkageInfo(Linkage L, Visibility V, bool E)
208      : linkage_(L), visibility_(V), explicit_(E) {}
209
210    static LinkageInfo external() {
211      return LinkageInfo();
212    }
213    static LinkageInfo internal() {
214      return LinkageInfo(InternalLinkage, DefaultVisibility, false);
215    }
216    static LinkageInfo uniqueExternal() {
217      return LinkageInfo(UniqueExternalLinkage, DefaultVisibility, false);
218    }
219    static LinkageInfo none() {
220      return LinkageInfo(NoLinkage, DefaultVisibility, false);
221    }
222
223    Linkage linkage() const { return linkage_; }
224    Visibility visibility() const { return visibility_; }
225    bool visibilityExplicit() const { return explicit_; }
226
227    void setLinkage(Linkage L) { linkage_ = L; }
228    void setVisibility(Visibility V) { visibility_ = V; }
229    void setVisibility(Visibility V, bool E) { visibility_ = V; explicit_ = E; }
230    void setVisibility(LinkageInfo Other) {
231      setVisibility(Other.visibility(), Other.visibilityExplicit());
232    }
233
234    void mergeLinkage(Linkage L) {
235      setLinkage(minLinkage(linkage(), L));
236    }
237    void mergeLinkage(LinkageInfo Other) {
238      setLinkage(minLinkage(linkage(), Other.linkage()));
239    }
240
241    void mergeVisibility(Visibility V) {
242      setVisibility(minVisibility(visibility(), V));
243    }
244    void mergeVisibility(Visibility V, bool E) {
245      setVisibility(minVisibility(visibility(), V), visibilityExplicit() || E);
246    }
247    void mergeVisibility(LinkageInfo Other) {
248      mergeVisibility(Other.visibility(), Other.visibilityExplicit());
249    }
250
251    void merge(LinkageInfo Other) {
252      mergeLinkage(Other);
253      mergeVisibility(Other);
254    }
255    void merge(std::pair<Linkage,Visibility> LV) {
256      mergeLinkage(LV.first);
257      mergeVisibility(LV.second);
258    }
259
260    friend LinkageInfo merge(LinkageInfo L, LinkageInfo R) {
261      L.merge(R);
262      return L;
263    }
264  };
265
266  /// \brief Determine what kind of linkage this entity has.
267  Linkage getLinkage() const;
268
269  /// \brief Determines the visibility of this entity.
270  Visibility getVisibility() const { return getLinkageAndVisibility().visibility(); }
271
272  /// \brief Determines the linkage and visibility of this entity.
273  LinkageInfo getLinkageAndVisibility() const;
274
275  /// \brief Clear the linkage cache in response to a change
276  /// to the declaration.
277  void ClearLinkageCache() { HasCachedLinkage = 0; }
278
279  /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
280  /// the underlying named decl.
281  NamedDecl *getUnderlyingDecl();
282  const NamedDecl *getUnderlyingDecl() const {
283    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
284  }
285
286  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
287  static bool classof(const NamedDecl *D) { return true; }
288  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
289};
290
291inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
292                                     const NamedDecl *ND) {
293  ND->getDeclName().printName(OS);
294  return OS;
295}
296
297/// NamespaceDecl - Represent a C++ namespace.
298class NamespaceDecl : public NamedDecl, public DeclContext {
299  bool IsInline : 1;
300
301  SourceLocation LBracLoc, RBracLoc;
302
303  // For extended namespace definitions:
304  //
305  // namespace A { int x; }
306  // namespace A { int y; }
307  //
308  // there will be one NamespaceDecl for each declaration.
309  // NextNamespace points to the next extended declaration.
310  // OrigNamespace points to the original namespace declaration.
311  // OrigNamespace of the first namespace decl points to its anonymous namespace
312  LazyDeclPtr NextNamespace;
313
314  /// \brief A pointer to either the original namespace definition for
315  /// this namespace (if the boolean value is false) or the anonymous
316  /// namespace that lives just inside this namespace (if the boolean
317  /// value is true).
318  ///
319  /// We can combine these two notions because the anonymous namespace
320  /// must only be stored in one of the namespace declarations (so all
321  /// of the namespace declarations can find it). We therefore choose
322  /// the original namespace declaration, since all of the namespace
323  /// declarations have a link directly to it; the original namespace
324  /// declaration itself only needs to know that it is the original
325  /// namespace declaration (which the boolean indicates).
326  llvm::PointerIntPair<NamespaceDecl *, 1, bool> OrigOrAnonNamespace;
327
328  NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
329    : NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace),
330      IsInline(false), NextNamespace(), OrigOrAnonNamespace(0, true) { }
331
332public:
333  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
334                               SourceLocation L, IdentifierInfo *Id);
335
336  /// \brief Returns true if this is an anonymous namespace declaration.
337  ///
338  /// For example:
339  /// \code
340  ///   namespace {
341  ///     ...
342  ///   };
343  /// \endcode
344  /// q.v. C++ [namespace.unnamed]
345  bool isAnonymousNamespace() const {
346    return !getIdentifier();
347  }
348
349  /// \brief Returns true if this is an inline namespace declaration.
350  bool isInline() const {
351    return IsInline;
352  }
353
354  /// \brief Set whether this is an inline namespace declaration.
355  void setInline(bool Inline) {
356    IsInline = Inline;
357  }
358
359  /// \brief Return the next extended namespace declaration or null if there
360  /// is none.
361  NamespaceDecl *getNextNamespace();
362  const NamespaceDecl *getNextNamespace() const {
363    return const_cast<NamespaceDecl *>(this)->getNextNamespace();
364  }
365
366  /// \brief Set the next extended namespace declaration.
367  void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
368
369  /// \brief Get the original (first) namespace declaration.
370  NamespaceDecl *getOriginalNamespace() const {
371    if (OrigOrAnonNamespace.getInt())
372      return const_cast<NamespaceDecl *>(this);
373
374    return OrigOrAnonNamespace.getPointer();
375  }
376
377  /// \brief Return true if this declaration is an original (first) declaration
378  /// of the namespace. This is false for non-original (subsequent) namespace
379  /// declarations and anonymous namespaces.
380  bool isOriginalNamespace() const {
381    return getOriginalNamespace() == this;
382  }
383
384  /// \brief Set the original (first) namespace declaration.
385  void setOriginalNamespace(NamespaceDecl *ND) {
386    if (ND != this) {
387      OrigOrAnonNamespace.setPointer(ND);
388      OrigOrAnonNamespace.setInt(false);
389    }
390  }
391
392  NamespaceDecl *getAnonymousNamespace() const {
393    return getOriginalNamespace()->OrigOrAnonNamespace.getPointer();
394  }
395
396  void setAnonymousNamespace(NamespaceDecl *D) {
397    assert(!D || D->isAnonymousNamespace());
398    assert(!D || D->getParent() == this);
399    getOriginalNamespace()->OrigOrAnonNamespace.setPointer(D);
400  }
401
402  virtual NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); }
403  const NamespaceDecl *getCanonicalDecl() const {
404    return getOriginalNamespace();
405  }
406
407  virtual SourceRange getSourceRange() const {
408    return SourceRange(getLocation(), RBracLoc);
409  }
410
411  SourceLocation getLBracLoc() const { return LBracLoc; }
412  SourceLocation getRBracLoc() const { return RBracLoc; }
413  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
414  void setRBracLoc(SourceLocation R) { RBracLoc = R; }
415
416  // Implement isa/cast/dyncast/etc.
417  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
418  static bool classof(const NamespaceDecl *D) { return true; }
419  static bool classofKind(Kind K) { return K == Namespace; }
420  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
421    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
422  }
423  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
424    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
425  }
426
427  friend class ASTDeclReader;
428  friend class ASTDeclWriter;
429};
430
431/// ValueDecl - Represent the declaration of a variable (in which case it is
432/// an lvalue) a function (in which case it is a function designator) or
433/// an enum constant.
434class ValueDecl : public NamedDecl {
435  QualType DeclType;
436
437protected:
438  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
439            DeclarationName N, QualType T)
440    : NamedDecl(DK, DC, L, N), DeclType(T) {}
441public:
442  QualType getType() const { return DeclType; }
443  void setType(QualType newType) { DeclType = newType; }
444
445  // Implement isa/cast/dyncast/etc.
446  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
447  static bool classof(const ValueDecl *D) { return true; }
448  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
449};
450
451/// QualifierInfo - A struct with extended info about a syntactic
452/// name qualifier, to be used for the case of out-of-line declarations.
453struct QualifierInfo {
454  /// NNS - The syntactic name qualifier.
455  NestedNameSpecifier *NNS;
456  /// NNSRange - The source range for the qualifier.
457  SourceRange NNSRange;
458  /// NumTemplParamLists - The number of template parameter lists
459  /// that were matched against the template-ids occurring into the NNS.
460  unsigned NumTemplParamLists;
461  /// TemplParamLists - A new-allocated array of size NumTemplParamLists,
462  /// containing pointers to the matched template parameter lists.
463  TemplateParameterList** TemplParamLists;
464
465  /// Default constructor.
466  QualifierInfo()
467    : NNS(0), NNSRange(), NumTemplParamLists(0), TemplParamLists(0) {}
468  /// setTemplateParameterListsInfo - Sets info about matched template
469  /// parameter lists.
470  void setTemplateParameterListsInfo(ASTContext &Context,
471                                     unsigned NumTPLists,
472                                     TemplateParameterList **TPLists);
473
474private:
475  // Copy constructor and copy assignment are disabled.
476  QualifierInfo(const QualifierInfo&);
477  QualifierInfo& operator=(const QualifierInfo&);
478};
479
480/// \brief Represents a ValueDecl that came out of a declarator.
481/// Contains type source information through TypeSourceInfo.
482class DeclaratorDecl : public ValueDecl {
483  // A struct representing both a TInfo and a syntactic qualifier,
484  // to be used for the (uncommon) case of out-of-line declarations.
485  struct ExtInfo : public QualifierInfo {
486    TypeSourceInfo *TInfo;
487  };
488
489  llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
490
491  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
492  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
493  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
494
495protected:
496  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
497                 DeclarationName N, QualType T, TypeSourceInfo *TInfo)
498    : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
499
500public:
501  TypeSourceInfo *getTypeSourceInfo() const {
502    return hasExtInfo()
503      ? getExtInfo()->TInfo
504      : DeclInfo.get<TypeSourceInfo*>();
505  }
506  void setTypeSourceInfo(TypeSourceInfo *TI) {
507    if (hasExtInfo())
508      getExtInfo()->TInfo = TI;
509    else
510      DeclInfo = TI;
511  }
512
513  /// getInnerLocStart - Return SourceLocation representing start of source
514  /// range ignoring outer template declarations.
