Expr.cpp revision 2882eca5a184c78f793188083f6ce539740a5cf2
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31using namespace clang;
32
33/// isKnownToHaveBooleanValue - Return true if this is an integer expression
34/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
35/// but also int expressions which are produced by things like comparisons in
36/// C.
37bool Expr::isKnownToHaveBooleanValue() const {
38  // If this value has _Bool type, it is obvious 0/1.
39  if (getType()->isBooleanType()) return true;
40  // If this is a non-scalar-integer type, we don't care enough to try.
41  if (!getType()->isIntegralOrEnumerationType()) return false;
42
43  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
44    return PE->getSubExpr()->isKnownToHaveBooleanValue();
45
46  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
47    switch (UO->getOpcode()) {
48    case UO_Plus:
49    case UO_Extension:
50      return UO->getSubExpr()->isKnownToHaveBooleanValue();
51    default:
52      return false;
53    }
54  }
55
56  // Only look through implicit casts.  If the user writes
57  // '(int) (a && b)' treat it as an arbitrary int.
58  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
59    return CE->getSubExpr()->isKnownToHaveBooleanValue();
60
61  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
62    switch (BO->getOpcode()) {
63    default: return false;
64    case BO_LT:   // Relational operators.
65    case BO_GT:
66    case BO_LE:
67    case BO_GE:
68    case BO_EQ:   // Equality operators.
69    case BO_NE:
70    case BO_LAnd: // AND operator.
71    case BO_LOr:  // Logical OR operator.
72      return true;
73
74    case BO_And:  // Bitwise AND operator.
75    case BO_Xor:  // Bitwise XOR operator.
76    case BO_Or:   // Bitwise OR operator.
77      // Handle things like (x==2)|(y==12).
78      return BO->getLHS()->isKnownToHaveBooleanValue() &&
79             BO->getRHS()->isKnownToHaveBooleanValue();
80
81    case BO_Comma:
82    case BO_Assign:
83      return BO->getRHS()->isKnownToHaveBooleanValue();
84    }
85  }
86
87  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
88    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
89           CO->getFalseExpr()->isKnownToHaveBooleanValue();
90
91  return false;
92}
93
94// Amusing macro metaprogramming hack: check whether a class provides
95// a more specific implementation of getExprLoc().
96namespace {
97  /// This implementation is used when a class provides a custom
98  /// implementation of getExprLoc.
99  template <class E, class T>
100  SourceLocation getExprLocImpl(const Expr *expr,
101                                SourceLocation (T::*v)() const) {
102    return static_cast<const E*>(expr)->getExprLoc();
103  }
104
105  /// This implementation is used when a class doesn't provide
106  /// a custom implementation of getExprLoc.  Overload resolution
107  /// should pick it over the implementation above because it's
108  /// more specialized according to function template partial ordering.
109  template <class E>
110  SourceLocation getExprLocImpl(const Expr *expr,
111                                SourceLocation (Expr::*v)() const) {
112    return static_cast<const E*>(expr)->getSourceRange().getBegin();
113  }
114}
115
116SourceLocation Expr::getExprLoc() const {
117  switch (getStmtClass()) {
118  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
119#define ABSTRACT_STMT(type)
120#define STMT(type, base) \
121  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
122#define EXPR(type, base) \
123  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
124#include "clang/AST/StmtNodes.inc"
125  }
126  llvm_unreachable("unknown statement kind");
127  return SourceLocation();
128}
129
130//===----------------------------------------------------------------------===//
131// Primary Expressions.
132//===----------------------------------------------------------------------===//
133
134void ExplicitTemplateArgumentList::initializeFrom(
135                                      const TemplateArgumentListInfo &Info) {
136  LAngleLoc = Info.getLAngleLoc();
137  RAngleLoc = Info.getRAngleLoc();
138  NumTemplateArgs = Info.size();
139
140  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
141  for (unsigned i = 0; i != NumTemplateArgs; ++i)
142    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
143}
144
145void ExplicitTemplateArgumentList::initializeFrom(
146                                   const TemplateArgumentListInfo &Info,
147                                   bool &Dependent,
148                                   bool &ContainsUnexpandedParameterPack) {
149  LAngleLoc = Info.getLAngleLoc();
150  RAngleLoc = Info.getRAngleLoc();
151  NumTemplateArgs = Info.size();
152
153  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
154  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
155    Dependent = Dependent || Info[i].getArgument().isDependent();
156    ContainsUnexpandedParameterPack
157      = ContainsUnexpandedParameterPack ||
158        Info[i].getArgument().containsUnexpandedParameterPack();
159
160    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
161  }
162}
163
164void ExplicitTemplateArgumentList::copyInto(
165                                      TemplateArgumentListInfo &Info) const {
166  Info.setLAngleLoc(LAngleLoc);
167  Info.setRAngleLoc(RAngleLoc);
168  for (unsigned I = 0; I != NumTemplateArgs; ++I)
169    Info.addArgument(getTemplateArgs()[I]);
170}
171
172std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
173  return sizeof(ExplicitTemplateArgumentList) +
174         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
175}
176
177std::size_t ExplicitTemplateArgumentList::sizeFor(
178                                      const TemplateArgumentListInfo &Info) {
179  return sizeFor(Info.size());
180}
181
182/// \brief Compute the type- and value-dependence of a declaration reference
183/// based on the declaration being referenced.
184static void computeDeclRefDependence(NamedDecl *D, QualType T,
185                                     bool &TypeDependent,
186                                     bool &ValueDependent) {
187  TypeDependent = false;
188  ValueDependent = false;
189
190
191  // (TD) C++ [temp.dep.expr]p3:
192  //   An id-expression is type-dependent if it contains:
193  //
194  // and
195  //
196  // (VD) C++ [temp.dep.constexpr]p2:
197  //  An identifier is value-dependent if it is:
198
199  //  (TD)  - an identifier that was declared with dependent type
200  //  (VD)  - a name declared with a dependent type,
201  if (T->isDependentType()) {
202    TypeDependent = true;
203    ValueDependent = true;
204    return;
205  }
206
207  //  (TD)  - a conversion-function-id that specifies a dependent type
208  if (D->getDeclName().getNameKind()
209           == DeclarationName::CXXConversionFunctionName &&
210           D->getDeclName().getCXXNameType()->isDependentType()) {
211    TypeDependent = true;
212    ValueDependent = true;
213    return;
214  }
215  //  (VD)  - the name of a non-type template parameter,
216  if (isa<NonTypeTemplateParmDecl>(D)) {
217    ValueDependent = true;
218    return;
219  }
220
221  //  (VD) - a constant with integral or enumeration type and is
222  //         initialized with an expression that is value-dependent.
223  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
224    if (Var->getType()->isIntegralOrEnumerationType() &&
225        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
226      if (const Expr *Init = Var->getAnyInitializer())
227        if (Init->isValueDependent())
228          ValueDependent = true;
229    }
230
231    // (VD) - FIXME: Missing from the standard:
232    //      -  a member function or a static data member of the current
233    //         instantiation
234    else if (Var->isStaticDataMember() &&
235             Var->getDeclContext()->isDependentContext())
236      ValueDependent = true;
237
238    return;
239  }
240
241  // (VD) - FIXME: Missing from the standard:
242  //      -  a member function or a static data member of the current
243  //         instantiation
244  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
245    ValueDependent = true;
246    return;
247  }
248}
249
250void DeclRefExpr::computeDependence() {
251  bool TypeDependent = false;
252  bool ValueDependent = false;
253  computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
254
255  // (TD) C++ [temp.dep.expr]p3:
256  //   An id-expression is type-dependent if it contains:
257  //
258  // and
259  //
260  // (VD) C++ [temp.dep.constexpr]p2:
261  //  An identifier is value-dependent if it is:
262  if (!TypeDependent && !ValueDependent &&
263      hasExplicitTemplateArgs() &&
264      TemplateSpecializationType::anyDependentTemplateArguments(
265                                                            getTemplateArgs(),
266                                                       getNumTemplateArgs())) {
267    TypeDependent = true;
268    ValueDependent = true;
269  }
270
271  ExprBits.TypeDependent = TypeDependent;
272  ExprBits.ValueDependent = ValueDependent;
273
274  // Is the declaration a parameter pack?
275  if (getDecl()->isParameterPack())
276    ExprBits.ContainsUnexpandedParameterPack = true;
277}
278
279DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
280                         SourceRange QualifierRange,
281                         ValueDecl *D, SourceLocation NameLoc,
282                         const TemplateArgumentListInfo *TemplateArgs,
283                         QualType T, ExprValueKind VK)
284  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
285    DecoratedD(D,
286               (Qualifier? HasQualifierFlag : 0) |
287               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
288    Loc(NameLoc) {
289  if (Qualifier) {
290    NameQualifier *NQ = getNameQualifier();
291    NQ->NNS = Qualifier;
292    NQ->Range = QualifierRange;
293  }
294
295  if (TemplateArgs)
296    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
297
298  computeDependence();
299}
300
301DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
302                         SourceRange QualifierRange,
303                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
304                         const TemplateArgumentListInfo *TemplateArgs,
305                         QualType T, ExprValueKind VK)
306  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
307    DecoratedD(D,
308               (Qualifier? HasQualifierFlag : 0) |
309               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
310    Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
311  if (Qualifier) {
312    NameQualifier *NQ = getNameQualifier();
313    NQ->NNS = Qualifier;
314    NQ->Range = QualifierRange;
315  }
316
317  if (TemplateArgs)
318    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
319
320  computeDependence();
321}
322
323DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
324                                 NestedNameSpecifier *Qualifier,
325                                 SourceRange QualifierRange,
326                                 ValueDecl *D,
327                                 SourceLocation NameLoc,
328                                 QualType T,
329                                 ExprValueKind VK,
330                                 const TemplateArgumentListInfo *TemplateArgs) {
331  return Create(Context, Qualifier, QualifierRange, D,
332                DeclarationNameInfo(D->getDeclName(), NameLoc),
333                T, VK, TemplateArgs);
334}
335
336DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
337                                 NestedNameSpecifier *Qualifier,
338                                 SourceRange QualifierRange,
339                                 ValueDecl *D,
340                                 const DeclarationNameInfo &NameInfo,
341                                 QualType T,
342                                 ExprValueKind VK,
343                                 const TemplateArgumentListInfo *TemplateArgs) {
344  std::size_t Size = sizeof(DeclRefExpr);
345  if (Qualifier != 0)
346    Size += sizeof(NameQualifier);
347
348  if (TemplateArgs)
349    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
350
351  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
352  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
353                               TemplateArgs, T, VK);
354}
355
356DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
357                                      bool HasQualifier,
358                                      bool HasExplicitTemplateArgs,
359                                      unsigned NumTemplateArgs) {
360  std::size_t Size = sizeof(DeclRefExpr);
361  if (HasQualifier)
362    Size += sizeof(NameQualifier);
363
364  if (HasExplicitTemplateArgs)
365    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
366
367  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
368  return new (Mem) DeclRefExpr(EmptyShell());
369}
370
371SourceRange DeclRefExpr::getSourceRange() const {
372  SourceRange R = getNameInfo().getSourceRange();
373  if (hasQualifier())
374    R.setBegin(getQualifierRange().getBegin());
375  if (hasExplicitTemplateArgs())
376    R.setEnd(getRAngleLoc());
377  return R;
378}
379
380// FIXME: Maybe this should use DeclPrinter with a special "print predefined
381// expr" policy instead.
