Expr.cpp revision 33e56f3273457bfa22c7c50bc46cf5a18216863d
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Sema/SemaDiagnostic.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31#include <algorithm>
32using namespace clang;
33
34/// isKnownToHaveBooleanValue - Return true if this is an integer expression
35/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
36/// but also int expressions which are produced by things like comparisons in
37/// C.
38bool Expr::isKnownToHaveBooleanValue() const {
39  const Expr *E = IgnoreParens();
40
41  // If this value has _Bool type, it is obvious 0/1.
42  if (E->getType()->isBooleanType()) return true;
43  // If this is a non-scalar-integer type, we don't care enough to try.
44  if (!E->getType()->isIntegralOrEnumerationType()) return false;
45
46  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
47    switch (UO->getOpcode()) {
48    case UO_Plus:
49      return UO->getSubExpr()->isKnownToHaveBooleanValue();
50    default:
51      return false;
52    }
53  }
54
55  // Only look through implicit casts.  If the user writes
56  // '(int) (a && b)' treat it as an arbitrary int.
57  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
58    return CE->getSubExpr()->isKnownToHaveBooleanValue();
59
60  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
61    switch (BO->getOpcode()) {
62    default: return false;
63    case BO_LT:   // Relational operators.
64    case BO_GT:
65    case BO_LE:
66    case BO_GE:
67    case BO_EQ:   // Equality operators.
68    case BO_NE:
69    case BO_LAnd: // AND operator.
70    case BO_LOr:  // Logical OR operator.
71      return true;
72
73    case BO_And:  // Bitwise AND operator.
74    case BO_Xor:  // Bitwise XOR operator.
75    case BO_Or:   // Bitwise OR operator.
76      // Handle things like (x==2)|(y==12).
77      return BO->getLHS()->isKnownToHaveBooleanValue() &&
78             BO->getRHS()->isKnownToHaveBooleanValue();
79
80    case BO_Comma:
81    case BO_Assign:
82      return BO->getRHS()->isKnownToHaveBooleanValue();
83    }
84  }
85
86  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
87    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
88           CO->getFalseExpr()->isKnownToHaveBooleanValue();
89
90  return false;
91}
92
93// Amusing macro metaprogramming hack: check whether a class provides
94// a more specific implementation of getExprLoc().
95namespace {
96  /// This implementation is used when a class provides a custom
97  /// implementation of getExprLoc.
98  template <class E, class T>
99  SourceLocation getExprLocImpl(const Expr *expr,
100                                SourceLocation (T::*v)() const) {
101    return static_cast<const E*>(expr)->getExprLoc();
102  }
103
104  /// This implementation is used when a class doesn't provide
105  /// a custom implementation of getExprLoc.  Overload resolution
106  /// should pick it over the implementation above because it's
107  /// more specialized according to function template partial ordering.
108  template <class E>
109  SourceLocation getExprLocImpl(const Expr *expr,
110                                SourceLocation (Expr::*v)() const) {
111    return static_cast<const E*>(expr)->getSourceRange().getBegin();
112  }
113}
114
115SourceLocation Expr::getExprLoc() const {
116  switch (getStmtClass()) {
117  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
118#define ABSTRACT_STMT(type)
119#define STMT(type, base) \
120  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
121#define EXPR(type, base) \
122  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
123#include "clang/AST/StmtNodes.inc"
124  }
125  llvm_unreachable("unknown statement kind");
126  return SourceLocation();
127}
128
129//===----------------------------------------------------------------------===//
130// Primary Expressions.
131//===----------------------------------------------------------------------===//
132
133void ExplicitTemplateArgumentList::initializeFrom(
134                                      const TemplateArgumentListInfo &Info) {
135  LAngleLoc = Info.getLAngleLoc();
136  RAngleLoc = Info.getRAngleLoc();
137  NumTemplateArgs = Info.size();
138
139  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
140  for (unsigned i = 0; i != NumTemplateArgs; ++i)
141    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
142}
143
144void ExplicitTemplateArgumentList::initializeFrom(
145                                          const TemplateArgumentListInfo &Info,
146                                                  bool &Dependent,
147                                                  bool &InstantiationDependent,
148                                       bool &ContainsUnexpandedParameterPack) {
149  LAngleLoc = Info.getLAngleLoc();
150  RAngleLoc = Info.getRAngleLoc();
151  NumTemplateArgs = Info.size();
152
153  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
154  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
155    Dependent = Dependent || Info[i].getArgument().isDependent();
156    InstantiationDependent = InstantiationDependent ||
157                             Info[i].getArgument().isInstantiationDependent();
158    ContainsUnexpandedParameterPack
159      = ContainsUnexpandedParameterPack ||
160        Info[i].getArgument().containsUnexpandedParameterPack();
161
162    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
163  }
164}
165
166void ExplicitTemplateArgumentList::copyInto(
167                                      TemplateArgumentListInfo &Info) const {
168  Info.setLAngleLoc(LAngleLoc);
169  Info.setRAngleLoc(RAngleLoc);
170  for (unsigned I = 0; I != NumTemplateArgs; ++I)
171    Info.addArgument(getTemplateArgs()[I]);
172}
173
174std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
175  return sizeof(ExplicitTemplateArgumentList) +
176         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
177}
178
179std::size_t ExplicitTemplateArgumentList::sizeFor(
180                                      const TemplateArgumentListInfo &Info) {
181  return sizeFor(Info.size());
182}
183
184/// \brief Compute the type-, value-, and instantiation-dependence of a
185/// declaration reference
186/// based on the declaration being referenced.
187static void computeDeclRefDependence(NamedDecl *D, QualType T,
188                                     bool &TypeDependent,
189                                     bool &ValueDependent,
190                                     bool &InstantiationDependent) {
191  TypeDependent = false;
192  ValueDependent = false;
193  InstantiationDependent = false;
194
195  // (TD) C++ [temp.dep.expr]p3:
196  //   An id-expression is type-dependent if it contains:
197  //
198  // and
199  //
200  // (VD) C++ [temp.dep.constexpr]p2:
201  //  An identifier is value-dependent if it is:
202
203  //  (TD)  - an identifier that was declared with dependent type
204  //  (VD)  - a name declared with a dependent type,
205  if (T->isDependentType()) {
206    TypeDependent = true;
207    ValueDependent = true;
208    InstantiationDependent = true;
209    return;
210  } else if (T->isInstantiationDependentType()) {
211    InstantiationDependent = true;
212  }
213
214  //  (TD)  - a conversion-function-id that specifies a dependent type
215  if (D->getDeclName().getNameKind()
216                                == DeclarationName::CXXConversionFunctionName) {
217    QualType T = D->getDeclName().getCXXNameType();
218    if (T->isDependentType()) {
219      TypeDependent = true;
220      ValueDependent = true;
221      InstantiationDependent = true;
222      return;
223    }
224
225    if (T->isInstantiationDependentType())
226      InstantiationDependent = true;
227  }
228
229  //  (VD)  - the name of a non-type template parameter,
230  if (isa<NonTypeTemplateParmDecl>(D)) {
231    ValueDependent = true;
232    InstantiationDependent = true;
233    return;
234  }
235
236  //  (VD) - a constant with integral or enumeration type and is
237  //         initialized with an expression that is value-dependent.
238  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
239    if (Var->getType()->isIntegralOrEnumerationType() &&
240        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
241      if (const Expr *Init = Var->getAnyInitializer())
242        if (Init->isValueDependent()) {
243          ValueDependent = true;
244          InstantiationDependent = true;
245        }
246    }
247
248    // (VD) - FIXME: Missing from the standard:
249    //      -  a member function or a static data member of the current
250    //         instantiation
251    else if (Var->isStaticDataMember() &&
252             Var->getDeclContext()->isDependentContext()) {
253      ValueDependent = true;
254      InstantiationDependent = true;
255    }
256
257    return;
258  }
259
260  // (VD) - FIXME: Missing from the standard:
261  //      -  a member function or a static data member of the current
262  //         instantiation
263  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
264    ValueDependent = true;
265    InstantiationDependent = true;
266    return;
267  }
268}
269
270void DeclRefExpr::computeDependence() {
271  bool TypeDependent = false;
272  bool ValueDependent = false;
273  bool InstantiationDependent = false;
274  computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent,
275                           InstantiationDependent);
276
277  // (TD) C++ [temp.dep.expr]p3:
278  //   An id-expression is type-dependent if it contains:
279  //
280  // and
281  //
282  // (VD) C++ [temp.dep.constexpr]p2:
283  //  An identifier is value-dependent if it is:
284  if (!TypeDependent && !ValueDependent &&
285      hasExplicitTemplateArgs() &&
286      TemplateSpecializationType::anyDependentTemplateArguments(
287                                                            getTemplateArgs(),
288                                                       getNumTemplateArgs(),
289                                                      InstantiationDependent)) {
290    TypeDependent = true;
291    ValueDependent = true;
292    InstantiationDependent = true;
293  }
294
295  ExprBits.TypeDependent = TypeDependent;
296  ExprBits.ValueDependent = ValueDependent;
297  ExprBits.InstantiationDependent = InstantiationDependent;
298
299  // Is the declaration a parameter pack?
300  if (getDecl()->isParameterPack())
301    ExprBits.ContainsUnexpandedParameterPack = true;
302}
303
304DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
305                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
306                         NamedDecl *FoundD,
307                         const TemplateArgumentListInfo *TemplateArgs,
308                         QualType T, ExprValueKind VK)
309  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
310    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
311  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
312  if (QualifierLoc)
313    getInternalQualifierLoc() = QualifierLoc;
314  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
315  if (FoundD)
316    getInternalFoundDecl() = FoundD;
317  DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0;
318  if (TemplateArgs) {
319    bool Dependent = false;
320    bool InstantiationDependent = false;
321    bool ContainsUnexpandedParameterPack = false;
322    getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent,
323                                             InstantiationDependent,
324                                             ContainsUnexpandedParameterPack);
325    if (InstantiationDependent)
326      setInstantiationDependent(true);
327  }
328
329  computeDependence();
330}
331
332DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
333                                 NestedNameSpecifierLoc QualifierLoc,
334                                 ValueDecl *D,
335                                 SourceLocation NameLoc,
336                                 QualType T,
337                                 ExprValueKind VK,
338                                 NamedDecl *FoundD,
339                                 const TemplateArgumentListInfo *TemplateArgs) {
340  return Create(Context, QualifierLoc, D,
341                DeclarationNameInfo(D->getDeclName(), NameLoc),
342                T, VK, FoundD, TemplateArgs);
343}
344
345DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
346                                 NestedNameSpecifierLoc QualifierLoc,
347                                 ValueDecl *D,
348                                 const DeclarationNameInfo &NameInfo,
349                                 QualType T,
350                                 ExprValueKind VK,
351                                 NamedDecl *FoundD,
352                                 const TemplateArgumentListInfo *TemplateArgs) {
353  // Filter out cases where the found Decl is the same as the value refenenced.
354  if (D == FoundD)
355    FoundD = 0;
356
357  std::size_t Size = sizeof(DeclRefExpr);
358  if (QualifierLoc != 0)
359    Size += sizeof(NestedNameSpecifierLoc);
360  if (FoundD)
361    Size += sizeof(NamedDecl *);
362  if (TemplateArgs)
363    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
364
365  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
366  return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs,
367                               T, VK);
368}
369
370DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
371                                      bool HasQualifier,
372                                      bool HasFoundDecl,
373                                      bool HasExplicitTemplateArgs,
374                                      unsigned NumTemplateArgs) {
375  std::size_t Size = sizeof(DeclRefExpr);
376  if (HasQualifier)
377    Size += sizeof(NestedNameSpecifierLoc);
378  if (HasFoundDecl)
379    Size += sizeof(NamedDecl *);
380  if (HasExplicitTemplateArgs)
381    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
382
383  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
384  return new (Mem) DeclRefExpr(EmptyShell());
385}
386
387SourceRange DeclRefExpr::getSourceRange() const {
388  SourceRange R = getNameInfo().getSourceRange();
389  if (hasQualifier())
390    R.setBegin(getQualifierLoc().getBeginLoc());
391  if (hasExplicitTemplateArgs())
392    R.setEnd(getRAngleLoc());
393  return R;
394}
395
396// FIXME: Maybe this should use DeclPrinter with a special "print predefined
397// expr" policy instead.
398std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
399  ASTContext &Context = CurrentDecl->getASTContext();
400
401  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
402    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
403      return FD->getNameAsString();
404
405    llvm::SmallString<256> Name;
406    llvm::raw_svector_ostream Out(Name);
407
408    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
409      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
410        Out << "virtual ";
411      if (MD->isStatic())
412        Out << "static ";
413    }
414
415    PrintingPolicy Policy(Context.getLangOptions());
416
417    std::string Proto = FD->getQualifiedNameAsString(Policy);
418
419    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
420    const FunctionProtoType *FT = 0;
421    if (FD->hasWrittenPrototype())
422      FT = dyn_cast<FunctionProtoType>(AFT);
423
424    Proto += "(";
425    if (FT) {
426      llvm::raw_string_ostream POut(Proto);
427      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
428        if (i) POut << ", ";
429        std::string Param;
430        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
431        POut << Param;
432      }
433
434      if (FT->isVariadic()) {
435        if (FD->getNumParams()) POut << ", ";
436        POut << "...";
437      }
438    }
439    Proto += ")";
440
441    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
442      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
443      if (ThisQuals.hasConst())
444        Proto += " const";
445      if (ThisQuals.hasVolatile())
446        Proto += " volatile";
447    }
448
449    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
450      AFT->getResultType().getAsStringInternal(Proto, Policy);
451
452    Out << Proto;
453
454    Out.flush();
455    return Name.str().str();
456  }
457  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
458    llvm::SmallString<256> Name;
459    llvm::raw_svector_ostream Out(Name);
460    Out << (MD->isInstanceMethod() ? '-' : '+');
461    Out << '[';
462
463    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
464    // a null check to avoid a crash.
