Expr.cpp revision 01d08018b7cf5ce1601707cfd7a84d22015fc04e
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Sema/SemaDiagnostic.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31#include <algorithm>
32#include <cstring>
33using namespace clang;
34
35/// isKnownToHaveBooleanValue - Return true if this is an integer expression
36/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
37/// but also int expressions which are produced by things like comparisons in
38/// C.
39bool Expr::isKnownToHaveBooleanValue() const {
40  const Expr *E = IgnoreParens();
41
42  // If this value has _Bool type, it is obvious 0/1.
43  if (E->getType()->isBooleanType()) return true;
44  // If this is a non-scalar-integer type, we don't care enough to try.
45  if (!E->getType()->isIntegralOrEnumerationType()) return false;
46
47  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
48    switch (UO->getOpcode()) {
49    case UO_Plus:
50      return UO->getSubExpr()->isKnownToHaveBooleanValue();
51    default:
52      return false;
53    }
54  }
55
56  // Only look through implicit casts.  If the user writes
57  // '(int) (a && b)' treat it as an arbitrary int.
58  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
59    return CE->getSubExpr()->isKnownToHaveBooleanValue();
60
61  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
62    switch (BO->getOpcode()) {
63    default: return false;
64    case BO_LT:   // Relational operators.
65    case BO_GT:
66    case BO_LE:
67    case BO_GE:
68    case BO_EQ:   // Equality operators.
69    case BO_NE:
70    case BO_LAnd: // AND operator.
71    case BO_LOr:  // Logical OR operator.
72      return true;
73
74    case BO_And:  // Bitwise AND operator.
75    case BO_Xor:  // Bitwise XOR operator.
76    case BO_Or:   // Bitwise OR operator.
77      // Handle things like (x==2)|(y==12).
78      return BO->getLHS()->isKnownToHaveBooleanValue() &&
79             BO->getRHS()->isKnownToHaveBooleanValue();
80
81    case BO_Comma:
82    case BO_Assign:
83      return BO->getRHS()->isKnownToHaveBooleanValue();
84    }
85  }
86
87  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
88    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
89           CO->getFalseExpr()->isKnownToHaveBooleanValue();
90
91  return false;
92}
93
94// Amusing macro metaprogramming hack: check whether a class provides
95// a more specific implementation of getExprLoc().
96namespace {
97  /// This implementation is used when a class provides a custom
98  /// implementation of getExprLoc.
99  template <class E, class T>
100  SourceLocation getExprLocImpl(const Expr *expr,
101                                SourceLocation (T::*v)() const) {
102    return static_cast<const E*>(expr)->getExprLoc();
103  }
104
105  /// This implementation is used when a class doesn't provide
106  /// a custom implementation of getExprLoc.  Overload resolution
107  /// should pick it over the implementation above because it's
108  /// more specialized according to function template partial ordering.
109  template <class E>
110  SourceLocation getExprLocImpl(const Expr *expr,
111                                SourceLocation (Expr::*v)() const) {
112    return static_cast<const E*>(expr)->getSourceRange().getBegin();
113  }
114}
115
116SourceLocation Expr::getExprLoc() const {
117  switch (getStmtClass()) {
118  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
119#define ABSTRACT_STMT(type)
120#define STMT(type, base) \
121  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
122#define EXPR(type, base) \
123  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
124#include "clang/AST/StmtNodes.inc"
125  }
126  llvm_unreachable("unknown statement kind");
127}
128
129//===----------------------------------------------------------------------===//
130// Primary Expressions.
131//===----------------------------------------------------------------------===//
132
133/// \brief Compute the type-, value-, and instantiation-dependence of a
134/// declaration reference
135/// based on the declaration being referenced.
136static void computeDeclRefDependence(NamedDecl *D, QualType T,
137                                     bool &TypeDependent,
138                                     bool &ValueDependent,
139                                     bool &InstantiationDependent) {
140  TypeDependent = false;
141  ValueDependent = false;
142  InstantiationDependent = false;
143
144  // (TD) C++ [temp.dep.expr]p3:
145  //   An id-expression is type-dependent if it contains:
146  //
147  // and
148  //
149  // (VD) C++ [temp.dep.constexpr]p2:
150  //  An identifier is value-dependent if it is:
151
152  //  (TD)  - an identifier that was declared with dependent type
153  //  (VD)  - a name declared with a dependent type,
154  if (T->isDependentType()) {
155    TypeDependent = true;
156    ValueDependent = true;
157    InstantiationDependent = true;
158    return;
159  } else if (T->isInstantiationDependentType()) {
160    InstantiationDependent = true;
161  }
162
163  //  (TD)  - a conversion-function-id that specifies a dependent type
164  if (D->getDeclName().getNameKind()
165                                == DeclarationName::CXXConversionFunctionName) {
166    QualType T = D->getDeclName().getCXXNameType();
167    if (T->isDependentType()) {
168      TypeDependent = true;
169      ValueDependent = true;
170      InstantiationDependent = true;
171      return;
172    }
173
174    if (T->isInstantiationDependentType())
175      InstantiationDependent = true;
176  }
177
178  //  (VD)  - the name of a non-type template parameter,
179  if (isa<NonTypeTemplateParmDecl>(D)) {
180    ValueDependent = true;
181    InstantiationDependent = true;
182    return;
183  }
184
185  //  (VD) - a constant with integral or enumeration type and is
186  //         initialized with an expression that is value-dependent.
187  //  (VD) - a constant with literal type and is initialized with an
188  //         expression that is value-dependent [C++11].
189  //  (VD) - FIXME: Missing from the standard:
190  //       -  an entity with reference type and is initialized with an
191  //          expression that is value-dependent [C++11]
192  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
193    if ((D->getASTContext().getLangOptions().CPlusPlus0x ?
194           Var->getType()->isLiteralType() :
195           Var->getType()->isIntegralOrEnumerationType()) &&
196        (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
197         Var->getType()->isReferenceType())) {
198      if (const Expr *Init = Var->getAnyInitializer())
199        if (Init->isValueDependent()) {
200          ValueDependent = true;
201          InstantiationDependent = true;
202        }
203    }
204
205    // (VD) - FIXME: Missing from the standard:
206    //      -  a member function or a static data member of the current
207    //         instantiation
208    if (Var->isStaticDataMember() &&
209        Var->getDeclContext()->isDependentContext()) {
210      ValueDependent = true;
211      InstantiationDependent = true;
212    }
213
214    return;
215  }
216
217  // (VD) - FIXME: Missing from the standard:
218  //      -  a member function or a static data member of the current
219  //         instantiation
220  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
221    ValueDependent = true;
222    InstantiationDependent = true;
223  }
224}
225
226void DeclRefExpr::computeDependence() {
227  bool TypeDependent = false;
228  bool ValueDependent = false;
229  bool InstantiationDependent = false;
230  computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent,
231                           InstantiationDependent);
232
233  // (TD) C++ [temp.dep.expr]p3:
234  //   An id-expression is type-dependent if it contains:
235  //
236  // and
237  //
238  // (VD) C++ [temp.dep.constexpr]p2:
239  //  An identifier is value-dependent if it is:
240  if (!TypeDependent && !ValueDependent &&
241      hasExplicitTemplateArgs() &&
242      TemplateSpecializationType::anyDependentTemplateArguments(
243                                                            getTemplateArgs(),
244                                                       getNumTemplateArgs(),
245                                                      InstantiationDependent)) {
246    TypeDependent = true;
247    ValueDependent = true;
248    InstantiationDependent = true;
249  }
250
251  ExprBits.TypeDependent = TypeDependent;
252  ExprBits.ValueDependent = ValueDependent;
253  ExprBits.InstantiationDependent = InstantiationDependent;
254
255  // Is the declaration a parameter pack?
256  if (getDecl()->isParameterPack())
257    ExprBits.ContainsUnexpandedParameterPack = true;
258}
259
260DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
261                         SourceLocation TemplateKWLoc,
262                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
263                         NamedDecl *FoundD,
264                         const TemplateArgumentListInfo *TemplateArgs,
265                         QualType T, ExprValueKind VK)
266  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
267    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
268  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
269  if (QualifierLoc)
270    getInternalQualifierLoc() = QualifierLoc;
271  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
272  if (FoundD)
273    getInternalFoundDecl() = FoundD;
274  DeclRefExprBits.HasTemplateKWAndArgsInfo
275    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
276  if (TemplateArgs) {
277    bool Dependent = false;
278    bool InstantiationDependent = false;
279    bool ContainsUnexpandedParameterPack = false;
280    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
281                                               Dependent,
282                                               InstantiationDependent,
283                                               ContainsUnexpandedParameterPack);
284    if (InstantiationDependent)
285      setInstantiationDependent(true);
286  } else if (TemplateKWLoc.isValid()) {
287    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
288  }
289  DeclRefExprBits.HadMultipleCandidates = 0;
290
291  computeDependence();
292}
293
294DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
295                                 NestedNameSpecifierLoc QualifierLoc,
296                                 SourceLocation TemplateKWLoc,
297                                 ValueDecl *D,
298                                 SourceLocation NameLoc,
299                                 QualType T,
300                                 ExprValueKind VK,
301                                 NamedDecl *FoundD,
302                                 const TemplateArgumentListInfo *TemplateArgs) {
303  return Create(Context, QualifierLoc, TemplateKWLoc, D,
304                DeclarationNameInfo(D->getDeclName(), NameLoc),
305                T, VK, FoundD, TemplateArgs);
306}
307
308DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
309                                 NestedNameSpecifierLoc QualifierLoc,
310                                 SourceLocation TemplateKWLoc,
311                                 ValueDecl *D,
312                                 const DeclarationNameInfo &NameInfo,
313                                 QualType T,
314                                 ExprValueKind VK,
315                                 NamedDecl *FoundD,
316                                 const TemplateArgumentListInfo *TemplateArgs) {
317  // Filter out cases where the found Decl is the same as the value refenenced.
318  if (D == FoundD)
319    FoundD = 0;
320
321  std::size_t Size = sizeof(DeclRefExpr);
322  if (QualifierLoc != 0)
323    Size += sizeof(NestedNameSpecifierLoc);
324  if (FoundD)
325    Size += sizeof(NamedDecl *);
326  if (TemplateArgs)
327    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
328  else if (TemplateKWLoc.isValid())
329    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
330
331  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
332  return new (Mem) DeclRefExpr(QualifierLoc, TemplateKWLoc, D, NameInfo,
333                               FoundD, TemplateArgs, T, VK);
334}
335
336DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
337                                      bool HasQualifier,
338                                      bool HasFoundDecl,
339                                      bool HasTemplateKWAndArgsInfo,
340                                      unsigned NumTemplateArgs) {
341  std::size_t Size = sizeof(DeclRefExpr);
342  if (HasQualifier)
343    Size += sizeof(NestedNameSpecifierLoc);
344  if (HasFoundDecl)
345    Size += sizeof(NamedDecl *);
346  if (HasTemplateKWAndArgsInfo)
347    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
348
349  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
350  return new (Mem) DeclRefExpr(EmptyShell());
351}
352
353SourceRange DeclRefExpr::getSourceRange() const {
354  SourceRange R = getNameInfo().getSourceRange();
355  if (hasQualifier())
356    R.setBegin(getQualifierLoc().getBeginLoc());
357  if (hasExplicitTemplateArgs())
358    R.setEnd(getRAngleLoc());
359  return R;
360}
361
362// FIXME: Maybe this should use DeclPrinter with a special "print predefined
363// expr" policy instead.
364std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
365  ASTContext &Context = CurrentDecl->getASTContext();
366
367  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
368    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
369      return FD->getNameAsString();
370
371    SmallString<256> Name;
372    llvm::raw_svector_ostream Out(Name);
373
374    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
375      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
376        Out << "virtual ";
377      if (MD->isStatic())
378        Out << "static ";
379    }
380
381    PrintingPolicy Policy(Context.getLangOptions());
382
383    std::string Proto = FD->getQualifiedNameAsString(Policy);
384
385    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
386    const FunctionProtoType *FT = 0;
387    if (FD->hasWrittenPrototype())
388      FT = dyn_cast<FunctionProtoType>(AFT);
389
390    Proto += "(";
391    if (FT) {
392      llvm::raw_string_ostream POut(Proto);
393      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
394        if (i) POut << ", ";
395        std::string Param;
396        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
397        POut << Param;
398      }
399
400      if (FT->isVariadic()) {
401        if (FD->getNumParams()) POut << ", ";
402        POut << "...";
403      }
404    }
405    Proto += ")";
406
407    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
408      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
409      if (ThisQuals.hasConst())
410        Proto += " const";
411      if (ThisQuals.hasVolatile())
412        Proto += " volatile";
413    }
414
415    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
416      AFT->getResultType().getAsStringInternal(Proto, Policy);
417
418    Out << Proto;
419
420    Out.flush();
421    return Name.str().str();
422  }
423  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
424    SmallString<256> Name;
425    llvm::raw_svector_ostream Out(Name);
426    Out << (MD->isInstanceMethod() ? '-' : '+');
427    Out << '[';
428
429    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
430    // a null check to avoid a crash.
431    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
432      Out << *ID;
433
434    if (const ObjCCategoryImplDecl *CID =
435        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
436      Out << '(' << CID << ')';
437
438    Out <<  ' ';
439    Out << MD->getSelector().getAsString();
440    Out <<  ']';
441
442    Out.flush();
443    return Name.str().str();
444  }
445  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
446    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
447    return "top level";
448  }
449  return "";
450}
451
452void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
453  if (hasAllocation())
454    C.Deallocate(pVal);
455
456  BitWidth = Val.getBitWidth();
457  unsigned NumWords = Val.getNumWords();
458  const uint64_t* Words = Val.getRawData();
459  if (NumWords > 1) {
460    pVal = new (C) uint64_t[NumWords];
461    std::copy(Words, Words + NumWords, pVal);
462  } else if (NumWords == 1)
463    VAL = Words[0];
464  else
465    VAL = 0;
466}
467
468IntegerLiteral *
469IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
470                       QualType type, SourceLocation l) {
471  return new (C) IntegerLiteral(C, V, type, l);
472}
473
474IntegerLiteral *
475IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
476  return new (C) IntegerLiteral(Empty);
477}
478
479FloatingLiteral *
480FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
481                        bool isexact, QualType Type, SourceLocation L) {
482  return new (C) FloatingLiteral(C, V, isexact, Type, L);
483}
484
485FloatingLiteral *
486FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
487  return new (C) FloatingLiteral(C, Empty);
488}
489
490/// getValueAsApproximateDouble - This returns the value as an inaccurate
491/// double.  Note that this may cause loss of precision, but is useful for
492/// debugging dumps, etc.
