Expr.cpp revision 501edb6a54524555ad27fbf41a7920dc756b08c6
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      const VarDecl *Def = 0;
103      if (const Expr *Init = Var->getDefinition(Def))
104        if (Init->isValueDependent())
105          ValueDependent = true;
106    }
107  }
108  //  (TD)  - a nested-name-specifier or a qualified-id that names a
109  //          member of an unknown specialization.
110  //        (handled by DependentScopeDeclRefExpr)
111}
112
113DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
114                         SourceRange QualifierRange,
115                         ValueDecl *D, SourceLocation NameLoc,
116                         const TemplateArgumentListInfo *TemplateArgs,
117                         QualType T)
118  : Expr(DeclRefExprClass, T, false, false),
119    DecoratedD(D,
120               (Qualifier? HasQualifierFlag : 0) |
121               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
122    Loc(NameLoc) {
123  if (Qualifier) {
124    NameQualifier *NQ = getNameQualifier();
125    NQ->NNS = Qualifier;
126    NQ->Range = QualifierRange;
127  }
128
129  if (TemplateArgs)
130    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
131
132  computeDependence();
133}
134
135DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
136                                 NestedNameSpecifier *Qualifier,
137                                 SourceRange QualifierRange,
138                                 ValueDecl *D,
139                                 SourceLocation NameLoc,
140                                 QualType T,
141                                 const TemplateArgumentListInfo *TemplateArgs) {
142  std::size_t Size = sizeof(DeclRefExpr);
143  if (Qualifier != 0)
144    Size += sizeof(NameQualifier);
145
146  if (TemplateArgs)
147    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
148
149  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
150  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
151                               TemplateArgs, T);
152}
153
154SourceRange DeclRefExpr::getSourceRange() const {
155  // FIXME: Does not handle multi-token names well, e.g., operator[].
156  SourceRange R(Loc);
157
158  if (hasQualifier())
159    R.setBegin(getQualifierRange().getBegin());
160  if (hasExplicitTemplateArgumentList())
161    R.setEnd(getRAngleLoc());
162  return R;
163}
164
165// FIXME: Maybe this should use DeclPrinter with a special "print predefined
166// expr" policy instead.
167std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
168                                        const Decl *CurrentDecl) {
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual())
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184    Policy.SuppressTagKind = true;
185
186    std::string Proto = FD->getQualifiedNameAsString(Policy);
187
188    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
189    const FunctionProtoType *FT = 0;
190    if (FD->hasWrittenPrototype())
191      FT = dyn_cast<FunctionProtoType>(AFT);
192
193    Proto += "(";
194    if (FT) {
195      llvm::raw_string_ostream POut(Proto);
196      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
197        if (i) POut << ", ";
198        std::string Param;
199        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
200        POut << Param;
201      }
202
203      if (FT->isVariadic()) {
204        if (FD->getNumParams()) POut << ", ";
205        POut << "...";
206      }
207    }
208    Proto += ")";
209
210    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
211      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
212      if (ThisQuals.hasConst())
213        Proto += " const";
214      if (ThisQuals.hasVolatile())
215        Proto += " volatile";
216    }
217
218    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
219      AFT->getResultType().getAsStringInternal(Proto, Policy);
220
221    Out << Proto;
222
223    Out.flush();
224    return Name.str().str();
225  }
226  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
227    llvm::SmallString<256> Name;
228    llvm::raw_svector_ostream Out(Name);
229    Out << (MD->isInstanceMethod() ? '-' : '+');
230    Out << '[';
231    Out << MD->getClassInterface()->getNameAsString();
232    if (const ObjCCategoryImplDecl *CID =
233        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
234      Out << '(';
235      Out <<  CID->getNameAsString();
236      Out <<  ')';
237    }
238    Out <<  ' ';
239    Out << MD->getSelector().getAsString();
240    Out <<  ']';
241
242    Out.flush();
243    return Name.str().str();
244  }
245  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
246    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
247    return "top level";
248  }
249  return "";
250}
251
252/// getValueAsApproximateDouble - This returns the value as an inaccurate
253/// double.  Note that this may cause loss of precision, but is useful for
254/// debugging dumps, etc.