465    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
466      Out << ID;
467
468    if (const ObjCCategoryImplDecl *CID =
469        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
470      Out << '(' << CID << ')';
471
472    Out <<  ' ';
473    Out << MD->getSelector().getAsString();
474    Out <<  ']';
475
476    Out.flush();
477    return Name.str().str();
478  }
479  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
480    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
481    return "top level";
482  }
483  return "";
484}
485
486void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
487  if (hasAllocation())
488    C.Deallocate(pVal);
489
490  BitWidth = Val.getBitWidth();
491  unsigned NumWords = Val.getNumWords();
492  const uint64_t* Words = Val.getRawData();
493  if (NumWords > 1) {
494    pVal = new (C) uint64_t[NumWords];
495    std::copy(Words, Words + NumWords, pVal);
496  } else if (NumWords == 1)
497    VAL = Words[0];
498  else
499    VAL = 0;
500}
501
502IntegerLiteral *
503IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
504                       QualType type, SourceLocation l) {
505  return new (C) IntegerLiteral(C, V, type, l);
506}
507
508IntegerLiteral *
509IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
510  return new (C) IntegerLiteral(Empty);
511}
512
513FloatingLiteral *
514FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
515                        bool isexact, QualType Type, SourceLocation L) {
516  return new (C) FloatingLiteral(C, V, isexact, Type, L);
517}
518
519FloatingLiteral *
520FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
521  return new (C) FloatingLiteral(Empty);
522}
523
524/// getValueAsApproximateDouble - This returns the value as an inaccurate
525/// double.  Note that this may cause loss of precision, but is useful for
526/// debugging dumps, etc.
527double FloatingLiteral::getValueAsApproximateDouble() const {
528  llvm::APFloat V = getValue();
529  bool ignored;
530  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
531            &ignored);
532  return V.convertToDouble();
533}
534
535StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
536                                     StringKind Kind, bool Pascal, QualType Ty,
537                                     const SourceLocation *Loc,
538                                     unsigned NumStrs) {
539  // Allocate enough space for the StringLiteral plus an array of locations for
540  // any concatenated string tokens.
541  void *Mem = C.Allocate(sizeof(StringLiteral)+
542                         sizeof(SourceLocation)*(NumStrs-1),
543                         llvm::alignOf<StringLiteral>());
544  StringLiteral *SL = new (Mem) StringLiteral(Ty);
545
546  // OPTIMIZE: could allocate this appended to the StringLiteral.
547  char *AStrData = new (C, 1) char[Str.size()];
548  memcpy(AStrData, Str.data(), Str.size());
549  SL->StrData = AStrData;
550  SL->ByteLength = Str.size();
551  SL->Kind = Kind;
552  SL->IsPascal = Pascal;
553  SL->TokLocs[0] = Loc[0];
554  SL->NumConcatenated = NumStrs;
555
556  if (NumStrs != 1)
557    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
558  return SL;
559}
560
561StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
562  void *Mem = C.Allocate(sizeof(StringLiteral)+
563                         sizeof(SourceLocation)*(NumStrs-1),
564                         llvm::alignOf<StringLiteral>());
565  StringLiteral *SL = new (Mem) StringLiteral(QualType());
566  SL->StrData = 0;
567  SL->ByteLength = 0;
568  SL->NumConcatenated = NumStrs;
569  return SL;
570}
571
572void StringLiteral::setString(ASTContext &C, StringRef Str) {
573  char *AStrData = new (C, 1) char[Str.size()];
574  memcpy(AStrData, Str.data(), Str.size());
575  StrData = AStrData;
576  ByteLength = Str.size();
577}
578
579/// getLocationOfByte - Return a source location that points to the specified
580/// byte of this string literal.
581///
582/// Strings are amazingly complex.  They can be formed from multiple tokens and
583/// can have escape sequences in them in addition to the usual trigraph and
584/// escaped newline business.  This routine handles this complexity.
585///
586SourceLocation StringLiteral::
587getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
588                  const LangOptions &Features, const TargetInfo &Target) const {
589  assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
590
591  // Loop over all of the tokens in this string until we find the one that
592  // contains the byte we're looking for.
593  unsigned TokNo = 0;
594  while (1) {
595    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
596    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
597
598    // Get the spelling of the string so that we can get the data that makes up
599    // the string literal, not the identifier for the macro it is potentially
600    // expanded through.
601    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
602
603    // Re-lex the token to get its length and original spelling.
604    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
605    bool Invalid = false;
606    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
607    if (Invalid)
608      return StrTokSpellingLoc;
609
610    const char *StrData = Buffer.data()+LocInfo.second;
611
612    // Create a langops struct and enable trigraphs.  This is sufficient for
613    // relexing tokens.
614    LangOptions LangOpts;
615    LangOpts.Trigraphs = true;
616
617    // Create a lexer starting at the beginning of this token.
618    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
619                   Buffer.end());
620    Token TheTok;
621    TheLexer.LexFromRawLexer(TheTok);
622
623    // Use the StringLiteralParser to compute the length of the string in bytes.
624    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
625    unsigned TokNumBytes = SLP.GetStringLength();
626
627    // If the byte is in this token, return the location of the byte.
628    if (ByteNo < TokNumBytes ||
629        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
630      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
631
632      // Now that we know the offset of the token in the spelling, use the
633      // preprocessor to get the offset in the original source.
634      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
635    }
636
637    // Move to the next string token.
638    ++TokNo;
639    ByteNo -= TokNumBytes;
640  }
641}
642
643
644
645/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
646/// corresponds to, e.g. "sizeof" or "[pre]++".
647const char *UnaryOperator::getOpcodeStr(Opcode Op) {
648  switch (Op) {
649  default: assert(0 && "Unknown unary operator");
650  case UO_PostInc: return "++";
651  case UO_PostDec: return "--";
652  case UO_PreInc:  return "++";
653  case UO_PreDec:  return "--";
654  case UO_AddrOf:  return "&";
655  case UO_Deref:   return "*";
656  case UO_Plus:    return "+";
657  case UO_Minus:   return "-";
658  case UO_Not:     return "~";
659  case UO_LNot:    return "!";
660  case UO_Real:    return "__real";
661  case UO_Imag:    return "__imag";
662  case UO_Extension: return "__extension__";
663  }
664}
665
666UnaryOperatorKind
667UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
668  switch (OO) {
669  default: assert(false && "No unary operator for overloaded function");
670  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
671  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
672  case OO_Amp:        return UO_AddrOf;
673  case OO_Star:       return UO_Deref;
674  case OO_Plus:       return UO_Plus;
675  case OO_Minus:      return UO_Minus;
676  case OO_Tilde:      return UO_Not;
677  case OO_Exclaim:    return UO_LNot;
678  }
679}
680
681OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
682  switch (Opc) {
683  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
684  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
685  case UO_AddrOf: return OO_Amp;
686  case UO_Deref: return OO_Star;
687  case UO_Plus: return OO_Plus;
688  case UO_Minus: return OO_Minus;
689  case UO_Not: return OO_Tilde;
690  case UO_LNot: return OO_Exclaim;
691  default: return OO_None;
692  }
693}
694
695
696//===----------------------------------------------------------------------===//
697// Postfix Operators.
698//===----------------------------------------------------------------------===//
699
700CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
701                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
702                   SourceLocation rparenloc)
703  : Expr(SC, t, VK, OK_Ordinary,
704         fn->isTypeDependent(),
705         fn->isValueDependent(),
706         fn->isInstantiationDependent(),
707         fn->containsUnexpandedParameterPack()),
708    NumArgs(numargs) {
709
710  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
711  SubExprs[FN] = fn;
712  for (unsigned i = 0; i != numargs; ++i) {
713    if (args[i]->isTypeDependent())
714      ExprBits.TypeDependent = true;
715    if (args[i]->isValueDependent())
716      ExprBits.ValueDependent = true;
717    if (args[i]->isInstantiationDependent())
718      ExprBits.InstantiationDependent = true;
719    if (args[i]->containsUnexpandedParameterPack())
720      ExprBits.ContainsUnexpandedParameterPack = true;
721
722    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
723  }
724
725  CallExprBits.NumPreArgs = NumPreArgs;
726  RParenLoc = rparenloc;
727}
728
729CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
730                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
731  : Expr(CallExprClass, t, VK, OK_Ordinary,
732         fn->isTypeDependent(),
733         fn->isValueDependent(),
734         fn->isInstantiationDependent(),
735         fn->containsUnexpandedParameterPack()),
736    NumArgs(numargs) {
737
738  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
739  SubExprs[FN] = fn;
740  for (unsigned i = 0; i != numargs; ++i) {
741    if (args[i]->isTypeDependent())
742      ExprBits.TypeDependent = true;
743    if (args[i]->isValueDependent())
744      ExprBits.ValueDependent = true;
745    if (args[i]->isInstantiationDependent())
746      ExprBits.InstantiationDependent = true;
747    if (args[i]->containsUnexpandedParameterPack())
748      ExprBits.ContainsUnexpandedParameterPack = true;
749
750    SubExprs[i+PREARGS_START] = args[i];
751  }
752
753  CallExprBits.NumPreArgs = 0;
754  RParenLoc = rparenloc;
755}
756
757CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
758  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
759  // FIXME: Why do we allocate this?
760  SubExprs = new (C) Stmt*[PREARGS_START];
761  CallExprBits.NumPreArgs = 0;
762}
763
764CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
765                   EmptyShell Empty)
766  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
767  // FIXME: Why do we allocate this?
768  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
769  CallExprBits.NumPreArgs = NumPreArgs;
770}
771
772Decl *CallExpr::getCalleeDecl() {
773  Expr *CEE = getCallee()->IgnoreParenCasts();
774
775  while (SubstNonTypeTemplateParmExpr *NTTP
776                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
777    CEE = NTTP->getReplacement()->IgnoreParenCasts();
778  }
779
780  // If we're calling a dereference, look at the pointer instead.
781  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
782    if (BO->isPtrMemOp())
783      CEE = BO->getRHS()->IgnoreParenCasts();
784  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
785    if (UO->getOpcode() == UO_Deref)
786      CEE = UO->getSubExpr()->IgnoreParenCasts();
787  }
788  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
789    return DRE->getDecl();
790  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
791    return ME->getMemberDecl();
792
793  return 0;
794}
795
796FunctionDecl *CallExpr::getDirectCallee() {
797  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
798}
799
800/// setNumArgs - This changes the number of arguments present in this call.
801/// Any orphaned expressions are deleted by this, and any new operands are set
802/// to null.
803void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
804  // No change, just return.
805  if (NumArgs == getNumArgs()) return;
806
807  // If shrinking # arguments, just delete the extras and forgot them.
808  if (NumArgs < getNumArgs()) {
809    this->NumArgs = NumArgs;
810    return;
811  }
812
813  // Otherwise, we are growing the # arguments.  New an bigger argument array.
814  unsigned NumPreArgs = getNumPreArgs();
815  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
816  // Copy over args.
817  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
818    NewSubExprs[i] = SubExprs[i];
819  // Null out new args.
820  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
821       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
822    NewSubExprs[i] = 0;
823
824  if (SubExprs) C.Deallocate(SubExprs);
825  SubExprs = NewSubExprs;
826  this->NumArgs = NumArgs;
827}
828
829/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
830/// not, return 0.
831unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
832  // All simple function calls (e.g. func()) are implicitly cast to pointer to
833  // function. As a result, we try and obtain the DeclRefExpr from the
834  // ImplicitCastExpr.
835  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
836  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
837    return 0;
838
839  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
840  if (!DRE)
841    return 0;
842
843  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
844  if (!FDecl)
845    return 0;
846
847  if (!FDecl->getIdentifier())
848    return 0;
849
850  return FDecl->getBuiltinID();
851}
852
853QualType CallExpr::getCallReturnType() const {
854  QualType CalleeType = getCallee()->getType();
855  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
856    CalleeType = FnTypePtr->getPointeeType();
857  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
858    CalleeType = BPT->getPointeeType();
859  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
860    // This should never be overloaded and so should never return null.