493double FloatingLiteral::getValueAsApproximateDouble() const {
494  llvm::APFloat V = getValue();
495  bool ignored;
496  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
497            &ignored);
498  return V.convertToDouble();
499}
500
501int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
502  int CharByteWidth;
503  switch(k) {
504    case Ascii:
505    case UTF8:
506      CharByteWidth = target.getCharWidth();
507      break;
508    case Wide:
509      CharByteWidth = target.getWCharWidth();
510      break;
511    case UTF16:
512      CharByteWidth = target.getChar16Width();
513      break;
514    case UTF32:
515      CharByteWidth = target.getChar32Width();
516  }
517  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
518  CharByteWidth /= 8;
519  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
520         && "character byte widths supported are 1, 2, and 4 only");
521  return CharByteWidth;
522}
523
524StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
525                                     StringKind Kind, bool Pascal, QualType Ty,
526                                     const SourceLocation *Loc,
527                                     unsigned NumStrs) {
528  // Allocate enough space for the StringLiteral plus an array of locations for
529  // any concatenated string tokens.
530  void *Mem = C.Allocate(sizeof(StringLiteral)+
531                         sizeof(SourceLocation)*(NumStrs-1),
532                         llvm::alignOf<StringLiteral>());
533  StringLiteral *SL = new (Mem) StringLiteral(Ty);
534
535  // OPTIMIZE: could allocate this appended to the StringLiteral.
536  SL->setString(C,Str,Kind,Pascal);
537
538  SL->TokLocs[0] = Loc[0];
539  SL->NumConcatenated = NumStrs;
540
541  if (NumStrs != 1)
542    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
543  return SL;
544}
545
546StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
547  void *Mem = C.Allocate(sizeof(StringLiteral)+
548                         sizeof(SourceLocation)*(NumStrs-1),
549                         llvm::alignOf<StringLiteral>());
550  StringLiteral *SL = new (Mem) StringLiteral(QualType());
551  SL->CharByteWidth = 0;
552  SL->Length = 0;
553  SL->NumConcatenated = NumStrs;
554  return SL;
555}
556
557void StringLiteral::setString(ASTContext &C, StringRef Str,
558                              StringKind Kind, bool IsPascal) {
559  //FIXME: we assume that the string data comes from a target that uses the same
560  // code unit size and endianess for the type of string.
561  this->Kind = Kind;
562  this->IsPascal = IsPascal;
563
564  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
565  assert((Str.size()%CharByteWidth == 0)
566         && "size of data must be multiple of CharByteWidth");
567  Length = Str.size()/CharByteWidth;
568
569  switch(CharByteWidth) {
570    case 1: {
571      char *AStrData = new (C) char[Length];
572      std::memcpy(AStrData,Str.data(),Str.size());
573      StrData.asChar = AStrData;
574      break;
575    }
576    case 2: {
577      uint16_t *AStrData = new (C) uint16_t[Length];
578      std::memcpy(AStrData,Str.data(),Str.size());
579      StrData.asUInt16 = AStrData;
580      break;
581    }
582    case 4: {
583      uint32_t *AStrData = new (C) uint32_t[Length];
584      std::memcpy(AStrData,Str.data(),Str.size());
585      StrData.asUInt32 = AStrData;
586      break;
587    }
588    default:
589      assert(false && "unsupported CharByteWidth");
590  }
591}
592
593/// getLocationOfByte - Return a source location that points to the specified
594/// byte of this string literal.
595///
596/// Strings are amazingly complex.  They can be formed from multiple tokens and
597/// can have escape sequences in them in addition to the usual trigraph and
598/// escaped newline business.  This routine handles this complexity.
599///
600SourceLocation StringLiteral::
601getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
602                  const LangOptions &Features, const TargetInfo &Target) const {
603  assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
604
605  // Loop over all of the tokens in this string until we find the one that
606  // contains the byte we're looking for.
607  unsigned TokNo = 0;
608  while (1) {
609    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
610    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
611
612    // Get the spelling of the string so that we can get the data that makes up
613    // the string literal, not the identifier for the macro it is potentially
614    // expanded through.
615    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
616
617    // Re-lex the token to get its length and original spelling.
618    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
619    bool Invalid = false;
620    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
621    if (Invalid)
622      return StrTokSpellingLoc;
623
624    const char *StrData = Buffer.data()+LocInfo.second;
625
626    // Create a langops struct and enable trigraphs.  This is sufficient for
627    // relexing tokens.
628    LangOptions LangOpts;
629    LangOpts.Trigraphs = true;
630
631    // Create a lexer starting at the beginning of this token.
632    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
633                   Buffer.end());
634    Token TheTok;
635    TheLexer.LexFromRawLexer(TheTok);
636
637    // Use the StringLiteralParser to compute the length of the string in bytes.
638    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
639    unsigned TokNumBytes = SLP.GetStringLength();
640
641    // If the byte is in this token, return the location of the byte.
642    if (ByteNo < TokNumBytes ||
643        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
644      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
645
646      // Now that we know the offset of the token in the spelling, use the
647      // preprocessor to get the offset in the original source.
648      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
649    }
650
651    // Move to the next string token.
652    ++TokNo;
653    ByteNo -= TokNumBytes;
654  }
655}
656
657
658
659/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
660/// corresponds to, e.g. "sizeof" or "[pre]++".
661const char *UnaryOperator::getOpcodeStr(Opcode Op) {
662  switch (Op) {
663  case UO_PostInc: return "++";
664  case UO_PostDec: return "--";
665  case UO_PreInc:  return "++";
666  case UO_PreDec:  return "--";
667  case UO_AddrOf:  return "&";
668  case UO_Deref:   return "*";
669  case UO_Plus:    return "+";
670  case UO_Minus:   return "-";
671  case UO_Not:     return "~";
672  case UO_LNot:    return "!";
673  case UO_Real:    return "__real";
674  case UO_Imag:    return "__imag";
675  case UO_Extension: return "__extension__";
676  }
677  llvm_unreachable("Unknown unary operator");
678}
679
680UnaryOperatorKind
681UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
682  switch (OO) {
683  default: llvm_unreachable("No unary operator for overloaded function");
684  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
685  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
686  case OO_Amp:        return UO_AddrOf;
687  case OO_Star:       return UO_Deref;
688  case OO_Plus:       return UO_Plus;
689  case OO_Minus:      return UO_Minus;
690  case OO_Tilde:      return UO_Not;
691  case OO_Exclaim:    return UO_LNot;
692  }
693}
694
695OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
696  switch (Opc) {
697  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
698  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
699  case UO_AddrOf: return OO_Amp;
700  case UO_Deref: return OO_Star;
701  case UO_Plus: return OO_Plus;
702  case UO_Minus: return OO_Minus;
703  case UO_Not: return OO_Tilde;
704  case UO_LNot: return OO_Exclaim;
705  default: return OO_None;
706  }
707}
708
709
710//===----------------------------------------------------------------------===//
711// Postfix Operators.
712//===----------------------------------------------------------------------===//
713
714CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
715                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
716                   SourceLocation rparenloc)
717  : Expr(SC, t, VK, OK_Ordinary,
718         fn->isTypeDependent(),
719         fn->isValueDependent(),
720         fn->isInstantiationDependent(),
721         fn->containsUnexpandedParameterPack()),
722    NumArgs(numargs) {
723
724  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
725  SubExprs[FN] = fn;
726  for (unsigned i = 0; i != numargs; ++i) {
727    if (args[i]->isTypeDependent())
728      ExprBits.TypeDependent = true;
729    if (args[i]->isValueDependent())
730      ExprBits.ValueDependent = true;
731    if (args[i]->isInstantiationDependent())
732      ExprBits.InstantiationDependent = true;
733    if (args[i]->containsUnexpandedParameterPack())
734      ExprBits.ContainsUnexpandedParameterPack = true;
735
736    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
737  }
738
739  CallExprBits.NumPreArgs = NumPreArgs;
740  RParenLoc = rparenloc;
741}
742
743CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
744                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
745  : Expr(CallExprClass, t, VK, OK_Ordinary,
746         fn->isTypeDependent(),
747         fn->isValueDependent(),
748         fn->isInstantiationDependent(),
749         fn->containsUnexpandedParameterPack()),
750    NumArgs(numargs) {
751
752  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
753  SubExprs[FN] = fn;
754  for (unsigned i = 0; i != numargs; ++i) {
755    if (args[i]->isTypeDependent())
756      ExprBits.TypeDependent = true;
757    if (args[i]->isValueDependent())
758      ExprBits.ValueDependent = true;
759    if (args[i]->isInstantiationDependent())
760      ExprBits.InstantiationDependent = true;
761    if (args[i]->containsUnexpandedParameterPack())
762      ExprBits.ContainsUnexpandedParameterPack = true;
763
764    SubExprs[i+PREARGS_START] = args[i];
765  }
766
767  CallExprBits.NumPreArgs = 0;
768  RParenLoc = rparenloc;
769}
770
771CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
772  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
773  // FIXME: Why do we allocate this?
774  SubExprs = new (C) Stmt*[PREARGS_START];
775  CallExprBits.NumPreArgs = 0;
776}
777
778CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
779                   EmptyShell Empty)
780  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
781  // FIXME: Why do we allocate this?
782  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
783  CallExprBits.NumPreArgs = NumPreArgs;
784}
785
786Decl *CallExpr::getCalleeDecl() {
787  Expr *CEE = getCallee()->IgnoreParenImpCasts();
788
789  while (SubstNonTypeTemplateParmExpr *NTTP
790                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
791    CEE = NTTP->getReplacement()->IgnoreParenCasts();
792  }
793
794  // If we're calling a dereference, look at the pointer instead.
795  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
796    if (BO->isPtrMemOp())
797      CEE = BO->getRHS()->IgnoreParenCasts();
798  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
799    if (UO->getOpcode() == UO_Deref)
800      CEE = UO->getSubExpr()->IgnoreParenCasts();
801  }
802  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
803    return DRE->getDecl();
804  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
805    return ME->getMemberDecl();
806
807  return 0;
808}
809
810FunctionDecl *CallExpr::getDirectCallee() {
811  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
812}
813
814/// setNumArgs - This changes the number of arguments present in this call.
815/// Any orphaned expressions are deleted by this, and any new operands are set
816/// to null.
817void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
818  // No change, just return.
819  if (NumArgs == getNumArgs()) return;
820
821  // If shrinking # arguments, just delete the extras and forgot them.
822  if (NumArgs < getNumArgs()) {
823    this->NumArgs = NumArgs;
824    return;
825  }
826
827  // Otherwise, we are growing the # arguments.  New an bigger argument array.
828  unsigned NumPreArgs = getNumPreArgs();
829  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
830  // Copy over args.
831  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
832    NewSubExprs[i] = SubExprs[i];
833  // Null out new args.
834  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
835       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
836    NewSubExprs[i] = 0;
837
838  if (SubExprs) C.Deallocate(SubExprs);
839  SubExprs = NewSubExprs;
840  this->NumArgs = NumArgs;
841}
842
843/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
844/// not, return 0.
845unsigned CallExpr::isBuiltinCall() const {
846  // All simple function calls (e.g. func()) are implicitly cast to pointer to
847  // function. As a result, we try and obtain the DeclRefExpr from the
848  // ImplicitCastExpr.
849  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
850  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
851    return 0;
852
853  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
854  if (!DRE)
855    return 0;
856
857  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
858  if (!FDecl)
859    return 0;
860
861  if (!FDecl->getIdentifier())
862    return 0;
863
864  return FDecl->getBuiltinID();
865}
866
867QualType CallExpr::getCallReturnType() const {
868  QualType CalleeType = getCallee()->getType();
869  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
870    CalleeType = FnTypePtr->getPointeeType();
871  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
872    CalleeType = BPT->getPointeeType();
873  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
874    // This should never be overloaded and so should never return null.
875    CalleeType = Expr::findBoundMemberType(getCallee());
876
877  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
878  return FnType->getResultType();
879}
880
881SourceRange CallExpr::getSourceRange() const {
882  if (isa<CXXOperatorCallExpr>(this))
883    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
884
885  SourceLocation begin = getCallee()->getLocStart();
886  if (begin.isInvalid() && getNumArgs() > 0)
887    begin = getArg(0)->getLocStart();
888  SourceLocation end = getRParenLoc();
889  if (end.isInvalid() && getNumArgs() > 0)
890    end = getArg(getNumArgs() - 1)->getLocEnd();
891  return SourceRange(begin, end);
892}
893
894OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
895                                   SourceLocation OperatorLoc,
896                                   TypeSourceInfo *tsi,
897                                   OffsetOfNode* compsPtr, unsigned numComps,
898                                   Expr** exprsPtr, unsigned numExprs,
899                                   SourceLocation RParenLoc) {
900  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
901                         sizeof(OffsetOfNode) * numComps +
902                         sizeof(Expr*) * numExprs);
903
904  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
905                                exprsPtr, numExprs, RParenLoc);
906}
907
908OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
909                                        unsigned numComps, unsigned numExprs) {
910  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
911                         sizeof(OffsetOfNode) * numComps +
912                         sizeof(Expr*) * numExprs);
913  return new (Mem) OffsetOfExpr(numComps, numExprs);
914}
915
916OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
917                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
918                           OffsetOfNode* compsPtr, unsigned numComps,
919                           Expr** exprsPtr, unsigned numExprs,
920                           SourceLocation RParenLoc)
921  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
922         /*TypeDependent=*/false,
923         /*ValueDependent=*/tsi->getType()->isDependentType(),
924         tsi->getType()->isInstantiationDependentType(),
925         tsi->getType()->containsUnexpandedParameterPack()),
926    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
927    NumComps(numComps), NumExprs(numExprs)
928{
929  for(unsigned i = 0; i < numComps; ++i) {
930    setComponent(i, compsPtr[i]);
931  }
932
933  for(unsigned i = 0; i < numExprs; ++i) {
934    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
935      ExprBits.ValueDependent = true;
936    if (exprsPtr[i]->containsUnexpandedParameterPack())
937      ExprBits.ContainsUnexpandedParameterPack = true;
938
939    setIndexExpr(i, exprsPtr[i]);
940  }
941}
942
943IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
944  assert(getKind() == Field || getKind() == Identifier);
945  if (getKind() == Field)
946    return getField()->getIdentifier();
947
948  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
949}
950
951MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
952                               NestedNameSpecifierLoc QualifierLoc,
953                               SourceLocation TemplateKWLoc,
954                               ValueDecl *memberdecl,
955                               DeclAccessPair founddecl,
956                               DeclarationNameInfo nameinfo,
957                               const TemplateArgumentListInfo *targs,
958                               QualType ty,
959                               ExprValueKind vk,
960                               ExprObjectKind ok) {
961  std::size_t Size = sizeof(MemberExpr);
962
963  bool hasQualOrFound = (QualifierLoc ||
964                         founddecl.getDecl() != memberdecl ||
965                         founddecl.getAccess() != memberdecl->getAccess());
966  if (hasQualOrFound)
967    Size += sizeof(MemberNameQualifier);
968
969  if (targs)
970    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
971  else if (TemplateKWLoc.isValid())
972    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
973
974  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
975  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
976                                       ty, vk, ok);
977
978  if (hasQualOrFound) {
979    // FIXME: Wrong. We should be looking at the member declaration we found.