382std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
383  ASTContext &Context = CurrentDecl->getASTContext();
384
385  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
386    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
387      return FD->getNameAsString();
388
389    llvm::SmallString<256> Name;
390    llvm::raw_svector_ostream Out(Name);
391
392    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
393      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
394        Out << "virtual ";
395      if (MD->isStatic())
396        Out << "static ";
397    }
398
399    PrintingPolicy Policy(Context.getLangOptions());
400
401    std::string Proto = FD->getQualifiedNameAsString(Policy);
402
403    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
404    const FunctionProtoType *FT = 0;
405    if (FD->hasWrittenPrototype())
406      FT = dyn_cast<FunctionProtoType>(AFT);
407
408    Proto += "(";
409    if (FT) {
410      llvm::raw_string_ostream POut(Proto);
411      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
412        if (i) POut << ", ";
413        std::string Param;
414        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
415        POut << Param;
416      }
417
418      if (FT->isVariadic()) {
419        if (FD->getNumParams()) POut << ", ";
420        POut << "...";
421      }
422    }
423    Proto += ")";
424
425    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
426      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
427      if (ThisQuals.hasConst())
428        Proto += " const";
429      if (ThisQuals.hasVolatile())
430        Proto += " volatile";
431    }
432
433    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
434      AFT->getResultType().getAsStringInternal(Proto, Policy);
435
436    Out << Proto;
437
438    Out.flush();
439    return Name.str().str();
440  }
441  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
442    llvm::SmallString<256> Name;
443    llvm::raw_svector_ostream Out(Name);
444    Out << (MD->isInstanceMethod() ? '-' : '+');
445    Out << '[';
446
447    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
448    // a null check to avoid a crash.
449    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
450      Out << ID;
451
452    if (const ObjCCategoryImplDecl *CID =
453        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
454      Out << '(' << CID << ')';
455
456    Out <<  ' ';
457    Out << MD->getSelector().getAsString();
458    Out <<  ']';
459
460    Out.flush();
461    return Name.str().str();
462  }
463  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
464    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
465    return "top level";
466  }
467  return "";
468}
469
470void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
471  if (hasAllocation())
472    C.Deallocate(pVal);
473
474  BitWidth = Val.getBitWidth();
475  unsigned NumWords = Val.getNumWords();
476  const uint64_t* Words = Val.getRawData();
477  if (NumWords > 1) {
478    pVal = new (C) uint64_t[NumWords];
479    std::copy(Words, Words + NumWords, pVal);
480  } else if (NumWords == 1)
481    VAL = Words[0];
482  else
483    VAL = 0;
484}
485
486IntegerLiteral *
487IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
488                       QualType type, SourceLocation l) {
489  return new (C) IntegerLiteral(C, V, type, l);
490}
491
492IntegerLiteral *
493IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
494  return new (C) IntegerLiteral(Empty);
495}
496
497FloatingLiteral *
498FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
499                        bool isexact, QualType Type, SourceLocation L) {
500  return new (C) FloatingLiteral(C, V, isexact, Type, L);
501}
502
503FloatingLiteral *
504FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
505  return new (C) FloatingLiteral(Empty);
506}
507
508/// getValueAsApproximateDouble - This returns the value as an inaccurate
509/// double.  Note that this may cause loss of precision, but is useful for
510/// debugging dumps, etc.
511double FloatingLiteral::getValueAsApproximateDouble() const {
512  llvm::APFloat V = getValue();
513  bool ignored;
514  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
515            &ignored);
516  return V.convertToDouble();
517}
518
519StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
520                                     unsigned ByteLength, bool Wide,
521                                     QualType Ty,
522                                     const SourceLocation *Loc,
523                                     unsigned NumStrs) {
524  // Allocate enough space for the StringLiteral plus an array of locations for
525  // any concatenated string tokens.
526  void *Mem = C.Allocate(sizeof(StringLiteral)+
527                         sizeof(SourceLocation)*(NumStrs-1),
528                         llvm::alignOf<StringLiteral>());
529  StringLiteral *SL = new (Mem) StringLiteral(Ty);
530
531  // OPTIMIZE: could allocate this appended to the StringLiteral.
532  char *AStrData = new (C, 1) char[ByteLength];
533  memcpy(AStrData, StrData, ByteLength);
534  SL->StrData = AStrData;
535  SL->ByteLength = ByteLength;
536  SL->IsWide = Wide;
537  SL->TokLocs[0] = Loc[0];
538  SL->NumConcatenated = NumStrs;
539
540  if (NumStrs != 1)
541    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
542  return SL;
543}
544
545StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
546  void *Mem = C.Allocate(sizeof(StringLiteral)+
547                         sizeof(SourceLocation)*(NumStrs-1),
548                         llvm::alignOf<StringLiteral>());
549  StringLiteral *SL = new (Mem) StringLiteral(QualType());
550  SL->StrData = 0;
551  SL->ByteLength = 0;
552  SL->NumConcatenated = NumStrs;
553  return SL;
554}
555
556void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
557  char *AStrData = new (C, 1) char[Str.size()];
558  memcpy(AStrData, Str.data(), Str.size());
559  StrData = AStrData;
560  ByteLength = Str.size();
561}
562
563/// getLocationOfByte - Return a source location that points to the specified
564/// byte of this string literal.
565///
566/// Strings are amazingly complex.  They can be formed from multiple tokens and
567/// can have escape sequences in them in addition to the usual trigraph and
568/// escaped newline business.  This routine handles this complexity.
569///
570SourceLocation StringLiteral::
571getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
572                  const LangOptions &Features, const TargetInfo &Target) const {
573  assert(!isWide() && "This doesn't work for wide strings yet");
574
575  // Loop over all of the tokens in this string until we find the one that
576  // contains the byte we're looking for.
577  unsigned TokNo = 0;
578  while (1) {
579    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
580    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
581
582    // Get the spelling of the string so that we can get the data that makes up
583    // the string literal, not the identifier for the macro it is potentially
584    // expanded through.
585    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
586
587    // Re-lex the token to get its length and original spelling.
588    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
589    bool Invalid = false;
590    llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
591    if (Invalid)
592      return StrTokSpellingLoc;
593
594    const char *StrData = Buffer.data()+LocInfo.second;
595
596    // Create a langops struct and enable trigraphs.  This is sufficient for
597    // relexing tokens.
598    LangOptions LangOpts;
599    LangOpts.Trigraphs = true;
600
601    // Create a lexer starting at the beginning of this token.
602    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
603                   Buffer.end());
604    Token TheTok;
605    TheLexer.LexFromRawLexer(TheTok);
606
607    // Use the StringLiteralParser to compute the length of the string in bytes.
608    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
609    unsigned TokNumBytes = SLP.GetStringLength();
610
611    // If the byte is in this token, return the location of the byte.
612    if (ByteNo < TokNumBytes ||
613        (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
614      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
615
616      // Now that we know the offset of the token in the spelling, use the
617      // preprocessor to get the offset in the original source.
618      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
619    }
620
621    // Move to the next string token.
622    ++TokNo;
623    ByteNo -= TokNumBytes;
624  }
625}
626
627
628
629/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
630/// corresponds to, e.g. "sizeof" or "[pre]++".
631const char *UnaryOperator::getOpcodeStr(Opcode Op) {
632  switch (Op) {
633  default: assert(0 && "Unknown unary operator");
634  case UO_PostInc: return "++";
635  case UO_PostDec: return "--";
636  case UO_PreInc:  return "++";
637  case UO_PreDec:  return "--";
638  case UO_AddrOf:  return "&";
639  case UO_Deref:   return "*";
640  case UO_Plus:    return "+";
641  case UO_Minus:   return "-";
642  case UO_Not:     return "~";
643  case UO_LNot:    return "!";
644  case UO_Real:    return "__real";
645  case UO_Imag:    return "__imag";
646  case UO_Extension: return "__extension__";
647  }
648}
649
650UnaryOperatorKind
651UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
652  switch (OO) {
653  default: assert(false && "No unary operator for overloaded function");
654  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
655  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
656  case OO_Amp:        return UO_AddrOf;
657  case OO_Star:       return UO_Deref;
658  case OO_Plus:       return UO_Plus;
659  case OO_Minus:      return UO_Minus;
660  case OO_Tilde:      return UO_Not;
661  case OO_Exclaim:    return UO_LNot;
662  }
663}
664
665OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
666  switch (Opc) {
667  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
668  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
669  case UO_AddrOf: return OO_Amp;
670  case UO_Deref: return OO_Star;
671  case UO_Plus: return OO_Plus;
672  case UO_Minus: return OO_Minus;
673  case UO_Not: return OO_Tilde;
674  case UO_LNot: return OO_Exclaim;
675  default: return OO_None;
676  }
677}
678
679
680//===----------------------------------------------------------------------===//
681// Postfix Operators.
682//===----------------------------------------------------------------------===//
683
684CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
685                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
686                   SourceLocation rparenloc)
687  : Expr(SC, t, VK, OK_Ordinary,
688         fn->isTypeDependent(),
689         fn->isValueDependent(),
690         fn->containsUnexpandedParameterPack()),
691    NumArgs(numargs) {
692
693  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
694  SubExprs[FN] = fn;
695  for (unsigned i = 0; i != numargs; ++i) {
696    if (args[i]->isTypeDependent())
697      ExprBits.TypeDependent = true;
698    if (args[i]->isValueDependent())
699      ExprBits.ValueDependent = true;
700    if (args[i]->containsUnexpandedParameterPack())
701      ExprBits.ContainsUnexpandedParameterPack = true;
702
703    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
704  }
705
706  CallExprBits.NumPreArgs = NumPreArgs;
707  RParenLoc = rparenloc;
708}
709
710CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
711                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
712  : Expr(CallExprClass, t, VK, OK_Ordinary,
713         fn->isTypeDependent(),
714         fn->isValueDependent(),
715         fn->containsUnexpandedParameterPack()),
716    NumArgs(numargs) {
717
718  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
719  SubExprs[FN] = fn;
720  for (unsigned i = 0; i != numargs; ++i) {
721    if (args[i]->isTypeDependent())
722      ExprBits.TypeDependent = true;
723    if (args[i]->isValueDependent())
724      ExprBits.ValueDependent = true;
725    if (args[i]->containsUnexpandedParameterPack())
726      ExprBits.ContainsUnexpandedParameterPack = true;
727
728    SubExprs[i+PREARGS_START] = args[i];
729  }
730
731  CallExprBits.NumPreArgs = 0;
732  RParenLoc = rparenloc;
733}
734
735CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
736  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
737  // FIXME: Why do we allocate this?