861    CalleeType = Expr::findBoundMemberType(getCallee());
862
863  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
864  return FnType->getResultType();
865}
866
867SourceRange CallExpr::getSourceRange() const {
868  if (isa<CXXOperatorCallExpr>(this))
869    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
870
871  SourceLocation begin = getCallee()->getLocStart();
872  if (begin.isInvalid() && getNumArgs() > 0)
873    begin = getArg(0)->getLocStart();
874  SourceLocation end = getRParenLoc();
875  if (end.isInvalid() && getNumArgs() > 0)
876    end = getArg(getNumArgs() - 1)->getLocEnd();
877  return SourceRange(begin, end);
878}
879
880OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
881                                   SourceLocation OperatorLoc,
882                                   TypeSourceInfo *tsi,
883                                   OffsetOfNode* compsPtr, unsigned numComps,
884                                   Expr** exprsPtr, unsigned numExprs,
885                                   SourceLocation RParenLoc) {
886  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
887                         sizeof(OffsetOfNode) * numComps +
888                         sizeof(Expr*) * numExprs);
889
890  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
891                                exprsPtr, numExprs, RParenLoc);
892}
893
894OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
895                                        unsigned numComps, unsigned numExprs) {
896  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
897                         sizeof(OffsetOfNode) * numComps +
898                         sizeof(Expr*) * numExprs);
899  return new (Mem) OffsetOfExpr(numComps, numExprs);
900}
901
902OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
903                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
904                           OffsetOfNode* compsPtr, unsigned numComps,
905                           Expr** exprsPtr, unsigned numExprs,
906                           SourceLocation RParenLoc)
907  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
908         /*TypeDependent=*/false,
909         /*ValueDependent=*/tsi->getType()->isDependentType(),
910         tsi->getType()->isInstantiationDependentType(),
911         tsi->getType()->containsUnexpandedParameterPack()),
912    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
913    NumComps(numComps), NumExprs(numExprs)
914{
915  for(unsigned i = 0; i < numComps; ++i) {
916    setComponent(i, compsPtr[i]);
917  }
918
919  for(unsigned i = 0; i < numExprs; ++i) {
920    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
921      ExprBits.ValueDependent = true;
922    if (exprsPtr[i]->containsUnexpandedParameterPack())
923      ExprBits.ContainsUnexpandedParameterPack = true;
924
925    setIndexExpr(i, exprsPtr[i]);
926  }
927}
928
929IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
930  assert(getKind() == Field || getKind() == Identifier);
931  if (getKind() == Field)
932    return getField()->getIdentifier();
933
934  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
935}
936
937MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
938                               NestedNameSpecifierLoc QualifierLoc,
939                               ValueDecl *memberdecl,
940                               DeclAccessPair founddecl,
941                               DeclarationNameInfo nameinfo,
942                               const TemplateArgumentListInfo *targs,
943                               QualType ty,
944                               ExprValueKind vk,
945                               ExprObjectKind ok) {
946  std::size_t Size = sizeof(MemberExpr);
947
948  bool hasQualOrFound = (QualifierLoc ||
949                         founddecl.getDecl() != memberdecl ||
950                         founddecl.getAccess() != memberdecl->getAccess());
951  if (hasQualOrFound)
952    Size += sizeof(MemberNameQualifier);
953
954  if (targs)
955    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
956
957  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
958  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
959                                       ty, vk, ok);
960
961  if (hasQualOrFound) {
962    // FIXME: Wrong. We should be looking at the member declaration we found.
963    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
964      E->setValueDependent(true);
965      E->setTypeDependent(true);
966      E->setInstantiationDependent(true);
967    }
968    else if (QualifierLoc &&
969             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
970      E->setInstantiationDependent(true);
971
972    E->HasQualifierOrFoundDecl = true;
973
974    MemberNameQualifier *NQ = E->getMemberQualifier();
975    NQ->QualifierLoc = QualifierLoc;
976    NQ->FoundDecl = founddecl;
977  }
978
979  if (targs) {
980    bool Dependent = false;
981    bool InstantiationDependent = false;
982    bool ContainsUnexpandedParameterPack = false;
983    E->HasExplicitTemplateArgumentList = true;
984    E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent,
985                                                InstantiationDependent,
986                                              ContainsUnexpandedParameterPack);
987    if (InstantiationDependent)
988      E->setInstantiationDependent(true);
989  }
990
991  return E;
992}
993
994SourceRange MemberExpr::getSourceRange() const {
995  SourceLocation StartLoc;
996  if (isImplicitAccess()) {
997    if (hasQualifier())
998      StartLoc = getQualifierLoc().getBeginLoc();
999    else
1000      StartLoc = MemberLoc;
1001  } else {
1002    // FIXME: We don't want this to happen. Rather, we should be able to
1003    // detect all kinds of implicit accesses more cleanly.
1004    StartLoc = getBase()->getLocStart();
1005    if (StartLoc.isInvalid())
1006      StartLoc = MemberLoc;
1007  }
1008
1009  SourceLocation EndLoc =
1010    HasExplicitTemplateArgumentList? getRAngleLoc()
1011                                   : getMemberNameInfo().getEndLoc();
1012
1013  return SourceRange(StartLoc, EndLoc);
1014}
1015
1016void CastExpr::CheckCastConsistency() const {
1017  switch (getCastKind()) {
1018  case CK_DerivedToBase:
1019  case CK_UncheckedDerivedToBase:
1020  case CK_DerivedToBaseMemberPointer:
1021  case CK_BaseToDerived:
1022  case CK_BaseToDerivedMemberPointer:
1023    assert(!path_empty() && "Cast kind should have a base path!");
1024    break;
1025
1026  case CK_CPointerToObjCPointerCast:
1027    assert(getType()->isObjCObjectPointerType());
1028    assert(getSubExpr()->getType()->isPointerType());
1029    goto CheckNoBasePath;
1030
1031  case CK_BlockPointerToObjCPointerCast:
1032    assert(getType()->isObjCObjectPointerType());
1033    assert(getSubExpr()->getType()->isBlockPointerType());
1034    goto CheckNoBasePath;
1035
1036  case CK_BitCast:
1037    // Arbitrary casts to C pointer types count as bitcasts.
1038    // Otherwise, we should only have block and ObjC pointer casts
1039    // here if they stay within the type kind.
1040    if (!getType()->isPointerType()) {
1041      assert(getType()->isObjCObjectPointerType() ==
1042             getSubExpr()->getType()->isObjCObjectPointerType());
1043      assert(getType()->isBlockPointerType() ==
1044             getSubExpr()->getType()->isBlockPointerType());
1045    }
1046    goto CheckNoBasePath;
1047
1048  case CK_AnyPointerToBlockPointerCast:
1049    assert(getType()->isBlockPointerType());
1050    assert(getSubExpr()->getType()->isAnyPointerType() &&
1051           !getSubExpr()->getType()->isBlockPointerType());
1052    goto CheckNoBasePath;
1053
1054  // These should not have an inheritance path.
1055  case CK_Dynamic:
1056  case CK_ToUnion:
1057  case CK_ArrayToPointerDecay:
1058  case CK_FunctionToPointerDecay:
1059  case CK_NullToMemberPointer:
1060  case CK_NullToPointer:
1061  case CK_ConstructorConversion:
1062  case CK_IntegralToPointer:
1063  case CK_PointerToIntegral:
1064  case CK_ToVoid:
1065  case CK_VectorSplat:
1066  case CK_IntegralCast:
1067  case CK_IntegralToFloating:
1068  case CK_FloatingToIntegral:
1069  case CK_FloatingCast:
1070  case CK_ObjCObjectLValueCast:
1071  case CK_FloatingRealToComplex:
1072  case CK_FloatingComplexToReal:
1073  case CK_FloatingComplexCast:
1074  case CK_FloatingComplexToIntegralComplex:
1075  case CK_IntegralRealToComplex:
1076  case CK_IntegralComplexToReal:
1077  case CK_IntegralComplexCast:
1078  case CK_IntegralComplexToFloatingComplex:
1079  case CK_ARCProduceObject:
1080  case CK_ARCConsumeObject:
1081  case CK_ARCReclaimReturnedObject:
1082  case CK_ARCExtendBlockObject:
1083    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1084    goto CheckNoBasePath;
1085
1086  case CK_Dependent:
1087  case CK_LValueToRValue:
1088  case CK_GetObjCProperty:
1089  case CK_NoOp:
1090  case CK_PointerToBoolean:
1091  case CK_IntegralToBoolean:
1092  case CK_FloatingToBoolean:
1093  case CK_MemberPointerToBoolean:
1094  case CK_FloatingComplexToBoolean:
1095  case CK_IntegralComplexToBoolean:
1096  case CK_LValueBitCast:            // -> bool&
1097  case CK_UserDefinedConversion:    // operator bool()
1098  CheckNoBasePath:
1099    assert(path_empty() && "Cast kind should not have a base path!");
1100    break;
1101  }
1102}
1103
1104const char *CastExpr::getCastKindName() const {
1105  switch (getCastKind()) {
1106  case CK_Dependent:
1107    return "Dependent";
1108  case CK_BitCast:
1109    return "BitCast";
1110  case CK_LValueBitCast:
1111    return "LValueBitCast";
1112  case CK_LValueToRValue:
1113    return "LValueToRValue";
1114  case CK_GetObjCProperty:
1115    return "GetObjCProperty";
1116  case CK_NoOp:
1117    return "NoOp";
1118  case CK_BaseToDerived:
1119    return "BaseToDerived";
1120  case CK_DerivedToBase:
1121    return "DerivedToBase";
1122  case CK_UncheckedDerivedToBase:
1123    return "UncheckedDerivedToBase";
1124  case CK_Dynamic:
1125    return "Dynamic";
1126  case CK_ToUnion:
1127    return "ToUnion";
1128  case CK_ArrayToPointerDecay:
1129    return "ArrayToPointerDecay";
1130  case CK_FunctionToPointerDecay:
1131    return "FunctionToPointerDecay";
1132  case CK_NullToMemberPointer:
1133    return "NullToMemberPointer";
1134  case CK_NullToPointer:
1135    return "NullToPointer";
1136  case CK_BaseToDerivedMemberPointer:
1137    return "BaseToDerivedMemberPointer";
1138  case CK_DerivedToBaseMemberPointer:
1139    return "DerivedToBaseMemberPointer";
1140  case CK_UserDefinedConversion:
1141    return "UserDefinedConversion";
1142  case CK_ConstructorConversion:
1143    return "ConstructorConversion";
1144  case CK_IntegralToPointer:
1145    return "IntegralToPointer";
1146  case CK_PointerToIntegral:
1147    return "PointerToIntegral";
1148  case CK_PointerToBoolean:
1149    return "PointerToBoolean";
1150  case CK_ToVoid:
1151    return "ToVoid";
1152  case CK_VectorSplat:
1153    return "VectorSplat";
1154  case CK_IntegralCast:
1155    return "IntegralCast";
1156  case CK_IntegralToBoolean:
1157    return "IntegralToBoolean";
1158  case CK_IntegralToFloating:
1159    return "IntegralToFloating";
1160  case CK_FloatingToIntegral:
1161    return "FloatingToIntegral";
1162  case CK_FloatingCast:
1163    return "FloatingCast";
1164  case CK_FloatingToBoolean:
1165    return "FloatingToBoolean";
1166  case CK_MemberPointerToBoolean:
1167    return "MemberPointerToBoolean";
1168  case CK_CPointerToObjCPointerCast:
1169    return "CPointerToObjCPointerCast";
1170  case CK_BlockPointerToObjCPointerCast:
1171    return "BlockPointerToObjCPointerCast";
1172  case CK_AnyPointerToBlockPointerCast:
1173    return "AnyPointerToBlockPointerCast";
1174  case CK_ObjCObjectLValueCast:
1175    return "ObjCObjectLValueCast";
1176  case CK_FloatingRealToComplex:
1177    return "FloatingRealToComplex";
1178  case CK_FloatingComplexToReal:
1179    return "FloatingComplexToReal";
1180  case CK_FloatingComplexToBoolean:
1181    return "FloatingComplexToBoolean";
1182  case CK_FloatingComplexCast:
1183    return "FloatingComplexCast";
1184  case CK_FloatingComplexToIntegralComplex:
1185    return "FloatingComplexToIntegralComplex";
1186  case CK_IntegralRealToComplex:
1187    return "IntegralRealToComplex";
1188  case CK_IntegralComplexToReal:
1189    return "IntegralComplexToReal";
1190  case CK_IntegralComplexToBoolean:
1191    return "IntegralComplexToBoolean";
1192  case CK_IntegralComplexCast:
1193    return "IntegralComplexCast";
1194  case CK_IntegralComplexToFloatingComplex:
1195    return "IntegralComplexToFloatingComplex";
1196  case CK_ARCConsumeObject:
1197    return "ARCConsumeObject";
1198  case CK_ARCProduceObject:
1199    return "ARCProduceObject";
1200  case CK_ARCReclaimReturnedObject:
1201    return "ARCReclaimReturnedObject";
1202  case CK_ARCExtendBlockObject:
1203    return "ARCCExtendBlockObject";
1204  }
1205
1206  llvm_unreachable("Unhandled cast kind!");
1207  return 0;
1208}
1209
1210Expr *CastExpr::getSubExprAsWritten() {
1211  Expr *SubExpr = 0;
1212  CastExpr *E = this;
1213  do {
1214    SubExpr = E->getSubExpr();
1215
1216    // Skip through reference binding to temporary.
1217    if (MaterializeTemporaryExpr *Materialize
1218                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1219      SubExpr = Materialize->GetTemporaryExpr();
1220
1221    // Skip any temporary bindings; they're implicit.
