Expr.cpp revision 161755a09898c95d21bfff33707da9ca41cd53c5
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
167  ASTContext &Context = CurrentDecl->getASTContext();
168
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184
185    std::string Proto = FD->getQualifiedNameAsString(Policy);
186
187    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
188    const FunctionProtoType *FT = 0;
189    if (FD->hasWrittenPrototype())
190      FT = dyn_cast<FunctionProtoType>(AFT);
191
192    Proto += "(";
193    if (FT) {
194      llvm::raw_string_ostream POut(Proto);
195      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
196        if (i) POut << ", ";
197        std::string Param;
198        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
199        POut << Param;
200      }
201
202      if (FT->isVariadic()) {
203        if (FD->getNumParams()) POut << ", ";
204        POut << "...";
205      }
206    }
207    Proto += ")";
208
209    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
210      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
211      if (ThisQuals.hasConst())
212        Proto += " const";
213      if (ThisQuals.hasVolatile())
214        Proto += " volatile";
215    }
216
217    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
218      AFT->getResultType().getAsStringInternal(Proto, Policy);
219
220    Out << Proto;
221
222    Out.flush();
223    return Name.str().str();
224  }
225  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
226    llvm::SmallString<256> Name;
227    llvm::raw_svector_ostream Out(Name);
228    Out << (MD->isInstanceMethod() ? '-' : '+');
229    Out << '[';
230
231    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
232    // a null check to avoid a crash.
233    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
234      Out << ID->getNameAsString();
235
236    if (const ObjCCategoryImplDecl *CID =
237        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
238      Out << '(';
239      Out <<  CID->getNameAsString();
240      Out <<  ')';
241    }
242    Out <<  ' ';
243    Out << MD->getSelector().getAsString();
244    Out <<  ']';
245
246    Out.flush();
247    return Name.str().str();
248  }
249  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
250    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
251    return "top level";
252  }
253  return "";
254}
255
256/// getValueAsApproximateDouble - This returns the value as an inaccurate
257/// double.  Note that this may cause loss of precision, but is useful for
258/// debugging dumps, etc.
259double FloatingLiteral::getValueAsApproximateDouble() const {
260  llvm::APFloat V = getValue();
261  bool ignored;
262  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
263            &ignored);
264  return V.convertToDouble();
265}
266
267StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
268                                     unsigned ByteLength, bool Wide,
269                                     QualType Ty,
270                                     const SourceLocation *Loc,
271                                     unsigned NumStrs) {
272  // Allocate enough space for the StringLiteral plus an array of locations for
273  // any concatenated string tokens.
274  void *Mem = C.Allocate(sizeof(StringLiteral)+
275                         sizeof(SourceLocation)*(NumStrs-1),
276                         llvm::alignof<StringLiteral>());
277  StringLiteral *SL = new (Mem) StringLiteral(Ty);
278
279  // OPTIMIZE: could allocate this appended to the StringLiteral.
280  char *AStrData = new (C, 1) char[ByteLength];
281  memcpy(AStrData, StrData, ByteLength);
282  SL->StrData = AStrData;
283  SL->ByteLength = ByteLength;
284  SL->IsWide = Wide;
285  SL->TokLocs[0] = Loc[0];
286  SL->NumConcatenated = NumStrs;
287
288  if (NumStrs != 1)
289    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
290  return SL;
291}
292
293StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
294  void *Mem = C.Allocate(sizeof(StringLiteral)+
295                         sizeof(SourceLocation)*(NumStrs-1),
296                         llvm::alignof<StringLiteral>());
297  StringLiteral *SL = new (Mem) StringLiteral(QualType());
298  SL->StrData = 0;
299  SL->ByteLength = 0;
300  SL->NumConcatenated = NumStrs;
301  return SL;
302}
303
304void StringLiteral::DoDestroy(ASTContext &C) {
305  C.Deallocate(const_cast<char*>(StrData));
306  Expr::DoDestroy(C);
307}
308
309void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
310  if (StrData)
311    C.Deallocate(const_cast<char*>(StrData));
312
313  char *AStrData = new (C, 1) char[Str.size()];
314  memcpy(AStrData, Str.data(), Str.size());
315  StrData = AStrData;
316  ByteLength = Str.size();
317}
318
319/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
320/// corresponds to, e.g. "sizeof" or "[pre]++".
321const char *UnaryOperator::getOpcodeStr(Opcode Op) {
322  switch (Op) {
323  default: assert(0 && "Unknown unary operator");
324  case PostInc: return "++";
325  case PostDec: return "--";
326  case PreInc:  return "++";
327  case PreDec:  return "--";
328  case AddrOf:  return "&";
329  case Deref:   return "*";
330  case Plus:    return "+";
331  case Minus:   return "-";
332  case Not:     return "~";
333  case LNot:    return "!";
334  case Real:    return "__real";
335  case Imag:    return "__imag";
336  case Extension: return "__extension__";
337  case OffsetOf: return "__builtin_offsetof";
338  }
339}
340
341UnaryOperator::Opcode
342UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
343  switch (OO) {
344  default: assert(false && "No unary operator for overloaded function");
345  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
346  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
347  case OO_Amp:        return AddrOf;
348  case OO_Star:       return Deref;
349  case OO_Plus:       return Plus;
350  case OO_Minus:      return Minus;
351  case OO_Tilde:      return Not;
352  case OO_Exclaim:    return LNot;
353  }
354}
355
356OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
357  switch (Opc) {
358  case PostInc: case PreInc: return OO_PlusPlus;
359  case PostDec: case PreDec: return OO_MinusMinus;
360  case AddrOf: return OO_Amp;
361  case Deref: return OO_Star;
362  case Plus: return OO_Plus;
363  case Minus: return OO_Minus;
364  case Not: return OO_Tilde;
365  case LNot: return OO_Exclaim;
366  default: return OO_None;
367  }
368}
369
370
371//===----------------------------------------------------------------------===//
372// Postfix Operators.
373//===----------------------------------------------------------------------===//
374
375CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
376                   unsigned numargs, QualType t, SourceLocation rparenloc)
377  : Expr(SC, t,
378         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
379         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
380    NumArgs(numargs) {
381
382  SubExprs = new (C) Stmt*[numargs+1];
383  SubExprs[FN] = fn;
384  for (unsigned i = 0; i != numargs; ++i)
385    SubExprs[i+ARGS_START] = args[i];
386
387  RParenLoc = rparenloc;
388}
389
390CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
391                   QualType t, SourceLocation rparenloc)
392  : Expr(CallExprClass, t,
393         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
394         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
395    NumArgs(numargs) {
396
397  SubExprs = new (C) Stmt*[numargs+1];
398  SubExprs[FN] = fn;
399  for (unsigned i = 0; i != numargs; ++i)
400    SubExprs[i+ARGS_START] = args[i];
401
402  RParenLoc = rparenloc;
403}
404
405CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
406  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
407  SubExprs = new (C) Stmt*[1];
408}
409
410void CallExpr::DoDestroy(ASTContext& C) {
411  DestroyChildren(C);
412  if (SubExprs) C.Deallocate(SubExprs);
413  this->~CallExpr();
414  C.Deallocate(this);
415}
416
417Decl *CallExpr::getCalleeDecl() {
418  Expr *CEE = getCallee()->IgnoreParenCasts();
419  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
420    return DRE->getDecl();
421  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
422    return ME->getMemberDecl();
423
424  return 0;
425}
426
427FunctionDecl *CallExpr::getDirectCallee() {
428  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
429}
430
431/// setNumArgs - This changes the number of arguments present in this call.
432/// Any orphaned expressions are deleted by this, and any new operands are set
433/// to null.
434void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
435  // No change, just return.
436  if (NumArgs == getNumArgs()) return;
437
438  // If shrinking # arguments, just delete the extras and forgot them.
439  if (NumArgs < getNumArgs()) {
440    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
441      getArg(i)->Destroy(C);
442    this->NumArgs = NumArgs;
443    return;
444  }
445
446  // Otherwise, we are growing the # arguments.  New an bigger argument array.
447  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
448  // Copy over args.
449  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
450    NewSubExprs[i] = SubExprs[i];
451  // Null out new args.
452  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
453    NewSubExprs[i] = 0;
454
455  if (SubExprs) C.Deallocate(SubExprs);
456  SubExprs = NewSubExprs;
457  this->NumArgs = NumArgs;
458}
459
460/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
461/// not, return 0.
462unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
463  // All simple function calls (e.g. func()) are implicitly cast to pointer to
464  // function. As a result, we try and obtain the DeclRefExpr from the
465  // ImplicitCastExpr.
