Expr.cpp revision 1fe85ea697fb5c85acded3ac0ddbc19f89c2e181
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31using namespace clang;
32
33void Expr::ANCHOR() {} // key function for Expr class.
34
35/// isKnownToHaveBooleanValue - Return true if this is an integer expression
36/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
37/// but also int expressions which are produced by things like comparisons in
38/// C.
39bool Expr::isKnownToHaveBooleanValue() const {
40  // If this value has _Bool type, it is obvious 0/1.
41  if (getType()->isBooleanType()) return true;
42  // If this is a non-scalar-integer type, we don't care enough to try.
43  if (!getType()->isIntegralOrEnumerationType()) return false;
44
45  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
46    return PE->getSubExpr()->isKnownToHaveBooleanValue();
47
48  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
49    switch (UO->getOpcode()) {
50    case UO_Plus:
51    case UO_Extension:
52      return UO->getSubExpr()->isKnownToHaveBooleanValue();
53    default:
54      return false;
55    }
56  }
57
58  // Only look through implicit casts.  If the user writes
59  // '(int) (a && b)' treat it as an arbitrary int.
60  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
61    return CE->getSubExpr()->isKnownToHaveBooleanValue();
62
63  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
64    switch (BO->getOpcode()) {
65    default: return false;
66    case BO_LT:   // Relational operators.
67    case BO_GT:
68    case BO_LE:
69    case BO_GE:
70    case BO_EQ:   // Equality operators.
71    case BO_NE:
72    case BO_LAnd: // AND operator.
73    case BO_LOr:  // Logical OR operator.
74      return true;
75
76    case BO_And:  // Bitwise AND operator.
77    case BO_Xor:  // Bitwise XOR operator.
78    case BO_Or:   // Bitwise OR operator.
79      // Handle things like (x==2)|(y==12).
80      return BO->getLHS()->isKnownToHaveBooleanValue() &&
81             BO->getRHS()->isKnownToHaveBooleanValue();
82
83    case BO_Comma:
84    case BO_Assign:
85      return BO->getRHS()->isKnownToHaveBooleanValue();
86    }
87  }
88
89  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
90    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
91           CO->getFalseExpr()->isKnownToHaveBooleanValue();
92
93  return false;
94}
95
96//===----------------------------------------------------------------------===//
97// Primary Expressions.
98//===----------------------------------------------------------------------===//
99
100void ExplicitTemplateArgumentList::initializeFrom(
101                                      const TemplateArgumentListInfo &Info) {
102  LAngleLoc = Info.getLAngleLoc();
103  RAngleLoc = Info.getRAngleLoc();
104  NumTemplateArgs = Info.size();
105
106  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
107  for (unsigned i = 0; i != NumTemplateArgs; ++i)
108    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
109}
110
111void ExplicitTemplateArgumentList::initializeFrom(
112                                   const TemplateArgumentListInfo &Info,
113                                   bool &Dependent,
114                                   bool &ContainsUnexpandedParameterPack) {
115  LAngleLoc = Info.getLAngleLoc();
116  RAngleLoc = Info.getRAngleLoc();
117  NumTemplateArgs = Info.size();
118
119  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
120  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
121    Dependent = Dependent || Info[i].getArgument().isDependent();
122    ContainsUnexpandedParameterPack
123      = ContainsUnexpandedParameterPack ||
124        Info[i].getArgument().containsUnexpandedParameterPack();
125
126    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
127  }
128}
129
130void ExplicitTemplateArgumentList::copyInto(
131                                      TemplateArgumentListInfo &Info) const {
132  Info.setLAngleLoc(LAngleLoc);
133  Info.setRAngleLoc(RAngleLoc);
134  for (unsigned I = 0; I != NumTemplateArgs; ++I)
135    Info.addArgument(getTemplateArgs()[I]);
136}
137
138std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
139  return sizeof(ExplicitTemplateArgumentList) +
140         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
141}
142
143std::size_t ExplicitTemplateArgumentList::sizeFor(
144                                      const TemplateArgumentListInfo &Info) {
145  return sizeFor(Info.size());
146}
147
148void DeclRefExpr::computeDependence() {
149  ExprBits.TypeDependent = false;
150  ExprBits.ValueDependent = false;
151
152  NamedDecl *D = getDecl();
153
154  // (TD) C++ [temp.dep.expr]p3:
155  //   An id-expression is type-dependent if it contains:
156  //
157  // and
158  //
159  // (VD) C++ [temp.dep.constexpr]p2:
160  //  An identifier is value-dependent if it is:
161
162  //  (TD)  - an identifier that was declared with dependent type
163  //  (VD)  - a name declared with a dependent type,
164  if (getType()->isDependentType()) {
165    ExprBits.TypeDependent = true;
166    ExprBits.ValueDependent = true;
167  }
168  //  (TD)  - a conversion-function-id that specifies a dependent type
169  else if (D->getDeclName().getNameKind()
170                               == DeclarationName::CXXConversionFunctionName &&
171           D->getDeclName().getCXXNameType()->isDependentType()) {
172    ExprBits.TypeDependent = true;
173    ExprBits.ValueDependent = true;
174  }
175  //  (TD)  - a template-id that is dependent,
176  else if (hasExplicitTemplateArgs() &&
177           TemplateSpecializationType::anyDependentTemplateArguments(
178                                                       getTemplateArgs(),
179                                                       getNumTemplateArgs())) {
180    ExprBits.TypeDependent = true;
181    ExprBits.ValueDependent = true;
182  }
183  //  (VD)  - the name of a non-type template parameter,
184  else if (isa<NonTypeTemplateParmDecl>(D))
185    ExprBits.ValueDependent = true;
186  //  (VD) - a constant with integral or enumeration type and is
187  //         initialized with an expression that is value-dependent.
188  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
189    if (Var->getType()->isIntegralOrEnumerationType() &&
190        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
191      if (const Expr *Init = Var->getAnyInitializer())
192        if (Init->isValueDependent())
193          ExprBits.ValueDependent = true;
194    }
195    // (VD) - FIXME: Missing from the standard:
196    //      -  a member function or a static data member of the current
197    //         instantiation
198    else if (Var->isStaticDataMember() &&
199             Var->getDeclContext()->isDependentContext())
200      ExprBits.ValueDependent = true;
201  }
202  // (VD) - FIXME: Missing from the standard:
203  //      -  a member function or a static data member of the current
204  //         instantiation
205  else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
206    ExprBits.ValueDependent = true;
207  //  (TD)  - a nested-name-specifier or a qualified-id that names a
208  //          member of an unknown specialization.
209  //        (handled by DependentScopeDeclRefExpr)
210
211  // Determine whether this expression contains any unexpanded parameter
212  // packs.
213  // Is the declaration a parameter pack?
214  if (D->isParameterPack())
215    ExprBits.ContainsUnexpandedParameterPack = true;
216}
217
218DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
219                         SourceRange QualifierRange,
220                         ValueDecl *D, SourceLocation NameLoc,
221                         const TemplateArgumentListInfo *TemplateArgs,
222                         QualType T, ExprValueKind VK)
223  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
224    DecoratedD(D,
225               (Qualifier? HasQualifierFlag : 0) |
226               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
227    Loc(NameLoc) {
228  if (Qualifier) {
229    NameQualifier *NQ = getNameQualifier();
230    NQ->NNS = Qualifier;
231    NQ->Range = QualifierRange;
232  }
233
234  if (TemplateArgs)
235    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
236
237  computeDependence();
238}
239
240DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
241                         SourceRange QualifierRange,
242                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
243                         const TemplateArgumentListInfo *TemplateArgs,
244                         QualType T, ExprValueKind VK)
245  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
246    DecoratedD(D,
247               (Qualifier? HasQualifierFlag : 0) |
248               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
249    Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
250  if (Qualifier) {
251    NameQualifier *NQ = getNameQualifier();
252    NQ->NNS = Qualifier;
253    NQ->Range = QualifierRange;
254  }
255
256  if (TemplateArgs)
257    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
258
259  computeDependence();
260}
261
262DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
263                                 NestedNameSpecifier *Qualifier,
264                                 SourceRange QualifierRange,
265                                 ValueDecl *D,
266                                 SourceLocation NameLoc,
267                                 QualType T,
268                                 ExprValueKind VK,
269                                 const TemplateArgumentListInfo *TemplateArgs) {
270  return Create(Context, Qualifier, QualifierRange, D,
271                DeclarationNameInfo(D->getDeclName(), NameLoc),
272                T, VK, TemplateArgs);
273}
274
275DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
276                                 NestedNameSpecifier *Qualifier,
277                                 SourceRange QualifierRange,
278                                 ValueDecl *D,
279                                 const DeclarationNameInfo &NameInfo,
280                                 QualType T,
281                                 ExprValueKind VK,
282                                 const TemplateArgumentListInfo *TemplateArgs) {
283  std::size_t Size = sizeof(DeclRefExpr);
284  if (Qualifier != 0)
285    Size += sizeof(NameQualifier);
286
287  if (TemplateArgs)
288    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
289
290  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
291  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
292                               TemplateArgs, T, VK);
293}
294
295DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier,
296                                      unsigned NumTemplateArgs) {
297  std::size_t Size = sizeof(DeclRefExpr);
298  if (HasQualifier)
299    Size += sizeof(NameQualifier);
300
301  if (NumTemplateArgs)
302    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
303
304  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
305  return new (Mem) DeclRefExpr(EmptyShell());
306}
307
308SourceRange DeclRefExpr::getSourceRange() const {
309  SourceRange R = getNameInfo().getSourceRange();
310  if (hasQualifier())
311    R.setBegin(getQualifierRange().getBegin());
312  if (hasExplicitTemplateArgs())
313    R.setEnd(getRAngleLoc());
314  return R;
315}
316
317// FIXME: Maybe this should use DeclPrinter with a special "print predefined
318// expr" policy instead.
319std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
320  ASTContext &Context = CurrentDecl->getASTContext();
321
322  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
323    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
324      return FD->getNameAsString();
325
326    llvm::SmallString<256> Name;
327    llvm::raw_svector_ostream Out(Name);
328
329    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
330      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
331        Out << "virtual ";
332      if (MD->isStatic())
333        Out << "static ";
334    }
335
336    PrintingPolicy Policy(Context.getLangOptions());
337
338    std::string Proto = FD->getQualifiedNameAsString(Policy);
339
340    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
341    const FunctionProtoType *FT = 0;
342    if (FD->hasWrittenPrototype())
343      FT = dyn_cast<FunctionProtoType>(AFT);
344
345    Proto += "(";
346    if (FT) {
347      llvm::raw_string_ostream POut(Proto);
348      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
349        if (i) POut << ", ";
350        std::string Param;
351        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
352        POut << Param;
353      }
354
355      if (FT->isVariadic()) {
356        if (FD->getNumParams()) POut << ", ";
357        POut << "...";
358      }
359    }
360    Proto += ")";
361
362    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
363      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
364      if (ThisQuals.hasConst())
365        Proto += " const";
366      if (ThisQuals.hasVolatile())
367        Proto += " volatile";
368    }
369
370    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
371      AFT->getResultType().getAsStringInternal(Proto, Policy);
372
373    Out << Proto;
374
375    Out.flush();
376    return Name.str().str();
377  }
378  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
379    llvm::SmallString<256> Name;
380    llvm::raw_svector_ostream Out(Name);
381    Out << (MD->isInstanceMethod() ? '-' : '+');
382    Out << '[';
383
384    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
385    // a null check to avoid a crash.