1222    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1223      SubExpr = Binder->getSubExpr();
1224
1225    // Conversions by constructor and conversion functions have a
1226    // subexpression describing the call; strip it off.
1227    if (E->getCastKind() == CK_ConstructorConversion)
1228      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1229    else if (E->getCastKind() == CK_UserDefinedConversion)
1230      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1231
1232    // If the subexpression we're left with is an implicit cast, look
1233    // through that, too.
1234  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1235
1236  return SubExpr;
1237}
1238
1239CXXBaseSpecifier **CastExpr::path_buffer() {
1240  switch (getStmtClass()) {
1241#define ABSTRACT_STMT(x)
1242#define CASTEXPR(Type, Base) \
1243  case Stmt::Type##Class: \
1244    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1245#define STMT(Type, Base)
1246#include "clang/AST/StmtNodes.inc"
1247  default:
1248    llvm_unreachable("non-cast expressions not possible here");
1249    return 0;
1250  }
1251}
1252
1253void CastExpr::setCastPath(const CXXCastPath &Path) {
1254  assert(Path.size() == path_size());
1255  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1256}
1257
1258ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1259                                           CastKind Kind, Expr *Operand,
1260                                           const CXXCastPath *BasePath,
1261                                           ExprValueKind VK) {
1262  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1263  void *Buffer =
1264    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1265  ImplicitCastExpr *E =
1266    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1267  if (PathSize) E->setCastPath(*BasePath);
1268  return E;
1269}
1270
1271ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1272                                                unsigned PathSize) {
1273  void *Buffer =
1274    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1275  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1276}
1277
1278
1279CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1280                                       ExprValueKind VK, CastKind K, Expr *Op,
1281                                       const CXXCastPath *BasePath,
1282                                       TypeSourceInfo *WrittenTy,
1283                                       SourceLocation L, SourceLocation R) {
1284  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1285  void *Buffer =
1286    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1287  CStyleCastExpr *E =
1288    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1289  if (PathSize) E->setCastPath(*BasePath);
1290  return E;
1291}
1292
1293CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1294  void *Buffer =
1295    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1296  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1297}
1298
1299/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1300/// corresponds to, e.g. "<<=".
1301const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1302  switch (Op) {
1303  case BO_PtrMemD:   return ".*";
1304  case BO_PtrMemI:   return "->*";
1305  case BO_Mul:       return "*";
1306  case BO_Div:       return "/";
1307  case BO_Rem:       return "%";
1308  case BO_Add:       return "+";
1309  case BO_Sub:       return "-";
1310  case BO_Shl:       return "<<";
1311  case BO_Shr:       return ">>";
1312  case BO_LT:        return "<";
1313  case BO_GT:        return ">";
1314  case BO_LE:        return "<=";
1315  case BO_GE:        return ">=";
1316  case BO_EQ:        return "==";
1317  case BO_NE:        return "!=";
1318  case BO_And:       return "&";
1319  case BO_Xor:       return "^";
1320  case BO_Or:        return "|";
1321  case BO_LAnd:      return "&&";
1322  case BO_LOr:       return "||";
1323  case BO_Assign:    return "=";
1324  case BO_MulAssign: return "*=";
1325  case BO_DivAssign: return "/=";
1326  case BO_RemAssign: return "%=";
1327  case BO_AddAssign: return "+=";
1328  case BO_SubAssign: return "-=";
1329  case BO_ShlAssign: return "<<=";
1330  case BO_ShrAssign: return ">>=";
1331  case BO_AndAssign: return "&=";
1332  case BO_XorAssign: return "^=";
1333  case BO_OrAssign:  return "|=";
1334  case BO_Comma:     return ",";
1335  }
1336
1337  return "";
1338}
1339
1340BinaryOperatorKind
1341BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1342  switch (OO) {
1343  default: assert(false && "Not an overloadable binary operator");
1344  case OO_Plus: return BO_Add;
1345  case OO_Minus: return BO_Sub;
1346  case OO_Star: return BO_Mul;
1347  case OO_Slash: return BO_Div;
1348  case OO_Percent: return BO_Rem;
1349  case OO_Caret: return BO_Xor;
1350  case OO_Amp: return BO_And;
1351  case OO_Pipe: return BO_Or;
1352  case OO_Equal: return BO_Assign;
1353  case OO_Less: return BO_LT;
1354  case OO_Greater: return BO_GT;
1355  case OO_PlusEqual: return BO_AddAssign;
1356  case OO_MinusEqual: return BO_SubAssign;
1357  case OO_StarEqual: return BO_MulAssign;
1358  case OO_SlashEqual: return BO_DivAssign;
1359  case OO_PercentEqual: return BO_RemAssign;
1360  case OO_CaretEqual: return BO_XorAssign;
1361  case OO_AmpEqual: return BO_AndAssign;
1362  case OO_PipeEqual: return BO_OrAssign;
1363  case OO_LessLess: return BO_Shl;
1364  case OO_GreaterGreater: return BO_Shr;
1365  case OO_LessLessEqual: return BO_ShlAssign;
1366  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1367  case OO_EqualEqual: return BO_EQ;
1368  case OO_ExclaimEqual: return BO_NE;
1369  case OO_LessEqual: return BO_LE;
1370  case OO_GreaterEqual: return BO_GE;
1371  case OO_AmpAmp: return BO_LAnd;
1372  case OO_PipePipe: return BO_LOr;
1373  case OO_Comma: return BO_Comma;
1374  case OO_ArrowStar: return BO_PtrMemI;
1375  }
1376}
1377
1378OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1379  static const OverloadedOperatorKind OverOps[] = {
1380    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1381    OO_Star, OO_Slash, OO_Percent,
1382    OO_Plus, OO_Minus,
1383    OO_LessLess, OO_GreaterGreater,
1384    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1385    OO_EqualEqual, OO_ExclaimEqual,
1386    OO_Amp,
1387    OO_Caret,
1388    OO_Pipe,
1389    OO_AmpAmp,
1390    OO_PipePipe,
1391    OO_Equal, OO_StarEqual,
1392    OO_SlashEqual, OO_PercentEqual,
1393    OO_PlusEqual, OO_MinusEqual,
1394    OO_LessLessEqual, OO_GreaterGreaterEqual,
1395    OO_AmpEqual, OO_CaretEqual,
1396    OO_PipeEqual,
1397    OO_Comma
1398  };
1399  return OverOps[Opc];
1400}
1401
1402InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1403                           Expr **initExprs, unsigned numInits,
1404                           SourceLocation rbraceloc)
1405  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1406         false, false),
1407    InitExprs(C, numInits),
1408    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1409    HadArrayRangeDesignator(false)
1410{
1411  for (unsigned I = 0; I != numInits; ++I) {
1412    if (initExprs[I]->isTypeDependent())
1413      ExprBits.TypeDependent = true;
1414    if (initExprs[I]->isValueDependent())
1415      ExprBits.ValueDependent = true;
1416    if (initExprs[I]->isInstantiationDependent())
1417      ExprBits.InstantiationDependent = true;
1418    if (initExprs[I]->containsUnexpandedParameterPack())
1419      ExprBits.ContainsUnexpandedParameterPack = true;
1420  }
1421
1422  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1423}
1424
1425void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1426  if (NumInits > InitExprs.size())
1427    InitExprs.reserve(C, NumInits);
1428}
1429
1430void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1431  InitExprs.resize(C, NumInits, 0);
1432}
1433
1434Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1435  if (Init >= InitExprs.size()) {
1436    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1437    InitExprs.back() = expr;
1438    return 0;
1439  }
1440
1441  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1442  InitExprs[Init] = expr;
1443  return Result;
1444}
1445
1446void InitListExpr::setArrayFiller(Expr *filler) {
1447  ArrayFillerOrUnionFieldInit = filler;
1448  // Fill out any "holes" in the array due to designated initializers.
1449  Expr **inits = getInits();
1450  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1451    if (inits[i] == 0)
1452      inits[i] = filler;
1453}
1454
1455SourceRange InitListExpr::getSourceRange() const {
1456  if (SyntacticForm)
1457    return SyntacticForm->getSourceRange();
1458  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1459  if (Beg.isInvalid()) {
1460    // Find the first non-null initializer.
1461    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1462                                     E = InitExprs.end();
1463      I != E; ++I) {
1464      if (Stmt *S = *I) {
1465        Beg = S->getLocStart();
1466        break;
1467      }
1468    }
1469  }
1470  if (End.isInvalid()) {
1471    // Find the first non-null initializer from the end.
1472    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1473                                             E = InitExprs.rend();
1474      I != E; ++I) {
1475      if (Stmt *S = *I) {
1476        End = S->getSourceRange().getEnd();
1477        break;
1478      }
1479    }
1480  }
1481  return SourceRange(Beg, End);
1482}
1483
1484/// getFunctionType - Return the underlying function type for this block.
1485///
1486const FunctionType *BlockExpr::getFunctionType() const {
1487  return getType()->getAs<BlockPointerType>()->
1488                    getPointeeType()->getAs<FunctionType>();
1489}
1490
1491SourceLocation BlockExpr::getCaretLocation() const {
1492  return TheBlock->getCaretLocation();
1493}
1494const Stmt *BlockExpr::getBody() const {
1495  return TheBlock->getBody();
1496}
1497Stmt *BlockExpr::getBody() {
1498  return TheBlock->getBody();
1499}
1500
1501
1502//===----------------------------------------------------------------------===//
1503// Generic Expression Routines
1504//===----------------------------------------------------------------------===//
1505
1506/// isUnusedResultAWarning - Return true if this immediate expression should
1507/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1508/// with location to warn on and the source range[s] to report with the
1509/// warning.
1510bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1511                                  SourceRange &R2, ASTContext &Ctx) const {
1512  // Don't warn if the expr is type dependent. The type could end up
1513  // instantiating to void.
1514  if (isTypeDependent())
1515    return false;
1516
1517  switch (getStmtClass()) {
1518  default:
1519    if (getType()->isVoidType())
1520      return false;
1521    Loc = getExprLoc();
1522    R1 = getSourceRange();
1523    return true;
1524  case ParenExprClass:
1525    return cast<ParenExpr>(this)->getSubExpr()->
1526      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1527  case GenericSelectionExprClass:
1528    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1529      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1530  case UnaryOperatorClass: {
1531    const UnaryOperator *UO = cast<UnaryOperator>(this);
1532
1533    switch (UO->getOpcode()) {
1534    default: break;
1535    case UO_PostInc:
1536    case UO_PostDec:
1537    case UO_PreInc:
1538    case UO_PreDec:                 // ++/--
1539      return false;  // Not a warning.
1540    case UO_Deref:
1541      // Dereferencing a volatile pointer is a side-effect.
1542      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1543        return false;
1544      break;
1545    case UO_Real:
1546    case UO_Imag:
1547      // accessing a piece of a volatile complex is a side-effect.
1548      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1549          .isVolatileQualified())
1550        return false;
1551      break;
1552    case UO_Extension:
1553      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1554    }
1555    Loc = UO->getOperatorLoc();
1556    R1 = UO->getSubExpr()->getSourceRange();
1557    return true;
1558  }
1559  case BinaryOperatorClass: {
1560    const BinaryOperator *BO = cast<BinaryOperator>(this);
1561    switch (BO->getOpcode()) {
1562      default:
1563        break;
1564      // Consider the RHS of comma for side effects. LHS was checked by
1565      // Sema::CheckCommaOperands.
1566      case BO_Comma:
1567        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1568        // lvalue-ness) of an assignment written in a macro.
1569        if (IntegerLiteral *IE =
1570              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1571          if (IE->getValue() == 0)
1572            return false;
1573        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1574      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1575      case BO_LAnd:
1576      case BO_LOr:
1577        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1578            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1579          return false;
1580        break;
1581    }
1582    if (BO->isAssignmentOp())
1583      return false;
1584    Loc = BO->getOperatorLoc();
1585    R1 = BO->getLHS()->getSourceRange();
1586    R2 = BO->getRHS()->getSourceRange();
1587    return true;
1588  }
1589  case CompoundAssignOperatorClass:
1590  case VAArgExprClass:
1591    return false;
1592
1593  case ConditionalOperatorClass: {
1594    // If only one of the LHS or RHS is a warning, the operator might
1595    // be being used for control flow. Only warn if both the LHS and
1596    // RHS are warnings.
1597    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1598    if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1599      return false;
1600    if (!Exp->getLHS())
1601      return true;
1602    return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1603  }
1604
1605  case MemberExprClass:
1606    // If the base pointer or element is to a volatile pointer/field, accessing
1607    // it is a side effect.
1608    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1609      return false;
1610    Loc = cast<MemberExpr>(this)->getMemberLoc();
1611    R1 = SourceRange(Loc, Loc);
1612    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1613    return true;
1614
1615  case ArraySubscriptExprClass:
1616    // If the base pointer or element is to a volatile pointer/field, accessing
1617    // it is a side effect.
1618    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1619      return false;
1620    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1621    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1622    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1623    return true;
1624
1625  case CXXOperatorCallExprClass: {
1626    // We warn about operator== and operator!= even when user-defined operator
1627    // overloads as there is no reasonable way to define these such that they
1628    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1629    // warning: these operators are commonly typo'ed, and so warning on them
1630    // provides additional value as well. If this list is updated,
1631    // DiagnoseUnusedComparison should be as well.