466  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
467  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
468    return 0;
469
470  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
471  if (!DRE)
472    return 0;
473
474  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
475  if (!FDecl)
476    return 0;
477
478  if (!FDecl->getIdentifier())
479    return 0;
480
481  return FDecl->getBuiltinID();
482}
483
484QualType CallExpr::getCallReturnType() const {
485  QualType CalleeType = getCallee()->getType();
486  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
487    CalleeType = FnTypePtr->getPointeeType();
488  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
489    CalleeType = BPT->getPointeeType();
490
491  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
492  return FnType->getResultType();
493}
494
495MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
496                               NestedNameSpecifier *qual,
497                               SourceRange qualrange,
498                               ValueDecl *memberdecl,
499                               DeclAccessPair founddecl,
500                               SourceLocation l,
501                               const TemplateArgumentListInfo *targs,
502                               QualType ty) {
503  std::size_t Size = sizeof(MemberExpr);
504
505  bool hasQualOrFound = (qual != 0 ||
506                         founddecl.getDecl() != memberdecl ||
507                         founddecl.getAccess() != memberdecl->getAccess());
508  if (hasQualOrFound)
509    Size += sizeof(MemberNameQualifier);
510
511  if (targs)
512    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
513
514  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
515  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
516
517  if (hasQualOrFound) {
518    if (qual && qual->isDependent()) {
519      E->setValueDependent(true);
520      E->setTypeDependent(true);
521    }
522    E->HasQualifierOrFoundDecl = true;
523
524    MemberNameQualifier *NQ = E->getMemberQualifier();
525    NQ->NNS = qual;
526    NQ->Range = qualrange;
527    NQ->FoundDecl = founddecl;
528  }
529
530  if (targs) {
531    E->HasExplicitTemplateArgumentList = true;
532    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
533  }
534
535  return E;
536}
537
538const char *CastExpr::getCastKindName() const {
539  switch (getCastKind()) {
540  case CastExpr::CK_Unknown:
541    return "Unknown";
542  case CastExpr::CK_BitCast:
543    return "BitCast";
544  case CastExpr::CK_NoOp:
545    return "NoOp";
546  case CastExpr::CK_BaseToDerived:
547    return "BaseToDerived";
548  case CastExpr::CK_DerivedToBase:
549    return "DerivedToBase";
550  case CastExpr::CK_UncheckedDerivedToBase:
551    return "UncheckedDerivedToBase";
552  case CastExpr::CK_Dynamic:
553    return "Dynamic";
554  case CastExpr::CK_ToUnion:
555    return "ToUnion";
556  case CastExpr::CK_ArrayToPointerDecay:
557    return "ArrayToPointerDecay";
558  case CastExpr::CK_FunctionToPointerDecay:
559    return "FunctionToPointerDecay";
560  case CastExpr::CK_NullToMemberPointer:
561    return "NullToMemberPointer";
562  case CastExpr::CK_BaseToDerivedMemberPointer:
563    return "BaseToDerivedMemberPointer";
564  case CastExpr::CK_DerivedToBaseMemberPointer:
565    return "DerivedToBaseMemberPointer";
566  case CastExpr::CK_UserDefinedConversion:
567    return "UserDefinedConversion";
568  case CastExpr::CK_ConstructorConversion:
569    return "ConstructorConversion";
570  case CastExpr::CK_IntegralToPointer:
571    return "IntegralToPointer";
572  case CastExpr::CK_PointerToIntegral:
573    return "PointerToIntegral";
574  case CastExpr::CK_ToVoid:
575    return "ToVoid";
576  case CastExpr::CK_VectorSplat:
577    return "VectorSplat";
578  case CastExpr::CK_IntegralCast:
579    return "IntegralCast";
580  case CastExpr::CK_IntegralToFloating:
581    return "IntegralToFloating";
582  case CastExpr::CK_FloatingToIntegral:
583    return "FloatingToIntegral";
584  case CastExpr::CK_FloatingCast:
585    return "FloatingCast";
586  case CastExpr::CK_MemberPointerToBoolean:
587    return "MemberPointerToBoolean";
588  case CastExpr::CK_AnyPointerToObjCPointerCast:
589    return "AnyPointerToObjCPointerCast";
590  case CastExpr::CK_AnyPointerToBlockPointerCast:
591    return "AnyPointerToBlockPointerCast";
592  }
593
594  assert(0 && "Unhandled cast kind!");
595  return 0;
596}
597
598Expr *CastExpr::getSubExprAsWritten() {
599  Expr *SubExpr = 0;
600  CastExpr *E = this;
601  do {
602    SubExpr = E->getSubExpr();
603
604    // Skip any temporary bindings; they're implicit.
605    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
606      SubExpr = Binder->getSubExpr();
607
608    // Conversions by constructor and conversion functions have a
609    // subexpression describing the call; strip it off.
610    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
611      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
612    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
613      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
614
615    // If the subexpression we're left with is an implicit cast, look
616    // through that, too.
617  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
618
619  return SubExpr;
620}
621
622/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
623/// corresponds to, e.g. "<<=".
624const char *BinaryOperator::getOpcodeStr(Opcode Op) {
625  switch (Op) {
626  case PtrMemD:   return ".*";
627  case PtrMemI:   return "->*";
628  case Mul:       return "*";
629  case Div:       return "/";
630  case Rem:       return "%";
631  case Add:       return "+";
632  case Sub:       return "-";
633  case Shl:       return "<<";
634  case Shr:       return ">>";
635  case LT:        return "<";
636  case GT:        return ">";
637  case LE:        return "<=";
638  case GE:        return ">=";
639  case EQ:        return "==";
640  case NE:        return "!=";
641  case And:       return "&";
642  case Xor:       return "^";
643  case Or:        return "|";
644  case LAnd:      return "&&";
645  case LOr:       return "||";
646  case Assign:    return "=";
647  case MulAssign: return "*=";
648  case DivAssign: return "/=";
649  case RemAssign: return "%=";
650  case AddAssign: return "+=";
651  case SubAssign: return "-=";
652  case ShlAssign: return "<<=";
653  case ShrAssign: return ">>=";
654  case AndAssign: return "&=";
655  case XorAssign: return "^=";
656  case OrAssign:  return "|=";
657  case Comma:     return ",";
658  }
659
660  return "";
661}
662
663BinaryOperator::Opcode
664BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
665  switch (OO) {
666  default: assert(false && "Not an overloadable binary operator");
667  case OO_Plus: return Add;
668  case OO_Minus: return Sub;
669  case OO_Star: return Mul;
670  case OO_Slash: return Div;
671  case OO_Percent: return Rem;
672  case OO_Caret: return Xor;
673  case OO_Amp: return And;
674  case OO_Pipe: return Or;
675  case OO_Equal: return Assign;
676  case OO_Less: return LT;
677  case OO_Greater: return GT;
678  case OO_PlusEqual: return AddAssign;
679  case OO_MinusEqual: return SubAssign;
680  case OO_StarEqual: return MulAssign;
681  case OO_SlashEqual: return DivAssign;
682  case OO_PercentEqual: return RemAssign;
683  case OO_CaretEqual: return XorAssign;
684  case OO_AmpEqual: return AndAssign;
685  case OO_PipeEqual: return OrAssign;
686  case OO_LessLess: return Shl;
687  case OO_GreaterGreater: return Shr;
688  case OO_LessLessEqual: return ShlAssign;
689  case OO_GreaterGreaterEqual: return ShrAssign;
690  case OO_EqualEqual: return EQ;
691  case OO_ExclaimEqual: return NE;
692  case OO_LessEqual: return LE;
693  case OO_GreaterEqual: return GE;
694  case OO_AmpAmp: return LAnd;
695  case OO_PipePipe: return LOr;
696  case OO_Comma: return Comma;
697  case OO_ArrowStar: return PtrMemI;
698  }
699}
700
701OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
702  static const OverloadedOperatorKind OverOps[] = {
703    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
704    OO_Star, OO_Slash, OO_Percent,
705    OO_Plus, OO_Minus,
706    OO_LessLess, OO_GreaterGreater,
707    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
708    OO_EqualEqual, OO_ExclaimEqual,
709    OO_Amp,
710    OO_Caret,
711    OO_Pipe,
712    OO_AmpAmp,
713    OO_PipePipe,
714    OO_Equal, OO_StarEqual,
715    OO_SlashEqual, OO_PercentEqual,
716    OO_PlusEqual, OO_MinusEqual,
717    OO_LessLessEqual, OO_GreaterGreaterEqual,
718    OO_AmpEqual, OO_CaretEqual,
719    OO_PipeEqual,
720    OO_Comma
721  };
722  return OverOps[Opc];
723}
724
725InitListExpr::InitListExpr(SourceLocation lbraceloc,
726                           Expr **initExprs, unsigned numInits,
727                           SourceLocation rbraceloc)
728  : Expr(InitListExprClass, QualType(), false, false),
729    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
730    UnionFieldInit(0), HadArrayRangeDesignator(false)
731{
732  for (unsigned I = 0; I != numInits; ++I) {
733    if (initExprs[I]->isTypeDependent())
734      TypeDependent = true;
735    if (initExprs[I]->isValueDependent())
736      ValueDependent = true;
737  }
738
739  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
740}
741
742void InitListExpr::reserveInits(unsigned NumInits) {
743  if (NumInits > InitExprs.size())
744    InitExprs.reserve(NumInits);
745}
746
747void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
748  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
749       Idx < LastIdx; ++Idx)
750    InitExprs[Idx]->Destroy(Context);
751  InitExprs.resize(NumInits, 0);
752}
753
754Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
755  if (Init >= InitExprs.size()) {
756    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
757    InitExprs.back() = expr;
758    return 0;
759  }
760
761  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
762  InitExprs[Init] = expr;
763  return Result;
764}
765
766/// getFunctionType - Return the underlying function type for this block.
767///
768const FunctionType *BlockExpr::getFunctionType() const {
769  return getType()->getAs<BlockPointerType>()->
770                    getPointeeType()->getAs<FunctionType>();
771}
772
773SourceLocation BlockExpr::getCaretLocation() const {
774  return TheBlock->getCaretLocation();
775}
776const Stmt *BlockExpr::getBody() const {
777  return TheBlock->getBody();
778}
779Stmt *BlockExpr::getBody() {
780  return TheBlock->getBody();
781}
782
783
784//===----------------------------------------------------------------------===//
785// Generic Expression Routines
786//===----------------------------------------------------------------------===//
787
788/// isUnusedResultAWarning - Return true if this immediate expression should
789/// be warned about if the result is unused.  If so, fill in Loc and Ranges
790/// with location to warn on and the source range[s] to report with the
791/// warning.
792bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
793                                  SourceRange &R2, ASTContext &Ctx) const {
794  // Don't warn if the expr is type dependent. The type could end up
795  // instantiating to void.
796  if (isTypeDependent())
797    return false;
798
799  switch (getStmtClass()) {
800  default:
801    if (getType()->isVoidType())
802      return false;
803    Loc = getExprLoc();
804    R1 = getSourceRange();
805    return true;
806  case ParenExprClass:
807    return cast<ParenExpr>(this)->getSubExpr()->
808      isUnusedResultAWarning(Loc, R1, R2, Ctx);
809  case UnaryOperatorClass: {
810    const UnaryOperator *UO = cast<UnaryOperator>(this);
811
812    switch (UO->getOpcode()) {
813    default: break;
814    case UnaryOperator::PostInc:
815    case UnaryOperator::PostDec:
816    case UnaryOperator::PreInc:
817    case UnaryOperator::PreDec:                 // ++/--
818      return false;  // Not a warning.
