Expr.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36/// isKnownToHaveBooleanValue - Return true if this is an integer expression
37/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
38/// but also int expressions which are produced by things like comparisons in
39/// C.
40bool Expr::isKnownToHaveBooleanValue() const {
41  const Expr *E = IgnoreParens();
42
43  // If this value has _Bool type, it is obvious 0/1.
44  if (E->getType()->isBooleanType()) return true;
45  // If this is a non-scalar-integer type, we don't care enough to try.
46  if (!E->getType()->isIntegralOrEnumerationType()) return false;
47
48  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
49    switch (UO->getOpcode()) {
50    case UO_Plus:
51      return UO->getSubExpr()->isKnownToHaveBooleanValue();
52    default:
53      return false;
54    }
55  }
56
57  // Only look through implicit casts.  If the user writes
58  // '(int) (a && b)' treat it as an arbitrary int.
59  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
60    return CE->getSubExpr()->isKnownToHaveBooleanValue();
61
62  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
63    switch (BO->getOpcode()) {
64    default: return false;
65    case BO_LT:   // Relational operators.
66    case BO_GT:
67    case BO_LE:
68    case BO_GE:
69    case BO_EQ:   // Equality operators.
70    case BO_NE:
71    case BO_LAnd: // AND operator.
72    case BO_LOr:  // Logical OR operator.
73      return true;
74
75    case BO_And:  // Bitwise AND operator.
76    case BO_Xor:  // Bitwise XOR operator.
77    case BO_Or:   // Bitwise OR operator.
78      // Handle things like (x==2)|(y==12).
79      return BO->getLHS()->isKnownToHaveBooleanValue() &&
80             BO->getRHS()->isKnownToHaveBooleanValue();
81
82    case BO_Comma:
83    case BO_Assign:
84      return BO->getRHS()->isKnownToHaveBooleanValue();
85    }
86  }
87
88  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
89    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
90           CO->getFalseExpr()->isKnownToHaveBooleanValue();
91
92  return false;
93}
94
95// Amusing macro metaprogramming hack: check whether a class provides
96// a more specific implementation of getExprLoc().
97//
98// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
99namespace {
100  /// This implementation is used when a class provides a custom
101  /// implementation of getExprLoc.
102  template <class E, class T>
103  SourceLocation getExprLocImpl(const Expr *expr,
104                                SourceLocation (T::*v)() const) {
105    return static_cast<const E*>(expr)->getExprLoc();
106  }
107
108  /// This implementation is used when a class doesn't provide
109  /// a custom implementation of getExprLoc.  Overload resolution
110  /// should pick it over the implementation above because it's
111  /// more specialized according to function template partial ordering.
112  template <class E>
113  SourceLocation getExprLocImpl(const Expr *expr,
114                                SourceLocation (Expr::*v)() const) {
115    return static_cast<const E*>(expr)->getLocStart();
116  }
117}
118
119SourceLocation Expr::getExprLoc() const {
120  switch (getStmtClass()) {
121  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
122#define ABSTRACT_STMT(type)
123#define STMT(type, base) \
124  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
125#define EXPR(type, base) \
126  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
127#include "clang/AST/StmtNodes.inc"
128  }
129  llvm_unreachable("unknown statement kind");
130}
131
132//===----------------------------------------------------------------------===//
133// Primary Expressions.
134//===----------------------------------------------------------------------===//
135
136/// \brief Compute the type-, value-, and instantiation-dependence of a
137/// declaration reference
138/// based on the declaration being referenced.
139static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
140                                     bool &TypeDependent,
141                                     bool &ValueDependent,
142                                     bool &InstantiationDependent) {
143  TypeDependent = false;
144  ValueDependent = false;
145  InstantiationDependent = false;
146
147  // (TD) C++ [temp.dep.expr]p3:
148  //   An id-expression is type-dependent if it contains:
149  //
150  // and
151  //
152  // (VD) C++ [temp.dep.constexpr]p2:
153  //  An identifier is value-dependent if it is:
154
155  //  (TD)  - an identifier that was declared with dependent type
156  //  (VD)  - a name declared with a dependent type,
157  if (T->isDependentType()) {
158    TypeDependent = true;
159    ValueDependent = true;
160    InstantiationDependent = true;
161    return;
162  } else if (T->isInstantiationDependentType()) {
163    InstantiationDependent = true;
164  }
165
166  //  (TD)  - a conversion-function-id that specifies a dependent type
167  if (D->getDeclName().getNameKind()
168                                == DeclarationName::CXXConversionFunctionName) {
169    QualType T = D->getDeclName().getCXXNameType();
170    if (T->isDependentType()) {
171      TypeDependent = true;
172      ValueDependent = true;
173      InstantiationDependent = true;
174      return;
175    }
176
177    if (T->isInstantiationDependentType())
178      InstantiationDependent = true;
179  }
180
181  //  (VD)  - the name of a non-type template parameter,
182  if (isa<NonTypeTemplateParmDecl>(D)) {
183    ValueDependent = true;
184    InstantiationDependent = true;
185    return;
186  }
187
188  //  (VD) - a constant with integral or enumeration type and is
189  //         initialized with an expression that is value-dependent.
190  //  (VD) - a constant with literal type and is initialized with an
191  //         expression that is value-dependent [C++11].
192  //  (VD) - FIXME: Missing from the standard:
193  //       -  an entity with reference type and is initialized with an
194  //          expression that is value-dependent [C++11]
195  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
196    if ((Ctx.getLangOpts().CPlusPlus0x ?
197           Var->getType()->isLiteralType() :
198           Var->getType()->isIntegralOrEnumerationType()) &&
199        (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
200         Var->getType()->isReferenceType())) {
201      if (const Expr *Init = Var->getAnyInitializer())
202        if (Init->isValueDependent()) {
203          ValueDependent = true;
204          InstantiationDependent = true;
205        }
206    }
207
208    // (VD) - FIXME: Missing from the standard:
209    //      -  a member function or a static data member of the current
210    //         instantiation
211    if (Var->isStaticDataMember() &&
212        Var->getDeclContext()->isDependentContext()) {
213      ValueDependent = true;
214      InstantiationDependent = true;
215    }
216
217    return;
218  }
219
220  // (VD) - FIXME: Missing from the standard:
221  //      -  a member function or a static data member of the current
222  //         instantiation
223  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
224    ValueDependent = true;
225    InstantiationDependent = true;
226  }
227}
228
229void DeclRefExpr::computeDependence(ASTContext &Ctx) {
230  bool TypeDependent = false;
231  bool ValueDependent = false;
232  bool InstantiationDependent = false;
233  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
234                           ValueDependent, InstantiationDependent);
235
236  // (TD) C++ [temp.dep.expr]p3:
237  //   An id-expression is type-dependent if it contains:
238  //
239  // and
240  //
241  // (VD) C++ [temp.dep.constexpr]p2:
242  //  An identifier is value-dependent if it is:
243  if (!TypeDependent && !ValueDependent &&
244      hasExplicitTemplateArgs() &&
245      TemplateSpecializationType::anyDependentTemplateArguments(
246                                                            getTemplateArgs(),
247                                                       getNumTemplateArgs(),
248                                                      InstantiationDependent)) {
249    TypeDependent = true;
250    ValueDependent = true;
251    InstantiationDependent = true;
252  }
253
254  ExprBits.TypeDependent = TypeDependent;
255  ExprBits.ValueDependent = ValueDependent;
256  ExprBits.InstantiationDependent = InstantiationDependent;
257
258  // Is the declaration a parameter pack?
259  if (getDecl()->isParameterPack())
260    ExprBits.ContainsUnexpandedParameterPack = true;
261}
262
263DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
264                         NestedNameSpecifierLoc QualifierLoc,
265                         SourceLocation TemplateKWLoc,
266                         ValueDecl *D, bool RefersToEnclosingLocal,
267                         const DeclarationNameInfo &NameInfo,
268                         NamedDecl *FoundD,
269                         const TemplateArgumentListInfo *TemplateArgs,
270                         QualType T, ExprValueKind VK)
271  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
272    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
273  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
274  if (QualifierLoc)
275    getInternalQualifierLoc() = QualifierLoc;
276  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
277  if (FoundD)
278    getInternalFoundDecl() = FoundD;
279  DeclRefExprBits.HasTemplateKWAndArgsInfo
280    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
281  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
282  if (TemplateArgs) {
283    bool Dependent = false;
284    bool InstantiationDependent = false;
285    bool ContainsUnexpandedParameterPack = false;
286    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
287                                               Dependent,
288                                               InstantiationDependent,
289                                               ContainsUnexpandedParameterPack);
290    if (InstantiationDependent)
291      setInstantiationDependent(true);
292  } else if (TemplateKWLoc.isValid()) {
293    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
294  }
295  DeclRefExprBits.HadMultipleCandidates = 0;
296
297  computeDependence(Ctx);
298}
299
300DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
301                                 NestedNameSpecifierLoc QualifierLoc,
302                                 SourceLocation TemplateKWLoc,
303                                 ValueDecl *D,
304                                 bool RefersToEnclosingLocal,
305                                 SourceLocation NameLoc,
306                                 QualType T,
307                                 ExprValueKind VK,
308                                 NamedDecl *FoundD,
309                                 const TemplateArgumentListInfo *TemplateArgs) {
310  return Create(Context, QualifierLoc, TemplateKWLoc, D,
311                RefersToEnclosingLocal,
312                DeclarationNameInfo(D->getDeclName(), NameLoc),
313                T, VK, FoundD, TemplateArgs);
314}
315
316DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
317                                 NestedNameSpecifierLoc QualifierLoc,
318                                 SourceLocation TemplateKWLoc,
319                                 ValueDecl *D,
320                                 bool RefersToEnclosingLocal,
321                                 const DeclarationNameInfo &NameInfo,
322                                 QualType T,
323                                 ExprValueKind VK,
324                                 NamedDecl *FoundD,
325                                 const TemplateArgumentListInfo *TemplateArgs) {
326  // Filter out cases where the found Decl is the same as the value refenenced.
327  if (D == FoundD)
328    FoundD = 0;
329
330  std::size_t Size = sizeof(DeclRefExpr);
331  if (QualifierLoc != 0)
332    Size += sizeof(NestedNameSpecifierLoc);
333  if (FoundD)
334    Size += sizeof(NamedDecl *);
335  if (TemplateArgs)
336    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
337  else if (TemplateKWLoc.isValid())
338    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
339
340  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
341  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
342                               RefersToEnclosingLocal,
343                               NameInfo, FoundD, TemplateArgs, T, VK);
344}
345
346DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
347                                      bool HasQualifier,
348                                      bool HasFoundDecl,
349                                      bool HasTemplateKWAndArgsInfo,
350                                      unsigned NumTemplateArgs) {
351  std::size_t Size = sizeof(DeclRefExpr);
352  if (HasQualifier)
353    Size += sizeof(NestedNameSpecifierLoc);
354  if (HasFoundDecl)
355    Size += sizeof(NamedDecl *);
356  if (HasTemplateKWAndArgsInfo)
357    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
358
359  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
360  return new (Mem) DeclRefExpr(EmptyShell());
361}
362
363SourceRange DeclRefExpr::getSourceRange() const {
364  SourceRange R = getNameInfo().getSourceRange();
365  if (hasQualifier())
366    R.setBegin(getQualifierLoc().getBeginLoc());
367  if (hasExplicitTemplateArgs())
368    R.setEnd(getRAngleLoc());
369  return R;
370}
371SourceLocation DeclRefExpr::getLocStart() const {
372  if (hasQualifier())
373    return getQualifierLoc().getBeginLoc();
374  return getNameInfo().getLocStart();
375}
376SourceLocation DeclRefExpr::getLocEnd() const {
377  if (hasExplicitTemplateArgs())
378    return getRAngleLoc();
379  return getNameInfo().getLocEnd();
380}
381
382// FIXME: Maybe this should use DeclPrinter with a special "print predefined
383// expr" policy instead.
384std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
385  ASTContext &Context = CurrentDecl->getASTContext();
386
387  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
388    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
389      return FD->getNameAsString();
390
391    SmallString<256> Name;
392    llvm::raw_svector_ostream Out(Name);
393
394    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
395      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
396        Out << "virtual ";
397      if (MD->isStatic())
398        Out << "static ";
399    }
400
401    PrintingPolicy Policy(Context.getLangOpts());
402
403    std::string Proto = FD->getQualifiedNameAsString(Policy);
404
405    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
406    const FunctionProtoType *FT = 0;
407    if (FD->hasWrittenPrototype())
408      FT = dyn_cast<FunctionProtoType>(AFT);
409
410    Proto += "(";
411    if (FT) {
412      llvm::raw_string_ostream POut(Proto);
413      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
414        if (i) POut << ", ";
415        std::string Param;
416        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
417        POut << Param;
418      }
419
420      if (FT->isVariadic()) {
421        if (FD->getNumParams()) POut << ", ";
422        POut << "...";
423      }
424    }
425    Proto += ")";
426
427    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
428      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
429      if (ThisQuals.hasConst())
430        Proto += " const";
431      if (ThisQuals.hasVolatile())
432        Proto += " volatile";
433    }
434
435    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
436      AFT->getResultType().getAsStringInternal(Proto, Policy);
437
438    Out << Proto;
439
440    Out.flush();
441    return Name.str().str();
442  }
443  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
444    SmallString<256> Name;
445    llvm::raw_svector_ostream Out(Name);
446    Out << (MD->isInstanceMethod() ? '-' : '+');
447    Out << '[';
448
449    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
450    // a null check to avoid a crash.
451    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
452      Out << *ID;
453
454    if (const ObjCCategoryImplDecl *CID =
455        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
456      Out << '(' << *CID << ')';
457
458    Out <<  ' ';
459    Out << MD->getSelector().getAsString();
460    Out <<  ']';
461
462    Out.flush();
463    return Name.str().str();
464  }
465  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
466    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
467    return "top level";
468  }
469  return "";
470}
471
472void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
473  if (hasAllocation())
474    C.Deallocate(pVal);
475
476  BitWidth = Val.getBitWidth();
477  unsigned NumWords = Val.getNumWords();
478  const uint64_t* Words = Val.getRawData();
479  if (NumWords > 1) {
480    pVal = new (C) uint64_t[NumWords];
481    std::copy(Words, Words + NumWords, pVal);
482  } else if (NumWords == 1)
483    VAL = Words[0];
484  else
485    VAL = 0;
486}
487
488IntegerLiteral *
489IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
490                       QualType type, SourceLocation l) {
491  return new (C) IntegerLiteral(C, V, type, l);
492}
493
494IntegerLiteral *
495IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
496  return new (C) IntegerLiteral(Empty);
497}
498
499FloatingLiteral *
500FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
501                        bool isexact, QualType Type, SourceLocation L) {
502  return new (C) FloatingLiteral(C, V, isexact, Type, L);
503}
504
505FloatingLiteral *
506FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
507  return new (C) FloatingLiteral(C, Empty);
508}
509
510/// getValueAsApproximateDouble - This returns the value as an inaccurate
511/// double.  Note that this may cause loss of precision, but is useful for
512/// debugging dumps, etc.