515  virtual SourceLocation getInnerLocStart() const { return getLocation(); }
516
517  /// getOuterLocStart - Return SourceLocation representing start of source
518  /// range taking into account any outer template declarations.
519  SourceLocation getOuterLocStart() const;
520  SourceRange getSourceRange() const {
521    return SourceRange(getOuterLocStart(), getLocation());
522  }
523
524  NestedNameSpecifier *getQualifier() const {
525    return hasExtInfo() ? getExtInfo()->NNS : 0;
526  }
527  SourceRange getQualifierRange() const {
528    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
529  }
530  void setQualifierInfo(NestedNameSpecifier *Qualifier,
531                        SourceRange QualifierRange);
532
533  unsigned getNumTemplateParameterLists() const {
534    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
535  }
536  TemplateParameterList *getTemplateParameterList(unsigned index) const {
537    assert(index < getNumTemplateParameterLists());
538    return getExtInfo()->TemplParamLists[index];
539  }
540  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
541                                     TemplateParameterList **TPLists) {
542    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
543  }
544
545  SourceLocation getTypeSpecStartLoc() const;
546
547  // Implement isa/cast/dyncast/etc.
548  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
549  static bool classof(const DeclaratorDecl *D) { return true; }
550  static bool classofKind(Kind K) {
551    return K >= firstDeclarator && K <= lastDeclarator;
552  }
553
554  friend class ASTDeclReader;
555  friend class ASTDeclWriter;
556};
557
558/// \brief Structure used to store a statement, the constant value to
559/// which it was evaluated (if any), and whether or not the statement
560/// is an integral constant expression (if known).
561struct EvaluatedStmt {
562  EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
563                    CheckingICE(false), IsICE(false) { }
564
565  /// \brief Whether this statement was already evaluated.
566  bool WasEvaluated : 1;
567
568  /// \brief Whether this statement is being evaluated.
569  bool IsEvaluating : 1;
570
571  /// \brief Whether we already checked whether this statement was an
572  /// integral constant expression.
573  bool CheckedICE : 1;
574
575  /// \brief Whether we are checking whether this statement is an
576  /// integral constant expression.
577  bool CheckingICE : 1;
578
579  /// \brief Whether this statement is an integral constant
580  /// expression. Only valid if CheckedICE is true.
581  bool IsICE : 1;
582
583  Stmt *Value;
584  APValue Evaluated;
585};
586
587/// VarDecl - An instance of this class is created to represent a variable
588/// declaration or definition.
589class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
590public:
591  typedef clang::StorageClass StorageClass;
592
593  /// getStorageClassSpecifierString - Return the string used to
594  /// specify the storage class \arg SC.
595  ///
596  /// It is illegal to call this function with SC == None.
597  static const char *getStorageClassSpecifierString(StorageClass SC);
598
599protected:
600  /// \brief Placeholder type used in Init to denote an unparsed C++ default
601  /// argument.
602  struct UnparsedDefaultArgument;
603
604  /// \brief Placeholder type used in Init to denote an uninstantiated C++
605  /// default argument.
606  struct UninstantiatedDefaultArgument;
607
608  typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
609                              UnparsedDefaultArgument *,
610                              UninstantiatedDefaultArgument *> InitType;
611
612  /// \brief The initializer for this variable or, for a ParmVarDecl, the
613  /// C++ default argument.
614  mutable InitType Init;
615
616private:
617  // FIXME: This can be packed into the bitfields in Decl.
618  unsigned SClass : 3;
619  unsigned SClassAsWritten : 3;
620  bool ThreadSpecified : 1;
621  bool HasCXXDirectInit : 1;
622
623  /// \brief Whether this variable is the exception variable in a C++ catch
624  /// or an Objective-C @catch statement.
625  bool ExceptionVar : 1;
626
627  /// \brief Whether this local variable could be allocated in the return
628  /// slot of its function, enabling the named return value optimization (NRVO).
629  bool NRVOVariable : 1;
630
631  friend class StmtIteratorBase;
632  friend class ASTDeclReader;
633
634protected:
635  VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
636          QualType T, TypeSourceInfo *TInfo, StorageClass SC,
637          StorageClass SCAsWritten)
638    : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
639      ThreadSpecified(false), HasCXXDirectInit(false),
640      ExceptionVar(false), NRVOVariable(false) {
641    SClass = SC;
642    SClassAsWritten = SCAsWritten;
643  }
644
645  typedef Redeclarable<VarDecl> redeclarable_base;
646  virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
647
648public:
649  typedef redeclarable_base::redecl_iterator redecl_iterator;
650  redecl_iterator redecls_begin() const {
651    return redeclarable_base::redecls_begin();
652  }
653  redecl_iterator redecls_end() const {
654    return redeclarable_base::redecls_end();
655  }
656
657  static VarDecl *Create(ASTContext &C, DeclContext *DC,
658                         SourceLocation L, IdentifierInfo *Id,
659                         QualType T, TypeSourceInfo *TInfo, StorageClass S,
660                         StorageClass SCAsWritten);
661
662  virtual SourceLocation getInnerLocStart() const;
663  virtual SourceRange getSourceRange() const;
664
665  StorageClass getStorageClass() const { return (StorageClass)SClass; }
666  StorageClass getStorageClassAsWritten() const {
667    return (StorageClass) SClassAsWritten;
668  }
669  void setStorageClass(StorageClass SC);
670  void setStorageClassAsWritten(StorageClass SC) {
671    assert(isLegalForVariable(SC));
672    SClassAsWritten = SC;
673  }
674
675  void setThreadSpecified(bool T) { ThreadSpecified = T; }
676  bool isThreadSpecified() const {
677    return ThreadSpecified;
678  }
679
680  /// hasLocalStorage - Returns true if a variable with function scope
681  ///  is a non-static local variable.
682  bool hasLocalStorage() const {
683    if (getStorageClass() == SC_None)
684      return !isFileVarDecl();
685
686    // Return true for:  Auto, Register.
687    // Return false for: Extern, Static, PrivateExtern.
688
689    return getStorageClass() >= SC_Auto;
690  }
691
692  /// isStaticLocal - Returns true if a variable with function scope is a
693  /// static local variable.
694  bool isStaticLocal() const {
695    return getStorageClass() == SC_Static && !isFileVarDecl();
696  }
697
698  /// hasExternStorage - Returns true if a variable has extern or
699  /// __private_extern__ storage.
700  bool hasExternalStorage() const {
701    return getStorageClass() == SC_Extern ||
702           getStorageClass() == SC_PrivateExtern;
703  }
704
705  /// hasGlobalStorage - Returns true for all variables that do not
706  ///  have local storage.  This includs all global variables as well
707  ///  as static variables declared within a function.
708  bool hasGlobalStorage() const { return !hasLocalStorage(); }
709
710  /// \brief Determines whether this variable is a variable with
711  /// external, C linkage.
712  bool isExternC() const;
713
714  /// isLocalVarDecl - Returns true for local variable declarations
715  /// other than parameters.  Note that this includes static variables
716  /// inside of functions. It also includes variables inside blocks.
717  ///
718  ///   void foo() { int x; static int y; extern int z; }
719  ///
720  bool isLocalVarDecl() const {
721    if (getKind() != Decl::Var)
722      return false;
723    if (const DeclContext *DC = getDeclContext())
724      return DC->getRedeclContext()->isFunctionOrMethod();
725    return false;
726  }
727
728  /// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
729  /// excludes variables declared in blocks.
730  bool isFunctionOrMethodVarDecl() const {
731    if (getKind() != Decl::Var)
732      return false;
733    const DeclContext *DC = getDeclContext()->getRedeclContext();
734    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
735  }
736
737  /// \brief Determines whether this is a static data member.
738  ///
739  /// This will only be true in C++, and applies to, e.g., the
740  /// variable 'x' in:
741  /// \code
742  /// struct S {
743  ///   static int x;
744  /// };
745  /// \endcode
746  bool isStaticDataMember() const {
747    // If it wasn't static, it would be a FieldDecl.
748    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
749  }
750
751  virtual VarDecl *getCanonicalDecl();
752  const VarDecl *getCanonicalDecl() const {
753    return const_cast<VarDecl*>(this)->getCanonicalDecl();
754  }
755
756  enum DefinitionKind {
757    DeclarationOnly,      ///< This declaration is only a declaration.
758    TentativeDefinition,  ///< This declaration is a tentative definition.
759    Definition            ///< This declaration is definitely a definition.
760  };
761
762  /// \brief Check whether this declaration is a definition. If this could be
763  /// a tentative definition (in C), don't check whether there's an overriding
764  /// definition.
765  DefinitionKind isThisDeclarationADefinition() const;
766
767  /// \brief Check whether this variable is defined in this
768  /// translation unit.
769  DefinitionKind hasDefinition() const;
770
771  /// \brief Get the tentative definition that acts as the real definition in
772  /// a TU. Returns null if there is a proper definition available.
773  VarDecl *getActingDefinition();
774  const VarDecl *getActingDefinition() const {
775    return const_cast<VarDecl*>(this)->getActingDefinition();
776  }
777
778  /// \brief Determine whether this is a tentative definition of a
779  /// variable in C.
780  bool isTentativeDefinitionNow() const;
781
782  /// \brief Get the real (not just tentative) definition for this declaration.
783  VarDecl *getDefinition();
784  const VarDecl *getDefinition() const {
785    return const_cast<VarDecl*>(this)->getDefinition();
786  }
787
788  /// \brief Determine whether this is or was instantiated from an out-of-line
789  /// definition of a static data member.
790  virtual bool isOutOfLine() const;
791
792  /// \brief If this is a static data member, find its out-of-line definition.
793  VarDecl *getOutOfLineDefinition();
794
795  /// isFileVarDecl - Returns true for file scoped variable declaration.
796  bool isFileVarDecl() const {
797    if (getKind() != Decl::Var)
798      return false;
799
800    if (getDeclContext()->getRedeclContext()->isFileContext())
801      return true;
802
803    if (isStaticDataMember())
804      return true;
805
806    return false;
807  }
808
809  /// getAnyInitializer - Get the initializer for this variable, no matter which
810  /// declaration it is attached to.
811  const Expr *getAnyInitializer() const {
812    const VarDecl *D;
813    return getAnyInitializer(D);
814  }
815
816  /// getAnyInitializer - Get the initializer for this variable, no matter which
817  /// declaration it is attached to. Also get that declaration.
818  const Expr *getAnyInitializer(const VarDecl *&D) const;
819
820  bool hasInit() const {
821    return !Init.isNull();
822  }
823  const Expr *getInit() const {
824    if (Init.isNull())
825      return 0;
826
827    const Stmt *S = Init.dyn_cast<Stmt *>();
828    if (!S) {
829      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
830        S = ES->Value;
831    }
832    return (const Expr*) S;
833  }
834  Expr *getInit() {
835    if (Init.isNull())
836      return 0;
837
838    Stmt *S = Init.dyn_cast<Stmt *>();
839    if (!S) {
840      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
841        S = ES->Value;
842    }
843
844    return (Expr*) S;
845  }
846
847  /// \brief Retrieve the address of the initializer expression.