1632    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1633    if (Op->getOperator() == OO_EqualEqual ||
1634        Op->getOperator() == OO_ExclaimEqual)
1635      return true;
1636
1637    // Fallthrough for generic call handling.
1638  }
1639  case CallExprClass:
1640  case CXXMemberCallExprClass: {
1641    // If this is a direct call, get the callee.
1642    const CallExpr *CE = cast<CallExpr>(this);
1643    if (const Decl *FD = CE->getCalleeDecl()) {
1644      // If the callee has attribute pure, const, or warn_unused_result, warn
1645      // about it. void foo() { strlen("bar"); } should warn.
1646      //
1647      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1648      // updated to match for QoI.
1649      if (FD->getAttr<WarnUnusedResultAttr>() ||
1650          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1651        Loc = CE->getCallee()->getLocStart();
1652        R1 = CE->getCallee()->getSourceRange();
1653
1654        if (unsigned NumArgs = CE->getNumArgs())
1655          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1656                           CE->getArg(NumArgs-1)->getLocEnd());
1657        return true;
1658      }
1659    }
1660    return false;
1661  }
1662
1663  case CXXTemporaryObjectExprClass:
1664  case CXXConstructExprClass:
1665    return false;
1666
1667  case ObjCMessageExprClass: {
1668    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1669    if (Ctx.getLangOptions().ObjCAutoRefCount &&
1670        ME->isInstanceMessage() &&
1671        !ME->getType()->isVoidType() &&
1672        ME->getSelector().getIdentifierInfoForSlot(0) &&
1673        ME->getSelector().getIdentifierInfoForSlot(0)
1674                                               ->getName().startswith("init")) {
1675      Loc = getExprLoc();
1676      R1 = ME->getSourceRange();
1677      return true;
1678    }
1679
1680    const ObjCMethodDecl *MD = ME->getMethodDecl();
1681    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1682      Loc = getExprLoc();
1683      return true;
1684    }
1685    return false;
1686  }
1687
1688  case ObjCPropertyRefExprClass:
1689    Loc = getExprLoc();
1690    R1 = getSourceRange();
1691    return true;
1692
1693  case StmtExprClass: {
1694    // Statement exprs don't logically have side effects themselves, but are
1695    // sometimes used in macros in ways that give them a type that is unused.
1696    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1697    // however, if the result of the stmt expr is dead, we don't want to emit a
1698    // warning.
1699    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1700    if (!CS->body_empty()) {
1701      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1702        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1703      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1704        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1705          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1706    }
1707
1708    if (getType()->isVoidType())
1709      return false;
1710    Loc = cast<StmtExpr>(this)->getLParenLoc();
1711    R1 = getSourceRange();
1712    return true;
1713  }
1714  case CStyleCastExprClass:
1715    // If this is an explicit cast to void, allow it.  People do this when they
1716    // think they know what they're doing :).
1717    if (getType()->isVoidType())
1718      return false;
1719    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1720    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1721    return true;
1722  case CXXFunctionalCastExprClass: {
1723    if (getType()->isVoidType())
1724      return false;
1725    const CastExpr *CE = cast<CastExpr>(this);
1726
1727    // If this is a cast to void or a constructor conversion, check the operand.
1728    // Otherwise, the result of the cast is unused.
1729    if (CE->getCastKind() == CK_ToVoid ||
1730        CE->getCastKind() == CK_ConstructorConversion)
1731      return (cast<CastExpr>(this)->getSubExpr()
1732              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1733    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1734    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1735    return true;
1736  }
1737
1738  case ImplicitCastExprClass:
1739    // Check the operand, since implicit casts are inserted by Sema
1740    return (cast<ImplicitCastExpr>(this)
1741            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1742
1743  case CXXDefaultArgExprClass:
1744    return (cast<CXXDefaultArgExpr>(this)
1745            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1746
1747  case CXXNewExprClass:
1748    // FIXME: In theory, there might be new expressions that don't have side
1749    // effects (e.g. a placement new with an uninitialized POD).
1750  case CXXDeleteExprClass:
1751    return false;
1752  case CXXBindTemporaryExprClass:
1753    return (cast<CXXBindTemporaryExpr>(this)
1754            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1755  case ExprWithCleanupsClass:
1756    return (cast<ExprWithCleanups>(this)
1757            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1758  }
1759}
1760
1761/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1762/// returns true, if it is; false otherwise.
1763bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1764  const Expr *E = IgnoreParens();
1765  switch (E->getStmtClass()) {
1766  default:
1767    return false;
1768  case ObjCIvarRefExprClass:
1769    return true;
1770  case Expr::UnaryOperatorClass:
1771    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1772  case ImplicitCastExprClass:
1773    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1774  case MaterializeTemporaryExprClass:
1775    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1776                                                      ->isOBJCGCCandidate(Ctx);
1777  case CStyleCastExprClass:
1778    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1779  case DeclRefExprClass: {
1780    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
1781    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1782      if (VD->hasGlobalStorage())
1783        return true;
1784      QualType T = VD->getType();
1785      // dereferencing to a  pointer is always a gc'able candidate,
1786      // unless it is __weak.
1787      return T->isPointerType() &&
1788             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1789    }
1790    return false;
1791  }
1792  case MemberExprClass: {
1793    const MemberExpr *M = cast<MemberExpr>(E);
1794    return M->getBase()->isOBJCGCCandidate(Ctx);
1795  }
1796  case ArraySubscriptExprClass:
1797    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1798  }
1799}
1800
1801bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1802  if (isTypeDependent())
1803    return false;
1804  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1805}
1806
1807QualType Expr::findBoundMemberType(const Expr *expr) {
1808  assert(expr->getType()->isSpecificPlaceholderType(BuiltinType::BoundMember));
1809
1810  // Bound member expressions are always one of these possibilities:
1811  //   x->m      x.m      x->*y      x.*y
1812  // (possibly parenthesized)
1813
1814  expr = expr->IgnoreParens();
1815  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1816    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1817    return mem->getMemberDecl()->getType();
1818  }
1819
1820  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1821    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1822                      ->getPointeeType();
1823    assert(type->isFunctionType());
1824    return type;
1825  }
1826
1827  assert(isa<UnresolvedMemberExpr>(expr));
1828  return QualType();
1829}
1830
1831static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1832                                          Expr::CanThrowResult CT2) {
1833  // CanThrowResult constants are ordered so that the maximum is the correct
1834  // merge result.
1835  return CT1 > CT2 ? CT1 : CT2;
1836}
1837
1838static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1839  Expr *E = const_cast<Expr*>(CE);
1840  Expr::CanThrowResult R = Expr::CT_Cannot;
1841  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1842    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1843  }
1844  return R;
1845}
1846
1847static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
1848                                           const Decl *D,
1849                                           bool NullThrows = true) {
1850  if (!D)
1851    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1852
1853  // See if we can get a function type from the decl somehow.
1854  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1855  if (!VD) // If we have no clue what we're calling, assume the worst.
1856    return Expr::CT_Can;
1857
1858  // As an extension, we assume that __attribute__((nothrow)) functions don't
1859  // throw.
1860  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1861    return Expr::CT_Cannot;
1862
1863  QualType T = VD->getType();
1864  const FunctionProtoType *FT;
1865  if ((FT = T->getAs<FunctionProtoType>())) {
1866  } else if (const PointerType *PT = T->getAs<PointerType>())
1867    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1868  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1869    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1870  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1871    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1872  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1873    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1874
1875  if (!FT)
1876    return Expr::CT_Can;
1877
1878  if (FT->getExceptionSpecType() == EST_Delayed) {
1879    assert(isa<CXXConstructorDecl>(D) &&
1880           "only constructor exception specs can be unknown");
1881    Ctx.getDiagnostics().Report(E->getLocStart(),
1882                                diag::err_exception_spec_unknown)
1883      << E->getSourceRange();
1884    return Expr::CT_Can;
1885  }
1886
1887  return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
1888}
1889
1890static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1891  if (DC->isTypeDependent())
1892    return Expr::CT_Dependent;
1893
1894  if (!DC->getTypeAsWritten()->isReferenceType())
1895    return Expr::CT_Cannot;
1896
1897  if (DC->getSubExpr()->isTypeDependent())
1898    return Expr::CT_Dependent;
1899
1900  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1901}
1902
1903static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1904                                           const CXXTypeidExpr *DC) {
1905  if (DC->isTypeOperand())
1906    return Expr::CT_Cannot;
1907
1908  Expr *Op = DC->getExprOperand();
1909  if (Op->isTypeDependent())
1910    return Expr::CT_Dependent;
1911
1912  const RecordType *RT = Op->getType()->getAs<RecordType>();
1913  if (!RT)
1914    return Expr::CT_Cannot;
1915
1916  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1917    return Expr::CT_Cannot;
1918
1919  if (Op->Classify(C).isPRValue())
1920    return Expr::CT_Cannot;
1921
1922  return Expr::CT_Can;
1923}
1924
1925Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1926  // C++ [expr.unary.noexcept]p3:
1927  //   [Can throw] if in a potentially-evaluated context the expression would
1928  //   contain:
1929  switch (getStmtClass()) {
1930  case CXXThrowExprClass:
1931    //   - a potentially evaluated throw-expression
1932    return CT_Can;
1933
1934  case CXXDynamicCastExprClass: {
1935    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1936    //     where T is a reference type, that requires a run-time check
1937    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1938    if (CT == CT_Can)
1939      return CT;
1940    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1941  }
1942
1943  case CXXTypeidExprClass:
1944    //   - a potentially evaluated typeid expression applied to a glvalue
1945    //     expression whose type is a polymorphic class type
1946    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1947
1948    //   - a potentially evaluated call to a function, member function, function
1949    //     pointer, or member function pointer that does not have a non-throwing
1950    //     exception-specification
1951  case CallExprClass:
1952  case CXXOperatorCallExprClass:
1953  case CXXMemberCallExprClass: {
1954    const CallExpr *CE = cast<CallExpr>(this);
1955    CanThrowResult CT;
1956    if (isTypeDependent())
1957      CT = CT_Dependent;
1958    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1959      CT = CT_Cannot;
1960    else
1961      CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
1962    if (CT == CT_Can)
1963      return CT;
1964    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1965  }
1966
1967  case CXXConstructExprClass:
1968  case CXXTemporaryObjectExprClass: {
1969    CanThrowResult CT = CanCalleeThrow(C, this,
1970        cast<CXXConstructExpr>(this)->getConstructor());
1971    if (CT == CT_Can)
1972      return CT;
1973    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1974  }
1975
1976  case CXXNewExprClass: {
1977    CanThrowResult CT;
1978    if (isTypeDependent())
1979      CT = CT_Dependent;
1980    else
1981      CT = MergeCanThrow(
1982        CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()),
1983        CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(),
1984                       /*NullThrows*/false));
1985    if (CT == CT_Can)
1986      return CT;
1987    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1988  }
1989
1990  case CXXDeleteExprClass: {
1991    CanThrowResult CT;
1992    QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
1993    if (DTy.isNull() || DTy->isDependentType()) {
1994      CT = CT_Dependent;
1995    } else {
1996      CT = CanCalleeThrow(C, this,
1997                          cast<CXXDeleteExpr>(this)->getOperatorDelete());
1998      if (const RecordType *RT = DTy->getAs<RecordType>()) {
1999        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2000        CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
2001      }
2002      if (CT == CT_Can)
2003        return CT;
2004    }
2005    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2006  }
2007
2008  case CXXBindTemporaryExprClass: {
2009    // The bound temporary has to be destroyed again, which might throw.
2010    CanThrowResult CT = CanCalleeThrow(C, this,
2011      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
2012    if (CT == CT_Can)
2013      return CT;
2014    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2015  }
2016
2017    // ObjC message sends are like function calls, but never have exception
2018    // specs.
2019  case ObjCMessageExprClass:
2020  case ObjCPropertyRefExprClass:
2021    return CT_Can;
2022
2023    // Many other things have subexpressions, so we have to test those.
2024    // Some are simple:
2025  case ParenExprClass:
2026  case MemberExprClass:
2027  case CXXReinterpretCastExprClass:
2028  case CXXConstCastExprClass:
2029  case ConditionalOperatorClass:
2030  case CompoundLiteralExprClass:
2031  case ExtVectorElementExprClass:
2032  case InitListExprClass:
2033  case DesignatedInitExprClass:
2034  case ParenListExprClass:
2035  case VAArgExprClass:
2036  case CXXDefaultArgExprClass:
2037  case ExprWithCleanupsClass:
2038  case ObjCIvarRefExprClass:
2039  case ObjCIsaExprClass:
2040  case ShuffleVectorExprClass:
2041    return CanSubExprsThrow(C, this);
2042
2043    // Some might be dependent for other reasons.