738  SubExprs = new (C) Stmt*[PREARGS_START];
739  CallExprBits.NumPreArgs = 0;
740}
741
742CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
743                   EmptyShell Empty)
744  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
745  // FIXME: Why do we allocate this?
746  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
747  CallExprBits.NumPreArgs = NumPreArgs;
748}
749
750Decl *CallExpr::getCalleeDecl() {
751  Expr *CEE = getCallee()->IgnoreParenCasts();
752  // If we're calling a dereference, look at the pointer instead.
753  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
754    if (BO->isPtrMemOp())
755      CEE = BO->getRHS()->IgnoreParenCasts();
756  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
757    if (UO->getOpcode() == UO_Deref)
758      CEE = UO->getSubExpr()->IgnoreParenCasts();
759  }
760  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
761    return DRE->getDecl();
762  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
763    return ME->getMemberDecl();
764
765  return 0;
766}
767
768FunctionDecl *CallExpr::getDirectCallee() {
769  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
770}
771
772/// setNumArgs - This changes the number of arguments present in this call.
773/// Any orphaned expressions are deleted by this, and any new operands are set
774/// to null.
775void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
776  // No change, just return.
777  if (NumArgs == getNumArgs()) return;
778
779  // If shrinking # arguments, just delete the extras and forgot them.
780  if (NumArgs < getNumArgs()) {
781    this->NumArgs = NumArgs;
782    return;
783  }
784
785  // Otherwise, we are growing the # arguments.  New an bigger argument array.
786  unsigned NumPreArgs = getNumPreArgs();
787  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
788  // Copy over args.
789  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
790    NewSubExprs[i] = SubExprs[i];
791  // Null out new args.
792  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
793       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
794    NewSubExprs[i] = 0;
795
796  if (SubExprs) C.Deallocate(SubExprs);
797  SubExprs = NewSubExprs;
798  this->NumArgs = NumArgs;
799}
800
801/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
802/// not, return 0.
803unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
804  // All simple function calls (e.g. func()) are implicitly cast to pointer to
805  // function. As a result, we try and obtain the DeclRefExpr from the
806  // ImplicitCastExpr.
807  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
808  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
809    return 0;
810
811  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
812  if (!DRE)
813    return 0;
814
815  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
816  if (!FDecl)
817    return 0;
818
819  if (!FDecl->getIdentifier())
820    return 0;
821
822  return FDecl->getBuiltinID();
823}
824
825QualType CallExpr::getCallReturnType() const {
826  QualType CalleeType = getCallee()->getType();
827  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
828    CalleeType = FnTypePtr->getPointeeType();
829  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
830    CalleeType = BPT->getPointeeType();
831  else if (const MemberPointerType *MPT
832                                      = CalleeType->getAs<MemberPointerType>())
833    CalleeType = MPT->getPointeeType();
834
835  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
836  return FnType->getResultType();
837}
838
839SourceRange CallExpr::getSourceRange() const {
840  if (isa<CXXOperatorCallExpr>(this))
841    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
842
843  SourceLocation begin = getCallee()->getLocStart();
844  if (begin.isInvalid() && getNumArgs() > 0)
845    begin = getArg(0)->getLocStart();
846  SourceLocation end = getRParenLoc();
847  if (end.isInvalid() && getNumArgs() > 0)
848    end = getArg(getNumArgs() - 1)->getLocEnd();
849  return SourceRange(begin, end);
850}
851
852OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
853                                   SourceLocation OperatorLoc,
854                                   TypeSourceInfo *tsi,
855                                   OffsetOfNode* compsPtr, unsigned numComps,
856                                   Expr** exprsPtr, unsigned numExprs,
857                                   SourceLocation RParenLoc) {
858  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
859                         sizeof(OffsetOfNode) * numComps +
860                         sizeof(Expr*) * numExprs);
861
862  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
863                                exprsPtr, numExprs, RParenLoc);
864}
865
866OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
867                                        unsigned numComps, unsigned numExprs) {
868  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
869                         sizeof(OffsetOfNode) * numComps +
870                         sizeof(Expr*) * numExprs);
871  return new (Mem) OffsetOfExpr(numComps, numExprs);
872}
873
874OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
875                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
876                           OffsetOfNode* compsPtr, unsigned numComps,
877                           Expr** exprsPtr, unsigned numExprs,
878                           SourceLocation RParenLoc)
879  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
880         /*TypeDependent=*/false,
881         /*ValueDependent=*/tsi->getType()->isDependentType(),
882         tsi->getType()->containsUnexpandedParameterPack()),
883    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
884    NumComps(numComps), NumExprs(numExprs)
885{
886  for(unsigned i = 0; i < numComps; ++i) {
887    setComponent(i, compsPtr[i]);
888  }
889
890  for(unsigned i = 0; i < numExprs; ++i) {
891    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
892      ExprBits.ValueDependent = true;
893    if (exprsPtr[i]->containsUnexpandedParameterPack())
894      ExprBits.ContainsUnexpandedParameterPack = true;
895
896    setIndexExpr(i, exprsPtr[i]);
897  }
898}
899
900IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
901  assert(getKind() == Field || getKind() == Identifier);
902  if (getKind() == Field)
903    return getField()->getIdentifier();
904
905  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
906}
907
908MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
909                               NestedNameSpecifier *qual,
910                               SourceRange qualrange,
911                               ValueDecl *memberdecl,
912                               DeclAccessPair founddecl,
913                               DeclarationNameInfo nameinfo,
914                               const TemplateArgumentListInfo *targs,
915                               QualType ty,
916                               ExprValueKind vk,
917                               ExprObjectKind ok) {
918  std::size_t Size = sizeof(MemberExpr);
919
920  bool hasQualOrFound = (qual != 0 ||
921                         founddecl.getDecl() != memberdecl ||
922                         founddecl.getAccess() != memberdecl->getAccess());
923  if (hasQualOrFound)
924    Size += sizeof(MemberNameQualifier);
925
926  if (targs)
927    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
928
929  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
930  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
931                                       ty, vk, ok);
932
933  if (hasQualOrFound) {
934    if (qual && qual->isDependent()) {
935      E->setValueDependent(true);
936      E->setTypeDependent(true);
937    }
938    E->HasQualifierOrFoundDecl = true;
939
940    MemberNameQualifier *NQ = E->getMemberQualifier();
941    NQ->NNS = qual;
942    NQ->Range = qualrange;
943    NQ->FoundDecl = founddecl;
944  }
945
946  if (targs) {
947    E->HasExplicitTemplateArgumentList = true;
948    E->getExplicitTemplateArgs().initializeFrom(*targs);
949  }
950
951  return E;
952}
953
954const char *CastExpr::getCastKindName() const {
955  switch (getCastKind()) {
956  case CK_Dependent:
957    return "Dependent";
958  case CK_BitCast:
959    return "BitCast";
960  case CK_LValueBitCast:
961    return "LValueBitCast";
962  case CK_LValueToRValue:
963    return "LValueToRValue";
964  case CK_GetObjCProperty:
965    return "GetObjCProperty";
966  case CK_NoOp:
967    return "NoOp";
968  case CK_BaseToDerived:
969    return "BaseToDerived";
970  case CK_DerivedToBase:
971    return "DerivedToBase";
972  case CK_UncheckedDerivedToBase:
973    return "UncheckedDerivedToBase";
974  case CK_Dynamic:
975    return "Dynamic";
976  case CK_ToUnion:
977    return "ToUnion";
978  case CK_ArrayToPointerDecay:
979    return "ArrayToPointerDecay";
980  case CK_FunctionToPointerDecay:
981    return "FunctionToPointerDecay";
982  case CK_NullToMemberPointer:
983    return "NullToMemberPointer";
984  case CK_NullToPointer:
985    return "NullToPointer";
986  case CK_BaseToDerivedMemberPointer:
987    return "BaseToDerivedMemberPointer";
988  case CK_DerivedToBaseMemberPointer:
989    return "DerivedToBaseMemberPointer";
990  case CK_UserDefinedConversion:
991    return "UserDefinedConversion";
992  case CK_ConstructorConversion:
993    return "ConstructorConversion";
994  case CK_IntegralToPointer:
995    return "IntegralToPointer";
996  case CK_PointerToIntegral:
997    return "PointerToIntegral";
998  case CK_PointerToBoolean:
999    return "PointerToBoolean";
1000  case CK_ToVoid:
1001    return "ToVoid";
1002  case CK_VectorSplat:
1003    return "VectorSplat";
1004  case CK_IntegralCast:
1005    return "IntegralCast";
1006  case CK_IntegralToBoolean:
1007    return "IntegralToBoolean";
1008  case CK_IntegralToFloating:
1009    return "IntegralToFloating";
1010  case CK_FloatingToIntegral:
1011    return "FloatingToIntegral";
1012  case CK_FloatingCast:
1013    return "FloatingCast";
1014  case CK_FloatingToBoolean:
1015    return "FloatingToBoolean";
1016  case CK_MemberPointerToBoolean:
1017    return "MemberPointerToBoolean";
1018  case CK_AnyPointerToObjCPointerCast:
1019    return "AnyPointerToObjCPointerCast";
1020  case CK_AnyPointerToBlockPointerCast:
1021    return "AnyPointerToBlockPointerCast";
1022  case CK_ObjCObjectLValueCast:
1023    return "ObjCObjectLValueCast";
1024  case CK_FloatingRealToComplex:
1025    return "FloatingRealToComplex";
1026  case CK_FloatingComplexToReal:
1027    return "FloatingComplexToReal";
1028  case CK_FloatingComplexToBoolean:
1029    return "FloatingComplexToBoolean";
1030  case CK_FloatingComplexCast:
1031    return "FloatingComplexCast";
1032  case CK_FloatingComplexToIntegralComplex:
1033    return "FloatingComplexToIntegralComplex";
1034  case CK_IntegralRealToComplex:
1035    return "IntegralRealToComplex";
1036  case CK_IntegralComplexToReal:
1037    return "IntegralComplexToReal";
1038  case CK_IntegralComplexToBoolean:
1039    return "IntegralComplexToBoolean";
1040  case CK_IntegralComplexCast:
1041    return "IntegralComplexCast";
1042  case CK_IntegralComplexToFloatingComplex:
1043    return "IntegralComplexToFloatingComplex";
1044  }
1045
1046  llvm_unreachable("Unhandled cast kind!");
1047  return 0;
1048}
1049
1050Expr *CastExpr::getSubExprAsWritten() {
1051  Expr *SubExpr = 0;
1052  CastExpr *E = this;
1053  do {
1054    SubExpr = E->getSubExpr();
1055
1056    // Skip any temporary bindings; they're implicit.
1057    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1058      SubExpr = Binder->getSubExpr();
1059
1060    // Conversions by constructor and conversion functions have a
1061    // subexpression describing the call; strip it off.
1062    if (E->getCastKind() == CK_ConstructorConversion)
1063      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1064    else if (E->getCastKind() == CK_UserDefinedConversion)
1065      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1066
1067    // If the subexpression we're left with is an implicit cast, look
1068    // through that, too.