386    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
387      Out << ID;
388
389    if (const ObjCCategoryImplDecl *CID =
390        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
391      Out << '(' << CID << ')';
392
393    Out <<  ' ';
394    Out << MD->getSelector().getAsString();
395    Out <<  ']';
396
397    Out.flush();
398    return Name.str().str();
399  }
400  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
401    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
402    return "top level";
403  }
404  return "";
405}
406
407void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
408  if (hasAllocation())
409    C.Deallocate(pVal);
410
411  BitWidth = Val.getBitWidth();
412  unsigned NumWords = Val.getNumWords();
413  const uint64_t* Words = Val.getRawData();
414  if (NumWords > 1) {
415    pVal = new (C) uint64_t[NumWords];
416    std::copy(Words, Words + NumWords, pVal);
417  } else if (NumWords == 1)
418    VAL = Words[0];
419  else
420    VAL = 0;
421}
422
423IntegerLiteral *
424IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
425                       QualType type, SourceLocation l) {
426  return new (C) IntegerLiteral(C, V, type, l);
427}
428
429IntegerLiteral *
430IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
431  return new (C) IntegerLiteral(Empty);
432}
433
434FloatingLiteral *
435FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
436                        bool isexact, QualType Type, SourceLocation L) {
437  return new (C) FloatingLiteral(C, V, isexact, Type, L);
438}
439
440FloatingLiteral *
441FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
442  return new (C) FloatingLiteral(Empty);
443}
444
445/// getValueAsApproximateDouble - This returns the value as an inaccurate
446/// double.  Note that this may cause loss of precision, but is useful for
447/// debugging dumps, etc.
448double FloatingLiteral::getValueAsApproximateDouble() const {
449  llvm::APFloat V = getValue();
450  bool ignored;
451  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
452            &ignored);
453  return V.convertToDouble();
454}
455
456StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
457                                     unsigned ByteLength, bool Wide,
458                                     QualType Ty,
459                                     const SourceLocation *Loc,
460                                     unsigned NumStrs) {
461  // Allocate enough space for the StringLiteral plus an array of locations for
462  // any concatenated string tokens.
463  void *Mem = C.Allocate(sizeof(StringLiteral)+
464                         sizeof(SourceLocation)*(NumStrs-1),
465                         llvm::alignOf<StringLiteral>());
466  StringLiteral *SL = new (Mem) StringLiteral(Ty);
467
468  // OPTIMIZE: could allocate this appended to the StringLiteral.
469  char *AStrData = new (C, 1) char[ByteLength];
470  memcpy(AStrData, StrData, ByteLength);
471  SL->StrData = AStrData;
472  SL->ByteLength = ByteLength;
473  SL->IsWide = Wide;
474  SL->TokLocs[0] = Loc[0];
475  SL->NumConcatenated = NumStrs;
476
477  if (NumStrs != 1)
478    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
479  return SL;
480}
481
482StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
483  void *Mem = C.Allocate(sizeof(StringLiteral)+
484                         sizeof(SourceLocation)*(NumStrs-1),
485                         llvm::alignOf<StringLiteral>());
486  StringLiteral *SL = new (Mem) StringLiteral(QualType());
487  SL->StrData = 0;
488  SL->ByteLength = 0;
489  SL->NumConcatenated = NumStrs;
490  return SL;
491}
492
493void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
494  char *AStrData = new (C, 1) char[Str.size()];
495  memcpy(AStrData, Str.data(), Str.size());
496  StrData = AStrData;
497  ByteLength = Str.size();
498}
499
500/// getLocationOfByte - Return a source location that points to the specified
501/// byte of this string literal.
502///
503/// Strings are amazingly complex.  They can be formed from multiple tokens and
504/// can have escape sequences in them in addition to the usual trigraph and
505/// escaped newline business.  This routine handles this complexity.
506///
507SourceLocation StringLiteral::
508getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
509                  const LangOptions &Features, const TargetInfo &Target) const {
510  assert(!isWide() && "This doesn't work for wide strings yet");
511
512  // Loop over all of the tokens in this string until we find the one that
513  // contains the byte we're looking for.
514  unsigned TokNo = 0;
515  while (1) {
516    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
517    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
518
519    // Get the spelling of the string so that we can get the data that makes up
520    // the string literal, not the identifier for the macro it is potentially
521    // expanded through.
522    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
523
524    // Re-lex the token to get its length and original spelling.
525    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
526    bool Invalid = false;
527    llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
528    if (Invalid)
529      return StrTokSpellingLoc;
530
531    const char *StrData = Buffer.data()+LocInfo.second;
532
533    // Create a langops struct and enable trigraphs.  This is sufficient for
534    // relexing tokens.
535    LangOptions LangOpts;
536    LangOpts.Trigraphs = true;
537
538    // Create a lexer starting at the beginning of this token.
539    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
540                   Buffer.end());
541    Token TheTok;
542    TheLexer.LexFromRawLexer(TheTok);
543
544    // Use the StringLiteralParser to compute the length of the string in bytes.
545    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
546    unsigned TokNumBytes = SLP.GetStringLength();
547
548    // If the byte is in this token, return the location of the byte.
549    if (ByteNo < TokNumBytes ||
550        (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
551      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
552
553      // Now that we know the offset of the token in the spelling, use the
554      // preprocessor to get the offset in the original source.
555      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
556    }
557
558    // Move to the next string token.
559    ++TokNo;
560    ByteNo -= TokNumBytes;
561  }
562}
563
564
565
566/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
567/// corresponds to, e.g. "sizeof" or "[pre]++".
568const char *UnaryOperator::getOpcodeStr(Opcode Op) {
569  switch (Op) {
570  default: assert(0 && "Unknown unary operator");
571  case UO_PostInc: return "++";
572  case UO_PostDec: return "--";
573  case UO_PreInc:  return "++";
574  case UO_PreDec:  return "--";
575  case UO_AddrOf:  return "&";
576  case UO_Deref:   return "*";
577  case UO_Plus:    return "+";
578  case UO_Minus:   return "-";
579  case UO_Not:     return "~";
580  case UO_LNot:    return "!";
581  case UO_Real:    return "__real";
582  case UO_Imag:    return "__imag";
583  case UO_Extension: return "__extension__";
584  }
585}
586
587UnaryOperatorKind
588UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
589  switch (OO) {
590  default: assert(false && "No unary operator for overloaded function");
591  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
592  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
593  case OO_Amp:        return UO_AddrOf;
594  case OO_Star:       return UO_Deref;
595  case OO_Plus:       return UO_Plus;
596  case OO_Minus:      return UO_Minus;
597  case OO_Tilde:      return UO_Not;
598  case OO_Exclaim:    return UO_LNot;
599  }
600}
601
602OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
603  switch (Opc) {
604  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
605  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
606  case UO_AddrOf: return OO_Amp;
607  case UO_Deref: return OO_Star;
608  case UO_Plus: return OO_Plus;
609  case UO_Minus: return OO_Minus;
610  case UO_Not: return OO_Tilde;
611  case UO_LNot: return OO_Exclaim;
612  default: return OO_None;
613  }
614}
615
616
617//===----------------------------------------------------------------------===//
618// Postfix Operators.
619//===----------------------------------------------------------------------===//
620
621CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
622                   unsigned numargs, QualType t, ExprValueKind VK,
623                   SourceLocation rparenloc)
624  : Expr(SC, t, VK, OK_Ordinary,
625         fn->isTypeDependent(),
626         fn->isValueDependent(),
627         fn->containsUnexpandedParameterPack()),
628    NumArgs(numargs) {
629
630  SubExprs = new (C) Stmt*[numargs+1];
631  SubExprs[FN] = fn;
632  for (unsigned i = 0; i != numargs; ++i) {
633    if (args[i]->isTypeDependent())
634      ExprBits.TypeDependent = true;
635    if (args[i]->isValueDependent())
636      ExprBits.ValueDependent = true;
637    if (args[i]->containsUnexpandedParameterPack())
638      ExprBits.ContainsUnexpandedParameterPack = true;
639
640    SubExprs[i+ARGS_START] = args[i];
641  }
642
643  RParenLoc = rparenloc;
644}
645
646CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
647                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
648  : Expr(CallExprClass, t, VK, OK_Ordinary,
649         fn->isTypeDependent(),
650         fn->isValueDependent(),
651         fn->containsUnexpandedParameterPack()),
652    NumArgs(numargs) {
653
654  SubExprs = new (C) Stmt*[numargs+1];
655  SubExprs[FN] = fn;
656  for (unsigned i = 0; i != numargs; ++i) {
657    if (args[i]->isTypeDependent())
658      ExprBits.TypeDependent = true;
659    if (args[i]->isValueDependent())
660      ExprBits.ValueDependent = true;
661    if (args[i]->containsUnexpandedParameterPack())
662      ExprBits.ContainsUnexpandedParameterPack = true;
663
664    SubExprs[i+ARGS_START] = args[i];
665  }
666
667  RParenLoc = rparenloc;
668}
669
670CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
671  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
672  // FIXME: Why do we allocate this?
673  SubExprs = new (C) Stmt*[1];
674}
675
676Decl *CallExpr::getCalleeDecl() {
677  Expr *CEE = getCallee()->IgnoreParenCasts();
678  // If we're calling a dereference, look at the pointer instead.
679  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
680    if (BO->isPtrMemOp())
681      CEE = BO->getRHS()->IgnoreParenCasts();
682  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
683    if (UO->getOpcode() == UO_Deref)
684      CEE = UO->getSubExpr()->IgnoreParenCasts();
685  }
686  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
687    return DRE->getDecl();
688  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
689    return ME->getMemberDecl();
690
691  return 0;
692}
693
694FunctionDecl *CallExpr::getDirectCallee() {
695  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
696}
697
698/// setNumArgs - This changes the number of arguments present in this call.
699/// Any orphaned expressions are deleted by this, and any new operands are set
700/// to null.
701void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
702  // No change, just return.
703  if (NumArgs == getNumArgs()) return;
704
705  // If shrinking # arguments, just delete the extras and forgot them.
706  if (NumArgs < getNumArgs()) {
707    this->NumArgs = NumArgs;
708    return;
709  }
710
711  // Otherwise, we are growing the # arguments.  New an bigger argument array.
712  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
713  // Copy over args.
714  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
715    NewSubExprs[i] = SubExprs[i];
716  // Null out new args.
717  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
718    NewSubExprs[i] = 0;
719
720  if (SubExprs) C.Deallocate(SubExprs);
721  SubExprs = NewSubExprs;
722  this->NumArgs = NumArgs;
723}
724
725/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
726/// not, return 0.
727unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
728  // All simple function calls (e.g. func()) are implicitly cast to pointer to
729  // function. As a result, we try and obtain the DeclRefExpr from the
730  // ImplicitCastExpr.