2044  case UnaryOperatorClass:
2045  case ArraySubscriptExprClass:
2046  case ImplicitCastExprClass:
2047  case CStyleCastExprClass:
2048  case CXXStaticCastExprClass:
2049  case CXXFunctionalCastExprClass:
2050  case BinaryOperatorClass:
2051  case CompoundAssignOperatorClass:
2052  case MaterializeTemporaryExprClass: {
2053    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
2054    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2055  }
2056
2057    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
2058  case StmtExprClass:
2059    return CT_Can;
2060
2061  case ChooseExprClass:
2062    if (isTypeDependent() || isValueDependent())
2063      return CT_Dependent;
2064    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
2065
2066  case GenericSelectionExprClass:
2067    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2068      return CT_Dependent;
2069    return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
2070
2071    // Some expressions are always dependent.
2072  case DependentScopeDeclRefExprClass:
2073  case CXXUnresolvedConstructExprClass:
2074  case CXXDependentScopeMemberExprClass:
2075    return CT_Dependent;
2076
2077  default:
2078    // All other expressions don't have subexpressions, or else they are
2079    // unevaluated.
2080    return CT_Cannot;
2081  }
2082}
2083
2084Expr* Expr::IgnoreParens() {
2085  Expr* E = this;
2086  while (true) {
2087    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2088      E = P->getSubExpr();
2089      continue;
2090    }
2091    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2092      if (P->getOpcode() == UO_Extension) {
2093        E = P->getSubExpr();
2094        continue;
2095      }
2096    }
2097    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2098      if (!P->isResultDependent()) {
2099        E = P->getResultExpr();
2100        continue;
2101      }
2102    }
2103    return E;
2104  }
2105}
2106
2107/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2108/// or CastExprs or ImplicitCastExprs, returning their operand.
2109Expr *Expr::IgnoreParenCasts() {
2110  Expr *E = this;
2111  while (true) {
2112    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2113      E = P->getSubExpr();
2114      continue;
2115    }
2116    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2117      E = P->getSubExpr();
2118      continue;
2119    }
2120    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2121      if (P->getOpcode() == UO_Extension) {
2122        E = P->getSubExpr();
2123        continue;
2124      }
2125    }
2126    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2127      if (!P->isResultDependent()) {
2128        E = P->getResultExpr();
2129        continue;
2130      }
2131    }
2132    if (MaterializeTemporaryExpr *Materialize
2133                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2134      E = Materialize->GetTemporaryExpr();
2135      continue;
2136    }
2137    if (SubstNonTypeTemplateParmExpr *NTTP
2138                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2139      E = NTTP->getReplacement();
2140      continue;
2141    }
2142    return E;
2143  }
2144}
2145
2146/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2147/// casts.  This is intended purely as a temporary workaround for code
2148/// that hasn't yet been rewritten to do the right thing about those
2149/// casts, and may disappear along with the last internal use.
2150Expr *Expr::IgnoreParenLValueCasts() {
2151  Expr *E = this;
2152  while (true) {
2153    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2154      E = P->getSubExpr();
2155      continue;
2156    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2157      if (P->getCastKind() == CK_LValueToRValue) {
2158        E = P->getSubExpr();
2159        continue;
2160      }
2161    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2162      if (P->getOpcode() == UO_Extension) {
2163        E = P->getSubExpr();
2164        continue;
2165      }
2166    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2167      if (!P->isResultDependent()) {
2168        E = P->getResultExpr();
2169        continue;
2170      }
2171    } else if (MaterializeTemporaryExpr *Materialize
2172                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2173      E = Materialize->GetTemporaryExpr();
2174      continue;
2175    } else if (SubstNonTypeTemplateParmExpr *NTTP
2176                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2177      E = NTTP->getReplacement();
2178      continue;
2179    }
2180    break;
2181  }
2182  return E;
2183}
2184
2185Expr *Expr::IgnoreParenImpCasts() {
2186  Expr *E = this;
2187  while (true) {
2188    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2189      E = P->getSubExpr();
2190      continue;
2191    }
2192    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2193      E = P->getSubExpr();
2194      continue;
2195    }
2196    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2197      if (P->getOpcode() == UO_Extension) {
2198        E = P->getSubExpr();
2199        continue;
2200      }
2201    }
2202    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2203      if (!P->isResultDependent()) {
2204        E = P->getResultExpr();
2205        continue;
2206      }
2207    }
2208    if (MaterializeTemporaryExpr *Materialize
2209                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2210      E = Materialize->GetTemporaryExpr();
2211      continue;
2212    }
2213    if (SubstNonTypeTemplateParmExpr *NTTP
2214                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2215      E = NTTP->getReplacement();
2216      continue;
2217    }
2218    return E;
2219  }
2220}
2221
2222Expr *Expr::IgnoreConversionOperator() {
2223  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2224    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2225      return MCE->getImplicitObjectArgument();
2226  }
2227  return this;
2228}
2229
2230/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2231/// value (including ptr->int casts of the same size).  Strip off any
2232/// ParenExpr or CastExprs, returning their operand.
2233Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2234  Expr *E = this;
2235  while (true) {
2236    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2237      E = P->getSubExpr();
2238      continue;
2239    }
2240
2241    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2242      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2243      // ptr<->int casts of the same width.  We also ignore all identity casts.
2244      Expr *SE = P->getSubExpr();
2245
2246      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2247        E = SE;
2248        continue;
2249      }
2250
2251      if ((E->getType()->isPointerType() ||
2252           E->getType()->isIntegralType(Ctx)) &&
2253          (SE->getType()->isPointerType() ||
2254           SE->getType()->isIntegralType(Ctx)) &&
2255          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2256        E = SE;
2257        continue;
2258      }
2259    }
2260
2261    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2262      if (P->getOpcode() == UO_Extension) {
2263        E = P->getSubExpr();
2264        continue;
2265      }
2266    }
2267
2268    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2269      if (!P->isResultDependent()) {
2270        E = P->getResultExpr();
2271        continue;
2272      }
2273    }
2274
2275    if (SubstNonTypeTemplateParmExpr *NTTP
2276                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2277      E = NTTP->getReplacement();
2278      continue;
2279    }
2280
2281    return E;
2282  }
2283}
2284
2285bool Expr::isDefaultArgument() const {
2286  const Expr *E = this;
2287  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2288    E = M->GetTemporaryExpr();
2289
2290  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2291    E = ICE->getSubExprAsWritten();
2292
2293  return isa<CXXDefaultArgExpr>(E);
2294}
2295
2296/// \brief Skip over any no-op casts and any temporary-binding
2297/// expressions.
2298static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2299  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2300    E = M->GetTemporaryExpr();
2301
2302  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2303    if (ICE->getCastKind() == CK_NoOp)
2304      E = ICE->getSubExpr();
2305    else
2306      break;
2307  }
2308
2309  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2310    E = BE->getSubExpr();
2311
2312  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2313    if (ICE->getCastKind() == CK_NoOp)
2314      E = ICE->getSubExpr();
2315    else
2316      break;
2317  }
2318
2319  return E->IgnoreParens();
2320}
2321
2322/// isTemporaryObject - Determines if this expression produces a
2323/// temporary of the given class type.
2324bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2325  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2326    return false;
2327
2328  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2329
2330  // Temporaries are by definition pr-values of class type.
2331  if (!E->Classify(C).isPRValue()) {
2332    // In this context, property reference is a message call and is pr-value.
2333    if (!isa<ObjCPropertyRefExpr>(E))
2334      return false;
2335  }
2336
2337  // Black-list a few cases which yield pr-values of class type that don't
2338  // refer to temporaries of that type:
2339
2340  // - implicit derived-to-base conversions
2341  if (isa<ImplicitCastExpr>(E)) {
2342    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2343    case CK_DerivedToBase:
2344    case CK_UncheckedDerivedToBase:
2345      return false;
2346    default:
2347      break;
2348    }
2349  }
2350
2351  // - member expressions (all)
2352  if (isa<MemberExpr>(E))
2353    return false;
2354
2355  // - opaque values (all)
2356  if (isa<OpaqueValueExpr>(E))
2357    return false;
2358
2359  return true;
2360}
2361
2362bool Expr::isImplicitCXXThis() const {
2363  const Expr *E = this;
2364
2365  // Strip away parentheses and casts we don't care about.
2366  while (true) {
2367    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2368      E = Paren->getSubExpr();
2369      continue;
2370    }
2371
2372    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2373      if (ICE->getCastKind() == CK_NoOp ||
2374          ICE->getCastKind() == CK_LValueToRValue ||
2375          ICE->getCastKind() == CK_DerivedToBase ||
2376          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2377        E = ICE->getSubExpr();
2378        continue;
2379      }
2380    }
2381
2382    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2383      if (UnOp->getOpcode() == UO_Extension) {
2384        E = UnOp->getSubExpr();
2385        continue;
2386      }
2387    }
2388
2389    if (const MaterializeTemporaryExpr *M
2390                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2391      E = M->GetTemporaryExpr();
2392      continue;
2393    }
2394
2395    break;
2396  }
2397
2398  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2399    return This->isImplicit();
2400
2401  return false;
2402}
2403
2404/// hasAnyTypeDependentArguments - Determines if any of the expressions
2405/// in Exprs is type-dependent.
2406bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
2407  for (unsigned I = 0; I < NumExprs; ++I)
2408    if (Exprs[I]->isTypeDependent())
2409      return true;
2410
2411  return false;
2412}
2413
2414/// hasAnyValueDependentArguments - Determines if any of the expressions
2415/// in Exprs is value-dependent.
2416bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
2417  for (unsigned I = 0; I < NumExprs; ++I)
2418    if (Exprs[I]->isValueDependent())
2419      return true;
2420
2421  return false;
2422}
2423
2424bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2425  // This function is attempting whether an expression is an initializer
2426  // which can be evaluated at compile-time.  isEvaluatable handles most
2427  // of the cases, but it can't deal with some initializer-specific
2428  // expressions, and it can't deal with aggregates; we deal with those here,
2429  // and fall back to isEvaluatable for the other cases.
2430
2431  // If we ever capture reference-binding directly in the AST, we can
2432  // kill the second parameter.
2433
2434  if (IsForRef) {
2435    EvalResult Result;
2436    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2437  }
2438
2439  switch (getStmtClass()) {
2440  default: break;
2441  case StringLiteralClass:
2442  case ObjCStringLiteralClass:
2443  case ObjCEncodeExprClass:
2444    return true;
2445  case CXXTemporaryObjectExprClass:
2446  case CXXConstructExprClass: {
2447    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2448
2449    // Only if it's
2450    // 1) an application of the trivial default constructor or
2451    if (!CE->getConstructor()->isTrivial()) return false;
2452    if (!CE->getNumArgs()) return true;
2453
2454    // 2) an elidable trivial copy construction of an operand which is
2455    //    itself a constant initializer.  Note that we consider the
2456    //    operand on its own, *not* as a reference binding.
2457    return CE->isElidable() &&
2458           CE->getArg(0)->isConstantInitializer(Ctx, false);
2459  }
2460  case CompoundLiteralExprClass: {
2461    // This handles gcc's extension that allows global initializers like
2462    // "struct x {int x;} x = (struct x) {};".
2463    // FIXME: This accepts other cases it shouldn't!
2464    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2465    return Exp->isConstantInitializer(Ctx, false);
2466  }
2467  case InitListExprClass: {
2468    // FIXME: This doesn't deal with fields with reference types correctly.
2469    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2470    // to bitfields.
2471    const InitListExpr *Exp = cast<InitListExpr>(this);
2472    unsigned numInits = Exp->getNumInits();
2473    for (unsigned i = 0; i < numInits; i++) {
2474      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2475        return false;
2476    }
2477    return true;
2478  }
2479  case ImplicitValueInitExprClass:
2480    return true;
2481  case ParenExprClass:
2482    return cast<ParenExpr>(this)->getSubExpr()
2483      ->isConstantInitializer(Ctx, IsForRef);
2484  case GenericSelectionExprClass:
2485    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2486      return false;
2487    return cast<GenericSelectionExpr>(this)->getResultExpr()
2488      ->isConstantInitializer(Ctx, IsForRef);
2489  case ChooseExprClass:
2490    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2491      ->isConstantInitializer(Ctx, IsForRef);
2492  case UnaryOperatorClass: {
2493    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2494    if (Exp->getOpcode() == UO_Extension)
2495      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2496    break;
2497  }
2498  case BinaryOperatorClass: {
2499    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
2500    // but this handles the common case.
2501    const BinaryOperator *Exp = cast<BinaryOperator>(this);
2502    if (Exp->getOpcode() == BO_Sub &&
2503        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
2504        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
2505      return true;
2506    break;
2507  }
2508  case CXXFunctionalCastExprClass:
2509  case CXXStaticCastExprClass:
2510  case ImplicitCastExprClass:
2511  case CStyleCastExprClass:
2512    // Handle casts with a destination that's a struct or union; this
2513    // deals with both the gcc no-op struct cast extension and the
2514    // cast-to-union extension.
2515    if (getType()->isRecordType())
2516      return cast<CastExpr>(this)->getSubExpr()
2517        ->isConstantInitializer(Ctx, false);
2518
2519    // Integer->integer casts can be handled here, which is important for
2520    // things like (int)(&&x-&&y).  Scary but true.
2521    if (getType()->isIntegerType() &&
2522        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
2523      return cast<CastExpr>(this)->getSubExpr()
2524        ->isConstantInitializer(Ctx, false);
2525
2526    break;
2527
2528  case MaterializeTemporaryExprClass:
2529    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2530                                            ->isConstantInitializer(Ctx, false);
2531  }
2532  return isEvaluatable(Ctx);
2533}
2534
2535/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2536/// pointer constant or not, as well as the specific kind of constant detected.
