Expr.cpp revision 14108da7f7fc059772711e4ffee1322a27b152a7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/TargetInfo.h"
24#include <algorithm>
25using namespace clang;
26
27//===----------------------------------------------------------------------===//
28// Primary Expressions.
29//===----------------------------------------------------------------------===//
30
31PredefinedExpr* PredefinedExpr::Clone(ASTContext &C) const {
32  return new (C) PredefinedExpr(Loc, getType(), Type);
33}
34
35IntegerLiteral* IntegerLiteral::Clone(ASTContext &C) const {
36  return new (C) IntegerLiteral(Value, getType(), Loc);
37}
38
39CharacterLiteral* CharacterLiteral::Clone(ASTContext &C) const {
40  return new (C) CharacterLiteral(Value, IsWide, getType(), Loc);
41}
42
43FloatingLiteral* FloatingLiteral::Clone(ASTContext &C) const {
44  return new (C) FloatingLiteral(Value, IsExact, getType(), Loc);
45}
46
47ImaginaryLiteral* ImaginaryLiteral::Clone(ASTContext &C) const {
48  // FIXME: Use virtual Clone(), once it is available
49  Expr *ClonedVal = 0;
50  if (const IntegerLiteral *IntLit = dyn_cast<IntegerLiteral>(Val))
51    ClonedVal = IntLit->Clone(C);
52  else
53    ClonedVal = cast<FloatingLiteral>(Val)->Clone(C);
54  return new (C) ImaginaryLiteral(ClonedVal, getType());
55}
56
57GNUNullExpr* GNUNullExpr::Clone(ASTContext &C) const {
58  return new (C) GNUNullExpr(getType(), TokenLoc);
59}
60
61/// getValueAsApproximateDouble - This returns the value as an inaccurate
62/// double.  Note that this may cause loss of precision, but is useful for
63/// debugging dumps, etc.
64double FloatingLiteral::getValueAsApproximateDouble() const {
65  llvm::APFloat V = getValue();
66  bool ignored;
67  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
68            &ignored);
69  return V.convertToDouble();
70}
71
72StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
73                                     unsigned ByteLength, bool Wide,
74                                     QualType Ty,
75                                     const SourceLocation *Loc,
76                                     unsigned NumStrs) {
77  // Allocate enough space for the StringLiteral plus an array of locations for
78  // any concatenated string tokens.
79  void *Mem = C.Allocate(sizeof(StringLiteral)+
80                         sizeof(SourceLocation)*(NumStrs-1),
81                         llvm::alignof<StringLiteral>());
82  StringLiteral *SL = new (Mem) StringLiteral(Ty);
83
84  // OPTIMIZE: could allocate this appended to the StringLiteral.
85  char *AStrData = new (C, 1) char[ByteLength];
86  memcpy(AStrData, StrData, ByteLength);
87  SL->StrData = AStrData;
88  SL->ByteLength = ByteLength;
89  SL->IsWide = Wide;
90  SL->TokLocs[0] = Loc[0];
91  SL->NumConcatenated = NumStrs;
92
93  if (NumStrs != 1)
94    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
95  return SL;
96}
97
98StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
99  void *Mem = C.Allocate(sizeof(StringLiteral)+
100                         sizeof(SourceLocation)*(NumStrs-1),
101                         llvm::alignof<StringLiteral>());
102  StringLiteral *SL = new (Mem) StringLiteral(QualType());
103  SL->StrData = 0;
104  SL->ByteLength = 0;
105  SL->NumConcatenated = NumStrs;
106  return SL;
107}
108
109StringLiteral* StringLiteral::Clone(ASTContext &C) const {
110  return Create(C, StrData, ByteLength, IsWide, getType(),
111                TokLocs, NumConcatenated);
112}
113
114void StringLiteral::Destroy(ASTContext &C) {
115  C.Deallocate(const_cast<char*>(StrData));
116  this->~StringLiteral();
117  C.Deallocate(this);
118}
119
120void StringLiteral::setStrData(ASTContext &C, const char *Str, unsigned Len) {
121  if (StrData)
122    C.Deallocate(const_cast<char*>(StrData));
123
124  char *AStrData = new (C, 1) char[Len];
125  memcpy(AStrData, Str, Len);
126  StrData = AStrData;
127  ByteLength = Len;
128}
129
130/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
131/// corresponds to, e.g. "sizeof" or "[pre]++".
132const char *UnaryOperator::getOpcodeStr(Opcode Op) {
133  switch (Op) {
134  default: assert(0 && "Unknown unary operator");
135  case PostInc: return "++";
136  case PostDec: return "--";
137  case PreInc:  return "++";
138  case PreDec:  return "--";
139  case AddrOf:  return "&";
140  case Deref:   return "*";
141  case Plus:    return "+";
142  case Minus:   return "-";
143  case Not:     return "~";
144  case LNot:    return "!";
145  case Real:    return "__real";
146  case Imag:    return "__imag";
147  case Extension: return "__extension__";
148  case OffsetOf: return "__builtin_offsetof";
149  }
150}
151
152UnaryOperator::Opcode
153UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
154  switch (OO) {
155  default: assert(false && "No unary operator for overloaded function");
156  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
157  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
158  case OO_Amp:        return AddrOf;
159  case OO_Star:       return Deref;
160  case OO_Plus:       return Plus;
161  case OO_Minus:      return Minus;
162  case OO_Tilde:      return Not;
163  case OO_Exclaim:    return LNot;
164  }
165}
166
167OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
168  switch (Opc) {
169  case PostInc: case PreInc: return OO_PlusPlus;
170  case PostDec: case PreDec: return OO_MinusMinus;
171  case AddrOf: return OO_Amp;
172  case Deref: return OO_Star;
173  case Plus: return OO_Plus;
174  case Minus: return OO_Minus;
175  case Not: return OO_Tilde;
176  case LNot: return OO_Exclaim;
177  default: return OO_None;
178  }
179}
180
181
182//===----------------------------------------------------------------------===//
183// Postfix Operators.
184//===----------------------------------------------------------------------===//
185
186CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
187                   unsigned numargs, QualType t, SourceLocation rparenloc)
188  : Expr(SC, t,
189         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
190         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
191    NumArgs(numargs) {
192
193  SubExprs = new (C) Stmt*[numargs+1];
194  SubExprs[FN] = fn;
195  for (unsigned i = 0; i != numargs; ++i)
196    SubExprs[i+ARGS_START] = args[i];
197
198  RParenLoc = rparenloc;
199}
200
201CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
202                   QualType t, SourceLocation rparenloc)
203  : Expr(CallExprClass, t,
204         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
205         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
206    NumArgs(numargs) {
207
208  SubExprs = new (C) Stmt*[numargs+1];
209  SubExprs[FN] = fn;
210  for (unsigned i = 0; i != numargs; ++i)
211    SubExprs[i+ARGS_START] = args[i];
212
213  RParenLoc = rparenloc;
214}
215
216CallExpr::CallExpr(ASTContext &C, EmptyShell Empty)
217  : Expr(CallExprClass, Empty), SubExprs(0), NumArgs(0) {
218  SubExprs = new (C) Stmt*[1];
219}
220
221void CallExpr::Destroy(ASTContext& C) {
222  DestroyChildren(C);
223  if (SubExprs) C.Deallocate(SubExprs);
224  this->~CallExpr();
225  C.Deallocate(this);
226}
227
228/// setNumArgs - This changes the number of arguments present in this call.
229/// Any orphaned expressions are deleted by this, and any new operands are set
230/// to null.
231void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
232  // No change, just return.
233  if (NumArgs == getNumArgs()) return;
234
235  // If shrinking # arguments, just delete the extras and forgot them.
236  if (NumArgs < getNumArgs()) {
237    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
238      getArg(i)->Destroy(C);
239    this->NumArgs = NumArgs;
240    return;
241  }
242
243  // Otherwise, we are growing the # arguments.  New an bigger argument array.
244  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
245  // Copy over args.
246  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
247    NewSubExprs[i] = SubExprs[i];
248  // Null out new args.