731  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
732  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
733    return 0;
734
735  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
736  if (!DRE)
737    return 0;
738
739  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
740  if (!FDecl)
741    return 0;
742
743  if (!FDecl->getIdentifier())
744    return 0;
745
746  return FDecl->getBuiltinID();
747}
748
749QualType CallExpr::getCallReturnType() const {
750  QualType CalleeType = getCallee()->getType();
751  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
752    CalleeType = FnTypePtr->getPointeeType();
753  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
754    CalleeType = BPT->getPointeeType();
755  else if (const MemberPointerType *MPT
756                                      = CalleeType->getAs<MemberPointerType>())
757    CalleeType = MPT->getPointeeType();
758
759  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
760  return FnType->getResultType();
761}
762
763OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
764                                   SourceLocation OperatorLoc,
765                                   TypeSourceInfo *tsi,
766                                   OffsetOfNode* compsPtr, unsigned numComps,
767                                   Expr** exprsPtr, unsigned numExprs,
768                                   SourceLocation RParenLoc) {
769  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
770                         sizeof(OffsetOfNode) * numComps +
771                         sizeof(Expr*) * numExprs);
772
773  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
774                                exprsPtr, numExprs, RParenLoc);
775}
776
777OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
778                                        unsigned numComps, unsigned numExprs) {
779  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
780                         sizeof(OffsetOfNode) * numComps +
781                         sizeof(Expr*) * numExprs);
782  return new (Mem) OffsetOfExpr(numComps, numExprs);
783}
784
785OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
786                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
787                           OffsetOfNode* compsPtr, unsigned numComps,
788                           Expr** exprsPtr, unsigned numExprs,
789                           SourceLocation RParenLoc)
790  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
791         /*TypeDependent=*/false,
792         /*ValueDependent=*/tsi->getType()->isDependentType(),
793         tsi->getType()->containsUnexpandedParameterPack()),
794    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
795    NumComps(numComps), NumExprs(numExprs)
796{
797  for(unsigned i = 0; i < numComps; ++i) {
798    setComponent(i, compsPtr[i]);
799  }
800
801  for(unsigned i = 0; i < numExprs; ++i) {
802    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
803      ExprBits.ValueDependent = true;
804    if (exprsPtr[i]->containsUnexpandedParameterPack())
805      ExprBits.ContainsUnexpandedParameterPack = true;
806
807    setIndexExpr(i, exprsPtr[i]);
808  }
809}
810
811IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
812  assert(getKind() == Field || getKind() == Identifier);
813  if (getKind() == Field)
814    return getField()->getIdentifier();
815
816  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
817}
818
819MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
820                               NestedNameSpecifier *qual,
821                               SourceRange qualrange,
822                               ValueDecl *memberdecl,
823                               DeclAccessPair founddecl,
824                               DeclarationNameInfo nameinfo,
825                               const TemplateArgumentListInfo *targs,
826                               QualType ty,
827                               ExprValueKind vk,
828                               ExprObjectKind ok) {
829  std::size_t Size = sizeof(MemberExpr);
830
831  bool hasQualOrFound = (qual != 0 ||
832                         founddecl.getDecl() != memberdecl ||
833                         founddecl.getAccess() != memberdecl->getAccess());
834  if (hasQualOrFound)
835    Size += sizeof(MemberNameQualifier);
836
837  if (targs)
838    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
839
840  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
841  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
842                                       ty, vk, ok);
843
844  if (hasQualOrFound) {
845    if (qual && qual->isDependent()) {
846      E->setValueDependent(true);
847      E->setTypeDependent(true);
848    }
849    E->HasQualifierOrFoundDecl = true;
850
851    MemberNameQualifier *NQ = E->getMemberQualifier();
852    NQ->NNS = qual;
853    NQ->Range = qualrange;
854    NQ->FoundDecl = founddecl;
855  }
856
857  if (targs) {
858    E->HasExplicitTemplateArgumentList = true;
859    E->getExplicitTemplateArgs().initializeFrom(*targs);
860  }
861
862  return E;
863}
864
865const char *CastExpr::getCastKindName() const {
866  switch (getCastKind()) {
867  case CK_Dependent:
868    return "Dependent";
869  case CK_BitCast:
870    return "BitCast";
871  case CK_LValueBitCast:
872    return "LValueBitCast";
873  case CK_LValueToRValue:
874    return "LValueToRValue";
875  case CK_GetObjCProperty:
876    return "GetObjCProperty";
877  case CK_NoOp:
878    return "NoOp";
879  case CK_BaseToDerived:
880    return "BaseToDerived";
881  case CK_DerivedToBase:
882    return "DerivedToBase";
883  case CK_UncheckedDerivedToBase:
884    return "UncheckedDerivedToBase";
885  case CK_Dynamic:
886    return "Dynamic";
887  case CK_ToUnion:
888    return "ToUnion";
889  case CK_ArrayToPointerDecay:
890    return "ArrayToPointerDecay";
891  case CK_FunctionToPointerDecay:
892    return "FunctionToPointerDecay";
893  case CK_NullToMemberPointer:
894    return "NullToMemberPointer";
895  case CK_NullToPointer:
896    return "NullToPointer";
897  case CK_BaseToDerivedMemberPointer:
898    return "BaseToDerivedMemberPointer";
899  case CK_DerivedToBaseMemberPointer:
900    return "DerivedToBaseMemberPointer";
901  case CK_UserDefinedConversion:
902    return "UserDefinedConversion";
903  case CK_ConstructorConversion:
904    return "ConstructorConversion";
905  case CK_IntegralToPointer:
906    return "IntegralToPointer";
907  case CK_PointerToIntegral:
908    return "PointerToIntegral";
909  case CK_PointerToBoolean:
910    return "PointerToBoolean";
911  case CK_ToVoid:
912    return "ToVoid";
913  case CK_VectorSplat:
914    return "VectorSplat";
915  case CK_IntegralCast:
916    return "IntegralCast";
917  case CK_IntegralToBoolean:
918    return "IntegralToBoolean";
919  case CK_IntegralToFloating:
920    return "IntegralToFloating";
921  case CK_FloatingToIntegral:
922    return "FloatingToIntegral";
923  case CK_FloatingCast:
924    return "FloatingCast";
925  case CK_FloatingToBoolean:
926    return "FloatingToBoolean";
927  case CK_MemberPointerToBoolean:
928    return "MemberPointerToBoolean";
929  case CK_AnyPointerToObjCPointerCast:
930    return "AnyPointerToObjCPointerCast";
931  case CK_AnyPointerToBlockPointerCast:
932    return "AnyPointerToBlockPointerCast";
933  case CK_ObjCObjectLValueCast:
934    return "ObjCObjectLValueCast";
935  case CK_FloatingRealToComplex:
936    return "FloatingRealToComplex";
937  case CK_FloatingComplexToReal:
938    return "FloatingComplexToReal";
939  case CK_FloatingComplexToBoolean:
940    return "FloatingComplexToBoolean";
941  case CK_FloatingComplexCast:
942    return "FloatingComplexCast";
943  case CK_FloatingComplexToIntegralComplex:
944    return "FloatingComplexToIntegralComplex";
945  case CK_IntegralRealToComplex:
946    return "IntegralRealToComplex";
947  case CK_IntegralComplexToReal:
948    return "IntegralComplexToReal";
949  case CK_IntegralComplexToBoolean:
950    return "IntegralComplexToBoolean";
951  case CK_IntegralComplexCast:
952    return "IntegralComplexCast";
953  case CK_IntegralComplexToFloatingComplex:
954    return "IntegralComplexToFloatingComplex";
955  }
956
957  llvm_unreachable("Unhandled cast kind!");
958  return 0;
959}
960
961Expr *CastExpr::getSubExprAsWritten() {
962  Expr *SubExpr = 0;
963  CastExpr *E = this;
964  do {
965    SubExpr = E->getSubExpr();
966
967    // Skip any temporary bindings; they're implicit.
968    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
969      SubExpr = Binder->getSubExpr();
970
971    // Conversions by constructor and conversion functions have a
972    // subexpression describing the call; strip it off.
973    if (E->getCastKind() == CK_ConstructorConversion)
974      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
975    else if (E->getCastKind() == CK_UserDefinedConversion)
976      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
977
978    // If the subexpression we're left with is an implicit cast, look
979    // through that, too.
980  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
981
982  return SubExpr;
983}
984
985CXXBaseSpecifier **CastExpr::path_buffer() {
986  switch (getStmtClass()) {
987#define ABSTRACT_STMT(x)
988#define CASTEXPR(Type, Base) \
989  case Stmt::Type##Class: \
990    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
991#define STMT(Type, Base)
992#include "clang/AST/StmtNodes.inc"
993  default:
994    llvm_unreachable("non-cast expressions not possible here");
995    return 0;
996  }
997}
998
999void CastExpr::setCastPath(const CXXCastPath &Path) {
1000  assert(Path.size() == path_size());
1001  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1002}
1003
1004ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1005                                           CastKind Kind, Expr *Operand,
1006                                           const CXXCastPath *BasePath,
1007                                           ExprValueKind VK) {
1008  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1009  void *Buffer =
1010    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1011  ImplicitCastExpr *E =
1012    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1013  if (PathSize) E->setCastPath(*BasePath);
1014  return E;
1015}
1016
1017ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1018                                                unsigned PathSize) {
1019  void *Buffer =
1020    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1021  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1022}
1023
1024
1025CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1026                                       ExprValueKind VK, CastKind K, Expr *Op,
1027                                       const CXXCastPath *BasePath,
1028                                       TypeSourceInfo *WrittenTy,
1029                                       SourceLocation L, SourceLocation R) {
1030  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1031  void *Buffer =
1032    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1033  CStyleCastExpr *E =
1034    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1035  if (PathSize) E->setCastPath(*BasePath);
1036  return E;
1037}
1038
1039CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1040  void *Buffer =
1041    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1042  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1043}
1044
1045/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1046/// corresponds to, e.g. "<<=".