2537/// Null pointer constants can be integer constant expressions with the
2538/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2539/// (a GNU extension).
2540Expr::NullPointerConstantKind
2541Expr::isNullPointerConstant(ASTContext &Ctx,
2542                            NullPointerConstantValueDependence NPC) const {
2543  if (isValueDependent()) {
2544    switch (NPC) {
2545    case NPC_NeverValueDependent:
2546      assert(false && "Unexpected value dependent expression!");
2547      // If the unthinkable happens, fall through to the safest alternative.
2548
2549    case NPC_ValueDependentIsNull:
2550      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2551        return NPCK_ZeroInteger;
2552      else
2553        return NPCK_NotNull;
2554
2555    case NPC_ValueDependentIsNotNull:
2556      return NPCK_NotNull;
2557    }
2558  }
2559
2560  // Strip off a cast to void*, if it exists. Except in C++.
2561  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2562    if (!Ctx.getLangOptions().CPlusPlus) {
2563      // Check that it is a cast to void*.
2564      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2565        QualType Pointee = PT->getPointeeType();
2566        if (!Pointee.hasQualifiers() &&
2567            Pointee->isVoidType() &&                              // to void*
2568            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2569          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2570      }
2571    }
2572  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2573    // Ignore the ImplicitCastExpr type entirely.
2574    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2575  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2576    // Accept ((void*)0) as a null pointer constant, as many other
2577    // implementations do.
2578    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2579  } else if (const GenericSelectionExpr *GE =
2580               dyn_cast<GenericSelectionExpr>(this)) {
2581    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2582  } else if (const CXXDefaultArgExpr *DefaultArg
2583               = dyn_cast<CXXDefaultArgExpr>(this)) {
2584    // See through default argument expressions
2585    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2586  } else if (isa<GNUNullExpr>(this)) {
2587    // The GNU __null extension is always a null pointer constant.
2588    return NPCK_GNUNull;
2589  } else if (const MaterializeTemporaryExpr *M
2590                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2591    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2592  }
2593
2594  // C++0x nullptr_t is always a null pointer constant.
2595  if (getType()->isNullPtrType())
2596    return NPCK_CXX0X_nullptr;
2597
2598  if (const RecordType *UT = getType()->getAsUnionType())
2599    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2600      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2601        const Expr *InitExpr = CLE->getInitializer();
2602        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2603          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2604      }
2605  // This expression must be an integer type.
2606  if (!getType()->isIntegerType() ||
2607      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2608    return NPCK_NotNull;
2609
2610  // If we have an integer constant expression, we need to *evaluate* it and
2611  // test for the value 0.
2612  llvm::APSInt Result;
2613  bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
2614
2615  return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
2616}
2617
2618/// \brief If this expression is an l-value for an Objective C
2619/// property, find the underlying property reference expression.
2620const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2621  const Expr *E = this;
2622  while (true) {
2623    assert((E->getValueKind() == VK_LValue &&
2624            E->getObjectKind() == OK_ObjCProperty) &&
2625           "expression is not a property reference");
2626    E = E->IgnoreParenCasts();
2627    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2628      if (BO->getOpcode() == BO_Comma) {
2629        E = BO->getRHS();
2630        continue;
2631      }
2632    }
2633
2634    break;
2635  }
2636
2637  return cast<ObjCPropertyRefExpr>(E);
2638}
2639
2640FieldDecl *Expr::getBitField() {
2641  Expr *E = this->IgnoreParens();
2642
2643  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2644    if (ICE->getCastKind() == CK_LValueToRValue ||
2645        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2646      E = ICE->getSubExpr()->IgnoreParens();
2647    else
2648      break;
2649  }
2650
2651  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2652    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2653      if (Field->isBitField())
2654        return Field;
2655
2656  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2657    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2658      if (Field->isBitField())
2659        return Field;
2660
2661  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2662    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2663      return BinOp->getLHS()->getBitField();
2664
2665    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2666      return BinOp->getRHS()->getBitField();
2667  }
2668
2669  return 0;
2670}
2671
2672bool Expr::refersToVectorElement() const {
2673  const Expr *E = this->IgnoreParens();
2674
2675  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2676    if (ICE->getValueKind() != VK_RValue &&
2677        ICE->getCastKind() == CK_NoOp)
2678      E = ICE->getSubExpr()->IgnoreParens();
2679    else
2680      break;
2681  }
2682
2683  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2684    return ASE->getBase()->getType()->isVectorType();
2685
2686  if (isa<ExtVectorElementExpr>(E))
2687    return true;
2688
2689  return false;
2690}
2691
2692/// isArrow - Return true if the base expression is a pointer to vector,
2693/// return false if the base expression is a vector.
2694bool ExtVectorElementExpr::isArrow() const {
2695  return getBase()->getType()->isPointerType();
2696}
2697
2698unsigned ExtVectorElementExpr::getNumElements() const {
2699  if (const VectorType *VT = getType()->getAs<VectorType>())
2700    return VT->getNumElements();
2701  return 1;
2702}
2703
2704/// containsDuplicateElements - Return true if any element access is repeated.
2705bool ExtVectorElementExpr::containsDuplicateElements() const {
2706  // FIXME: Refactor this code to an accessor on the AST node which returns the
2707  // "type" of component access, and share with code below and in Sema.
2708  StringRef Comp = Accessor->getName();
2709
2710  // Halving swizzles do not contain duplicate elements.
2711  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2712    return false;
2713
2714  // Advance past s-char prefix on hex swizzles.
2715  if (Comp[0] == 's' || Comp[0] == 'S')
2716    Comp = Comp.substr(1);
2717
2718  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2719    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2720        return true;
2721
2722  return false;
2723}
2724
2725/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2726void ExtVectorElementExpr::getEncodedElementAccess(
2727                                  SmallVectorImpl<unsigned> &Elts) const {
2728  StringRef Comp = Accessor->getName();
2729  if (Comp[0] == 's' || Comp[0] == 'S')
2730    Comp = Comp.substr(1);
2731
2732  bool isHi =   Comp == "hi";
2733  bool isLo =   Comp == "lo";
2734  bool isEven = Comp == "even";
2735  bool isOdd  = Comp == "odd";
2736
2737  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2738    uint64_t Index;
2739
2740    if (isHi)
2741      Index = e + i;
2742    else if (isLo)
2743      Index = i;
2744    else if (isEven)
2745      Index = 2 * i;
2746    else if (isOdd)
2747      Index = 2 * i + 1;
2748    else
2749      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2750
2751    Elts.push_back(Index);
2752  }
2753}
2754
2755ObjCMessageExpr::ObjCMessageExpr(QualType T,
2756                                 ExprValueKind VK,
2757                                 SourceLocation LBracLoc,
2758                                 SourceLocation SuperLoc,
2759                                 bool IsInstanceSuper,
2760                                 QualType SuperType,
2761                                 Selector Sel,
2762                                 SourceLocation SelLoc,
2763                                 ObjCMethodDecl *Method,
2764                                 Expr **Args, unsigned NumArgs,
2765                                 SourceLocation RBracLoc)
2766  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2767         /*TypeDependent=*/false, /*ValueDependent=*/false,
2768         /*InstantiationDependent=*/false,
2769         /*ContainsUnexpandedParameterPack=*/false),
2770    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2771    HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc),
2772    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2773                                                       : Sel.getAsOpaquePtr())),
2774    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2775{
2776  setReceiverPointer(SuperType.getAsOpaquePtr());
2777  if (NumArgs)
2778    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2779}
2780
2781ObjCMessageExpr::ObjCMessageExpr(QualType T,
2782                                 ExprValueKind VK,
2783                                 SourceLocation LBracLoc,
2784                                 TypeSourceInfo *Receiver,
2785                                 Selector Sel,
2786                                 SourceLocation SelLoc,
2787                                 ObjCMethodDecl *Method,
2788                                 Expr **Args, unsigned NumArgs,
2789                                 SourceLocation RBracLoc)
2790  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2791         T->isDependentType(), T->isInstantiationDependentType(),
2792         T->containsUnexpandedParameterPack()),
2793    NumArgs(NumArgs), Kind(Class),
2794    HasMethod(Method != 0), IsDelegateInitCall(false),
2795    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2796                                                       : Sel.getAsOpaquePtr())),
2797    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2798{
2799  setReceiverPointer(Receiver);
2800  Expr **MyArgs = getArgs();
2801  for (unsigned I = 0; I != NumArgs; ++I) {
2802    if (Args[I]->isTypeDependent())
2803      ExprBits.TypeDependent = true;
2804    if (Args[I]->isValueDependent())
2805      ExprBits.ValueDependent = true;
2806    if (Args[I]->isInstantiationDependent())
2807      ExprBits.InstantiationDependent = true;
2808    if (Args[I]->containsUnexpandedParameterPack())
2809      ExprBits.ContainsUnexpandedParameterPack = true;
2810
2811    MyArgs[I] = Args[I];
2812  }
2813}
2814
2815ObjCMessageExpr::ObjCMessageExpr(QualType T,
2816                                 ExprValueKind VK,
2817                                 SourceLocation LBracLoc,
2818                                 Expr *Receiver,
2819                                 Selector Sel,
2820                                 SourceLocation SelLoc,
2821                                 ObjCMethodDecl *Method,
2822                                 Expr **Args, unsigned NumArgs,
2823                                 SourceLocation RBracLoc)
2824  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2825         Receiver->isTypeDependent(),
2826         Receiver->isInstantiationDependent(),
2827         Receiver->containsUnexpandedParameterPack()),
2828    NumArgs(NumArgs), Kind(Instance),
2829    HasMethod(Method != 0), IsDelegateInitCall(false),
2830    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2831                                                       : Sel.getAsOpaquePtr())),
2832    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2833{
2834  setReceiverPointer(Receiver);
2835  Expr **MyArgs = getArgs();
2836  for (unsigned I = 0; I != NumArgs; ++I) {
2837    if (Args[I]->isTypeDependent())
2838      ExprBits.TypeDependent = true;
2839    if (Args[I]->isValueDependent())
2840      ExprBits.ValueDependent = true;
2841    if (Args[I]->isInstantiationDependent())
2842      ExprBits.InstantiationDependent = true;
2843    if (Args[I]->containsUnexpandedParameterPack())
2844      ExprBits.ContainsUnexpandedParameterPack = true;
2845
2846    MyArgs[I] = Args[I];
2847  }
2848}
2849
2850ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2851                                         ExprValueKind VK,
2852                                         SourceLocation LBracLoc,
2853                                         SourceLocation SuperLoc,
2854                                         bool IsInstanceSuper,
2855                                         QualType SuperType,
2856                                         Selector Sel,
2857                                         SourceLocation SelLoc,
2858                                         ObjCMethodDecl *Method,
2859                                         Expr **Args, unsigned NumArgs,
2860                                         SourceLocation RBracLoc) {
2861  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2862    NumArgs * sizeof(Expr *);
2863  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2864  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2865                                   SuperType, Sel, SelLoc, Method, Args,NumArgs,
2866                                   RBracLoc);
2867}
2868
2869ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2870                                         ExprValueKind VK,
2871                                         SourceLocation LBracLoc,
2872                                         TypeSourceInfo *Receiver,
2873                                         Selector Sel,
2874                                         SourceLocation SelLoc,
2875                                         ObjCMethodDecl *Method,
2876                                         Expr **Args, unsigned NumArgs,
2877                                         SourceLocation RBracLoc) {
2878  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2879    NumArgs * sizeof(Expr *);
2880  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2881  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2882                                   Method, Args, NumArgs, RBracLoc);
2883}
2884
2885ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2886                                         ExprValueKind VK,
2887                                         SourceLocation LBracLoc,
2888                                         Expr *Receiver,
2889                                         Selector Sel,
2890                                         SourceLocation SelLoc,
2891                                         ObjCMethodDecl *Method,
2892                                         Expr **Args, unsigned NumArgs,
2893                                         SourceLocation RBracLoc) {
2894  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2895    NumArgs * sizeof(Expr *);
2896  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2897  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2898                                   Method, Args, NumArgs, RBracLoc);
2899}
2900
2901ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2902                                              unsigned NumArgs) {
2903  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2904    NumArgs * sizeof(Expr *);
2905  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2906  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2907}
2908
2909SourceRange ObjCMessageExpr::getReceiverRange() const {
2910  switch (getReceiverKind()) {
2911  case Instance:
2912    return getInstanceReceiver()->getSourceRange();
2913
2914  case Class:
2915    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2916
2917  case SuperInstance:
2918  case SuperClass:
2919    return getSuperLoc();
2920  }
2921
2922  return SourceLocation();
2923}
2924
2925Selector ObjCMessageExpr::getSelector() const {
2926  if (HasMethod)
2927    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2928                                                               ->getSelector();
2929  return Selector(SelectorOrMethod);
2930}
2931
2932ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2933  switch (getReceiverKind()) {
2934  case Instance:
2935    if (const ObjCObjectPointerType *Ptr
2936          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2937      return Ptr->getInterfaceDecl();
2938    break;
2939
2940  case Class:
2941    if (const ObjCObjectType *Ty
2942          = getClassReceiver()->getAs<ObjCObjectType>())