848  Stmt **getInitAddress() {
849    if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
850      return &ES->Value;
851
852    // This union hack tip-toes around strict-aliasing rules.
853    union {
854      InitType *InitPtr;
855      Stmt **StmtPtr;
856    };
857
858    InitPtr = &Init;
859    return StmtPtr;
860  }
861
862  void setInit(Expr *I);
863
864  EvaluatedStmt *EnsureEvaluatedStmt() const {
865    EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
866    if (!Eval) {
867      Stmt *S = Init.get<Stmt *>();
868      Eval = new (getASTContext()) EvaluatedStmt;
869      Eval->Value = S;
870      Init = Eval;
871    }
872    return Eval;
873  }
874
875  /// \brief Check whether we are in the process of checking whether the
876  /// initializer can be evaluated.
877  bool isEvaluatingValue() const {
878    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
879      return Eval->IsEvaluating;
880
881    return false;
882  }
883
884  /// \brief Note that we now are checking whether the initializer can be
885  /// evaluated.
886  void setEvaluatingValue() const {
887    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
888    Eval->IsEvaluating = true;
889  }
890
891  /// \brief Note that constant evaluation has computed the given
892  /// value for this variable's initializer.
893  void setEvaluatedValue(const APValue &Value) const {
894    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
895    Eval->IsEvaluating = false;
896    Eval->WasEvaluated = true;
897    Eval->Evaluated = Value;
898  }
899
900  /// \brief Return the already-evaluated value of this variable's
901  /// initializer, or NULL if the value is not yet known. Returns pointer
902  /// to untyped APValue if the value could not be evaluated.
903  APValue *getEvaluatedValue() const {
904    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
905      if (Eval->WasEvaluated)
906        return &Eval->Evaluated;
907
908    return 0;
909  }
910
911  /// \brief Determines whether it is already known whether the
912  /// initializer is an integral constant expression or not.
913  bool isInitKnownICE() const {
914    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
915      return Eval->CheckedICE;
916
917    return false;
918  }
919
920  /// \brief Determines whether the initializer is an integral
921  /// constant expression.
922  ///
923  /// \pre isInitKnownICE()
924  bool isInitICE() const {
925    assert(isInitKnownICE() &&
926           "Check whether we already know that the initializer is an ICE");
927    return Init.get<EvaluatedStmt *>()->IsICE;
928  }
929
930  /// \brief Check whether we are in the process of checking the initializer
931  /// is an integral constant expression.
932  bool isCheckingICE() const {
933    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
934      return Eval->CheckingICE;
935
936    return false;
937  }
938
939  /// \brief Note that we now are checking whether the initializer is an
940  /// integral constant expression.
941  void setCheckingICE() const {
942    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
943    Eval->CheckingICE = true;
944  }
945
946  /// \brief Note that we now know whether the initializer is an
947  /// integral constant expression.
948  void setInitKnownICE(bool IsICE) const {
949    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
950    Eval->CheckingICE = false;
951    Eval->CheckedICE = true;
952    Eval->IsICE = IsICE;
953  }
954
955  void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
956
957  /// hasCXXDirectInitializer - If true, the initializer was a direct
958  /// initializer, e.g: "int x(1);". The Init expression will be the expression
959  /// inside the parens or a "ClassType(a,b,c)" class constructor expression for
960  /// class types. Clients can distinguish between "int x(1);" and "int x=1;"
961  /// by checking hasCXXDirectInitializer.
962  ///
963  bool hasCXXDirectInitializer() const {
964    return HasCXXDirectInit;
965  }
966
967  /// \brief Determine whether this variable is the exception variable in a
968  /// C++ catch statememt or an Objective-C @catch statement.
969  bool isExceptionVariable() const {
970    return ExceptionVar;
971  }
972  void setExceptionVariable(bool EV) { ExceptionVar = EV; }
973
974  /// \brief Determine whether this local variable can be used with the named
975  /// return value optimization (NRVO).
976  ///
977  /// The named return value optimization (NRVO) works by marking certain
978  /// non-volatile local variables of class type as NRVO objects. These
979  /// locals can be allocated within the return slot of their containing
980  /// function, in which case there is no need to copy the object to the
981  /// return slot when returning from the function. Within the function body,
982  /// each return that returns the NRVO object will have this variable as its
983  /// NRVO candidate.
984  bool isNRVOVariable() const { return NRVOVariable; }
985  void setNRVOVariable(bool NRVO) { NRVOVariable = NRVO; }
986
987  /// \brief If this variable is an instantiated static data member of a
988  /// class template specialization, returns the templated static data member
989  /// from which it was instantiated.
990  VarDecl *getInstantiatedFromStaticDataMember() const;
991
992  /// \brief If this variable is a static data member, determine what kind of
993  /// template specialization or instantiation this is.
994  TemplateSpecializationKind getTemplateSpecializationKind() const;
995
996  /// \brief If this variable is an instantiation of a static data member of a
997  /// class template specialization, retrieves the member specialization
998  /// information.
999  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1000
1001  /// \brief For a static data member that was instantiated from a static
1002  /// data member of a class template, set the template specialiation kind.
1003  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1004                        SourceLocation PointOfInstantiation = SourceLocation());
1005
1006  // Implement isa/cast/dyncast/etc.
1007  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1008  static bool classof(const VarDecl *D) { return true; }
1009  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1010};
1011
1012class ImplicitParamDecl : public VarDecl {
1013protected:
1014  ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
1015                    IdentifierInfo *Id, QualType Tw)
1016    : VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, SC_None, SC_None) {
1017    setImplicit();
1018  }
1019public:
1020  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1021                                   SourceLocation L, IdentifierInfo *Id,
1022                                   QualType T);
1023  // Implement isa/cast/dyncast/etc.
1024  static bool classof(const ImplicitParamDecl *D) { return true; }
1025  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1026  static bool classofKind(Kind K) { return K == ImplicitParam; }
1027};
1028
1029/// ParmVarDecl - Represent a parameter to a function.
1030class ParmVarDecl : public VarDecl {
1031  // NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
1032  /// FIXME: Also can be paced into the bitfields in Decl.
1033  /// in, inout, etc.
1034  unsigned objcDeclQualifier : 6;
1035  bool HasInheritedDefaultArg : 1;
1036
1037protected:
1038  ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
1039              IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1040              StorageClass S, StorageClass SCAsWritten, Expr *DefArg)
1041    : VarDecl(DK, DC, L, Id, T, TInfo, S, SCAsWritten),
1042      objcDeclQualifier(OBJC_TQ_None), HasInheritedDefaultArg(false) {
1043    setDefaultArg(DefArg);
1044  }
1045
1046public:
1047  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1048                             SourceLocation L,IdentifierInfo *Id,
1049                             QualType T, TypeSourceInfo *TInfo,
1050                             StorageClass S, StorageClass SCAsWritten,
1051                             Expr *DefArg);
1052
1053  ObjCDeclQualifier getObjCDeclQualifier() const {
1054    return ObjCDeclQualifier(objcDeclQualifier);
1055  }
1056  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1057    objcDeclQualifier = QTVal;
1058  }
1059
1060  Expr *getDefaultArg();
1061  const Expr *getDefaultArg() const {
1062    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1063  }
1064
1065  void setDefaultArg(Expr *defarg) {
1066    Init = reinterpret_cast<Stmt *>(defarg);
1067  }
1068
1069  unsigned getNumDefaultArgTemporaries() const;
1070  CXXTemporary *getDefaultArgTemporary(unsigned i);
1071  const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
1072    return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
1073  }
1074
1075  /// \brief Retrieve the source range that covers the entire default
1076  /// argument.
1077  SourceRange getDefaultArgRange() const;
1078  void setUninstantiatedDefaultArg(Expr *arg) {
1079    Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
1080  }
1081  Expr *getUninstantiatedDefaultArg() {
1082    return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
1083  }
1084  const Expr *getUninstantiatedDefaultArg() const {
1085    return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
1086  }
1087
1088  /// hasDefaultArg - Determines whether this parameter has a default argument,
1089  /// either parsed or not.
1090  bool hasDefaultArg() const {
1091    return getInit() || hasUnparsedDefaultArg() ||
1092      hasUninstantiatedDefaultArg();
1093  }
1094
1095  /// hasUnparsedDefaultArg - Determines whether this parameter has a
1096  /// default argument that has not yet been parsed. This will occur
1097  /// during the processing of a C++ class whose member functions have
1098  /// default arguments, e.g.,
1099  /// @code
1100  ///   class X {
1101  ///   public:
1102  ///     void f(int x = 17); // x has an unparsed default argument now
1103  ///   }; // x has a regular default argument now
1104  /// @endcode
1105  bool hasUnparsedDefaultArg() const {
1106    return Init.is<UnparsedDefaultArgument*>();
1107  }
1108
1109  bool hasUninstantiatedDefaultArg() const {
1110    return Init.is<UninstantiatedDefaultArgument*>();
1111  }
1112
1113  /// setUnparsedDefaultArg - Specify that this parameter has an
1114  /// unparsed default argument. The argument will be replaced with a
1115  /// real default argument via setDefaultArg when the class
1116  /// definition enclosing the function declaration that owns this
1117  /// default argument is completed.
1118  void setUnparsedDefaultArg() {
1119    Init = (UnparsedDefaultArgument *)0;
1120  }
1121
1122  bool hasInheritedDefaultArg() const {
1123    return HasInheritedDefaultArg;
1124  }
1125
1126  void setHasInheritedDefaultArg(bool I = true) {
1127    HasInheritedDefaultArg = I;
1128  }
1129
1130  QualType getOriginalType() const {
1131    if (getTypeSourceInfo())
1132      return getTypeSourceInfo()->getType();
1133    return getType();
1134  }
1135
1136  /// setOwningFunction - Sets the function declaration that owns this
1137  /// ParmVarDecl. Since ParmVarDecls are often created before the
1138  /// FunctionDecls that own them, this routine is required to update
1139  /// the DeclContext appropriately.
1140  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1141
1142  // Implement isa/cast/dyncast/etc.
1143  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1144  static bool classof(const ParmVarDecl *D) { return true; }
1145  static bool classofKind(Kind K) { return K == ParmVar; }
1146};
1147
1148/// FunctionDecl - An instance of this class is created to represent a
1149/// function declaration or definition.
1150///
1151/// Since a given function can be declared several times in a program,
1152/// there may be several FunctionDecls that correspond to that
1153/// function. Only one of those FunctionDecls will be found when
1154/// traversing the list of declarations in the context of the
1155/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1156/// contains all of the information known about the function. Other,
1157/// previous declarations of the function are available via the
1158/// getPreviousDeclaration() chain.