513double FloatingLiteral::getValueAsApproximateDouble() const {
514  llvm::APFloat V = getValue();
515  bool ignored;
516  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
517            &ignored);
518  return V.convertToDouble();
519}
520
521int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
522  int CharByteWidth = 0;
523  switch(k) {
524    case Ascii:
525    case UTF8:
526      CharByteWidth = target.getCharWidth();
527      break;
528    case Wide:
529      CharByteWidth = target.getWCharWidth();
530      break;
531    case UTF16:
532      CharByteWidth = target.getChar16Width();
533      break;
534    case UTF32:
535      CharByteWidth = target.getChar32Width();
536      break;
537  }
538  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
539  CharByteWidth /= 8;
540  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
541         && "character byte widths supported are 1, 2, and 4 only");
542  return CharByteWidth;
543}
544
545StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
546                                     StringKind Kind, bool Pascal, QualType Ty,
547                                     const SourceLocation *Loc,
548                                     unsigned NumStrs) {
549  // Allocate enough space for the StringLiteral plus an array of locations for
550  // any concatenated string tokens.
551  void *Mem = C.Allocate(sizeof(StringLiteral)+
552                         sizeof(SourceLocation)*(NumStrs-1),
553                         llvm::alignOf<StringLiteral>());
554  StringLiteral *SL = new (Mem) StringLiteral(Ty);
555
556  // OPTIMIZE: could allocate this appended to the StringLiteral.
557  SL->setString(C,Str,Kind,Pascal);
558
559  SL->TokLocs[0] = Loc[0];
560  SL->NumConcatenated = NumStrs;
561
562  if (NumStrs != 1)
563    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
564  return SL;
565}
566
567StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
568  void *Mem = C.Allocate(sizeof(StringLiteral)+
569                         sizeof(SourceLocation)*(NumStrs-1),
570                         llvm::alignOf<StringLiteral>());
571  StringLiteral *SL = new (Mem) StringLiteral(QualType());
572  SL->CharByteWidth = 0;
573  SL->Length = 0;
574  SL->NumConcatenated = NumStrs;
575  return SL;
576}
577
578void StringLiteral::setString(ASTContext &C, StringRef Str,
579                              StringKind Kind, bool IsPascal) {
580  //FIXME: we assume that the string data comes from a target that uses the same
581  // code unit size and endianess for the type of string.
582  this->Kind = Kind;
583  this->IsPascal = IsPascal;
584
585  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
586  assert((Str.size()%CharByteWidth == 0)
587         && "size of data must be multiple of CharByteWidth");
588  Length = Str.size()/CharByteWidth;
589
590  switch(CharByteWidth) {
591    case 1: {
592      char *AStrData = new (C) char[Length];
593      std::memcpy(AStrData,Str.data(),Str.size());
594      StrData.asChar = AStrData;
595      break;
596    }
597    case 2: {
598      uint16_t *AStrData = new (C) uint16_t[Length];
599      std::memcpy(AStrData,Str.data(),Str.size());
600      StrData.asUInt16 = AStrData;
601      break;
602    }
603    case 4: {
604      uint32_t *AStrData = new (C) uint32_t[Length];
605      std::memcpy(AStrData,Str.data(),Str.size());
606      StrData.asUInt32 = AStrData;
607      break;
608    }
609    default:
610      assert(false && "unsupported CharByteWidth");
611  }
612}
613
614/// getLocationOfByte - Return a source location that points to the specified
615/// byte of this string literal.
616///
617/// Strings are amazingly complex.  They can be formed from multiple tokens and
618/// can have escape sequences in them in addition to the usual trigraph and
619/// escaped newline business.  This routine handles this complexity.
620///
621SourceLocation StringLiteral::
622getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
623                  const LangOptions &Features, const TargetInfo &Target) const {
624  assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
625
626  // Loop over all of the tokens in this string until we find the one that
627  // contains the byte we're looking for.
628  unsigned TokNo = 0;
629  while (1) {
630    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
631    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
632
633    // Get the spelling of the string so that we can get the data that makes up
634    // the string literal, not the identifier for the macro it is potentially
635    // expanded through.
636    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
637
638    // Re-lex the token to get its length and original spelling.
639    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
640    bool Invalid = false;
641    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
642    if (Invalid)
643      return StrTokSpellingLoc;
644
645    const char *StrData = Buffer.data()+LocInfo.second;
646
647    // Create a langops struct and enable trigraphs.  This is sufficient for
648    // relexing tokens.
649    LangOptions LangOpts;
650    LangOpts.Trigraphs = true;
651
652    // Create a lexer starting at the beginning of this token.
653    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
654                   Buffer.end());
655    Token TheTok;
656    TheLexer.LexFromRawLexer(TheTok);
657
658    // Use the StringLiteralParser to compute the length of the string in bytes.
659    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
660    unsigned TokNumBytes = SLP.GetStringLength();
661
662    // If the byte is in this token, return the location of the byte.
663    if (ByteNo < TokNumBytes ||
664        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
665      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
666
667      // Now that we know the offset of the token in the spelling, use the
668      // preprocessor to get the offset in the original source.
669      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
670    }
671
672    // Move to the next string token.
673    ++TokNo;
674    ByteNo -= TokNumBytes;
675  }
676}
677
678
679
680/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
681/// corresponds to, e.g. "sizeof" or "[pre]++".
682const char *UnaryOperator::getOpcodeStr(Opcode Op) {
683  switch (Op) {
684  case UO_PostInc: return "++";
685  case UO_PostDec: return "--";
686  case UO_PreInc:  return "++";
687  case UO_PreDec:  return "--";
688  case UO_AddrOf:  return "&";
689  case UO_Deref:   return "*";
690  case UO_Plus:    return "+";
691  case UO_Minus:   return "-";
692  case UO_Not:     return "~";
693  case UO_LNot:    return "!";
694  case UO_Real:    return "__real";
695  case UO_Imag:    return "__imag";
696  case UO_Extension: return "__extension__";
697  }
698  llvm_unreachable("Unknown unary operator");
699}
700
701UnaryOperatorKind
702UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
703  switch (OO) {
704  default: llvm_unreachable("No unary operator for overloaded function");
705  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
706  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
707  case OO_Amp:        return UO_AddrOf;
708  case OO_Star:       return UO_Deref;
709  case OO_Plus:       return UO_Plus;
710  case OO_Minus:      return UO_Minus;
711  case OO_Tilde:      return UO_Not;
712  case OO_Exclaim:    return UO_LNot;
713  }
714}
715
716OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
717  switch (Opc) {
718  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
719  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
720  case UO_AddrOf: return OO_Amp;
721  case UO_Deref: return OO_Star;
722  case UO_Plus: return OO_Plus;
723  case UO_Minus: return OO_Minus;
724  case UO_Not: return OO_Tilde;
725  case UO_LNot: return OO_Exclaim;
726  default: return OO_None;
727  }
728}
729
730
731//===----------------------------------------------------------------------===//
732// Postfix Operators.
733//===----------------------------------------------------------------------===//
734
735CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
736                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
737                   SourceLocation rparenloc)
738  : Expr(SC, t, VK, OK_Ordinary,
739         fn->isTypeDependent(),
740         fn->isValueDependent(),
741         fn->isInstantiationDependent(),
742         fn->containsUnexpandedParameterPack()),
743    NumArgs(numargs) {
744
745  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
746  SubExprs[FN] = fn;
747  for (unsigned i = 0; i != numargs; ++i) {
748    if (args[i]->isTypeDependent())
749      ExprBits.TypeDependent = true;
750    if (args[i]->isValueDependent())
751      ExprBits.ValueDependent = true;
752    if (args[i]->isInstantiationDependent())
753      ExprBits.InstantiationDependent = true;
754    if (args[i]->containsUnexpandedParameterPack())
755      ExprBits.ContainsUnexpandedParameterPack = true;
756
757    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
758  }
759
760  CallExprBits.NumPreArgs = NumPreArgs;
761  RParenLoc = rparenloc;
762}
763
764CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
765                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
766  : Expr(CallExprClass, t, VK, OK_Ordinary,
767         fn->isTypeDependent(),
768         fn->isValueDependent(),
769         fn->isInstantiationDependent(),
770         fn->containsUnexpandedParameterPack()),
771    NumArgs(numargs) {
772
773  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
774  SubExprs[FN] = fn;
775  for (unsigned i = 0; i != numargs; ++i) {
776    if (args[i]->isTypeDependent())
777      ExprBits.TypeDependent = true;
778    if (args[i]->isValueDependent())
779      ExprBits.ValueDependent = true;
780    if (args[i]->isInstantiationDependent())
781      ExprBits.InstantiationDependent = true;
782    if (args[i]->containsUnexpandedParameterPack())
783      ExprBits.ContainsUnexpandedParameterPack = true;
784
785    SubExprs[i+PREARGS_START] = args[i];
786  }
787
788  CallExprBits.NumPreArgs = 0;
789  RParenLoc = rparenloc;
790}
791
792CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
793  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
794  // FIXME: Why do we allocate this?
795  SubExprs = new (C) Stmt*[PREARGS_START];
796  CallExprBits.NumPreArgs = 0;
797}
798
799CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
800                   EmptyShell Empty)
801  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
802  // FIXME: Why do we allocate this?
803  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
804  CallExprBits.NumPreArgs = NumPreArgs;
805}
806
807Decl *CallExpr::getCalleeDecl() {
808  Expr *CEE = getCallee()->IgnoreParenImpCasts();
809
810  while (SubstNonTypeTemplateParmExpr *NTTP
811                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
812    CEE = NTTP->getReplacement()->IgnoreParenCasts();
813  }
814
815  // If we're calling a dereference, look at the pointer instead.
816  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
817    if (BO->isPtrMemOp())
818      CEE = BO->getRHS()->IgnoreParenCasts();
819  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
820    if (UO->getOpcode() == UO_Deref)
821      CEE = UO->getSubExpr()->IgnoreParenCasts();
822  }
823  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
824    return DRE->getDecl();
825  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
826    return ME->getMemberDecl();
827
828  return 0;
829}
830
831FunctionDecl *CallExpr::getDirectCallee() {
832  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
833}
834
835/// setNumArgs - This changes the number of arguments present in this call.
836/// Any orphaned expressions are deleted by this, and any new operands are set
837/// to null.
838void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
839  // No change, just return.
840  if (NumArgs == getNumArgs()) return;
841
842  // If shrinking # arguments, just delete the extras and forgot them.
843  if (NumArgs < getNumArgs()) {
844    this->NumArgs = NumArgs;
845    return;
846  }
847
848  // Otherwise, we are growing the # arguments.  New an bigger argument array.
849  unsigned NumPreArgs = getNumPreArgs();
850  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
851  // Copy over args.
852  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
853    NewSubExprs[i] = SubExprs[i];
854  // Null out new args.
855  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
856       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
857    NewSubExprs[i] = 0;
858
859  if (SubExprs) C.Deallocate(SubExprs);
860  SubExprs = NewSubExprs;
861  this->NumArgs = NumArgs;
862}
863
864/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
865/// not, return 0.
866unsigned CallExpr::isBuiltinCall() const {
867  // All simple function calls (e.g. func()) are implicitly cast to pointer to
868  // function. As a result, we try and obtain the DeclRefExpr from the
869  // ImplicitCastExpr.
870  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
871  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
872    return 0;
873
874  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
875  if (!DRE)
876    return 0;
877
878  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
879  if (!FDecl)
880    return 0;
881
882  if (!FDecl->getIdentifier())
883    return 0;
884
885  return FDecl->getBuiltinID();
886}
887
888QualType CallExpr::getCallReturnType() const {
889  QualType CalleeType = getCallee()->getType();
890  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
891    CalleeType = FnTypePtr->getPointeeType();
892  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
893    CalleeType = BPT->getPointeeType();
894  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
895    // This should never be overloaded and so should never return null.
896    CalleeType = Expr::findBoundMemberType(getCallee());
897
898  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
899  return FnType->getResultType();
900}
901
902SourceRange CallExpr::getSourceRange() const {
903  if (isa<CXXOperatorCallExpr>(this))
904    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
905
906  SourceLocation begin = getCallee()->getLocStart();
907  if (begin.isInvalid() && getNumArgs() > 0)
908    begin = getArg(0)->getLocStart();
909  SourceLocation end = getRParenLoc();
910  if (end.isInvalid() && getNumArgs() > 0)
911    end = getArg(getNumArgs() - 1)->getLocEnd();
912  return SourceRange(begin, end);
913}
914SourceLocation CallExpr::getLocStart() const {
915  if (isa<CXXOperatorCallExpr>(this))
916    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
917
918  SourceLocation begin = getCallee()->getLocStart();
919  if (begin.isInvalid() && getNumArgs() > 0)
920    begin = getArg(0)->getLocStart();
921  return begin;
922}
923SourceLocation CallExpr::getLocEnd() const {
924  if (isa<CXXOperatorCallExpr>(this))
925    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
926
927  SourceLocation end = getRParenLoc();
928  if (end.isInvalid() && getNumArgs() > 0)
929    end = getArg(getNumArgs() - 1)->getLocEnd();
930  return end;
931}
932
933OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
934                                   SourceLocation OperatorLoc,
935                                   TypeSourceInfo *tsi,
936                                   OffsetOfNode* compsPtr, unsigned numComps,
937                                   Expr** exprsPtr, unsigned numExprs,
938                                   SourceLocation RParenLoc) {
939  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
940                         sizeof(OffsetOfNode) * numComps +
941                         sizeof(Expr*) * numExprs);
942
943  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
944                                exprsPtr, numExprs, RParenLoc);
945}
946
947OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
948                                        unsigned numComps, unsigned numExprs) {
949  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
950                         sizeof(OffsetOfNode) * numComps +
951                         sizeof(Expr*) * numExprs);
952  return new (Mem) OffsetOfExpr(numComps, numExprs);
953}
954
955OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
956                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
957                           OffsetOfNode* compsPtr, unsigned numComps,
958                           Expr** exprsPtr, unsigned numExprs,
959                           SourceLocation RParenLoc)
960  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
961         /*TypeDependent=*/false,
962         /*ValueDependent=*/tsi->getType()->isDependentType(),
963         tsi->getType()->isInstantiationDependentType(),
964         tsi->getType()->containsUnexpandedParameterPack()),
965    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
966    NumComps(numComps), NumExprs(numExprs)
967{
968  for(unsigned i = 0; i < numComps; ++i) {
969    setComponent(i, compsPtr[i]);
970  }
971
972  for(unsigned i = 0; i < numExprs; ++i) {
973    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
974      ExprBits.ValueDependent = true;
975    if (exprsPtr[i]->containsUnexpandedParameterPack())
976      ExprBits.ContainsUnexpandedParameterPack = true;
977
978    setIndexExpr(i, exprsPtr[i]);
979  }
980}
981
982IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
983  assert(getKind() == Field || getKind() == Identifier);
984  if (getKind() == Field)
985    return getField()->getIdentifier();
986
987  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
988}
989
990MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
991                               NestedNameSpecifierLoc QualifierLoc,
992                               SourceLocation TemplateKWLoc,
993                               ValueDecl *memberdecl,
994                               DeclAccessPair founddecl,
995                               DeclarationNameInfo nameinfo,
996                               const TemplateArgumentListInfo *targs,
997                               QualType ty,
998                               ExprValueKind vk,
999                               ExprObjectKind ok) {
1000  std::size_t Size = sizeof(MemberExpr);
1001
1002  bool hasQualOrFound = (QualifierLoc ||
1003                         founddecl.getDecl() != memberdecl ||
1004                         founddecl.getAccess() != memberdecl->getAccess());
1005  if (hasQualOrFound)
1006    Size += sizeof(MemberNameQualifier);
1007
1008  if (targs)
1009    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1010  else if (TemplateKWLoc.isValid())
1011    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1012
1013  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1014  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1015                                       ty, vk, ok);
1016
1017  if (hasQualOrFound) {
1018    // FIXME: Wrong. We should be looking at the member declaration we found.