255double FloatingLiteral::getValueAsApproximateDouble() const {
256  llvm::APFloat V = getValue();
257  bool ignored;
258  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
259            &ignored);
260  return V.convertToDouble();
261}
262
263StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
264                                     unsigned ByteLength, bool Wide,
265                                     QualType Ty,
266                                     const SourceLocation *Loc,
267                                     unsigned NumStrs) {
268  // Allocate enough space for the StringLiteral plus an array of locations for
269  // any concatenated string tokens.
270  void *Mem = C.Allocate(sizeof(StringLiteral)+
271                         sizeof(SourceLocation)*(NumStrs-1),
272                         llvm::alignof<StringLiteral>());
273  StringLiteral *SL = new (Mem) StringLiteral(Ty);
274
275  // OPTIMIZE: could allocate this appended to the StringLiteral.
276  char *AStrData = new (C, 1) char[ByteLength];
277  memcpy(AStrData, StrData, ByteLength);
278  SL->StrData = AStrData;
279  SL->ByteLength = ByteLength;
280  SL->IsWide = Wide;
281  SL->TokLocs[0] = Loc[0];
282  SL->NumConcatenated = NumStrs;
283
284  if (NumStrs != 1)
285    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
286  return SL;
287}
288
289StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
290  void *Mem = C.Allocate(sizeof(StringLiteral)+
291                         sizeof(SourceLocation)*(NumStrs-1),
292                         llvm::alignof<StringLiteral>());
293  StringLiteral *SL = new (Mem) StringLiteral(QualType());
294  SL->StrData = 0;
295  SL->ByteLength = 0;
296  SL->NumConcatenated = NumStrs;
297  return SL;
298}
299
300void StringLiteral::DoDestroy(ASTContext &C) {
301  C.Deallocate(const_cast<char*>(StrData));
302  Expr::DoDestroy(C);
303}
304
305void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
306  if (StrData)
307    C.Deallocate(const_cast<char*>(StrData));
308
309  char *AStrData = new (C, 1) char[Str.size()];
310  memcpy(AStrData, Str.data(), Str.size());
311  StrData = AStrData;
312  ByteLength = Str.size();
313}
314
315/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
316/// corresponds to, e.g. "sizeof" or "[pre]++".
317const char *UnaryOperator::getOpcodeStr(Opcode Op) {
318  switch (Op) {
319  default: assert(0 && "Unknown unary operator");
320  case PostInc: return "++";
321  case PostDec: return "--";
322  case PreInc:  return "++";
323  case PreDec:  return "--";
324  case AddrOf:  return "&";
325  case Deref:   return "*";
326  case Plus:    return "+";
327  case Minus:   return "-";
328  case Not:     return "~";
329  case LNot:    return "!";
330  case Real:    return "__real";
331  case Imag:    return "__imag";
332  case Extension: return "__extension__";
333  case OffsetOf: return "__builtin_offsetof";
334  }
335}
336
337UnaryOperator::Opcode
338UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
339  switch (OO) {
340  default: assert(false && "No unary operator for overloaded function");
341  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
342  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
343  case OO_Amp:        return AddrOf;
344  case OO_Star:       return Deref;
345  case OO_Plus:       return Plus;
346  case OO_Minus:      return Minus;
347  case OO_Tilde:      return Not;
348  case OO_Exclaim:    return LNot;
349  }
350}
351
352OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
353  switch (Opc) {
354  case PostInc: case PreInc: return OO_PlusPlus;
355  case PostDec: case PreDec: return OO_MinusMinus;
356  case AddrOf: return OO_Amp;
357  case Deref: return OO_Star;
358  case Plus: return OO_Plus;
359  case Minus: return OO_Minus;
360  case Not: return OO_Tilde;
361  case LNot: return OO_Exclaim;
362  default: return OO_None;
363  }
364}
365
366
367//===----------------------------------------------------------------------===//
368// Postfix Operators.