980    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
981      E->setValueDependent(true);
982      E->setTypeDependent(true);
983      E->setInstantiationDependent(true);
984    }
985    else if (QualifierLoc &&
986             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
987      E->setInstantiationDependent(true);
988
989    E->HasQualifierOrFoundDecl = true;
990
991    MemberNameQualifier *NQ = E->getMemberQualifier();
992    NQ->QualifierLoc = QualifierLoc;
993    NQ->FoundDecl = founddecl;
994  }
995
996  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
997
998  if (targs) {
999    bool Dependent = false;
1000    bool InstantiationDependent = false;
1001    bool ContainsUnexpandedParameterPack = false;
1002    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1003                                                  Dependent,
1004                                                  InstantiationDependent,
1005                                             ContainsUnexpandedParameterPack);
1006    if (InstantiationDependent)
1007      E->setInstantiationDependent(true);
1008  } else if (TemplateKWLoc.isValid()) {
1009    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1010  }
1011
1012  return E;
1013}
1014
1015SourceRange MemberExpr::getSourceRange() const {
1016  SourceLocation StartLoc;
1017  if (isImplicitAccess()) {
1018    if (hasQualifier())
1019      StartLoc = getQualifierLoc().getBeginLoc();
1020    else
1021      StartLoc = MemberLoc;
1022  } else {
1023    // FIXME: We don't want this to happen. Rather, we should be able to
1024    // detect all kinds of implicit accesses more cleanly.
1025    StartLoc = getBase()->getLocStart();
1026    if (StartLoc.isInvalid())
1027      StartLoc = MemberLoc;
1028  }
1029
1030  SourceLocation EndLoc = hasExplicitTemplateArgs()
1031    ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1032
1033  return SourceRange(StartLoc, EndLoc);
1034}
1035
1036void CastExpr::CheckCastConsistency() const {
1037  switch (getCastKind()) {
1038  case CK_DerivedToBase:
1039  case CK_UncheckedDerivedToBase:
1040  case CK_DerivedToBaseMemberPointer:
1041  case CK_BaseToDerived:
1042  case CK_BaseToDerivedMemberPointer:
1043    assert(!path_empty() && "Cast kind should have a base path!");
1044    break;
1045
1046  case CK_CPointerToObjCPointerCast:
1047    assert(getType()->isObjCObjectPointerType());
1048    assert(getSubExpr()->getType()->isPointerType());
1049    goto CheckNoBasePath;
1050
1051  case CK_BlockPointerToObjCPointerCast:
1052    assert(getType()->isObjCObjectPointerType());
1053    assert(getSubExpr()->getType()->isBlockPointerType());
1054    goto CheckNoBasePath;
1055
1056  case CK_BitCast:
1057    // Arbitrary casts to C pointer types count as bitcasts.
1058    // Otherwise, we should only have block and ObjC pointer casts
1059    // here if they stay within the type kind.
1060    if (!getType()->isPointerType()) {
1061      assert(getType()->isObjCObjectPointerType() ==
1062             getSubExpr()->getType()->isObjCObjectPointerType());
1063      assert(getType()->isBlockPointerType() ==
1064             getSubExpr()->getType()->isBlockPointerType());
1065    }
1066    goto CheckNoBasePath;
1067
1068  case CK_AnyPointerToBlockPointerCast:
1069    assert(getType()->isBlockPointerType());
1070    assert(getSubExpr()->getType()->isAnyPointerType() &&
1071           !getSubExpr()->getType()->isBlockPointerType());
1072    goto CheckNoBasePath;
1073
1074  // These should not have an inheritance path.
1075  case CK_Dynamic:
1076  case CK_ToUnion:
1077  case CK_ArrayToPointerDecay:
1078  case CK_FunctionToPointerDecay:
1079  case CK_NullToMemberPointer:
1080  case CK_NullToPointer:
1081  case CK_ConstructorConversion:
1082  case CK_IntegralToPointer:
1083  case CK_PointerToIntegral:
1084  case CK_ToVoid:
1085  case CK_VectorSplat:
1086  case CK_IntegralCast:
1087  case CK_IntegralToFloating:
1088  case CK_FloatingToIntegral:
1089  case CK_FloatingCast:
1090  case CK_ObjCObjectLValueCast:
1091  case CK_FloatingRealToComplex:
1092  case CK_FloatingComplexToReal:
1093  case CK_FloatingComplexCast:
1094  case CK_FloatingComplexToIntegralComplex:
1095  case CK_IntegralRealToComplex:
1096  case CK_IntegralComplexToReal:
1097  case CK_IntegralComplexCast:
1098  case CK_IntegralComplexToFloatingComplex:
1099  case CK_ARCProduceObject:
1100  case CK_ARCConsumeObject:
1101  case CK_ARCReclaimReturnedObject:
1102  case CK_ARCExtendBlockObject:
1103    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1104    goto CheckNoBasePath;
1105
1106  case CK_Dependent:
1107  case CK_LValueToRValue:
1108  case CK_NoOp:
1109  case CK_AtomicToNonAtomic:
1110  case CK_NonAtomicToAtomic:
1111  case CK_PointerToBoolean:
1112  case CK_IntegralToBoolean:
1113  case CK_FloatingToBoolean:
1114  case CK_MemberPointerToBoolean:
1115  case CK_FloatingComplexToBoolean:
1116  case CK_IntegralComplexToBoolean:
1117  case CK_LValueBitCast:            // -> bool&
1118  case CK_UserDefinedConversion:    // operator bool()
1119  CheckNoBasePath:
1120    assert(path_empty() && "Cast kind should not have a base path!");
1121    break;
1122  }
1123}
1124
1125const char *CastExpr::getCastKindName() const {
1126  switch (getCastKind()) {
1127  case CK_Dependent:
1128    return "Dependent";
1129  case CK_BitCast:
1130    return "BitCast";
1131  case CK_LValueBitCast:
1132    return "LValueBitCast";
1133  case CK_LValueToRValue:
1134    return "LValueToRValue";
1135  case CK_NoOp:
1136    return "NoOp";
1137  case CK_BaseToDerived:
1138    return "BaseToDerived";
1139  case CK_DerivedToBase:
1140    return "DerivedToBase";
1141  case CK_UncheckedDerivedToBase:
1142    return "UncheckedDerivedToBase";
1143  case CK_Dynamic:
1144    return "Dynamic";
1145  case CK_ToUnion:
1146    return "ToUnion";
1147  case CK_ArrayToPointerDecay:
1148    return "ArrayToPointerDecay";
1149  case CK_FunctionToPointerDecay:
1150    return "FunctionToPointerDecay";
1151  case CK_NullToMemberPointer:
1152    return "NullToMemberPointer";
1153  case CK_NullToPointer:
1154    return "NullToPointer";
1155  case CK_BaseToDerivedMemberPointer:
1156    return "BaseToDerivedMemberPointer";
1157  case CK_DerivedToBaseMemberPointer:
1158    return "DerivedToBaseMemberPointer";
1159  case CK_UserDefinedConversion:
1160    return "UserDefinedConversion";
1161  case CK_ConstructorConversion:
1162    return "ConstructorConversion";
1163  case CK_IntegralToPointer:
1164    return "IntegralToPointer";
1165  case CK_PointerToIntegral:
1166    return "PointerToIntegral";
1167  case CK_PointerToBoolean:
1168    return "PointerToBoolean";
1169  case CK_ToVoid:
1170    return "ToVoid";
1171  case CK_VectorSplat:
1172    return "VectorSplat";
1173  case CK_IntegralCast:
1174    return "IntegralCast";
1175  case CK_IntegralToBoolean:
1176    return "IntegralToBoolean";
1177  case CK_IntegralToFloating:
1178    return "IntegralToFloating";
1179  case CK_FloatingToIntegral:
1180    return "FloatingToIntegral";
1181  case CK_FloatingCast:
1182    return "FloatingCast";
1183  case CK_FloatingToBoolean:
1184    return "FloatingToBoolean";
1185  case CK_MemberPointerToBoolean:
1186    return "MemberPointerToBoolean";
1187  case CK_CPointerToObjCPointerCast:
1188    return "CPointerToObjCPointerCast";
1189  case CK_BlockPointerToObjCPointerCast:
1190    return "BlockPointerToObjCPointerCast";
1191  case CK_AnyPointerToBlockPointerCast:
1192    return "AnyPointerToBlockPointerCast";
1193  case CK_ObjCObjectLValueCast:
1194    return "ObjCObjectLValueCast";
1195  case CK_FloatingRealToComplex:
1196    return "FloatingRealToComplex";
1197  case CK_FloatingComplexToReal:
1198    return "FloatingComplexToReal";
1199  case CK_FloatingComplexToBoolean:
1200    return "FloatingComplexToBoolean";
1201  case CK_FloatingComplexCast:
1202    return "FloatingComplexCast";
1203  case CK_FloatingComplexToIntegralComplex:
1204    return "FloatingComplexToIntegralComplex";
1205  case CK_IntegralRealToComplex:
1206    return "IntegralRealToComplex";
1207  case CK_IntegralComplexToReal:
1208    return "IntegralComplexToReal";
1209  case CK_IntegralComplexToBoolean:
1210    return "IntegralComplexToBoolean";
1211  case CK_IntegralComplexCast:
1212    return "IntegralComplexCast";
1213  case CK_IntegralComplexToFloatingComplex:
1214    return "IntegralComplexToFloatingComplex";
1215  case CK_ARCConsumeObject:
1216    return "ARCConsumeObject";
1217  case CK_ARCProduceObject:
1218    return "ARCProduceObject";
1219  case CK_ARCReclaimReturnedObject:
1220    return "ARCReclaimReturnedObject";
1221  case CK_ARCExtendBlockObject:
1222    return "ARCCExtendBlockObject";
1223  case CK_AtomicToNonAtomic:
1224    return "AtomicToNonAtomic";
1225  case CK_NonAtomicToAtomic:
1226    return "NonAtomicToAtomic";
1227  }
1228
1229  llvm_unreachable("Unhandled cast kind!");
1230}
1231
1232Expr *CastExpr::getSubExprAsWritten() {
1233  Expr *SubExpr = 0;
1234  CastExpr *E = this;
1235  do {
1236    SubExpr = E->getSubExpr();
1237
1238    // Skip through reference binding to temporary.
1239    if (MaterializeTemporaryExpr *Materialize
1240                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1241      SubExpr = Materialize->GetTemporaryExpr();
1242
1243    // Skip any temporary bindings; they're implicit.
1244    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1245      SubExpr = Binder->getSubExpr();
1246
1247    // Conversions by constructor and conversion functions have a
1248    // subexpression describing the call; strip it off.
1249    if (E->getCastKind() == CK_ConstructorConversion)
1250      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1251    else if (E->getCastKind() == CK_UserDefinedConversion)
1252      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1253
1254    // If the subexpression we're left with is an implicit cast, look
1255    // through that, too.
1256  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1257
1258  return SubExpr;
1259}
1260
1261CXXBaseSpecifier **CastExpr::path_buffer() {
1262  switch (getStmtClass()) {
1263#define ABSTRACT_STMT(x)
1264#define CASTEXPR(Type, Base) \
1265  case Stmt::Type##Class: \
1266    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1267#define STMT(Type, Base)
1268#include "clang/AST/StmtNodes.inc"
1269  default:
1270    llvm_unreachable("non-cast expressions not possible here");
1271  }
1272}
1273
1274void CastExpr::setCastPath(const CXXCastPath &Path) {
1275  assert(Path.size() == path_size());
1276  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1277}
1278
1279ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1280                                           CastKind Kind, Expr *Operand,
1281                                           const CXXCastPath *BasePath,
1282                                           ExprValueKind VK) {
1283  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1284  void *Buffer =
1285    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1286  ImplicitCastExpr *E =
1287    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1288  if (PathSize) E->setCastPath(*BasePath);
1289  return E;
1290}
1291
1292ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1293                                                unsigned PathSize) {
1294  void *Buffer =
1295    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1296  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1297}
1298
1299
1300CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1301                                       ExprValueKind VK, CastKind K, Expr *Op,
1302                                       const CXXCastPath *BasePath,
1303                                       TypeSourceInfo *WrittenTy,
1304                                       SourceLocation L, SourceLocation R) {
1305  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1306  void *Buffer =
1307    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1308  CStyleCastExpr *E =
1309    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1310  if (PathSize) E->setCastPath(*BasePath);
1311  return E;
1312}
1313
1314CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1315  void *Buffer =
1316    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1317  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1318}
1319
1320/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1321/// corresponds to, e.g. "<<=".