819    case UnaryOperator::Deref:
820      // Dereferencing a volatile pointer is a side-effect.
821      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
822        return false;
823      break;
824    case UnaryOperator::Real:
825    case UnaryOperator::Imag:
826      // accessing a piece of a volatile complex is a side-effect.
827      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
828          .isVolatileQualified())
829        return false;
830      break;
831    case UnaryOperator::Extension:
832      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
833    }
834    Loc = UO->getOperatorLoc();
835    R1 = UO->getSubExpr()->getSourceRange();
836    return true;
837  }
838  case BinaryOperatorClass: {
839    const BinaryOperator *BO = cast<BinaryOperator>(this);
840    // Consider comma to have side effects if the LHS or RHS does.
841    if (BO->getOpcode() == BinaryOperator::Comma) {
842      // ((foo = <blah>), 0) is an idiom for hiding the result (and
843      // lvalue-ness) of an assignment written in a macro.
844      if (IntegerLiteral *IE =
845            dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
846        if (IE->getValue() == 0)
847          return false;
848
849      return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
850              BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
851    }
852
853    if (BO->isAssignmentOp())
854      return false;
855    Loc = BO->getOperatorLoc();
856    R1 = BO->getLHS()->getSourceRange();
857    R2 = BO->getRHS()->getSourceRange();
858    return true;
859  }
860  case CompoundAssignOperatorClass:
861    return false;
862
863  case ConditionalOperatorClass: {
864    // The condition must be evaluated, but if either the LHS or RHS is a
865    // warning, warn about them.
866    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
867    if (Exp->getLHS() &&
868        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
869      return true;
870    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
871  }
872
873  case MemberExprClass:
874    // If the base pointer or element is to a volatile pointer/field, accessing
875    // it is a side effect.
876    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
877      return false;
878    Loc = cast<MemberExpr>(this)->getMemberLoc();
879    R1 = SourceRange(Loc, Loc);
880    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
881    return true;
882
883  case ArraySubscriptExprClass:
884    // If the base pointer or element is to a volatile pointer/field, accessing
885    // it is a side effect.
886    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
887      return false;
888    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
889    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
890    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
891    return true;
892
893  case CallExprClass:
894  case CXXOperatorCallExprClass:
895  case CXXMemberCallExprClass: {
896    // If this is a direct call, get the callee.
897    const CallExpr *CE = cast<CallExpr>(this);
898    if (const Decl *FD = CE->getCalleeDecl()) {
899      // If the callee has attribute pure, const, or warn_unused_result, warn
900      // about it. void foo() { strlen("bar"); } should warn.
901      //
902      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
903      // updated to match for QoI.
904      if (FD->getAttr<WarnUnusedResultAttr>() ||
905          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
906        Loc = CE->getCallee()->getLocStart();
907        R1 = CE->getCallee()->getSourceRange();
908
909        if (unsigned NumArgs = CE->getNumArgs())
910          R2 = SourceRange(CE->getArg(0)->getLocStart(),
911                           CE->getArg(NumArgs-1)->getLocEnd());
912        return true;
913      }
914    }
915    return false;
916  }
917
918  case CXXTemporaryObjectExprClass:
919  case CXXConstructExprClass:
920    return false;
921
922  case ObjCMessageExprClass: {
923    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
924    const ObjCMethodDecl *MD = ME->getMethodDecl();
925    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
926      Loc = getExprLoc();
927      return true;
928    }
929    return false;
930  }
931
932  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
933#if 0
934    const ObjCImplicitSetterGetterRefExpr *Ref =
935      cast<ObjCImplicitSetterGetterRefExpr>(this);
936    // FIXME: We really want the location of the '.' here.
937    Loc = Ref->getLocation();
938    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
939    if (Ref->getBase())
940      R2 = Ref->getBase()->getSourceRange();
941#else
942    Loc = getExprLoc();
943    R1 = getSourceRange();
944#endif
945    return true;
946  }
947  case StmtExprClass: {
948    // Statement exprs don't logically have side effects themselves, but are
949    // sometimes used in macros in ways that give them a type that is unused.
950    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
951    // however, if the result of the stmt expr is dead, we don't want to emit a
952    // warning.
953    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
954    if (!CS->body_empty())
955      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
956        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
957
958    if (getType()->isVoidType())
959      return false;
960    Loc = cast<StmtExpr>(this)->getLParenLoc();
961    R1 = getSourceRange();
962    return true;
963  }
964  case CStyleCastExprClass:
965    // If this is an explicit cast to void, allow it.  People do this when they
966    // think they know what they're doing :).
967    if (getType()->isVoidType())
968      return false;
969    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
970    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
971    return true;
972  case CXXFunctionalCastExprClass: {
973    if (getType()->isVoidType())
974      return false;
975    const CastExpr *CE = cast<CastExpr>(this);
976
977    // If this is a cast to void or a constructor conversion, check the operand.
978    // Otherwise, the result of the cast is unused.
979    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
980        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
981      return (cast<CastExpr>(this)->getSubExpr()
982              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
983    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
984    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
985    return true;
986  }
987
988  case ImplicitCastExprClass:
989    // Check the operand, since implicit casts are inserted by Sema
990    return (cast<ImplicitCastExpr>(this)
991            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
992
993  case CXXDefaultArgExprClass:
994    return (cast<CXXDefaultArgExpr>(this)
995            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
996
997  case CXXNewExprClass:
998    // FIXME: In theory, there might be new expressions that don't have side
999    // effects (e.g. a placement new with an uninitialized POD).
1000  case CXXDeleteExprClass:
1001    return false;
1002  case CXXBindTemporaryExprClass:
1003    return (cast<CXXBindTemporaryExpr>(this)
1004            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1005  case CXXExprWithTemporariesClass:
1006    return (cast<CXXExprWithTemporaries>(this)
1007            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1008  }
1009}
1010
1011/// DeclCanBeLvalue - Determine whether the given declaration can be
1012/// an lvalue. This is a helper routine for isLvalue.
1013static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1014  // C++ [temp.param]p6:
1015  //   A non-type non-reference template-parameter is not an lvalue.
1016  if (const NonTypeTemplateParmDecl *NTTParm
1017        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1018    return NTTParm->getType()->isReferenceType();
1019
1020  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1021    // C++ 3.10p2: An lvalue refers to an object or function.
1022    (Ctx.getLangOptions().CPlusPlus &&
1023     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1024}
1025
1026/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1027/// incomplete type other than void. Nonarray expressions that can be lvalues:
1028///  - name, where name must be a variable
1029///  - e[i]
1030///  - (e), where e must be an lvalue
1031///  - e.name, where e must be an lvalue
1032///  - e->name
1033///  - *e, the type of e cannot be a function type
1034///  - string-constant
1035///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1036///  - reference type [C++ [expr]]
1037///
1038Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1039  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1040
1041  isLvalueResult Res = isLvalueInternal(Ctx);
1042  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1043    return Res;
1044
1045  // first, check the type (C99 6.3.2.1). Expressions with function
1046  // type in C are not lvalues, but they can be lvalues in C++.
1047  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1048    return LV_NotObjectType;
1049
1050  // Allow qualified void which is an incomplete type other than void (yuck).
1051  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1052    return LV_IncompleteVoidType;
1053
1054  return LV_Valid;
1055}
1056
1057// Check whether the expression can be sanely treated like an l-value
1058Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1059  switch (getStmtClass()) {
1060  case ObjCIsaExprClass:
1061  case StringLiteralClass:  // C99 6.5.1p4
1062  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1063    return LV_Valid;
1064  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1065    // For vectors, make sure base is an lvalue (i.e. not a function call).
1066    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1067      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1068    return LV_Valid;
1069  case DeclRefExprClass: { // C99 6.5.1p2
1070    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1071    if (DeclCanBeLvalue(RefdDecl, Ctx))
1072      return LV_Valid;
1073    break;
1074  }
1075  case BlockDeclRefExprClass: {
1076    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1077    if (isa<VarDecl>(BDR->getDecl()))
1078      return LV_Valid;
1079    break;
1080  }
1081  case MemberExprClass: {
1082    const MemberExpr *m = cast<MemberExpr>(this);
1083    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1084      NamedDecl *Member = m->getMemberDecl();
1085      // C++ [expr.ref]p4:
1086      //   If E2 is declared to have type "reference to T", then E1.E2
1087      //   is an lvalue.
1088      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1089        if (Value->getType()->isReferenceType())
1090          return LV_Valid;
1091
1092      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1093      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1094        return LV_Valid;
1095
1096      //   -- If E2 is a non-static data member [...]. If E1 is an
1097      //      lvalue, then E1.E2 is an lvalue.
1098      if (isa<FieldDecl>(Member)) {
1099        if (m->isArrow())
1100          return LV_Valid;
1101        return m->getBase()->isLvalue(Ctx);
1102      }
1103
1104      //   -- If it refers to a static member function [...], then
1105      //      E1.E2 is an lvalue.
1106      //   -- Otherwise, if E1.E2 refers to a non-static member
1107      //      function [...], then E1.E2 is not an lvalue.
1108      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1109        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1110
1111      //   -- If E2 is a member enumerator [...], the expression E1.E2
1112      //      is not an lvalue.
1113      if (isa<EnumConstantDecl>(Member))
1114        return LV_InvalidExpression;
1115
1116        // Not an lvalue.
1117      return LV_InvalidExpression;
1118    }
1119
1120    // C99 6.5.2.3p4
1121    if (m->isArrow())
1122      return LV_Valid;
1123    Expr *BaseExp = m->getBase();
1124    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1125        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1126          return LV_SubObjCPropertySetting;
1127    return
1128       BaseExp->isLvalue(Ctx);
1129  }
1130  case UnaryOperatorClass:
1131    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1132      return LV_Valid; // C99 6.5.3p4
1133
1134    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1135        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1136        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1137      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1138
1139    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1140        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1141         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1142      return LV_Valid;
1143    break;
1144  case ImplicitCastExprClass:
1145    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1146      return LV_Valid;
1147
1148    // If this is a conversion to a class temporary, make a note of
1149    // that.