1069  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1070
1071  return SubExpr;
1072}
1073
1074CXXBaseSpecifier **CastExpr::path_buffer() {
1075  switch (getStmtClass()) {
1076#define ABSTRACT_STMT(x)
1077#define CASTEXPR(Type, Base) \
1078  case Stmt::Type##Class: \
1079    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1080#define STMT(Type, Base)
1081#include "clang/AST/StmtNodes.inc"
1082  default:
1083    llvm_unreachable("non-cast expressions not possible here");
1084    return 0;
1085  }
1086}
1087
1088void CastExpr::setCastPath(const CXXCastPath &Path) {
1089  assert(Path.size() == path_size());
1090  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1091}
1092
1093ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1094                                           CastKind Kind, Expr *Operand,
1095                                           const CXXCastPath *BasePath,
1096                                           ExprValueKind VK) {
1097  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1098  void *Buffer =
1099    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1100  ImplicitCastExpr *E =
1101    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1102  if (PathSize) E->setCastPath(*BasePath);
1103  return E;
1104}
1105
1106ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1107                                                unsigned PathSize) {
1108  void *Buffer =
1109    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1110  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1111}
1112
1113
1114CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1115                                       ExprValueKind VK, CastKind K, Expr *Op,
1116                                       const CXXCastPath *BasePath,
1117                                       TypeSourceInfo *WrittenTy,
1118                                       SourceLocation L, SourceLocation R) {
1119  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1120  void *Buffer =
1121    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1122  CStyleCastExpr *E =
1123    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1124  if (PathSize) E->setCastPath(*BasePath);
1125  return E;
1126}
1127
1128CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1129  void *Buffer =
1130    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1131  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1132}
1133
1134/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1135/// corresponds to, e.g. "<<=".
1136const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1137  switch (Op) {
1138  case BO_PtrMemD:   return ".*";
1139  case BO_PtrMemI:   return "->*";
1140  case BO_Mul:       return "*";
1141  case BO_Div:       return "/";
1142  case BO_Rem:       return "%";
1143  case BO_Add:       return "+";
1144  case BO_Sub:       return "-";
1145  case BO_Shl:       return "<<";
1146  case BO_Shr:       return ">>";
1147  case BO_LT:        return "<";
1148  case BO_GT:        return ">";
1149  case BO_LE:        return "<=";
1150  case BO_GE:        return ">=";
1151  case BO_EQ:        return "==";
1152  case BO_NE:        return "!=";
1153  case BO_And:       return "&";
1154  case BO_Xor:       return "^";
1155  case BO_Or:        return "|";
1156  case BO_LAnd:      return "&&";
1157  case BO_LOr:       return "||";
1158  case BO_Assign:    return "=";
1159  case BO_MulAssign: return "*=";
1160  case BO_DivAssign: return "/=";
1161  case BO_RemAssign: return "%=";
1162  case BO_AddAssign: return "+=";
1163  case BO_SubAssign: return "-=";
1164  case BO_ShlAssign: return "<<=";
1165  case BO_ShrAssign: return ">>=";
1166  case BO_AndAssign: return "&=";
1167  case BO_XorAssign: return "^=";
1168  case BO_OrAssign:  return "|=";
1169  case BO_Comma:     return ",";
1170  }
1171
1172  return "";
1173}
1174
1175BinaryOperatorKind
1176BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1177  switch (OO) {
1178  default: assert(false && "Not an overloadable binary operator");
1179  case OO_Plus: return BO_Add;
1180  case OO_Minus: return BO_Sub;
1181  case OO_Star: return BO_Mul;
1182  case OO_Slash: return BO_Div;
1183  case OO_Percent: return BO_Rem;
1184  case OO_Caret: return BO_Xor;
1185  case OO_Amp: return BO_And;
1186  case OO_Pipe: return BO_Or;
1187  case OO_Equal: return BO_Assign;
1188  case OO_Less: return BO_LT;
1189  case OO_Greater: return BO_GT;
1190  case OO_PlusEqual: return BO_AddAssign;
1191  case OO_MinusEqual: return BO_SubAssign;
1192  case OO_StarEqual: return BO_MulAssign;
1193  case OO_SlashEqual: return BO_DivAssign;
1194  case OO_PercentEqual: return BO_RemAssign;
1195  case OO_CaretEqual: return BO_XorAssign;
1196  case OO_AmpEqual: return BO_AndAssign;
1197  case OO_PipeEqual: return BO_OrAssign;
1198  case OO_LessLess: return BO_Shl;
1199  case OO_GreaterGreater: return BO_Shr;
1200  case OO_LessLessEqual: return BO_ShlAssign;
1201  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1202  case OO_EqualEqual: return BO_EQ;
1203  case OO_ExclaimEqual: return BO_NE;
1204  case OO_LessEqual: return BO_LE;
1205  case OO_GreaterEqual: return BO_GE;
1206  case OO_AmpAmp: return BO_LAnd;
1207  case OO_PipePipe: return BO_LOr;
1208  case OO_Comma: return BO_Comma;
1209  case OO_ArrowStar: return BO_PtrMemI;
1210  }
1211}
1212
1213OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1214  static const OverloadedOperatorKind OverOps[] = {
1215    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1216    OO_Star, OO_Slash, OO_Percent,
1217    OO_Plus, OO_Minus,
1218    OO_LessLess, OO_GreaterGreater,
1219    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1220    OO_EqualEqual, OO_ExclaimEqual,
1221    OO_Amp,
1222    OO_Caret,
1223    OO_Pipe,
1224    OO_AmpAmp,
1225    OO_PipePipe,
1226    OO_Equal, OO_StarEqual,
1227    OO_SlashEqual, OO_PercentEqual,
1228    OO_PlusEqual, OO_MinusEqual,
1229    OO_LessLessEqual, OO_GreaterGreaterEqual,
1230    OO_AmpEqual, OO_CaretEqual,
1231    OO_PipeEqual,
1232    OO_Comma
1233  };
1234  return OverOps[Opc];
1235}
1236
1237InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1238                           Expr **initExprs, unsigned numInits,
1239                           SourceLocation rbraceloc)
1240  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1241         false),
1242    InitExprs(C, numInits),
1243    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1244    UnionFieldInit(0), HadArrayRangeDesignator(false)
1245{
1246  for (unsigned I = 0; I != numInits; ++I) {
1247    if (initExprs[I]->isTypeDependent())
1248      ExprBits.TypeDependent = true;
1249    if (initExprs[I]->isValueDependent())
1250      ExprBits.ValueDependent = true;
1251    if (initExprs[I]->containsUnexpandedParameterPack())
1252      ExprBits.ContainsUnexpandedParameterPack = true;
1253  }
1254
1255  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1256}
1257
1258void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1259  if (NumInits > InitExprs.size())
1260    InitExprs.reserve(C, NumInits);
1261}
1262
1263void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1264  InitExprs.resize(C, NumInits, 0);
1265}
1266
1267Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1268  if (Init >= InitExprs.size()) {
1269    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1270    InitExprs.back() = expr;
1271    return 0;
1272  }
1273
1274  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1275  InitExprs[Init] = expr;
1276  return Result;
1277}
1278
1279SourceRange InitListExpr::getSourceRange() const {
1280  if (SyntacticForm)
1281    return SyntacticForm->getSourceRange();
1282  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1283  if (Beg.isInvalid()) {
1284    // Find the first non-null initializer.
1285    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1286                                     E = InitExprs.end();
1287      I != E; ++I) {
1288      if (Stmt *S = *I) {
1289        Beg = S->getLocStart();
1290        break;
1291      }
1292    }
1293  }
1294  if (End.isInvalid()) {
1295    // Find the first non-null initializer from the end.
1296    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1297                                             E = InitExprs.rend();
1298      I != E; ++I) {
1299      if (Stmt *S = *I) {
1300        End = S->getSourceRange().getEnd();
1301        break;
1302      }
1303    }
1304  }
1305  return SourceRange(Beg, End);
1306}
1307
1308/// getFunctionType - Return the underlying function type for this block.
1309///
1310const FunctionType *BlockExpr::getFunctionType() const {
1311  return getType()->getAs<BlockPointerType>()->
1312                    getPointeeType()->getAs<FunctionType>();
1313}
1314
1315SourceLocation BlockExpr::getCaretLocation() const {
1316  return TheBlock->getCaretLocation();
1317}
1318const Stmt *BlockExpr::getBody() const {
1319  return TheBlock->getBody();
1320}
1321Stmt *BlockExpr::getBody() {
1322  return TheBlock->getBody();
1323}
1324
1325
1326//===----------------------------------------------------------------------===//
1327// Generic Expression Routines
1328//===----------------------------------------------------------------------===//
1329
1330/// isUnusedResultAWarning - Return true if this immediate expression should
1331/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1332/// with location to warn on and the source range[s] to report with the
1333/// warning.
1334bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1335                                  SourceRange &R2, ASTContext &Ctx) const {
1336  // Don't warn if the expr is type dependent. The type could end up
1337  // instantiating to void.
1338  if (isTypeDependent())
1339    return false;
1340
1341  switch (getStmtClass()) {
1342  default:
1343    if (getType()->isVoidType())
1344      return false;
1345    Loc = getExprLoc();
1346    R1 = getSourceRange();
1347    return true;
1348  case ParenExprClass:
1349    return cast<ParenExpr>(this)->getSubExpr()->
1350      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1351  case UnaryOperatorClass: {
1352    const UnaryOperator *UO = cast<UnaryOperator>(this);
1353
1354    switch (UO->getOpcode()) {
1355    default: break;
1356    case UO_PostInc:
1357    case UO_PostDec:
1358    case UO_PreInc:
1359    case UO_PreDec:                 // ++/--
1360      return false;  // Not a warning.
1361    case UO_Deref:
1362      // Dereferencing a volatile pointer is a side-effect.
1363      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1364        return false;
1365      break;
1366    case UO_Real:
1367    case UO_Imag:
1368      // accessing a piece of a volatile complex is a side-effect.
1369      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1370          .isVolatileQualified())
1371        return false;
1372      break;
1373    case UO_Extension:
1374      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1375    }
1376    Loc = UO->getOperatorLoc();
1377    R1 = UO->getSubExpr()->getSourceRange();
1378    return true;
1379  }
1380  case BinaryOperatorClass: {
1381    const BinaryOperator *BO = cast<BinaryOperator>(this);
1382    switch (BO->getOpcode()) {
1383      default:
1384        break;
1385      // Consider the RHS of comma for side effects. LHS was checked by
1386      // Sema::CheckCommaOperands.
1387      case BO_Comma:
1388        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1389        // lvalue-ness) of an assignment written in a macro.
1390        if (IntegerLiteral *IE =
1391              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1392          if (IE->getValue() == 0)
1393            return false;
1394        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1395      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1396      case BO_LAnd:
1397      case BO_LOr:
1398        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1399            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1400          return false;
1401        break;
1402    }
1403    if (BO->isAssignmentOp())
1404      return false;
1405    Loc = BO->getOperatorLoc();
1406    R1 = BO->getLHS()->getSourceRange();
1407    R2 = BO->getRHS()->getSourceRange();
1408    return true;
1409  }
1410  case CompoundAssignOperatorClass:
1411  case VAArgExprClass:
1412    return false;
1413
1414  case ConditionalOperatorClass: {
1415    // The condition must be evaluated, but if either the LHS or RHS is a
1416    // warning, warn about them.