249  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
250    NewSubExprs[i] = 0;
251
252  if (SubExprs) C.Deallocate(SubExprs);
253  SubExprs = NewSubExprs;
254  this->NumArgs = NumArgs;
255}
256
257/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
258/// not, return 0.
259unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
260  // All simple function calls (e.g. func()) are implicitly cast to pointer to
261  // function. As a result, we try and obtain the DeclRefExpr from the
262  // ImplicitCastExpr.
263  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
264  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
265    return 0;
266
267  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
268  if (!DRE)
269    return 0;
270
271  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
272  if (!FDecl)
273    return 0;
274
275  if (!FDecl->getIdentifier())
276    return 0;
277
278  return FDecl->getBuiltinID(Context);
279}
280
281QualType CallExpr::getCallReturnType() const {
282  QualType CalleeType = getCallee()->getType();
283  if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
284    CalleeType = FnTypePtr->getPointeeType();
285  else if (const BlockPointerType *BPT = CalleeType->getAsBlockPointerType())
286    CalleeType = BPT->getPointeeType();
287
288  const FunctionType *FnType = CalleeType->getAsFunctionType();
289  return FnType->getResultType();
290}
291
292/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
293/// corresponds to, e.g. "<<=".
294const char *BinaryOperator::getOpcodeStr(Opcode Op) {
295  switch (Op) {
296  case PtrMemD:   return ".*";
297  case PtrMemI:   return "->*";
298  case Mul:       return "*";
299  case Div:       return "/";
300  case Rem:       return "%";
301  case Add:       return "+";
302  case Sub:       return "-";
303  case Shl:       return "<<";
304  case Shr:       return ">>";
305  case LT:        return "<";
306  case GT:        return ">";
307  case LE:        return "<=";
308  case GE:        return ">=";
309  case EQ:        return "==";
310  case NE:        return "!=";
311  case And:       return "&";
312  case Xor:       return "^";
313  case Or:        return "|";
314  case LAnd:      return "&&";
315  case LOr:       return "||";
316  case Assign:    return "=";
317  case MulAssign: return "*=";
318  case DivAssign: return "/=";
319  case RemAssign: return "%=";
320  case AddAssign: return "+=";
321  case SubAssign: return "-=";
322  case ShlAssign: return "<<=";
323  case ShrAssign: return ">>=";
324  case AndAssign: return "&=";
325  case XorAssign: return "^=";
326  case OrAssign:  return "|=";
327  case Comma:     return ",";
328  }
329
330  return "";
331}
332
333BinaryOperator::Opcode
334BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
335  switch (OO) {
336  default: assert(false && "Not an overloadable binary operator");
337  case OO_Plus: return Add;
338  case OO_Minus: return Sub;
339  case OO_Star: return Mul;
340  case OO_Slash: return Div;
341  case OO_Percent: return Rem;
342  case OO_Caret: return Xor;
343  case OO_Amp: return And;
344  case OO_Pipe: return Or;
345  case OO_Equal: return Assign;
346  case OO_Less: return LT;
347  case OO_Greater: return GT;
348  case OO_PlusEqual: return AddAssign;
349  case OO_MinusEqual: return SubAssign;
350  case OO_StarEqual: return MulAssign;
351  case OO_SlashEqual: return DivAssign;
352  case OO_PercentEqual: return RemAssign;
353  case OO_CaretEqual: return XorAssign;
354  case OO_AmpEqual: return AndAssign;
355  case OO_PipeEqual: return OrAssign;
356  case OO_LessLess: return Shl;
357  case OO_GreaterGreater: return Shr;
358  case OO_LessLessEqual: return ShlAssign;
359  case OO_GreaterGreaterEqual: return ShrAssign;
360  case OO_EqualEqual: return EQ;
361  case OO_ExclaimEqual: return NE;
362  case OO_LessEqual: return LE;
363  case OO_GreaterEqual: return GE;
364  case OO_AmpAmp: return LAnd;
365  case OO_PipePipe: return LOr;
366  case OO_Comma: return Comma;
367  case OO_ArrowStar: return PtrMemI;
368  }
369}
370
371OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
372  static const OverloadedOperatorKind OverOps[] = {
373    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
374    OO_Star, OO_Slash, OO_Percent,
375    OO_Plus, OO_Minus,
376    OO_LessLess, OO_GreaterGreater,
377    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
378    OO_EqualEqual, OO_ExclaimEqual,
379    OO_Amp,
380    OO_Caret,
381    OO_Pipe,
382    OO_AmpAmp,
383    OO_PipePipe,
384    OO_Equal, OO_StarEqual,
385    OO_SlashEqual, OO_PercentEqual,
386    OO_PlusEqual, OO_MinusEqual,
387    OO_LessLessEqual, OO_GreaterGreaterEqual,
388    OO_AmpEqual, OO_CaretEqual,
389    OO_PipeEqual,
390    OO_Comma
391  };
392  return OverOps[Opc];
393}
394
395InitListExpr::InitListExpr(SourceLocation lbraceloc,
396                           Expr **initExprs, unsigned numInits,
397                           SourceLocation rbraceloc)
398  : Expr(InitListExprClass, QualType(),
399         hasAnyTypeDependentArguments(initExprs, numInits),
400         hasAnyValueDependentArguments(initExprs, numInits)),
401    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
402    UnionFieldInit(0), HadArrayRangeDesignator(false) {
403
404  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
405}
406
407void InitListExpr::reserveInits(unsigned NumInits) {
408  if (NumInits > InitExprs.size())
409    InitExprs.reserve(NumInits);
410}
411
412void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
413  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
414       Idx < LastIdx; ++Idx)
415    InitExprs[Idx]->Destroy(Context);
416  InitExprs.resize(NumInits, 0);
417}
418
419Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
420  if (Init >= InitExprs.size()) {
421    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
422    InitExprs.back() = expr;
423    return 0;
424  }
425
426  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
427  InitExprs[Init] = expr;
428  return Result;
429}
430
431/// getFunctionType - Return the underlying function type for this block.
432///
433const FunctionType *BlockExpr::getFunctionType() const {
434  return getType()->getAsBlockPointerType()->
435                    getPointeeType()->getAsFunctionType();
436}
437
438SourceLocation BlockExpr::getCaretLocation() const {
439  return TheBlock->getCaretLocation();
440}
441const Stmt *BlockExpr::getBody() const {
442  return TheBlock->getBody();
443}
444Stmt *BlockExpr::getBody() {
445  return TheBlock->getBody();
446}
447
448
449//===----------------------------------------------------------------------===//
450// Generic Expression Routines
451//===----------------------------------------------------------------------===//
452
453/// isUnusedResultAWarning - Return true if this immediate expression should
454/// be warned about if the result is unused.  If so, fill in Loc and Ranges
455/// with location to warn on and the source range[s] to report with the
456/// warning.
457bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
458                                  SourceRange &R2) const {
459  // Don't warn if the expr is type dependent. The type could end up
460  // instantiating to void.
461  if (isTypeDependent())
462    return false;
463
464  switch (getStmtClass()) {
465  default:
466    Loc = getExprLoc();
467    R1 = getSourceRange();
468    return true;
469  case ParenExprClass:
470    return cast<ParenExpr>(this)->getSubExpr()->
471      isUnusedResultAWarning(Loc, R1, R2);
472  case UnaryOperatorClass: {
473    const UnaryOperator *UO = cast<UnaryOperator>(this);
474
475    switch (UO->getOpcode()) {
476    default: break;
477    case UnaryOperator::PostInc:
478    case UnaryOperator::PostDec:
479    case UnaryOperator::PreInc:
480    case UnaryOperator::PreDec:                 // ++/--
481      return false;  // Not a warning.
482    case UnaryOperator::Deref:
483      // Dereferencing a volatile pointer is a side-effect.
484      if (getType().isVolatileQualified())
485        return false;
486      break;
487    case UnaryOperator::Real:
488    case UnaryOperator::Imag:
489      // accessing a piece of a volatile complex is a side-effect.