1047const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1048  switch (Op) {
1049  case BO_PtrMemD:   return ".*";
1050  case BO_PtrMemI:   return "->*";
1051  case BO_Mul:       return "*";
1052  case BO_Div:       return "/";
1053  case BO_Rem:       return "%";
1054  case BO_Add:       return "+";
1055  case BO_Sub:       return "-";
1056  case BO_Shl:       return "<<";
1057  case BO_Shr:       return ">>";
1058  case BO_LT:        return "<";
1059  case BO_GT:        return ">";
1060  case BO_LE:        return "<=";
1061  case BO_GE:        return ">=";
1062  case BO_EQ:        return "==";
1063  case BO_NE:        return "!=";
1064  case BO_And:       return "&";
1065  case BO_Xor:       return "^";
1066  case BO_Or:        return "|";
1067  case BO_LAnd:      return "&&";
1068  case BO_LOr:       return "||";
1069  case BO_Assign:    return "=";
1070  case BO_MulAssign: return "*=";
1071  case BO_DivAssign: return "/=";
1072  case BO_RemAssign: return "%=";
1073  case BO_AddAssign: return "+=";
1074  case BO_SubAssign: return "-=";
1075  case BO_ShlAssign: return "<<=";
1076  case BO_ShrAssign: return ">>=";
1077  case BO_AndAssign: return "&=";
1078  case BO_XorAssign: return "^=";
1079  case BO_OrAssign:  return "|=";
1080  case BO_Comma:     return ",";
1081  }
1082
1083  return "";
1084}
1085
1086BinaryOperatorKind
1087BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1088  switch (OO) {
1089  default: assert(false && "Not an overloadable binary operator");
1090  case OO_Plus: return BO_Add;
1091  case OO_Minus: return BO_Sub;
1092  case OO_Star: return BO_Mul;
1093  case OO_Slash: return BO_Div;
1094  case OO_Percent: return BO_Rem;
1095  case OO_Caret: return BO_Xor;
1096  case OO_Amp: return BO_And;
1097  case OO_Pipe: return BO_Or;
1098  case OO_Equal: return BO_Assign;
1099  case OO_Less: return BO_LT;
1100  case OO_Greater: return BO_GT;
1101  case OO_PlusEqual: return BO_AddAssign;
1102  case OO_MinusEqual: return BO_SubAssign;
1103  case OO_StarEqual: return BO_MulAssign;
1104  case OO_SlashEqual: return BO_DivAssign;
1105  case OO_PercentEqual: return BO_RemAssign;
1106  case OO_CaretEqual: return BO_XorAssign;
1107  case OO_AmpEqual: return BO_AndAssign;
1108  case OO_PipeEqual: return BO_OrAssign;
1109  case OO_LessLess: return BO_Shl;
1110  case OO_GreaterGreater: return BO_Shr;
1111  case OO_LessLessEqual: return BO_ShlAssign;
1112  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1113  case OO_EqualEqual: return BO_EQ;
1114  case OO_ExclaimEqual: return BO_NE;
1115  case OO_LessEqual: return BO_LE;
1116  case OO_GreaterEqual: return BO_GE;
1117  case OO_AmpAmp: return BO_LAnd;
1118  case OO_PipePipe: return BO_LOr;
1119  case OO_Comma: return BO_Comma;
1120  case OO_ArrowStar: return BO_PtrMemI;
1121  }
1122}
1123
1124OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1125  static const OverloadedOperatorKind OverOps[] = {
1126    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1127    OO_Star, OO_Slash, OO_Percent,
1128    OO_Plus, OO_Minus,
1129    OO_LessLess, OO_GreaterGreater,
1130    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1131    OO_EqualEqual, OO_ExclaimEqual,
1132    OO_Amp,
1133    OO_Caret,
1134    OO_Pipe,
1135    OO_AmpAmp,
1136    OO_PipePipe,
1137    OO_Equal, OO_StarEqual,
1138    OO_SlashEqual, OO_PercentEqual,
1139    OO_PlusEqual, OO_MinusEqual,
1140    OO_LessLessEqual, OO_GreaterGreaterEqual,
1141    OO_AmpEqual, OO_CaretEqual,
1142    OO_PipeEqual,
1143    OO_Comma
1144  };
1145  return OverOps[Opc];
1146}
1147
1148InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1149                           Expr **initExprs, unsigned numInits,
1150                           SourceLocation rbraceloc)
1151  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1152         false),
1153    InitExprs(C, numInits),
1154    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1155    UnionFieldInit(0), HadArrayRangeDesignator(false)
1156{
1157  for (unsigned I = 0; I != numInits; ++I) {
1158    if (initExprs[I]->isTypeDependent())
1159      ExprBits.TypeDependent = true;
1160    if (initExprs[I]->isValueDependent())
1161      ExprBits.ValueDependent = true;
1162    if (initExprs[I]->containsUnexpandedParameterPack())
1163      ExprBits.ContainsUnexpandedParameterPack = true;
1164  }
1165
1166  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1167}
1168
1169void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1170  if (NumInits > InitExprs.size())
1171    InitExprs.reserve(C, NumInits);
1172}
1173
1174void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1175  InitExprs.resize(C, NumInits, 0);
1176}
1177
1178Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1179  if (Init >= InitExprs.size()) {
1180    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1181    InitExprs.back() = expr;
1182    return 0;
1183  }
1184
1185  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1186  InitExprs[Init] = expr;
1187  return Result;
1188}
1189
1190SourceRange InitListExpr::getSourceRange() const {
1191  if (SyntacticForm)
1192    return SyntacticForm->getSourceRange();
1193  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1194  if (Beg.isInvalid()) {
1195    // Find the first non-null initializer.
1196    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1197                                     E = InitExprs.end();
1198      I != E; ++I) {
1199      if (Stmt *S = *I) {
1200        Beg = S->getLocStart();
1201        break;
1202      }
1203    }
1204  }
1205  if (End.isInvalid()) {
1206    // Find the first non-null initializer from the end.
1207    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1208                                             E = InitExprs.rend();
1209      I != E; ++I) {
1210      if (Stmt *S = *I) {
1211        End = S->getSourceRange().getEnd();
1212        break;
1213      }
1214    }
1215  }
1216  return SourceRange(Beg, End);
1217}
1218
1219/// getFunctionType - Return the underlying function type for this block.
1220///
1221const FunctionType *BlockExpr::getFunctionType() const {
1222  return getType()->getAs<BlockPointerType>()->
1223                    getPointeeType()->getAs<FunctionType>();
1224}
1225
1226SourceLocation BlockExpr::getCaretLocation() const {
1227  return TheBlock->getCaretLocation();
1228}
1229const Stmt *BlockExpr::getBody() const {
1230  return TheBlock->getBody();
1231}
1232Stmt *BlockExpr::getBody() {
1233  return TheBlock->getBody();
1234}
1235
1236
1237//===----------------------------------------------------------------------===//
1238// Generic Expression Routines
1239//===----------------------------------------------------------------------===//
1240
1241/// isUnusedResultAWarning - Return true if this immediate expression should
1242/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1243/// with location to warn on and the source range[s] to report with the
1244/// warning.
1245bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1246                                  SourceRange &R2, ASTContext &Ctx) const {
1247  // Don't warn if the expr is type dependent. The type could end up
1248  // instantiating to void.
1249  if (isTypeDependent())
1250    return false;
1251
1252  switch (getStmtClass()) {
1253  default:
1254    if (getType()->isVoidType())
1255      return false;
1256    Loc = getExprLoc();
1257    R1 = getSourceRange();
1258    return true;
1259  case ParenExprClass:
1260    return cast<ParenExpr>(this)->getSubExpr()->
1261      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1262  case UnaryOperatorClass: {
1263    const UnaryOperator *UO = cast<UnaryOperator>(this);
1264
1265    switch (UO->getOpcode()) {
1266    default: break;
1267    case UO_PostInc:
1268    case UO_PostDec:
1269    case UO_PreInc:
1270    case UO_PreDec:                 // ++/--
1271      return false;  // Not a warning.
1272    case UO_Deref:
1273      // Dereferencing a volatile pointer is a side-effect.
1274      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1275        return false;
1276      break;
1277    case UO_Real:
1278    case UO_Imag:
1279      // accessing a piece of a volatile complex is a side-effect.
1280      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1281          .isVolatileQualified())
1282        return false;
1283      break;
1284    case UO_Extension:
1285      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1286    }
1287    Loc = UO->getOperatorLoc();
1288    R1 = UO->getSubExpr()->getSourceRange();
1289    return true;
1290  }
1291  case BinaryOperatorClass: {
1292    const BinaryOperator *BO = cast<BinaryOperator>(this);
1293    switch (BO->getOpcode()) {
1294      default:
1295        break;
1296      // Consider the RHS of comma for side effects. LHS was checked by
1297      // Sema::CheckCommaOperands.
1298      case BO_Comma:
1299        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1300        // lvalue-ness) of an assignment written in a macro.
1301        if (IntegerLiteral *IE =
1302              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1303          if (IE->getValue() == 0)
1304            return false;
1305        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1306      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1307      case BO_LAnd:
1308      case BO_LOr:
1309        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1310            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1311          return false;
1312        break;
1313    }
1314    if (BO->isAssignmentOp())
1315      return false;
1316    Loc = BO->getOperatorLoc();
1317    R1 = BO->getLHS()->getSourceRange();
1318    R2 = BO->getRHS()->getSourceRange();
1319    return true;
1320  }
1321  case CompoundAssignOperatorClass:
1322  case VAArgExprClass:
1323    return false;
1324
1325  case ConditionalOperatorClass: {
1326    // The condition must be evaluated, but if either the LHS or RHS is a
1327    // warning, warn about them.
1328    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1329    if (Exp->getLHS() &&
1330        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1331      return true;
1332    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1333  }
1334
1335  case MemberExprClass:
1336    // If the base pointer or element is to a volatile pointer/field, accessing
1337    // it is a side effect.
1338    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1339      return false;
1340    Loc = cast<MemberExpr>(this)->getMemberLoc();
1341    R1 = SourceRange(Loc, Loc);
1342    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1343    return true;
1344
1345  case ArraySubscriptExprClass:
1346    // If the base pointer or element is to a volatile pointer/field, accessing
1347    // it is a side effect.
1348    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1349      return false;
1350    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1351    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1352    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1353    return true;
1354
1355  case CallExprClass:
1356  case CXXOperatorCallExprClass:
1357  case CXXMemberCallExprClass: {
1358    // If this is a direct call, get the callee.
1359    const CallExpr *CE = cast<CallExpr>(this);
1360    if (const Decl *FD = CE->getCalleeDecl()) {
1361      // If the callee has attribute pure, const, or warn_unused_result, warn
1362      // about it. void foo() { strlen("bar"); } should warn.
1363      //
1364      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1365      // updated to match for QoI.
1366      if (FD->getAttr<WarnUnusedResultAttr>() ||
1367          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1368        Loc = CE->getCallee()->getLocStart();
1369        R1 = CE->getCallee()->getSourceRange();
1370
1371        if (unsigned NumArgs = CE->getNumArgs())
1372          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1373                           CE->getArg(NumArgs-1)->getLocEnd());
1374        return true;
1375      }
1376    }
1377    return false;
1378  }
1379
1380  case CXXTemporaryObjectExprClass:
1381  case CXXConstructExprClass:
1382    return false;
1383
1384  case ObjCMessageExprClass: {
1385    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1386    const ObjCMethodDecl *MD = ME->getMethodDecl();
1387    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1388      Loc = getExprLoc();
1389      return true;
1390    }
1391    return false;
1392  }
1393
1394  case ObjCPropertyRefExprClass:
1395    Loc = getExprLoc();
1396    R1 = getSourceRange();
1397    return true;
1398
1399  case StmtExprClass: {
1400    // Statement exprs don't logically have side effects themselves, but are
1401    // sometimes used in macros in ways that give them a type that is unused.
1402    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1403    // however, if the result of the stmt expr is dead, we don't want to emit a
1404    // warning.
1405    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1406    if (!CS->body_empty()) {
1407      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1408        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1409      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1410        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1411          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1412    }
1413
1414    if (getType()->isVoidType())
1415      return false;
1416    Loc = cast<StmtExpr>(this)->getLParenLoc();
1417    R1 = getSourceRange();
1418    return true;
1419  }
1420  case CStyleCastExprClass:
1421    // If this is an explicit cast to void, allow it.  People do this when they
1422    // think they know what they're doing :).
1423    if (getType()->isVoidType())
1424      return false;
1425    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1426    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1427    return true;
1428  case CXXFunctionalCastExprClass: {
1429    if (getType()->isVoidType())
1430      return false;
1431    const CastExpr *CE = cast<CastExpr>(this);
1432
1433    // If this is a cast to void or a constructor conversion, check the operand.
1434    // Otherwise, the result of the cast is unused.