1019    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1020      E->setValueDependent(true);
1021      E->setTypeDependent(true);
1022      E->setInstantiationDependent(true);
1023    }
1024    else if (QualifierLoc &&
1025             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1026      E->setInstantiationDependent(true);
1027
1028    E->HasQualifierOrFoundDecl = true;
1029
1030    MemberNameQualifier *NQ = E->getMemberQualifier();
1031    NQ->QualifierLoc = QualifierLoc;
1032    NQ->FoundDecl = founddecl;
1033  }
1034
1035  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1036
1037  if (targs) {
1038    bool Dependent = false;
1039    bool InstantiationDependent = false;
1040    bool ContainsUnexpandedParameterPack = false;
1041    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1042                                                  Dependent,
1043                                                  InstantiationDependent,
1044                                             ContainsUnexpandedParameterPack);
1045    if (InstantiationDependent)
1046      E->setInstantiationDependent(true);
1047  } else if (TemplateKWLoc.isValid()) {
1048    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1049  }
1050
1051  return E;
1052}
1053
1054SourceRange MemberExpr::getSourceRange() const {
1055  return SourceRange(getLocStart(), getLocEnd());
1056}
1057SourceLocation MemberExpr::getLocStart() const {
1058  if (isImplicitAccess()) {
1059    if (hasQualifier())
1060      return getQualifierLoc().getBeginLoc();
1061    return MemberLoc;
1062  }
1063
1064  // FIXME: We don't want this to happen. Rather, we should be able to
1065  // detect all kinds of implicit accesses more cleanly.
1066  SourceLocation BaseStartLoc = getBase()->getLocStart();
1067  if (BaseStartLoc.isValid())
1068    return BaseStartLoc;
1069  return MemberLoc;
1070}
1071SourceLocation MemberExpr::getLocEnd() const {
1072  if (hasExplicitTemplateArgs())
1073    return getRAngleLoc();
1074  return getMemberNameInfo().getEndLoc();
1075}
1076
1077void CastExpr::CheckCastConsistency() const {
1078  switch (getCastKind()) {
1079  case CK_DerivedToBase:
1080  case CK_UncheckedDerivedToBase:
1081  case CK_DerivedToBaseMemberPointer:
1082  case CK_BaseToDerived:
1083  case CK_BaseToDerivedMemberPointer:
1084    assert(!path_empty() && "Cast kind should have a base path!");
1085    break;
1086
1087  case CK_CPointerToObjCPointerCast:
1088    assert(getType()->isObjCObjectPointerType());
1089    assert(getSubExpr()->getType()->isPointerType());
1090    goto CheckNoBasePath;
1091
1092  case CK_BlockPointerToObjCPointerCast:
1093    assert(getType()->isObjCObjectPointerType());
1094    assert(getSubExpr()->getType()->isBlockPointerType());
1095    goto CheckNoBasePath;
1096
1097  case CK_ReinterpretMemberPointer:
1098    assert(getType()->isMemberPointerType());
1099    assert(getSubExpr()->getType()->isMemberPointerType());
1100    goto CheckNoBasePath;
1101
1102  case CK_BitCast:
1103    // Arbitrary casts to C pointer types count as bitcasts.
1104    // Otherwise, we should only have block and ObjC pointer casts
1105    // here if they stay within the type kind.
1106    if (!getType()->isPointerType()) {
1107      assert(getType()->isObjCObjectPointerType() ==
1108             getSubExpr()->getType()->isObjCObjectPointerType());
1109      assert(getType()->isBlockPointerType() ==
1110             getSubExpr()->getType()->isBlockPointerType());
1111    }
1112    goto CheckNoBasePath;
1113
1114  case CK_AnyPointerToBlockPointerCast:
1115    assert(getType()->isBlockPointerType());
1116    assert(getSubExpr()->getType()->isAnyPointerType() &&
1117           !getSubExpr()->getType()->isBlockPointerType());
1118    goto CheckNoBasePath;
1119
1120  case CK_CopyAndAutoreleaseBlockObject:
1121    assert(getType()->isBlockPointerType());
1122    assert(getSubExpr()->getType()->isBlockPointerType());
1123    goto CheckNoBasePath;
1124
1125  // These should not have an inheritance path.
1126  case CK_Dynamic:
1127  case CK_ToUnion:
1128  case CK_ArrayToPointerDecay:
1129  case CK_FunctionToPointerDecay:
1130  case CK_NullToMemberPointer:
1131  case CK_NullToPointer:
1132  case CK_ConstructorConversion:
1133  case CK_IntegralToPointer:
1134  case CK_PointerToIntegral:
1135  case CK_ToVoid:
1136  case CK_VectorSplat:
1137  case CK_IntegralCast:
1138  case CK_IntegralToFloating:
1139  case CK_FloatingToIntegral:
1140  case CK_FloatingCast:
1141  case CK_ObjCObjectLValueCast:
1142  case CK_FloatingRealToComplex:
1143  case CK_FloatingComplexToReal:
1144  case CK_FloatingComplexCast:
1145  case CK_FloatingComplexToIntegralComplex:
1146  case CK_IntegralRealToComplex:
1147  case CK_IntegralComplexToReal:
1148  case CK_IntegralComplexCast:
1149  case CK_IntegralComplexToFloatingComplex:
1150  case CK_ARCProduceObject:
1151  case CK_ARCConsumeObject:
1152  case CK_ARCReclaimReturnedObject:
1153  case CK_ARCExtendBlockObject:
1154    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1155    goto CheckNoBasePath;
1156
1157  case CK_Dependent:
1158  case CK_LValueToRValue:
1159  case CK_NoOp:
1160  case CK_AtomicToNonAtomic:
1161  case CK_NonAtomicToAtomic:
1162  case CK_PointerToBoolean:
1163  case CK_IntegralToBoolean:
1164  case CK_FloatingToBoolean:
1165  case CK_MemberPointerToBoolean:
1166  case CK_FloatingComplexToBoolean:
1167  case CK_IntegralComplexToBoolean:
1168  case CK_LValueBitCast:            // -> bool&
1169  case CK_UserDefinedConversion:    // operator bool()
1170  CheckNoBasePath:
1171    assert(path_empty() && "Cast kind should not have a base path!");
1172    break;
1173  }
1174}
1175
1176const char *CastExpr::getCastKindName() const {
1177  switch (getCastKind()) {
1178  case CK_Dependent:
1179    return "Dependent";
1180  case CK_BitCast:
1181    return "BitCast";
1182  case CK_LValueBitCast:
1183    return "LValueBitCast";
1184  case CK_LValueToRValue:
1185    return "LValueToRValue";
1186  case CK_NoOp:
1187    return "NoOp";
1188  case CK_BaseToDerived:
1189    return "BaseToDerived";
1190  case CK_DerivedToBase:
1191    return "DerivedToBase";
1192  case CK_UncheckedDerivedToBase:
1193    return "UncheckedDerivedToBase";
1194  case CK_Dynamic:
1195    return "Dynamic";
1196  case CK_ToUnion:
1197    return "ToUnion";
1198  case CK_ArrayToPointerDecay:
1199    return "ArrayToPointerDecay";
1200  case CK_FunctionToPointerDecay:
1201    return "FunctionToPointerDecay";
1202  case CK_NullToMemberPointer:
1203    return "NullToMemberPointer";
1204  case CK_NullToPointer:
1205    return "NullToPointer";
1206  case CK_BaseToDerivedMemberPointer:
1207    return "BaseToDerivedMemberPointer";
1208  case CK_DerivedToBaseMemberPointer:
1209    return "DerivedToBaseMemberPointer";
1210  case CK_ReinterpretMemberPointer:
1211    return "ReinterpretMemberPointer";
1212  case CK_UserDefinedConversion:
1213    return "UserDefinedConversion";
1214  case CK_ConstructorConversion:
1215    return "ConstructorConversion";
1216  case CK_IntegralToPointer:
1217    return "IntegralToPointer";
1218  case CK_PointerToIntegral:
1219    return "PointerToIntegral";
1220  case CK_PointerToBoolean:
1221    return "PointerToBoolean";
1222  case CK_ToVoid:
1223    return "ToVoid";
1224  case CK_VectorSplat:
1225    return "VectorSplat";
1226  case CK_IntegralCast:
1227    return "IntegralCast";
1228  case CK_IntegralToBoolean:
1229    return "IntegralToBoolean";
1230  case CK_IntegralToFloating:
1231    return "IntegralToFloating";
1232  case CK_FloatingToIntegral:
1233    return "FloatingToIntegral";
1234  case CK_FloatingCast:
1235    return "FloatingCast";
1236  case CK_FloatingToBoolean:
1237    return "FloatingToBoolean";
1238  case CK_MemberPointerToBoolean:
1239    return "MemberPointerToBoolean";
1240  case CK_CPointerToObjCPointerCast:
1241    return "CPointerToObjCPointerCast";
1242  case CK_BlockPointerToObjCPointerCast:
1243    return "BlockPointerToObjCPointerCast";
1244  case CK_AnyPointerToBlockPointerCast:
1245    return "AnyPointerToBlockPointerCast";
1246  case CK_ObjCObjectLValueCast:
1247    return "ObjCObjectLValueCast";
1248  case CK_FloatingRealToComplex:
1249    return "FloatingRealToComplex";
1250  case CK_FloatingComplexToReal:
1251    return "FloatingComplexToReal";
1252  case CK_FloatingComplexToBoolean:
1253    return "FloatingComplexToBoolean";
1254  case CK_FloatingComplexCast:
1255    return "FloatingComplexCast";
1256  case CK_FloatingComplexToIntegralComplex:
1257    return "FloatingComplexToIntegralComplex";
1258  case CK_IntegralRealToComplex:
1259    return "IntegralRealToComplex";
1260  case CK_IntegralComplexToReal:
1261    return "IntegralComplexToReal";
1262  case CK_IntegralComplexToBoolean:
1263    return "IntegralComplexToBoolean";
1264  case CK_IntegralComplexCast:
1265    return "IntegralComplexCast";
1266  case CK_IntegralComplexToFloatingComplex:
1267    return "IntegralComplexToFloatingComplex";
1268  case CK_ARCConsumeObject:
1269    return "ARCConsumeObject";
1270  case CK_ARCProduceObject:
1271    return "ARCProduceObject";
1272  case CK_ARCReclaimReturnedObject:
1273    return "ARCReclaimReturnedObject";
1274  case CK_ARCExtendBlockObject:
1275    return "ARCCExtendBlockObject";
1276  case CK_AtomicToNonAtomic:
1277    return "AtomicToNonAtomic";
1278  case CK_NonAtomicToAtomic:
1279    return "NonAtomicToAtomic";
1280  case CK_CopyAndAutoreleaseBlockObject:
1281    return "CopyAndAutoreleaseBlockObject";
1282  }
1283
1284  llvm_unreachable("Unhandled cast kind!");
1285}
1286
1287Expr *CastExpr::getSubExprAsWritten() {
1288  Expr *SubExpr = 0;
1289  CastExpr *E = this;
1290  do {
1291    SubExpr = E->getSubExpr();
1292
1293    // Skip through reference binding to temporary.
1294    if (MaterializeTemporaryExpr *Materialize
1295                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1296      SubExpr = Materialize->GetTemporaryExpr();
1297
1298    // Skip any temporary bindings; they're implicit.
1299    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1300      SubExpr = Binder->getSubExpr();
1301
1302    // Conversions by constructor and conversion functions have a
1303    // subexpression describing the call; strip it off.
1304    if (E->getCastKind() == CK_ConstructorConversion)
1305      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1306    else if (E->getCastKind() == CK_UserDefinedConversion)
1307      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1308
1309    // If the subexpression we're left with is an implicit cast, look
1310    // through that, too.
1311  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1312
1313  return SubExpr;
1314}
1315
1316CXXBaseSpecifier **CastExpr::path_buffer() {
1317  switch (getStmtClass()) {
1318#define ABSTRACT_STMT(x)
1319#define CASTEXPR(Type, Base) \
1320  case Stmt::Type##Class: \
1321    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1322#define STMT(Type, Base)
1323#include "clang/AST/StmtNodes.inc"
1324  default:
1325    llvm_unreachable("non-cast expressions not possible here");
1326  }
1327}
1328
1329void CastExpr::setCastPath(const CXXCastPath &Path) {
1330  assert(Path.size() == path_size());
1331  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1332}
1333
1334ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1335                                           CastKind Kind, Expr *Operand,
1336                                           const CXXCastPath *BasePath,
1337                                           ExprValueKind VK) {
1338  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1339  void *Buffer =
1340    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1341  ImplicitCastExpr *E =
1342    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1343  if (PathSize) E->setCastPath(*BasePath);
1344  return E;
1345}
1346
1347ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1348                                                unsigned PathSize) {
1349  void *Buffer =
1350    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1351  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1352}
1353
1354
1355CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1356                                       ExprValueKind VK, CastKind K, Expr *Op,
1357                                       const CXXCastPath *BasePath,
1358                                       TypeSourceInfo *WrittenTy,
1359                                       SourceLocation L, SourceLocation R) {
1360  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1361  void *Buffer =
1362    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1363  CStyleCastExpr *E =
1364    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1365  if (PathSize) E->setCastPath(*BasePath);
1366  return E;
1367}
1368
1369CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1370  void *Buffer =
1371    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1372  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1373}
1374
1375/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1376/// corresponds to, e.g. "<<=".