1417    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1418    if (Exp->getLHS() &&
1419        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1420      return true;
1421    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1422  }
1423
1424  case MemberExprClass:
1425    // If the base pointer or element is to a volatile pointer/field, accessing
1426    // it is a side effect.
1427    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1428      return false;
1429    Loc = cast<MemberExpr>(this)->getMemberLoc();
1430    R1 = SourceRange(Loc, Loc);
1431    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1432    return true;
1433
1434  case ArraySubscriptExprClass:
1435    // If the base pointer or element is to a volatile pointer/field, accessing
1436    // it is a side effect.
1437    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1438      return false;
1439    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1440    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1441    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1442    return true;
1443
1444  case CallExprClass:
1445  case CXXOperatorCallExprClass:
1446  case CXXMemberCallExprClass: {
1447    // If this is a direct call, get the callee.
1448    const CallExpr *CE = cast<CallExpr>(this);
1449    if (const Decl *FD = CE->getCalleeDecl()) {
1450      // If the callee has attribute pure, const, or warn_unused_result, warn
1451      // about it. void foo() { strlen("bar"); } should warn.
1452      //
1453      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1454      // updated to match for QoI.
1455      if (FD->getAttr<WarnUnusedResultAttr>() ||
1456          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1457        Loc = CE->getCallee()->getLocStart();
1458        R1 = CE->getCallee()->getSourceRange();
1459
1460        if (unsigned NumArgs = CE->getNumArgs())
1461          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1462                           CE->getArg(NumArgs-1)->getLocEnd());
1463        return true;
1464      }
1465    }
1466    return false;
1467  }
1468
1469  case CXXTemporaryObjectExprClass:
1470  case CXXConstructExprClass:
1471    return false;
1472
1473  case ObjCMessageExprClass: {
1474    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1475    const ObjCMethodDecl *MD = ME->getMethodDecl();
1476    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1477      Loc = getExprLoc();
1478      return true;
1479    }
1480    return false;
1481  }
1482
1483  case ObjCPropertyRefExprClass:
1484    Loc = getExprLoc();
1485    R1 = getSourceRange();
1486    return true;
1487
1488  case StmtExprClass: {
1489    // Statement exprs don't logically have side effects themselves, but are
1490    // sometimes used in macros in ways that give them a type that is unused.
1491    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1492    // however, if the result of the stmt expr is dead, we don't want to emit a
1493    // warning.
1494    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1495    if (!CS->body_empty()) {
1496      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1497        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1498      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1499        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1500          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1501    }
1502
1503    if (getType()->isVoidType())
1504      return false;
1505    Loc = cast<StmtExpr>(this)->getLParenLoc();
1506    R1 = getSourceRange();
1507    return true;
1508  }
1509  case CStyleCastExprClass:
1510    // If this is an explicit cast to void, allow it.  People do this when they
1511    // think they know what they're doing :).
1512    if (getType()->isVoidType())
1513      return false;
1514    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1515    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1516    return true;
1517  case CXXFunctionalCastExprClass: {
1518    if (getType()->isVoidType())
1519      return false;
1520    const CastExpr *CE = cast<CastExpr>(this);
1521
1522    // If this is a cast to void or a constructor conversion, check the operand.
1523    // Otherwise, the result of the cast is unused.
1524    if (CE->getCastKind() == CK_ToVoid ||
1525        CE->getCastKind() == CK_ConstructorConversion)
1526      return (cast<CastExpr>(this)->getSubExpr()
1527              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1528    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1529    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1530    return true;
1531  }
1532
1533  case ImplicitCastExprClass:
1534    // Check the operand, since implicit casts are inserted by Sema
1535    return (cast<ImplicitCastExpr>(this)
1536            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1537
1538  case CXXDefaultArgExprClass:
1539    return (cast<CXXDefaultArgExpr>(this)
1540            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1541
1542  case CXXNewExprClass:
1543    // FIXME: In theory, there might be new expressions that don't have side
1544    // effects (e.g. a placement new with an uninitialized POD).
1545  case CXXDeleteExprClass:
1546    return false;
1547  case CXXBindTemporaryExprClass:
1548    return (cast<CXXBindTemporaryExpr>(this)
1549            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1550  case ExprWithCleanupsClass:
1551    return (cast<ExprWithCleanups>(this)
1552            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1553  }
1554}
1555
1556/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1557/// returns true, if it is; false otherwise.
1558bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1559  switch (getStmtClass()) {
1560  default:
1561    return false;
1562  case ObjCIvarRefExprClass:
1563    return true;
1564  case Expr::UnaryOperatorClass:
1565    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1566  case ParenExprClass:
1567    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1568  case ImplicitCastExprClass:
1569    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1570  case CStyleCastExprClass:
1571    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1572  case DeclRefExprClass: {
1573    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1574    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1575      if (VD->hasGlobalStorage())
1576        return true;
1577      QualType T = VD->getType();
1578      // dereferencing to a  pointer is always a gc'able candidate,
1579      // unless it is __weak.
1580      return T->isPointerType() &&
1581             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1582    }
1583    return false;
1584  }
1585  case MemberExprClass: {
1586    const MemberExpr *M = cast<MemberExpr>(this);
1587    return M->getBase()->isOBJCGCCandidate(Ctx);
1588  }
1589  case ArraySubscriptExprClass:
1590    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1591  }
1592}
1593
1594bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1595  if (isTypeDependent())
1596    return false;
1597  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1598}
1599
1600static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1601                                          Expr::CanThrowResult CT2) {
1602  // CanThrowResult constants are ordered so that the maximum is the correct
1603  // merge result.
1604  return CT1 > CT2 ? CT1 : CT2;
1605}
1606
1607static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1608  Expr *E = const_cast<Expr*>(CE);
1609  Expr::CanThrowResult R = Expr::CT_Cannot;
1610  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1611    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1612  }
1613  return R;
1614}
1615
1616static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1617                                           bool NullThrows = true) {
1618  if (!D)
1619    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1620
1621  // See if we can get a function type from the decl somehow.
1622  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1623  if (!VD) // If we have no clue what we're calling, assume the worst.
1624    return Expr::CT_Can;
1625
1626  // As an extension, we assume that __attribute__((nothrow)) functions don't
1627  // throw.
1628  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1629    return Expr::CT_Cannot;
1630
1631  QualType T = VD->getType();
1632  const FunctionProtoType *FT;
1633  if ((FT = T->getAs<FunctionProtoType>())) {
1634  } else if (const PointerType *PT = T->getAs<PointerType>())
1635    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1636  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1637    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1638  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1639    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1640  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1641    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1642
1643  if (!FT)
1644    return Expr::CT_Can;
1645
1646  return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1647}
1648
1649static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1650  if (DC->isTypeDependent())
1651    return Expr::CT_Dependent;
1652
1653  if (!DC->getTypeAsWritten()->isReferenceType())
1654    return Expr::CT_Cannot;
1655
1656  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1657}
1658
1659static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1660                                           const CXXTypeidExpr *DC) {
1661  if (DC->isTypeOperand())
1662    return Expr::CT_Cannot;
1663
1664  Expr *Op = DC->getExprOperand();
1665  if (Op->isTypeDependent())
1666    return Expr::CT_Dependent;
1667
1668  const RecordType *RT = Op->getType()->getAs<RecordType>();
1669  if (!RT)
1670    return Expr::CT_Cannot;
1671
1672  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1673    return Expr::CT_Cannot;
1674
1675  if (Op->Classify(C).isPRValue())
1676    return Expr::CT_Cannot;
1677
1678  return Expr::CT_Can;
1679}
1680
1681Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1682  // C++ [expr.unary.noexcept]p3:
1683  //   [Can throw] if in a potentially-evaluated context the expression would
1684  //   contain:
1685  switch (getStmtClass()) {
1686  case CXXThrowExprClass:
1687    //   - a potentially evaluated throw-expression
1688    return CT_Can;
1689
1690  case CXXDynamicCastExprClass: {
1691    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1692    //     where T is a reference type, that requires a run-time check
1693    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1694    if (CT == CT_Can)
1695      return CT;
1696    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1697  }
1698
1699  case CXXTypeidExprClass:
1700    //   - a potentially evaluated typeid expression applied to a glvalue
1701    //     expression whose type is a polymorphic class type
1702    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1703
1704    //   - a potentially evaluated call to a function, member function, function
1705    //     pointer, or member function pointer that does not have a non-throwing
1706    //     exception-specification
1707  case CallExprClass:
1708  case CXXOperatorCallExprClass:
1709  case CXXMemberCallExprClass: {
1710    CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1711    if (CT == CT_Can)
1712      return CT;
1713    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1714  }
1715
1716  case CXXConstructExprClass:
1717  case CXXTemporaryObjectExprClass: {
1718    CanThrowResult CT = CanCalleeThrow(
1719        cast<CXXConstructExpr>(this)->getConstructor());
1720    if (CT == CT_Can)
1721      return CT;
1722    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1723  }
1724
1725  case CXXNewExprClass: {
1726    CanThrowResult CT = MergeCanThrow(
1727        CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1728        CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1729                       /*NullThrows*/false));
1730    if (CT == CT_Can)
1731      return CT;
1732    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1733  }
1734
1735  case CXXDeleteExprClass: {
1736    CanThrowResult CT = CanCalleeThrow(
1737        cast<CXXDeleteExpr>(this)->getOperatorDelete());
1738    if (CT == CT_Can)
1739      return CT;
1740    const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1741    // Unwrap exactly one implicit cast, which converts all pointers to void*.
1742    if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1743      Arg = Cast->getSubExpr();
1744    if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1745      if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1746        CanThrowResult CT2 = CanCalleeThrow(
1747            cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1748        if (CT2 == CT_Can)
1749          return CT2;
1750        CT = MergeCanThrow(CT, CT2);
1751      }
1752    }
1753    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1754  }
1755
1756  case CXXBindTemporaryExprClass: {
1757    // The bound temporary has to be destroyed again, which might throw.
1758    CanThrowResult CT = CanCalleeThrow(
1759      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1760    if (CT == CT_Can)
1761      return CT;
1762    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1763  }
1764
1765    // ObjC message sends are like function calls, but never have exception
1766    // specs.
1767  case ObjCMessageExprClass:
1768  case ObjCPropertyRefExprClass:
1769    return CT_Can;
1770
1771    // Many other things have subexpressions, so we have to test those.