1159class FunctionDecl : public DeclaratorDecl, public DeclContext,
1160                     public Redeclarable<FunctionDecl> {
1161public:
1162  typedef clang::StorageClass StorageClass;
1163
1164  /// \brief The kind of templated function a FunctionDecl can be.
1165  enum TemplatedKind {
1166    TK_NonTemplate,
1167    TK_FunctionTemplate,
1168    TK_MemberSpecialization,
1169    TK_FunctionTemplateSpecialization,
1170    TK_DependentFunctionTemplateSpecialization
1171  };
1172
1173private:
1174  /// ParamInfo - new[]'d array of pointers to VarDecls for the formal
1175  /// parameters of this function.  This is null if a prototype or if there are
1176  /// no formals.
1177  ParmVarDecl **ParamInfo;
1178
1179  LazyDeclStmtPtr Body;
1180
1181  // FIXME: This can be packed into the bitfields in Decl.
1182  // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
1183  unsigned SClass : 2;
1184  unsigned SClassAsWritten : 2;
1185  bool IsInline : 1;
1186  bool IsVirtualAsWritten : 1;
1187  bool IsPure : 1;
1188  bool HasInheritedPrototype : 1;
1189  bool HasWrittenPrototype : 1;
1190  bool IsDeleted : 1;
1191  bool IsTrivial : 1; // sunk from CXXMethodDecl
1192  bool HasImplicitReturnZero : 1;
1193
1194  /// \brief End part of this FunctionDecl's source range.
1195  ///
1196  /// We could compute the full range in getSourceRange(). However, when we're
1197  /// dealing with a function definition deserialized from a PCH/AST file,
1198  /// we can only compute the full range once the function body has been
1199  /// de-serialized, so it's far better to have the (sometimes-redundant)
1200  /// EndRangeLoc.
1201  SourceLocation EndRangeLoc;
1202
1203  /// \brief The template or declaration that this declaration
1204  /// describes or was instantiated from, respectively.
1205  ///
1206  /// For non-templates, this value will be NULL. For function
1207  /// declarations that describe a function template, this will be a
1208  /// pointer to a FunctionTemplateDecl. For member functions
1209  /// of class template specializations, this will be a MemberSpecializationInfo
1210  /// pointer containing information about the specialization.
1211  /// For function template specializations, this will be a
1212  /// FunctionTemplateSpecializationInfo, which contains information about
1213  /// the template being specialized and the template arguments involved in
1214  /// that specialization.
1215  llvm::PointerUnion4<FunctionTemplateDecl *,
1216                      MemberSpecializationInfo *,
1217                      FunctionTemplateSpecializationInfo *,
1218                      DependentFunctionTemplateSpecializationInfo *>
1219    TemplateOrSpecialization;
1220
1221  /// DNLoc - Provides source/type location info for the
1222  /// declaration name embedded in the DeclaratorDecl base class.
1223  DeclarationNameLoc DNLoc;
1224
1225  /// \brief Specify that this function declaration is actually a function
1226  /// template specialization.
1227  ///
1228  /// \param C the ASTContext.
1229  ///
1230  /// \param Template the function template that this function template
1231  /// specialization specializes.
1232  ///
1233  /// \param TemplateArgs the template arguments that produced this
1234  /// function template specialization from the template.
1235  ///
1236  /// \param InsertPos If non-NULL, the position in the function template
1237  /// specialization set where the function template specialization data will
1238  /// be inserted.
1239  ///
1240  /// \param TSK the kind of template specialization this is.
1241  ///
1242  /// \param TemplateArgsAsWritten location info of template arguments.
1243  ///
1244  /// \param PointOfInstantiation point at which the function template
1245  /// specialization was first instantiated.
1246  void setFunctionTemplateSpecialization(ASTContext &C,
1247                                         FunctionTemplateDecl *Template,
1248                                       const TemplateArgumentList *TemplateArgs,
1249                                         void *InsertPos,
1250                                         TemplateSpecializationKind TSK,
1251                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
1252                                         SourceLocation PointOfInstantiation);
1253
1254  /// \brief Specify that this record is an instantiation of the
1255  /// member function FD.
1256  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1257                                        TemplateSpecializationKind TSK);
1258
1259  void setParams(ASTContext &C, ParmVarDecl **NewParamInfo, unsigned NumParams);
1260
1261protected:
1262  FunctionDecl(Kind DK, DeclContext *DC, const DeclarationNameInfo &NameInfo,
1263               QualType T, TypeSourceInfo *TInfo,
1264               StorageClass S, StorageClass SCAsWritten, bool isInline)
1265    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo),
1266      DeclContext(DK),
1267      ParamInfo(0), Body(),
1268      SClass(S), SClassAsWritten(SCAsWritten), IsInline(isInline),
1269      IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
1270      HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
1271      HasImplicitReturnZero(false),
1272      EndRangeLoc(NameInfo.getEndLoc()),
1273      TemplateOrSpecialization(),
1274      DNLoc(NameInfo.getInfo()) {}
1275
1276  typedef Redeclarable<FunctionDecl> redeclarable_base;
1277  virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1278
1279public:
1280  typedef redeclarable_base::redecl_iterator redecl_iterator;
1281  redecl_iterator redecls_begin() const {
1282    return redeclarable_base::redecls_begin();
1283  }
1284  redecl_iterator redecls_end() const {
1285    return redeclarable_base::redecls_end();
1286  }
1287
1288  static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1289                              DeclarationName N, QualType T,
1290                              TypeSourceInfo *TInfo,
1291                              StorageClass S = SC_None,
1292                              StorageClass SCAsWritten = SC_None,
1293                              bool isInline = false,
1294                              bool hasWrittenPrototype = true) {
1295    DeclarationNameInfo NameInfo(N, L);
1296    return FunctionDecl::Create(C, DC, NameInfo, T, TInfo, S, SCAsWritten,
1297                                isInline, hasWrittenPrototype);
1298  }
1299
1300  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1301                              const DeclarationNameInfo &NameInfo,
1302                              QualType T, TypeSourceInfo *TInfo,
1303                              StorageClass S = SC_None,
1304                              StorageClass SCAsWritten = SC_None,
1305                              bool isInline = false,
1306                              bool hasWrittenPrototype = true);
1307
1308  DeclarationNameInfo getNameInfo() const {
1309    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1310  }
1311
1312  virtual void getNameForDiagnostic(std::string &S,
1313                                    const PrintingPolicy &Policy,
1314                                    bool Qualified) const;
1315
1316  virtual SourceRange getSourceRange() const {
1317    return SourceRange(getOuterLocStart(), EndRangeLoc);
1318  }
1319  void setLocEnd(SourceLocation E) {
1320    EndRangeLoc = E;
1321  }
1322
1323  /// \brief Returns true if the function has a body (definition). The
1324  /// function body might be in any of the (re-)declarations of this
1325  /// function. The variant that accepts a FunctionDecl pointer will
1326  /// set that function declaration to the actual declaration
1327  /// containing the body (if there is one).
1328  bool hasBody(const FunctionDecl *&Definition) const;
1329
1330  virtual bool hasBody() const {
1331    const FunctionDecl* Definition;
1332    return hasBody(Definition);
1333  }
1334
1335  /// getBody - Retrieve the body (definition) of the function. The
1336  /// function body might be in any of the (re-)declarations of this
1337  /// function. The variant that accepts a FunctionDecl pointer will
1338  /// set that function declaration to the actual declaration
1339  /// containing the body (if there is one).
1340  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1341  /// unnecessary AST de-serialization of the body.
1342  Stmt *getBody(const FunctionDecl *&Definition) const;
1343
1344  virtual Stmt *getBody() const {
1345    const FunctionDecl* Definition;
1346    return getBody(Definition);
1347  }
1348
1349  /// isThisDeclarationADefinition - Returns whether this specific
1350  /// declaration of the function is also a definition. This does not
1351  /// determine whether the function has been defined (e.g., in a
1352  /// previous definition); for that information, use getBody.
1353  /// FIXME: Should return true if function is deleted or defaulted. However,
1354  /// CodeGenModule.cpp uses it, and I don't know if this would break it.
1355  bool isThisDeclarationADefinition() const { return Body; }
1356
1357  void setBody(Stmt *B);
1358  void setLazyBody(uint64_t Offset) { Body = Offset; }
1359
1360  /// Whether this function is variadic.
1361  bool isVariadic() const;
1362
1363  /// Whether this function is marked as virtual explicitly.
1364  bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
1365  void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
1366
1367  /// Whether this virtual function is pure, i.e. makes the containing class
1368  /// abstract.
1369  bool isPure() const { return IsPure; }
1370  void setPure(bool P = true);
1371
1372  /// Whether this function is "trivial" in some specialized C++ senses.
1373  /// Can only be true for default constructors, copy constructors,
1374  /// copy assignment operators, and destructors.  Not meaningful until
1375  /// the class has been fully built by Sema.
1376  bool isTrivial() const { return IsTrivial; }
1377  void setTrivial(bool IT) { IsTrivial = IT; }
1378
1379  /// Whether falling off this function implicitly returns null/zero.
1380  /// If a more specific implicit return value is required, front-ends
1381  /// should synthesize the appropriate return statements.
1382  bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
1383  void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
1384
1385  /// \brief Whether this function has a prototype, either because one
1386  /// was explicitly written or because it was "inherited" by merging
1387  /// a declaration without a prototype with a declaration that has a
1388  /// prototype.
1389  bool hasPrototype() const {
1390    return HasWrittenPrototype || HasInheritedPrototype;
1391  }
1392
1393  bool hasWrittenPrototype() const { return HasWrittenPrototype; }
1394  void setHasWrittenPrototype(bool P) { HasWrittenPrototype = P; }
1395
1396  /// \brief Whether this function inherited its prototype from a
1397  /// previous declaration.
1398  bool hasInheritedPrototype() const { return HasInheritedPrototype; }
1399  void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
1400
1401  /// \brief Whether this function has been deleted.
1402  ///
1403  /// A function that is "deleted" (via the C++0x "= delete" syntax)
1404  /// acts like a normal function, except that it cannot actually be
1405  /// called or have its address taken. Deleted functions are
1406  /// typically used in C++ overload resolution to attract arguments
1407  /// whose type or lvalue/rvalue-ness would permit the use of a
1408  /// different overload that would behave incorrectly. For example,
1409  /// one might use deleted functions to ban implicit conversion from
1410  /// a floating-point number to an Integer type:
1411  ///
1412  /// @code
1413  /// struct Integer {
1414  ///   Integer(long); // construct from a long
1415  ///   Integer(double) = delete; // no construction from float or double
1416  ///   Integer(long double) = delete; // no construction from long double
1417  /// };
1418  /// @endcode
1419  bool isDeleted() const { return IsDeleted; }
1420  void setDeleted(bool D = true) { IsDeleted = D; }
1421
1422  /// \brief Determines whether this is a function "main", which is
1423  /// the entry point into an executable program.