1322const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1323  switch (Op) {
1324  case BO_PtrMemD:   return ".*";
1325  case BO_PtrMemI:   return "->*";
1326  case BO_Mul:       return "*";
1327  case BO_Div:       return "/";
1328  case BO_Rem:       return "%";
1329  case BO_Add:       return "+";
1330  case BO_Sub:       return "-";
1331  case BO_Shl:       return "<<";
1332  case BO_Shr:       return ">>";
1333  case BO_LT:        return "<";
1334  case BO_GT:        return ">";
1335  case BO_LE:        return "<=";
1336  case BO_GE:        return ">=";
1337  case BO_EQ:        return "==";
1338  case BO_NE:        return "!=";
1339  case BO_And:       return "&";
1340  case BO_Xor:       return "^";
1341  case BO_Or:        return "|";
1342  case BO_LAnd:      return "&&";
1343  case BO_LOr:       return "||";
1344  case BO_Assign:    return "=";
1345  case BO_MulAssign: return "*=";
1346  case BO_DivAssign: return "/=";
1347  case BO_RemAssign: return "%=";
1348  case BO_AddAssign: return "+=";
1349  case BO_SubAssign: return "-=";
1350  case BO_ShlAssign: return "<<=";
1351  case BO_ShrAssign: return ">>=";
1352  case BO_AndAssign: return "&=";
1353  case BO_XorAssign: return "^=";
1354  case BO_OrAssign:  return "|=";
1355  case BO_Comma:     return ",";
1356  }
1357
1358  llvm_unreachable("Invalid OpCode!");
1359}
1360
1361BinaryOperatorKind
1362BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1363  switch (OO) {
1364  default: llvm_unreachable("Not an overloadable binary operator");
1365  case OO_Plus: return BO_Add;
1366  case OO_Minus: return BO_Sub;
1367  case OO_Star: return BO_Mul;
1368  case OO_Slash: return BO_Div;
1369  case OO_Percent: return BO_Rem;
1370  case OO_Caret: return BO_Xor;
1371  case OO_Amp: return BO_And;
1372  case OO_Pipe: return BO_Or;
1373  case OO_Equal: return BO_Assign;
1374  case OO_Less: return BO_LT;
1375  case OO_Greater: return BO_GT;
1376  case OO_PlusEqual: return BO_AddAssign;
1377  case OO_MinusEqual: return BO_SubAssign;
1378  case OO_StarEqual: return BO_MulAssign;
1379  case OO_SlashEqual: return BO_DivAssign;
1380  case OO_PercentEqual: return BO_RemAssign;
1381  case OO_CaretEqual: return BO_XorAssign;
1382  case OO_AmpEqual: return BO_AndAssign;
1383  case OO_PipeEqual: return BO_OrAssign;
1384  case OO_LessLess: return BO_Shl;
1385  case OO_GreaterGreater: return BO_Shr;
1386  case OO_LessLessEqual: return BO_ShlAssign;
1387  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1388  case OO_EqualEqual: return BO_EQ;
1389  case OO_ExclaimEqual: return BO_NE;
1390  case OO_LessEqual: return BO_LE;
1391  case OO_GreaterEqual: return BO_GE;
1392  case OO_AmpAmp: return BO_LAnd;
1393  case OO_PipePipe: return BO_LOr;
1394  case OO_Comma: return BO_Comma;
1395  case OO_ArrowStar: return BO_PtrMemI;
1396  }
1397}
1398
1399OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1400  static const OverloadedOperatorKind OverOps[] = {
1401    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1402    OO_Star, OO_Slash, OO_Percent,
1403    OO_Plus, OO_Minus,
1404    OO_LessLess, OO_GreaterGreater,
1405    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1406    OO_EqualEqual, OO_ExclaimEqual,
1407    OO_Amp,
1408    OO_Caret,
1409    OO_Pipe,
1410    OO_AmpAmp,
1411    OO_PipePipe,
1412    OO_Equal, OO_StarEqual,
1413    OO_SlashEqual, OO_PercentEqual,
1414    OO_PlusEqual, OO_MinusEqual,
1415    OO_LessLessEqual, OO_GreaterGreaterEqual,
1416    OO_AmpEqual, OO_CaretEqual,
1417    OO_PipeEqual,
1418    OO_Comma
1419  };
1420  return OverOps[Opc];
1421}
1422
1423InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1424                           Expr **initExprs, unsigned numInits,
1425                           SourceLocation rbraceloc)
1426  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1427         false, false),
1428    InitExprs(C, numInits),
1429    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1430    HadArrayRangeDesignator(false)
1431{
1432  for (unsigned I = 0; I != numInits; ++I) {
1433    if (initExprs[I]->isTypeDependent())
1434      ExprBits.TypeDependent = true;
1435    if (initExprs[I]->isValueDependent())
1436      ExprBits.ValueDependent = true;
1437    if (initExprs[I]->isInstantiationDependent())
1438      ExprBits.InstantiationDependent = true;
1439    if (initExprs[I]->containsUnexpandedParameterPack())
1440      ExprBits.ContainsUnexpandedParameterPack = true;
1441  }
1442
1443  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1444}
1445
1446void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1447  if (NumInits > InitExprs.size())
1448    InitExprs.reserve(C, NumInits);
1449}
1450
1451void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1452  InitExprs.resize(C, NumInits, 0);
1453}
1454
1455Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1456  if (Init >= InitExprs.size()) {
1457    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1458    InitExprs.back() = expr;
1459    return 0;
1460  }
1461
1462  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1463  InitExprs[Init] = expr;
1464  return Result;
1465}
1466
1467void InitListExpr::setArrayFiller(Expr *filler) {
1468  assert(!hasArrayFiller() && "Filler already set!");
1469  ArrayFillerOrUnionFieldInit = filler;
1470  // Fill out any "holes" in the array due to designated initializers.
1471  Expr **inits = getInits();
1472  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1473    if (inits[i] == 0)
1474      inits[i] = filler;
1475}
1476
1477SourceRange InitListExpr::getSourceRange() const {
1478  if (SyntacticForm)
1479    return SyntacticForm->getSourceRange();
1480  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1481  if (Beg.isInvalid()) {
1482    // Find the first non-null initializer.
1483    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1484                                     E = InitExprs.end();
1485      I != E; ++I) {
1486      if (Stmt *S = *I) {
1487        Beg = S->getLocStart();
1488        break;
1489      }
1490    }
1491  }
1492  if (End.isInvalid()) {
1493    // Find the first non-null initializer from the end.
1494    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1495                                             E = InitExprs.rend();
1496      I != E; ++I) {
1497      if (Stmt *S = *I) {
1498        End = S->getSourceRange().getEnd();
1499        break;
1500      }
1501    }
1502  }
1503  return SourceRange(Beg, End);
1504}
1505
1506/// getFunctionType - Return the underlying function type for this block.
1507///
1508const FunctionType *BlockExpr::getFunctionType() const {
1509  return getType()->getAs<BlockPointerType>()->
1510                    getPointeeType()->getAs<FunctionType>();
1511}
1512
1513SourceLocation BlockExpr::getCaretLocation() const {
1514  return TheBlock->getCaretLocation();
1515}
1516const Stmt *BlockExpr::getBody() const {
1517  return TheBlock->getBody();
1518}
1519Stmt *BlockExpr::getBody() {
1520  return TheBlock->getBody();
1521}
1522
1523
1524//===----------------------------------------------------------------------===//
1525// Generic Expression Routines
1526//===----------------------------------------------------------------------===//
1527
1528/// isUnusedResultAWarning - Return true if this immediate expression should
1529/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1530/// with location to warn on and the source range[s] to report with the
1531/// warning.
1532bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1533                                  SourceRange &R2, ASTContext &Ctx) const {
1534  // Don't warn if the expr is type dependent. The type could end up
1535  // instantiating to void.
1536  if (isTypeDependent())
1537    return false;
1538
1539  switch (getStmtClass()) {
1540  default:
1541    if (getType()->isVoidType())
1542      return false;
1543    Loc = getExprLoc();
1544    R1 = getSourceRange();
1545    return true;
1546  case ParenExprClass:
1547    return cast<ParenExpr>(this)->getSubExpr()->
1548      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1549  case GenericSelectionExprClass:
1550    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1551      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1552  case UnaryOperatorClass: {
1553    const UnaryOperator *UO = cast<UnaryOperator>(this);
1554
1555    switch (UO->getOpcode()) {
1556    default: break;
1557    case UO_PostInc:
1558    case UO_PostDec:
1559    case UO_PreInc:
1560    case UO_PreDec:                 // ++/--
1561      return false;  // Not a warning.
1562    case UO_Deref:
1563      // Dereferencing a volatile pointer is a side-effect.
1564      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1565        return false;
1566      break;
1567    case UO_Real:
1568    case UO_Imag:
1569      // accessing a piece of a volatile complex is a side-effect.
1570      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1571          .isVolatileQualified())
1572        return false;
1573      break;
1574    case UO_Extension:
1575      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1576    }
1577    Loc = UO->getOperatorLoc();
1578    R1 = UO->getSubExpr()->getSourceRange();
1579    return true;
1580  }
1581  case BinaryOperatorClass: {
1582    const BinaryOperator *BO = cast<BinaryOperator>(this);
1583    switch (BO->getOpcode()) {
1584      default:
1585        break;
1586      // Consider the RHS of comma for side effects. LHS was checked by
1587      // Sema::CheckCommaOperands.
1588      case BO_Comma:
1589        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1590        // lvalue-ness) of an assignment written in a macro.
1591        if (IntegerLiteral *IE =
1592              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1593          if (IE->getValue() == 0)
1594            return false;
1595        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1596      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1597      case BO_LAnd:
1598      case BO_LOr:
1599        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1600            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1601          return false;
1602        break;
1603    }
1604    if (BO->isAssignmentOp())
1605      return false;
1606    Loc = BO->getOperatorLoc();
1607    R1 = BO->getLHS()->getSourceRange();
1608    R2 = BO->getRHS()->getSourceRange();
1609    return true;
1610  }
1611  case CompoundAssignOperatorClass:
1612  case VAArgExprClass:
1613  case AtomicExprClass:
1614    return false;
1615
1616  case ConditionalOperatorClass: {
1617    // If only one of the LHS or RHS is a warning, the operator might
1618    // be being used for control flow. Only warn if both the LHS and
1619    // RHS are warnings.
1620    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1621    if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1622      return false;
1623    if (!Exp->getLHS())
1624      return true;
1625    return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1626  }
1627
1628  case MemberExprClass:
1629    // If the base pointer or element is to a volatile pointer/field, accessing
1630    // it is a side effect.
1631    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1632      return false;
1633    Loc = cast<MemberExpr>(this)->getMemberLoc();
1634    R1 = SourceRange(Loc, Loc);
1635    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1636    return true;
1637
1638  case ArraySubscriptExprClass:
1639    // If the base pointer or element is to a volatile pointer/field, accessing
1640    // it is a side effect.
1641    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1642      return false;
1643    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1644    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1645    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1646    return true;
1647
1648  case CXXOperatorCallExprClass: {
1649    // We warn about operator== and operator!= even when user-defined operator
1650    // overloads as there is no reasonable way to define these such that they
1651    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1652    // warning: these operators are commonly typo'ed, and so warning on them
1653    // provides additional value as well. If this list is updated,
1654    // DiagnoseUnusedComparison should be as well.
1655    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1656    if (Op->getOperator() == OO_EqualEqual ||
1657        Op->getOperator() == OO_ExclaimEqual) {
1658      Loc = Op->getOperatorLoc();
1659      R1 = Op->getSourceRange();
1660      return true;
1661    }
1662
1663    // Fallthrough for generic call handling.
1664  }
1665  case CallExprClass:
1666  case CXXMemberCallExprClass: {
1667    // If this is a direct call, get the callee.
1668    const CallExpr *CE = cast<CallExpr>(this);
1669    if (const Decl *FD = CE->getCalleeDecl()) {
1670      // If the callee has attribute pure, const, or warn_unused_result, warn
1671      // about it. void foo() { strlen("bar"); } should warn.
1672      //
1673      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1674      // updated to match for QoI.
1675      if (FD->getAttr<WarnUnusedResultAttr>() ||
1676          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1677        Loc = CE->getCallee()->getLocStart();
1678        R1 = CE->getCallee()->getSourceRange();
1679
1680        if (unsigned NumArgs = CE->getNumArgs())
1681          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1682                           CE->getArg(NumArgs-1)->getLocEnd());
1683        return true;
1684      }
1685    }
1686    return false;
1687  }
1688
1689  case CXXTemporaryObjectExprClass:
1690  case CXXConstructExprClass:
1691    return false;
1692
1693  case ObjCMessageExprClass: {
1694    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1695    if (Ctx.getLangOptions().ObjCAutoRefCount &&
1696        ME->isInstanceMessage() &&
1697        !ME->getType()->isVoidType() &&
1698        ME->getSelector().getIdentifierInfoForSlot(0) &&
1699        ME->getSelector().getIdentifierInfoForSlot(0)
1700                                               ->getName().startswith("init")) {
1701      Loc = getExprLoc();
1702      R1 = ME->getSourceRange();
1703      return true;
1704    }
1705
1706    const ObjCMethodDecl *MD = ME->getMethodDecl();
1707    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1708      Loc = getExprLoc();
1709      return true;
1710    }
1711    return false;
1712  }
1713
1714  case ObjCPropertyRefExprClass:
1715    Loc = getExprLoc();
1716    R1 = getSourceRange();
1717    return true;
1718
1719  case PseudoObjectExprClass: {
1720    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1721
1722    // Only complain about things that have the form of a getter.
1723    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1724        isa<BinaryOperator>(PO->getSyntacticForm()))
1725      return false;
1726
1727    Loc = getExprLoc();
1728    R1 = getSourceRange();
1729    return true;
1730  }
1731
1732  case StmtExprClass: {
1733    // Statement exprs don't logically have side effects themselves, but are
1734    // sometimes used in macros in ways that give them a type that is unused.
1735    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1736    // however, if the result of the stmt expr is dead, we don't want to emit a
1737    // warning.
1738    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1739    if (!CS->body_empty()) {
1740      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1741        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1742      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1743        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1744          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1745    }
1746
1747    if (getType()->isVoidType())
1748      return false;
1749    Loc = cast<StmtExpr>(this)->getLParenLoc();
1750    R1 = getSourceRange();
1751    return true;
1752  }
1753  case CStyleCastExprClass:
1754    // If this is an explicit cast to void, allow it.  People do this when they
1755    // think they know what they're doing :).
1756    if (getType()->isVoidType())
1757      return false;
1758    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1759    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1760    return true;
1761  case CXXFunctionalCastExprClass: {
1762    if (getType()->isVoidType())
1763      return false;
1764    const CastExpr *CE = cast<CastExpr>(this);
1765
1766    // If this is a cast to void or a constructor conversion, check the operand.