1435    if (CE->getCastKind() == CK_ToVoid ||
1436        CE->getCastKind() == CK_ConstructorConversion)
1437      return (cast<CastExpr>(this)->getSubExpr()
1438              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1439    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1440    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1441    return true;
1442  }
1443
1444  case ImplicitCastExprClass:
1445    // Check the operand, since implicit casts are inserted by Sema
1446    return (cast<ImplicitCastExpr>(this)
1447            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1448
1449  case CXXDefaultArgExprClass:
1450    return (cast<CXXDefaultArgExpr>(this)
1451            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1452
1453  case CXXNewExprClass:
1454    // FIXME: In theory, there might be new expressions that don't have side
1455    // effects (e.g. a placement new with an uninitialized POD).
1456  case CXXDeleteExprClass:
1457    return false;
1458  case CXXBindTemporaryExprClass:
1459    return (cast<CXXBindTemporaryExpr>(this)
1460            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1461  case ExprWithCleanupsClass:
1462    return (cast<ExprWithCleanups>(this)
1463            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1464  }
1465}
1466
1467/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1468/// returns true, if it is; false otherwise.
1469bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1470  switch (getStmtClass()) {
1471  default:
1472    return false;
1473  case ObjCIvarRefExprClass:
1474    return true;
1475  case Expr::UnaryOperatorClass:
1476    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1477  case ParenExprClass:
1478    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1479  case ImplicitCastExprClass:
1480    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1481  case CStyleCastExprClass:
1482    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1483  case DeclRefExprClass: {
1484    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1485    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1486      if (VD->hasGlobalStorage())
1487        return true;
1488      QualType T = VD->getType();
1489      // dereferencing to a  pointer is always a gc'able candidate,
1490      // unless it is __weak.
1491      return T->isPointerType() &&
1492             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1493    }
1494    return false;
1495  }
1496  case MemberExprClass: {
1497    const MemberExpr *M = cast<MemberExpr>(this);
1498    return M->getBase()->isOBJCGCCandidate(Ctx);
1499  }
1500  case ArraySubscriptExprClass:
1501    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1502  }
1503}
1504
1505bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1506  if (isTypeDependent())
1507    return false;
1508  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1509}
1510
1511static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1512                                          Expr::CanThrowResult CT2) {
1513  // CanThrowResult constants are ordered so that the maximum is the correct
1514  // merge result.
1515  return CT1 > CT2 ? CT1 : CT2;
1516}
1517
1518static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1519  Expr *E = const_cast<Expr*>(CE);
1520  Expr::CanThrowResult R = Expr::CT_Cannot;
1521  for (Expr::child_iterator I = E->child_begin(), IE = E->child_end();
1522       I != IE && R != Expr::CT_Can; ++I) {
1523    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1524  }
1525  return R;
1526}
1527
1528static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1529                                           bool NullThrows = true) {
1530  if (!D)
1531    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1532
1533  // See if we can get a function type from the decl somehow.
1534  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1535  if (!VD) // If we have no clue what we're calling, assume the worst.
1536    return Expr::CT_Can;
1537
1538  // As an extension, we assume that __attribute__((nothrow)) functions don't
1539  // throw.
1540  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1541    return Expr::CT_Cannot;
1542
1543  QualType T = VD->getType();
1544  const FunctionProtoType *FT;
1545  if ((FT = T->getAs<FunctionProtoType>())) {
1546  } else if (const PointerType *PT = T->getAs<PointerType>())
1547    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1548  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1549    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1550  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1551    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1552  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1553    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1554
1555  if (!FT)
1556    return Expr::CT_Can;
1557
1558  return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1559}
1560
1561static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1562  if (DC->isTypeDependent())
1563    return Expr::CT_Dependent;
1564
1565  if (!DC->getTypeAsWritten()->isReferenceType())
1566    return Expr::CT_Cannot;
1567
1568  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1569}
1570
1571static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1572                                           const CXXTypeidExpr *DC) {
1573  if (DC->isTypeOperand())
1574    return Expr::CT_Cannot;
1575
1576  Expr *Op = DC->getExprOperand();
1577  if (Op->isTypeDependent())
1578    return Expr::CT_Dependent;
1579
1580  const RecordType *RT = Op->getType()->getAs<RecordType>();
1581  if (!RT)
1582    return Expr::CT_Cannot;
1583
1584  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1585    return Expr::CT_Cannot;
1586
1587  if (Op->Classify(C).isPRValue())
1588    return Expr::CT_Cannot;
1589
1590  return Expr::CT_Can;
1591}
1592
1593Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1594  // C++ [expr.unary.noexcept]p3:
1595  //   [Can throw] if in a potentially-evaluated context the expression would
1596  //   contain:
1597  switch (getStmtClass()) {
1598  case CXXThrowExprClass:
1599    //   - a potentially evaluated throw-expression
1600    return CT_Can;
1601
1602  case CXXDynamicCastExprClass: {
1603    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1604    //     where T is a reference type, that requires a run-time check
1605    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1606    if (CT == CT_Can)
1607      return CT;
1608    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1609  }
1610
1611  case CXXTypeidExprClass:
1612    //   - a potentially evaluated typeid expression applied to a glvalue
1613    //     expression whose type is a polymorphic class type
1614    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1615
1616    //   - a potentially evaluated call to a function, member function, function
1617    //     pointer, or member function pointer that does not have a non-throwing
1618    //     exception-specification
1619  case CallExprClass:
1620  case CXXOperatorCallExprClass:
1621  case CXXMemberCallExprClass: {
1622    CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1623    if (CT == CT_Can)
1624      return CT;
1625    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1626  }
1627
1628  case CXXConstructExprClass:
1629  case CXXTemporaryObjectExprClass: {
1630    CanThrowResult CT = CanCalleeThrow(
1631        cast<CXXConstructExpr>(this)->getConstructor());
1632    if (CT == CT_Can)
1633      return CT;
1634    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1635  }
1636
1637  case CXXNewExprClass: {
1638    CanThrowResult CT = MergeCanThrow(
1639        CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1640        CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1641                       /*NullThrows*/false));
1642    if (CT == CT_Can)
1643      return CT;
1644    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1645  }
1646
1647  case CXXDeleteExprClass: {
1648    CanThrowResult CT = CanCalleeThrow(
1649        cast<CXXDeleteExpr>(this)->getOperatorDelete());
1650    if (CT == CT_Can)
1651      return CT;
1652    const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1653    // Unwrap exactly one implicit cast, which converts all pointers to void*.
1654    if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1655      Arg = Cast->getSubExpr();
1656    if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1657      if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1658        CanThrowResult CT2 = CanCalleeThrow(
1659            cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1660        if (CT2 == CT_Can)
1661          return CT2;
1662        CT = MergeCanThrow(CT, CT2);
1663      }
1664    }
1665    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1666  }
1667
1668  case CXXBindTemporaryExprClass: {
1669    // The bound temporary has to be destroyed again, which might throw.
1670    CanThrowResult CT = CanCalleeThrow(
1671      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1672    if (CT == CT_Can)
1673      return CT;
1674    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1675  }
1676
1677    // ObjC message sends are like function calls, but never have exception
1678    // specs.
1679  case ObjCMessageExprClass:
1680  case ObjCPropertyRefExprClass:
1681    return CT_Can;
1682
1683    // Many other things have subexpressions, so we have to test those.
1684    // Some are simple:
1685  case ParenExprClass:
1686  case MemberExprClass:
1687  case CXXReinterpretCastExprClass:
1688  case CXXConstCastExprClass:
1689  case ConditionalOperatorClass:
1690  case CompoundLiteralExprClass:
1691  case ExtVectorElementExprClass:
1692  case InitListExprClass:
1693  case DesignatedInitExprClass:
1694  case ParenListExprClass:
1695  case VAArgExprClass:
1696  case CXXDefaultArgExprClass:
1697  case ExprWithCleanupsClass:
1698  case ObjCIvarRefExprClass:
1699  case ObjCIsaExprClass:
1700  case ShuffleVectorExprClass:
1701    return CanSubExprsThrow(C, this);
1702
1703    // Some might be dependent for other reasons.
1704  case UnaryOperatorClass:
1705  case ArraySubscriptExprClass:
1706  case ImplicitCastExprClass:
1707  case CStyleCastExprClass:
1708  case CXXStaticCastExprClass:
1709  case CXXFunctionalCastExprClass:
1710  case BinaryOperatorClass:
1711  case CompoundAssignOperatorClass: {
1712    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1713    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1714  }
1715
1716    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1717  case StmtExprClass:
1718    return CT_Can;
1719
1720  case ChooseExprClass:
1721    if (isTypeDependent() || isValueDependent())
1722      return CT_Dependent;
1723    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1724
1725    // Some expressions are always dependent.
1726  case DependentScopeDeclRefExprClass:
1727  case CXXUnresolvedConstructExprClass:
1728  case CXXDependentScopeMemberExprClass:
1729    return CT_Dependent;
1730
1731  default:
1732    // All other expressions don't have subexpressions, or else they are
1733    // unevaluated.
1734    return CT_Cannot;
1735  }
1736}
1737
1738Expr* Expr::IgnoreParens() {
1739  Expr* E = this;
1740  while (true) {
1741    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1742      E = P->getSubExpr();
1743      continue;
1744    }
1745    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1746      if (P->getOpcode() == UO_Extension) {
1747        E = P->getSubExpr();
1748        continue;
1749      }
1750    }
1751    return E;
1752  }
1753}
1754
1755/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1756/// or CastExprs or ImplicitCastExprs, returning their operand.
1757Expr *Expr::IgnoreParenCasts() {
1758  Expr *E = this;
1759  while (true) {
1760    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1761      E = P->getSubExpr();
1762      continue;
1763    }
1764    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1765      E = P->getSubExpr();
1766      continue;
1767    }
1768    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1769      if (P->getOpcode() == UO_Extension) {
1770        E = P->getSubExpr();
1771        continue;
1772      }
1773    }
1774    return E;
1775  }
1776}
1777
1778/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
1779/// casts.  This is intended purely as a temporary workaround for code
1780/// that hasn't yet been rewritten to do the right thing about those
1781/// casts, and may disappear along with the last internal use.
1782Expr *Expr::IgnoreParenLValueCasts() {
1783  Expr *E = this;
1784  while (true) {
1785    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1786      E = P->getSubExpr();
1787      continue;
1788    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1789      if (P->getCastKind() == CK_LValueToRValue) {
1790        E = P->getSubExpr();
1791        continue;
1792      }
1793    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1794      if (P->getOpcode() == UO_Extension) {
1795        E = P->getSubExpr();
1796        continue;
1797      }
1798    }
1799    break;
1800  }
1801  return E;
1802}
1803
1804Expr *Expr::IgnoreParenImpCasts() {
1805  Expr *E = this;
1806  while (true) {
1807    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1808      E = P->getSubExpr();
1809      continue;
1810    }
1811    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1812      E = P->getSubExpr();
1813      continue;
1814    }
1815    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1816      if (P->getOpcode() == UO_Extension) {
1817        E = P->getSubExpr();
1818        continue;
1819      }
1820    }
1821    return E;
1822  }
1823}
1824
1825/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1826/// value (including ptr->int casts of the same size).  Strip off any
1827/// ParenExpr or CastExprs, returning their operand.