1424  bool isMain() const;
1425
1426  /// \brief Determines whether this function is a function with
1427  /// external, C linkage.
1428  bool isExternC() const;
1429
1430  /// \brief Determines whether this is a global function.
1431  bool isGlobal() const;
1432
1433  void setPreviousDeclaration(FunctionDecl * PrevDecl);
1434
1435  virtual const FunctionDecl *getCanonicalDecl() const;
1436  virtual FunctionDecl *getCanonicalDecl();
1437
1438  unsigned getBuiltinID() const;
1439
1440  // Iterator access to formal parameters.
1441  unsigned param_size() const { return getNumParams(); }
1442  typedef ParmVarDecl **param_iterator;
1443  typedef ParmVarDecl * const *param_const_iterator;
1444
1445  param_iterator param_begin() { return ParamInfo; }
1446  param_iterator param_end()   { return ParamInfo+param_size(); }
1447
1448  param_const_iterator param_begin() const { return ParamInfo; }
1449  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
1450
1451  /// getNumParams - Return the number of parameters this function must have
1452  /// based on its FunctionType.  This is the length of the ParamInfo array
1453  /// after it has been created.
1454  unsigned getNumParams() const;
1455
1456  const ParmVarDecl *getParamDecl(unsigned i) const {
1457    assert(i < getNumParams() && "Illegal param #");
1458    return ParamInfo[i];
1459  }
1460  ParmVarDecl *getParamDecl(unsigned i) {
1461    assert(i < getNumParams() && "Illegal param #");
1462    return ParamInfo[i];
1463  }
1464  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
1465    setParams(getASTContext(), NewParamInfo, NumParams);
1466  }
1467
1468  /// getMinRequiredArguments - Returns the minimum number of arguments
1469  /// needed to call this function. This may be fewer than the number of
1470  /// function parameters, if some of the parameters have default
1471  /// arguments (in C++).
1472  unsigned getMinRequiredArguments() const;
1473
1474  QualType getResultType() const {
1475    return getType()->getAs<FunctionType>()->getResultType();
1476  }
1477
1478  /// \brief Determine the type of an expression that calls this function.
1479  QualType getCallResultType() const {
1480    return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
1481  }
1482
1483  StorageClass getStorageClass() const { return StorageClass(SClass); }
1484  void setStorageClass(StorageClass SC);
1485
1486  StorageClass getStorageClassAsWritten() const {
1487    return StorageClass(SClassAsWritten);
1488  }
1489  void setStorageClassAsWritten(StorageClass SC) {
1490    assert(isLegalForFunction(SC));
1491    SClassAsWritten = SC;
1492  }
1493
1494  /// \brief Determine whether the "inline" keyword was specified for this
1495  /// function.
1496  bool isInlineSpecified() const { return IsInline; }
1497
1498  /// Set whether the "inline" keyword was specified for this function.
1499  void setInlineSpecified(bool I) { IsInline = I; }
1500
1501  /// \brief Determine whether this function should be inlined, because it is
1502  /// either marked "inline" or is a member function of a C++ class that
1503  /// was defined in the class body.
1504  bool isInlined() const;
1505
1506  bool isInlineDefinitionExternallyVisible() const;
1507
1508  /// isOverloadedOperator - Whether this function declaration
1509  /// represents an C++ overloaded operator, e.g., "operator+".
1510  bool isOverloadedOperator() const {
1511    return getOverloadedOperator() != OO_None;
1512  }
1513
1514  OverloadedOperatorKind getOverloadedOperator() const;
1515
1516  const IdentifierInfo *getLiteralIdentifier() const;
1517
1518  /// \brief If this function is an instantiation of a member function
1519  /// of a class template specialization, retrieves the function from
1520  /// which it was instantiated.
1521  ///
1522  /// This routine will return non-NULL for (non-templated) member
1523  /// functions of class templates and for instantiations of function
1524  /// templates. For example, given:
1525  ///
1526  /// \code
1527  /// template<typename T>
1528  /// struct X {
1529  ///   void f(T);
1530  /// };
1531  /// \endcode
1532  ///
1533  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
1534  /// whose parent is the class template specialization X<int>. For
1535  /// this declaration, getInstantiatedFromFunction() will return
1536  /// the FunctionDecl X<T>::A. When a complete definition of
1537  /// X<int>::A is required, it will be instantiated from the
1538  /// declaration returned by getInstantiatedFromMemberFunction().
1539  FunctionDecl *getInstantiatedFromMemberFunction() const;
1540
1541  /// \brief What kind of templated function this is.
1542  TemplatedKind getTemplatedKind() const;
1543
1544  /// \brief If this function is an instantiation of a member function of a
1545  /// class template specialization, retrieves the member specialization
1546  /// information.
1547  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1548
1549  /// \brief Specify that this record is an instantiation of the
1550  /// member function FD.
1551  void setInstantiationOfMemberFunction(FunctionDecl *FD,
1552                                        TemplateSpecializationKind TSK) {
1553    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
1554  }
1555
1556  /// \brief Retrieves the function template that is described by this
1557  /// function declaration.
1558  ///
1559  /// Every function template is represented as a FunctionTemplateDecl
1560  /// and a FunctionDecl (or something derived from FunctionDecl). The
1561  /// former contains template properties (such as the template
1562  /// parameter lists) while the latter contains the actual
1563  /// description of the template's
1564  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
1565  /// FunctionDecl that describes the function template,
1566  /// getDescribedFunctionTemplate() retrieves the
1567  /// FunctionTemplateDecl from a FunctionDecl.
1568  FunctionTemplateDecl *getDescribedFunctionTemplate() const {
1569    return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
1570  }
1571
1572  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
1573    TemplateOrSpecialization = Template;
1574  }
1575
1576  /// \brief Determine whether this function is a function template
1577  /// specialization.
1578  bool isFunctionTemplateSpecialization() const {
1579    return getPrimaryTemplate() != 0;
1580  }
1581
1582  /// \brief If this function is actually a function template specialization,
1583  /// retrieve information about this function template specialization.
1584  /// Otherwise, returns NULL.
1585  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
1586    return TemplateOrSpecialization.
1587             dyn_cast<FunctionTemplateSpecializationInfo*>();
1588  }
1589
1590  /// \brief Determines whether this function is a function template
1591  /// specialization or a member of a class template specialization that can
1592  /// be implicitly instantiated.
1593  bool isImplicitlyInstantiable() const;
1594
1595  /// \brief Retrieve the function declaration from which this function could
1596  /// be instantiated, if it is an instantiation (rather than a non-template
1597  /// or a specialization, for example).
1598  FunctionDecl *getTemplateInstantiationPattern() const;
1599
1600  /// \brief Retrieve the primary template that this function template
1601  /// specialization either specializes or was instantiated from.
1602  ///
1603  /// If this function declaration is not a function template specialization,
1604  /// returns NULL.
1605  FunctionTemplateDecl *getPrimaryTemplate() const;
1606
1607  /// \brief Retrieve the template arguments used to produce this function
1608  /// template specialization from the primary template.
1609  ///
1610  /// If this function declaration is not a function template specialization,
1611  /// returns NULL.
1612  const TemplateArgumentList *getTemplateSpecializationArgs() const;
1613
1614  /// \brief Retrieve the template argument list as written in the sources,
1615  /// if any.
1616  ///
1617  /// If this function declaration is not a function template specialization
1618  /// or if it had no explicit template argument list, returns NULL.
1619  /// Note that it an explicit template argument list may be written empty,
1620  /// e.g., template<> void foo<>(char* s);
1621  const TemplateArgumentListInfo*
1622  getTemplateSpecializationArgsAsWritten() const;
1623
1624  /// \brief Specify that this function declaration is actually a function
1625  /// template specialization.
1626  ///
1627  /// \param Template the function template that this function template
1628  /// specialization specializes.
1629  ///
1630  /// \param TemplateArgs the template arguments that produced this
1631  /// function template specialization from the template.
1632  ///
1633  /// \param InsertPos If non-NULL, the position in the function template
1634  /// specialization set where the function template specialization data will
1635  /// be inserted.
1636  ///
1637  /// \param TSK the kind of template specialization this is.
1638  ///
1639  /// \param TemplateArgsAsWritten location info of template arguments.
1640  ///
1641  /// \param PointOfInstantiation point at which the function template
1642  /// specialization was first instantiated.
1643  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
1644                                      const TemplateArgumentList *TemplateArgs,
1645                                         void *InsertPos,
1646                    TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
1647                    const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
1648                    SourceLocation PointOfInstantiation = SourceLocation()) {
1649    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
1650                                      InsertPos, TSK, TemplateArgsAsWritten,
1651                                      PointOfInstantiation);
1652  }
1653
1654  /// \brief Specifies that this function declaration is actually a
1655  /// dependent function template specialization.
1656  void setDependentTemplateSpecialization(ASTContext &Context,
1657                             const UnresolvedSetImpl &Templates,
1658                      const TemplateArgumentListInfo &TemplateArgs);
1659
1660  DependentFunctionTemplateSpecializationInfo *
1661  getDependentSpecializationInfo() const {
1662    return TemplateOrSpecialization.
1663             dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
1664  }
1665
1666  /// \brief Determine what kind of template instantiation this function
1667  /// represents.
1668  TemplateSpecializationKind getTemplateSpecializationKind() const;
1669
1670  /// \brief Determine what kind of template instantiation this function
1671  /// represents.
1672  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1673                        SourceLocation PointOfInstantiation = SourceLocation());
1674
1675  /// \brief Retrieve the (first) point of instantiation of a function template
1676  /// specialization or a member of a class template specialization.
1677  ///
1678  /// \returns the first point of instantiation, if this function was
1679  /// instantiated from a template; otherwie, returns an invalid source
1680  /// location.
1681  SourceLocation getPointOfInstantiation() const;
1682
1683  /// \brief Determine whether this is or was instantiated from an out-of-line
1684  /// definition of a member function.
1685  virtual bool isOutOfLine() const;
1686
1687  // Implement isa/cast/dyncast/etc.
1688  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1689  static bool classof(const FunctionDecl *D) { return true; }
1690  static bool classofKind(Kind K) {
1691    return K >= firstFunction && K <= lastFunction;
1692  }
1693  static DeclContext *castToDeclContext(const FunctionDecl *D) {
1694    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
1695  }
1696  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
1697    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
1698  }
1699
1700  friend class ASTDeclReader;
1701  friend class ASTDeclWriter;
1702};
1703
1704
1705/// FieldDecl - An instance of this class is created by Sema::ActOnField to
1706/// represent a member of a struct/union/class.
1707class FieldDecl : public DeclaratorDecl {
1708  // FIXME: This can be packed into the bitfields in Decl.