490      if (UO->getSubExpr()->getType().isVolatileQualified())
491        return false;
492      break;
493    case UnaryOperator::Extension:
494      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
495    }
496    Loc = UO->getOperatorLoc();
497    R1 = UO->getSubExpr()->getSourceRange();
498    return true;
499  }
500  case BinaryOperatorClass: {
501    const BinaryOperator *BO = cast<BinaryOperator>(this);
502    // Consider comma to have side effects if the LHS or RHS does.
503    if (BO->getOpcode() == BinaryOperator::Comma)
504      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
505             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
506
507    if (BO->isAssignmentOp())
508      return false;
509    Loc = BO->getOperatorLoc();
510    R1 = BO->getLHS()->getSourceRange();
511    R2 = BO->getRHS()->getSourceRange();
512    return true;
513  }
514  case CompoundAssignOperatorClass:
515    return false;
516
517  case ConditionalOperatorClass: {
518    // The condition must be evaluated, but if either the LHS or RHS is a
519    // warning, warn about them.
520    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
521    if (Exp->getLHS() &&
522        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
523      return true;
524    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
525  }
526
527  case MemberExprClass:
528    // If the base pointer or element is to a volatile pointer/field, accessing
529    // it is a side effect.
530    if (getType().isVolatileQualified())
531      return false;
532    Loc = cast<MemberExpr>(this)->getMemberLoc();
533    R1 = SourceRange(Loc, Loc);
534    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
535    return true;
536
537  case ArraySubscriptExprClass:
538    // If the base pointer or element is to a volatile pointer/field, accessing
539    // it is a side effect.
540    if (getType().isVolatileQualified())
541      return false;
542    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
543    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
544    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
545    return true;
546
547  case CallExprClass:
548  case CXXOperatorCallExprClass:
549  case CXXMemberCallExprClass: {
550    // If this is a direct call, get the callee.
551    const CallExpr *CE = cast<CallExpr>(this);
552    const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
553    if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
554      // If the callee has attribute pure, const, or warn_unused_result, warn
555      // about it. void foo() { strlen("bar"); } should warn.
556      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
557        if (FD->getAttr<WarnUnusedResultAttr>() ||
558            FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
559          Loc = CE->getCallee()->getLocStart();
560          R1 = CE->getCallee()->getSourceRange();
561
562          if (unsigned NumArgs = CE->getNumArgs())
563            R2 = SourceRange(CE->getArg(0)->getLocStart(),
564                             CE->getArg(NumArgs-1)->getLocEnd());
565          return true;
566        }
567    }
568    return false;
569  }
570  case ObjCMessageExprClass:
571    return false;
572  case StmtExprClass: {
573    // Statement exprs don't logically have side effects themselves, but are
574    // sometimes used in macros in ways that give them a type that is unused.
575    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
576    // however, if the result of the stmt expr is dead, we don't want to emit a
577    // warning.
578    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
579    if (!CS->body_empty())
580      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
581        return E->isUnusedResultAWarning(Loc, R1, R2);
582
583    Loc = cast<StmtExpr>(this)->getLParenLoc();
584    R1 = getSourceRange();
585    return true;
586  }
587  case CStyleCastExprClass:
588    // If this is a cast to void, check the operand.  Otherwise, the result of
589    // the cast is unused.
590    if (getType()->isVoidType())
591      return cast<CastExpr>(this)->getSubExpr()
592               ->isUnusedResultAWarning(Loc, R1, R2);
593    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
594    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
595    return true;
596  case CXXFunctionalCastExprClass:
597    // If this is a cast to void, check the operand.  Otherwise, the result of
598    // the cast is unused.
599    if (getType()->isVoidType())
600      return cast<CastExpr>(this)->getSubExpr()
601               ->isUnusedResultAWarning(Loc, R1, R2);
602    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
603    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
604    return true;
605
606  case ImplicitCastExprClass:
607    // Check the operand, since implicit casts are inserted by Sema
608    return cast<ImplicitCastExpr>(this)
609      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
610
611  case CXXDefaultArgExprClass:
612    return cast<CXXDefaultArgExpr>(this)
613      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
614
615  case CXXNewExprClass:
616    // FIXME: In theory, there might be new expressions that don't have side
617    // effects (e.g. a placement new with an uninitialized POD).
618  case CXXDeleteExprClass:
619    return false;
620  case CXXExprWithTemporariesClass:
621    return cast<CXXExprWithTemporaries>(this)
622      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
623  }
624}
625
626/// DeclCanBeLvalue - Determine whether the given declaration can be
627/// an lvalue. This is a helper routine for isLvalue.
628static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
629  // C++ [temp.param]p6:
630  //   A non-type non-reference template-parameter is not an lvalue.
631  if (const NonTypeTemplateParmDecl *NTTParm
632        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
633    return NTTParm->getType()->isReferenceType();
634
635  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
636    // C++ 3.10p2: An lvalue refers to an object or function.
637    (Ctx.getLangOptions().CPlusPlus &&
638     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
639      isa<FunctionTemplateDecl>(Decl)));
640}
641
642/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
643/// incomplete type other than void. Nonarray expressions that can be lvalues:
644///  - name, where name must be a variable
645///  - e[i]
646///  - (e), where e must be an lvalue
647///  - e.name, where e must be an lvalue
648///  - e->name
649///  - *e, the type of e cannot be a function type
650///  - string-constant
651///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
652///  - reference type [C++ [expr]]
653///
654Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
655  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
656
657  isLvalueResult Res = isLvalueInternal(Ctx);
658  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
659    return Res;
660
661  // first, check the type (C99 6.3.2.1). Expressions with function
662  // type in C are not lvalues, but they can be lvalues in C++.
663  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
664    return LV_NotObjectType;
665
666  // Allow qualified void which is an incomplete type other than void (yuck).
667  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
668    return LV_IncompleteVoidType;
669
670  return LV_Valid;
671}
672
673// Check whether the expression can be sanely treated like an l-value
674Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
675  switch (getStmtClass()) {
676  case StringLiteralClass:  // C99 6.5.1p4
677  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
678    return LV_Valid;
679  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
680    // For vectors, make sure base is an lvalue (i.e. not a function call).
681    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
682      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
683    return LV_Valid;
684  case DeclRefExprClass:
685  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
686    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
687    if (DeclCanBeLvalue(RefdDecl, Ctx))
688      return LV_Valid;
689    break;
690  }
691  case BlockDeclRefExprClass: {
692    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
693    if (isa<VarDecl>(BDR->getDecl()))
694      return LV_Valid;
695    break;
696  }
697  case MemberExprClass: {
698    const MemberExpr *m = cast<MemberExpr>(this);
699    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
700      NamedDecl *Member = m->getMemberDecl();
701      // C++ [expr.ref]p4:
702      //   If E2 is declared to have type "reference to T", then E1.E2
703      //   is an lvalue.
704      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
705        if (Value->getType()->isReferenceType())
706          return LV_Valid;
707
708      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
709      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
710        return LV_Valid;
711
712      //   -- If E2 is a non-static data member [...]. If E1 is an
713      //      lvalue, then E1.E2 is an lvalue.
714      if (isa<FieldDecl>(Member))
715        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
716
717      //   -- If it refers to a static member function [...], then
718      //      E1.E2 is an lvalue.
719      //   -- Otherwise, if E1.E2 refers to a non-static member
720      //      function [...], then E1.E2 is not an lvalue.
721      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
722        return Method->isStatic()? LV_Valid : LV_MemberFunction;
723
724      //   -- If E2 is a member enumerator [...], the expression E1.E2
725      //      is not an lvalue.
726      if (isa<EnumConstantDecl>(Member))
727        return LV_InvalidExpression;
728
729        // Not an lvalue.