1772    // Some are simple:
1773  case ParenExprClass:
1774  case MemberExprClass:
1775  case CXXReinterpretCastExprClass:
1776  case CXXConstCastExprClass:
1777  case ConditionalOperatorClass:
1778  case CompoundLiteralExprClass:
1779  case ExtVectorElementExprClass:
1780  case InitListExprClass:
1781  case DesignatedInitExprClass:
1782  case ParenListExprClass:
1783  case VAArgExprClass:
1784  case CXXDefaultArgExprClass:
1785  case ExprWithCleanupsClass:
1786  case ObjCIvarRefExprClass:
1787  case ObjCIsaExprClass:
1788  case ShuffleVectorExprClass:
1789    return CanSubExprsThrow(C, this);
1790
1791    // Some might be dependent for other reasons.
1792  case UnaryOperatorClass:
1793  case ArraySubscriptExprClass:
1794  case ImplicitCastExprClass:
1795  case CStyleCastExprClass:
1796  case CXXStaticCastExprClass:
1797  case CXXFunctionalCastExprClass:
1798  case BinaryOperatorClass:
1799  case CompoundAssignOperatorClass: {
1800    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1801    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1802  }
1803
1804    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1805  case StmtExprClass:
1806    return CT_Can;
1807
1808  case ChooseExprClass:
1809    if (isTypeDependent() || isValueDependent())
1810      return CT_Dependent;
1811    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1812
1813    // Some expressions are always dependent.
1814  case DependentScopeDeclRefExprClass:
1815  case CXXUnresolvedConstructExprClass:
1816  case CXXDependentScopeMemberExprClass:
1817    return CT_Dependent;
1818
1819  default:
1820    // All other expressions don't have subexpressions, or else they are
1821    // unevaluated.
1822    return CT_Cannot;
1823  }
1824}
1825
1826Expr* Expr::IgnoreParens() {
1827  Expr* E = this;
1828  while (true) {
1829    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1830      E = P->getSubExpr();
1831      continue;
1832    }
1833    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1834      if (P->getOpcode() == UO_Extension) {
1835        E = P->getSubExpr();
1836        continue;
1837      }
1838    }
1839    return E;
1840  }
1841}
1842
1843/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1844/// or CastExprs or ImplicitCastExprs, returning their operand.
1845Expr *Expr::IgnoreParenCasts() {
1846  Expr *E = this;
1847  while (true) {
1848    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1849      E = P->getSubExpr();
1850      continue;
1851    }
1852    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1853      E = P->getSubExpr();
1854      continue;
1855    }
1856    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1857      if (P->getOpcode() == UO_Extension) {
1858        E = P->getSubExpr();
1859        continue;
1860      }
1861    }
1862    return E;
1863  }
1864}
1865
1866/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
1867/// casts.  This is intended purely as a temporary workaround for code
1868/// that hasn't yet been rewritten to do the right thing about those
1869/// casts, and may disappear along with the last internal use.
1870Expr *Expr::IgnoreParenLValueCasts() {
1871  Expr *E = this;
1872  while (true) {
1873    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1874      E = P->getSubExpr();
1875      continue;
1876    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1877      if (P->getCastKind() == CK_LValueToRValue) {
1878        E = P->getSubExpr();
1879        continue;
1880      }
1881    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1882      if (P->getOpcode() == UO_Extension) {
1883        E = P->getSubExpr();
1884        continue;
1885      }
1886    }
1887    break;
1888  }
1889  return E;
1890}
1891
1892Expr *Expr::IgnoreParenImpCasts() {
1893  Expr *E = this;
1894  while (true) {
1895    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1896      E = P->getSubExpr();
1897      continue;
1898    }
1899    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1900      E = P->getSubExpr();
1901      continue;
1902    }
1903    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1904      if (P->getOpcode() == UO_Extension) {
1905        E = P->getSubExpr();
1906        continue;
1907      }
1908    }
1909    return E;
1910  }
1911}
1912
1913/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1914/// value (including ptr->int casts of the same size).  Strip off any
1915/// ParenExpr or CastExprs, returning their operand.
1916Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1917  Expr *E = this;
1918  while (true) {
1919    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1920      E = P->getSubExpr();
1921      continue;
1922    }
1923
1924    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1925      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1926      // ptr<->int casts of the same width.  We also ignore all identity casts.
1927      Expr *SE = P->getSubExpr();
1928
1929      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1930        E = SE;
1931        continue;
1932      }
1933
1934      if ((E->getType()->isPointerType() ||
1935           E->getType()->isIntegralType(Ctx)) &&
1936          (SE->getType()->isPointerType() ||
1937           SE->getType()->isIntegralType(Ctx)) &&
1938          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1939        E = SE;
1940        continue;
1941      }
1942    }
1943
1944    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1945      if (P->getOpcode() == UO_Extension) {
1946        E = P->getSubExpr();
1947        continue;
1948      }
1949    }
1950
1951    return E;
1952  }
1953}
1954
1955bool Expr::isDefaultArgument() const {
1956  const Expr *E = this;
1957  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1958    E = ICE->getSubExprAsWritten();
1959
1960  return isa<CXXDefaultArgExpr>(E);
1961}
1962
1963/// \brief Skip over any no-op casts and any temporary-binding
1964/// expressions.
1965static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
1966  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1967    if (ICE->getCastKind() == CK_NoOp)
1968      E = ICE->getSubExpr();
1969    else
1970      break;
1971  }
1972
1973  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1974    E = BE->getSubExpr();
1975
1976  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1977    if (ICE->getCastKind() == CK_NoOp)
1978      E = ICE->getSubExpr();
1979    else
1980      break;
1981  }
1982
1983  return E->IgnoreParens();
1984}
1985
1986/// isTemporaryObject - Determines if this expression produces a
1987/// temporary of the given class type.
1988bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1989  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1990    return false;
1991
1992  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
1993
1994  // Temporaries are by definition pr-values of class type.
1995  if (!E->Classify(C).isPRValue()) {
1996    // In this context, property reference is a message call and is pr-value.
1997    if (!isa<ObjCPropertyRefExpr>(E))
1998      return false;
1999  }
2000
2001  // Black-list a few cases which yield pr-values of class type that don't
2002  // refer to temporaries of that type:
2003
2004  // - implicit derived-to-base conversions
2005  if (isa<ImplicitCastExpr>(E)) {
2006    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2007    case CK_DerivedToBase:
2008    case CK_UncheckedDerivedToBase:
2009      return false;
2010    default:
2011      break;
2012    }
2013  }
2014
2015  // - member expressions (all)
2016  if (isa<MemberExpr>(E))
2017    return false;
2018
2019  // - opaque values (all)
2020  if (isa<OpaqueValueExpr>(E))
2021    return false;
2022
2023  return true;
2024}
2025
2026/// hasAnyTypeDependentArguments - Determines if any of the expressions
2027/// in Exprs is type-dependent.
2028bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
2029  for (unsigned I = 0; I < NumExprs; ++I)
2030    if (Exprs[I]->isTypeDependent())
2031      return true;
2032
2033  return false;
2034}
2035
2036/// hasAnyValueDependentArguments - Determines if any of the expressions
2037/// in Exprs is value-dependent.
2038bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
2039  for (unsigned I = 0; I < NumExprs; ++I)
2040    if (Exprs[I]->isValueDependent())
2041      return true;
2042
2043  return false;
2044}
2045
2046bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2047  // This function is attempting whether an expression is an initializer
2048  // which can be evaluated at compile-time.  isEvaluatable handles most
2049  // of the cases, but it can't deal with some initializer-specific
2050  // expressions, and it can't deal with aggregates; we deal with those here,
2051  // and fall back to isEvaluatable for the other cases.
2052
2053  // If we ever capture reference-binding directly in the AST, we can
2054  // kill the second parameter.
2055
2056  if (IsForRef) {
2057    EvalResult Result;
2058    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2059  }
2060
2061  switch (getStmtClass()) {
2062  default: break;
2063  case StringLiteralClass:
2064  case ObjCStringLiteralClass:
2065  case ObjCEncodeExprClass:
2066    return true;
2067  case CXXTemporaryObjectExprClass:
2068  case CXXConstructExprClass: {
2069    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2070
2071    // Only if it's
2072    // 1) an application of the trivial default constructor or
2073    if (!CE->getConstructor()->isTrivial()) return false;
2074    if (!CE->getNumArgs()) return true;
2075
2076    // 2) an elidable trivial copy construction of an operand which is
2077    //    itself a constant initializer.  Note that we consider the
2078    //    operand on its own, *not* as a reference binding.
2079    return CE->isElidable() &&
2080           CE->getArg(0)->isConstantInitializer(Ctx, false);
2081  }
2082  case CompoundLiteralExprClass: {
2083    // This handles gcc's extension that allows global initializers like
2084    // "struct x {int x;} x = (struct x) {};".
2085    // FIXME: This accepts other cases it shouldn't!
2086    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2087    return Exp->isConstantInitializer(Ctx, false);
2088  }
2089  case InitListExprClass: {
2090    // FIXME: This doesn't deal with fields with reference types correctly.
2091    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2092    // to bitfields.
2093    const InitListExpr *Exp = cast<InitListExpr>(this);
2094    unsigned numInits = Exp->getNumInits();
2095    for (unsigned i = 0; i < numInits; i++) {
2096      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2097        return false;
2098    }
2099    return true;
2100  }
2101  case ImplicitValueInitExprClass:
2102    return true;
2103  case ParenExprClass:
2104    return cast<ParenExpr>(this)->getSubExpr()
2105      ->isConstantInitializer(Ctx, IsForRef);
2106  case ChooseExprClass:
2107    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2108      ->isConstantInitializer(Ctx, IsForRef);
2109  case UnaryOperatorClass: {
2110    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2111    if (Exp->getOpcode() == UO_Extension)
2112      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2113    break;
2114  }
2115  case BinaryOperatorClass: {
2116    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
2117    // but this handles the common case.
2118    const BinaryOperator *Exp = cast<BinaryOperator>(this);
2119    if (Exp->getOpcode() == BO_Sub &&
2120        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
2121        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
2122      return true;
2123    break;
2124  }
2125  case CXXFunctionalCastExprClass:
2126  case CXXStaticCastExprClass:
2127  case ImplicitCastExprClass:
2128  case CStyleCastExprClass:
2129    // Handle casts with a destination that's a struct or union; this
2130    // deals with both the gcc no-op struct cast extension and the
2131    // cast-to-union extension.
2132    if (getType()->isRecordType())
2133      return cast<CastExpr>(this)->getSubExpr()
2134        ->isConstantInitializer(Ctx, false);
2135
2136    // Integer->integer casts can be handled here, which is important for
2137    // things like (int)(&&x-&&y).  Scary but true.
2138    if (getType()->isIntegerType() &&
2139        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
2140      return cast<CastExpr>(this)->getSubExpr()
2141        ->isConstantInitializer(Ctx, false);
2142
2143    break;
2144  }
2145  return isEvaluatable(Ctx);
2146}
2147
2148/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2149/// pointer constant or not, as well as the specific kind of constant detected.
2150/// Null pointer constants can be integer constant expressions with the
2151/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2152/// (a GNU extension).