1150    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1151      return LV_ClassTemporary;
1152
1153    break;
1154  case ParenExprClass: // C99 6.5.1p5
1155    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1156  case BinaryOperatorClass:
1157  case CompoundAssignOperatorClass: {
1158    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1159
1160    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1161        BinOp->getOpcode() == BinaryOperator::Comma)
1162      return BinOp->getRHS()->isLvalue(Ctx);
1163
1164    // C++ [expr.mptr.oper]p6
1165    // The result of a .* expression is an lvalue only if its first operand is
1166    // an lvalue and its second operand is a pointer to data member.
1167    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1168        !BinOp->getType()->isFunctionType())
1169      return BinOp->getLHS()->isLvalue(Ctx);
1170
1171    // The result of an ->* expression is an lvalue only if its second operand
1172    // is a pointer to data member.
1173    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1174        !BinOp->getType()->isFunctionType()) {
1175      QualType Ty = BinOp->getRHS()->getType();
1176      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1177        return LV_Valid;
1178    }
1179
1180    if (!BinOp->isAssignmentOp())
1181      return LV_InvalidExpression;
1182
1183    if (Ctx.getLangOptions().CPlusPlus)
1184      // C++ [expr.ass]p1:
1185      //   The result of an assignment operation [...] is an lvalue.
1186      return LV_Valid;
1187
1188
1189    // C99 6.5.16:
1190    //   An assignment expression [...] is not an lvalue.
1191    return LV_InvalidExpression;
1192  }
1193  case CallExprClass:
1194  case CXXOperatorCallExprClass:
1195  case CXXMemberCallExprClass: {
1196    // C++0x [expr.call]p10
1197    //   A function call is an lvalue if and only if the result type
1198    //   is an lvalue reference.
1199    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1200    if (ReturnType->isLValueReferenceType())
1201      return LV_Valid;
1202
1203    // If the function is returning a class temporary, make a note of
1204    // that.
1205    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1206      return LV_ClassTemporary;
1207
1208    break;
1209  }
1210  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1211    // FIXME: Is this what we want in C++?
1212    return LV_Valid;
1213  case ChooseExprClass:
1214    // __builtin_choose_expr is an lvalue if the selected operand is.
1215    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1216  case ExtVectorElementExprClass:
1217    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1218      return LV_DuplicateVectorComponents;
1219    return LV_Valid;
1220  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1221    return LV_Valid;
1222  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1223    return LV_Valid;
1224  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1225    return LV_Valid;
1226  case PredefinedExprClass:
1227    return LV_Valid;
1228  case UnresolvedLookupExprClass:
1229    return LV_Valid;
1230  case CXXDefaultArgExprClass:
1231    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1232  case CStyleCastExprClass:
1233  case CXXFunctionalCastExprClass:
1234  case CXXStaticCastExprClass:
1235  case CXXDynamicCastExprClass:
1236  case CXXReinterpretCastExprClass:
1237  case CXXConstCastExprClass:
1238    // The result of an explicit cast is an lvalue if the type we are
1239    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1240    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1241    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1242    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1243          isLValueReferenceType())
1244      return LV_Valid;
1245
1246    // If this is a conversion to a class temporary, make a note of
1247    // that.
1248    if (Ctx.getLangOptions().CPlusPlus &&
1249        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1250      return LV_ClassTemporary;
1251
1252    break;
1253  case CXXTypeidExprClass:
1254    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1255    return LV_Valid;
1256  case CXXBindTemporaryExprClass:
1257    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1258      isLvalueInternal(Ctx);
1259  case CXXBindReferenceExprClass:
1260    // Something that's bound to a reference is always an lvalue.
1261    return LV_Valid;
1262  case ConditionalOperatorClass: {
1263    // Complicated handling is only for C++.
1264    if (!Ctx.getLangOptions().CPlusPlus)
1265      return LV_InvalidExpression;
1266
1267    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1268    // everywhere there's an object converted to an rvalue. Also, any other
1269    // casts should be wrapped by ImplicitCastExprs. There's just the special
1270    // case involving throws to work out.
1271    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1272    Expr *True = Cond->getTrueExpr();
1273    Expr *False = Cond->getFalseExpr();
1274    // C++0x 5.16p2
1275    //   If either the second or the third operand has type (cv) void, [...]
1276    //   the result [...] is an rvalue.
1277    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1278      return LV_InvalidExpression;
1279
1280    // Both sides must be lvalues for the result to be an lvalue.
1281    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1282      return LV_InvalidExpression;
1283
1284    // That's it.
1285    return LV_Valid;
1286  }
1287
1288  case Expr::CXXExprWithTemporariesClass:
1289    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1290
1291  case Expr::ObjCMessageExprClass:
1292    if (const ObjCMethodDecl *Method
1293          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1294      if (Method->getResultType()->isLValueReferenceType())
1295        return LV_Valid;
1296    break;
1297
1298  case Expr::CXXConstructExprClass:
1299  case Expr::CXXTemporaryObjectExprClass:
1300  case Expr::CXXZeroInitValueExprClass:
1301    return LV_ClassTemporary;
1302
1303  default:
1304    break;
1305  }
1306  return LV_InvalidExpression;
1307}
1308
1309/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1310/// does not have an incomplete type, does not have a const-qualified type, and
1311/// if it is a structure or union, does not have any member (including,
1312/// recursively, any member or element of all contained aggregates or unions)
1313/// with a const-qualified type.
1314Expr::isModifiableLvalueResult
1315Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1316  isLvalueResult lvalResult = isLvalue(Ctx);
1317
1318  switch (lvalResult) {
1319  case LV_Valid:
1320    // C++ 3.10p11: Functions cannot be modified, but pointers to
1321    // functions can be modifiable.
1322    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1323      return MLV_NotObjectType;
1324    break;
1325
1326  case LV_NotObjectType: return MLV_NotObjectType;
1327  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1328  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1329  case LV_InvalidExpression:
1330    // If the top level is a C-style cast, and the subexpression is a valid
1331    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1332    // GCC extension.  We don't support it, but we want to produce good
1333    // diagnostics when it happens so that the user knows why.
1334    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1335      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1336        if (Loc)
1337          *Loc = CE->getLParenLoc();
1338        return MLV_LValueCast;
1339      }
1340    }
1341    return MLV_InvalidExpression;
1342  case LV_MemberFunction: return MLV_MemberFunction;
1343  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1344  case LV_ClassTemporary:
1345    return MLV_ClassTemporary;
1346  }
1347
1348  // The following is illegal:
1349  //   void takeclosure(void (^C)(void));
1350  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1351  //
1352  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1353    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1354      return MLV_NotBlockQualified;
1355  }
1356
1357  // Assigning to an 'implicit' property?
1358  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1359        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1360    if (Expr->getSetterMethod() == 0)
1361      return MLV_NoSetterProperty;
1362  }
1363
1364  QualType CT = Ctx.getCanonicalType(getType());
1365
1366  if (CT.isConstQualified())
1367    return MLV_ConstQualified;
1368  if (CT->isArrayType())
1369    return MLV_ArrayType;
1370  if (CT->isIncompleteType())
1371    return MLV_IncompleteType;
1372
1373  if (const RecordType *r = CT->getAs<RecordType>()) {
1374    if (r->hasConstFields())
1375      return MLV_ConstQualified;
1376  }
1377
1378  return MLV_Valid;
1379}
1380
1381/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1382/// returns true, if it is; false otherwise.
1383bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1384  switch (getStmtClass()) {
1385  default:
1386    return false;
1387  case ObjCIvarRefExprClass:
1388    return true;
1389  case Expr::UnaryOperatorClass:
1390    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1391  case ParenExprClass:
1392    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1393  case ImplicitCastExprClass:
1394    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1395  case CStyleCastExprClass:
1396    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1397  case DeclRefExprClass: {
1398    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1399    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1400      if (VD->hasGlobalStorage())
1401        return true;
1402      QualType T = VD->getType();
1403      // dereferencing to a  pointer is always a gc'able candidate,
1404      // unless it is __weak.
1405      return T->isPointerType() &&
1406             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1407    }
1408    return false;
1409  }
1410  case MemberExprClass: {
1411    const MemberExpr *M = cast<MemberExpr>(this);
1412    return M->getBase()->isOBJCGCCandidate(Ctx);
1413  }
1414  case ArraySubscriptExprClass:
1415    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1416  }
1417}
1418Expr* Expr::IgnoreParens() {
1419  Expr* E = this;
1420  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1421    E = P->getSubExpr();
1422
1423  return E;
1424}
1425
1426/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1427/// or CastExprs or ImplicitCastExprs, returning their operand.
1428Expr *Expr::IgnoreParenCasts() {
1429  Expr *E = this;
1430  while (true) {
1431    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1432      E = P->getSubExpr();
1433    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1434      E = P->getSubExpr();
1435    else
1436      return E;
1437  }
1438}
1439
1440/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1441/// value (including ptr->int casts of the same size).  Strip off any
1442/// ParenExpr or CastExprs, returning their operand.
1443Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1444  Expr *E = this;
1445  while (true) {
1446    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1447      E = P->getSubExpr();
1448      continue;
1449    }
1450
1451    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1452      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1453      // ptr<->int casts of the same width.  We also ignore all identify casts.
1454      Expr *SE = P->getSubExpr();
1455
1456      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1457        E = SE;
1458        continue;
1459      }
1460
1461      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1462          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1463          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1464        E = SE;
1465        continue;
1466      }
1467    }
1468
1469    return E;
1470  }
1471}
1472
1473bool Expr::isDefaultArgument() const {
1474  const Expr *E = this;
1475  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1476    E = ICE->getSubExprAsWritten();
1477
1478  return isa<CXXDefaultArgExpr>(E);
1479}
1480
1481/// \brief Skip over any no-op casts and any temporary-binding
1482/// expressions.