730      return LV_InvalidExpression;
731    }
732
733    // C99 6.5.2.3p4
734    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
735  }
736  case UnaryOperatorClass:
737    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
738      return LV_Valid; // C99 6.5.3p4
739
740    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
741        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
742        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
743      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
744
745    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
746        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
747         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
748      return LV_Valid;
749    break;
750  case ImplicitCastExprClass:
751    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
752                                                       : LV_InvalidExpression;
753  case ParenExprClass: // C99 6.5.1p5
754    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
755  case BinaryOperatorClass:
756  case CompoundAssignOperatorClass: {
757    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
758
759    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
760        BinOp->getOpcode() == BinaryOperator::Comma)
761      return BinOp->getRHS()->isLvalue(Ctx);
762
763    // C++ [expr.mptr.oper]p6
764    if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
765         BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
766        !BinOp->getType()->isFunctionType())
767      return BinOp->getLHS()->isLvalue(Ctx);
768
769    if (!BinOp->isAssignmentOp())
770      return LV_InvalidExpression;
771
772    if (Ctx.getLangOptions().CPlusPlus)
773      // C++ [expr.ass]p1:
774      //   The result of an assignment operation [...] is an lvalue.
775      return LV_Valid;
776
777
778    // C99 6.5.16:
779    //   An assignment expression [...] is not an lvalue.
780    return LV_InvalidExpression;
781  }
782  case CallExprClass:
783  case CXXOperatorCallExprClass:
784  case CXXMemberCallExprClass: {
785    // C++0x [expr.call]p10
786    //   A function call is an lvalue if and only if the result type
787    //   is an lvalue reference.
788    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
789    if (ReturnType->isLValueReferenceType())
790      return LV_Valid;
791
792    break;
793  }
794  case CompoundLiteralExprClass: // C99 6.5.2.5p5
795    return LV_Valid;
796  case ChooseExprClass:
797    // __builtin_choose_expr is an lvalue if the selected operand is.
798    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
799  case ExtVectorElementExprClass:
800    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
801      return LV_DuplicateVectorComponents;
802    return LV_Valid;
803  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
804    return LV_Valid;
805  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
806    return LV_Valid;
807  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
808    return LV_Valid;
809  case PredefinedExprClass:
810    return LV_Valid;
811  case CXXDefaultArgExprClass:
812    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
813  case CXXConditionDeclExprClass:
814    return LV_Valid;
815  case CStyleCastExprClass:
816  case CXXFunctionalCastExprClass:
817  case CXXStaticCastExprClass:
818  case CXXDynamicCastExprClass:
819  case CXXReinterpretCastExprClass:
820  case CXXConstCastExprClass:
821    // The result of an explicit cast is an lvalue if the type we are
822    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
823    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
824    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
825    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
826          isLValueReferenceType())
827      return LV_Valid;
828    break;
829  case CXXTypeidExprClass:
830    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
831    return LV_Valid;
832  case ConditionalOperatorClass: {
833    // Complicated handling is only for C++.
834    if (!Ctx.getLangOptions().CPlusPlus)
835      return LV_InvalidExpression;
836
837    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
838    // everywhere there's an object converted to an rvalue. Also, any other
839    // casts should be wrapped by ImplicitCastExprs. There's just the special
840    // case involving throws to work out.
841    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
842    Expr *True = Cond->getTrueExpr();
843    Expr *False = Cond->getFalseExpr();
844    // C++0x 5.16p2
845    //   If either the second or the third operand has type (cv) void, [...]
846    //   the result [...] is an rvalue.
847    if (True->getType()->isVoidType() || False->getType()->isVoidType())
848      return LV_InvalidExpression;
849
850    // Both sides must be lvalues for the result to be an lvalue.
851    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
852      return LV_InvalidExpression;
853
854    // That's it.
855    return LV_Valid;
856  }
857
858  default:
859    break;
860  }
861  return LV_InvalidExpression;
862}
863
864/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
865/// does not have an incomplete type, does not have a const-qualified type, and
866/// if it is a structure or union, does not have any member (including,
867/// recursively, any member or element of all contained aggregates or unions)
868/// with a const-qualified type.
869Expr::isModifiableLvalueResult
870Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
871  isLvalueResult lvalResult = isLvalue(Ctx);
872
873  switch (lvalResult) {
874  case LV_Valid:
875    // C++ 3.10p11: Functions cannot be modified, but pointers to
876    // functions can be modifiable.
877    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
878      return MLV_NotObjectType;
879    break;
880
881  case LV_NotObjectType: return MLV_NotObjectType;
882  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
883  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
884  case LV_InvalidExpression:
885    // If the top level is a C-style cast, and the subexpression is a valid
886    // lvalue, then this is probably a use of the old-school "cast as lvalue"
887    // GCC extension.  We don't support it, but we want to produce good
888    // diagnostics when it happens so that the user knows why.
889    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
890      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
891        if (Loc)
892          *Loc = CE->getLParenLoc();
893        return MLV_LValueCast;
894      }
895    }
896    return MLV_InvalidExpression;
897  case LV_MemberFunction: return MLV_MemberFunction;
898  }
899
900  // The following is illegal:
901  //   void takeclosure(void (^C)(void));
902  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
903  //
904  if (isa<BlockDeclRefExpr>(this)) {
905    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
906    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
907      return MLV_NotBlockQualified;
908  }
909
910  QualType CT = Ctx.getCanonicalType(getType());
911
912  if (CT.isConstQualified())
913    return MLV_ConstQualified;
914  if (CT->isArrayType())
915    return MLV_ArrayType;
916  if (CT->isIncompleteType())
917    return MLV_IncompleteType;
918
919  if (const RecordType *r = CT->getAsRecordType()) {
920    if (r->hasConstFields())
921      return MLV_ConstQualified;
922  }
923
924  // Assigning to an 'implicit' property?
925  else if (isa<ObjCKVCRefExpr>(this)) {
926    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
927    if (KVCExpr->getSetterMethod() == 0)
928      return MLV_NoSetterProperty;
929  }
930  return MLV_Valid;
931}
932
933/// hasGlobalStorage - Return true if this expression has static storage
934/// duration.  This means that the address of this expression is a link-time
935/// constant.
936bool Expr::hasGlobalStorage() const {
937  switch (getStmtClass()) {
938  default:
939    return false;
940  case BlockExprClass:
941    return true;
942  case ParenExprClass:
943    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
944  case ImplicitCastExprClass:
945    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
946  case CompoundLiteralExprClass:
947    return cast<CompoundLiteralExpr>(this)->isFileScope();
948  case DeclRefExprClass:
949  case QualifiedDeclRefExprClass: {
950    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
951    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
952      return VD->hasGlobalStorage();
953    if (isa<FunctionDecl>(D))
954      return true;
955    return false;
956  }
957  case MemberExprClass: {
958    const MemberExpr *M = cast<MemberExpr>(this);
959    return !M->isArrow() && M->getBase()->hasGlobalStorage();
960  }
961  case ArraySubscriptExprClass:
962    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
963  case PredefinedExprClass:
964    return true;
965  case CXXDefaultArgExprClass:
966    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
967  }
968}
969
970/// isOBJCGCCandidate - Check if an expression is objc gc'able.
971///
972bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
973  switch (getStmtClass()) {
974  default:
975    return false;
976  case ObjCIvarRefExprClass:
977    return true;
978  case Expr::UnaryOperatorClass:
979    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
980  case ParenExprClass:
981    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
982  case ImplicitCastExprClass:
983    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
984  case CStyleCastExprClass:
985    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
986  case DeclRefExprClass:
987  case QualifiedDeclRefExprClass: {
988    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
989    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
990      if (VD->hasGlobalStorage())
991        return true;
992      QualType T = VD->getType();
993      // dereferencing to an object pointer is always a gc'able candidate
994      if (T->isPointerType() &&
995          Ctx.isObjCObjectPointerType(T->getAsPointerType()->getPointeeType()))
996        return true;
997
998    }
999    return false;
1000  }
1001  case MemberExprClass: {
1002    const MemberExpr *M = cast<MemberExpr>(this);
1003    return M->getBase()->isOBJCGCCandidate(Ctx);
1004  }
1005  case ArraySubscriptExprClass:
1006    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1007  }
1008}
1009Expr* Expr::IgnoreParens() {
1010  Expr* E = this;
1011  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1012    E = P->getSubExpr();
1013
1014  return E;
1015}
1016
1017/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1018/// or CastExprs or ImplicitCastExprs, returning their operand.