1709  bool Mutable : 1;
1710  Expr *BitWidth;
1711protected:
1712  FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
1713            IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1714            Expr *BW, bool Mutable)
1715    : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Mutable(Mutable), BitWidth(BW) {
1716  }
1717
1718public:
1719  static FieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1720                           IdentifierInfo *Id, QualType T,
1721                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
1722
1723  /// isMutable - Determines whether this field is mutable (C++ only).
1724  bool isMutable() const { return Mutable; }
1725
1726  /// \brief Set whether this field is mutable (C++ only).
1727  void setMutable(bool M) { Mutable = M; }
1728
1729  /// isBitfield - Determines whether this field is a bitfield.
1730  bool isBitField() const { return BitWidth != NULL; }
1731
1732  /// @brief Determines whether this is an unnamed bitfield.
1733  bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
1734
1735  /// isAnonymousStructOrUnion - Determines whether this field is a
1736  /// representative for an anonymous struct or union. Such fields are
1737  /// unnamed and are implicitly generated by the implementation to
1738  /// store the data for the anonymous union or struct.
1739  bool isAnonymousStructOrUnion() const;
1740
1741  Expr *getBitWidth() const { return BitWidth; }
1742  void setBitWidth(Expr *BW) { BitWidth = BW; }
1743
1744  /// getParent - Returns the parent of this field declaration, which
1745  /// is the struct in which this method is defined.
1746  const RecordDecl *getParent() const {
1747    return cast<RecordDecl>(getDeclContext());
1748  }
1749
1750  RecordDecl *getParent() {
1751    return cast<RecordDecl>(getDeclContext());
1752  }
1753
1754  // Implement isa/cast/dyncast/etc.
1755  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1756  static bool classof(const FieldDecl *D) { return true; }
1757  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
1758};
1759
1760/// EnumConstantDecl - An instance of this object exists for each enum constant
1761/// that is defined.  For example, in "enum X {a,b}", each of a/b are
1762/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
1763/// TagType for the X EnumDecl.
1764class EnumConstantDecl : public ValueDecl {
1765  Stmt *Init; // an integer constant expression
1766  llvm::APSInt Val; // The value.
1767protected:
1768  EnumConstantDecl(DeclContext *DC, SourceLocation L,
1769                   IdentifierInfo *Id, QualType T, Expr *E,
1770                   const llvm::APSInt &V)
1771    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
1772
1773public:
1774
1775  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
1776                                  SourceLocation L, IdentifierInfo *Id,
1777                                  QualType T, Expr *E,
1778                                  const llvm::APSInt &V);
1779
1780  const Expr *getInitExpr() const { return (const Expr*) Init; }
1781  Expr *getInitExpr() { return (Expr*) Init; }
1782  const llvm::APSInt &getInitVal() const { return Val; }
1783
1784  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
1785  void setInitVal(const llvm::APSInt &V) { Val = V; }
1786
1787  SourceRange getSourceRange() const;
1788
1789  // Implement isa/cast/dyncast/etc.
1790  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1791  static bool classof(const EnumConstantDecl *D) { return true; }
1792  static bool classofKind(Kind K) { return K == EnumConstant; }
1793
1794  friend class StmtIteratorBase;
1795};
1796
1797/// IndirectFieldDecl - An instance of this class is created to represent a
1798/// field injected from an anonymous union/struct into the parent scope.
1799/// IndirectFieldDecl are always implicit.
1800class IndirectFieldDecl : public ValueDecl {
1801  NamedDecl **Chaining;
1802  unsigned ChainingSize;
1803
1804  IndirectFieldDecl(DeclContext *DC, SourceLocation L,
1805                    DeclarationName N, QualType T,
1806                    NamedDecl **CH, unsigned CHS)
1807    : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {}
1808
1809public:
1810  static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
1811                                   SourceLocation L, IdentifierInfo *Id,
1812                                   QualType T, NamedDecl **CH, unsigned CHS);
1813
1814  typedef NamedDecl * const *chain_iterator;
1815  chain_iterator chain_begin() const { return Chaining; }
1816  chain_iterator chain_end() const  { return Chaining+ChainingSize; }
1817
1818  unsigned getChainingSize() const { return ChainingSize; }
1819
1820  FieldDecl *getAnonField() const {
1821    assert(ChainingSize >= 2);
1822    return cast<FieldDecl>(Chaining[ChainingSize - 1]);
1823  }
1824
1825  VarDecl *getVarDecl() const {
1826    assert(ChainingSize >= 2);
1827    return dyn_cast<VarDecl>(*chain_begin());
1828  }
1829
1830  // Implement isa/cast/dyncast/etc.
1831  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1832  static bool classof(const IndirectFieldDecl *D) { return true; }
1833  static bool classofKind(Kind K) { return K == IndirectField; }
1834  friend class ASTDeclReader;
1835};
1836
1837/// TypeDecl - Represents a declaration of a type.
1838///
1839class TypeDecl : public NamedDecl {
1840  /// TypeForDecl - This indicates the Type object that represents
1841  /// this TypeDecl.  It is a cache maintained by
1842  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
1843  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
1844  mutable Type *TypeForDecl;
1845  friend class ASTContext;
1846  friend class DeclContext;
1847  friend class TagDecl;
1848  friend class TemplateTypeParmDecl;
1849  friend class TagType;
1850
1851protected:
1852  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
1853           IdentifierInfo *Id)
1854    : NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
1855
1856public:
1857  // Low-level accessor
1858  Type *getTypeForDecl() const { return TypeForDecl; }
1859  void setTypeForDecl(Type *TD) { TypeForDecl = TD; }
1860
1861  // Implement isa/cast/dyncast/etc.
1862  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1863  static bool classof(const TypeDecl *D) { return true; }
1864  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
1865};
1866
1867
1868class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
1869  /// UnderlyingType - This is the type the typedef is set to.
1870  TypeSourceInfo *TInfo;
1871
1872  TypedefDecl(DeclContext *DC, SourceLocation L,
1873              IdentifierInfo *Id, TypeSourceInfo *TInfo)
1874    : TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
1875
1876protected:
1877  typedef Redeclarable<TypedefDecl> redeclarable_base;
1878  virtual TypedefDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1879
1880public:
1881  typedef redeclarable_base::redecl_iterator redecl_iterator;
1882  redecl_iterator redecls_begin() const {
1883    return redeclarable_base::redecls_begin();
1884  }
1885  redecl_iterator redecls_end() const {
1886    return redeclarable_base::redecls_end();
1887  }
1888
1889  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
1890                             SourceLocation L, IdentifierInfo *Id,
1891                             TypeSourceInfo *TInfo);
1892
1893  TypeSourceInfo *getTypeSourceInfo() const {
1894    return TInfo;
1895  }
1896
1897  /// Retrieves the canonical declaration of this typedef.
1898  TypedefDecl *getCanonicalDecl() {
1899    return getFirstDeclaration();
1900  }
1901  const TypedefDecl *getCanonicalDecl() const {
1902    return getFirstDeclaration();
1903  }
1904
1905  QualType getUnderlyingType() const {
1906    return TInfo->getType();
1907  }
1908  void setTypeSourceInfo(TypeSourceInfo *newType) {
1909    TInfo = newType;
1910  }
1911
1912  // Implement isa/cast/dyncast/etc.
1913  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1914  static bool classof(const TypedefDecl *D) { return true; }
1915  static bool classofKind(Kind K) { return K == Typedef; }
1916};
1917
1918class TypedefDecl;
1919
1920/// TagDecl - Represents the declaration of a struct/union/class/enum.
1921class TagDecl
1922  : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
1923public:
1924  // This is really ugly.
1925  typedef TagTypeKind TagKind;
1926
1927private:
1928  // FIXME: This can be packed into the bitfields in Decl.
1929  /// TagDeclKind - The TagKind enum.
1930  unsigned TagDeclKind : 2;
1931
1932  /// IsDefinition - True if this is a definition ("struct foo {};"), false if
1933  /// it is a declaration ("struct foo;").
1934  bool IsDefinition : 1;
1935
1936  /// IsBeingDefined - True if this is currently being defined.
1937  bool IsBeingDefined : 1;
1938
1939  /// IsEmbeddedInDeclarator - True if this tag declaration is
1940  /// "embedded" (i.e., defined or declared for the very first time)
1941  /// in the syntax of a declarator.
1942  bool IsEmbeddedInDeclarator : 1;
1943
1944protected:
1945  // These are used by (and only defined for) EnumDecl.
1946  unsigned NumPositiveBits : 8;
1947  unsigned NumNegativeBits : 8;
1948
1949  /// IsScoped - True if this tag declaration is a scoped enumeration. Only
1950  /// possible in C++0x mode.
1951  bool IsScoped : 1;
1952  /// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
1953  /// then this is true if the scoped enum was declared using the class
1954  /// tag, false if it was declared with the struct tag. No meaning is
1955  /// associated if this tag declaration is not a scoped enum.
1956  bool IsScopedUsingClassTag : 1;
1957
1958  /// IsFixed - True if this is an enumeration with fixed underlying type. Only
1959  /// possible in C++0x mode.
1960  bool IsFixed : 1;
1961
1962private:
1963  SourceLocation TagKeywordLoc;
1964  SourceLocation RBraceLoc;
1965
1966  // A struct representing syntactic qualifier info,
1967  // to be used for the (uncommon) case of out-of-line declarations.
1968  typedef QualifierInfo ExtInfo;
1969
1970  /// TypedefDeclOrQualifier - If the (out-of-line) tag declaration name
1971  /// is qualified, it points to the qualifier info (nns and range);
1972  /// otherwise, if the tag declaration is anonymous and it is part of
1973  /// a typedef, it points to the TypedefDecl (used for mangling);
1974  /// otherwise, it is a null (TypedefDecl) pointer.
1975  llvm::PointerUnion<TypedefDecl*, ExtInfo*> TypedefDeclOrQualifier;
1976
1977  bool hasExtInfo() const { return TypedefDeclOrQualifier.is<ExtInfo*>(); }
1978  ExtInfo *getExtInfo() { return TypedefDeclOrQualifier.get<ExtInfo*>(); }
1979  const ExtInfo *getExtInfo() const {
1980    return TypedefDeclOrQualifier.get<ExtInfo*>();
1981  }
1982
1983protected:
1984  TagDecl(Kind DK, TagKind TK, DeclContext *DC,
1985          SourceLocation L, IdentifierInfo *Id,
1986          TagDecl *PrevDecl, SourceLocation TKL = SourceLocation())
1987    : TypeDecl(DK, DC, L, Id), DeclContext(DK), TagKeywordLoc(TKL),
1988      TypedefDeclOrQualifier((TypedefDecl*) 0) {
1989    assert((DK != Enum || TK == TTK_Enum) &&
1990           "EnumDecl not matched with TTK_Enum");
1991    TagDeclKind = TK;
1992    IsDefinition = false;
1993    IsBeingDefined = false;
1994    IsEmbeddedInDeclarator = false;
1995    setPreviousDeclaration(PrevDecl);
1996  }
1997
1998  typedef Redeclarable<TagDecl> redeclarable_base;
1999  virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
2000
2001  /// @brief Completes the definition of this tag declaration.