1483static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1484  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1485    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1486      E = ICE->getSubExpr();
1487    else
1488      break;
1489  }
1490
1491  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1492    E = BE->getSubExpr();
1493
1494  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1495    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1496      E = ICE->getSubExpr();
1497    else
1498      break;
1499  }
1500
1501  return E;
1502}
1503
1504const Expr *Expr::getTemporaryObject() const {
1505  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1506
1507  // A cast can produce a temporary object. The object's construction
1508  // is represented as a CXXConstructExpr.
1509  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1510    // Only user-defined and constructor conversions can produce
1511    // temporary objects.
1512    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1513        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1514      return 0;
1515
1516    // Strip off temporary bindings and no-op casts.
1517    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1518
1519    // If this is a constructor conversion, see if we have an object
1520    // construction.
1521    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1522      return dyn_cast<CXXConstructExpr>(Sub);
1523
1524    // If this is a user-defined conversion, see if we have a call to
1525    // a function that itself returns a temporary object.
1526    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1527      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1528        if (CE->getCallReturnType()->isRecordType())
1529          return CE;
1530
1531    return 0;
1532  }
1533
1534  // A call returning a class type returns a temporary.
1535  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1536    if (CE->getCallReturnType()->isRecordType())
1537      return CE;
1538
1539    return 0;
1540  }
1541
1542  // Explicit temporary object constructors create temporaries.
1543  return dyn_cast<CXXTemporaryObjectExpr>(E);
1544}
1545
1546/// hasAnyTypeDependentArguments - Determines if any of the expressions
1547/// in Exprs is type-dependent.
1548bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1549  for (unsigned I = 0; I < NumExprs; ++I)
1550    if (Exprs[I]->isTypeDependent())
1551      return true;
1552
1553  return false;
1554}
1555
1556/// hasAnyValueDependentArguments - Determines if any of the expressions
1557/// in Exprs is value-dependent.
1558bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1559  for (unsigned I = 0; I < NumExprs; ++I)
1560    if (Exprs[I]->isValueDependent())
1561      return true;
1562
1563  return false;
1564}
1565
1566bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1567  // This function is attempting whether an expression is an initializer
1568  // which can be evaluated at compile-time.  isEvaluatable handles most
1569  // of the cases, but it can't deal with some initializer-specific
1570  // expressions, and it can't deal with aggregates; we deal with those here,
1571  // and fall back to isEvaluatable for the other cases.
1572
1573  // FIXME: This function assumes the variable being assigned to
1574  // isn't a reference type!
1575
1576  switch (getStmtClass()) {
1577  default: break;
1578  case StringLiteralClass:
1579  case ObjCStringLiteralClass:
1580  case ObjCEncodeExprClass:
1581    return true;
1582  case CompoundLiteralExprClass: {
1583    // This handles gcc's extension that allows global initializers like
1584    // "struct x {int x;} x = (struct x) {};".
1585    // FIXME: This accepts other cases it shouldn't!
1586    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1587    return Exp->isConstantInitializer(Ctx);
1588  }
1589  case InitListExprClass: {
1590    // FIXME: This doesn't deal with fields with reference types correctly.
1591    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1592    // to bitfields.
1593    const InitListExpr *Exp = cast<InitListExpr>(this);
1594    unsigned numInits = Exp->getNumInits();
1595    for (unsigned i = 0; i < numInits; i++) {
1596      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1597        return false;
1598    }
1599    return true;
1600  }
1601  case ImplicitValueInitExprClass:
1602    return true;
1603  case ParenExprClass:
1604    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1605  case UnaryOperatorClass: {
1606    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1607    if (Exp->getOpcode() == UnaryOperator::Extension)
1608      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1609    break;
1610  }
1611  case BinaryOperatorClass: {
1612    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1613    // but this handles the common case.
1614    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1615    if (Exp->getOpcode() == BinaryOperator::Sub &&
1616        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1617        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1618      return true;
1619    break;
1620  }
1621  case ImplicitCastExprClass:
1622  case CStyleCastExprClass:
1623    // Handle casts with a destination that's a struct or union; this
1624    // deals with both the gcc no-op struct cast extension and the
1625    // cast-to-union extension.
1626    if (getType()->isRecordType())
1627      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1628
1629    // Integer->integer casts can be handled here, which is important for
1630    // things like (int)(&&x-&&y).  Scary but true.
1631    if (getType()->isIntegerType() &&
1632        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1633      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1634
1635    break;
1636  }
1637  return isEvaluatable(Ctx);
1638}
1639
1640/// isIntegerConstantExpr - this recursive routine will test if an expression is
1641/// an integer constant expression.
1642
1643/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1644/// comma, etc
1645///
1646/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1647/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1648/// cast+dereference.
1649
1650// CheckICE - This function does the fundamental ICE checking: the returned
1651// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1652// Note that to reduce code duplication, this helper does no evaluation
1653// itself; the caller checks whether the expression is evaluatable, and
1654// in the rare cases where CheckICE actually cares about the evaluated
1655// value, it calls into Evalute.
1656//
1657// Meanings of Val:
1658// 0: This expression is an ICE if it can be evaluated by Evaluate.
1659// 1: This expression is not an ICE, but if it isn't evaluated, it's
1660//    a legal subexpression for an ICE. This return value is used to handle
1661//    the comma operator in C99 mode.
1662// 2: This expression is not an ICE, and is not a legal subexpression for one.
1663
1664struct ICEDiag {
1665  unsigned Val;
1666  SourceLocation Loc;
1667
1668  public:
1669  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1670  ICEDiag() : Val(0) {}
1671};
1672
1673ICEDiag NoDiag() { return ICEDiag(); }
1674
1675static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1676  Expr::EvalResult EVResult;
1677  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1678      !EVResult.Val.isInt()) {
1679    return ICEDiag(2, E->getLocStart());
1680  }
1681  return NoDiag();
1682}
1683
1684static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1685  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1686  if (!E->getType()->isIntegralType()) {
1687    return ICEDiag(2, E->getLocStart());
1688  }
1689
1690  switch (E->getStmtClass()) {
1691#define STMT(Node, Base) case Expr::Node##Class:
1692#define EXPR(Node, Base)
1693#include "clang/AST/StmtNodes.def"
1694  case Expr::PredefinedExprClass:
1695  case Expr::FloatingLiteralClass:
1696  case Expr::ImaginaryLiteralClass:
1697  case Expr::StringLiteralClass:
1698  case Expr::ArraySubscriptExprClass:
1699  case Expr::MemberExprClass:
1700  case Expr::CompoundAssignOperatorClass:
1701  case Expr::CompoundLiteralExprClass:
1702  case Expr::ExtVectorElementExprClass:
1703  case Expr::InitListExprClass:
1704  case Expr::DesignatedInitExprClass:
1705  case Expr::ImplicitValueInitExprClass:
1706  case Expr::ParenListExprClass:
1707  case Expr::VAArgExprClass:
1708  case Expr::AddrLabelExprClass:
1709  case Expr::StmtExprClass:
1710  case Expr::CXXMemberCallExprClass:
1711  case Expr::CXXDynamicCastExprClass:
1712  case Expr::CXXTypeidExprClass:
1713  case Expr::CXXNullPtrLiteralExprClass:
1714  case Expr::CXXThisExprClass:
1715  case Expr::CXXThrowExprClass:
1716  case Expr::CXXNewExprClass:
1717  case Expr::CXXDeleteExprClass:
1718  case Expr::CXXPseudoDestructorExprClass:
1719  case Expr::UnresolvedLookupExprClass:
1720  case Expr::DependentScopeDeclRefExprClass:
1721  case Expr::CXXConstructExprClass:
1722  case Expr::CXXBindTemporaryExprClass:
1723  case Expr::CXXBindReferenceExprClass:
1724  case Expr::CXXExprWithTemporariesClass:
1725  case Expr::CXXTemporaryObjectExprClass:
1726  case Expr::CXXUnresolvedConstructExprClass:
1727  case Expr::CXXDependentScopeMemberExprClass:
1728  case Expr::UnresolvedMemberExprClass:
1729  case Expr::ObjCStringLiteralClass:
1730  case Expr::ObjCEncodeExprClass:
1731  case Expr::ObjCMessageExprClass:
1732  case Expr::ObjCSelectorExprClass:
1733  case Expr::ObjCProtocolExprClass:
1734  case Expr::ObjCIvarRefExprClass:
1735  case Expr::ObjCPropertyRefExprClass:
1736  case Expr::ObjCImplicitSetterGetterRefExprClass:
1737  case Expr::ObjCSuperExprClass:
1738  case Expr::ObjCIsaExprClass:
1739  case Expr::ShuffleVectorExprClass:
1740  case Expr::BlockExprClass:
1741  case Expr::BlockDeclRefExprClass:
1742  case Expr::NoStmtClass:
1743    return ICEDiag(2, E->getLocStart());
1744
1745  case Expr::GNUNullExprClass:
1746    // GCC considers the GNU __null value to be an integral constant expression.
1747    return NoDiag();
1748
1749  case Expr::ParenExprClass:
1750    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1751  case Expr::IntegerLiteralClass:
1752  case Expr::CharacterLiteralClass:
1753  case Expr::CXXBoolLiteralExprClass:
1754  case Expr::CXXZeroInitValueExprClass:
1755  case Expr::TypesCompatibleExprClass:
1756  case Expr::UnaryTypeTraitExprClass:
1757    return NoDiag();
1758  case Expr::CallExprClass:
1759  case Expr::CXXOperatorCallExprClass: {
1760    const CallExpr *CE = cast<CallExpr>(E);
1761    if (CE->isBuiltinCall(Ctx))
1762      return CheckEvalInICE(E, Ctx);
1763    return ICEDiag(2, E->getLocStart());
1764  }
1765  case Expr::DeclRefExprClass:
1766    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1767      return NoDiag();
1768    if (Ctx.getLangOptions().CPlusPlus &&
1769        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1770      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1771
1772      // Parameter variables are never constants.  Without this check,
1773      // getAnyInitializer() can find a default argument, which leads
1774      // to chaos.