1828Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1829  Expr *E = this;
1830  while (true) {
1831    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1832      E = P->getSubExpr();
1833      continue;
1834    }
1835
1836    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1837      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1838      // ptr<->int casts of the same width.  We also ignore all identity casts.
1839      Expr *SE = P->getSubExpr();
1840
1841      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1842        E = SE;
1843        continue;
1844      }
1845
1846      if ((E->getType()->isPointerType() ||
1847           E->getType()->isIntegralType(Ctx)) &&
1848          (SE->getType()->isPointerType() ||
1849           SE->getType()->isIntegralType(Ctx)) &&
1850          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1851        E = SE;
1852        continue;
1853      }
1854    }
1855
1856    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1857      if (P->getOpcode() == UO_Extension) {
1858        E = P->getSubExpr();
1859        continue;
1860      }
1861    }
1862
1863    return E;
1864  }
1865}
1866
1867bool Expr::isDefaultArgument() const {
1868  const Expr *E = this;
1869  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1870    E = ICE->getSubExprAsWritten();
1871
1872  return isa<CXXDefaultArgExpr>(E);
1873}
1874
1875/// \brief Skip over any no-op casts and any temporary-binding
1876/// expressions.
1877static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
1878  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1879    if (ICE->getCastKind() == CK_NoOp)
1880      E = ICE->getSubExpr();
1881    else
1882      break;
1883  }
1884
1885  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1886    E = BE->getSubExpr();
1887
1888  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1889    if (ICE->getCastKind() == CK_NoOp)
1890      E = ICE->getSubExpr();
1891    else
1892      break;
1893  }
1894
1895  return E->IgnoreParens();
1896}
1897
1898/// isTemporaryObject - Determines if this expression produces a
1899/// temporary of the given class type.
1900bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1901  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1902    return false;
1903
1904  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
1905
1906  // Temporaries are by definition pr-values of class type.
1907  if (!E->Classify(C).isPRValue()) {
1908    // In this context, property reference is a message call and is pr-value.
1909    if (!isa<ObjCPropertyRefExpr>(E))
1910      return false;
1911  }
1912
1913  // Black-list a few cases which yield pr-values of class type that don't
1914  // refer to temporaries of that type:
1915
1916  // - implicit derived-to-base conversions
1917  if (isa<ImplicitCastExpr>(E)) {
1918    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
1919    case CK_DerivedToBase:
1920    case CK_UncheckedDerivedToBase:
1921      return false;
1922    default:
1923      break;
1924    }
1925  }
1926
1927  // - member expressions (all)
1928  if (isa<MemberExpr>(E))
1929    return false;
1930
1931  return true;
1932}
1933
1934/// hasAnyTypeDependentArguments - Determines if any of the expressions
1935/// in Exprs is type-dependent.
1936bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1937  for (unsigned I = 0; I < NumExprs; ++I)
1938    if (Exprs[I]->isTypeDependent())
1939      return true;
1940
1941  return false;
1942}
1943
1944/// hasAnyValueDependentArguments - Determines if any of the expressions
1945/// in Exprs is value-dependent.
1946bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1947  for (unsigned I = 0; I < NumExprs; ++I)
1948    if (Exprs[I]->isValueDependent())
1949      return true;
1950
1951  return false;
1952}
1953
1954bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
1955  // This function is attempting whether an expression is an initializer
1956  // which can be evaluated at compile-time.  isEvaluatable handles most
1957  // of the cases, but it can't deal with some initializer-specific
1958  // expressions, and it can't deal with aggregates; we deal with those here,
1959  // and fall back to isEvaluatable for the other cases.
1960
1961  // If we ever capture reference-binding directly in the AST, we can
1962  // kill the second parameter.
1963
1964  if (IsForRef) {
1965    EvalResult Result;
1966    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
1967  }
1968
1969  switch (getStmtClass()) {
1970  default: break;
1971  case StringLiteralClass:
1972  case ObjCStringLiteralClass:
1973  case ObjCEncodeExprClass:
1974    return true;
1975  case CXXTemporaryObjectExprClass:
1976  case CXXConstructExprClass: {
1977    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
1978
1979    // Only if it's
1980    // 1) an application of the trivial default constructor or
1981    if (!CE->getConstructor()->isTrivial()) return false;
1982    if (!CE->getNumArgs()) return true;
1983
1984    // 2) an elidable trivial copy construction of an operand which is
1985    //    itself a constant initializer.  Note that we consider the
1986    //    operand on its own, *not* as a reference binding.
1987    return CE->isElidable() &&
1988           CE->getArg(0)->isConstantInitializer(Ctx, false);
1989  }
1990  case CompoundLiteralExprClass: {
1991    // This handles gcc's extension that allows global initializers like
1992    // "struct x {int x;} x = (struct x) {};".
1993    // FIXME: This accepts other cases it shouldn't!
1994    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1995    return Exp->isConstantInitializer(Ctx, false);
1996  }
1997  case InitListExprClass: {
1998    // FIXME: This doesn't deal with fields with reference types correctly.
1999    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2000    // to bitfields.
2001    const InitListExpr *Exp = cast<InitListExpr>(this);
2002    unsigned numInits = Exp->getNumInits();
2003    for (unsigned i = 0; i < numInits; i++) {
2004      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2005        return false;
2006    }
2007    return true;
2008  }
2009  case ImplicitValueInitExprClass:
2010    return true;
2011  case ParenExprClass:
2012    return cast<ParenExpr>(this)->getSubExpr()
2013      ->isConstantInitializer(Ctx, IsForRef);
2014  case ChooseExprClass:
2015    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2016      ->isConstantInitializer(Ctx, IsForRef);
2017  case UnaryOperatorClass: {
2018    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2019    if (Exp->getOpcode() == UO_Extension)
2020      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2021    break;
2022  }
2023  case BinaryOperatorClass: {
2024    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
2025    // but this handles the common case.
2026    const BinaryOperator *Exp = cast<BinaryOperator>(this);
2027    if (Exp->getOpcode() == BO_Sub &&
2028        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
2029        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
2030      return true;
2031    break;
2032  }
2033  case CXXFunctionalCastExprClass:
2034  case CXXStaticCastExprClass:
2035  case ImplicitCastExprClass:
2036  case CStyleCastExprClass:
2037    // Handle casts with a destination that's a struct or union; this
2038    // deals with both the gcc no-op struct cast extension and the
2039    // cast-to-union extension.
2040    if (getType()->isRecordType())
2041      return cast<CastExpr>(this)->getSubExpr()
2042        ->isConstantInitializer(Ctx, false);
2043
2044    // Integer->integer casts can be handled here, which is important for
2045    // things like (int)(&&x-&&y).  Scary but true.
2046    if (getType()->isIntegerType() &&
2047        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
2048      return cast<CastExpr>(this)->getSubExpr()
2049        ->isConstantInitializer(Ctx, false);
2050
2051    break;
2052  }
2053  return isEvaluatable(Ctx);
2054}
2055
2056/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2057/// integer constant expression with the value zero, or if this is one that is
2058/// cast to void*.
2059bool Expr::isNullPointerConstant(ASTContext &Ctx,
2060                                 NullPointerConstantValueDependence NPC) const {
2061  if (isValueDependent()) {
2062    switch (NPC) {
2063    case NPC_NeverValueDependent:
2064      assert(false && "Unexpected value dependent expression!");
2065      // If the unthinkable happens, fall through to the safest alternative.
2066
2067    case NPC_ValueDependentIsNull:
2068      return isTypeDependent() || getType()->isIntegralType(Ctx);
2069
2070    case NPC_ValueDependentIsNotNull:
2071      return false;
2072    }
2073  }
2074
2075  // Strip off a cast to void*, if it exists. Except in C++.
2076  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2077    if (!Ctx.getLangOptions().CPlusPlus) {
2078      // Check that it is a cast to void*.
2079      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2080        QualType Pointee = PT->getPointeeType();
2081        if (!Pointee.hasQualifiers() &&
2082            Pointee->isVoidType() &&                              // to void*
2083            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2084          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2085      }
2086    }
2087  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2088    // Ignore the ImplicitCastExpr type entirely.
2089    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2090  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2091    // Accept ((void*)0) as a null pointer constant, as many other
2092    // implementations do.
2093    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2094  } else if (const CXXDefaultArgExpr *DefaultArg
2095               = dyn_cast<CXXDefaultArgExpr>(this)) {
2096    // See through default argument expressions
2097    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2098  } else if (isa<GNUNullExpr>(this)) {
2099    // The GNU __null extension is always a null pointer constant.
2100    return true;
2101  }
2102
2103  // C++0x nullptr_t is always a null pointer constant.
2104  if (getType()->isNullPtrType())
2105    return true;
2106
2107  if (const RecordType *UT = getType()->getAsUnionType())
2108    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2109      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2110        const Expr *InitExpr = CLE->getInitializer();
2111        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2112          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2113      }
2114  // This expression must be an integer type.
2115  if (!getType()->isIntegerType() ||
2116      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2117    return false;
2118
2119  // If we have an integer constant expression, we need to *evaluate* it and
2120  // test for the value 0.
2121  llvm::APSInt Result;
2122  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2123}
2124
2125/// \brief If this expression is an l-value for an Objective C
2126/// property, find the underlying property reference expression.
2127const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2128  const Expr *E = this;
2129  while (true) {
2130    assert((E->getValueKind() == VK_LValue &&
2131            E->getObjectKind() == OK_ObjCProperty) &&
2132           "expression is not a property reference");
2133    E = E->IgnoreParenCasts();
2134    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2135      if (BO->getOpcode() == BO_Comma) {
2136        E = BO->getRHS();
2137        continue;
2138      }
2139    }
2140
2141    break;
2142  }
2143
2144  return cast<ObjCPropertyRefExpr>(E);
2145}
2146
2147FieldDecl *Expr::getBitField() {
2148  Expr *E = this->IgnoreParens();
2149
2150  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2151    if (ICE->getCastKind() == CK_LValueToRValue ||
2152        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2153      E = ICE->getSubExpr()->IgnoreParens();
2154    else
2155      break;
2156  }
2157
2158  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2159    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2160      if (Field->isBitField())
2161        return Field;
2162
2163  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2164    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2165      if (Field->isBitField())
2166        return Field;
2167
2168  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2169    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2170      return BinOp->getLHS()->getBitField();
2171
2172  return 0;
2173}
2174
2175bool Expr::refersToVectorElement() const {
2176  const Expr *E = this->IgnoreParens();
2177
2178  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2179    if (ICE->getValueKind() != VK_RValue &&
2180        ICE->getCastKind() == CK_NoOp)
2181      E = ICE->getSubExpr()->IgnoreParens();
2182    else
2183      break;
2184  }
2185
2186  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2187    return ASE->getBase()->getType()->isVectorType();
2188
2189  if (isa<ExtVectorElementExpr>(E))
2190    return true;
2191
2192  return false;
2193}
2194
2195/// isArrow - Return true if the base expression is a pointer to vector,
2196/// return false if the base expression is a vector.
2197bool ExtVectorElementExpr::isArrow() const {
2198  return getBase()->getType()->isPointerType();
2199}
2200
2201unsigned ExtVectorElementExpr::getNumElements() const {
2202  if (const VectorType *VT = getType()->getAs<VectorType>())
2203    return VT->getNumElements();
2204  return 1;
2205}
2206
2207/// containsDuplicateElements - Return true if any element access is repeated.