369//===----------------------------------------------------------------------===//
370
371CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
372                   unsigned numargs, QualType t, SourceLocation rparenloc)
373  : Expr(SC, t,
374         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
375         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
376    NumArgs(numargs) {
377
378  SubExprs = new (C) Stmt*[numargs+1];
379  SubExprs[FN] = fn;
380  for (unsigned i = 0; i != numargs; ++i)
381    SubExprs[i+ARGS_START] = args[i];
382
383  RParenLoc = rparenloc;
384}
385
386CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
387                   QualType t, SourceLocation rparenloc)
388  : Expr(CallExprClass, t,
389         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
390         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
391    NumArgs(numargs) {
392
393  SubExprs = new (C) Stmt*[numargs+1];
394  SubExprs[FN] = fn;
395  for (unsigned i = 0; i != numargs; ++i)
396    SubExprs[i+ARGS_START] = args[i];
397
398  RParenLoc = rparenloc;
399}
400
401CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
402  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
403  SubExprs = new (C) Stmt*[1];
404}
405
406void CallExpr::DoDestroy(ASTContext& C) {
407  DestroyChildren(C);
408  if (SubExprs) C.Deallocate(SubExprs);
409  this->~CallExpr();
410  C.Deallocate(this);
411}
412
413Decl *CallExpr::getCalleeDecl() {
414  Expr *CEE = getCallee()->IgnoreParenCasts();
415  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
416    return DRE->getDecl();
417  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
418    return ME->getMemberDecl();
419
420  return 0;
421}
422
423FunctionDecl *CallExpr::getDirectCallee() {
424  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
425}
426
427/// setNumArgs - This changes the number of arguments present in this call.
428/// Any orphaned expressions are deleted by this, and any new operands are set
429/// to null.
430void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
431  // No change, just return.
432  if (NumArgs == getNumArgs()) return;
433
434  // If shrinking # arguments, just delete the extras and forgot them.
435  if (NumArgs < getNumArgs()) {
436    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
437      getArg(i)->Destroy(C);
438    this->NumArgs = NumArgs;
439    return;
440  }
441
442  // Otherwise, we are growing the # arguments.  New an bigger argument array.
443  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
444  // Copy over args.
445  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
446    NewSubExprs[i] = SubExprs[i];
447  // Null out new args.
448  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
449    NewSubExprs[i] = 0;
450
451  if (SubExprs) C.Deallocate(SubExprs);
452  SubExprs = NewSubExprs;
453  this->NumArgs = NumArgs;
454}
455
456/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
457/// not, return 0.
458unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
459  // All simple function calls (e.g. func()) are implicitly cast to pointer to
460  // function. As a result, we try and obtain the DeclRefExpr from the
461  // ImplicitCastExpr.
462  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
463  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
464    return 0;
465
466  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
467  if (!DRE)
468    return 0;
469
470  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
471  if (!FDecl)
472    return 0;
473
474  if (!FDecl->getIdentifier())
475    return 0;
476
477  return FDecl->getBuiltinID();
478}
479
480QualType CallExpr::getCallReturnType() const {
481  QualType CalleeType = getCallee()->getType();
482  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
483    CalleeType = FnTypePtr->getPointeeType();
484  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
485    CalleeType = BPT->getPointeeType();
486
487  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
488  return FnType->getResultType();
489}
490
491MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
492                       SourceRange qualrange, ValueDecl *memberdecl,
493                       SourceLocation l, const TemplateArgumentListInfo *targs,
494                       QualType ty)
495  : Expr(MemberExprClass, ty,
496         base->isTypeDependent() || (qual && qual->isDependent()),
497         base->isValueDependent() || (qual && qual->isDependent())),
498    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
499    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
500  // Initialize the qualifier, if any.