2002  ///
2003  /// This is a helper function for derived classes.
2004  void completeDefinition();
2005
2006public:
2007  typedef redeclarable_base::redecl_iterator redecl_iterator;
2008  redecl_iterator redecls_begin() const {
2009    return redeclarable_base::redecls_begin();
2010  }
2011  redecl_iterator redecls_end() const {
2012    return redeclarable_base::redecls_end();
2013  }
2014
2015  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2016  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
2017
2018  SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
2019  void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
2020
2021  /// getInnerLocStart - Return SourceLocation representing start of source
2022  /// range ignoring outer template declarations.
2023  virtual SourceLocation getInnerLocStart() const { return TagKeywordLoc; }
2024
2025  /// getOuterLocStart - Return SourceLocation representing start of source
2026  /// range taking into account any outer template declarations.
2027  SourceLocation getOuterLocStart() const;
2028  virtual SourceRange getSourceRange() const;
2029
2030  virtual TagDecl* getCanonicalDecl();
2031  const TagDecl* getCanonicalDecl() const {
2032    return const_cast<TagDecl*>(this)->getCanonicalDecl();
2033  }
2034
2035  /// isThisDeclarationADefinition() - Return true if this declaration
2036  /// defines the type.  Provided for consistency.
2037  bool isThisDeclarationADefinition() const {
2038    return isDefinition();
2039  }
2040
2041  /// isDefinition - Return true if this decl has its body specified.
2042  bool isDefinition() const {
2043    return IsDefinition;
2044  }
2045
2046  /// isBeingDefined - Return true if this decl is currently being defined.
2047  bool isBeingDefined() const {
2048    return IsBeingDefined;
2049  }
2050
2051  bool isEmbeddedInDeclarator() const {
2052    return IsEmbeddedInDeclarator;
2053  }
2054  void setEmbeddedInDeclarator(bool isInDeclarator) {
2055    IsEmbeddedInDeclarator = isInDeclarator;
2056  }
2057
2058  /// \brief Whether this declaration declares a type that is
2059  /// dependent, i.e., a type that somehow depends on template
2060  /// parameters.
2061  bool isDependentType() const { return isDependentContext(); }
2062
2063  /// @brief Starts the definition of this tag declaration.
2064  ///
2065  /// This method should be invoked at the beginning of the definition
2066  /// of this tag declaration. It will set the tag type into a state
2067  /// where it is in the process of being defined.
2068  void startDefinition();
2069
2070  /// getDefinition - Returns the TagDecl that actually defines this
2071  ///  struct/union/class/enum.  When determining whether or not a
2072  ///  struct/union/class/enum is completely defined, one should use this method
2073  ///  as opposed to 'isDefinition'.  'isDefinition' indicates whether or not a
2074  ///  specific TagDecl is defining declaration, not whether or not the
2075  ///  struct/union/class/enum type is defined.  This method returns NULL if
2076  ///  there is no TagDecl that defines the struct/union/class/enum.
2077  TagDecl* getDefinition() const;
2078
2079  void setDefinition(bool V) { IsDefinition = V; }
2080
2081  const char *getKindName() const {
2082    return TypeWithKeyword::getTagTypeKindName(getTagKind());
2083  }
2084
2085  TagKind getTagKind() const {
2086    return TagKind(TagDeclKind);
2087  }
2088
2089  void setTagKind(TagKind TK) { TagDeclKind = TK; }
2090
2091  bool isStruct() const { return getTagKind() == TTK_Struct; }
2092  bool isClass()  const { return getTagKind() == TTK_Class; }
2093  bool isUnion()  const { return getTagKind() == TTK_Union; }
2094  bool isEnum()   const { return getTagKind() == TTK_Enum; }
2095
2096  TypedefDecl *getTypedefForAnonDecl() const {
2097    return hasExtInfo() ? 0 : TypedefDeclOrQualifier.get<TypedefDecl*>();
2098  }
2099
2100  void setTypedefForAnonDecl(TypedefDecl *TDD);
2101
2102  NestedNameSpecifier *getQualifier() const {
2103    return hasExtInfo() ? getExtInfo()->NNS : 0;
2104  }
2105  SourceRange getQualifierRange() const {
2106    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
2107  }
2108  void setQualifierInfo(NestedNameSpecifier *Qualifier,
2109                        SourceRange QualifierRange);
2110
2111  unsigned getNumTemplateParameterLists() const {
2112    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
2113  }
2114  TemplateParameterList *getTemplateParameterList(unsigned i) const {
2115    assert(i < getNumTemplateParameterLists());
2116    return getExtInfo()->TemplParamLists[i];
2117  }
2118  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
2119                                     TemplateParameterList **TPLists) {
2120    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2121  }
2122
2123  // Implement isa/cast/dyncast/etc.
2124  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2125  static bool classof(const TagDecl *D) { return true; }
2126  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
2127
2128  static DeclContext *castToDeclContext(const TagDecl *D) {
2129    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
2130  }
2131  static TagDecl *castFromDeclContext(const DeclContext *DC) {
2132    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
2133  }
2134
2135  friend class ASTDeclReader;
2136  friend class ASTDeclWriter;
2137};
2138
2139/// EnumDecl - Represents an enum.  As an extension, we allow forward-declared
2140/// enums.
2141class EnumDecl : public TagDecl {
2142  /// IntegerType - This represent the integer type that the enum corresponds
2143  /// to for code generation purposes.  Note that the enumerator constants may
2144  /// have a different type than this does.
2145  ///
2146  /// If the underlying integer type was explicitly stated in the source
2147  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
2148  /// was automatically deduced somehow, and this is a Type*.
2149  ///
2150  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
2151  /// some cases it won't.
2152  ///
2153  /// The underlying type of an enumeration never has any qualifiers, so
2154  /// we can get away with just storing a raw Type*, and thus save an
2155  /// extra pointer when TypeSourceInfo is needed.
2156
2157  llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
2158
2159  /// PromotionType - The integer type that values of this type should
2160  /// promote to.  In C, enumerators are generally of an integer type
2161  /// directly, but gcc-style large enumerators (and all enumerators
2162  /// in C++) are of the enum type instead.
2163  QualType PromotionType;
2164
2165  /// \brief If the enumeration was instantiated from an enumeration
2166  /// within a class or function template, this pointer refers to the
2167  /// enumeration declared within the template.
2168  EnumDecl *InstantiatedFrom;
2169
2170  // The number of positive and negative bits required by the
2171  // enumerators are stored in the SubclassBits field.
2172  enum {
2173    NumBitsWidth = 8,
2174    NumBitsMask = (1 << NumBitsWidth) - 1
2175  };
2176
2177  EnumDecl(DeclContext *DC, SourceLocation L,
2178           IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL,
2179           bool Scoped, bool ScopedUsingClassTag, bool Fixed)
2180    : TagDecl(Enum, TTK_Enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
2181      assert(Scoped || !ScopedUsingClassTag);
2182      IntegerType = (const Type*)0;
2183      NumNegativeBits = 0;
2184      NumPositiveBits = 0;
2185      IsScoped = Scoped;
2186      IsScopedUsingClassTag = ScopedUsingClassTag;
2187      IsFixed = Fixed;
2188    }
2189public:
2190  EnumDecl *getCanonicalDecl() {
2191    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2192  }
2193  const EnumDecl *getCanonicalDecl() const {
2194    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2195  }
2196
2197  const EnumDecl *getPreviousDeclaration() const {
2198    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2199  }
2200  EnumDecl *getPreviousDeclaration() {
2201    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2202  }
2203
2204  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
2205                          SourceLocation L, IdentifierInfo *Id,
2206                          SourceLocation TKL, EnumDecl *PrevDecl,
2207                          bool IsScoped, bool IsScopedUsingClassTag,
2208                          bool IsFixed);
2209  static EnumDecl *Create(ASTContext &C, EmptyShell Empty);
2210
2211  /// completeDefinition - When created, the EnumDecl corresponds to a
2212  /// forward-declared enum. This method is used to mark the
2213  /// declaration as being defined; it's enumerators have already been
2214  /// added (via DeclContext::addDecl). NewType is the new underlying
2215  /// type of the enumeration type.
2216  void completeDefinition(QualType NewType,
2217                          QualType PromotionType,
2218                          unsigned NumPositiveBits,
2219                          unsigned NumNegativeBits);
2220
2221  // enumerator_iterator - Iterates through the enumerators of this
2222  // enumeration.
2223  typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
2224
2225  enumerator_iterator enumerator_begin() const {
2226    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2227    if (!E)
2228      E = this;
2229    return enumerator_iterator(E->decls_begin());
2230  }
2231
2232  enumerator_iterator enumerator_end() const {
2233    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2234    if (!E)
2235      E = this;
2236    return enumerator_iterator(E->decls_end());
2237  }
2238
2239  /// getPromotionType - Return the integer type that enumerators
2240  /// should promote to.
2241  QualType getPromotionType() const { return PromotionType; }
2242
2243  /// \brief Set the promotion type.
2244  void setPromotionType(QualType T) { PromotionType = T; }
2245
2246  /// getIntegerType - Return the integer type this enum decl corresponds to.
2247  /// This returns a null qualtype for an enum forward definition.
2248  QualType getIntegerType() const {
2249    if (!IntegerType)
2250      return QualType();
2251    if (const Type* T = IntegerType.dyn_cast<const Type*>())
2252      return QualType(T, 0);
2253    return IntegerType.get<TypeSourceInfo*>()->getType();
2254  }
2255
2256  /// \brief Set the underlying integer type.
2257  void setIntegerType(QualType T) { IntegerType = T.getTypePtr(); }
2258
2259  /// \brief Set the underlying integer type source info.
2260  void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
2261
2262  /// \brief Return the type source info for the underlying integer type,
2263  /// if no type source info exists, return 0.
2264  TypeSourceInfo* getIntegerTypeSourceInfo() const {
2265    return IntegerType.dyn_cast<TypeSourceInfo*>();
2266  }
2267
2268  /// \brief Returns the width in bits requred to store all the
2269  /// non-negative enumerators of this enum.