1377const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1378  switch (Op) {
1379  case BO_PtrMemD:   return ".*";
1380  case BO_PtrMemI:   return "->*";
1381  case BO_Mul:       return "*";
1382  case BO_Div:       return "/";
1383  case BO_Rem:       return "%";
1384  case BO_Add:       return "+";
1385  case BO_Sub:       return "-";
1386  case BO_Shl:       return "<<";
1387  case BO_Shr:       return ">>";
1388  case BO_LT:        return "<";
1389  case BO_GT:        return ">";
1390  case BO_LE:        return "<=";
1391  case BO_GE:        return ">=";
1392  case BO_EQ:        return "==";
1393  case BO_NE:        return "!=";
1394  case BO_And:       return "&";
1395  case BO_Xor:       return "^";
1396  case BO_Or:        return "|";
1397  case BO_LAnd:      return "&&";
1398  case BO_LOr:       return "||";
1399  case BO_Assign:    return "=";
1400  case BO_MulAssign: return "*=";
1401  case BO_DivAssign: return "/=";
1402  case BO_RemAssign: return "%=";
1403  case BO_AddAssign: return "+=";
1404  case BO_SubAssign: return "-=";
1405  case BO_ShlAssign: return "<<=";
1406  case BO_ShrAssign: return ">>=";
1407  case BO_AndAssign: return "&=";
1408  case BO_XorAssign: return "^=";
1409  case BO_OrAssign:  return "|=";
1410  case BO_Comma:     return ",";
1411  }
1412
1413  llvm_unreachable("Invalid OpCode!");
1414}
1415
1416BinaryOperatorKind
1417BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1418  switch (OO) {
1419  default: llvm_unreachable("Not an overloadable binary operator");
1420  case OO_Plus: return BO_Add;
1421  case OO_Minus: return BO_Sub;
1422  case OO_Star: return BO_Mul;
1423  case OO_Slash: return BO_Div;
1424  case OO_Percent: return BO_Rem;
1425  case OO_Caret: return BO_Xor;
1426  case OO_Amp: return BO_And;
1427  case OO_Pipe: return BO_Or;
1428  case OO_Equal: return BO_Assign;
1429  case OO_Less: return BO_LT;
1430  case OO_Greater: return BO_GT;
1431  case OO_PlusEqual: return BO_AddAssign;
1432  case OO_MinusEqual: return BO_SubAssign;
1433  case OO_StarEqual: return BO_MulAssign;
1434  case OO_SlashEqual: return BO_DivAssign;
1435  case OO_PercentEqual: return BO_RemAssign;
1436  case OO_CaretEqual: return BO_XorAssign;
1437  case OO_AmpEqual: return BO_AndAssign;
1438  case OO_PipeEqual: return BO_OrAssign;
1439  case OO_LessLess: return BO_Shl;
1440  case OO_GreaterGreater: return BO_Shr;
1441  case OO_LessLessEqual: return BO_ShlAssign;
1442  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1443  case OO_EqualEqual: return BO_EQ;
1444  case OO_ExclaimEqual: return BO_NE;
1445  case OO_LessEqual: return BO_LE;
1446  case OO_GreaterEqual: return BO_GE;
1447  case OO_AmpAmp: return BO_LAnd;
1448  case OO_PipePipe: return BO_LOr;
1449  case OO_Comma: return BO_Comma;
1450  case OO_ArrowStar: return BO_PtrMemI;
1451  }
1452}
1453
1454OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1455  static const OverloadedOperatorKind OverOps[] = {
1456    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1457    OO_Star, OO_Slash, OO_Percent,
1458    OO_Plus, OO_Minus,
1459    OO_LessLess, OO_GreaterGreater,
1460    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1461    OO_EqualEqual, OO_ExclaimEqual,
1462    OO_Amp,
1463    OO_Caret,
1464    OO_Pipe,
1465    OO_AmpAmp,
1466    OO_PipePipe,
1467    OO_Equal, OO_StarEqual,
1468    OO_SlashEqual, OO_PercentEqual,
1469    OO_PlusEqual, OO_MinusEqual,
1470    OO_LessLessEqual, OO_GreaterGreaterEqual,
1471    OO_AmpEqual, OO_CaretEqual,
1472    OO_PipeEqual,
1473    OO_Comma
1474  };
1475  return OverOps[Opc];
1476}
1477
1478InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1479                           Expr **initExprs, unsigned numInits,
1480                           SourceLocation rbraceloc)
1481  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1482         false, false),
1483    InitExprs(C, numInits),
1484    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1485{
1486  sawArrayRangeDesignator(false);
1487  setInitializesStdInitializerList(false);
1488  for (unsigned I = 0; I != numInits; ++I) {
1489    if (initExprs[I]->isTypeDependent())
1490      ExprBits.TypeDependent = true;
1491    if (initExprs[I]->isValueDependent())
1492      ExprBits.ValueDependent = true;
1493    if (initExprs[I]->isInstantiationDependent())
1494      ExprBits.InstantiationDependent = true;
1495    if (initExprs[I]->containsUnexpandedParameterPack())
1496      ExprBits.ContainsUnexpandedParameterPack = true;
1497  }
1498
1499  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1500}
1501
1502void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1503  if (NumInits > InitExprs.size())
1504    InitExprs.reserve(C, NumInits);
1505}
1506
1507void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1508  InitExprs.resize(C, NumInits, 0);
1509}
1510
1511Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1512  if (Init >= InitExprs.size()) {
1513    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1514    InitExprs.back() = expr;
1515    return 0;
1516  }
1517
1518  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1519  InitExprs[Init] = expr;
1520  return Result;
1521}
1522
1523void InitListExpr::setArrayFiller(Expr *filler) {
1524  assert(!hasArrayFiller() && "Filler already set!");
1525  ArrayFillerOrUnionFieldInit = filler;
1526  // Fill out any "holes" in the array due to designated initializers.
1527  Expr **inits = getInits();
1528  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1529    if (inits[i] == 0)
1530      inits[i] = filler;
1531}
1532
1533SourceRange InitListExpr::getSourceRange() const {
1534  if (SyntacticForm)
1535    return SyntacticForm->getSourceRange();
1536  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1537  if (Beg.isInvalid()) {
1538    // Find the first non-null initializer.
1539    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1540                                     E = InitExprs.end();
1541      I != E; ++I) {
1542      if (Stmt *S = *I) {
1543        Beg = S->getLocStart();
1544        break;
1545      }
1546    }
1547  }
1548  if (End.isInvalid()) {
1549    // Find the first non-null initializer from the end.
1550    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1551                                             E = InitExprs.rend();
1552      I != E; ++I) {
1553      if (Stmt *S = *I) {
1554        End = S->getSourceRange().getEnd();
1555        break;
1556      }
1557    }
1558  }
1559  return SourceRange(Beg, End);
1560}
1561
1562/// getFunctionType - Return the underlying function type for this block.
1563///
1564const FunctionProtoType *BlockExpr::getFunctionType() const {
1565  // The block pointer is never sugared, but the function type might be.
1566  return cast<BlockPointerType>(getType())
1567           ->getPointeeType()->castAs<FunctionProtoType>();
1568}
1569
1570SourceLocation BlockExpr::getCaretLocation() const {
1571  return TheBlock->getCaretLocation();
1572}
1573const Stmt *BlockExpr::getBody() const {
1574  return TheBlock->getBody();
1575}
1576Stmt *BlockExpr::getBody() {
1577  return TheBlock->getBody();
1578}
1579
1580
1581//===----------------------------------------------------------------------===//
1582// Generic Expression Routines
1583//===----------------------------------------------------------------------===//
1584
1585/// isUnusedResultAWarning - Return true if this immediate expression should
1586/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1587/// with location to warn on and the source range[s] to report with the
1588/// warning.
1589bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1590                                  SourceRange &R2, ASTContext &Ctx) const {
1591  // Don't warn if the expr is type dependent. The type could end up
1592  // instantiating to void.
1593  if (isTypeDependent())
1594    return false;
1595
1596  switch (getStmtClass()) {
1597  default:
1598    if (getType()->isVoidType())
1599      return false;
1600    Loc = getExprLoc();
1601    R1 = getSourceRange();
1602    return true;
1603  case ParenExprClass:
1604    return cast<ParenExpr>(this)->getSubExpr()->
1605      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1606  case GenericSelectionExprClass:
1607    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1608      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1609  case UnaryOperatorClass: {
1610    const UnaryOperator *UO = cast<UnaryOperator>(this);
1611
1612    switch (UO->getOpcode()) {
1613    default: break;
1614    case UO_PostInc:
1615    case UO_PostDec:
1616    case UO_PreInc:
1617    case UO_PreDec:                 // ++/--
1618      return false;  // Not a warning.
1619    case UO_Deref:
1620      // Dereferencing a volatile pointer is a side-effect.
1621      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1622        return false;
1623      break;
1624    case UO_Real:
1625    case UO_Imag:
1626      // accessing a piece of a volatile complex is a side-effect.
1627      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1628          .isVolatileQualified())
1629        return false;
1630      break;
1631    case UO_Extension:
1632      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1633    }
1634    Loc = UO->getOperatorLoc();
1635    R1 = UO->getSubExpr()->getSourceRange();
1636    return true;
1637  }
1638  case BinaryOperatorClass: {
1639    const BinaryOperator *BO = cast<BinaryOperator>(this);
1640    switch (BO->getOpcode()) {
1641      default:
1642        break;
1643      // Consider the RHS of comma for side effects. LHS was checked by
1644      // Sema::CheckCommaOperands.
1645      case BO_Comma:
1646        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1647        // lvalue-ness) of an assignment written in a macro.
1648        if (IntegerLiteral *IE =
1649              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1650          if (IE->getValue() == 0)
1651            return false;
1652        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1653      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1654      case BO_LAnd:
1655      case BO_LOr:
1656        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1657            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1658          return false;
1659        break;
1660    }
1661    if (BO->isAssignmentOp())
1662      return false;
1663    Loc = BO->getOperatorLoc();
1664    R1 = BO->getLHS()->getSourceRange();
1665    R2 = BO->getRHS()->getSourceRange();
1666    return true;
1667  }
1668  case CompoundAssignOperatorClass:
1669  case VAArgExprClass:
1670  case AtomicExprClass:
1671    return false;
1672
1673  case ConditionalOperatorClass: {
1674    // If only one of the LHS or RHS is a warning, the operator might
1675    // be being used for control flow. Only warn if both the LHS and
1676    // RHS are warnings.
1677    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1678    if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1679      return false;
1680    if (!Exp->getLHS())
1681      return true;
1682    return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1683  }
1684
1685  case MemberExprClass:
1686    // If the base pointer or element is to a volatile pointer/field, accessing
1687    // it is a side effect.
1688    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1689      return false;
1690    Loc = cast<MemberExpr>(this)->getMemberLoc();
1691    R1 = SourceRange(Loc, Loc);
1692    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1693    return true;
1694
1695  case ArraySubscriptExprClass:
1696    // If the base pointer or element is to a volatile pointer/field, accessing
1697    // it is a side effect.
1698    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1699      return false;
1700    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1701    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1702    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1703    return true;
1704
1705  case CXXOperatorCallExprClass: {
1706    // We warn about operator== and operator!= even when user-defined operator
1707    // overloads as there is no reasonable way to define these such that they
1708    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1709    // warning: these operators are commonly typo'ed, and so warning on them
1710    // provides additional value as well. If this list is updated,
1711    // DiagnoseUnusedComparison should be as well.
1712    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1713    if (Op->getOperator() == OO_EqualEqual ||
1714        Op->getOperator() == OO_ExclaimEqual) {
1715      Loc = Op->getOperatorLoc();
1716      R1 = Op->getSourceRange();
1717      return true;
1718    }
1719
1720    // Fallthrough for generic call handling.
1721  }
1722  case CallExprClass:
1723  case CXXMemberCallExprClass:
1724  case UserDefinedLiteralClass: {
1725    // If this is a direct call, get the callee.
1726    const CallExpr *CE = cast<CallExpr>(this);
1727    if (const Decl *FD = CE->getCalleeDecl()) {
1728      // If the callee has attribute pure, const, or warn_unused_result, warn
1729      // about it. void foo() { strlen("bar"); } should warn.
1730      //
1731      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1732      // updated to match for QoI.
1733      if (FD->getAttr<WarnUnusedResultAttr>() ||
1734          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1735        Loc = CE->getCallee()->getLocStart();
1736        R1 = CE->getCallee()->getSourceRange();
1737
1738        if (unsigned NumArgs = CE->getNumArgs())
1739          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1740                           CE->getArg(NumArgs-1)->getLocEnd());
1741        return true;
1742      }
1743    }
1744    return false;
1745  }
1746
1747  case CXXTemporaryObjectExprClass:
1748  case CXXConstructExprClass:
1749    return false;
1750
1751  case ObjCMessageExprClass: {
1752    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1753    if (Ctx.getLangOpts().ObjCAutoRefCount &&
1754        ME->isInstanceMessage() &&
1755        !ME->getType()->isVoidType() &&
1756        ME->getSelector().getIdentifierInfoForSlot(0) &&
1757        ME->getSelector().getIdentifierInfoForSlot(0)
1758                                               ->getName().startswith("init")) {
1759      Loc = getExprLoc();
1760      R1 = ME->getSourceRange();
1761      return true;
1762    }
1763
1764    const ObjCMethodDecl *MD = ME->getMethodDecl();
1765    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1766      Loc = getExprLoc();
1767      return true;
1768    }
1769    return false;
1770  }
1771
1772  case ObjCPropertyRefExprClass:
1773    Loc = getExprLoc();
1774    R1 = getSourceRange();
1775    return true;
1776
1777  case PseudoObjectExprClass: {
1778    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1779
1780    // Only complain about things that have the form of a getter.
1781    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1782        isa<BinaryOperator>(PO->getSyntacticForm()))
1783      return false;
1784
1785    Loc = getExprLoc();
1786    R1 = getSourceRange();
1787    return true;
1788  }
1789
1790  case StmtExprClass: {
1791    // Statement exprs don't logically have side effects themselves, but are
1792    // sometimes used in macros in ways that give them a type that is unused.
1793    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1794    // however, if the result of the stmt expr is dead, we don't want to emit a
1795    // warning.
1796    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1797    if (!CS->body_empty()) {
1798      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1799        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1800      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1801        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1802          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1803    }
1804
1805    if (getType()->isVoidType())
1806      return false;
1807    Loc = cast<StmtExpr>(this)->getLParenLoc();
1808    R1 = getSourceRange();
1809    return true;
1810  }
1811  case CStyleCastExprClass:
1812    // If this is an explicit cast to void, allow it.  People do this when they
1813    // think they know what they're doing :).
1814    if (getType()->isVoidType())
1815      return false;
1816    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1817    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1818    return true;
1819  case CXXFunctionalCastExprClass: {
1820    if (getType()->isVoidType())
1821      return false;
1822    const CastExpr *CE = cast<CastExpr>(this);
1823
1824    // If this is a cast to void or a constructor conversion, check the operand.
1825    // Otherwise, the result of the cast is unused.
1826    if (CE->getCastKind() == CK_ToVoid ||
1827        CE->getCastKind() == CK_ConstructorConversion)
1828      return (cast<CastExpr>(this)->getSubExpr()
1829              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1830    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1831    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1832    return true;
1833  }
1834
1835  case ImplicitCastExprClass:
1836    // Check the operand, since implicit casts are inserted by Sema
1837    return (cast<ImplicitCastExpr>(this)
1838            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1839
1840  case CXXDefaultArgExprClass:
1841    return (cast<CXXDefaultArgExpr>(this)
1842            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1843
1844  case CXXNewExprClass:
1845    // FIXME: In theory, there might be new expressions that don't have side
1846    // effects (e.g. a placement new with an uninitialized POD).