2208bool ExtVectorElementExpr::containsDuplicateElements() const {
2209  // FIXME: Refactor this code to an accessor on the AST node which returns the
2210  // "type" of component access, and share with code below and in Sema.
2211  llvm::StringRef Comp = Accessor->getName();
2212
2213  // Halving swizzles do not contain duplicate elements.
2214  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2215    return false;
2216
2217  // Advance past s-char prefix on hex swizzles.
2218  if (Comp[0] == 's' || Comp[0] == 'S')
2219    Comp = Comp.substr(1);
2220
2221  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2222    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2223        return true;
2224
2225  return false;
2226}
2227
2228/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2229void ExtVectorElementExpr::getEncodedElementAccess(
2230                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2231  llvm::StringRef Comp = Accessor->getName();
2232  if (Comp[0] == 's' || Comp[0] == 'S')
2233    Comp = Comp.substr(1);
2234
2235  bool isHi =   Comp == "hi";
2236  bool isLo =   Comp == "lo";
2237  bool isEven = Comp == "even";
2238  bool isOdd  = Comp == "odd";
2239
2240  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2241    uint64_t Index;
2242
2243    if (isHi)
2244      Index = e + i;
2245    else if (isLo)
2246      Index = i;
2247    else if (isEven)
2248      Index = 2 * i;
2249    else if (isOdd)
2250      Index = 2 * i + 1;
2251    else
2252      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2253
2254    Elts.push_back(Index);
2255  }
2256}
2257
2258ObjCMessageExpr::ObjCMessageExpr(QualType T,
2259                                 ExprValueKind VK,
2260                                 SourceLocation LBracLoc,
2261                                 SourceLocation SuperLoc,
2262                                 bool IsInstanceSuper,
2263                                 QualType SuperType,
2264                                 Selector Sel,
2265                                 SourceLocation SelLoc,
2266                                 ObjCMethodDecl *Method,
2267                                 Expr **Args, unsigned NumArgs,
2268                                 SourceLocation RBracLoc)
2269  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2270         /*TypeDependent=*/false, /*ValueDependent=*/false,
2271         /*ContainsUnexpandedParameterPack=*/false),
2272    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2273    HasMethod(Method != 0), SuperLoc(SuperLoc),
2274    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2275                                                       : Sel.getAsOpaquePtr())),
2276    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2277{
2278  setReceiverPointer(SuperType.getAsOpaquePtr());
2279  if (NumArgs)
2280    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2281}
2282
2283ObjCMessageExpr::ObjCMessageExpr(QualType T,
2284                                 ExprValueKind VK,
2285                                 SourceLocation LBracLoc,
2286                                 TypeSourceInfo *Receiver,
2287                                 Selector Sel,
2288                                 SourceLocation SelLoc,
2289                                 ObjCMethodDecl *Method,
2290                                 Expr **Args, unsigned NumArgs,
2291                                 SourceLocation RBracLoc)
2292  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2293         T->isDependentType(), T->containsUnexpandedParameterPack()),
2294    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2295    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2296                                                       : Sel.getAsOpaquePtr())),
2297    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2298{
2299  setReceiverPointer(Receiver);
2300  Expr **MyArgs = getArgs();
2301  for (unsigned I = 0; I != NumArgs; ++I) {
2302    if (Args[I]->isTypeDependent())
2303      ExprBits.TypeDependent = true;
2304    if (Args[I]->isValueDependent())
2305      ExprBits.ValueDependent = true;
2306    if (Args[I]->containsUnexpandedParameterPack())
2307      ExprBits.ContainsUnexpandedParameterPack = true;
2308
2309    MyArgs[I] = Args[I];
2310  }
2311}
2312
2313ObjCMessageExpr::ObjCMessageExpr(QualType T,
2314                                 ExprValueKind VK,
2315                                 SourceLocation LBracLoc,
2316                                 Expr *Receiver,
2317                                 Selector Sel,
2318                                 SourceLocation SelLoc,
2319                                 ObjCMethodDecl *Method,
2320                                 Expr **Args, unsigned NumArgs,
2321                                 SourceLocation RBracLoc)
2322  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2323         Receiver->isTypeDependent(),
2324         Receiver->containsUnexpandedParameterPack()),
2325    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2326    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2327                                                       : Sel.getAsOpaquePtr())),
2328    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2329{
2330  setReceiverPointer(Receiver);
2331  Expr **MyArgs = getArgs();
2332  for (unsigned I = 0; I != NumArgs; ++I) {
2333    if (Args[I]->isTypeDependent())
2334      ExprBits.TypeDependent = true;
2335    if (Args[I]->isValueDependent())
2336      ExprBits.ValueDependent = true;
2337    if (Args[I]->containsUnexpandedParameterPack())
2338      ExprBits.ContainsUnexpandedParameterPack = true;
2339
2340    MyArgs[I] = Args[I];
2341  }
2342}
2343
2344ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2345                                         ExprValueKind VK,
2346                                         SourceLocation LBracLoc,
2347                                         SourceLocation SuperLoc,
2348                                         bool IsInstanceSuper,
2349                                         QualType SuperType,
2350                                         Selector Sel,
2351                                         SourceLocation SelLoc,
2352                                         ObjCMethodDecl *Method,
2353                                         Expr **Args, unsigned NumArgs,
2354                                         SourceLocation RBracLoc) {
2355  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2356    NumArgs * sizeof(Expr *);
2357  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2358  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2359                                   SuperType, Sel, SelLoc, Method, Args,NumArgs,
2360                                   RBracLoc);
2361}
2362
2363ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2364                                         ExprValueKind VK,
2365                                         SourceLocation LBracLoc,
2366                                         TypeSourceInfo *Receiver,
2367                                         Selector Sel,
2368                                         SourceLocation SelLoc,
2369                                         ObjCMethodDecl *Method,
2370                                         Expr **Args, unsigned NumArgs,
2371                                         SourceLocation RBracLoc) {
2372  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2373    NumArgs * sizeof(Expr *);
2374  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2375  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2376                                   Method, Args, NumArgs, RBracLoc);
2377}
2378
2379ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2380                                         ExprValueKind VK,
2381                                         SourceLocation LBracLoc,
2382                                         Expr *Receiver,
2383                                         Selector Sel,
2384                                         SourceLocation SelLoc,
2385                                         ObjCMethodDecl *Method,
2386                                         Expr **Args, unsigned NumArgs,
2387                                         SourceLocation RBracLoc) {
2388  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2389    NumArgs * sizeof(Expr *);
2390  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2391  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2392                                   Method, Args, NumArgs, RBracLoc);
2393}
2394
2395ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2396                                              unsigned NumArgs) {
2397  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2398    NumArgs * sizeof(Expr *);
2399  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2400  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2401}
2402
2403SourceRange ObjCMessageExpr::getReceiverRange() const {
2404  switch (getReceiverKind()) {
2405  case Instance:
2406    return getInstanceReceiver()->getSourceRange();
2407
2408  case Class:
2409    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2410
2411  case SuperInstance:
2412  case SuperClass:
2413    return getSuperLoc();
2414  }
2415
2416  return SourceLocation();
2417}
2418
2419Selector ObjCMessageExpr::getSelector() const {
2420  if (HasMethod)
2421    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2422                                                               ->getSelector();
2423  return Selector(SelectorOrMethod);
2424}
2425
2426ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2427  switch (getReceiverKind()) {
2428  case Instance:
2429    if (const ObjCObjectPointerType *Ptr
2430          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2431      return Ptr->getInterfaceDecl();
2432    break;
2433
2434  case Class:
2435    if (const ObjCObjectType *Ty
2436          = getClassReceiver()->getAs<ObjCObjectType>())
2437      return Ty->getInterface();
2438    break;
2439
2440  case SuperInstance:
2441    if (const ObjCObjectPointerType *Ptr
2442          = getSuperType()->getAs<ObjCObjectPointerType>())
2443      return Ptr->getInterfaceDecl();
2444    break;
2445
2446  case SuperClass:
2447    if (const ObjCObjectPointerType *Iface
2448                       = getSuperType()->getAs<ObjCObjectPointerType>())
2449      return Iface->getInterfaceDecl();
2450    break;
2451  }
2452
2453  return 0;
2454}
2455
2456bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2457  return getCond()->EvaluateAsInt(C) != 0;
2458}
2459
2460ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2461                                     QualType Type, SourceLocation BLoc,
2462                                     SourceLocation RP)
2463   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2464          Type->isDependentType(), Type->isDependentType(),
2465          Type->containsUnexpandedParameterPack()),
2466     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
2467{
2468  SubExprs = new (C) Stmt*[nexpr];
2469  for (unsigned i = 0; i < nexpr; i++) {
2470    if (args[i]->isTypeDependent())
2471      ExprBits.TypeDependent = true;
2472    if (args[i]->isValueDependent())
2473      ExprBits.ValueDependent = true;
2474    if (args[i]->containsUnexpandedParameterPack())
2475      ExprBits.ContainsUnexpandedParameterPack = true;
2476
2477    SubExprs[i] = args[i];
2478  }
2479}
2480
2481void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2482                                 unsigned NumExprs) {
2483  if (SubExprs) C.Deallocate(SubExprs);
2484
2485  SubExprs = new (C) Stmt* [NumExprs];
2486  this->NumExprs = NumExprs;
2487  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2488}
2489
2490//===----------------------------------------------------------------------===//
2491//  DesignatedInitExpr
2492//===----------------------------------------------------------------------===//
2493
2494IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2495  assert(Kind == FieldDesignator && "Only valid on a field designator");
2496  if (Field.NameOrField & 0x01)
2497    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2498  else
2499    return getField()->getIdentifier();
2500}
2501
2502DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2503                                       unsigned NumDesignators,
2504                                       const Designator *Designators,
2505                                       SourceLocation EqualOrColonLoc,
2506                                       bool GNUSyntax,
2507                                       Expr **IndexExprs,
2508                                       unsigned NumIndexExprs,
2509                                       Expr *Init)
2510  : Expr(DesignatedInitExprClass, Ty,
2511         Init->getValueKind(), Init->getObjectKind(),
2512         Init->isTypeDependent(), Init->isValueDependent(),
2513         Init->containsUnexpandedParameterPack()),
2514    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2515    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2516  this->Designators = new (C) Designator[NumDesignators];
2517
2518  // Record the initializer itself.
2519  child_iterator Child = child_begin();
2520  *Child++ = Init;
2521
2522  // Copy the designators and their subexpressions, computing
2523  // value-dependence along the way.
2524  unsigned IndexIdx = 0;
2525  for (unsigned I = 0; I != NumDesignators; ++I) {
2526    this->Designators[I] = Designators[I];
2527
2528    if (this->Designators[I].isArrayDesignator()) {
2529      // Compute type- and value-dependence.
2530      Expr *Index = IndexExprs[IndexIdx];
2531      if (Index->isTypeDependent() || Index->isValueDependent())
2532        ExprBits.ValueDependent = true;
2533
2534      // Propagate unexpanded parameter packs.
2535      if (Index->containsUnexpandedParameterPack())
2536        ExprBits.ContainsUnexpandedParameterPack = true;
2537
2538      // Copy the index expressions into permanent storage.