2153Expr::NullPointerConstantKind
2154Expr::isNullPointerConstant(ASTContext &Ctx,
2155                            NullPointerConstantValueDependence NPC) const {
2156  if (isValueDependent()) {
2157    switch (NPC) {
2158    case NPC_NeverValueDependent:
2159      assert(false && "Unexpected value dependent expression!");
2160      // If the unthinkable happens, fall through to the safest alternative.
2161
2162    case NPC_ValueDependentIsNull:
2163      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2164        return NPCK_ZeroInteger;
2165      else
2166        return NPCK_NotNull;
2167
2168    case NPC_ValueDependentIsNotNull:
2169      return NPCK_NotNull;
2170    }
2171  }
2172
2173  // Strip off a cast to void*, if it exists. Except in C++.
2174  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2175    if (!Ctx.getLangOptions().CPlusPlus) {
2176      // Check that it is a cast to void*.
2177      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2178        QualType Pointee = PT->getPointeeType();
2179        if (!Pointee.hasQualifiers() &&
2180            Pointee->isVoidType() &&                              // to void*
2181            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2182          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2183      }
2184    }
2185  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2186    // Ignore the ImplicitCastExpr type entirely.
2187    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2188  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2189    // Accept ((void*)0) as a null pointer constant, as many other
2190    // implementations do.
2191    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2192  } else if (const CXXDefaultArgExpr *DefaultArg
2193               = dyn_cast<CXXDefaultArgExpr>(this)) {
2194    // See through default argument expressions
2195    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2196  } else if (isa<GNUNullExpr>(this)) {
2197    // The GNU __null extension is always a null pointer constant.
2198    return NPCK_GNUNull;
2199  }
2200
2201  // C++0x nullptr_t is always a null pointer constant.
2202  if (getType()->isNullPtrType())
2203    return NPCK_CXX0X_nullptr;
2204
2205  if (const RecordType *UT = getType()->getAsUnionType())
2206    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2207      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2208        const Expr *InitExpr = CLE->getInitializer();
2209        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2210          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2211      }
2212  // This expression must be an integer type.
2213  if (!getType()->isIntegerType() ||
2214      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2215    return NPCK_NotNull;
2216
2217  // If we have an integer constant expression, we need to *evaluate* it and
2218  // test for the value 0.
2219  llvm::APSInt Result;
2220  bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
2221
2222  return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
2223}
2224
2225/// \brief If this expression is an l-value for an Objective C
2226/// property, find the underlying property reference expression.
2227const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2228  const Expr *E = this;
2229  while (true) {
2230    assert((E->getValueKind() == VK_LValue &&
2231            E->getObjectKind() == OK_ObjCProperty) &&
2232           "expression is not a property reference");
2233    E = E->IgnoreParenCasts();
2234    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2235      if (BO->getOpcode() == BO_Comma) {
2236        E = BO->getRHS();
2237        continue;
2238      }
2239    }
2240
2241    break;
2242  }
2243
2244  return cast<ObjCPropertyRefExpr>(E);
2245}
2246
2247FieldDecl *Expr::getBitField() {
2248  Expr *E = this->IgnoreParens();
2249
2250  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2251    if (ICE->getCastKind() == CK_LValueToRValue ||
2252        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2253      E = ICE->getSubExpr()->IgnoreParens();
2254    else
2255      break;
2256  }
2257
2258  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2259    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2260      if (Field->isBitField())
2261        return Field;
2262
2263  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2264    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2265      if (Field->isBitField())
2266        return Field;
2267
2268  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2269    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2270      return BinOp->getLHS()->getBitField();
2271
2272  return 0;
2273}
2274
2275bool Expr::refersToVectorElement() const {
2276  const Expr *E = this->IgnoreParens();
2277
2278  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2279    if (ICE->getValueKind() != VK_RValue &&
2280        ICE->getCastKind() == CK_NoOp)
2281      E = ICE->getSubExpr()->IgnoreParens();
2282    else
2283      break;
2284  }
2285
2286  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2287    return ASE->getBase()->getType()->isVectorType();
2288
2289  if (isa<ExtVectorElementExpr>(E))
2290    return true;
2291
2292  return false;
2293}
2294
2295/// isArrow - Return true if the base expression is a pointer to vector,
2296/// return false if the base expression is a vector.
2297bool ExtVectorElementExpr::isArrow() const {
2298  return getBase()->getType()->isPointerType();
2299}
2300
2301unsigned ExtVectorElementExpr::getNumElements() const {
2302  if (const VectorType *VT = getType()->getAs<VectorType>())
2303    return VT->getNumElements();
2304  return 1;
2305}
2306
2307/// containsDuplicateElements - Return true if any element access is repeated.
2308bool ExtVectorElementExpr::containsDuplicateElements() const {
2309  // FIXME: Refactor this code to an accessor on the AST node which returns the
2310  // "type" of component access, and share with code below and in Sema.
2311  llvm::StringRef Comp = Accessor->getName();
2312
2313  // Halving swizzles do not contain duplicate elements.
2314  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2315    return false;
2316
2317  // Advance past s-char prefix on hex swizzles.
2318  if (Comp[0] == 's' || Comp[0] == 'S')
2319    Comp = Comp.substr(1);
2320
2321  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2322    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2323        return true;
2324
2325  return false;
2326}
2327
2328/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2329void ExtVectorElementExpr::getEncodedElementAccess(
2330                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2331  llvm::StringRef Comp = Accessor->getName();
2332  if (Comp[0] == 's' || Comp[0] == 'S')
2333    Comp = Comp.substr(1);
2334
2335  bool isHi =   Comp == "hi";
2336  bool isLo =   Comp == "lo";
2337  bool isEven = Comp == "even";
2338  bool isOdd  = Comp == "odd";
2339
2340  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2341    uint64_t Index;
2342
2343    if (isHi)
2344      Index = e + i;
2345    else if (isLo)
2346      Index = i;
2347    else if (isEven)
2348      Index = 2 * i;
2349    else if (isOdd)
2350      Index = 2 * i + 1;
2351    else
2352      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2353
2354    Elts.push_back(Index);
2355  }
2356}
2357
2358ObjCMessageExpr::ObjCMessageExpr(QualType T,
2359                                 ExprValueKind VK,
2360                                 SourceLocation LBracLoc,
2361                                 SourceLocation SuperLoc,
2362                                 bool IsInstanceSuper,
2363                                 QualType SuperType,
2364                                 Selector Sel,
2365                                 SourceLocation SelLoc,
2366                                 ObjCMethodDecl *Method,
2367                                 Expr **Args, unsigned NumArgs,
2368                                 SourceLocation RBracLoc)
2369  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2370         /*TypeDependent=*/false, /*ValueDependent=*/false,
2371         /*ContainsUnexpandedParameterPack=*/false),
2372    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2373    HasMethod(Method != 0), SuperLoc(SuperLoc),
2374    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2375                                                       : Sel.getAsOpaquePtr())),
2376    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2377{
2378  setReceiverPointer(SuperType.getAsOpaquePtr());
2379  if (NumArgs)
2380    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2381}
2382
2383ObjCMessageExpr::ObjCMessageExpr(QualType T,
2384                                 ExprValueKind VK,
2385                                 SourceLocation LBracLoc,
2386                                 TypeSourceInfo *Receiver,
2387                                 Selector Sel,
2388                                 SourceLocation SelLoc,
2389                                 ObjCMethodDecl *Method,
2390                                 Expr **Args, unsigned NumArgs,
2391                                 SourceLocation RBracLoc)
2392  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2393         T->isDependentType(), T->containsUnexpandedParameterPack()),
2394    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2395    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2396                                                       : Sel.getAsOpaquePtr())),
2397    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2398{
2399  setReceiverPointer(Receiver);
2400  Expr **MyArgs = getArgs();
2401  for (unsigned I = 0; I != NumArgs; ++I) {
2402    if (Args[I]->isTypeDependent())
2403      ExprBits.TypeDependent = true;
2404    if (Args[I]->isValueDependent())
2405      ExprBits.ValueDependent = true;
2406    if (Args[I]->containsUnexpandedParameterPack())
2407      ExprBits.ContainsUnexpandedParameterPack = true;
2408
2409    MyArgs[I] = Args[I];
2410  }
2411}
2412
2413ObjCMessageExpr::ObjCMessageExpr(QualType T,
2414                                 ExprValueKind VK,
2415                                 SourceLocation LBracLoc,
2416                                 Expr *Receiver,
2417                                 Selector Sel,
2418                                 SourceLocation SelLoc,
2419                                 ObjCMethodDecl *Method,
2420                                 Expr **Args, unsigned NumArgs,
2421                                 SourceLocation RBracLoc)
2422  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2423         Receiver->isTypeDependent(),
2424         Receiver->containsUnexpandedParameterPack()),
2425    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2426    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2427                                                       : Sel.getAsOpaquePtr())),
2428    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2429{
2430  setReceiverPointer(Receiver);
2431  Expr **MyArgs = getArgs();
2432  for (unsigned I = 0; I != NumArgs; ++I) {
2433    if (Args[I]->isTypeDependent())
2434      ExprBits.TypeDependent = true;
2435    if (Args[I]->isValueDependent())
2436      ExprBits.ValueDependent = true;
2437    if (Args[I]->containsUnexpandedParameterPack())
2438      ExprBits.ContainsUnexpandedParameterPack = true;
2439
2440    MyArgs[I] = Args[I];
2441  }
2442}
2443
2444ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2445                                         ExprValueKind VK,
2446                                         SourceLocation LBracLoc,
2447                                         SourceLocation SuperLoc,
2448                                         bool IsInstanceSuper,
2449                                         QualType SuperType,
2450                                         Selector Sel,
2451                                         SourceLocation SelLoc,
2452                                         ObjCMethodDecl *Method,
2453                                         Expr **Args, unsigned NumArgs,
2454                                         SourceLocation RBracLoc) {
2455  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2456    NumArgs * sizeof(Expr *);
2457  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2458  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2459                                   SuperType, Sel, SelLoc, Method, Args,NumArgs,
2460                                   RBracLoc);
2461}
2462
2463ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2464                                         ExprValueKind VK,
2465                                         SourceLocation LBracLoc,
2466                                         TypeSourceInfo *Receiver,
2467                                         Selector Sel,
2468                                         SourceLocation SelLoc,
2469                                         ObjCMethodDecl *Method,
2470                                         Expr **Args, unsigned NumArgs,
2471                                         SourceLocation RBracLoc) {
2472  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2473    NumArgs * sizeof(Expr *);
2474  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2475  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2476                                   Method, Args, NumArgs, RBracLoc);
2477}
2478
2479ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2480                                         ExprValueKind VK,
2481                                         SourceLocation LBracLoc,
2482                                         Expr *Receiver,
2483                                         Selector Sel,
2484                                         SourceLocation SelLoc,
2485                                         ObjCMethodDecl *Method,
2486                                         Expr **Args, unsigned NumArgs,
2487                                         SourceLocation RBracLoc) {
2488  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2489    NumArgs * sizeof(Expr *);
2490  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2491  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2492                                   Method, Args, NumArgs, RBracLoc);