1847  case CXXDeleteExprClass:
1848    return false;
1849  case CXXBindTemporaryExprClass:
1850    return (cast<CXXBindTemporaryExpr>(this)
1851            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1852  case ExprWithCleanupsClass:
1853    return (cast<ExprWithCleanups>(this)
1854            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1855  }
1856}
1857
1858/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1859/// returns true, if it is; false otherwise.
1860bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1861  const Expr *E = IgnoreParens();
1862  switch (E->getStmtClass()) {
1863  default:
1864    return false;
1865  case ObjCIvarRefExprClass:
1866    return true;
1867  case Expr::UnaryOperatorClass:
1868    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1869  case ImplicitCastExprClass:
1870    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1871  case MaterializeTemporaryExprClass:
1872    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1873                                                      ->isOBJCGCCandidate(Ctx);
1874  case CStyleCastExprClass:
1875    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1876  case DeclRefExprClass: {
1877    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
1878
1879    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1880      if (VD->hasGlobalStorage())
1881        return true;
1882      QualType T = VD->getType();
1883      // dereferencing to a  pointer is always a gc'able candidate,
1884      // unless it is __weak.
1885      return T->isPointerType() &&
1886             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1887    }
1888    return false;
1889  }
1890  case MemberExprClass: {
1891    const MemberExpr *M = cast<MemberExpr>(E);
1892    return M->getBase()->isOBJCGCCandidate(Ctx);
1893  }
1894  case ArraySubscriptExprClass:
1895    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1896  }
1897}
1898
1899bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1900  if (isTypeDependent())
1901    return false;
1902  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1903}
1904
1905QualType Expr::findBoundMemberType(const Expr *expr) {
1906  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1907
1908  // Bound member expressions are always one of these possibilities:
1909  //   x->m      x.m      x->*y      x.*y
1910  // (possibly parenthesized)
1911
1912  expr = expr->IgnoreParens();
1913  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1914    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1915    return mem->getMemberDecl()->getType();
1916  }
1917
1918  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1919    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1920                      ->getPointeeType();
1921    assert(type->isFunctionType());
1922    return type;
1923  }
1924
1925  assert(isa<UnresolvedMemberExpr>(expr));
1926  return QualType();
1927}
1928
1929static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1930                                          Expr::CanThrowResult CT2) {
1931  // CanThrowResult constants are ordered so that the maximum is the correct
1932  // merge result.
1933  return CT1 > CT2 ? CT1 : CT2;
1934}
1935
1936static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1937  Expr *E = const_cast<Expr*>(CE);
1938  Expr::CanThrowResult R = Expr::CT_Cannot;
1939  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1940    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1941  }
1942  return R;
1943}
1944
1945static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
1946                                           const Decl *D,
1947                                           bool NullThrows = true) {
1948  if (!D)
1949    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1950
1951  // See if we can get a function type from the decl somehow.
1952  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1953  if (!VD) // If we have no clue what we're calling, assume the worst.
1954    return Expr::CT_Can;
1955
1956  // As an extension, we assume that __attribute__((nothrow)) functions don't
1957  // throw.
1958  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1959    return Expr::CT_Cannot;
1960
1961  QualType T = VD->getType();
1962  const FunctionProtoType *FT;
1963  if ((FT = T->getAs<FunctionProtoType>())) {
1964  } else if (const PointerType *PT = T->getAs<PointerType>())
1965    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1966  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1967    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1968  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1969    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1970  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1971    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1972
1973  if (!FT)
1974    return Expr::CT_Can;
1975
1976  if (FT->getExceptionSpecType() == EST_Delayed) {
1977    assert(isa<CXXConstructorDecl>(D) &&
1978           "only constructor exception specs can be unknown");
1979    Ctx.getDiagnostics().Report(E->getLocStart(),
1980                                diag::err_exception_spec_unknown)
1981      << E->getSourceRange();
1982    return Expr::CT_Can;
1983  }
1984
1985  return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
1986}
1987
1988static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1989  if (DC->isTypeDependent())
1990    return Expr::CT_Dependent;
1991
1992  if (!DC->getTypeAsWritten()->isReferenceType())
1993    return Expr::CT_Cannot;
1994
1995  if (DC->getSubExpr()->isTypeDependent())
1996    return Expr::CT_Dependent;
1997
1998  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1999}
2000
2001static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
2002                                           const CXXTypeidExpr *DC) {
2003  if (DC->isTypeOperand())
2004    return Expr::CT_Cannot;
2005
2006  Expr *Op = DC->getExprOperand();
2007  if (Op->isTypeDependent())
2008    return Expr::CT_Dependent;
2009
2010  const RecordType *RT = Op->getType()->getAs<RecordType>();
2011  if (!RT)
2012    return Expr::CT_Cannot;
2013
2014  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
2015    return Expr::CT_Cannot;
2016
2017  if (Op->Classify(C).isPRValue())
2018    return Expr::CT_Cannot;
2019
2020  return Expr::CT_Can;
2021}
2022
2023Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
2024  // C++ [expr.unary.noexcept]p3:
2025  //   [Can throw] if in a potentially-evaluated context the expression would
2026  //   contain:
2027  switch (getStmtClass()) {
2028  case CXXThrowExprClass:
2029    //   - a potentially evaluated throw-expression
2030    return CT_Can;
2031
2032  case CXXDynamicCastExprClass: {
2033    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
2034    //     where T is a reference type, that requires a run-time check
2035    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
2036    if (CT == CT_Can)
2037      return CT;
2038    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2039  }
2040
2041  case CXXTypeidExprClass:
2042    //   - a potentially evaluated typeid expression applied to a glvalue
2043    //     expression whose type is a polymorphic class type
2044    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
2045
2046    //   - a potentially evaluated call to a function, member function, function
2047    //     pointer, or member function pointer that does not have a non-throwing
2048    //     exception-specification
2049  case CallExprClass:
2050  case CXXMemberCallExprClass:
2051  case CXXOperatorCallExprClass:
2052  case UserDefinedLiteralClass: {
2053    const CallExpr *CE = cast<CallExpr>(this);
2054    CanThrowResult CT;
2055    if (isTypeDependent())
2056      CT = CT_Dependent;
2057    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
2058      CT = CT_Cannot;
2059    else
2060      CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
2061    if (CT == CT_Can)
2062      return CT;
2063    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2064  }
2065
2066  case CXXConstructExprClass:
2067  case CXXTemporaryObjectExprClass: {
2068    CanThrowResult CT = CanCalleeThrow(C, this,
2069        cast<CXXConstructExpr>(this)->getConstructor());
2070    if (CT == CT_Can)
2071      return CT;
2072    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2073  }
2074
2075  case LambdaExprClass: {
2076    const LambdaExpr *Lambda = cast<LambdaExpr>(this);
2077    CanThrowResult CT = Expr::CT_Cannot;
2078    for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
2079                                        CapEnd = Lambda->capture_init_end();
2080         Cap != CapEnd; ++Cap)
2081      CT = MergeCanThrow(CT, (*Cap)->CanThrow(C));
2082    return CT;
2083  }
2084
2085  case CXXNewExprClass: {
2086    CanThrowResult CT;
2087    if (isTypeDependent())
2088      CT = CT_Dependent;
2089    else
2090      CT = CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew());
2091    if (CT == CT_Can)
2092      return CT;
2093    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2094  }
2095
2096  case CXXDeleteExprClass: {
2097    CanThrowResult CT;
2098    QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
2099    if (DTy.isNull() || DTy->isDependentType()) {
2100      CT = CT_Dependent;
2101    } else {
2102      CT = CanCalleeThrow(C, this,
2103                          cast<CXXDeleteExpr>(this)->getOperatorDelete());
2104      if (const RecordType *RT = DTy->getAs<RecordType>()) {
2105        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2106        CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
2107      }
2108      if (CT == CT_Can)
2109        return CT;
2110    }
2111    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2112  }
2113
2114  case CXXBindTemporaryExprClass: {
2115    // The bound temporary has to be destroyed again, which might throw.
2116    CanThrowResult CT = CanCalleeThrow(C, this,
2117      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
2118    if (CT == CT_Can)
2119      return CT;
2120    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2121  }
2122
2123    // ObjC message sends are like function calls, but never have exception
2124    // specs.
2125  case ObjCMessageExprClass:
2126  case ObjCPropertyRefExprClass:
2127  case ObjCSubscriptRefExprClass:
2128    return CT_Can;
2129
2130    // All the ObjC literals that are implemented as calls are
2131    // potentially throwing unless we decide to close off that
2132    // possibility.
2133  case ObjCArrayLiteralClass:
2134  case ObjCBoolLiteralExprClass:
2135  case ObjCDictionaryLiteralClass:
2136  case ObjCNumericLiteralClass:
2137    return CT_Can;
2138
2139    // Many other things have subexpressions, so we have to test those.
2140    // Some are simple:
2141  case ConditionalOperatorClass:
2142  case CompoundLiteralExprClass:
2143  case CXXConstCastExprClass:
2144  case CXXDefaultArgExprClass:
2145  case CXXReinterpretCastExprClass:
2146  case DesignatedInitExprClass:
2147  case ExprWithCleanupsClass:
2148  case ExtVectorElementExprClass:
2149  case InitListExprClass:
2150  case MemberExprClass:
2151  case ObjCIsaExprClass:
2152  case ObjCIvarRefExprClass:
2153  case ParenExprClass:
2154  case ParenListExprClass:
2155  case ShuffleVectorExprClass:
2156  case VAArgExprClass:
2157    return CanSubExprsThrow(C, this);
2158
2159    // Some might be dependent for other reasons.
2160  case ArraySubscriptExprClass:
2161  case BinaryOperatorClass:
2162  case CompoundAssignOperatorClass:
2163  case CStyleCastExprClass:
2164  case CXXStaticCastExprClass:
2165  case CXXFunctionalCastExprClass:
2166  case ImplicitCastExprClass:
2167  case MaterializeTemporaryExprClass:
2168  case UnaryOperatorClass: {
2169    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
2170    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2171  }
2172
2173    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
2174  case StmtExprClass:
2175    return CT_Can;
2176
2177  case ChooseExprClass:
2178    if (isTypeDependent() || isValueDependent())
2179      return CT_Dependent;
2180    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
2181
2182  case GenericSelectionExprClass:
2183    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2184      return CT_Dependent;
2185    return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
2186
2187    // Some expressions are always dependent.
2188  case CXXDependentScopeMemberExprClass:
2189  case CXXUnresolvedConstructExprClass:
2190  case DependentScopeDeclRefExprClass:
2191    return CT_Dependent;
2192
2193  case AtomicExprClass:
2194  case AsTypeExprClass:
2195  case BinaryConditionalOperatorClass:
2196  case BlockExprClass:
2197  case CUDAKernelCallExprClass:
2198  case DeclRefExprClass:
2199  case ObjCBridgedCastExprClass:
2200  case ObjCIndirectCopyRestoreExprClass:
2201  case ObjCProtocolExprClass:
2202  case ObjCSelectorExprClass:
2203  case OffsetOfExprClass:
2204  case PackExpansionExprClass:
2205  case PseudoObjectExprClass:
2206  case SubstNonTypeTemplateParmExprClass:
2207  case SubstNonTypeTemplateParmPackExprClass:
2208  case UnaryExprOrTypeTraitExprClass:
2209  case UnresolvedLookupExprClass:
2210  case UnresolvedMemberExprClass:
2211    // FIXME: Can any of the above throw?  If so, when?
2212    return CT_Cannot;
2213
2214  case AddrLabelExprClass:
2215  case ArrayTypeTraitExprClass:
2216  case BinaryTypeTraitExprClass:
2217  case TypeTraitExprClass:
2218  case CXXBoolLiteralExprClass:
2219  case CXXNoexceptExprClass:
2220  case CXXNullPtrLiteralExprClass:
2221  case CXXPseudoDestructorExprClass:
2222  case CXXScalarValueInitExprClass:
2223  case CXXThisExprClass:
2224  case CXXUuidofExprClass:
2225  case CharacterLiteralClass:
2226  case ExpressionTraitExprClass:
2227  case FloatingLiteralClass:
2228  case GNUNullExprClass:
2229  case ImaginaryLiteralClass:
2230  case ImplicitValueInitExprClass:
2231  case IntegerLiteralClass:
2232  case ObjCEncodeExprClass:
2233  case ObjCStringLiteralClass:
2234  case OpaqueValueExprClass:
2235  case PredefinedExprClass:
2236  case SizeOfPackExprClass:
2237  case StringLiteralClass:
2238  case UnaryTypeTraitExprClass:
2239    // These expressions can never throw.
2240    return CT_Cannot;
2241
2242#define STMT(CLASS, PARENT) case CLASS##Class:
2243#define STMT_RANGE(Base, First, Last)
2244#define LAST_STMT_RANGE(BASE, FIRST, LAST)
2245#define EXPR(CLASS, PARENT)
2246#define ABSTRACT_STMT(STMT)
2247#include "clang/AST/StmtNodes.inc"
2248  case NoStmtClass:
2249    llvm_unreachable("Invalid class for expression");
2250  }
2251  llvm_unreachable("Bogus StmtClass");
2252}
2253
2254Expr* Expr::IgnoreParens() {
2255  Expr* E = this;
2256  while (true) {
2257    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2258      E = P->getSubExpr();
2259      continue;
2260    }
2261    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2262      if (P->getOpcode() == UO_Extension) {
2263        E = P->getSubExpr();
2264        continue;
2265      }
2266    }
2267    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2268      if (!P->isResultDependent()) {
2269        E = P->getResultExpr();
2270        continue;
2271      }
2272    }
2273    return E;
2274  }
2275}
2276
2277/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2278/// or CastExprs or ImplicitCastExprs, returning their operand.
2279Expr *Expr::IgnoreParenCasts() {
2280  Expr *E = this;
2281  while (true) {
2282    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2283      E = P->getSubExpr();
2284      continue;
2285    }
2286    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2287      E = P->getSubExpr();
2288      continue;
2289    }
2290    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2291      if (P->getOpcode() == UO_Extension) {
2292        E = P->getSubExpr();
2293        continue;
2294      }
2295    }
2296    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2297      if (!P->isResultDependent()) {
2298        E = P->getResultExpr();
2299        continue;
2300      }
2301    }
2302    if (MaterializeTemporaryExpr *Materialize
2303                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2304      E = Materialize->GetTemporaryExpr();
2305      continue;
2306    }
2307    if (SubstNonTypeTemplateParmExpr *NTTP
2308                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2309      E = NTTP->getReplacement();
2310      continue;
2311    }
2312    return E;
2313  }
2314}
2315
2316/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2317/// casts.  This is intended purely as a temporary workaround for code
2318/// that hasn't yet been rewritten to do the right thing about those
2319/// casts, and may disappear along with the last internal use.