1019Expr *Expr::IgnoreParenCasts() {
1020  Expr *E = this;
1021  while (true) {
1022    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1023      E = P->getSubExpr();
1024    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1025      E = P->getSubExpr();
1026    else
1027      return E;
1028  }
1029}
1030
1031/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1032/// value (including ptr->int casts of the same size).  Strip off any
1033/// ParenExpr or CastExprs, returning their operand.
1034Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1035  Expr *E = this;
1036  while (true) {
1037    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1038      E = P->getSubExpr();
1039      continue;
1040    }
1041
1042    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1043      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1044      // ptr<->int casts of the same width.  We also ignore all identify casts.
1045      Expr *SE = P->getSubExpr();
1046
1047      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1048        E = SE;
1049        continue;
1050      }
1051
1052      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1053          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1054          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1055        E = SE;
1056        continue;
1057      }
1058    }
1059
1060    return E;
1061  }
1062}
1063
1064
1065/// hasAnyTypeDependentArguments - Determines if any of the expressions
1066/// in Exprs is type-dependent.
1067bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1068  for (unsigned I = 0; I < NumExprs; ++I)
1069    if (Exprs[I]->isTypeDependent())
1070      return true;
1071
1072  return false;
1073}
1074
1075/// hasAnyValueDependentArguments - Determines if any of the expressions
1076/// in Exprs is value-dependent.
1077bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1078  for (unsigned I = 0; I < NumExprs; ++I)
1079    if (Exprs[I]->isValueDependent())
1080      return true;
1081
1082  return false;
1083}
1084
1085bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1086  // This function is attempting whether an expression is an initializer
1087  // which can be evaluated at compile-time.  isEvaluatable handles most
1088  // of the cases, but it can't deal with some initializer-specific
1089  // expressions, and it can't deal with aggregates; we deal with those here,
1090  // and fall back to isEvaluatable for the other cases.
1091
1092  // FIXME: This function assumes the variable being assigned to
1093  // isn't a reference type!
1094
1095  switch (getStmtClass()) {
1096  default: break;
1097  case StringLiteralClass:
1098  case ObjCStringLiteralClass:
1099  case ObjCEncodeExprClass:
1100    return true;
1101  case CompoundLiteralExprClass: {
1102    // This handles gcc's extension that allows global initializers like
1103    // "struct x {int x;} x = (struct x) {};".
1104    // FIXME: This accepts other cases it shouldn't!
1105    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1106    return Exp->isConstantInitializer(Ctx);
1107  }
1108  case InitListExprClass: {
1109    // FIXME: This doesn't deal with fields with reference types correctly.
1110    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1111    // to bitfields.
1112    const InitListExpr *Exp = cast<InitListExpr>(this);
1113    unsigned numInits = Exp->getNumInits();
1114    for (unsigned i = 0; i < numInits; i++) {
1115      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1116        return false;
1117    }
1118    return true;
1119  }
1120  case ImplicitValueInitExprClass:
1121    return true;
1122  case ParenExprClass: {
1123    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1124  }
1125  case UnaryOperatorClass: {
1126    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1127    if (Exp->getOpcode() == UnaryOperator::Extension)
1128      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1129    break;
1130  }
1131  case ImplicitCastExprClass:
1132  case CStyleCastExprClass:
1133    // Handle casts with a destination that's a struct or union; this
1134    // deals with both the gcc no-op struct cast extension and the
1135    // cast-to-union extension.
1136    if (getType()->isRecordType())
1137      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1138    break;
1139  }
1140  return isEvaluatable(Ctx);
1141}
1142
1143/// isIntegerConstantExpr - this recursive routine will test if an expression is
1144/// an integer constant expression.
1145
1146/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1147/// comma, etc
1148///
1149/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1150/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1151/// cast+dereference.
1152
1153// CheckICE - This function does the fundamental ICE checking: the returned
1154// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1155// Note that to reduce code duplication, this helper does no evaluation
1156// itself; the caller checks whether the expression is evaluatable, and
1157// in the rare cases where CheckICE actually cares about the evaluated
1158// value, it calls into Evalute.
1159//
1160// Meanings of Val:
1161// 0: This expression is an ICE if it can be evaluated by Evaluate.
1162// 1: This expression is not an ICE, but if it isn't evaluated, it's
1163//    a legal subexpression for an ICE. This return value is used to handle
1164//    the comma operator in C99 mode.
1165// 2: This expression is not an ICE, and is not a legal subexpression for one.
1166
1167struct ICEDiag {
1168  unsigned Val;
1169  SourceLocation Loc;
1170
1171  public:
1172  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1173  ICEDiag() : Val(0) {}
1174};
1175
1176ICEDiag NoDiag() { return ICEDiag(); }
1177
1178static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1179  Expr::EvalResult EVResult;
1180  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1181      !EVResult.Val.isInt()) {
1182    return ICEDiag(2, E->getLocStart());
1183  }
1184  return NoDiag();
1185}
1186
1187static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1188  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1189  if (!E->getType()->isIntegralType()) {
1190    return ICEDiag(2, E->getLocStart());
1191  }
1192
1193  switch (E->getStmtClass()) {
1194  default:
1195    return ICEDiag(2, E->getLocStart());
1196  case Expr::ParenExprClass:
1197    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1198  case Expr::IntegerLiteralClass:
1199  case Expr::CharacterLiteralClass:
1200  case Expr::CXXBoolLiteralExprClass:
1201  case Expr::CXXZeroInitValueExprClass:
1202  case Expr::TypesCompatibleExprClass:
1203  case Expr::UnaryTypeTraitExprClass:
1204    return NoDiag();
1205  case Expr::CallExprClass:
1206  case Expr::CXXOperatorCallExprClass: {
1207    const CallExpr *CE = cast<CallExpr>(E);
1208    if (CE->isBuiltinCall(Ctx))
1209      return CheckEvalInICE(E, Ctx);
1210    return ICEDiag(2, E->getLocStart());
1211  }
1212  case Expr::DeclRefExprClass:
1213  case Expr::QualifiedDeclRefExprClass:
1214    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1215      return NoDiag();
1216    if (Ctx.getLangOptions().CPlusPlus &&
1217        E->getType().getCVRQualifiers() == QualType::Const) {
1218      // C++ 7.1.5.1p2
1219      //   A variable of non-volatile const-qualified integral or enumeration
1220      //   type initialized by an ICE can be used in ICEs.
1221      if (const VarDecl *Dcl =
1222              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1223        if (Dcl->isInitKnownICE()) {
1224          // We have already checked whether this subexpression is an
1225          // integral constant expression.
1226          if (Dcl->isInitICE())
1227            return NoDiag();
1228          else
1229            return ICEDiag(2, E->getLocStart());
1230        }
1231
1232        if (const Expr *Init = Dcl->getInit()) {
1233          ICEDiag Result = CheckICE(Init, Ctx);
1234          // Cache the result of the ICE test.
1235          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1236          return Result;
1237        }
1238      }
1239    }
1240    return ICEDiag(2, E->getLocStart());
1241  case Expr::UnaryOperatorClass: {
1242    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1243    switch (Exp->getOpcode()) {
1244    default:
1245      return ICEDiag(2, E->getLocStart());
1246    case UnaryOperator::Extension:
1247    case UnaryOperator::LNot:
1248    case UnaryOperator::Plus:
1249    case UnaryOperator::Minus:
1250    case UnaryOperator::Not:
1251    case UnaryOperator::Real:
1252    case UnaryOperator::Imag:
1253      return CheckICE(Exp->getSubExpr(), Ctx);
1254    case UnaryOperator::OffsetOf:
1255      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1256      // Evaluate matches the proposed gcc behavior for cases like
1257      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1258      // compliance: we should warn earlier for offsetof expressions with
1259      // array subscripts that aren't ICEs, and if the array subscripts
1260      // are ICEs, the value of the offsetof must be an integer constant.