501  if (HasQualifier) {
502    NameQualifier *NQ = getMemberQualifier();
503    NQ->NNS = qual;
504    NQ->Range = qualrange;
505  }
506
507  // Initialize the explicit template argument list, if any.
508  if (targs)
509    getExplicitTemplateArgumentList()->initializeFrom(*targs);
510}
511
512MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
513                               NestedNameSpecifier *qual,
514                               SourceRange qualrange,
515                               ValueDecl *memberdecl,
516                               SourceLocation l,
517                               const TemplateArgumentListInfo *targs,
518                               QualType ty) {
519  std::size_t Size = sizeof(MemberExpr);
520  if (qual != 0)
521    Size += sizeof(NameQualifier);
522
523  if (targs)
524    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
525
526  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
527  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
528                              targs, ty);
529}
530
531const char *CastExpr::getCastKindName() const {
532  switch (getCastKind()) {
533  case CastExpr::CK_Unknown:
534    return "Unknown";
535  case CastExpr::CK_BitCast:
536    return "BitCast";
537  case CastExpr::CK_NoOp:
538    return "NoOp";
539  case CastExpr::CK_BaseToDerived:
540    return "BaseToDerived";
541  case CastExpr::CK_DerivedToBase:
542    return "DerivedToBase";
543  case CastExpr::CK_Dynamic:
544    return "Dynamic";
545  case CastExpr::CK_ToUnion:
546    return "ToUnion";
547  case CastExpr::CK_ArrayToPointerDecay:
548    return "ArrayToPointerDecay";
549  case CastExpr::CK_FunctionToPointerDecay:
550    return "FunctionToPointerDecay";
551  case CastExpr::CK_NullToMemberPointer:
552    return "NullToMemberPointer";
553  case CastExpr::CK_BaseToDerivedMemberPointer:
554    return "BaseToDerivedMemberPointer";
555  case CastExpr::CK_DerivedToBaseMemberPointer:
556    return "DerivedToBaseMemberPointer";
557  case CastExpr::CK_UserDefinedConversion:
558    return "UserDefinedConversion";
559  case CastExpr::CK_ConstructorConversion:
560    return "ConstructorConversion";
561  case CastExpr::CK_IntegralToPointer:
562    return "IntegralToPointer";
563  case CastExpr::CK_PointerToIntegral:
564    return "PointerToIntegral";
565  case CastExpr::CK_ToVoid:
566    return "ToVoid";
567  case CastExpr::CK_VectorSplat:
568    return "VectorSplat";
569  case CastExpr::CK_IntegralCast:
570    return "IntegralCast";
571  case CastExpr::CK_IntegralToFloating:
572    return "IntegralToFloating";
573  case CastExpr::CK_FloatingToIntegral:
574    return "FloatingToIntegral";
575  case CastExpr::CK_FloatingCast:
576    return "FloatingCast";
577  case CastExpr::CK_MemberPointerToBoolean:
578    return "MemberPointerToBoolean";
579  case CastExpr::CK_AnyPointerToObjCPointerCast:
580    return "AnyPointerToObjCPointerCast";
581  case CastExpr::CK_AnyPointerToBlockPointerCast:
582    return "AnyPointerToBlockPointerCast";
583  }
584
585  assert(0 && "Unhandled cast kind!");
586  return 0;
587}
588
589Expr *CastExpr::getSubExprAsWritten() {
590  Expr *SubExpr = 0;
591  CastExpr *E = this;
592  do {
593    SubExpr = E->getSubExpr();
594
595    // Skip any temporary bindings; they're implicit.
596    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
597      SubExpr = Binder->getSubExpr();
598
599    // Conversions by constructor and conversion functions have a
600    // subexpression describing the call; strip it off.
601    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
602      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
603    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
604      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
605
606    // If the subexpression we're left with is an implicit cast, look
607    // through that, too.