2320Expr *Expr::IgnoreParenLValueCasts() {
2321  Expr *E = this;
2322  while (true) {
2323    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2324      E = P->getSubExpr();
2325      continue;
2326    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2327      if (P->getCastKind() == CK_LValueToRValue) {
2328        E = P->getSubExpr();
2329        continue;
2330      }
2331    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2332      if (P->getOpcode() == UO_Extension) {
2333        E = P->getSubExpr();
2334        continue;
2335      }
2336    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2337      if (!P->isResultDependent()) {
2338        E = P->getResultExpr();
2339        continue;
2340      }
2341    } else if (MaterializeTemporaryExpr *Materialize
2342                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2343      E = Materialize->GetTemporaryExpr();
2344      continue;
2345    } else if (SubstNonTypeTemplateParmExpr *NTTP
2346                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2347      E = NTTP->getReplacement();
2348      continue;
2349    }
2350    break;
2351  }
2352  return E;
2353}
2354
2355Expr *Expr::IgnoreParenImpCasts() {
2356  Expr *E = this;
2357  while (true) {
2358    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2359      E = P->getSubExpr();
2360      continue;
2361    }
2362    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2363      E = P->getSubExpr();
2364      continue;
2365    }
2366    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2367      if (P->getOpcode() == UO_Extension) {
2368        E = P->getSubExpr();
2369        continue;
2370      }
2371    }
2372    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2373      if (!P->isResultDependent()) {
2374        E = P->getResultExpr();
2375        continue;
2376      }
2377    }
2378    if (MaterializeTemporaryExpr *Materialize
2379                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2380      E = Materialize->GetTemporaryExpr();
2381      continue;
2382    }
2383    if (SubstNonTypeTemplateParmExpr *NTTP
2384                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2385      E = NTTP->getReplacement();
2386      continue;
2387    }
2388    return E;
2389  }
2390}
2391
2392Expr *Expr::IgnoreConversionOperator() {
2393  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2394    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2395      return MCE->getImplicitObjectArgument();
2396  }
2397  return this;
2398}
2399
2400/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2401/// value (including ptr->int casts of the same size).  Strip off any
2402/// ParenExpr or CastExprs, returning their operand.
2403Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2404  Expr *E = this;
2405  while (true) {
2406    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2407      E = P->getSubExpr();
2408      continue;
2409    }
2410
2411    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2412      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2413      // ptr<->int casts of the same width.  We also ignore all identity casts.
2414      Expr *SE = P->getSubExpr();
2415
2416      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2417        E = SE;
2418        continue;
2419      }
2420
2421      if ((E->getType()->isPointerType() ||
2422           E->getType()->isIntegralType(Ctx)) &&
2423          (SE->getType()->isPointerType() ||
2424           SE->getType()->isIntegralType(Ctx)) &&
2425          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2426        E = SE;
2427        continue;
2428      }
2429    }
2430
2431    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2432      if (P->getOpcode() == UO_Extension) {
2433        E = P->getSubExpr();
2434        continue;
2435      }
2436    }
2437
2438    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2439      if (!P->isResultDependent()) {
2440        E = P->getResultExpr();
2441        continue;
2442      }
2443    }
2444
2445    if (SubstNonTypeTemplateParmExpr *NTTP
2446                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2447      E = NTTP->getReplacement();
2448      continue;
2449    }
2450
2451    return E;
2452  }
2453}
2454
2455bool Expr::isDefaultArgument() const {
2456  const Expr *E = this;
2457  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2458    E = M->GetTemporaryExpr();
2459
2460  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2461    E = ICE->getSubExprAsWritten();
2462
2463  return isa<CXXDefaultArgExpr>(E);
2464}
2465
2466/// \brief Skip over any no-op casts and any temporary-binding
2467/// expressions.
2468static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2469  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2470    E = M->GetTemporaryExpr();
2471
2472  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2473    if (ICE->getCastKind() == CK_NoOp)
2474      E = ICE->getSubExpr();
2475    else
2476      break;
2477  }
2478
2479  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2480    E = BE->getSubExpr();
2481
2482  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2483    if (ICE->getCastKind() == CK_NoOp)
2484      E = ICE->getSubExpr();
2485    else
2486      break;
2487  }
2488
2489  return E->IgnoreParens();
2490}
2491
2492/// isTemporaryObject - Determines if this expression produces a
2493/// temporary of the given class type.
2494bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2495  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2496    return false;
2497
2498  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2499
2500  // Temporaries are by definition pr-values of class type.
2501  if (!E->Classify(C).isPRValue()) {
2502    // In this context, property reference is a message call and is pr-value.
2503    if (!isa<ObjCPropertyRefExpr>(E))
2504      return false;
2505  }
2506
2507  // Black-list a few cases which yield pr-values of class type that don't
2508  // refer to temporaries of that type:
2509
2510  // - implicit derived-to-base conversions
2511  if (isa<ImplicitCastExpr>(E)) {
2512    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2513    case CK_DerivedToBase:
2514    case CK_UncheckedDerivedToBase:
2515      return false;
2516    default:
2517      break;
2518    }
2519  }
2520
2521  // - member expressions (all)
2522  if (isa<MemberExpr>(E))
2523    return false;
2524
2525  // - opaque values (all)
2526  if (isa<OpaqueValueExpr>(E))
2527    return false;
2528
2529  return true;
2530}
2531
2532bool Expr::isImplicitCXXThis() const {
2533  const Expr *E = this;
2534
2535  // Strip away parentheses and casts we don't care about.
2536  while (true) {
2537    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2538      E = Paren->getSubExpr();
2539      continue;
2540    }
2541
2542    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2543      if (ICE->getCastKind() == CK_NoOp ||
2544          ICE->getCastKind() == CK_LValueToRValue ||
2545          ICE->getCastKind() == CK_DerivedToBase ||
2546          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2547        E = ICE->getSubExpr();
2548        continue;
2549      }
2550    }
2551
2552    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2553      if (UnOp->getOpcode() == UO_Extension) {
2554        E = UnOp->getSubExpr();
2555        continue;
2556      }
2557    }
2558
2559    if (const MaterializeTemporaryExpr *M
2560                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2561      E = M->GetTemporaryExpr();
2562      continue;
2563    }
2564
2565    break;
2566  }
2567
2568  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2569    return This->isImplicit();
2570
2571  return false;
2572}
2573
2574/// hasAnyTypeDependentArguments - Determines if any of the expressions
2575/// in Exprs is type-dependent.
2576bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2577  for (unsigned I = 0; I < Exprs.size(); ++I)
2578    if (Exprs[I]->isTypeDependent())
2579      return true;
2580
2581  return false;
2582}
2583
2584bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2585  // This function is attempting whether an expression is an initializer
2586  // which can be evaluated at compile-time.  isEvaluatable handles most
2587  // of the cases, but it can't deal with some initializer-specific
2588  // expressions, and it can't deal with aggregates; we deal with those here,
2589  // and fall back to isEvaluatable for the other cases.
2590
2591  // If we ever capture reference-binding directly in the AST, we can
2592  // kill the second parameter.
2593
2594  if (IsForRef) {
2595    EvalResult Result;
2596    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2597  }
2598
2599  switch (getStmtClass()) {
2600  default: break;
2601  case IntegerLiteralClass:
2602  case FloatingLiteralClass:
2603  case StringLiteralClass:
2604  case ObjCStringLiteralClass:
2605  case ObjCEncodeExprClass:
2606    return true;
2607  case CXXTemporaryObjectExprClass:
2608  case CXXConstructExprClass: {
2609    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2610
2611    // Only if it's
2612    if (CE->getConstructor()->isTrivial()) {
2613      // 1) an application of the trivial default constructor or
2614      if (!CE->getNumArgs()) return true;
2615
2616      // 2) an elidable trivial copy construction of an operand which is
2617      //    itself a constant initializer.  Note that we consider the
2618      //    operand on its own, *not* as a reference binding.
2619      if (CE->isElidable() &&
2620          CE->getArg(0)->isConstantInitializer(Ctx, false))
2621        return true;
2622    }
2623
2624    // 3) a foldable constexpr constructor.
2625    break;
2626  }
2627  case CompoundLiteralExprClass: {
2628    // This handles gcc's extension that allows global initializers like
2629    // "struct x {int x;} x = (struct x) {};".
2630    // FIXME: This accepts other cases it shouldn't!
2631    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2632    return Exp->isConstantInitializer(Ctx, false);
2633  }
2634  case InitListExprClass: {
2635    // FIXME: This doesn't deal with fields with reference types correctly.
2636    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2637    // to bitfields.
2638    const InitListExpr *Exp = cast<InitListExpr>(this);
2639    unsigned numInits = Exp->getNumInits();
2640    for (unsigned i = 0; i < numInits; i++) {
2641      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2642        return false;
2643    }
2644    return true;
2645  }
2646  case ImplicitValueInitExprClass:
2647    return true;
2648  case ParenExprClass:
2649    return cast<ParenExpr>(this)->getSubExpr()
2650      ->isConstantInitializer(Ctx, IsForRef);
2651  case GenericSelectionExprClass:
2652    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2653      return false;
2654    return cast<GenericSelectionExpr>(this)->getResultExpr()
2655      ->isConstantInitializer(Ctx, IsForRef);
2656  case ChooseExprClass:
2657    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2658      ->isConstantInitializer(Ctx, IsForRef);
2659  case UnaryOperatorClass: {
2660    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2661    if (Exp->getOpcode() == UO_Extension)
2662      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2663    break;
2664  }
2665  case CXXFunctionalCastExprClass:
2666  case CXXStaticCastExprClass:
2667  case ImplicitCastExprClass:
2668  case CStyleCastExprClass: {
2669    const CastExpr *CE = cast<CastExpr>(this);
2670
2671    // If we're promoting an integer to an _Atomic type then this is constant
2672    // if the integer is constant.  We also need to check the converse in case
2673    // someone does something like:
2674    //
2675    // int a = (_Atomic(int))42;
2676    //
2677    // I doubt anyone would write code like this directly, but it's quite
2678    // possible as the result of macro expansions.
2679    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2680        CE->getCastKind() == CK_AtomicToNonAtomic)
2681      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2682
2683    // Handle bitcasts of vector constants.
2684    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2685      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2686
2687    // Handle misc casts we want to ignore.
2688    // FIXME: Is it really safe to ignore all these?
2689    if (CE->getCastKind() == CK_NoOp ||
2690        CE->getCastKind() == CK_LValueToRValue ||
2691        CE->getCastKind() == CK_ToUnion ||
2692        CE->getCastKind() == CK_ConstructorConversion)
2693      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2694
2695    break;
2696  }
2697  case MaterializeTemporaryExprClass:
2698    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2699                                            ->isConstantInitializer(Ctx, false);
2700  }
2701  return isEvaluatable(Ctx);
2702}
2703
2704namespace {
2705  /// \brief Look for a call to a non-trivial function within an expression.
2706  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2707  {
2708    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2709
2710    bool NonTrivial;
2711
2712  public:
2713    explicit NonTrivialCallFinder(ASTContext &Context)
2714      : Inherited(Context), NonTrivial(false) { }
2715
2716    bool hasNonTrivialCall() const { return NonTrivial; }
2717
2718    void VisitCallExpr(CallExpr *E) {
2719      if (CXXMethodDecl *Method
2720          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2721        if (Method->isTrivial()) {
2722          // Recurse to children of the call.
2723          Inherited::VisitStmt(E);
2724          return;
2725        }
2726      }
2727
2728      NonTrivial = true;
2729    }
2730
2731    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2732      if (E->getConstructor()->isTrivial()) {
2733        // Recurse to children of the call.
2734        Inherited::VisitStmt(E);
2735        return;
2736      }
2737
2738      NonTrivial = true;
2739    }
2740
2741    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2742      if (E->getTemporary()->getDestructor()->isTrivial()) {
2743        Inherited::VisitStmt(E);
2744        return;
2745      }
2746
2747      NonTrivial = true;
2748    }
2749  };
2750}
2751
2752bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2753  NonTrivialCallFinder Finder(Ctx);
2754  Finder.Visit(this);
2755  return Finder.hasNonTrivialCall();
2756}
2757
2758/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2759/// pointer constant or not, as well as the specific kind of constant detected.
2760/// Null pointer constants can be integer constant expressions with the
2761/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2762/// (a GNU extension).
2763Expr::NullPointerConstantKind
2764Expr::isNullPointerConstant(ASTContext &Ctx,
2765                            NullPointerConstantValueDependence NPC) const {
2766  if (isValueDependent()) {
2767    switch (NPC) {
2768    case NPC_NeverValueDependent:
2769      llvm_unreachable("Unexpected value dependent expression!");
2770    case NPC_ValueDependentIsNull:
2771      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2772        return NPCK_ZeroInteger;
2773      else
2774        return NPCK_NotNull;
2775
2776    case NPC_ValueDependentIsNotNull:
2777      return NPCK_NotNull;
2778    }
2779  }
2780
2781  // Strip off a cast to void*, if it exists. Except in C++.
2782  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2783    if (!Ctx.getLangOpts().CPlusPlus) {
2784      // Check that it is a cast to void*.
2785      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2786        QualType Pointee = PT->getPointeeType();
2787        if (!Pointee.hasQualifiers() &&
2788            Pointee->isVoidType() &&                              // to void*
2789            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2790          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2791      }
2792    }
2793  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2794    // Ignore the ImplicitCastExpr type entirely.
2795    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2796  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2797    // Accept ((void*)0) as a null pointer constant, as many other
2798    // implementations do.
2799    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2800  } else if (const GenericSelectionExpr *GE =
2801               dyn_cast<GenericSelectionExpr>(this)) {
2802    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2803  } else if (const CXXDefaultArgExpr *DefaultArg
2804               = dyn_cast<CXXDefaultArgExpr>(this)) {
2805    // See through default argument expressions
2806    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2807  } else if (isa<GNUNullExpr>(this)) {
2808    // The GNU __null extension is always a null pointer constant.
2809    return NPCK_GNUNull;
2810  } else if (const MaterializeTemporaryExpr *M
2811                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2812    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2813  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2814    if (const Expr *Source = OVE->getSourceExpr())
2815      return Source->isNullPointerConstant(Ctx, NPC);
2816  }
2817
2818  // C++0x nullptr_t is always a null pointer constant.
2819  if (getType()->isNullPtrType())
2820    return NPCK_CXX0X_nullptr;
2821
2822  if (const RecordType *UT = getType()->getAsUnionType())
2823    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2824      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2825        const Expr *InitExpr = CLE->getInitializer();
2826        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2827          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2828      }
2829  // This expression must be an integer type.
2830  if (!getType()->isIntegerType() ||
2831      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2832    return NPCK_NotNull;
2833
2834  // If we have an integer constant expression, we need to *evaluate* it and
2835  // test for the value 0. Don't use the C++11 constant expression semantics
2836  // for this, for now; once the dust settles on core issue 903, we might only
2837  // allow a literal 0 here in C++11 mode.
2838  if (Ctx.getLangOpts().CPlusPlus0x) {
2839    if (!isCXX98IntegralConstantExpr(Ctx))
2840      return NPCK_NotNull;
2841  } else {
2842    if (!isIntegerConstantExpr(Ctx))
2843      return NPCK_NotNull;
2844  }
2845
2846  return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2847}
2848
2849/// \brief If this expression is an l-value for an Objective C
2850/// property, find the underlying property reference expression.