2539      *Child++ = IndexExprs[IndexIdx++];
2540    } else if (this->Designators[I].isArrayRangeDesignator()) {
2541      // Compute type- and value-dependence.
2542      Expr *Start = IndexExprs[IndexIdx];
2543      Expr *End = IndexExprs[IndexIdx + 1];
2544      if (Start->isTypeDependent() || Start->isValueDependent() ||
2545          End->isTypeDependent() || End->isValueDependent())
2546        ExprBits.ValueDependent = true;
2547
2548      // Propagate unexpanded parameter packs.
2549      if (Start->containsUnexpandedParameterPack() ||
2550          End->containsUnexpandedParameterPack())
2551        ExprBits.ContainsUnexpandedParameterPack = true;
2552
2553      // Copy the start/end expressions into permanent storage.
2554      *Child++ = IndexExprs[IndexIdx++];
2555      *Child++ = IndexExprs[IndexIdx++];
2556    }
2557  }
2558
2559  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2560}
2561
2562DesignatedInitExpr *
2563DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2564                           unsigned NumDesignators,
2565                           Expr **IndexExprs, unsigned NumIndexExprs,
2566                           SourceLocation ColonOrEqualLoc,
2567                           bool UsesColonSyntax, Expr *Init) {
2568  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2569                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2570  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2571                                      ColonOrEqualLoc, UsesColonSyntax,
2572                                      IndexExprs, NumIndexExprs, Init);
2573}
2574
2575DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2576                                                    unsigned NumIndexExprs) {
2577  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2578                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2579  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2580}
2581
2582void DesignatedInitExpr::setDesignators(ASTContext &C,
2583                                        const Designator *Desigs,
2584                                        unsigned NumDesigs) {
2585  Designators = new (C) Designator[NumDesigs];
2586  NumDesignators = NumDesigs;
2587  for (unsigned I = 0; I != NumDesigs; ++I)
2588    Designators[I] = Desigs[I];
2589}
2590
2591SourceRange DesignatedInitExpr::getSourceRange() const {
2592  SourceLocation StartLoc;
2593  Designator &First =
2594    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2595  if (First.isFieldDesignator()) {
2596    if (GNUSyntax)
2597      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2598    else
2599      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2600  } else
2601    StartLoc =
2602      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2603  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2604}
2605
2606Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2607  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2608  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2609  Ptr += sizeof(DesignatedInitExpr);
2610  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2611  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2612}
2613
2614Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2615  assert(D.Kind == Designator::ArrayRangeDesignator &&
2616         "Requires array range designator");
2617  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2618  Ptr += sizeof(DesignatedInitExpr);
2619  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2620  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2621}
2622
2623Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2624  assert(D.Kind == Designator::ArrayRangeDesignator &&
2625         "Requires array range designator");
2626  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2627  Ptr += sizeof(DesignatedInitExpr);
2628  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2629  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2630}
2631
2632/// \brief Replaces the designator at index @p Idx with the series
2633/// of designators in [First, Last).
2634void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2635                                          const Designator *First,
2636                                          const Designator *Last) {
2637  unsigned NumNewDesignators = Last - First;
2638  if (NumNewDesignators == 0) {
2639    std::copy_backward(Designators + Idx + 1,
2640                       Designators + NumDesignators,
2641                       Designators + Idx);
2642    --NumNewDesignators;
2643    return;
2644  } else if (NumNewDesignators == 1) {
2645    Designators[Idx] = *First;
2646    return;
2647  }
2648
2649  Designator *NewDesignators
2650    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2651  std::copy(Designators, Designators + Idx, NewDesignators);
2652  std::copy(First, Last, NewDesignators + Idx);
2653  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2654            NewDesignators + Idx + NumNewDesignators);
2655  Designators = NewDesignators;
2656  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2657}
2658
2659ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2660                             Expr **exprs, unsigned nexprs,
2661                             SourceLocation rparenloc)
2662  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
2663         false, false, false),
2664    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2665
2666  Exprs = new (C) Stmt*[nexprs];
2667  for (unsigned i = 0; i != nexprs; ++i) {
2668    if (exprs[i]->isTypeDependent())
2669      ExprBits.TypeDependent = true;
2670    if (exprs[i]->isValueDependent())
2671      ExprBits.ValueDependent = true;
2672    if (exprs[i]->containsUnexpandedParameterPack())
2673      ExprBits.ContainsUnexpandedParameterPack = true;
2674
2675    Exprs[i] = exprs[i];
2676  }
2677}
2678
2679//===----------------------------------------------------------------------===//
2680//  ExprIterator.
2681//===----------------------------------------------------------------------===//
2682
2683Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2684Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2685Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2686const Expr* ConstExprIterator::operator[](size_t idx) const {
2687  return cast<Expr>(I[idx]);
2688}
2689const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2690const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2691
2692//===----------------------------------------------------------------------===//
2693//  Child Iterators for iterating over subexpressions/substatements
2694//===----------------------------------------------------------------------===//
2695
2696// DeclRefExpr
2697Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2698Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2699
2700// ObjCIvarRefExpr
2701Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2702Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2703
2704// ObjCPropertyRefExpr
2705Stmt::child_iterator ObjCPropertyRefExpr::child_begin()
2706{
2707  if (Receiver.is<Stmt*>()) {
2708    // Hack alert!
2709    return reinterpret_cast<Stmt**> (&Receiver);
2710  }
2711  return child_iterator();
2712}
2713
2714Stmt::child_iterator ObjCPropertyRefExpr::child_end()
2715{ return Receiver.is<Stmt*>() ?
2716          reinterpret_cast<Stmt**> (&Receiver)+1 :
2717          child_iterator();
2718}
2719
2720// ObjCIsaExpr
2721Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2722Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2723
2724// PredefinedExpr
2725Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2726Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2727
2728// IntegerLiteral
2729Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2730Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2731
2732// CharacterLiteral
2733Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2734Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2735
2736// FloatingLiteral
2737Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2738Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2739
2740// ImaginaryLiteral
2741Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2742Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2743
2744// StringLiteral
2745Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2746Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2747
2748// ParenExpr
2749Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2750Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2751
2752// UnaryOperator
2753Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2754Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2755
2756// OffsetOfExpr
2757Stmt::child_iterator OffsetOfExpr::child_begin() {
2758  return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2759                                      + NumComps);
2760}
2761Stmt::child_iterator OffsetOfExpr::child_end() {
2762  return child_iterator(&*child_begin() + NumExprs);
2763}
2764
2765// SizeOfAlignOfExpr
2766Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2767  // If this is of a type and the type is a VLA type (and not a typedef), the
2768  // size expression of the VLA needs to be treated as an executable expression.
2769  // Why isn't this weirdness documented better in StmtIterator?
2770  if (isArgumentType()) {
2771    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2772                                   getArgumentType().getTypePtr()))
2773      return child_iterator(T);
2774    return child_iterator();
2775  }
2776  return child_iterator(&Argument.Ex);
2777}
2778Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2779  if (isArgumentType())
2780    return child_iterator();
2781  return child_iterator(&Argument.Ex + 1);
2782}
2783
2784// ArraySubscriptExpr
2785Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2786  return &SubExprs[0];
2787}
2788Stmt::child_iterator ArraySubscriptExpr::child_end() {
2789  return &SubExprs[0]+END_EXPR;
2790}
2791
2792// CallExpr
2793Stmt::child_iterator CallExpr::child_begin() {
2794  return &SubExprs[0];
2795}
2796Stmt::child_iterator CallExpr::child_end() {
2797  return &SubExprs[0]+NumArgs+ARGS_START;
2798}
2799
2800// MemberExpr
2801Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2802Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2803
2804// ExtVectorElementExpr
2805Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2806Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2807
2808// CompoundLiteralExpr
2809Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2810Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2811
2812// CastExpr
2813Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2814Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2815
2816// BinaryOperator
2817Stmt::child_iterator BinaryOperator::child_begin() {
2818  return &SubExprs[0];
2819}
2820Stmt::child_iterator BinaryOperator::child_end() {
2821  return &SubExprs[0]+END_EXPR;
2822}
2823
2824// ConditionalOperator
2825Stmt::child_iterator ConditionalOperator::child_begin() {
2826  return &SubExprs[0];
2827}
2828Stmt::child_iterator ConditionalOperator::child_end() {
2829  return &SubExprs[0]+END_EXPR;
2830}
2831
2832// AddrLabelExpr
2833Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2834Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2835
2836// StmtExpr
2837Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2838Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2839
2840
2841// ChooseExpr
2842Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2843Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2844
2845// GNUNullExpr
2846Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2847Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2848
2849// ShuffleVectorExpr
2850Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2851  return &SubExprs[0];
2852}
2853Stmt::child_iterator ShuffleVectorExpr::child_end() {
2854  return &SubExprs[0]+NumExprs;
2855}
2856
2857// VAArgExpr
2858Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2859Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2860
2861// InitListExpr
2862Stmt::child_iterator InitListExpr::child_begin() {
2863  return InitExprs.size() ? &InitExprs[0] : 0;
2864}
2865Stmt::child_iterator InitListExpr::child_end() {
2866  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2867}
2868
2869// DesignatedInitExpr
2870Stmt::child_iterator DesignatedInitExpr::child_begin() {
2871  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2872  Ptr += sizeof(DesignatedInitExpr);
2873  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2874}
2875Stmt::child_iterator DesignatedInitExpr::child_end() {
2876  return child_iterator(&*child_begin() + NumSubExprs);
2877}
2878
2879// ImplicitValueInitExpr
2880Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2881  return child_iterator();
2882}
2883
2884Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2885  return child_iterator();
2886}
2887
2888// ParenListExpr
2889Stmt::child_iterator ParenListExpr::child_begin() {
2890  return &Exprs[0];
2891}
2892Stmt::child_iterator ParenListExpr::child_end() {
2893  return &Exprs[0]+NumExprs;
2894}
2895
2896// ObjCStringLiteral
2897Stmt::child_iterator ObjCStringLiteral::child_begin() {
2898  return &String;
2899}
2900Stmt::child_iterator ObjCStringLiteral::child_end() {
2901  return &String+1;
2902}
2903
2904// ObjCEncodeExpr
2905Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2906Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2907
2908// ObjCSelectorExpr
2909Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2910  return child_iterator();
2911}
2912Stmt::child_iterator ObjCSelectorExpr::child_end() {
2913  return child_iterator();
2914}
2915
2916// ObjCProtocolExpr
2917Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2918  return child_iterator();
2919}
2920Stmt::child_iterator ObjCProtocolExpr::child_end() {
2921  return child_iterator();
2922}
2923
2924// ObjCMessageExpr
2925Stmt::child_iterator ObjCMessageExpr::child_begin() {
2926  if (getReceiverKind() == Instance)
2927    return reinterpret_cast<Stmt **>(this + 1);
2928  return reinterpret_cast<Stmt **>(getArgs());
2929}
2930Stmt::child_iterator ObjCMessageExpr::child_end() {
2931  return reinterpret_cast<Stmt **>(getArgs() + getNumArgs());
2932}
2933
2934// Blocks
2935Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2936Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2937
2938Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2939Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2940
2941// OpaqueValueExpr
2942SourceRange OpaqueValueExpr::getSourceRange() const { return SourceRange(); }
2943Stmt::child_iterator OpaqueValueExpr::child_begin() { return child_iterator(); }
2944Stmt::child_iterator OpaqueValueExpr::child_end() { return child_iterator(); }
2945
2946