1261      return CheckEvalInICE(E, Ctx);
1262    }
1263  }
1264  case Expr::SizeOfAlignOfExprClass: {
1265    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1266    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1267      return ICEDiag(2, E->getLocStart());
1268    return NoDiag();
1269  }
1270  case Expr::BinaryOperatorClass: {
1271    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1272    switch (Exp->getOpcode()) {
1273    default:
1274      return ICEDiag(2, E->getLocStart());
1275    case BinaryOperator::Mul:
1276    case BinaryOperator::Div:
1277    case BinaryOperator::Rem:
1278    case BinaryOperator::Add:
1279    case BinaryOperator::Sub:
1280    case BinaryOperator::Shl:
1281    case BinaryOperator::Shr:
1282    case BinaryOperator::LT:
1283    case BinaryOperator::GT:
1284    case BinaryOperator::LE:
1285    case BinaryOperator::GE:
1286    case BinaryOperator::EQ:
1287    case BinaryOperator::NE:
1288    case BinaryOperator::And:
1289    case BinaryOperator::Xor:
1290    case BinaryOperator::Or:
1291    case BinaryOperator::Comma: {
1292      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1293      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1294      if (Exp->getOpcode() == BinaryOperator::Div ||
1295          Exp->getOpcode() == BinaryOperator::Rem) {
1296        // Evaluate gives an error for undefined Div/Rem, so make sure
1297        // we don't evaluate one.
1298        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1299          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1300          if (REval == 0)
1301            return ICEDiag(1, E->getLocStart());
1302          if (REval.isSigned() && REval.isAllOnesValue()) {
1303            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1304            if (LEval.isMinSignedValue())
1305              return ICEDiag(1, E->getLocStart());
1306          }
1307        }
1308      }
1309      if (Exp->getOpcode() == BinaryOperator::Comma) {
1310        if (Ctx.getLangOptions().C99) {
1311          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1312          // if it isn't evaluated.
1313          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1314            return ICEDiag(1, E->getLocStart());
1315        } else {
1316          // In both C89 and C++, commas in ICEs are illegal.
1317          return ICEDiag(2, E->getLocStart());
1318        }
1319      }
1320      if (LHSResult.Val >= RHSResult.Val)
1321        return LHSResult;
1322      return RHSResult;
1323    }
1324    case BinaryOperator::LAnd:
1325    case BinaryOperator::LOr: {
1326      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1327      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1328      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1329        // Rare case where the RHS has a comma "side-effect"; we need
1330        // to actually check the condition to see whether the side
1331        // with the comma is evaluated.
1332        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1333            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1334          return RHSResult;
1335        return NoDiag();
1336      }
1337
1338      if (LHSResult.Val >= RHSResult.Val)
1339        return LHSResult;
1340      return RHSResult;
1341    }
1342    }
1343  }
1344  case Expr::ImplicitCastExprClass:
1345  case Expr::CStyleCastExprClass:
1346  case Expr::CXXFunctionalCastExprClass: {
1347    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1348    if (SubExpr->getType()->isIntegralType())
1349      return CheckICE(SubExpr, Ctx);
1350    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1351      return NoDiag();
1352    return ICEDiag(2, E->getLocStart());
1353  }
1354  case Expr::ConditionalOperatorClass: {
1355    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1356    // If the condition (ignoring parens) is a __builtin_constant_p call,
1357    // then only the true side is actually considered in an integer constant
1358    // expression, and it is fully evaluated.  This is an important GNU
1359    // extension.  See GCC PR38377 for discussion.
1360    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1361      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1362        Expr::EvalResult EVResult;
1363        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1364            !EVResult.Val.isInt()) {
1365          return ICEDiag(2, E->getLocStart());
1366        }
1367        return NoDiag();
1368      }
1369    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1370    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1371    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1372    if (CondResult.Val == 2)
1373      return CondResult;
1374    if (TrueResult.Val == 2)
1375      return TrueResult;
1376    if (FalseResult.Val == 2)
1377      return FalseResult;
1378    if (CondResult.Val == 1)
1379      return CondResult;
1380    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1381      return NoDiag();
1382    // Rare case where the diagnostics depend on which side is evaluated
1383    // Note that if we get here, CondResult is 0, and at least one of
1384    // TrueResult and FalseResult is non-zero.
1385    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1386      return FalseResult;
1387    }
1388    return TrueResult;
1389  }
1390  case Expr::CXXDefaultArgExprClass:
1391    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1392  case Expr::ChooseExprClass: {
1393    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1394  }
1395  }
1396}
1397
1398bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1399                                 SourceLocation *Loc, bool isEvaluated) const {
1400  ICEDiag d = CheckICE(this, Ctx);
1401  if (d.Val != 0) {
1402    if (Loc) *Loc = d.Loc;
1403    return false;
1404  }
1405  EvalResult EvalResult;
1406  if (!Evaluate(EvalResult, Ctx))
1407    assert(0 && "ICE cannot be evaluated!");
1408  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1409  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1410  Result = EvalResult.Val.getInt();
1411  return true;
1412}
1413
1414/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1415/// integer constant expression with the value zero, or if this is one that is
1416/// cast to void*.
1417bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1418{
1419  // Strip off a cast to void*, if it exists. Except in C++.
1420  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1421    if (!Ctx.getLangOptions().CPlusPlus) {
1422      // Check that it is a cast to void*.
1423      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1424        QualType Pointee = PT->getPointeeType();
1425        if (Pointee.getCVRQualifiers() == 0 &&
1426            Pointee->isVoidType() &&                              // to void*
1427            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1428          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1429      }
1430    }
1431  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1432    // Ignore the ImplicitCastExpr type entirely.
1433    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1434  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1435    // Accept ((void*)0) as a null pointer constant, as many other
1436    // implementations do.
1437    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1438  } else if (const CXXDefaultArgExpr *DefaultArg
1439               = dyn_cast<CXXDefaultArgExpr>(this)) {
1440    // See through default argument expressions
1441    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1442  } else if (isa<GNUNullExpr>(this)) {
1443    // The GNU __null extension is always a null pointer constant.
1444    return true;
1445  }
1446
1447  // C++0x nullptr_t is always a null pointer constant.
1448  if (getType()->isNullPtrType())
1449    return true;
1450
1451  // This expression must be an integer type.
1452  if (!getType()->isIntegerType())
1453    return false;
1454
1455  // If we have an integer constant expression, we need to *evaluate* it and
1456  // test for the value 0.
1457  llvm::APSInt Result;
1458  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1459}
1460
1461FieldDecl *Expr::getBitField() {
1462  Expr *E = this->IgnoreParens();
1463
1464  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1465    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1466      if (Field->isBitField())
1467        return Field;
1468
1469  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1470    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1471      return BinOp->getLHS()->getBitField();
1472
1473  return 0;
1474}
1475
1476/// isArrow - Return true if the base expression is a pointer to vector,
1477/// return false if the base expression is a vector.
1478bool ExtVectorElementExpr::isArrow() const {
1479  return getBase()->getType()->isPointerType();
1480}
1481
1482unsigned ExtVectorElementExpr::getNumElements() const {
1483  if (const VectorType *VT = getType()->getAsVectorType())
1484    return VT->getNumElements();
1485  return 1;
1486}
1487
1488/// containsDuplicateElements - Return true if any element access is repeated.
1489bool ExtVectorElementExpr::containsDuplicateElements() const {
1490  const char *compStr = Accessor->getName();
1491  unsigned length = Accessor->getLength();
1492
1493  // Halving swizzles do not contain duplicate elements.
1494  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1495      !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
1496    return false;
1497
1498  // Advance past s-char prefix on hex swizzles.