2851const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2852  const Expr *E = this;
2853  while (true) {
2854    assert((E->getValueKind() == VK_LValue &&
2855            E->getObjectKind() == OK_ObjCProperty) &&
2856           "expression is not a property reference");
2857    E = E->IgnoreParenCasts();
2858    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2859      if (BO->getOpcode() == BO_Comma) {
2860        E = BO->getRHS();
2861        continue;
2862      }
2863    }
2864
2865    break;
2866  }
2867
2868  return cast<ObjCPropertyRefExpr>(E);
2869}
2870
2871FieldDecl *Expr::getBitField() {
2872  Expr *E = this->IgnoreParens();
2873
2874  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2875    if (ICE->getCastKind() == CK_LValueToRValue ||
2876        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2877      E = ICE->getSubExpr()->IgnoreParens();
2878    else
2879      break;
2880  }
2881
2882  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2883    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2884      if (Field->isBitField())
2885        return Field;
2886
2887  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2888    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2889      if (Field->isBitField())
2890        return Field;
2891
2892  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2893    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2894      return BinOp->getLHS()->getBitField();
2895
2896    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2897      return BinOp->getRHS()->getBitField();
2898  }
2899
2900  return 0;
2901}
2902
2903bool Expr::refersToVectorElement() const {
2904  const Expr *E = this->IgnoreParens();
2905
2906  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2907    if (ICE->getValueKind() != VK_RValue &&
2908        ICE->getCastKind() == CK_NoOp)
2909      E = ICE->getSubExpr()->IgnoreParens();
2910    else
2911      break;
2912  }
2913
2914  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2915    return ASE->getBase()->getType()->isVectorType();
2916
2917  if (isa<ExtVectorElementExpr>(E))
2918    return true;
2919
2920  return false;
2921}
2922
2923/// isArrow - Return true if the base expression is a pointer to vector,
2924/// return false if the base expression is a vector.
2925bool ExtVectorElementExpr::isArrow() const {
2926  return getBase()->getType()->isPointerType();
2927}
2928
2929unsigned ExtVectorElementExpr::getNumElements() const {
2930  if (const VectorType *VT = getType()->getAs<VectorType>())
2931    return VT->getNumElements();
2932  return 1;
2933}
2934
2935/// containsDuplicateElements - Return true if any element access is repeated.
2936bool ExtVectorElementExpr::containsDuplicateElements() const {
2937  // FIXME: Refactor this code to an accessor on the AST node which returns the
2938  // "type" of component access, and share with code below and in Sema.
2939  StringRef Comp = Accessor->getName();
2940
2941  // Halving swizzles do not contain duplicate elements.
2942  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2943    return false;
2944
2945  // Advance past s-char prefix on hex swizzles.
2946  if (Comp[0] == 's' || Comp[0] == 'S')
2947    Comp = Comp.substr(1);
2948
2949  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2950    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2951        return true;
2952
2953  return false;
2954}
2955
2956/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2957void ExtVectorElementExpr::getEncodedElementAccess(
2958                                  SmallVectorImpl<unsigned> &Elts) const {
2959  StringRef Comp = Accessor->getName();
2960  if (Comp[0] == 's' || Comp[0] == 'S')
2961    Comp = Comp.substr(1);
2962
2963  bool isHi =   Comp == "hi";
2964  bool isLo =   Comp == "lo";
2965  bool isEven = Comp == "even";
2966  bool isOdd  = Comp == "odd";
2967
2968  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2969    uint64_t Index;
2970
2971    if (isHi)
2972      Index = e + i;
2973    else if (isLo)
2974      Index = i;
2975    else if (isEven)
2976      Index = 2 * i;
2977    else if (isOdd)
2978      Index = 2 * i + 1;
2979    else
2980      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2981
2982    Elts.push_back(Index);
2983  }
2984}
2985
2986ObjCMessageExpr::ObjCMessageExpr(QualType T,
2987                                 ExprValueKind VK,
2988                                 SourceLocation LBracLoc,
2989                                 SourceLocation SuperLoc,
2990                                 bool IsInstanceSuper,
2991                                 QualType SuperType,
2992                                 Selector Sel,
2993                                 ArrayRef<SourceLocation> SelLocs,
2994                                 SelectorLocationsKind SelLocsK,
2995                                 ObjCMethodDecl *Method,
2996                                 ArrayRef<Expr *> Args,
2997                                 SourceLocation RBracLoc,
2998                                 bool isImplicit)
2999  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3000         /*TypeDependent=*/false, /*ValueDependent=*/false,
3001         /*InstantiationDependent=*/false,
3002         /*ContainsUnexpandedParameterPack=*/false),
3003    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3004                                                       : Sel.getAsOpaquePtr())),
3005    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3006    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3007    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3008{
3009  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3010  setReceiverPointer(SuperType.getAsOpaquePtr());
3011}
3012
3013ObjCMessageExpr::ObjCMessageExpr(QualType T,
3014                                 ExprValueKind VK,
3015                                 SourceLocation LBracLoc,
3016                                 TypeSourceInfo *Receiver,
3017                                 Selector Sel,
3018                                 ArrayRef<SourceLocation> SelLocs,
3019                                 SelectorLocationsKind SelLocsK,
3020                                 ObjCMethodDecl *Method,
3021                                 ArrayRef<Expr *> Args,
3022                                 SourceLocation RBracLoc,
3023                                 bool isImplicit)
3024  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3025         T->isDependentType(), T->isInstantiationDependentType(),
3026         T->containsUnexpandedParameterPack()),
3027    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3028                                                       : Sel.getAsOpaquePtr())),
3029    Kind(Class),
3030    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3031    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3032{
3033  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3034  setReceiverPointer(Receiver);
3035}
3036
3037ObjCMessageExpr::ObjCMessageExpr(QualType T,
3038                                 ExprValueKind VK,
3039                                 SourceLocation LBracLoc,
3040                                 Expr *Receiver,
3041                                 Selector Sel,
3042                                 ArrayRef<SourceLocation> SelLocs,
3043                                 SelectorLocationsKind SelLocsK,
3044                                 ObjCMethodDecl *Method,
3045                                 ArrayRef<Expr *> Args,
3046                                 SourceLocation RBracLoc,
3047                                 bool isImplicit)
3048  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3049         Receiver->isTypeDependent(),
3050         Receiver->isInstantiationDependent(),
3051         Receiver->containsUnexpandedParameterPack()),
3052    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3053                                                       : Sel.getAsOpaquePtr())),
3054    Kind(Instance),
3055    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3056    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3057{
3058  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3059  setReceiverPointer(Receiver);
3060}
3061
3062void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3063                                         ArrayRef<SourceLocation> SelLocs,
3064                                         SelectorLocationsKind SelLocsK) {
3065  setNumArgs(Args.size());
3066  Expr **MyArgs = getArgs();
3067  for (unsigned I = 0; I != Args.size(); ++I) {
3068    if (Args[I]->isTypeDependent())
3069      ExprBits.TypeDependent = true;
3070    if (Args[I]->isValueDependent())
3071      ExprBits.ValueDependent = true;
3072    if (Args[I]->isInstantiationDependent())
3073      ExprBits.InstantiationDependent = true;
3074    if (Args[I]->containsUnexpandedParameterPack())
3075      ExprBits.ContainsUnexpandedParameterPack = true;
3076
3077    MyArgs[I] = Args[I];
3078  }
3079
3080  SelLocsKind = SelLocsK;
3081  if (!isImplicit()) {
3082    if (SelLocsK == SelLoc_NonStandard)
3083      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3084  }
3085}
3086
3087ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3088                                         ExprValueKind VK,
3089                                         SourceLocation LBracLoc,
3090                                         SourceLocation SuperLoc,
3091                                         bool IsInstanceSuper,
3092                                         QualType SuperType,
3093                                         Selector Sel,
3094                                         ArrayRef<SourceLocation> SelLocs,
3095                                         ObjCMethodDecl *Method,
3096                                         ArrayRef<Expr *> Args,
3097                                         SourceLocation RBracLoc,
3098                                         bool isImplicit) {
3099  assert((!SelLocs.empty() || isImplicit) &&
3100         "No selector locs for non-implicit message");
3101  ObjCMessageExpr *Mem;
3102  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3103  if (isImplicit)
3104    Mem = alloc(Context, Args.size(), 0);
3105  else
3106    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3107  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3108                                   SuperType, Sel, SelLocs, SelLocsK,
3109                                   Method, Args, RBracLoc, isImplicit);
3110}
3111
3112ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3113                                         ExprValueKind VK,
3114                                         SourceLocation LBracLoc,
3115                                         TypeSourceInfo *Receiver,
3116                                         Selector Sel,
3117                                         ArrayRef<SourceLocation> SelLocs,
3118                                         ObjCMethodDecl *Method,
3119                                         ArrayRef<Expr *> Args,
3120                                         SourceLocation RBracLoc,
3121                                         bool isImplicit) {
3122  assert((!SelLocs.empty() || isImplicit) &&
3123         "No selector locs for non-implicit message");
3124  ObjCMessageExpr *Mem;
3125  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3126  if (isImplicit)
3127    Mem = alloc(Context, Args.size(), 0);
3128  else
3129    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3130  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3131                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3132                                   isImplicit);
3133}
3134
3135ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3136                                         ExprValueKind VK,
3137                                         SourceLocation LBracLoc,
3138                                         Expr *Receiver,
3139                                         Selector Sel,
3140                                         ArrayRef<SourceLocation> SelLocs,
3141                                         ObjCMethodDecl *Method,
3142                                         ArrayRef<Expr *> Args,
3143                                         SourceLocation RBracLoc,
3144                                         bool isImplicit) {
3145  assert((!SelLocs.empty() || isImplicit) &&
3146         "No selector locs for non-implicit message");
3147  ObjCMessageExpr *Mem;
3148  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3149  if (isImplicit)
3150    Mem = alloc(Context, Args.size(), 0);
3151  else
3152    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3153  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3154                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3155                                   isImplicit);
3156}
3157
3158ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3159                                              unsigned NumArgs,
3160                                              unsigned NumStoredSelLocs) {
3161  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3162  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3163}
3164
3165ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3166                                        ArrayRef<Expr *> Args,
3167                                        SourceLocation RBraceLoc,
3168                                        ArrayRef<SourceLocation> SelLocs,
3169                                        Selector Sel,
3170                                        SelectorLocationsKind &SelLocsK) {
3171  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3172  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3173                                                               : 0;
3174  return alloc(C, Args.size(), NumStoredSelLocs);
3175}
3176
3177ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3178                                        unsigned NumArgs,
3179                                        unsigned NumStoredSelLocs) {
3180  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3181    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3182  return (ObjCMessageExpr *)C.Allocate(Size,
3183                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3184}
3185
3186void ObjCMessageExpr::getSelectorLocs(
3187                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3188  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3189    SelLocs.push_back(getSelectorLoc(i));
3190}
3191
3192SourceRange ObjCMessageExpr::getReceiverRange() const {
3193  switch (getReceiverKind()) {
3194  case Instance:
3195    return getInstanceReceiver()->getSourceRange();
3196
3197  case Class:
3198    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3199
3200  case SuperInstance:
3201  case SuperClass:
3202    return getSuperLoc();
3203  }
3204
3205  llvm_unreachable("Invalid ReceiverKind!");
3206}
3207
3208Selector ObjCMessageExpr::getSelector() const {
3209  if (HasMethod)
3210    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3211                                                               ->getSelector();
3212  return Selector(SelectorOrMethod);
3213}
3214
3215ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3216  switch (getReceiverKind()) {
3217  case Instance:
3218    if (const ObjCObjectPointerType *Ptr
3219          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3220      return Ptr->getInterfaceDecl();
3221    break;
3222
3223  case Class:
3224    if (const ObjCObjectType *Ty
3225          = getClassReceiver()->getAs<ObjCObjectType>())
3226      return Ty->getInterface();
3227    break;
3228
3229  case SuperInstance:
3230    if (const ObjCObjectPointerType *Ptr
3231          = getSuperType()->getAs<ObjCObjectPointerType>())
3232      return Ptr->getInterfaceDecl();
3233    break;
3234
3235  case SuperClass:
3236    if (const ObjCObjectType *Iface
3237          = getSuperType()->getAs<ObjCObjectType>())
3238      return Iface->getInterface();
3239    break;
3240  }
3241
3242  return 0;
3243}
3244
3245StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3246  switch (getBridgeKind()) {
3247  case OBC_Bridge:
3248    return "__bridge";
3249  case OBC_BridgeTransfer:
3250    return "__bridge_transfer";
3251  case OBC_BridgeRetained:
3252    return "__bridge_retained";
3253  }
3254
3255  llvm_unreachable("Invalid BridgeKind!");
3256}
3257
3258bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3259  return getCond()->EvaluateKnownConstInt(C) != 0;
3260}
3261
3262ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3263                                     QualType Type, SourceLocation BLoc,
3264                                     SourceLocation RP)
3265   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3266          Type->isDependentType(), Type->isDependentType(),
3267          Type->isInstantiationDependentType(),
3268          Type->containsUnexpandedParameterPack()),
3269     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3270{
3271  SubExprs = new (C) Stmt*[nexpr];
3272  for (unsigned i = 0; i < nexpr; i++) {
3273    if (args[i]->isTypeDependent())
3274      ExprBits.TypeDependent = true;
3275    if (args[i]->isValueDependent())
3276      ExprBits.ValueDependent = true;
3277    if (args[i]->isInstantiationDependent())
3278      ExprBits.InstantiationDependent = true;
3279    if (args[i]->containsUnexpandedParameterPack())
3280      ExprBits.ContainsUnexpandedParameterPack = true;
3281
3282    SubExprs[i] = args[i];
3283  }
3284}
3285
3286void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3287                                 unsigned NumExprs) {
3288  if (SubExprs) C.Deallocate(SubExprs);
3289
3290  SubExprs = new (C) Stmt* [NumExprs];
3291  this->NumExprs = NumExprs;
3292  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3293}
3294
3295GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3296                               SourceLocation GenericLoc, Expr *ControllingExpr,
3297                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3298                               unsigned NumAssocs, SourceLocation DefaultLoc,
3299                               SourceLocation RParenLoc,
3300                               bool ContainsUnexpandedParameterPack,
3301                               unsigned ResultIndex)
3302  : Expr(GenericSelectionExprClass,
3303         AssocExprs[ResultIndex]->getType(),
3304         AssocExprs[ResultIndex]->getValueKind(),
3305         AssocExprs[ResultIndex]->getObjectKind(),
3306         AssocExprs[ResultIndex]->isTypeDependent(),
3307         AssocExprs[ResultIndex]->isValueDependent(),
3308         AssocExprs[ResultIndex]->isInstantiationDependent(),
3309         ContainsUnexpandedParameterPack),
3310    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3311    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3312    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3313    RParenLoc(RParenLoc) {
3314  SubExprs[CONTROLLING] = ControllingExpr;
3315  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3316  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3317}
3318
3319GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3320                               SourceLocation GenericLoc, Expr *ControllingExpr,
3321                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3322                               unsigned NumAssocs, SourceLocation DefaultLoc,
3323                               SourceLocation RParenLoc,
3324                               bool ContainsUnexpandedParameterPack)
3325  : Expr(GenericSelectionExprClass,
3326         Context.DependentTy,
3327         VK_RValue,
3328         OK_Ordinary,
3329         /*isTypeDependent=*/true,
3330         /*isValueDependent=*/true,
3331         /*isInstantiationDependent=*/true,
3332         ContainsUnexpandedParameterPack),
3333    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3334    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3335    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3336    RParenLoc(RParenLoc) {
3337  SubExprs[CONTROLLING] = ControllingExpr;
3338  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3339  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3340}
3341
3342//===----------------------------------------------------------------------===//
3343//  DesignatedInitExpr
3344//===----------------------------------------------------------------------===//
3345
3346IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3347  assert(Kind == FieldDesignator && "Only valid on a field designator");
3348  if (Field.NameOrField & 0x01)
3349    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3350  else
3351    return getField()->getIdentifier();
3352}
3353
3354DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3355                                       unsigned NumDesignators,
3356                                       const Designator *Designators,
3357                                       SourceLocation EqualOrColonLoc,
3358                                       bool GNUSyntax,
3359                                       Expr **IndexExprs,
3360                                       unsigned NumIndexExprs,
3361                                       Expr *Init)
3362  : Expr(DesignatedInitExprClass, Ty,
3363         Init->getValueKind(), Init->getObjectKind(),
3364         Init->isTypeDependent(), Init->isValueDependent(),
3365         Init->isInstantiationDependent(),
3366         Init->containsUnexpandedParameterPack()),
3367    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3368    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3369  this->Designators = new (C) Designator[NumDesignators];
3370
3371  // Record the initializer itself.