1767    // Otherwise, the result of the cast is unused.
1768    if (CE->getCastKind() == CK_ToVoid ||
1769        CE->getCastKind() == CK_ConstructorConversion)
1770      return (cast<CastExpr>(this)->getSubExpr()
1771              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1772    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1773    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1774    return true;
1775  }
1776
1777  case ImplicitCastExprClass:
1778    // Check the operand, since implicit casts are inserted by Sema
1779    return (cast<ImplicitCastExpr>(this)
1780            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1781
1782  case CXXDefaultArgExprClass:
1783    return (cast<CXXDefaultArgExpr>(this)
1784            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1785
1786  case CXXNewExprClass:
1787    // FIXME: In theory, there might be new expressions that don't have side
1788    // effects (e.g. a placement new with an uninitialized POD).
1789  case CXXDeleteExprClass:
1790    return false;
1791  case CXXBindTemporaryExprClass:
1792    return (cast<CXXBindTemporaryExpr>(this)
1793            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1794  case ExprWithCleanupsClass:
1795    return (cast<ExprWithCleanups>(this)
1796            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1797  }
1798}
1799
1800/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1801/// returns true, if it is; false otherwise.
1802bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1803  const Expr *E = IgnoreParens();
1804  switch (E->getStmtClass()) {
1805  default:
1806    return false;
1807  case ObjCIvarRefExprClass:
1808    return true;
1809  case Expr::UnaryOperatorClass:
1810    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1811  case ImplicitCastExprClass:
1812    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1813  case MaterializeTemporaryExprClass:
1814    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1815                                                      ->isOBJCGCCandidate(Ctx);
1816  case CStyleCastExprClass:
1817    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1818  case BlockDeclRefExprClass:
1819  case DeclRefExprClass: {
1820
1821    const Decl *D;
1822    if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E))
1823        D = BDRE->getDecl();
1824    else
1825        D = cast<DeclRefExpr>(E)->getDecl();
1826
1827    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1828      if (VD->hasGlobalStorage())
1829        return true;
1830      QualType T = VD->getType();
1831      // dereferencing to a  pointer is always a gc'able candidate,
1832      // unless it is __weak.
1833      return T->isPointerType() &&
1834             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1835    }
1836    return false;
1837  }
1838  case MemberExprClass: {
1839    const MemberExpr *M = cast<MemberExpr>(E);
1840    return M->getBase()->isOBJCGCCandidate(Ctx);
1841  }
1842  case ArraySubscriptExprClass:
1843    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1844  }
1845}
1846
1847bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1848  if (isTypeDependent())
1849    return false;
1850  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1851}
1852
1853QualType Expr::findBoundMemberType(const Expr *expr) {
1854  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1855
1856  // Bound member expressions are always one of these possibilities:
1857  //   x->m      x.m      x->*y      x.*y
1858  // (possibly parenthesized)
1859
1860  expr = expr->IgnoreParens();
1861  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1862    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1863    return mem->getMemberDecl()->getType();
1864  }
1865
1866  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1867    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1868                      ->getPointeeType();
1869    assert(type->isFunctionType());
1870    return type;
1871  }
1872
1873  assert(isa<UnresolvedMemberExpr>(expr));
1874  return QualType();
1875}
1876
1877static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1878                                          Expr::CanThrowResult CT2) {
1879  // CanThrowResult constants are ordered so that the maximum is the correct
1880  // merge result.
1881  return CT1 > CT2 ? CT1 : CT2;
1882}
1883
1884static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1885  Expr *E = const_cast<Expr*>(CE);
1886  Expr::CanThrowResult R = Expr::CT_Cannot;
1887  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1888    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1889  }
1890  return R;
1891}
1892
1893static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
1894                                           const Decl *D,
1895                                           bool NullThrows = true) {
1896  if (!D)
1897    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1898
1899  // See if we can get a function type from the decl somehow.
1900  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1901  if (!VD) // If we have no clue what we're calling, assume the worst.
1902    return Expr::CT_Can;
1903
1904  // As an extension, we assume that __attribute__((nothrow)) functions don't
1905  // throw.
1906  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1907    return Expr::CT_Cannot;
1908
1909  QualType T = VD->getType();
1910  const FunctionProtoType *FT;
1911  if ((FT = T->getAs<FunctionProtoType>())) {
1912  } else if (const PointerType *PT = T->getAs<PointerType>())
1913    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1914  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1915    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1916  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1917    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1918  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1919    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1920
1921  if (!FT)
1922    return Expr::CT_Can;
1923
1924  if (FT->getExceptionSpecType() == EST_Delayed) {
1925    assert(isa<CXXConstructorDecl>(D) &&
1926           "only constructor exception specs can be unknown");
1927    Ctx.getDiagnostics().Report(E->getLocStart(),
1928                                diag::err_exception_spec_unknown)
1929      << E->getSourceRange();
1930    return Expr::CT_Can;
1931  }
1932
1933  return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
1934}
1935
1936static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1937  if (DC->isTypeDependent())
1938    return Expr::CT_Dependent;
1939
1940  if (!DC->getTypeAsWritten()->isReferenceType())
1941    return Expr::CT_Cannot;
1942
1943  if (DC->getSubExpr()->isTypeDependent())
1944    return Expr::CT_Dependent;
1945
1946  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1947}
1948
1949static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1950                                           const CXXTypeidExpr *DC) {
1951  if (DC->isTypeOperand())
1952    return Expr::CT_Cannot;
1953
1954  Expr *Op = DC->getExprOperand();
1955  if (Op->isTypeDependent())
1956    return Expr::CT_Dependent;
1957
1958  const RecordType *RT = Op->getType()->getAs<RecordType>();
1959  if (!RT)
1960    return Expr::CT_Cannot;
1961
1962  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1963    return Expr::CT_Cannot;
1964
1965  if (Op->Classify(C).isPRValue())
1966    return Expr::CT_Cannot;
1967
1968  return Expr::CT_Can;
1969}
1970
1971Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1972  // C++ [expr.unary.noexcept]p3:
1973  //   [Can throw] if in a potentially-evaluated context the expression would
1974  //   contain:
1975  switch (getStmtClass()) {
1976  case CXXThrowExprClass:
1977    //   - a potentially evaluated throw-expression
1978    return CT_Can;
1979
1980  case CXXDynamicCastExprClass: {
1981    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1982    //     where T is a reference type, that requires a run-time check
1983    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1984    if (CT == CT_Can)
1985      return CT;
1986    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1987  }
1988
1989  case CXXTypeidExprClass:
1990    //   - a potentially evaluated typeid expression applied to a glvalue
1991    //     expression whose type is a polymorphic class type
1992    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1993
1994    //   - a potentially evaluated call to a function, member function, function
1995    //     pointer, or member function pointer that does not have a non-throwing
1996    //     exception-specification
1997  case CallExprClass:
1998  case CXXMemberCallExprClass:
1999  case CXXOperatorCallExprClass: {
2000    const CallExpr *CE = cast<CallExpr>(this);
2001    CanThrowResult CT;
2002    if (isTypeDependent())
2003      CT = CT_Dependent;
2004    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
2005      CT = CT_Cannot;
2006    else
2007      CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
2008    if (CT == CT_Can)
2009      return CT;
2010    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2011  }
2012
2013  case CXXConstructExprClass:
2014  case CXXTemporaryObjectExprClass: {
2015    CanThrowResult CT = CanCalleeThrow(C, this,
2016        cast<CXXConstructExpr>(this)->getConstructor());
2017    if (CT == CT_Can)
2018      return CT;
2019    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2020  }
2021
2022  case LambdaExprClass: {
2023    const LambdaExpr *Lambda = cast<LambdaExpr>(this);
2024    CanThrowResult CT = Expr::CT_Cannot;
2025    for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
2026                                        CapEnd = Lambda->capture_init_end();
2027         Cap != CapEnd; ++Cap)
2028      CT = MergeCanThrow(CT, (*Cap)->CanThrow(C));
2029    return CT;
2030  }
2031
2032  case CXXNewExprClass: {
2033    CanThrowResult CT;
2034    if (isTypeDependent())
2035      CT = CT_Dependent;
2036    else
2037      CT = MergeCanThrow(
2038        CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()),
2039        CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(),
2040                       /*NullThrows*/false));
2041    if (CT == CT_Can)
2042      return CT;
2043    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2044  }
2045
2046  case CXXDeleteExprClass: {
2047    CanThrowResult CT;
2048    QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
2049    if (DTy.isNull() || DTy->isDependentType()) {
2050      CT = CT_Dependent;
2051    } else {
2052      CT = CanCalleeThrow(C, this,
2053                          cast<CXXDeleteExpr>(this)->getOperatorDelete());
2054      if (const RecordType *RT = DTy->getAs<RecordType>()) {
2055        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2056        CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
2057      }
2058      if (CT == CT_Can)
2059        return CT;
2060    }
2061    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2062  }
2063
2064  case CXXBindTemporaryExprClass: {
2065    // The bound temporary has to be destroyed again, which might throw.
2066    CanThrowResult CT = CanCalleeThrow(C, this,
2067      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
2068    if (CT == CT_Can)
2069      return CT;
2070    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2071  }
2072
2073    // ObjC message sends are like function calls, but never have exception
2074    // specs.
2075  case ObjCMessageExprClass:
2076  case ObjCPropertyRefExprClass:
2077    return CT_Can;
2078
2079    // Many other things have subexpressions, so we have to test those.
2080    // Some are simple:
2081  case ConditionalOperatorClass:
2082  case CompoundLiteralExprClass:
2083  case CXXConstCastExprClass:
2084  case CXXDefaultArgExprClass:
2085  case CXXReinterpretCastExprClass:
2086  case DesignatedInitExprClass:
2087  case ExprWithCleanupsClass:
2088  case ExtVectorElementExprClass:
2089  case InitListExprClass:
2090  case MemberExprClass:
2091  case ObjCIsaExprClass:
2092  case ObjCIvarRefExprClass:
2093  case ParenExprClass:
2094  case ParenListExprClass:
2095  case ShuffleVectorExprClass:
2096  case VAArgExprClass:
2097    return CanSubExprsThrow(C, this);
2098
2099    // Some might be dependent for other reasons.
2100  case ArraySubscriptExprClass:
2101  case BinaryOperatorClass:
2102  case CompoundAssignOperatorClass:
2103  case CStyleCastExprClass:
2104  case CXXStaticCastExprClass:
2105  case CXXFunctionalCastExprClass:
2106  case ImplicitCastExprClass:
2107  case MaterializeTemporaryExprClass:
2108  case UnaryOperatorClass: {
2109    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
2110    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2111  }
2112
2113    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
2114  case StmtExprClass:
2115    return CT_Can;
2116
2117  case ChooseExprClass:
2118    if (isTypeDependent() || isValueDependent())
2119      return CT_Dependent;
2120    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
2121
2122  case GenericSelectionExprClass:
2123    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2124      return CT_Dependent;
2125    return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
2126
2127    // Some expressions are always dependent.
2128  case CXXDependentScopeMemberExprClass:
2129  case CXXUnresolvedConstructExprClass:
2130  case DependentScopeDeclRefExprClass:
2131    return CT_Dependent;
2132
2133  case AtomicExprClass:
2134  case AsTypeExprClass:
2135  case BinaryConditionalOperatorClass:
2136  case BlockExprClass:
2137  case BlockDeclRefExprClass:
2138  case CUDAKernelCallExprClass:
2139  case DeclRefExprClass:
2140  case ObjCBridgedCastExprClass:
2141  case ObjCIndirectCopyRestoreExprClass:
2142  case ObjCProtocolExprClass:
2143  case ObjCSelectorExprClass:
2144  case OffsetOfExprClass:
2145  case PackExpansionExprClass:
2146  case PseudoObjectExprClass:
2147  case SubstNonTypeTemplateParmExprClass:
2148  case SubstNonTypeTemplateParmPackExprClass:
2149  case UnaryExprOrTypeTraitExprClass:
2150  case UnresolvedLookupExprClass:
2151  case UnresolvedMemberExprClass:
2152    // FIXME: Can any of the above throw?  If so, when?
2153    return CT_Cannot;
2154
2155  case AddrLabelExprClass:
2156  case ArrayTypeTraitExprClass:
2157  case BinaryTypeTraitExprClass:
2158  case CXXBoolLiteralExprClass:
2159  case CXXNoexceptExprClass:
2160  case CXXNullPtrLiteralExprClass:
2161  case CXXPseudoDestructorExprClass:
2162  case CXXScalarValueInitExprClass:
2163  case CXXThisExprClass:
2164  case CXXUuidofExprClass:
2165  case CharacterLiteralClass:
2166  case ExpressionTraitExprClass:
2167  case FloatingLiteralClass:
2168  case GNUNullExprClass:
2169  case ImaginaryLiteralClass:
2170  case ImplicitValueInitExprClass:
2171  case IntegerLiteralClass:
2172  case ObjCEncodeExprClass:
2173  case ObjCStringLiteralClass:
2174  case OpaqueValueExprClass:
2175  case PredefinedExprClass:
2176  case SizeOfPackExprClass:
2177  case StringLiteralClass:
2178  case UnaryTypeTraitExprClass:
2179    // These expressions can never throw.
2180    return CT_Cannot;
2181
2182#define STMT(CLASS, PARENT) case CLASS##Class:
2183#define STMT_RANGE(Base, First, Last)
2184#define LAST_STMT_RANGE(BASE, FIRST, LAST)
2185#define EXPR(CLASS, PARENT)
2186#define ABSTRACT_STMT(STMT)
2187#include "clang/AST/StmtNodes.inc"
2188  case NoStmtClass:
2189    llvm_unreachable("Invalid class for expression");
2190  }
2191  llvm_unreachable("Bogus StmtClass");
2192}
2193
2194Expr* Expr::IgnoreParens() {
2195  Expr* E = this;
2196  while (true) {
2197    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2198      E = P->getSubExpr();
2199      continue;
2200    }
2201    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2202      if (P->getOpcode() == UO_Extension) {
2203        E = P->getSubExpr();
2204        continue;
2205      }
2206    }
2207    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2208      if (!P->isResultDependent()) {
2209        E = P->getResultExpr();
2210        continue;
2211      }
2212    }
2213    return E;
2214  }
2215}
2216
2217/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2218/// or CastExprs or ImplicitCastExprs, returning their operand.