1775      if (isa<ParmVarDecl>(D))
1776        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1777
1778      // C++ 7.1.5.1p2
1779      //   A variable of non-volatile const-qualified integral or enumeration
1780      //   type initialized by an ICE can be used in ICEs.
1781      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
1782        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1783        if (Quals.hasVolatile() || !Quals.hasConst())
1784          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1785
1786        // Look for a declaration of this variable that has an initializer.
1787        const VarDecl *ID = 0;
1788        const Expr *Init = Dcl->getAnyInitializer(ID);
1789        if (Init) {
1790          if (ID->isInitKnownICE()) {
1791            // We have already checked whether this subexpression is an
1792            // integral constant expression.
1793            if (ID->isInitICE())
1794              return NoDiag();
1795            else
1796              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1797          }
1798
1799          // It's an ICE whether or not the definition we found is
1800          // out-of-line.  See DR 721 and the discussion in Clang PR
1801          // 6206 for details.
1802
1803          if (Dcl->isCheckingICE()) {
1804            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1805          }
1806
1807          Dcl->setCheckingICE();
1808          ICEDiag Result = CheckICE(Init, Ctx);
1809          // Cache the result of the ICE test.
1810          Dcl->setInitKnownICE(Result.Val == 0);
1811          return Result;
1812        }
1813      }
1814    }
1815    return ICEDiag(2, E->getLocStart());
1816  case Expr::UnaryOperatorClass: {
1817    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1818    switch (Exp->getOpcode()) {
1819    case UnaryOperator::PostInc:
1820    case UnaryOperator::PostDec:
1821    case UnaryOperator::PreInc:
1822    case UnaryOperator::PreDec:
1823    case UnaryOperator::AddrOf:
1824    case UnaryOperator::Deref:
1825      return ICEDiag(2, E->getLocStart());
1826
1827    case UnaryOperator::Extension:
1828    case UnaryOperator::LNot:
1829    case UnaryOperator::Plus:
1830    case UnaryOperator::Minus:
1831    case UnaryOperator::Not:
1832    case UnaryOperator::Real:
1833    case UnaryOperator::Imag:
1834      return CheckICE(Exp->getSubExpr(), Ctx);
1835    case UnaryOperator::OffsetOf:
1836      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1837      // Evaluate matches the proposed gcc behavior for cases like
1838      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1839      // compliance: we should warn earlier for offsetof expressions with
1840      // array subscripts that aren't ICEs, and if the array subscripts
1841      // are ICEs, the value of the offsetof must be an integer constant.
1842      return CheckEvalInICE(E, Ctx);
1843    }
1844  }
1845  case Expr::SizeOfAlignOfExprClass: {
1846    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1847    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1848      return ICEDiag(2, E->getLocStart());
1849    return NoDiag();
1850  }
1851  case Expr::BinaryOperatorClass: {
1852    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1853    switch (Exp->getOpcode()) {
1854    case BinaryOperator::PtrMemD:
1855    case BinaryOperator::PtrMemI:
1856    case BinaryOperator::Assign:
1857    case BinaryOperator::MulAssign:
1858    case BinaryOperator::DivAssign:
1859    case BinaryOperator::RemAssign:
1860    case BinaryOperator::AddAssign:
1861    case BinaryOperator::SubAssign:
1862    case BinaryOperator::ShlAssign:
1863    case BinaryOperator::ShrAssign:
1864    case BinaryOperator::AndAssign:
1865    case BinaryOperator::XorAssign:
1866    case BinaryOperator::OrAssign:
1867      return ICEDiag(2, E->getLocStart());
1868
1869    case BinaryOperator::Mul:
1870    case BinaryOperator::Div:
1871    case BinaryOperator::Rem:
1872    case BinaryOperator::Add:
1873    case BinaryOperator::Sub:
1874    case BinaryOperator::Shl:
1875    case BinaryOperator::Shr:
1876    case BinaryOperator::LT:
1877    case BinaryOperator::GT:
1878    case BinaryOperator::LE:
1879    case BinaryOperator::GE:
1880    case BinaryOperator::EQ:
1881    case BinaryOperator::NE:
1882    case BinaryOperator::And:
1883    case BinaryOperator::Xor:
1884    case BinaryOperator::Or:
1885    case BinaryOperator::Comma: {
1886      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1887      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1888      if (Exp->getOpcode() == BinaryOperator::Div ||
1889          Exp->getOpcode() == BinaryOperator::Rem) {
1890        // Evaluate gives an error for undefined Div/Rem, so make sure
1891        // we don't evaluate one.
1892        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1893          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1894          if (REval == 0)
1895            return ICEDiag(1, E->getLocStart());
1896          if (REval.isSigned() && REval.isAllOnesValue()) {
1897            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1898            if (LEval.isMinSignedValue())
1899              return ICEDiag(1, E->getLocStart());
1900          }
1901        }
1902      }
1903      if (Exp->getOpcode() == BinaryOperator::Comma) {
1904        if (Ctx.getLangOptions().C99) {
1905          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1906          // if it isn't evaluated.
1907          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1908            return ICEDiag(1, E->getLocStart());
1909        } else {
1910          // In both C89 and C++, commas in ICEs are illegal.
1911          return ICEDiag(2, E->getLocStart());
1912        }
1913      }
1914      if (LHSResult.Val >= RHSResult.Val)
1915        return LHSResult;
1916      return RHSResult;
1917    }
1918    case BinaryOperator::LAnd:
1919    case BinaryOperator::LOr: {
1920      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1921      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1922      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1923        // Rare case where the RHS has a comma "side-effect"; we need
1924        // to actually check the condition to see whether the side
1925        // with the comma is evaluated.
1926        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1927            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1928          return RHSResult;
1929        return NoDiag();
1930      }
1931
1932      if (LHSResult.Val >= RHSResult.Val)
1933        return LHSResult;
1934      return RHSResult;
1935    }
1936    }
1937  }
1938  case Expr::ImplicitCastExprClass:
1939  case Expr::CStyleCastExprClass:
1940  case Expr::CXXFunctionalCastExprClass:
1941  case Expr::CXXNamedCastExprClass:
1942  case Expr::CXXStaticCastExprClass:
1943  case Expr::CXXReinterpretCastExprClass:
1944  case Expr::CXXConstCastExprClass: {
1945    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1946    if (SubExpr->getType()->isIntegralType())
1947      return CheckICE(SubExpr, Ctx);
1948    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1949      return NoDiag();
1950    return ICEDiag(2, E->getLocStart());
1951  }
1952  case Expr::ConditionalOperatorClass: {
1953    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1954    // If the condition (ignoring parens) is a __builtin_constant_p call,
1955    // then only the true side is actually considered in an integer constant
1956    // expression, and it is fully evaluated.  This is an important GNU
1957    // extension.  See GCC PR38377 for discussion.
1958    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1959      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1960        Expr::EvalResult EVResult;
1961        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1962            !EVResult.Val.isInt()) {
1963          return ICEDiag(2, E->getLocStart());
1964        }
1965        return NoDiag();
1966      }
1967    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1968    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1969    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1970    if (CondResult.Val == 2)
1971      return CondResult;
1972    if (TrueResult.Val == 2)
1973      return TrueResult;
1974    if (FalseResult.Val == 2)
1975      return FalseResult;
1976    if (CondResult.Val == 1)
1977      return CondResult;
1978    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1979      return NoDiag();
1980    // Rare case where the diagnostics depend on which side is evaluated
1981    // Note that if we get here, CondResult is 0, and at least one of
1982    // TrueResult and FalseResult is non-zero.
1983    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1984      return FalseResult;
1985    }
1986    return TrueResult;
1987  }
1988  case Expr::CXXDefaultArgExprClass:
1989    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1990  case Expr::ChooseExprClass: {
1991    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1992  }
1993  }
1994
1995  // Silence a GCC warning
1996  return ICEDiag(2, E->getLocStart());
1997}
1998
1999bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
2000                                 SourceLocation *Loc, bool isEvaluated) const {
2001  ICEDiag d = CheckICE(this, Ctx);
2002  if (d.Val != 0) {
2003    if (Loc) *Loc = d.Loc;
2004    return false;
2005  }
2006  EvalResult EvalResult;
2007  if (!Evaluate(EvalResult, Ctx))
2008    llvm_unreachable("ICE cannot be evaluated!");
2009  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
2010  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
2011  Result = EvalResult.Val.getInt();
2012  return true;
2013}
2014
2015/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2016/// integer constant expression with the value zero, or if this is one that is
2017/// cast to void*.
2018bool Expr::isNullPointerConstant(ASTContext &Ctx,
2019                                 NullPointerConstantValueDependence NPC) const {
2020  if (isValueDependent()) {
2021    switch (NPC) {
2022    case NPC_NeverValueDependent:
2023      assert(false && "Unexpected value dependent expression!");
2024      // If the unthinkable happens, fall through to the safest alternative.
2025
2026    case NPC_ValueDependentIsNull:
2027      return isTypeDependent() || getType()->isIntegralType();
2028
2029    case NPC_ValueDependentIsNotNull:
2030      return false;
2031    }
2032  }
2033
2034  // Strip off a cast to void*, if it exists. Except in C++.
2035  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2036    if (!Ctx.getLangOptions().CPlusPlus) {
2037      // Check that it is a cast to void*.
2038      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2039        QualType Pointee = PT->getPointeeType();
2040        if (!Pointee.hasQualifiers() &&
2041            Pointee->isVoidType() &&                              // to void*
2042            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2043          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2044      }
2045    }
2046  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2047    // Ignore the ImplicitCastExpr type entirely.
2048    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2049  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2050    // Accept ((void*)0) as a null pointer constant, as many other
2051    // implementations do.
2052    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2053  } else if (const CXXDefaultArgExpr *DefaultArg
2054               = dyn_cast<CXXDefaultArgExpr>(this)) {
2055    // See through default argument expressions
2056    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2057  } else if (isa<GNUNullExpr>(this)) {
2058    // The GNU __null extension is always a null pointer constant.