1499  if (*compStr == 's' || *compStr == 'S') {
1500    compStr++;
1501    length--;
1502  }
1503
1504  for (unsigned i = 0; i != length-1; i++) {
1505    const char *s = compStr+i;
1506    for (const char c = *s++; *s; s++)
1507      if (c == *s)
1508        return true;
1509  }
1510  return false;
1511}
1512
1513/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1514void ExtVectorElementExpr::getEncodedElementAccess(
1515                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1516  const char *compStr = Accessor->getName();
1517  if (*compStr == 's' || *compStr == 'S')
1518    compStr++;
1519
1520  bool isHi =   !strcmp(compStr, "hi");
1521  bool isLo =   !strcmp(compStr, "lo");
1522  bool isEven = !strcmp(compStr, "even");
1523  bool isOdd  = !strcmp(compStr, "odd");
1524
1525  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1526    uint64_t Index;
1527
1528    if (isHi)
1529      Index = e + i;
1530    else if (isLo)
1531      Index = i;
1532    else if (isEven)
1533      Index = 2 * i;
1534    else if (isOdd)
1535      Index = 2 * i + 1;
1536    else
1537      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1538
1539    Elts.push_back(Index);
1540  }
1541}
1542
1543// constructor for instance messages.
1544ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1545                QualType retType, ObjCMethodDecl *mproto,
1546                SourceLocation LBrac, SourceLocation RBrac,
1547                Expr **ArgExprs, unsigned nargs)
1548  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1549    MethodProto(mproto) {
1550  NumArgs = nargs;
1551  SubExprs = new Stmt*[NumArgs+1];
1552  SubExprs[RECEIVER] = receiver;
1553  if (NumArgs) {
1554    for (unsigned i = 0; i != NumArgs; ++i)
1555      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1556  }
1557  LBracloc = LBrac;
1558  RBracloc = RBrac;
1559}
1560
1561ObjCStringLiteral* ObjCStringLiteral::Clone(ASTContext &C) const {
1562  // Clone the string literal.
1563  StringLiteral *NewString =
1564    String ? cast<StringLiteral>(String)->Clone(C) : 0;
1565
1566  return new (C) ObjCStringLiteral(NewString, getType(), AtLoc);
1567}
1568
1569ObjCSelectorExpr *ObjCSelectorExpr::Clone(ASTContext &C) const {
1570  return new (C) ObjCSelectorExpr(getType(), SelName, AtLoc, RParenLoc);
1571}
1572
1573ObjCProtocolExpr *ObjCProtocolExpr::Clone(ASTContext &C) const {
1574  return new (C) ObjCProtocolExpr(getType(), TheProtocol, AtLoc, RParenLoc);
1575}
1576
1577// constructor for class messages.
1578// FIXME: clsName should be typed to ObjCInterfaceType
1579ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1580                QualType retType, ObjCMethodDecl *mproto,
1581                SourceLocation LBrac, SourceLocation RBrac,
1582                Expr **ArgExprs, unsigned nargs)
1583  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1584    MethodProto(mproto) {
1585  NumArgs = nargs;
1586  SubExprs = new Stmt*[NumArgs+1];
1587  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1588  if (NumArgs) {
1589    for (unsigned i = 0; i != NumArgs; ++i)
1590      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1591  }
1592  LBracloc = LBrac;
1593  RBracloc = RBrac;
1594}
1595
1596// constructor for class messages.
1597ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1598                                 QualType retType, ObjCMethodDecl *mproto,
1599                                 SourceLocation LBrac, SourceLocation RBrac,
1600                                 Expr **ArgExprs, unsigned nargs)
1601: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1602MethodProto(mproto) {
1603  NumArgs = nargs;
1604  SubExprs = new Stmt*[NumArgs+1];
1605  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1606  if (NumArgs) {
1607    for (unsigned i = 0; i != NumArgs; ++i)
1608      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1609  }
1610  LBracloc = LBrac;
1611  RBracloc = RBrac;
1612}
1613
1614ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1615  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1616  switch (x & Flags) {
1617    default:
1618      assert(false && "Invalid ObjCMessageExpr.");
1619    case IsInstMeth:
1620      return ClassInfo(0, 0);
1621    case IsClsMethDeclUnknown:
1622      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1623    case IsClsMethDeclKnown: {
1624      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1625      return ClassInfo(D, D->getIdentifier());
1626    }
1627  }
1628}
1629
1630void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
1631  if (CI.first == 0 && CI.second == 0)
1632    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
1633  else if (CI.first == 0)
1634    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
1635  else
1636    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
1637}
1638
1639
1640bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1641  return getCond()->EvaluateAsInt(C) != 0;
1642}
1643
1644void ShuffleVectorExpr::setExprs(Expr ** Exprs, unsigned NumExprs) {
1645  if (NumExprs)
1646    delete [] SubExprs;
1647
1648  SubExprs = new Stmt* [NumExprs];
1649  this->NumExprs = NumExprs;
1650  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1651}
1652
1653void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1654  // Override default behavior of traversing children. If this has a type
1655  // operand and the type is a variable-length array, the child iteration
1656  // will iterate over the size expression. However, this expression belongs
1657  // to the type, not to this, so we don't want to delete it.
1658  // We still want to delete this expression.
1659  if (isArgumentType()) {
1660    this->~SizeOfAlignOfExpr();
1661    C.Deallocate(this);
1662  }
1663  else
1664    Expr::Destroy(C);
1665}
1666
1667//===----------------------------------------------------------------------===//
1668//  DesignatedInitExpr
1669//===----------------------------------------------------------------------===//
1670
1671IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1672  assert(Kind == FieldDesignator && "Only valid on a field designator");
1673  if (Field.NameOrField & 0x01)
1674    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1675  else
1676    return getField()->getIdentifier();
1677}
1678
1679DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1680                                       const Designator *Designators,
1681                                       SourceLocation EqualOrColonLoc,
1682                                       bool GNUSyntax,
1683                                       Expr **IndexExprs,
1684                                       unsigned NumIndexExprs,
1685                                       Expr *Init)
1686  : Expr(DesignatedInitExprClass, Ty,
1687         Init->isTypeDependent(), Init->isValueDependent()),
1688    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1689    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
1690  this->Designators = new Designator[NumDesignators];
1691
1692  // Record the initializer itself.
1693  child_iterator Child = child_begin();
1694  *Child++ = Init;
1695
1696  // Copy the designators and their subexpressions, computing
1697  // value-dependence along the way.
1698  unsigned IndexIdx = 0;
1699  for (unsigned I = 0; I != NumDesignators; ++I) {
1700    this->Designators[I] = Designators[I];
1701
1702    if (this->Designators[I].isArrayDesignator()) {
1703      // Compute type- and value-dependence.
1704      Expr *Index = IndexExprs[IndexIdx];
1705      ValueDependent = ValueDependent ||
1706        Index->isTypeDependent() || Index->isValueDependent();
1707
1708      // Copy the index expressions into permanent storage.
1709      *Child++ = IndexExprs[IndexIdx++];
1710    } else if (this->Designators[I].isArrayRangeDesignator()) {
1711      // Compute type- and value-dependence.
1712      Expr *Start = IndexExprs[IndexIdx];
1713      Expr *End = IndexExprs[IndexIdx + 1];
1714      ValueDependent = ValueDependent ||
1715        Start->isTypeDependent() || Start->isValueDependent() ||
1716        End->isTypeDependent() || End->isValueDependent();
1717
1718      // Copy the start/end expressions into permanent storage.
1719      *Child++ = IndexExprs[IndexIdx++];
1720      *Child++ = IndexExprs[IndexIdx++];
1721    }
1722  }
1723
1724  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
1725}
1726
1727DesignatedInitExpr *
1728DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1729                           unsigned NumDesignators,
1730                           Expr **IndexExprs, unsigned NumIndexExprs,
1731                           SourceLocation ColonOrEqualLoc,
1732                           bool UsesColonSyntax, Expr *Init) {
1733  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1734                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1735  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
1736                                      ColonOrEqualLoc, UsesColonSyntax,
1737                                      IndexExprs, NumIndexExprs, Init);
1738}
1739
1740DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
1741                                                    unsigned NumIndexExprs) {
1742  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1743                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1744  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
1745}
1746
1747void DesignatedInitExpr::setDesignators(const Designator *Desigs,
1748                                        unsigned NumDesigs) {
1749  if (Designators)
1750    delete [] Designators;
1751
1752  Designators = new Designator[NumDesigs];
1753  NumDesignators = NumDesigs;
1754  for (unsigned I = 0; I != NumDesigs; ++I)
1755    Designators[I] = Desigs[I];
1756}
1757
1758SourceRange DesignatedInitExpr::getSourceRange() const {
1759  SourceLocation StartLoc;
1760  Designator &First =
1761    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1762  if (First.isFieldDesignator()) {
1763    if (GNUSyntax)
1764      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1765    else
1766      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1767  } else
1768    StartLoc =
1769      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1770  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1771}
1772
1773Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1774  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1775  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1776  Ptr += sizeof(DesignatedInitExpr);
1777  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1778  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1779}
1780
1781Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1782  assert(D.Kind == Designator::ArrayRangeDesignator &&
1783         "Requires array range designator");
1784  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1785  Ptr += sizeof(DesignatedInitExpr);
1786  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1787  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1788}
1789
1790Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1791  assert(D.Kind == Designator::ArrayRangeDesignator &&
1792         "Requires array range designator");
1793  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1794  Ptr += sizeof(DesignatedInitExpr);
1795  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1796  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1797}
1798
1799/// \brief Replaces the designator at index @p Idx with the series
1800/// of designators in [First, Last).