2943      return Ty->getInterface();
2944    break;
2945
2946  case SuperInstance:
2947    if (const ObjCObjectPointerType *Ptr
2948          = getSuperType()->getAs<ObjCObjectPointerType>())
2949      return Ptr->getInterfaceDecl();
2950    break;
2951
2952  case SuperClass:
2953    if (const ObjCObjectType *Iface
2954          = getSuperType()->getAs<ObjCObjectType>())
2955      return Iface->getInterface();
2956    break;
2957  }
2958
2959  return 0;
2960}
2961
2962StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
2963  switch (getBridgeKind()) {
2964  case OBC_Bridge:
2965    return "__bridge";
2966  case OBC_BridgeTransfer:
2967    return "__bridge_transfer";
2968  case OBC_BridgeRetained:
2969    return "__bridge_retained";
2970  }
2971
2972  return "__bridge";
2973}
2974
2975bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
2976  return getCond()->EvaluateAsInt(C) != 0;
2977}
2978
2979ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2980                                     QualType Type, SourceLocation BLoc,
2981                                     SourceLocation RP)
2982   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2983          Type->isDependentType(), Type->isDependentType(),
2984          Type->isInstantiationDependentType(),
2985          Type->containsUnexpandedParameterPack()),
2986     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
2987{
2988  SubExprs = new (C) Stmt*[nexpr];
2989  for (unsigned i = 0; i < nexpr; i++) {
2990    if (args[i]->isTypeDependent())
2991      ExprBits.TypeDependent = true;
2992    if (args[i]->isValueDependent())
2993      ExprBits.ValueDependent = true;
2994    if (args[i]->isInstantiationDependent())
2995      ExprBits.InstantiationDependent = true;
2996    if (args[i]->containsUnexpandedParameterPack())
2997      ExprBits.ContainsUnexpandedParameterPack = true;
2998
2999    SubExprs[i] = args[i];
3000  }
3001}
3002
3003void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3004                                 unsigned NumExprs) {
3005  if (SubExprs) C.Deallocate(SubExprs);
3006
3007  SubExprs = new (C) Stmt* [NumExprs];
3008  this->NumExprs = NumExprs;
3009  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3010}
3011
3012GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3013                               SourceLocation GenericLoc, Expr *ControllingExpr,
3014                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3015                               unsigned NumAssocs, SourceLocation DefaultLoc,
3016                               SourceLocation RParenLoc,
3017                               bool ContainsUnexpandedParameterPack,
3018                               unsigned ResultIndex)
3019  : Expr(GenericSelectionExprClass,
3020         AssocExprs[ResultIndex]->getType(),
3021         AssocExprs[ResultIndex]->getValueKind(),
3022         AssocExprs[ResultIndex]->getObjectKind(),
3023         AssocExprs[ResultIndex]->isTypeDependent(),
3024         AssocExprs[ResultIndex]->isValueDependent(),
3025         AssocExprs[ResultIndex]->isInstantiationDependent(),
3026         ContainsUnexpandedParameterPack),
3027    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3028    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3029    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3030    RParenLoc(RParenLoc) {
3031  SubExprs[CONTROLLING] = ControllingExpr;
3032  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3033  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3034}
3035
3036GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3037                               SourceLocation GenericLoc, Expr *ControllingExpr,
3038                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3039                               unsigned NumAssocs, SourceLocation DefaultLoc,
3040                               SourceLocation RParenLoc,
3041                               bool ContainsUnexpandedParameterPack)
3042  : Expr(GenericSelectionExprClass,
3043         Context.DependentTy,
3044         VK_RValue,
3045         OK_Ordinary,
3046         /*isTypeDependent=*/true,
3047         /*isValueDependent=*/true,
3048         /*isInstantiationDependent=*/true,
3049         ContainsUnexpandedParameterPack),
3050    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3051    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3052    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3053    RParenLoc(RParenLoc) {
3054  SubExprs[CONTROLLING] = ControllingExpr;
3055  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3056  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3057}
3058
3059//===----------------------------------------------------------------------===//
3060//  DesignatedInitExpr
3061//===----------------------------------------------------------------------===//
3062
3063IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3064  assert(Kind == FieldDesignator && "Only valid on a field designator");
3065  if (Field.NameOrField & 0x01)
3066    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3067  else
3068    return getField()->getIdentifier();
3069}
3070
3071DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3072                                       unsigned NumDesignators,
3073                                       const Designator *Designators,
3074                                       SourceLocation EqualOrColonLoc,
3075                                       bool GNUSyntax,
3076                                       Expr **IndexExprs,
3077                                       unsigned NumIndexExprs,
3078                                       Expr *Init)
3079  : Expr(DesignatedInitExprClass, Ty,
3080         Init->getValueKind(), Init->getObjectKind(),
3081         Init->isTypeDependent(), Init->isValueDependent(),
3082         Init->isInstantiationDependent(),
3083         Init->containsUnexpandedParameterPack()),
3084    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3085    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3086  this->Designators = new (C) Designator[NumDesignators];
3087
3088  // Record the initializer itself.
3089  child_range Child = children();
3090  *Child++ = Init;
3091
3092  // Copy the designators and their subexpressions, computing
3093  // value-dependence along the way.
3094  unsigned IndexIdx = 0;
3095  for (unsigned I = 0; I != NumDesignators; ++I) {
3096    this->Designators[I] = Designators[I];
3097
3098    if (this->Designators[I].isArrayDesignator()) {
3099      // Compute type- and value-dependence.
3100      Expr *Index = IndexExprs[IndexIdx];
3101      if (Index->isTypeDependent() || Index->isValueDependent())
3102        ExprBits.ValueDependent = true;
3103      if (Index->isInstantiationDependent())
3104        ExprBits.InstantiationDependent = true;
3105      // Propagate unexpanded parameter packs.
3106      if (Index->containsUnexpandedParameterPack())
3107        ExprBits.ContainsUnexpandedParameterPack = true;
3108
3109      // Copy the index expressions into permanent storage.
3110      *Child++ = IndexExprs[IndexIdx++];
3111    } else if (this->Designators[I].isArrayRangeDesignator()) {
3112      // Compute type- and value-dependence.
3113      Expr *Start = IndexExprs[IndexIdx];
3114      Expr *End = IndexExprs[IndexIdx + 1];
3115      if (Start->isTypeDependent() || Start->isValueDependent() ||
3116          End->isTypeDependent() || End->isValueDependent()) {
3117        ExprBits.ValueDependent = true;
3118        ExprBits.InstantiationDependent = true;
3119      } else if (Start->isInstantiationDependent() ||
3120                 End->isInstantiationDependent()) {
3121        ExprBits.InstantiationDependent = true;
3122      }
3123
3124      // Propagate unexpanded parameter packs.
3125      if (Start->containsUnexpandedParameterPack() ||
3126          End->containsUnexpandedParameterPack())
3127        ExprBits.ContainsUnexpandedParameterPack = true;
3128
3129      // Copy the start/end expressions into permanent storage.
3130      *Child++ = IndexExprs[IndexIdx++];
3131      *Child++ = IndexExprs[IndexIdx++];
3132    }
3133  }
3134
3135  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3136}
3137
3138DesignatedInitExpr *
3139DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3140                           unsigned NumDesignators,
3141                           Expr **IndexExprs, unsigned NumIndexExprs,
3142                           SourceLocation ColonOrEqualLoc,
3143                           bool UsesColonSyntax, Expr *Init) {
3144  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3145                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3146  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3147                                      ColonOrEqualLoc, UsesColonSyntax,
3148                                      IndexExprs, NumIndexExprs, Init);
3149}
3150
3151DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3152                                                    unsigned NumIndexExprs) {
3153  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3154                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3155  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3156}
3157
3158void DesignatedInitExpr::setDesignators(ASTContext &C,
3159                                        const Designator *Desigs,
3160                                        unsigned NumDesigs) {
3161  Designators = new (C) Designator[NumDesigs];
3162  NumDesignators = NumDesigs;
3163  for (unsigned I = 0; I != NumDesigs; ++I)
3164    Designators[I] = Desigs[I];
3165}
3166
3167SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3168  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3169  if (size() == 1)
3170    return DIE->getDesignator(0)->getSourceRange();
3171  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3172                     DIE->getDesignator(size()-1)->getEndLocation());
3173}
3174
3175SourceRange DesignatedInitExpr::getSourceRange() const {
3176  SourceLocation StartLoc;
3177  Designator &First =
3178    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3179  if (First.isFieldDesignator()) {
3180    if (GNUSyntax)
3181      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3182    else
3183      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3184  } else
3185    StartLoc =
3186      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3187  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3188}
3189
3190Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3191  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3192  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3193  Ptr += sizeof(DesignatedInitExpr);
3194  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3195  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3196}
3197
3198Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3199  assert(D.Kind == Designator::ArrayRangeDesignator &&
3200         "Requires array range designator");
3201  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3202  Ptr += sizeof(DesignatedInitExpr);
3203  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3204  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3205}
3206
3207Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3208  assert(D.Kind == Designator::ArrayRangeDesignator &&
3209         "Requires array range designator");
3210  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3211  Ptr += sizeof(DesignatedInitExpr);
3212  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3213  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3214}
3215
3216/// \brief Replaces the designator at index @p Idx with the series
3217/// of designators in [First, Last).
3218void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3219                                          const Designator *First,
3220                                          const Designator *Last) {
3221  unsigned NumNewDesignators = Last - First;
3222  if (NumNewDesignators == 0) {
3223    std::copy_backward(Designators + Idx + 1,
3224                       Designators + NumDesignators,
3225                       Designators + Idx);
3226    --NumNewDesignators;
3227    return;
3228  } else if (NumNewDesignators == 1) {
3229    Designators[Idx] = *First;
3230    return;
3231  }
3232
3233  Designator *NewDesignators
3234    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3235  std::copy(Designators, Designators + Idx, NewDesignators);
3236  std::copy(First, Last, NewDesignators + Idx);
3237  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3238            NewDesignators + Idx + NumNewDesignators);
3239  Designators = NewDesignators;
3240  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3241}
3242
3243ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3244                             Expr **exprs, unsigned nexprs,
3245                             SourceLocation rparenloc, QualType T)
3246  : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary,
3247         false, false, false, false),
3248    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3249  assert(!T.isNull() && "ParenListExpr must have a valid type");
3250  Exprs = new (C) Stmt*[nexprs];
3251  for (unsigned i = 0; i != nexprs; ++i) {
3252    if (exprs[i]->isTypeDependent())
3253      ExprBits.TypeDependent = true;
3254    if (exprs[i]->isValueDependent())
3255      ExprBits.ValueDependent = true;
3256    if (exprs[i]->isInstantiationDependent())
3257      ExprBits.InstantiationDependent = true;
3258    if (exprs[i]->containsUnexpandedParameterPack())
3259      ExprBits.ContainsUnexpandedParameterPack = true;
3260
3261    Exprs[i] = exprs[i];
3262  }
3263}
3264
3265const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3266  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3267    e = ewc->getSubExpr();
3268  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3269    e = m->GetTemporaryExpr();
3270  e = cast<CXXConstructExpr>(e)->getArg(0);
3271  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3272    e = ice->getSubExpr();
3273  return cast<OpaqueValueExpr>(e);
3274}
3275
3276//===----------------------------------------------------------------------===//
3277//  ExprIterator.
3278//===----------------------------------------------------------------------===//
3279
3280Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3281Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3282Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3283const Expr* ConstExprIterator::operator[](size_t idx) const {
3284  return cast<Expr>(I[idx]);
3285}
3286const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3287const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3288
3289//===----------------------------------------------------------------------===//
3290//  Child Iterators for iterating over subexpressions/substatements
3291//===----------------------------------------------------------------------===//
3292
3293// UnaryExprOrTypeTraitExpr
3294Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3295  // If this is of a type and the type is a VLA type (and not a typedef), the
3296  // size expression of the VLA needs to be treated as an executable expression.
3297  // Why isn't this weirdness documented better in StmtIterator?
3298  if (isArgumentType()) {
3299    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3300                                   getArgumentType().getTypePtr()))
3301      return child_range(child_iterator(T), child_iterator());
3302    return child_range();
3303  }
3304  return child_range(&Argument.Ex, &Argument.Ex + 1);
3305}
3306
3307// ObjCMessageExpr
3308Stmt::child_range ObjCMessageExpr::children() {
3309  Stmt **begin;
3310  if (getReceiverKind() == Instance)
3311    begin = reinterpret_cast<Stmt **>(this + 1);
3312  else
3313    begin = reinterpret_cast<Stmt **>(getArgs());
3314  return child_range(begin,
3315                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3316}
3317
3318// Blocks
3319BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3320                                   SourceLocation l, bool ByRef,
3321                                   bool constAdded)
3322  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false,
3323         d->isParameterPack()),
3324    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
3325{
3326  bool TypeDependent = false;
3327  bool ValueDependent = false;
3328  bool InstantiationDependent = false;
3329  computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent,
3330                           InstantiationDependent);
3331  ExprBits.TypeDependent = TypeDependent;
3332  ExprBits.ValueDependent = ValueDependent;
3333  ExprBits.InstantiationDependent = InstantiationDependent;
3334}
3335