2493}
2494
2495ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2496                                              unsigned NumArgs) {
2497  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2498    NumArgs * sizeof(Expr *);
2499  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2500  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2501}
2502
2503SourceRange ObjCMessageExpr::getReceiverRange() const {
2504  switch (getReceiverKind()) {
2505  case Instance:
2506    return getInstanceReceiver()->getSourceRange();
2507
2508  case Class:
2509    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2510
2511  case SuperInstance:
2512  case SuperClass:
2513    return getSuperLoc();
2514  }
2515
2516  return SourceLocation();
2517}
2518
2519Selector ObjCMessageExpr::getSelector() const {
2520  if (HasMethod)
2521    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2522                                                               ->getSelector();
2523  return Selector(SelectorOrMethod);
2524}
2525
2526ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2527  switch (getReceiverKind()) {
2528  case Instance:
2529    if (const ObjCObjectPointerType *Ptr
2530          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2531      return Ptr->getInterfaceDecl();
2532    break;
2533
2534  case Class:
2535    if (const ObjCObjectType *Ty
2536          = getClassReceiver()->getAs<ObjCObjectType>())
2537      return Ty->getInterface();
2538    break;
2539
2540  case SuperInstance:
2541    if (const ObjCObjectPointerType *Ptr
2542          = getSuperType()->getAs<ObjCObjectPointerType>())
2543      return Ptr->getInterfaceDecl();
2544    break;
2545
2546  case SuperClass:
2547    if (const ObjCObjectType *Iface
2548          = getSuperType()->getAs<ObjCObjectType>())
2549      return Iface->getInterface();
2550    break;
2551  }
2552
2553  return 0;
2554}
2555
2556bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
2557  return getCond()->EvaluateAsInt(C) != 0;
2558}
2559
2560ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2561                                     QualType Type, SourceLocation BLoc,
2562                                     SourceLocation RP)
2563   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2564          Type->isDependentType(), Type->isDependentType(),
2565          Type->containsUnexpandedParameterPack()),
2566     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
2567{
2568  SubExprs = new (C) Stmt*[nexpr];
2569  for (unsigned i = 0; i < nexpr; i++) {
2570    if (args[i]->isTypeDependent())
2571      ExprBits.TypeDependent = true;
2572    if (args[i]->isValueDependent())
2573      ExprBits.ValueDependent = true;
2574    if (args[i]->containsUnexpandedParameterPack())
2575      ExprBits.ContainsUnexpandedParameterPack = true;
2576
2577    SubExprs[i] = args[i];
2578  }
2579}
2580
2581void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2582                                 unsigned NumExprs) {
2583  if (SubExprs) C.Deallocate(SubExprs);
2584
2585  SubExprs = new (C) Stmt* [NumExprs];
2586  this->NumExprs = NumExprs;
2587  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2588}
2589
2590//===----------------------------------------------------------------------===//
2591//  DesignatedInitExpr
2592//===----------------------------------------------------------------------===//
2593
2594IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2595  assert(Kind == FieldDesignator && "Only valid on a field designator");
2596  if (Field.NameOrField & 0x01)
2597    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2598  else
2599    return getField()->getIdentifier();
2600}
2601
2602DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2603                                       unsigned NumDesignators,
2604                                       const Designator *Designators,
2605                                       SourceLocation EqualOrColonLoc,
2606                                       bool GNUSyntax,
2607                                       Expr **IndexExprs,
2608                                       unsigned NumIndexExprs,
2609                                       Expr *Init)
2610  : Expr(DesignatedInitExprClass, Ty,
2611         Init->getValueKind(), Init->getObjectKind(),
2612         Init->isTypeDependent(), Init->isValueDependent(),
2613         Init->containsUnexpandedParameterPack()),
2614    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2615    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2616  this->Designators = new (C) Designator[NumDesignators];
2617
2618  // Record the initializer itself.
2619  child_range Child = children();
2620  *Child++ = Init;
2621
2622  // Copy the designators and their subexpressions, computing
2623  // value-dependence along the way.
2624  unsigned IndexIdx = 0;
2625  for (unsigned I = 0; I != NumDesignators; ++I) {
2626    this->Designators[I] = Designators[I];
2627
2628    if (this->Designators[I].isArrayDesignator()) {
2629      // Compute type- and value-dependence.
2630      Expr *Index = IndexExprs[IndexIdx];
2631      if (Index->isTypeDependent() || Index->isValueDependent())
2632        ExprBits.ValueDependent = true;
2633
2634      // Propagate unexpanded parameter packs.
2635      if (Index->containsUnexpandedParameterPack())
2636        ExprBits.ContainsUnexpandedParameterPack = true;
2637
2638      // Copy the index expressions into permanent storage.
2639      *Child++ = IndexExprs[IndexIdx++];
2640    } else if (this->Designators[I].isArrayRangeDesignator()) {
2641      // Compute type- and value-dependence.
2642      Expr *Start = IndexExprs[IndexIdx];
2643      Expr *End = IndexExprs[IndexIdx + 1];
2644      if (Start->isTypeDependent() || Start->isValueDependent() ||
2645          End->isTypeDependent() || End->isValueDependent())
2646        ExprBits.ValueDependent = true;
2647
2648      // Propagate unexpanded parameter packs.
2649      if (Start->containsUnexpandedParameterPack() ||
2650          End->containsUnexpandedParameterPack())
2651        ExprBits.ContainsUnexpandedParameterPack = true;
2652
2653      // Copy the start/end expressions into permanent storage.
2654      *Child++ = IndexExprs[IndexIdx++];
2655      *Child++ = IndexExprs[IndexIdx++];
2656    }
2657  }
2658
2659  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2660}
2661
2662DesignatedInitExpr *
2663DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2664                           unsigned NumDesignators,
2665                           Expr **IndexExprs, unsigned NumIndexExprs,
2666                           SourceLocation ColonOrEqualLoc,
2667                           bool UsesColonSyntax, Expr *Init) {
2668  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2669                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2670  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2671                                      ColonOrEqualLoc, UsesColonSyntax,
2672                                      IndexExprs, NumIndexExprs, Init);
2673}
2674
2675DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2676                                                    unsigned NumIndexExprs) {
2677  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2678                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2679  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2680}
2681
2682void DesignatedInitExpr::setDesignators(ASTContext &C,
2683                                        const Designator *Desigs,
2684                                        unsigned NumDesigs) {
2685  Designators = new (C) Designator[NumDesigs];
2686  NumDesignators = NumDesigs;
2687  for (unsigned I = 0; I != NumDesigs; ++I)
2688    Designators[I] = Desigs[I];
2689}
2690
2691SourceRange DesignatedInitExpr::getSourceRange() const {
2692  SourceLocation StartLoc;
2693  Designator &First =
2694    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2695  if (First.isFieldDesignator()) {
2696    if (GNUSyntax)
2697      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2698    else
2699      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2700  } else
2701    StartLoc =
2702      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2703  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2704}
2705
2706Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2707  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2708  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2709  Ptr += sizeof(DesignatedInitExpr);
2710  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2711  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2712}
2713
2714Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2715  assert(D.Kind == Designator::ArrayRangeDesignator &&
2716         "Requires array range designator");
2717  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2718  Ptr += sizeof(DesignatedInitExpr);
2719  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2720  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2721}
2722
2723Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2724  assert(D.Kind == Designator::ArrayRangeDesignator &&
2725         "Requires array range designator");
2726  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2727  Ptr += sizeof(DesignatedInitExpr);
2728  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2729  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2730}
2731
2732/// \brief Replaces the designator at index @p Idx with the series
2733/// of designators in [First, Last).
2734void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2735                                          const Designator *First,
2736                                          const Designator *Last) {
2737  unsigned NumNewDesignators = Last - First;
2738  if (NumNewDesignators == 0) {
2739    std::copy_backward(Designators + Idx + 1,
2740                       Designators + NumDesignators,
2741                       Designators + Idx);
2742    --NumNewDesignators;
2743    return;
2744  } else if (NumNewDesignators == 1) {
2745    Designators[Idx] = *First;
2746    return;
2747  }
2748
2749  Designator *NewDesignators
2750    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2751  std::copy(Designators, Designators + Idx, NewDesignators);
2752  std::copy(First, Last, NewDesignators + Idx);
2753  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2754            NewDesignators + Idx + NumNewDesignators);
2755  Designators = NewDesignators;
2756  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2757}
2758
2759ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2760                             Expr **exprs, unsigned nexprs,
2761                             SourceLocation rparenloc)
2762  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
2763         false, false, false),
2764    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2765
2766  Exprs = new (C) Stmt*[nexprs];
2767  for (unsigned i = 0; i != nexprs; ++i) {
2768    if (exprs[i]->isTypeDependent())
2769      ExprBits.TypeDependent = true;
2770    if (exprs[i]->isValueDependent())
2771      ExprBits.ValueDependent = true;
2772    if (exprs[i]->containsUnexpandedParameterPack())
2773      ExprBits.ContainsUnexpandedParameterPack = true;
2774
2775    Exprs[i] = exprs[i];
2776  }
2777}
2778
2779const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
2780  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
2781    e = ewc->getSubExpr();
2782  e = cast<CXXConstructExpr>(e)->getArg(0);
2783  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2784    e = ice->getSubExpr();
2785  return cast<OpaqueValueExpr>(e);
2786}
2787
2788//===----------------------------------------------------------------------===//
2789//  ExprIterator.
2790//===----------------------------------------------------------------------===//
2791
2792Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2793Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2794Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2795const Expr* ConstExprIterator::operator[](size_t idx) const {
2796  return cast<Expr>(I[idx]);
2797}
2798const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2799const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2800
2801//===----------------------------------------------------------------------===//
2802//  Child Iterators for iterating over subexpressions/substatements
2803//===----------------------------------------------------------------------===//
2804
2805// SizeOfAlignOfExpr
2806Stmt::child_range SizeOfAlignOfExpr::children() {
2807  // If this is of a type and the type is a VLA type (and not a typedef), the
2808  // size expression of the VLA needs to be treated as an executable expression.
2809  // Why isn't this weirdness documented better in StmtIterator?
2810  if (isArgumentType()) {
2811    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
2812                                   getArgumentType().getTypePtr()))
2813      return child_range(child_iterator(T), child_iterator());
2814    return child_range();
2815  }
2816  return child_range(&Argument.Ex, &Argument.Ex + 1);
2817}
2818
2819// ObjCMessageExpr
2820Stmt::child_range ObjCMessageExpr::children() {
2821  Stmt **begin;
2822  if (getReceiverKind() == Instance)
2823    begin = reinterpret_cast<Stmt **>(this + 1);
2824  else
2825    begin = reinterpret_cast<Stmt **>(getArgs());
2826  return child_range(begin,
2827                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
2828}
2829
2830// Blocks
2831BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
2832                                   SourceLocation l, bool ByRef,
2833                                   bool constAdded)
2834  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
2835         d->isParameterPack()),
2836    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
2837{
2838  bool TypeDependent = false;
2839  bool ValueDependent = false;
2840  computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
2841  ExprBits.TypeDependent = TypeDependent;
2842  ExprBits.ValueDependent = ValueDependent;
2843}
2844
2845