2219Expr *Expr::IgnoreParenCasts() {
2220  Expr *E = this;
2221  while (true) {
2222    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2223      E = P->getSubExpr();
2224      continue;
2225    }
2226    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2227      E = P->getSubExpr();
2228      continue;
2229    }
2230    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2231      if (P->getOpcode() == UO_Extension) {
2232        E = P->getSubExpr();
2233        continue;
2234      }
2235    }
2236    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2237      if (!P->isResultDependent()) {
2238        E = P->getResultExpr();
2239        continue;
2240      }
2241    }
2242    if (MaterializeTemporaryExpr *Materialize
2243                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2244      E = Materialize->GetTemporaryExpr();
2245      continue;
2246    }
2247    if (SubstNonTypeTemplateParmExpr *NTTP
2248                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2249      E = NTTP->getReplacement();
2250      continue;
2251    }
2252    return E;
2253  }
2254}
2255
2256/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2257/// casts.  This is intended purely as a temporary workaround for code
2258/// that hasn't yet been rewritten to do the right thing about those
2259/// casts, and may disappear along with the last internal use.
2260Expr *Expr::IgnoreParenLValueCasts() {
2261  Expr *E = this;
2262  while (true) {
2263    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2264      E = P->getSubExpr();
2265      continue;
2266    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2267      if (P->getCastKind() == CK_LValueToRValue) {
2268        E = P->getSubExpr();
2269        continue;
2270      }
2271    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2272      if (P->getOpcode() == UO_Extension) {
2273        E = P->getSubExpr();
2274        continue;
2275      }
2276    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2277      if (!P->isResultDependent()) {
2278        E = P->getResultExpr();
2279        continue;
2280      }
2281    } else if (MaterializeTemporaryExpr *Materialize
2282                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2283      E = Materialize->GetTemporaryExpr();
2284      continue;
2285    } else if (SubstNonTypeTemplateParmExpr *NTTP
2286                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2287      E = NTTP->getReplacement();
2288      continue;
2289    }
2290    break;
2291  }
2292  return E;
2293}
2294
2295Expr *Expr::IgnoreParenImpCasts() {
2296  Expr *E = this;
2297  while (true) {
2298    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2299      E = P->getSubExpr();
2300      continue;
2301    }
2302    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2303      E = P->getSubExpr();
2304      continue;
2305    }
2306    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2307      if (P->getOpcode() == UO_Extension) {
2308        E = P->getSubExpr();
2309        continue;
2310      }
2311    }
2312    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2313      if (!P->isResultDependent()) {
2314        E = P->getResultExpr();
2315        continue;
2316      }
2317    }
2318    if (MaterializeTemporaryExpr *Materialize
2319                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2320      E = Materialize->GetTemporaryExpr();
2321      continue;
2322    }
2323    if (SubstNonTypeTemplateParmExpr *NTTP
2324                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2325      E = NTTP->getReplacement();
2326      continue;
2327    }
2328    return E;
2329  }
2330}
2331
2332Expr *Expr::IgnoreConversionOperator() {
2333  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2334    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2335      return MCE->getImplicitObjectArgument();
2336  }
2337  return this;
2338}
2339
2340/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2341/// value (including ptr->int casts of the same size).  Strip off any
2342/// ParenExpr or CastExprs, returning their operand.
2343Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2344  Expr *E = this;
2345  while (true) {
2346    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2347      E = P->getSubExpr();
2348      continue;
2349    }
2350
2351    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2352      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2353      // ptr<->int casts of the same width.  We also ignore all identity casts.
2354      Expr *SE = P->getSubExpr();
2355
2356      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2357        E = SE;
2358        continue;
2359      }
2360
2361      if ((E->getType()->isPointerType() ||
2362           E->getType()->isIntegralType(Ctx)) &&
2363          (SE->getType()->isPointerType() ||
2364           SE->getType()->isIntegralType(Ctx)) &&
2365          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2366        E = SE;
2367        continue;
2368      }
2369    }
2370
2371    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2372      if (P->getOpcode() == UO_Extension) {
2373        E = P->getSubExpr();
2374        continue;
2375      }
2376    }
2377
2378    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2379      if (!P->isResultDependent()) {
2380        E = P->getResultExpr();
2381        continue;
2382      }
2383    }
2384
2385    if (SubstNonTypeTemplateParmExpr *NTTP
2386                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2387      E = NTTP->getReplacement();
2388      continue;
2389    }
2390
2391    return E;
2392  }
2393}
2394
2395bool Expr::isDefaultArgument() const {
2396  const Expr *E = this;
2397  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2398    E = M->GetTemporaryExpr();
2399
2400  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2401    E = ICE->getSubExprAsWritten();
2402
2403  return isa<CXXDefaultArgExpr>(E);
2404}
2405
2406/// \brief Skip over any no-op casts and any temporary-binding
2407/// expressions.
2408static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2409  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2410    E = M->GetTemporaryExpr();
2411
2412  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2413    if (ICE->getCastKind() == CK_NoOp)
2414      E = ICE->getSubExpr();
2415    else
2416      break;
2417  }
2418
2419  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2420    E = BE->getSubExpr();
2421
2422  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2423    if (ICE->getCastKind() == CK_NoOp)
2424      E = ICE->getSubExpr();
2425    else
2426      break;
2427  }
2428
2429  return E->IgnoreParens();
2430}
2431
2432/// isTemporaryObject - Determines if this expression produces a
2433/// temporary of the given class type.
2434bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2435  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2436    return false;
2437
2438  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2439
2440  // Temporaries are by definition pr-values of class type.
2441  if (!E->Classify(C).isPRValue()) {
2442    // In this context, property reference is a message call and is pr-value.
2443    if (!isa<ObjCPropertyRefExpr>(E))
2444      return false;
2445  }
2446
2447  // Black-list a few cases which yield pr-values of class type that don't
2448  // refer to temporaries of that type:
2449
2450  // - implicit derived-to-base conversions
2451  if (isa<ImplicitCastExpr>(E)) {
2452    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2453    case CK_DerivedToBase:
2454    case CK_UncheckedDerivedToBase:
2455      return false;
2456    default:
2457      break;
2458    }
2459  }
2460
2461  // - member expressions (all)
2462  if (isa<MemberExpr>(E))
2463    return false;
2464
2465  // - opaque values (all)
2466  if (isa<OpaqueValueExpr>(E))
2467    return false;
2468
2469  return true;
2470}
2471
2472bool Expr::isImplicitCXXThis() const {
2473  const Expr *E = this;
2474
2475  // Strip away parentheses and casts we don't care about.
2476  while (true) {
2477    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2478      E = Paren->getSubExpr();
2479      continue;
2480    }
2481
2482    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2483      if (ICE->getCastKind() == CK_NoOp ||
2484          ICE->getCastKind() == CK_LValueToRValue ||
2485          ICE->getCastKind() == CK_DerivedToBase ||
2486          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2487        E = ICE->getSubExpr();
2488        continue;
2489      }
2490    }
2491
2492    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2493      if (UnOp->getOpcode() == UO_Extension) {
2494        E = UnOp->getSubExpr();
2495        continue;
2496      }
2497    }
2498
2499    if (const MaterializeTemporaryExpr *M
2500                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2501      E = M->GetTemporaryExpr();
2502      continue;
2503    }
2504
2505    break;
2506  }
2507
2508  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2509    return This->isImplicit();
2510
2511  return false;
2512}
2513
2514/// hasAnyTypeDependentArguments - Determines if any of the expressions
2515/// in Exprs is type-dependent.
2516bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
2517  for (unsigned I = 0; I < NumExprs; ++I)
2518    if (Exprs[I]->isTypeDependent())
2519      return true;
2520
2521  return false;
2522}
2523
2524/// hasAnyValueDependentArguments - Determines if any of the expressions
2525/// in Exprs is value-dependent.
2526bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
2527  for (unsigned I = 0; I < NumExprs; ++I)
2528    if (Exprs[I]->isValueDependent())
2529      return true;
2530
2531  return false;
2532}
2533
2534bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2535  // This function is attempting whether an expression is an initializer
2536  // which can be evaluated at compile-time.  isEvaluatable handles most
2537  // of the cases, but it can't deal with some initializer-specific
2538  // expressions, and it can't deal with aggregates; we deal with those here,
2539  // and fall back to isEvaluatable for the other cases.
2540
2541  // If we ever capture reference-binding directly in the AST, we can
2542  // kill the second parameter.
2543
2544  if (IsForRef) {
2545    EvalResult Result;
2546    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2547  }
2548
2549  switch (getStmtClass()) {
2550  default: break;
2551  case IntegerLiteralClass:
2552  case FloatingLiteralClass:
2553  case StringLiteralClass:
2554  case ObjCStringLiteralClass:
2555  case ObjCEncodeExprClass:
2556    return true;
2557  case CXXTemporaryObjectExprClass:
2558  case CXXConstructExprClass: {
2559    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2560
2561    // Only if it's
2562    if (CE->getConstructor()->isTrivial()) {
2563      // 1) an application of the trivial default constructor or
2564      if (!CE->getNumArgs()) return true;
2565
2566      // 2) an elidable trivial copy construction of an operand which is
2567      //    itself a constant initializer.  Note that we consider the
2568      //    operand on its own, *not* as a reference binding.
2569      if (CE->isElidable() &&
2570          CE->getArg(0)->isConstantInitializer(Ctx, false))
2571        return true;
2572    }
2573
2574    // 3) a foldable constexpr constructor.
2575    break;
2576  }
2577  case CompoundLiteralExprClass: {
2578    // This handles gcc's extension that allows global initializers like
2579    // "struct x {int x;} x = (struct x) {};".
2580    // FIXME: This accepts other cases it shouldn't!
2581    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2582    return Exp->isConstantInitializer(Ctx, false);
2583  }
2584  case InitListExprClass: {
2585    // FIXME: This doesn't deal with fields with reference types correctly.
2586    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2587    // to bitfields.
2588    const InitListExpr *Exp = cast<InitListExpr>(this);
2589    unsigned numInits = Exp->getNumInits();
2590    for (unsigned i = 0; i < numInits; i++) {
2591      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2592        return false;
2593    }
2594    return true;
2595  }
2596  case ImplicitValueInitExprClass:
2597    return true;
2598  case ParenExprClass:
2599    return cast<ParenExpr>(this)->getSubExpr()
2600      ->isConstantInitializer(Ctx, IsForRef);
2601  case GenericSelectionExprClass:
2602    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2603      return false;
2604    return cast<GenericSelectionExpr>(this)->getResultExpr()
2605      ->isConstantInitializer(Ctx, IsForRef);
2606  case ChooseExprClass:
2607    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2608      ->isConstantInitializer(Ctx, IsForRef);
2609  case UnaryOperatorClass: {
2610    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2611    if (Exp->getOpcode() == UO_Extension)
2612      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2613    break;
2614  }
2615  case CXXFunctionalCastExprClass:
2616  case CXXStaticCastExprClass:
2617  case ImplicitCastExprClass:
2618  case CStyleCastExprClass: {
2619    const CastExpr *CE = cast<CastExpr>(this);
2620
2621    // If we're promoting an integer to an _Atomic type then this is constant
2622    // if the integer is constant.  We also need to check the converse in case
2623    // someone does something like:
2624    //
2625    // int a = (_Atomic(int))42;
2626    //
2627    // I doubt anyone would write code like this directly, but it's quite
2628    // possible as the result of macro expansions.
2629    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2630        CE->getCastKind() == CK_AtomicToNonAtomic)
2631      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2632
2633    // Handle bitcasts of vector constants.
2634    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2635      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2636
2637    // Handle misc casts we want to ignore.
2638    // FIXME: Is it really safe to ignore all these?
2639    if (CE->getCastKind() == CK_NoOp ||
2640        CE->getCastKind() == CK_LValueToRValue ||
2641        CE->getCastKind() == CK_ToUnion ||
2642        CE->getCastKind() == CK_ConstructorConversion)
2643      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2644
2645    break;
2646  }
2647  case MaterializeTemporaryExprClass:
2648    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2649                                            ->isConstantInitializer(Ctx, false);
2650  }
2651  return isEvaluatable(Ctx);
2652}
2653
2654/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2655/// pointer constant or not, as well as the specific kind of constant detected.
2656/// Null pointer constants can be integer constant expressions with the
2657/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2658/// (a GNU extension).
2659Expr::NullPointerConstantKind
2660Expr::isNullPointerConstant(ASTContext &Ctx,
2661                            NullPointerConstantValueDependence NPC) const {
2662  if (isValueDependent()) {
2663    switch (NPC) {
2664    case NPC_NeverValueDependent:
2665      llvm_unreachable("Unexpected value dependent expression!");
2666    case NPC_ValueDependentIsNull:
2667      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2668        return NPCK_ZeroInteger;
2669      else
2670        return NPCK_NotNull;
2671
2672    case NPC_ValueDependentIsNotNull:
2673      return NPCK_NotNull;
2674    }
2675  }
2676
2677  // Strip off a cast to void*, if it exists. Except in C++.
2678  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2679    if (!Ctx.getLangOptions().CPlusPlus) {
2680      // Check that it is a cast to void*.
2681      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2682        QualType Pointee = PT->getPointeeType();
2683        if (!Pointee.hasQualifiers() &&
2684            Pointee->isVoidType() &&                              // to void*
2685            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2686          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2687      }
2688    }
2689  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2690    // Ignore the ImplicitCastExpr type entirely.
2691    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2692  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2693    // Accept ((void*)0) as a null pointer constant, as many other
2694    // implementations do.
2695    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2696  } else if (const GenericSelectionExpr *GE =
2697               dyn_cast<GenericSelectionExpr>(this)) {
2698    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2699  } else if (const CXXDefaultArgExpr *DefaultArg
2700               = dyn_cast<CXXDefaultArgExpr>(this)) {
2701    // See through default argument expressions
2702    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2703  } else if (isa<GNUNullExpr>(this)) {
2704    // The GNU __null extension is always a null pointer constant.
2705    return NPCK_GNUNull;
2706  } else if (const MaterializeTemporaryExpr *M
2707                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2708    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2709  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2710    if (const Expr *Source = OVE->getSourceExpr())
2711      return Source->isNullPointerConstant(Ctx, NPC);
2712  }
2713
2714  // C++0x nullptr_t is always a null pointer constant.