2059    return true;
2060  }
2061
2062  // C++0x nullptr_t is always a null pointer constant.
2063  if (getType()->isNullPtrType())
2064    return true;
2065
2066  // This expression must be an integer type.
2067  if (!getType()->isIntegerType() ||
2068      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2069    return false;
2070
2071  // If we have an integer constant expression, we need to *evaluate* it and
2072  // test for the value 0.
2073  llvm::APSInt Result;
2074  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2075}
2076
2077FieldDecl *Expr::getBitField() {
2078  Expr *E = this->IgnoreParens();
2079
2080  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2081    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2082      E = ICE->getSubExpr()->IgnoreParens();
2083    else
2084      break;
2085  }
2086
2087  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2088    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2089      if (Field->isBitField())
2090        return Field;
2091
2092  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2093    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2094      return BinOp->getLHS()->getBitField();
2095
2096  return 0;
2097}
2098
2099bool Expr::refersToVectorElement() const {
2100  const Expr *E = this->IgnoreParens();
2101
2102  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2103    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2104      E = ICE->getSubExpr()->IgnoreParens();
2105    else
2106      break;
2107  }
2108
2109  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2110    return ASE->getBase()->getType()->isVectorType();
2111
2112  if (isa<ExtVectorElementExpr>(E))
2113    return true;
2114
2115  return false;
2116}
2117
2118/// isArrow - Return true if the base expression is a pointer to vector,
2119/// return false if the base expression is a vector.
2120bool ExtVectorElementExpr::isArrow() const {
2121  return getBase()->getType()->isPointerType();
2122}
2123
2124unsigned ExtVectorElementExpr::getNumElements() const {
2125  if (const VectorType *VT = getType()->getAs<VectorType>())
2126    return VT->getNumElements();
2127  return 1;
2128}
2129
2130/// containsDuplicateElements - Return true if any element access is repeated.
2131bool ExtVectorElementExpr::containsDuplicateElements() const {
2132  // FIXME: Refactor this code to an accessor on the AST node which returns the
2133  // "type" of component access, and share with code below and in Sema.
2134  llvm::StringRef Comp = Accessor->getName();
2135
2136  // Halving swizzles do not contain duplicate elements.
2137  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2138    return false;
2139
2140  // Advance past s-char prefix on hex swizzles.
2141  if (Comp[0] == 's' || Comp[0] == 'S')
2142    Comp = Comp.substr(1);
2143
2144  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2145    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2146        return true;
2147
2148  return false;
2149}
2150
2151/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2152void ExtVectorElementExpr::getEncodedElementAccess(
2153                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2154  llvm::StringRef Comp = Accessor->getName();
2155  if (Comp[0] == 's' || Comp[0] == 'S')
2156    Comp = Comp.substr(1);
2157
2158  bool isHi =   Comp == "hi";
2159  bool isLo =   Comp == "lo";
2160  bool isEven = Comp == "even";
2161  bool isOdd  = Comp == "odd";
2162
2163  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2164    uint64_t Index;
2165
2166    if (isHi)
2167      Index = e + i;
2168    else if (isLo)
2169      Index = i;
2170    else if (isEven)
2171      Index = 2 * i;
2172    else if (isOdd)
2173      Index = 2 * i + 1;
2174    else
2175      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2176
2177    Elts.push_back(Index);
2178  }
2179}
2180
2181// constructor for instance messages.
2182ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, Expr *receiver,
2183                                 Selector selInfo,
2184                                 QualType retType, ObjCMethodDecl *mproto,
2185                                 SourceLocation LBrac, SourceLocation RBrac,
2186                                 Expr **ArgExprs, unsigned nargs)
2187  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2188    MethodProto(mproto) {
2189  NumArgs = nargs;
2190  SubExprs = new (C) Stmt*[NumArgs+1];
2191  SubExprs[RECEIVER] = receiver;
2192  if (NumArgs) {
2193    for (unsigned i = 0; i != NumArgs; ++i)
2194      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2195  }
2196  LBracloc = LBrac;
2197  RBracloc = RBrac;
2198}
2199
2200// constructor for class messages.
2201// FIXME: clsName should be typed to ObjCInterfaceType
2202ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, IdentifierInfo *clsName,
2203                                 SourceLocation clsNameLoc, Selector selInfo,
2204                                 QualType retType, ObjCMethodDecl *mproto,
2205                                 SourceLocation LBrac, SourceLocation RBrac,
2206                                 Expr **ArgExprs, unsigned nargs)
2207  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2208    SelName(selInfo), MethodProto(mproto) {
2209  NumArgs = nargs;
2210  SubExprs = new (C) Stmt*[NumArgs+1];
2211  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2212  if (NumArgs) {
2213    for (unsigned i = 0; i != NumArgs; ++i)
2214      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2215  }
2216  LBracloc = LBrac;
2217  RBracloc = RBrac;
2218}
2219
2220// constructor for class messages.
2221ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, ObjCInterfaceDecl *cls,
2222                                 SourceLocation clsNameLoc, Selector selInfo,
2223                                 QualType retType,
2224                                 ObjCMethodDecl *mproto, SourceLocation LBrac,
2225                                 SourceLocation RBrac, Expr **ArgExprs,
2226                                 unsigned nargs)
2227  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2228    SelName(selInfo), MethodProto(mproto)
2229{
2230  NumArgs = nargs;
2231  SubExprs = new (C) Stmt*[NumArgs+1];
2232  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2233  if (NumArgs) {
2234    for (unsigned i = 0; i != NumArgs; ++i)
2235      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2236  }
2237  LBracloc = LBrac;
2238  RBracloc = RBrac;
2239}
2240
2241ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2242  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2243  switch (x & Flags) {
2244    default:
2245      assert(false && "Invalid ObjCMessageExpr.");
2246    case IsInstMeth:
2247      return ClassInfo(0, 0, SourceLocation());
2248    case IsClsMethDeclUnknown:
2249      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags), ClassNameLoc);
2250    case IsClsMethDeclKnown: {
2251      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2252      return ClassInfo(D, D->getIdentifier(), ClassNameLoc);
2253    }
2254  }
2255}
2256
2257void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2258  if (CI.Decl == 0 && CI.Name == 0) {
2259    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2260    return;
2261  }
2262
2263  if (CI.Decl == 0)
2264    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Name | IsClsMethDeclUnknown);
2265  else
2266    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Decl | IsClsMethDeclKnown);
2267  ClassNameLoc = CI.Loc;
2268}
2269
2270void ObjCMessageExpr::DoDestroy(ASTContext &C) {
2271  DestroyChildren(C);
2272  if (SubExprs)
2273    C.Deallocate(SubExprs);
2274  this->~ObjCMessageExpr();
2275  C.Deallocate((void*) this);
2276}
2277
2278bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2279  return getCond()->EvaluateAsInt(C) != 0;
2280}
2281
2282void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2283                                 unsigned NumExprs) {
2284  if (SubExprs) C.Deallocate(SubExprs);
2285
2286  SubExprs = new (C) Stmt* [NumExprs];
2287  this->NumExprs = NumExprs;
2288  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2289}
2290
2291void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2292  DestroyChildren(C);
2293  if (SubExprs) C.Deallocate(SubExprs);
2294  this->~ShuffleVectorExpr();
2295  C.Deallocate(this);
2296}
2297
2298void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2299  // Override default behavior of traversing children. If this has a type
2300  // operand and the type is a variable-length array, the child iteration
2301  // will iterate over the size expression. However, this expression belongs
2302  // to the type, not to this, so we don't want to delete it.
2303  // We still want to delete this expression.
2304  if (isArgumentType()) {
2305    this->~SizeOfAlignOfExpr();
2306    C.Deallocate(this);
2307  }
2308  else
2309    Expr::DoDestroy(C);
2310}
2311
2312//===----------------------------------------------------------------------===//
2313//  DesignatedInitExpr
2314//===----------------------------------------------------------------------===//
2315
2316IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2317  assert(Kind == FieldDesignator && "Only valid on a field designator");
2318  if (Field.NameOrField & 0x01)
2319    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2320  else
2321    return getField()->getIdentifier();
2322}
2323
2324DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2325                                       unsigned NumDesignators,
2326                                       const Designator *Designators,
2327                                       SourceLocation EqualOrColonLoc,
2328                                       bool GNUSyntax,
2329                                       Expr **IndexExprs,
2330                                       unsigned NumIndexExprs,
2331                                       Expr *Init)
2332  : Expr(DesignatedInitExprClass, Ty,
2333         Init->isTypeDependent(), Init->isValueDependent()),
2334    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2335    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2336  this->Designators = new (C) Designator[NumDesignators];
2337
2338  // Record the initializer itself.
2339  child_iterator Child = child_begin();
2340  *Child++ = Init;
2341
2342  // Copy the designators and their subexpressions, computing
2343  // value-dependence along the way.
2344  unsigned IndexIdx = 0;
2345  for (unsigned I = 0; I != NumDesignators; ++I) {
2346    this->Designators[I] = Designators[I];
2347
2348    if (this->Designators[I].isArrayDesignator()) {
2349      // Compute type- and value-dependence.
2350      Expr *Index = IndexExprs[IndexIdx];
2351      ValueDependent = ValueDependent ||
2352        Index->isTypeDependent() || Index->isValueDependent();
2353
2354      // Copy the index expressions into permanent storage.
2355      *Child++ = IndexExprs[IndexIdx++];
2356    } else if (this->Designators[I].isArrayRangeDesignator()) {
2357      // Compute type- and value-dependence.
2358      Expr *Start = IndexExprs[IndexIdx];
2359      Expr *End = IndexExprs[IndexIdx + 1];
2360      ValueDependent = ValueDependent ||
2361        Start->isTypeDependent() || Start->isValueDependent() ||
2362        End->isTypeDependent() || End->isValueDependent();
2363
2364      // Copy the start/end expressions into permanent storage.