3372  child_range Child = children();
3373  *Child++ = Init;
3374
3375  // Copy the designators and their subexpressions, computing
3376  // value-dependence along the way.
3377  unsigned IndexIdx = 0;
3378  for (unsigned I = 0; I != NumDesignators; ++I) {
3379    this->Designators[I] = Designators[I];
3380
3381    if (this->Designators[I].isArrayDesignator()) {
3382      // Compute type- and value-dependence.
3383      Expr *Index = IndexExprs[IndexIdx];
3384      if (Index->isTypeDependent() || Index->isValueDependent())
3385        ExprBits.ValueDependent = true;
3386      if (Index->isInstantiationDependent())
3387        ExprBits.InstantiationDependent = true;
3388      // Propagate unexpanded parameter packs.
3389      if (Index->containsUnexpandedParameterPack())
3390        ExprBits.ContainsUnexpandedParameterPack = true;
3391
3392      // Copy the index expressions into permanent storage.
3393      *Child++ = IndexExprs[IndexIdx++];
3394    } else if (this->Designators[I].isArrayRangeDesignator()) {
3395      // Compute type- and value-dependence.
3396      Expr *Start = IndexExprs[IndexIdx];
3397      Expr *End = IndexExprs[IndexIdx + 1];
3398      if (Start->isTypeDependent() || Start->isValueDependent() ||
3399          End->isTypeDependent() || End->isValueDependent()) {
3400        ExprBits.ValueDependent = true;
3401        ExprBits.InstantiationDependent = true;
3402      } else if (Start->isInstantiationDependent() ||
3403                 End->isInstantiationDependent()) {
3404        ExprBits.InstantiationDependent = true;
3405      }
3406
3407      // Propagate unexpanded parameter packs.
3408      if (Start->containsUnexpandedParameterPack() ||
3409          End->containsUnexpandedParameterPack())
3410        ExprBits.ContainsUnexpandedParameterPack = true;
3411
3412      // Copy the start/end expressions into permanent storage.
3413      *Child++ = IndexExprs[IndexIdx++];
3414      *Child++ = IndexExprs[IndexIdx++];
3415    }
3416  }
3417
3418  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3419}
3420
3421DesignatedInitExpr *
3422DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3423                           unsigned NumDesignators,
3424                           Expr **IndexExprs, unsigned NumIndexExprs,
3425                           SourceLocation ColonOrEqualLoc,
3426                           bool UsesColonSyntax, Expr *Init) {
3427  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3428                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3429  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3430                                      ColonOrEqualLoc, UsesColonSyntax,
3431                                      IndexExprs, NumIndexExprs, Init);
3432}
3433
3434DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3435                                                    unsigned NumIndexExprs) {
3436  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3437                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3438  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3439}
3440
3441void DesignatedInitExpr::setDesignators(ASTContext &C,
3442                                        const Designator *Desigs,
3443                                        unsigned NumDesigs) {
3444  Designators = new (C) Designator[NumDesigs];
3445  NumDesignators = NumDesigs;
3446  for (unsigned I = 0; I != NumDesigs; ++I)
3447    Designators[I] = Desigs[I];
3448}
3449
3450SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3451  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3452  if (size() == 1)
3453    return DIE->getDesignator(0)->getSourceRange();
3454  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3455                     DIE->getDesignator(size()-1)->getEndLocation());
3456}
3457
3458SourceRange DesignatedInitExpr::getSourceRange() const {
3459  SourceLocation StartLoc;
3460  Designator &First =
3461    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3462  if (First.isFieldDesignator()) {
3463    if (GNUSyntax)
3464      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3465    else
3466      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3467  } else
3468    StartLoc =
3469      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3470  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3471}
3472
3473Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3474  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3475  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3476  Ptr += sizeof(DesignatedInitExpr);
3477  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3478  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3479}
3480
3481Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3482  assert(D.Kind == Designator::ArrayRangeDesignator &&
3483         "Requires array range designator");
3484  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3485  Ptr += sizeof(DesignatedInitExpr);
3486  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3487  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3488}
3489
3490Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3491  assert(D.Kind == Designator::ArrayRangeDesignator &&
3492         "Requires array range designator");
3493  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3494  Ptr += sizeof(DesignatedInitExpr);
3495  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3496  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3497}
3498
3499/// \brief Replaces the designator at index @p Idx with the series
3500/// of designators in [First, Last).
3501void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3502                                          const Designator *First,
3503                                          const Designator *Last) {
3504  unsigned NumNewDesignators = Last - First;
3505  if (NumNewDesignators == 0) {
3506    std::copy_backward(Designators + Idx + 1,
3507                       Designators + NumDesignators,
3508                       Designators + Idx);
3509    --NumNewDesignators;
3510    return;
3511  } else if (NumNewDesignators == 1) {
3512    Designators[Idx] = *First;
3513    return;
3514  }
3515
3516  Designator *NewDesignators
3517    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3518  std::copy(Designators, Designators + Idx, NewDesignators);
3519  std::copy(First, Last, NewDesignators + Idx);
3520  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3521            NewDesignators + Idx + NumNewDesignators);
3522  Designators = NewDesignators;
3523  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3524}
3525
3526ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3527                             Expr **exprs, unsigned nexprs,
3528                             SourceLocation rparenloc)
3529  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3530         false, false, false, false),
3531    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3532  Exprs = new (C) Stmt*[nexprs];
3533  for (unsigned i = 0; i != nexprs; ++i) {
3534    if (exprs[i]->isTypeDependent())
3535      ExprBits.TypeDependent = true;
3536    if (exprs[i]->isValueDependent())
3537      ExprBits.ValueDependent = true;
3538    if (exprs[i]->isInstantiationDependent())
3539      ExprBits.InstantiationDependent = true;
3540    if (exprs[i]->containsUnexpandedParameterPack())
3541      ExprBits.ContainsUnexpandedParameterPack = true;
3542
3543    Exprs[i] = exprs[i];
3544  }
3545}
3546
3547const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3548  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3549    e = ewc->getSubExpr();
3550  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3551    e = m->GetTemporaryExpr();
3552  e = cast<CXXConstructExpr>(e)->getArg(0);
3553  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3554    e = ice->getSubExpr();
3555  return cast<OpaqueValueExpr>(e);
3556}
3557
3558PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3559                                           unsigned numSemanticExprs) {
3560  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3561                                    (1 + numSemanticExprs) * sizeof(Expr*),
3562                                  llvm::alignOf<PseudoObjectExpr>());
3563  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3564}
3565
3566PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3567  : Expr(PseudoObjectExprClass, shell) {
3568  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3569}
3570
3571PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3572                                           ArrayRef<Expr*> semantics,
3573                                           unsigned resultIndex) {
3574  assert(syntax && "no syntactic expression!");
3575  assert(semantics.size() && "no semantic expressions!");
3576
3577  QualType type;
3578  ExprValueKind VK;
3579  if (resultIndex == NoResult) {
3580    type = C.VoidTy;
3581    VK = VK_RValue;
3582  } else {
3583    assert(resultIndex < semantics.size());
3584    type = semantics[resultIndex]->getType();
3585    VK = semantics[resultIndex]->getValueKind();
3586    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3587  }
3588
3589  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3590                              (1 + semantics.size()) * sizeof(Expr*),
3591                            llvm::alignOf<PseudoObjectExpr>());
3592  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3593                                      resultIndex);
3594}
3595
3596PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3597                                   Expr *syntax, ArrayRef<Expr*> semantics,
3598                                   unsigned resultIndex)
3599  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3600         /*filled in at end of ctor*/ false, false, false, false) {
3601  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3602  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3603
3604  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3605    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3606    getSubExprsBuffer()[i] = E;
3607
3608    if (E->isTypeDependent())
3609      ExprBits.TypeDependent = true;
3610    if (E->isValueDependent())
3611      ExprBits.ValueDependent = true;
3612    if (E->isInstantiationDependent())
3613      ExprBits.InstantiationDependent = true;
3614    if (E->containsUnexpandedParameterPack())
3615      ExprBits.ContainsUnexpandedParameterPack = true;
3616
3617    if (isa<OpaqueValueExpr>(E))
3618      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3619             "opaque-value semantic expressions for pseudo-object "
3620             "operations must have sources");
3621  }
3622}
3623
3624//===----------------------------------------------------------------------===//
3625//  ExprIterator.
3626//===----------------------------------------------------------------------===//
3627
3628Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3629Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3630Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3631const Expr* ConstExprIterator::operator[](size_t idx) const {
3632  return cast<Expr>(I[idx]);
3633}
3634const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3635const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3636
3637//===----------------------------------------------------------------------===//
3638//  Child Iterators for iterating over subexpressions/substatements
3639//===----------------------------------------------------------------------===//
3640
3641// UnaryExprOrTypeTraitExpr
3642Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3643  // If this is of a type and the type is a VLA type (and not a typedef), the
3644  // size expression of the VLA needs to be treated as an executable expression.
3645  // Why isn't this weirdness documented better in StmtIterator?
3646  if (isArgumentType()) {
3647    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3648                                   getArgumentType().getTypePtr()))
3649      return child_range(child_iterator(T), child_iterator());
3650    return child_range();
3651  }
3652  return child_range(&Argument.Ex, &Argument.Ex + 1);
3653}
3654
3655// ObjCMessageExpr
3656Stmt::child_range ObjCMessageExpr::children() {
3657  Stmt **begin;
3658  if (getReceiverKind() == Instance)
3659    begin = reinterpret_cast<Stmt **>(this + 1);
3660  else
3661    begin = reinterpret_cast<Stmt **>(getArgs());
3662  return child_range(begin,
3663                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3664}
3665
3666ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3667                                   QualType T, ObjCMethodDecl *Method,
3668                                   SourceRange SR)
3669  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3670         false, false, false, false),
3671    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3672{
3673  Expr **SaveElements = getElements();
3674  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3675    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3676      ExprBits.ValueDependent = true;
3677    if (Elements[I]->isInstantiationDependent())
3678      ExprBits.InstantiationDependent = true;
3679    if (Elements[I]->containsUnexpandedParameterPack())
3680      ExprBits.ContainsUnexpandedParameterPack = true;
3681
3682    SaveElements[I] = Elements[I];
3683  }
3684}
3685
3686ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3687                                           llvm::ArrayRef<Expr *> Elements,
3688                                           QualType T, ObjCMethodDecl * Method,
3689                                           SourceRange SR) {
3690  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3691                         + Elements.size() * sizeof(Expr *));
3692  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3693}
3694
3695ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3696                                                unsigned NumElements) {
3697
3698  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3699                         + NumElements * sizeof(Expr *));
3700  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3701}
3702
3703ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3704                                             ArrayRef<ObjCDictionaryElement> VK,
3705                                             bool HasPackExpansions,
3706                                             QualType T, ObjCMethodDecl *method,
3707                                             SourceRange SR)
3708  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3709         false, false),
3710    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3711    DictWithObjectsMethod(method)
3712{
3713  KeyValuePair *KeyValues = getKeyValues();
3714  ExpansionData *Expansions = getExpansionData();
3715  for (unsigned I = 0; I < NumElements; I++) {
3716    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3717        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3718      ExprBits.ValueDependent = true;
3719    if (VK[I].Key->isInstantiationDependent() ||
3720        VK[I].Value->isInstantiationDependent())
3721      ExprBits.InstantiationDependent = true;
3722    if (VK[I].EllipsisLoc.isInvalid() &&
3723        (VK[I].Key->containsUnexpandedParameterPack() ||
3724         VK[I].Value->containsUnexpandedParameterPack()))
3725      ExprBits.ContainsUnexpandedParameterPack = true;
3726
3727    KeyValues[I].Key = VK[I].Key;
3728    KeyValues[I].Value = VK[I].Value;
3729    if (Expansions) {
3730      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3731      if (VK[I].NumExpansions)
3732        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3733      else
3734        Expansions[I].NumExpansionsPlusOne = 0;
3735    }
3736  }
3737}
3738
3739ObjCDictionaryLiteral *
3740ObjCDictionaryLiteral::Create(ASTContext &C,
3741                              ArrayRef<ObjCDictionaryElement> VK,
3742                              bool HasPackExpansions,
3743                              QualType T, ObjCMethodDecl *method,
3744                              SourceRange SR) {
3745  unsigned ExpansionsSize = 0;
3746  if (HasPackExpansions)
3747    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3748
3749  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3750                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3751  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3752}
3753
3754ObjCDictionaryLiteral *
3755ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3756                                   bool HasPackExpansions) {
3757  unsigned ExpansionsSize = 0;
3758  if (HasPackExpansions)
3759    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3760  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3761                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3762  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3763                                         HasPackExpansions);
3764}
3765
3766ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3767                                                   Expr *base,
3768                                                   Expr *key, QualType T,
3769                                                   ObjCMethodDecl *getMethod,
3770                                                   ObjCMethodDecl *setMethod,
3771                                                   SourceLocation RB) {
3772  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3773  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3774                                        OK_ObjCSubscript,
3775                                        getMethod, setMethod, RB);
3776}
3777
3778AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3779                       QualType t, AtomicOp op, SourceLocation RP)
3780  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3781         false, false, false, false),
3782    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3783{
3784  for (unsigned i = 0; i < nexpr; i++) {
3785    if (args[i]->isTypeDependent())
3786      ExprBits.TypeDependent = true;
3787    if (args[i]->isValueDependent())
3788      ExprBits.ValueDependent = true;
3789    if (args[i]->isInstantiationDependent())
3790      ExprBits.InstantiationDependent = true;
3791    if (args[i]->containsUnexpandedParameterPack())
3792      ExprBits.ContainsUnexpandedParameterPack = true;
3793
3794    SubExprs[i] = args[i];
3795  }
3796}
3797