2715  if (getType()->isNullPtrType())
2716    return NPCK_CXX0X_nullptr;
2717
2718  if (const RecordType *UT = getType()->getAsUnionType())
2719    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2720      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2721        const Expr *InitExpr = CLE->getInitializer();
2722        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2723          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2724      }
2725  // This expression must be an integer type.
2726  if (!getType()->isIntegerType() ||
2727      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2728    return NPCK_NotNull;
2729
2730  // If we have an integer constant expression, we need to *evaluate* it and
2731  // test for the value 0.
2732  llvm::APSInt Result;
2733  bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
2734
2735  return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
2736}
2737
2738/// \brief If this expression is an l-value for an Objective C
2739/// property, find the underlying property reference expression.
2740const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2741  const Expr *E = this;
2742  while (true) {
2743    assert((E->getValueKind() == VK_LValue &&
2744            E->getObjectKind() == OK_ObjCProperty) &&
2745           "expression is not a property reference");
2746    E = E->IgnoreParenCasts();
2747    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2748      if (BO->getOpcode() == BO_Comma) {
2749        E = BO->getRHS();
2750        continue;
2751      }
2752    }
2753
2754    break;
2755  }
2756
2757  return cast<ObjCPropertyRefExpr>(E);
2758}
2759
2760FieldDecl *Expr::getBitField() {
2761  Expr *E = this->IgnoreParens();
2762
2763  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2764    if (ICE->getCastKind() == CK_LValueToRValue ||
2765        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2766      E = ICE->getSubExpr()->IgnoreParens();
2767    else
2768      break;
2769  }
2770
2771  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2772    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2773      if (Field->isBitField())
2774        return Field;
2775
2776  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2777    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2778      if (Field->isBitField())
2779        return Field;
2780
2781  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2782    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2783      return BinOp->getLHS()->getBitField();
2784
2785    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2786      return BinOp->getRHS()->getBitField();
2787  }
2788
2789  return 0;
2790}
2791
2792bool Expr::refersToVectorElement() const {
2793  const Expr *E = this->IgnoreParens();
2794
2795  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2796    if (ICE->getValueKind() != VK_RValue &&
2797        ICE->getCastKind() == CK_NoOp)
2798      E = ICE->getSubExpr()->IgnoreParens();
2799    else
2800      break;
2801  }
2802
2803  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2804    return ASE->getBase()->getType()->isVectorType();
2805
2806  if (isa<ExtVectorElementExpr>(E))
2807    return true;
2808
2809  return false;
2810}
2811
2812/// isArrow - Return true if the base expression is a pointer to vector,
2813/// return false if the base expression is a vector.
2814bool ExtVectorElementExpr::isArrow() const {
2815  return getBase()->getType()->isPointerType();
2816}
2817
2818unsigned ExtVectorElementExpr::getNumElements() const {
2819  if (const VectorType *VT = getType()->getAs<VectorType>())
2820    return VT->getNumElements();
2821  return 1;
2822}
2823
2824/// containsDuplicateElements - Return true if any element access is repeated.
2825bool ExtVectorElementExpr::containsDuplicateElements() const {
2826  // FIXME: Refactor this code to an accessor on the AST node which returns the
2827  // "type" of component access, and share with code below and in Sema.
2828  StringRef Comp = Accessor->getName();
2829
2830  // Halving swizzles do not contain duplicate elements.
2831  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2832    return false;
2833
2834  // Advance past s-char prefix on hex swizzles.
2835  if (Comp[0] == 's' || Comp[0] == 'S')
2836    Comp = Comp.substr(1);
2837
2838  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2839    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2840        return true;
2841
2842  return false;
2843}
2844
2845/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2846void ExtVectorElementExpr::getEncodedElementAccess(
2847                                  SmallVectorImpl<unsigned> &Elts) const {
2848  StringRef Comp = Accessor->getName();
2849  if (Comp[0] == 's' || Comp[0] == 'S')
2850    Comp = Comp.substr(1);
2851
2852  bool isHi =   Comp == "hi";
2853  bool isLo =   Comp == "lo";
2854  bool isEven = Comp == "even";
2855  bool isOdd  = Comp == "odd";
2856
2857  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2858    uint64_t Index;
2859
2860    if (isHi)
2861      Index = e + i;
2862    else if (isLo)
2863      Index = i;
2864    else if (isEven)
2865      Index = 2 * i;
2866    else if (isOdd)
2867      Index = 2 * i + 1;
2868    else
2869      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2870
2871    Elts.push_back(Index);
2872  }
2873}
2874
2875ObjCMessageExpr::ObjCMessageExpr(QualType T,
2876                                 ExprValueKind VK,
2877                                 SourceLocation LBracLoc,
2878                                 SourceLocation SuperLoc,
2879                                 bool IsInstanceSuper,
2880                                 QualType SuperType,
2881                                 Selector Sel,
2882                                 ArrayRef<SourceLocation> SelLocs,
2883                                 SelectorLocationsKind SelLocsK,
2884                                 ObjCMethodDecl *Method,
2885                                 ArrayRef<Expr *> Args,
2886                                 SourceLocation RBracLoc,
2887                                 bool isImplicit)
2888  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2889         /*TypeDependent=*/false, /*ValueDependent=*/false,
2890         /*InstantiationDependent=*/false,
2891         /*ContainsUnexpandedParameterPack=*/false),
2892    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2893                                                       : Sel.getAsOpaquePtr())),
2894    Kind(IsInstanceSuper? SuperInstance : SuperClass),
2895    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2896    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2897{
2898  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2899  setReceiverPointer(SuperType.getAsOpaquePtr());
2900}
2901
2902ObjCMessageExpr::ObjCMessageExpr(QualType T,
2903                                 ExprValueKind VK,
2904                                 SourceLocation LBracLoc,
2905                                 TypeSourceInfo *Receiver,
2906                                 Selector Sel,
2907                                 ArrayRef<SourceLocation> SelLocs,
2908                                 SelectorLocationsKind SelLocsK,
2909                                 ObjCMethodDecl *Method,
2910                                 ArrayRef<Expr *> Args,
2911                                 SourceLocation RBracLoc,
2912                                 bool isImplicit)
2913  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2914         T->isDependentType(), T->isInstantiationDependentType(),
2915         T->containsUnexpandedParameterPack()),
2916    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2917                                                       : Sel.getAsOpaquePtr())),
2918    Kind(Class),
2919    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2920    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2921{
2922  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2923  setReceiverPointer(Receiver);
2924}
2925
2926ObjCMessageExpr::ObjCMessageExpr(QualType T,
2927                                 ExprValueKind VK,
2928                                 SourceLocation LBracLoc,
2929                                 Expr *Receiver,
2930                                 Selector Sel,
2931                                 ArrayRef<SourceLocation> SelLocs,
2932                                 SelectorLocationsKind SelLocsK,
2933                                 ObjCMethodDecl *Method,
2934                                 ArrayRef<Expr *> Args,
2935                                 SourceLocation RBracLoc,
2936                                 bool isImplicit)
2937  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2938         Receiver->isTypeDependent(),
2939         Receiver->isInstantiationDependent(),
2940         Receiver->containsUnexpandedParameterPack()),
2941    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2942                                                       : Sel.getAsOpaquePtr())),
2943    Kind(Instance),
2944    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2945    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2946{
2947  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2948  setReceiverPointer(Receiver);
2949}
2950
2951void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
2952                                         ArrayRef<SourceLocation> SelLocs,
2953                                         SelectorLocationsKind SelLocsK) {
2954  setNumArgs(Args.size());
2955  Expr **MyArgs = getArgs();
2956  for (unsigned I = 0; I != Args.size(); ++I) {
2957    if (Args[I]->isTypeDependent())
2958      ExprBits.TypeDependent = true;
2959    if (Args[I]->isValueDependent())
2960      ExprBits.ValueDependent = true;
2961    if (Args[I]->isInstantiationDependent())
2962      ExprBits.InstantiationDependent = true;
2963    if (Args[I]->containsUnexpandedParameterPack())
2964      ExprBits.ContainsUnexpandedParameterPack = true;
2965
2966    MyArgs[I] = Args[I];
2967  }
2968
2969  if (!isImplicit()) {
2970    SelLocsKind = SelLocsK;
2971    if (SelLocsK == SelLoc_NonStandard)
2972      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
2973  }
2974}
2975
2976ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2977                                         ExprValueKind VK,
2978                                         SourceLocation LBracLoc,
2979                                         SourceLocation SuperLoc,
2980                                         bool IsInstanceSuper,
2981                                         QualType SuperType,
2982                                         Selector Sel,
2983                                         ArrayRef<SourceLocation> SelLocs,
2984                                         ObjCMethodDecl *Method,
2985                                         ArrayRef<Expr *> Args,
2986                                         SourceLocation RBracLoc,
2987                                         bool isImplicit) {
2988  assert((!SelLocs.empty() || isImplicit) &&
2989         "No selector locs for non-implicit message");
2990  ObjCMessageExpr *Mem;
2991  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2992  if (isImplicit)
2993    Mem = alloc(Context, Args.size(), 0);
2994  else
2995    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2996  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2997                                   SuperType, Sel, SelLocs, SelLocsK,
2998                                   Method, Args, RBracLoc, isImplicit);
2999}
3000
3001ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3002                                         ExprValueKind VK,
3003                                         SourceLocation LBracLoc,
3004                                         TypeSourceInfo *Receiver,
3005                                         Selector Sel,
3006                                         ArrayRef<SourceLocation> SelLocs,
3007                                         ObjCMethodDecl *Method,
3008                                         ArrayRef<Expr *> Args,
3009                                         SourceLocation RBracLoc,
3010                                         bool isImplicit) {
3011  assert((!SelLocs.empty() || isImplicit) &&
3012         "No selector locs for non-implicit message");
3013  ObjCMessageExpr *Mem;
3014  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3015  if (isImplicit)
3016    Mem = alloc(Context, Args.size(), 0);
3017  else
3018    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3019  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3020                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3021                                   isImplicit);
3022}
3023
3024ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3025                                         ExprValueKind VK,
3026                                         SourceLocation LBracLoc,
3027                                         Expr *Receiver,
3028                                         Selector Sel,
3029                                         ArrayRef<SourceLocation> SelLocs,
3030                                         ObjCMethodDecl *Method,
3031                                         ArrayRef<Expr *> Args,
3032                                         SourceLocation RBracLoc,
3033                                         bool isImplicit) {
3034  assert((!SelLocs.empty() || isImplicit) &&
3035         "No selector locs for non-implicit message");
3036  ObjCMessageExpr *Mem;
3037  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3038  if (isImplicit)
3039    Mem = alloc(Context, Args.size(), 0);
3040  else
3041    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3042  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3043                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3044                                   isImplicit);
3045}
3046
3047ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3048                                              unsigned NumArgs,
3049                                              unsigned NumStoredSelLocs) {
3050  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3051  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3052}
3053
3054ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3055                                        ArrayRef<Expr *> Args,
3056                                        SourceLocation RBraceLoc,
3057                                        ArrayRef<SourceLocation> SelLocs,
3058                                        Selector Sel,
3059                                        SelectorLocationsKind &SelLocsK) {
3060  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3061  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3062                                                               : 0;
3063  return alloc(C, Args.size(), NumStoredSelLocs);
3064}
3065
3066ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3067                                        unsigned NumArgs,
3068                                        unsigned NumStoredSelLocs) {
3069  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3070    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3071  return (ObjCMessageExpr *)C.Allocate(Size,
3072                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3073}
3074
3075void ObjCMessageExpr::getSelectorLocs(
3076                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3077  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3078    SelLocs.push_back(getSelectorLoc(i));
3079}
3080
3081SourceRange ObjCMessageExpr::getReceiverRange() const {
3082  switch (getReceiverKind()) {
3083  case Instance:
3084    return getInstanceReceiver()->getSourceRange();
3085
3086  case Class:
3087    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3088
3089  case SuperInstance:
3090  case SuperClass:
3091    return getSuperLoc();
3092  }
3093
3094  llvm_unreachable("Invalid ReceiverKind!");
3095}
3096
3097Selector ObjCMessageExpr::getSelector() const {
3098  if (HasMethod)
3099    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3100                                                               ->getSelector();
3101  return Selector(SelectorOrMethod);
3102}
3103
3104ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3105  switch (getReceiverKind()) {
3106  case Instance:
3107    if (const ObjCObjectPointerType *Ptr
3108          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3109      return Ptr->getInterfaceDecl();
3110    break;
3111
3112  case Class:
3113    if (const ObjCObjectType *Ty
3114          = getClassReceiver()->getAs<ObjCObjectType>())
3115      return Ty->getInterface();
3116    break;
3117
3118  case SuperInstance:
3119    if (const ObjCObjectPointerType *Ptr
3120          = getSuperType()->getAs<ObjCObjectPointerType>())
3121      return Ptr->getInterfaceDecl();
3122    break;
3123
3124  case SuperClass:
3125    if (const ObjCObjectType *Iface
3126          = getSuperType()->getAs<ObjCObjectType>())
3127      return Iface->getInterface();
3128    break;
3129  }
3130
3131  return 0;
3132}
3133
3134StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3135  switch (getBridgeKind()) {
3136  case OBC_Bridge:
3137    return "__bridge";
3138  case OBC_BridgeTransfer:
3139    return "__bridge_transfer";
3140  case OBC_BridgeRetained:
3141    return "__bridge_retained";
3142  }
3143
3144  llvm_unreachable("Invalid BridgeKind!");
3145}
3146
3147bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3148  return getCond()->EvaluateKnownConstInt(C) != 0;
3149}
3150
3151ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3152                                     QualType Type, SourceLocation BLoc,
3153                                     SourceLocation RP)
3154   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3155          Type->isDependentType(), Type->isDependentType(),
3156          Type->isInstantiationDependentType(),
3157          Type->containsUnexpandedParameterPack()),
3158     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3159{
3160  SubExprs = new (C) Stmt*[nexpr];
3161  for (unsigned i = 0; i < nexpr; i++) {
3162    if (args[i]->isTypeDependent())
3163      ExprBits.TypeDependent = true;
3164    if (args[i]->isValueDependent())
3165      ExprBits.ValueDependent = true;
3166    if (args[i]->isInstantiationDependent())
3167      ExprBits.InstantiationDependent = true;
3168    if (args[i]->containsUnexpandedParameterPack())
3169      ExprBits.ContainsUnexpandedParameterPack = true;
3170
3171    SubExprs[i] = args[i];
3172  }
3173}
3174
3175void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3176                                 unsigned NumExprs) {
3177  if (SubExprs) C.Deallocate(SubExprs);
3178
3179  SubExprs = new (C) Stmt* [NumExprs];
3180  this->NumExprs = NumExprs;
3181  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3182}
3183
3184GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3185                               SourceLocation GenericLoc, Expr *ControllingExpr,
3186                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3187                               unsigned NumAssocs, SourceLocation DefaultLoc,
3188                               SourceLocation RParenLoc,
3189                               bool ContainsUnexpandedParameterPack,
3190                               unsigned ResultIndex)
3191  : Expr(GenericSelectionExprClass,
3192         AssocExprs[ResultIndex]->getType(),
3193         AssocExprs[ResultIndex]->getValueKind(),
3194         AssocExprs[ResultIndex]->getObjectKind(),
3195         AssocExprs[ResultIndex]->isTypeDependent(),
3196         AssocExprs[ResultIndex]->isValueDependent(),
3197         AssocExprs[ResultIndex]->isInstantiationDependent(),
3198         ContainsUnexpandedParameterPack),
3199    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3200    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3201    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3202    RParenLoc(RParenLoc) {
3203  SubExprs[CONTROLLING] = ControllingExpr;
3204  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3205  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3206}
3207
3208GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3209                               SourceLocation GenericLoc, Expr *ControllingExpr,
3210                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3211                               unsigned NumAssocs, SourceLocation DefaultLoc,
3212                               SourceLocation RParenLoc,
3213                               bool ContainsUnexpandedParameterPack)
3214  : Expr(GenericSelectionExprClass,
3215         Context.DependentTy,
3216         VK_RValue,
3217         OK_Ordinary,
3218         /*isTypeDependent=*/true,
3219         /*isValueDependent=*/true,
3220         /*isInstantiationDependent=*/true,
3221         ContainsUnexpandedParameterPack),
3222    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3223    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3224    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3225    RParenLoc(RParenLoc) {
3226  SubExprs[CONTROLLING] = ControllingExpr;
3227  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3228  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3229}
3230
3231//===----------------------------------------------------------------------===//
3232//  DesignatedInitExpr
3233//===----------------------------------------------------------------------===//
3234
3235IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3236  assert(Kind == FieldDesignator && "Only valid on a field designator");
3237  if (Field.NameOrField & 0x01)
3238    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3239  else
3240    return getField()->getIdentifier();
3241}
3242
3243DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3244                                       unsigned NumDesignators,
3245                                       const Designator *Designators,
3246                                       SourceLocation EqualOrColonLoc,
3247                                       bool GNUSyntax,
3248                                       Expr **IndexExprs,
3249                                       unsigned NumIndexExprs,
3250                                       Expr *Init)
3251  : Expr(DesignatedInitExprClass, Ty,
3252         Init->getValueKind(), Init->getObjectKind(),
3253         Init->isTypeDependent(), Init->isValueDependent(),
3254         Init->isInstantiationDependent(),
3255         Init->containsUnexpandedParameterPack()),
3256    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3257    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3258  this->Designators = new (C) Designator[NumDesignators];
3259
3260  // Record the initializer itself.