2365      *Child++ = IndexExprs[IndexIdx++];
2366      *Child++ = IndexExprs[IndexIdx++];
2367    }
2368  }
2369
2370  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2371}
2372
2373DesignatedInitExpr *
2374DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2375                           unsigned NumDesignators,
2376                           Expr **IndexExprs, unsigned NumIndexExprs,
2377                           SourceLocation ColonOrEqualLoc,
2378                           bool UsesColonSyntax, Expr *Init) {
2379  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2380                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2381  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2382                                      ColonOrEqualLoc, UsesColonSyntax,
2383                                      IndexExprs, NumIndexExprs, Init);
2384}
2385
2386DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2387                                                    unsigned NumIndexExprs) {
2388  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2389                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2390  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2391}
2392
2393void DesignatedInitExpr::setDesignators(ASTContext &C,
2394                                        const Designator *Desigs,
2395                                        unsigned NumDesigs) {
2396  DestroyDesignators(C);
2397
2398  Designators = new (C) Designator[NumDesigs];
2399  NumDesignators = NumDesigs;
2400  for (unsigned I = 0; I != NumDesigs; ++I)
2401    Designators[I] = Desigs[I];
2402}
2403
2404SourceRange DesignatedInitExpr::getSourceRange() const {
2405  SourceLocation StartLoc;
2406  Designator &First =
2407    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2408  if (First.isFieldDesignator()) {
2409    if (GNUSyntax)
2410      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2411    else
2412      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2413  } else
2414    StartLoc =
2415      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2416  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2417}
2418
2419Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2420  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2421  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2422  Ptr += sizeof(DesignatedInitExpr);
2423  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2424  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2425}
2426
2427Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2428  assert(D.Kind == Designator::ArrayRangeDesignator &&
2429         "Requires array range designator");
2430  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2431  Ptr += sizeof(DesignatedInitExpr);
2432  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2433  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2434}
2435
2436Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2437  assert(D.Kind == Designator::ArrayRangeDesignator &&
2438         "Requires array range designator");
2439  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2440  Ptr += sizeof(DesignatedInitExpr);
2441  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2442  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2443}
2444
2445/// \brief Replaces the designator at index @p Idx with the series
2446/// of designators in [First, Last).
2447void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2448                                          const Designator *First,
2449                                          const Designator *Last) {
2450  unsigned NumNewDesignators = Last - First;
2451  if (NumNewDesignators == 0) {
2452    std::copy_backward(Designators + Idx + 1,
2453                       Designators + NumDesignators,
2454                       Designators + Idx);
2455    --NumNewDesignators;
2456    return;
2457  } else if (NumNewDesignators == 1) {
2458    Designators[Idx] = *First;
2459    return;
2460  }
2461
2462  Designator *NewDesignators
2463    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2464  std::copy(Designators, Designators + Idx, NewDesignators);
2465  std::copy(First, Last, NewDesignators + Idx);
2466  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2467            NewDesignators + Idx + NumNewDesignators);
2468  DestroyDesignators(C);
2469  Designators = NewDesignators;
2470  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2471}
2472
2473void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2474  DestroyDesignators(C);
2475  Expr::DoDestroy(C);
2476}
2477
2478void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2479  for (unsigned I = 0; I != NumDesignators; ++I)
2480    Designators[I].~Designator();
2481  C.Deallocate(Designators);
2482  Designators = 0;
2483}
2484
2485ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2486                             Expr **exprs, unsigned nexprs,
2487                             SourceLocation rparenloc)
2488: Expr(ParenListExprClass, QualType(),
2489       hasAnyTypeDependentArguments(exprs, nexprs),
2490       hasAnyValueDependentArguments(exprs, nexprs)),
2491  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2492
2493  Exprs = new (C) Stmt*[nexprs];
2494  for (unsigned i = 0; i != nexprs; ++i)
2495    Exprs[i] = exprs[i];
2496}
2497
2498void ParenListExpr::DoDestroy(ASTContext& C) {
2499  DestroyChildren(C);
2500  if (Exprs) C.Deallocate(Exprs);
2501  this->~ParenListExpr();
2502  C.Deallocate(this);
2503}
2504
2505//===----------------------------------------------------------------------===//
2506//  ExprIterator.
2507//===----------------------------------------------------------------------===//
2508
2509Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2510Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2511Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2512const Expr* ConstExprIterator::operator[](size_t idx) const {
2513  return cast<Expr>(I[idx]);
2514}
2515const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2516const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2517
2518//===----------------------------------------------------------------------===//
2519//  Child Iterators for iterating over subexpressions/substatements
2520//===----------------------------------------------------------------------===//
2521
2522// DeclRefExpr
2523Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2524Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2525
2526// ObjCIvarRefExpr
2527Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2528Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2529
2530// ObjCPropertyRefExpr
2531Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2532Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2533
2534// ObjCImplicitSetterGetterRefExpr
2535Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2536  return &Base;
2537}
2538Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2539  return &Base+1;
2540}
2541
2542// ObjCSuperExpr
2543Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2544Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2545
2546// ObjCIsaExpr
2547Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2548Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2549
2550// PredefinedExpr
2551Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2552Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2553
2554// IntegerLiteral
2555Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2556Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2557
2558// CharacterLiteral
2559Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2560Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2561
2562// FloatingLiteral
2563Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2564Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2565
2566// ImaginaryLiteral
2567Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2568Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2569
2570// StringLiteral
2571Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2572Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2573
2574// ParenExpr
2575Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2576Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2577
2578// UnaryOperator
2579Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2580Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2581
2582// SizeOfAlignOfExpr
2583Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2584  // If this is of a type and the type is a VLA type (and not a typedef), the
2585  // size expression of the VLA needs to be treated as an executable expression.
2586  // Why isn't this weirdness documented better in StmtIterator?
2587  if (isArgumentType()) {
2588    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2589                                   getArgumentType().getTypePtr()))
2590      return child_iterator(T);
2591    return child_iterator();
2592  }
2593  return child_iterator(&Argument.Ex);
2594}
2595Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2596  if (isArgumentType())
2597    return child_iterator();
2598  return child_iterator(&Argument.Ex + 1);
2599}
2600
2601// ArraySubscriptExpr
2602Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2603  return &SubExprs[0];
2604}
2605Stmt::child_iterator ArraySubscriptExpr::child_end() {
2606  return &SubExprs[0]+END_EXPR;
2607}
2608
2609// CallExpr
2610Stmt::child_iterator CallExpr::child_begin() {
2611  return &SubExprs[0];
2612}
2613Stmt::child_iterator CallExpr::child_end() {
2614  return &SubExprs[0]+NumArgs+ARGS_START;
2615}
2616
2617// MemberExpr
2618Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2619Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2620
2621// ExtVectorElementExpr
2622Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2623Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2624
2625// CompoundLiteralExpr
2626Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2627Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2628
2629// CastExpr
2630Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2631Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2632
2633// BinaryOperator
2634Stmt::child_iterator BinaryOperator::child_begin() {
2635  return &SubExprs[0];
2636}
2637Stmt::child_iterator BinaryOperator::child_end() {
2638  return &SubExprs[0]+END_EXPR;
2639}
2640
2641// ConditionalOperator
2642Stmt::child_iterator ConditionalOperator::child_begin() {
2643  return &SubExprs[0];
2644}
2645Stmt::child_iterator ConditionalOperator::child_end() {
2646  return &SubExprs[0]+END_EXPR;
2647}
2648
2649// AddrLabelExpr
2650Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2651Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2652
2653// StmtExpr
2654Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2655Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2656
2657// TypesCompatibleExpr
2658Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2659  return child_iterator();
2660}
2661
2662Stmt::child_iterator TypesCompatibleExpr::child_end() {
2663  return child_iterator();
2664}
2665
2666// ChooseExpr
2667Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2668Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2669
2670// GNUNullExpr
2671Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2672Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2673
2674// ShuffleVectorExpr
2675Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2676  return &SubExprs[0];
2677}
2678Stmt::child_iterator ShuffleVectorExpr::child_end() {
2679  return &SubExprs[0]+NumExprs;
2680}
2681
2682// VAArgExpr
2683Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2684Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2685
2686// InitListExpr
2687Stmt::child_iterator InitListExpr::child_begin() {
2688  return InitExprs.size() ? &InitExprs[0] : 0;
2689}
2690Stmt::child_iterator InitListExpr::child_end() {
2691  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2692}
2693
2694// DesignatedInitExpr
2695Stmt::child_iterator DesignatedInitExpr::child_begin() {
2696  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2697  Ptr += sizeof(DesignatedInitExpr);
2698  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2699}
2700Stmt::child_iterator DesignatedInitExpr::child_end() {
2701  return child_iterator(&*child_begin() + NumSubExprs);
2702}
2703
2704// ImplicitValueInitExpr
2705Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2706  return child_iterator();
2707}
2708
2709Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2710  return child_iterator();
2711}
2712
2713// ParenListExpr
2714Stmt::child_iterator ParenListExpr::child_begin() {
2715  return &Exprs[0];
2716}
2717Stmt::child_iterator ParenListExpr::child_end() {
2718  return &Exprs[0]+NumExprs;
2719}
2720
2721// ObjCStringLiteral
2722Stmt::child_iterator ObjCStringLiteral::child_begin() {
2723  return &String;
2724}
2725Stmt::child_iterator ObjCStringLiteral::child_end() {
2726  return &String+1;
2727}
2728
2729// ObjCEncodeExpr
2730Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2731Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2732
2733// ObjCSelectorExpr
2734Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2735  return child_iterator();
2736}
2737Stmt::child_iterator ObjCSelectorExpr::child_end() {
2738  return child_iterator();
2739}
2740
2741// ObjCProtocolExpr
2742Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2743  return child_iterator();
2744}
2745Stmt::child_iterator ObjCProtocolExpr::child_end() {
2746  return child_iterator();
2747}
2748
2749// ObjCMessageExpr
2750Stmt::child_iterator ObjCMessageExpr::child_begin() {
2751  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2752}
2753Stmt::child_iterator ObjCMessageExpr::child_end() {
2754  return &SubExprs[0]+ARGS_START+getNumArgs();
2755}
2756
2757// Blocks
2758Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2759Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2760
2761Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2762Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2763