1801void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
1802                                          const Designator *First,
1803                                          const Designator *Last) {
1804  unsigned NumNewDesignators = Last - First;
1805  if (NumNewDesignators == 0) {
1806    std::copy_backward(Designators + Idx + 1,
1807                       Designators + NumDesignators,
1808                       Designators + Idx);
1809    --NumNewDesignators;
1810    return;
1811  } else if (NumNewDesignators == 1) {
1812    Designators[Idx] = *First;
1813    return;
1814  }
1815
1816  Designator *NewDesignators
1817    = new Designator[NumDesignators - 1 + NumNewDesignators];
1818  std::copy(Designators, Designators + Idx, NewDesignators);
1819  std::copy(First, Last, NewDesignators + Idx);
1820  std::copy(Designators + Idx + 1, Designators + NumDesignators,
1821            NewDesignators + Idx + NumNewDesignators);
1822  delete [] Designators;
1823  Designators = NewDesignators;
1824  NumDesignators = NumDesignators - 1 + NumNewDesignators;
1825}
1826
1827void DesignatedInitExpr::Destroy(ASTContext &C) {
1828  delete [] Designators;
1829  Expr::Destroy(C);
1830}
1831
1832ImplicitValueInitExpr *ImplicitValueInitExpr::Clone(ASTContext &C) const {
1833  return new (C) ImplicitValueInitExpr(getType());
1834}
1835
1836//===----------------------------------------------------------------------===//
1837//  ExprIterator.
1838//===----------------------------------------------------------------------===//
1839
1840Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1841Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1842Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1843const Expr* ConstExprIterator::operator[](size_t idx) const {
1844  return cast<Expr>(I[idx]);
1845}
1846const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1847const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1848
1849//===----------------------------------------------------------------------===//
1850//  Child Iterators for iterating over subexpressions/substatements
1851//===----------------------------------------------------------------------===//
1852
1853// DeclRefExpr
1854Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1855Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1856
1857// ObjCIvarRefExpr
1858Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1859Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1860
1861// ObjCPropertyRefExpr
1862Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1863Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1864
1865// ObjCKVCRefExpr
1866Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1867Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1868
1869// ObjCSuperExpr
1870Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1871Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1872
1873// PredefinedExpr
1874Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1875Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1876
1877// IntegerLiteral
1878Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1879Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1880
1881// CharacterLiteral
1882Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
1883Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1884
1885// FloatingLiteral
1886Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1887Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1888
1889// ImaginaryLiteral
1890Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1891Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1892
1893// StringLiteral
1894Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1895Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1896
1897// ParenExpr
1898Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1899Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1900
1901// UnaryOperator
1902Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1903Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1904
1905// SizeOfAlignOfExpr
1906Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1907  // If this is of a type and the type is a VLA type (and not a typedef), the
1908  // size expression of the VLA needs to be treated as an executable expression.
1909  // Why isn't this weirdness documented better in StmtIterator?
1910  if (isArgumentType()) {
1911    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1912                                   getArgumentType().getTypePtr()))
1913      return child_iterator(T);
1914    return child_iterator();
1915  }
1916  return child_iterator(&Argument.Ex);
1917}
1918Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1919  if (isArgumentType())
1920    return child_iterator();
1921  return child_iterator(&Argument.Ex + 1);
1922}
1923
1924// ArraySubscriptExpr
1925Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1926  return &SubExprs[0];
1927}
1928Stmt::child_iterator ArraySubscriptExpr::child_end() {
1929  return &SubExprs[0]+END_EXPR;
1930}
1931
1932// CallExpr
1933Stmt::child_iterator CallExpr::child_begin() {
1934  return &SubExprs[0];
1935}
1936Stmt::child_iterator CallExpr::child_end() {
1937  return &SubExprs[0]+NumArgs+ARGS_START;
1938}
1939
1940// MemberExpr
1941Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1942Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1943
1944// ExtVectorElementExpr
1945Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1946Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1947
1948// CompoundLiteralExpr
1949Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1950Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1951
1952// CastExpr
1953Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1954Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1955
1956// BinaryOperator
1957Stmt::child_iterator BinaryOperator::child_begin() {
1958  return &SubExprs[0];
1959}
1960Stmt::child_iterator BinaryOperator::child_end() {
1961  return &SubExprs[0]+END_EXPR;
1962}
1963
1964// ConditionalOperator
1965Stmt::child_iterator ConditionalOperator::child_begin() {
1966  return &SubExprs[0];
1967}
1968Stmt::child_iterator ConditionalOperator::child_end() {
1969  return &SubExprs[0]+END_EXPR;
1970}
1971
1972// AddrLabelExpr
1973Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1974Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1975
1976// StmtExpr
1977Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1978Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1979
1980// TypesCompatibleExpr
1981Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1982  return child_iterator();
1983}
1984
1985Stmt::child_iterator TypesCompatibleExpr::child_end() {
1986  return child_iterator();
1987}
1988
1989// ChooseExpr
1990Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1991Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1992
1993// GNUNullExpr
1994Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1995Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1996
1997// ShuffleVectorExpr
1998Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1999  return &SubExprs[0];
2000}
2001Stmt::child_iterator ShuffleVectorExpr::child_end() {
2002  return &SubExprs[0]+NumExprs;
2003}
2004
2005// VAArgExpr
2006Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2007Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2008
2009// InitListExpr
2010Stmt::child_iterator InitListExpr::child_begin() {
2011  return InitExprs.size() ? &InitExprs[0] : 0;
2012}
2013Stmt::child_iterator InitListExpr::child_end() {
2014  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2015}
2016
2017// DesignatedInitExpr
2018Stmt::child_iterator DesignatedInitExpr::child_begin() {
2019  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2020  Ptr += sizeof(DesignatedInitExpr);
2021  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2022}
2023Stmt::child_iterator DesignatedInitExpr::child_end() {
2024  return child_iterator(&*child_begin() + NumSubExprs);
2025}
2026
2027// ImplicitValueInitExpr
2028Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2029  return child_iterator();
2030}
2031
2032Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2033  return child_iterator();
2034}
2035
2036// ObjCStringLiteral
2037Stmt::child_iterator ObjCStringLiteral::child_begin() {
2038  return &String;
2039}
2040Stmt::child_iterator ObjCStringLiteral::child_end() {
2041  return &String+1;
2042}
2043
2044// ObjCEncodeExpr
2045Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2046Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2047
2048// ObjCSelectorExpr
2049Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2050  return child_iterator();
2051}
2052Stmt::child_iterator ObjCSelectorExpr::child_end() {
2053  return child_iterator();
2054}
2055
2056// ObjCProtocolExpr
2057Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2058  return child_iterator();
2059}
2060Stmt::child_iterator ObjCProtocolExpr::child_end() {
2061  return child_iterator();
2062}
2063
2064// ObjCMessageExpr
2065Stmt::child_iterator ObjCMessageExpr::child_begin() {
2066  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2067}
2068Stmt::child_iterator ObjCMessageExpr::child_end() {
2069  return &SubExprs[0]+ARGS_START+getNumArgs();
2070}
2071
2072// Blocks
2073Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2074Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2075
2076Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2077Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2078