3261  child_range Child = children();
3262  *Child++ = Init;
3263
3264  // Copy the designators and their subexpressions, computing
3265  // value-dependence along the way.
3266  unsigned IndexIdx = 0;
3267  for (unsigned I = 0; I != NumDesignators; ++I) {
3268    this->Designators[I] = Designators[I];
3269
3270    if (this->Designators[I].isArrayDesignator()) {
3271      // Compute type- and value-dependence.
3272      Expr *Index = IndexExprs[IndexIdx];
3273      if (Index->isTypeDependent() || Index->isValueDependent())
3274        ExprBits.ValueDependent = true;
3275      if (Index->isInstantiationDependent())
3276        ExprBits.InstantiationDependent = true;
3277      // Propagate unexpanded parameter packs.
3278      if (Index->containsUnexpandedParameterPack())
3279        ExprBits.ContainsUnexpandedParameterPack = true;
3280
3281      // Copy the index expressions into permanent storage.
3282      *Child++ = IndexExprs[IndexIdx++];
3283    } else if (this->Designators[I].isArrayRangeDesignator()) {
3284      // Compute type- and value-dependence.
3285      Expr *Start = IndexExprs[IndexIdx];
3286      Expr *End = IndexExprs[IndexIdx + 1];
3287      if (Start->isTypeDependent() || Start->isValueDependent() ||
3288          End->isTypeDependent() || End->isValueDependent()) {
3289        ExprBits.ValueDependent = true;
3290        ExprBits.InstantiationDependent = true;
3291      } else if (Start->isInstantiationDependent() ||
3292                 End->isInstantiationDependent()) {
3293        ExprBits.InstantiationDependent = true;
3294      }
3295
3296      // Propagate unexpanded parameter packs.
3297      if (Start->containsUnexpandedParameterPack() ||
3298          End->containsUnexpandedParameterPack())
3299        ExprBits.ContainsUnexpandedParameterPack = true;
3300
3301      // Copy the start/end expressions into permanent storage.
3302      *Child++ = IndexExprs[IndexIdx++];
3303      *Child++ = IndexExprs[IndexIdx++];
3304    }
3305  }
3306
3307  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3308}
3309
3310DesignatedInitExpr *
3311DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3312                           unsigned NumDesignators,
3313                           Expr **IndexExprs, unsigned NumIndexExprs,
3314                           SourceLocation ColonOrEqualLoc,
3315                           bool UsesColonSyntax, Expr *Init) {
3316  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3317                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3318  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3319                                      ColonOrEqualLoc, UsesColonSyntax,
3320                                      IndexExprs, NumIndexExprs, Init);
3321}
3322
3323DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3324                                                    unsigned NumIndexExprs) {
3325  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3326                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3327  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3328}
3329
3330void DesignatedInitExpr::setDesignators(ASTContext &C,
3331                                        const Designator *Desigs,
3332                                        unsigned NumDesigs) {
3333  Designators = new (C) Designator[NumDesigs];
3334  NumDesignators = NumDesigs;
3335  for (unsigned I = 0; I != NumDesigs; ++I)
3336    Designators[I] = Desigs[I];
3337}
3338
3339SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3340  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3341  if (size() == 1)
3342    return DIE->getDesignator(0)->getSourceRange();
3343  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3344                     DIE->getDesignator(size()-1)->getEndLocation());
3345}
3346
3347SourceRange DesignatedInitExpr::getSourceRange() const {
3348  SourceLocation StartLoc;
3349  Designator &First =
3350    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3351  if (First.isFieldDesignator()) {
3352    if (GNUSyntax)
3353      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3354    else
3355      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3356  } else
3357    StartLoc =
3358      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3359  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3360}
3361
3362Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3363  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3364  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3365  Ptr += sizeof(DesignatedInitExpr);
3366  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3367  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3368}
3369
3370Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3371  assert(D.Kind == Designator::ArrayRangeDesignator &&
3372         "Requires array range designator");
3373  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3374  Ptr += sizeof(DesignatedInitExpr);
3375  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3376  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3377}
3378
3379Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3380  assert(D.Kind == Designator::ArrayRangeDesignator &&
3381         "Requires array range designator");
3382  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3383  Ptr += sizeof(DesignatedInitExpr);
3384  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3385  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3386}
3387
3388/// \brief Replaces the designator at index @p Idx with the series
3389/// of designators in [First, Last).
3390void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3391                                          const Designator *First,
3392                                          const Designator *Last) {
3393  unsigned NumNewDesignators = Last - First;
3394  if (NumNewDesignators == 0) {
3395    std::copy_backward(Designators + Idx + 1,
3396                       Designators + NumDesignators,
3397                       Designators + Idx);
3398    --NumNewDesignators;
3399    return;
3400  } else if (NumNewDesignators == 1) {
3401    Designators[Idx] = *First;
3402    return;
3403  }
3404
3405  Designator *NewDesignators
3406    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3407  std::copy(Designators, Designators + Idx, NewDesignators);
3408  std::copy(First, Last, NewDesignators + Idx);
3409  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3410            NewDesignators + Idx + NumNewDesignators);
3411  Designators = NewDesignators;
3412  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3413}
3414
3415ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3416                             Expr **exprs, unsigned nexprs,
3417                             SourceLocation rparenloc, QualType T)
3418  : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary,
3419         false, false, false, false),
3420    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3421  assert(!T.isNull() && "ParenListExpr must have a valid type");
3422  Exprs = new (C) Stmt*[nexprs];
3423  for (unsigned i = 0; i != nexprs; ++i) {
3424    if (exprs[i]->isTypeDependent())
3425      ExprBits.TypeDependent = true;
3426    if (exprs[i]->isValueDependent())
3427      ExprBits.ValueDependent = true;
3428    if (exprs[i]->isInstantiationDependent())
3429      ExprBits.InstantiationDependent = true;
3430    if (exprs[i]->containsUnexpandedParameterPack())
3431      ExprBits.ContainsUnexpandedParameterPack = true;
3432
3433    Exprs[i] = exprs[i];
3434  }
3435}
3436
3437const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3438  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3439    e = ewc->getSubExpr();
3440  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3441    e = m->GetTemporaryExpr();
3442  e = cast<CXXConstructExpr>(e)->getArg(0);
3443  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3444    e = ice->getSubExpr();
3445  return cast<OpaqueValueExpr>(e);
3446}
3447
3448PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3449                                           unsigned numSemanticExprs) {
3450  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3451                                    (1 + numSemanticExprs) * sizeof(Expr*),
3452                                  llvm::alignOf<PseudoObjectExpr>());
3453  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3454}
3455
3456PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3457  : Expr(PseudoObjectExprClass, shell) {
3458  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3459}
3460
3461PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3462                                           ArrayRef<Expr*> semantics,
3463                                           unsigned resultIndex) {
3464  assert(syntax && "no syntactic expression!");
3465  assert(semantics.size() && "no semantic expressions!");
3466
3467  QualType type;
3468  ExprValueKind VK;
3469  if (resultIndex == NoResult) {
3470    type = C.VoidTy;
3471    VK = VK_RValue;
3472  } else {
3473    assert(resultIndex < semantics.size());
3474    type = semantics[resultIndex]->getType();
3475    VK = semantics[resultIndex]->getValueKind();
3476    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3477  }
3478
3479  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3480                              (1 + semantics.size()) * sizeof(Expr*),
3481                            llvm::alignOf<PseudoObjectExpr>());
3482  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3483                                      resultIndex);
3484}
3485
3486PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3487                                   Expr *syntax, ArrayRef<Expr*> semantics,
3488                                   unsigned resultIndex)
3489  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3490         /*filled in at end of ctor*/ false, false, false, false) {
3491  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3492  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3493
3494  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3495    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3496    getSubExprsBuffer()[i] = E;
3497
3498    if (E->isTypeDependent())
3499      ExprBits.TypeDependent = true;
3500    if (E->isValueDependent())
3501      ExprBits.ValueDependent = true;
3502    if (E->isInstantiationDependent())
3503      ExprBits.InstantiationDependent = true;
3504    if (E->containsUnexpandedParameterPack())
3505      ExprBits.ContainsUnexpandedParameterPack = true;
3506
3507    if (isa<OpaqueValueExpr>(E))
3508      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3509             "opaque-value semantic expressions for pseudo-object "
3510             "operations must have sources");
3511  }
3512}
3513
3514//===----------------------------------------------------------------------===//
3515//  ExprIterator.
3516//===----------------------------------------------------------------------===//
3517
3518Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3519Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3520Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3521const Expr* ConstExprIterator::operator[](size_t idx) const {
3522  return cast<Expr>(I[idx]);
3523}
3524const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3525const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3526
3527//===----------------------------------------------------------------------===//
3528//  Child Iterators for iterating over subexpressions/substatements
3529//===----------------------------------------------------------------------===//
3530
3531// UnaryExprOrTypeTraitExpr
3532Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3533  // If this is of a type and the type is a VLA type (and not a typedef), the
3534  // size expression of the VLA needs to be treated as an executable expression.
3535  // Why isn't this weirdness documented better in StmtIterator?
3536  if (isArgumentType()) {
3537    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3538                                   getArgumentType().getTypePtr()))
3539      return child_range(child_iterator(T), child_iterator());
3540    return child_range();
3541  }
3542  return child_range(&Argument.Ex, &Argument.Ex + 1);
3543}
3544
3545// ObjCMessageExpr
3546Stmt::child_range ObjCMessageExpr::children() {
3547  Stmt **begin;
3548  if (getReceiverKind() == Instance)
3549    begin = reinterpret_cast<Stmt **>(this + 1);
3550  else
3551    begin = reinterpret_cast<Stmt **>(getArgs());
3552  return child_range(begin,
3553                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3554}
3555
3556// Blocks
3557BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3558                                   SourceLocation l, bool ByRef,
3559                                   bool constAdded)
3560  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false,
3561         d->isParameterPack()),
3562    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
3563{
3564  bool TypeDependent = false;
3565  bool ValueDependent = false;
3566  bool InstantiationDependent = false;
3567  computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent,
3568                           InstantiationDependent);
3569  ExprBits.TypeDependent = TypeDependent;
3570  ExprBits.ValueDependent = ValueDependent;
3571  ExprBits.InstantiationDependent = InstantiationDependent;
3572}
3573
3574
3575AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3576                       QualType t, AtomicOp op, SourceLocation RP)
3577  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3578         false, false, false, false),
3579    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3580{
3581  for (unsigned i = 0; i < nexpr; i++) {
3582    if (args[i]->isTypeDependent())
3583      ExprBits.TypeDependent = true;
3584    if (args[i]->isValueDependent())
3585      ExprBits.ValueDependent = true;
3586    if (args[i]->isInstantiationDependent())
3587      ExprBits.InstantiationDependent = true;
3588    if (args[i]->containsUnexpandedParameterPack())
3589      ExprBits.ContainsUnexpandedParameterPack = true;
3590
3591    SubExprs[i] = args[i];
3592  }
3593}
3594