2270  unsigned getNumPositiveBits() const {
2271    return NumPositiveBits;
2272  }
2273  void setNumPositiveBits(unsigned Num) {
2274    NumPositiveBits = Num;
2275    assert(NumPositiveBits == Num && "can't store this bitcount");
2276  }
2277
2278  /// \brief Returns the width in bits requred to store all the
2279  /// negative enumerators of this enum.  These widths include
2280  /// the rightmost leading 1;  that is:
2281  ///
2282  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
2283  /// ------------------------     -------     -----------------
2284  ///                       -1     1111111                     1
2285  ///                      -10     1110110                     5
2286  ///                     -101     1001011                     8
2287  unsigned getNumNegativeBits() const {
2288    return NumNegativeBits;
2289  }
2290  void setNumNegativeBits(unsigned Num) {
2291    NumNegativeBits = Num;
2292  }
2293
2294  /// \brief Returns true if this is a C++0x scoped enumeration.
2295  bool isScoped() const {
2296    return IsScoped;
2297  }
2298
2299  /// \brief Returns true if this is a C++0x scoped enumeration.
2300  bool isScopedUsingClassTag() const {
2301    return IsScopedUsingClassTag;
2302  }
2303
2304  /// \brief Returns true if this is a C++0x enumeration with fixed underlying
2305  /// type.
2306  bool isFixed() const {
2307    return IsFixed;
2308  }
2309
2310  /// \brief Returns true if this can be considered a complete type.
2311  bool isComplete() const {
2312    return isDefinition() || isFixed();
2313  }
2314
2315  /// \brief Returns the enumeration (declared within the template)
2316  /// from which this enumeration type was instantiated, or NULL if
2317  /// this enumeration was not instantiated from any template.
2318  EnumDecl *getInstantiatedFromMemberEnum() const {
2319    return InstantiatedFrom;
2320  }
2321
2322  void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
2323
2324  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2325  static bool classof(const EnumDecl *D) { return true; }
2326  static bool classofKind(Kind K) { return K == Enum; }
2327
2328  friend class ASTDeclReader;
2329};
2330
2331
2332/// RecordDecl - Represents a struct/union/class.  For example:
2333///   struct X;                  // Forward declaration, no "body".
2334///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
2335/// This decl will be marked invalid if *any* members are invalid.
2336///
2337class RecordDecl : public TagDecl {
2338  // FIXME: This can be packed into the bitfields in Decl.
2339  /// HasFlexibleArrayMember - This is true if this struct ends with a flexible
2340  /// array member (e.g. int X[]) or if this union contains a struct that does.
2341  /// If so, this cannot be contained in arrays or other structs as a member.
2342  bool HasFlexibleArrayMember : 1;
2343
2344  /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
2345  /// or union.
2346  bool AnonymousStructOrUnion : 1;
2347
2348  /// HasObjectMember - This is true if this struct has at least one member
2349  /// containing an object.
2350  bool HasObjectMember : 1;
2351
2352  /// \brief Whether the field declarations of this record have been loaded
2353  /// from external storage. To avoid unnecessary deserialization of
2354  /// methods/nested types we allow deserialization of just the fields
2355  /// when needed.
2356  mutable bool LoadedFieldsFromExternalStorage : 1;
2357  friend class DeclContext;
2358
2359protected:
2360  RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2361             SourceLocation L, IdentifierInfo *Id,
2362             RecordDecl *PrevDecl, SourceLocation TKL);
2363
2364public:
2365  static RecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
2366                            SourceLocation L, IdentifierInfo *Id,
2367                            SourceLocation TKL = SourceLocation(),
2368                            RecordDecl* PrevDecl = 0);
2369  static RecordDecl *Create(ASTContext &C, EmptyShell Empty);
2370
2371  const RecordDecl *getPreviousDeclaration() const {
2372    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2373  }
2374  RecordDecl *getPreviousDeclaration() {
2375    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2376  }
2377
2378  bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
2379  void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
2380
2381  /// isAnonymousStructOrUnion - Whether this is an anonymous struct
2382  /// or union. To be an anonymous struct or union, it must have been
2383  /// declared without a name and there must be no objects of this
2384  /// type declared, e.g.,
2385  /// @code
2386  ///   union { int i; float f; };
2387  /// @endcode
2388  /// is an anonymous union but neither of the following are:
2389  /// @code
2390  ///  union X { int i; float f; };
2391  ///  union { int i; float f; } obj;
2392  /// @endcode
2393  bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
2394  void setAnonymousStructOrUnion(bool Anon) {
2395    AnonymousStructOrUnion = Anon;
2396  }
2397
2398  ValueDecl *getAnonymousStructOrUnionObject();
2399  const ValueDecl *getAnonymousStructOrUnionObject() const {
2400    return const_cast<RecordDecl*>(this)->getAnonymousStructOrUnionObject();
2401  }
2402
2403  bool hasObjectMember() const { return HasObjectMember; }
2404  void setHasObjectMember (bool val) { HasObjectMember = val; }
2405
2406  /// \brief Determines whether this declaration represents the
2407  /// injected class name.
2408  ///
2409  /// The injected class name in C++ is the name of the class that
2410  /// appears inside the class itself. For example:
2411  ///
2412  /// \code
2413  /// struct C {
2414  ///   // C is implicitly declared here as a synonym for the class name.
2415  /// };
2416  ///
2417  /// C::C c; // same as "C c;"
2418  /// \endcode
2419  bool isInjectedClassName() const;
2420
2421  /// getDefinition - Returns the RecordDecl that actually defines this
2422  ///  struct/union/class.  When determining whether or not a struct/union/class
2423  ///  is completely defined, one should use this method as opposed to
2424  ///  'isDefinition'.  'isDefinition' indicates whether or not a specific
2425  ///  RecordDecl is defining declaration, not whether or not the record
2426  ///  type is defined.  This method returns NULL if there is no RecordDecl
2427  ///  that defines the struct/union/tag.
2428  RecordDecl* getDefinition() const {
2429    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
2430  }
2431
2432  // Iterator access to field members. The field iterator only visits
2433  // the non-static data members of this class, ignoring any static
2434  // data members, functions, constructors, destructors, etc.
2435  typedef specific_decl_iterator<FieldDecl> field_iterator;
2436
2437  field_iterator field_begin() const;
2438
2439  field_iterator field_end() const {
2440    return field_iterator(decl_iterator());
2441  }
2442
2443  // field_empty - Whether there are any fields (non-static data
2444  // members) in this record.
2445  bool field_empty() const {
2446    return field_begin() == field_end();
2447  }
2448
2449  /// completeDefinition - Notes that the definition of this type is
2450  /// now complete.
2451  virtual void completeDefinition();
2452
2453  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2454  static bool classof(const RecordDecl *D) { return true; }
2455  static bool classofKind(Kind K) {
2456    return K >= firstRecord && K <= lastRecord;
2457  }
2458
2459private:
2460  /// \brief Deserialize just the fields.
2461  void LoadFieldsFromExternalStorage() const;
2462};
2463
2464class FileScopeAsmDecl : public Decl {
2465  StringLiteral *AsmString;
2466  FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
2467    : Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
2468public:
2469  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
2470                                  SourceLocation L, StringLiteral *Str);
2471
2472  const StringLiteral *getAsmString() const { return AsmString; }
2473  StringLiteral *getAsmString() { return AsmString; }
2474  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
2475
2476  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2477  static bool classof(const FileScopeAsmDecl *D) { return true; }
2478  static bool classofKind(Kind K) { return K == FileScopeAsm; }
2479};
2480
2481/// BlockDecl - This represents a block literal declaration, which is like an
2482/// unnamed FunctionDecl.  For example:
2483/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2484///
2485class BlockDecl : public Decl, public DeclContext {
2486  // FIXME: This can be packed into the bitfields in Decl.
2487  bool IsVariadic : 1;
2488  /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
2489  /// parameters of this function.  This is null if a prototype or if there are
2490  /// no formals.
2491  ParmVarDecl **ParamInfo;
2492  unsigned NumParams;
2493
2494  Stmt *Body;
2495  TypeSourceInfo *SignatureAsWritten;
2496
2497protected:
2498  BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
2499    : Decl(Block, DC, CaretLoc), DeclContext(Block),
2500      IsVariadic(false), ParamInfo(0), NumParams(0), Body(0),
2501      SignatureAsWritten(0) {}
2502
2503public:
2504  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
2505
2506  SourceLocation getCaretLocation() const { return getLocation(); }
2507
2508  bool isVariadic() const { return IsVariadic; }
2509  void setIsVariadic(bool value) { IsVariadic = value; }
2510
2511  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
2512  Stmt *getBody() const { return (Stmt*) Body; }
2513  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
2514
2515  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
2516  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
2517
2518  // Iterator access to formal parameters.
2519  unsigned param_size() const { return getNumParams(); }
2520  typedef ParmVarDecl **param_iterator;
2521  typedef ParmVarDecl * const *param_const_iterator;
2522
2523  bool param_empty() const { return NumParams == 0; }
2524  param_iterator param_begin()  { return ParamInfo; }
2525  param_iterator param_end()   { return ParamInfo+param_size(); }
2526
2527  param_const_iterator param_begin() const { return ParamInfo; }
2528  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
2529
2530  unsigned getNumParams() const;
2531  const ParmVarDecl *getParamDecl(unsigned i) const {
2532    assert(i < getNumParams() && "Illegal param #");
2533    return ParamInfo[i];
2534  }
2535  ParmVarDecl *getParamDecl(unsigned i) {
2536    assert(i < getNumParams() && "Illegal param #");
2537    return ParamInfo[i];
2538  }
2539  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
2540
2541  // Implement isa/cast/dyncast/etc.
2542  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2543  static bool classof(const BlockDecl *D) { return true; }
2544  static bool classofKind(Kind K) { return K == Block; }
2545  static DeclContext *castToDeclContext(const BlockDecl *D) {
2546    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
2547  }
2548  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
2549    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
2550  }
2551};
2552
2553/// Insertion operator for diagnostics.  This allows sending NamedDecl's
2554/// into a diagnostic with <<.
2555inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2556                                           NamedDecl* ND) {
2557  DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
2558  return DB;
2559}
2560
2561template<typename decl_type>
2562void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {
2563  // Note: This routine is implemented here because we need both NamedDecl
2564  // and Redeclarable to be defined.
2565
2566  decl_type *First;
2567
2568  if (PrevDecl) {
2569    // Point to previous. Make sure that this is actually the most recent
2570    // redeclaration, or we can build invalid chains. If the most recent
2571    // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
2572    RedeclLink = PreviousDeclLink(llvm::cast<decl_type>(
2573                                                        PrevDecl->getMostRecentDeclaration()));
2574    First = PrevDecl->getFirstDeclaration();
2575    assert(First->RedeclLink.NextIsLatest() && "Expected first");
2576  } else {
2577    // Make this first.
2578    First = static_cast<decl_type*>(this);
2579  }
2580
2581  // First one will point to this one as latest.
2582  First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this));
2583  if (NamedDecl *ND = dyn_cast<NamedDecl>(static_cast<decl_type*>(this)))
2584    ND->ClearLinkageCache();
2585}
2586
2587}  // end namespace clang
2588
2589#endif
2590