608  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
609
610  return SubExpr;
611}
612
613/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
614/// corresponds to, e.g. "<<=".
615const char *BinaryOperator::getOpcodeStr(Opcode Op) {
616  switch (Op) {
617  case PtrMemD:   return ".*";
618  case PtrMemI:   return "->*";
619  case Mul:       return "*";
620  case Div:       return "/";
621  case Rem:       return "%";
622  case Add:       return "+";
623  case Sub:       return "-";
624  case Shl:       return "<<";
625  case Shr:       return ">>";
626  case LT:        return "<";
627  case GT:        return ">";
628  case LE:        return "<=";
629  case GE:        return ">=";
630  case EQ:        return "==";
631  case NE:        return "!=";
632  case And:       return "&";
633  case Xor:       return "^";
634  case Or:        return "|";
635  case LAnd:      return "&&";
636  case LOr:       return "||";
637  case Assign:    return "=";
638  case MulAssign: return "*=";
639  case DivAssign: return "/=";
640  case RemAssign: return "%=";
641  case AddAssign: return "+=";
642  case SubAssign: return "-=";
643  case ShlAssign: return "<<=";
644  case ShrAssign: return ">>=";
645  case AndAssign: return "&=";
646  case XorAssign: return "^=";
647  case OrAssign:  return "|=";
648  case Comma:     return ",";
649  }
650
651  return "";
652}
653
654BinaryOperator::Opcode
655BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
656  switch (OO) {
657  default: assert(false && "Not an overloadable binary operator");
658  case OO_Plus: return Add;
659  case OO_Minus: return Sub;
660  case OO_Star: return Mul;
661  case OO_Slash: return Div;
662  case OO_Percent: return Rem;
663  case OO_Caret: return Xor;
664  case OO_Amp: return And;
665  case OO_Pipe: return Or;
666  case OO_Equal: return Assign;
667  case OO_Less: return LT;
668  case OO_Greater: return GT;
669  case OO_PlusEqual: return AddAssign;
670  case OO_MinusEqual: return SubAssign;
671  case OO_StarEqual: return MulAssign;
672  case OO_SlashEqual: return DivAssign;
673  case OO_PercentEqual: return RemAssign;
674  case OO_CaretEqual: return XorAssign;
675  case OO_AmpEqual: return AndAssign;
676  case OO_PipeEqual: return OrAssign;
677  case OO_LessLess: return Shl;
678  case OO_GreaterGreater: return Shr;
679  case OO_LessLessEqual: return ShlAssign;
680  case OO_GreaterGreaterEqual: return ShrAssign;
681  case OO_EqualEqual: return EQ;
682  case OO_ExclaimEqual: return NE;
683  case OO_LessEqual: return LE;
684  case OO_GreaterEqual: return GE;
685  case OO_AmpAmp: return LAnd;
686  case OO_PipePipe: return LOr;
687  case OO_Comma: return Comma;
688  case OO_ArrowStar: return PtrMemI;
689  }
690}
691
692OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
693  static const OverloadedOperatorKind OverOps[] = {
694    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
695    OO_Star, OO_Slash, OO_Percent,
696    OO_Plus, OO_Minus,
697    OO_LessLess, OO_GreaterGreater,
698    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
699    OO_EqualEqual, OO_ExclaimEqual,
700    OO_Amp,
701    OO_Caret,
702    OO_Pipe,
703    OO_AmpAmp,
704    OO_PipePipe,
705    OO_Equal, OO_StarEqual,
706    OO_SlashEqual, OO_PercentEqual,
707    OO_PlusEqual, OO_MinusEqual,
708    OO_LessLessEqual, OO_GreaterGreaterEqual,
709    OO_AmpEqual, OO_CaretEqual,
710    OO_PipeEqual,
711    OO_Comma
712  };
713  return OverOps[Opc];
714}
715
716InitListExpr::InitListExpr(SourceLocation lbraceloc,
717                           Expr **initExprs, unsigned numInits,
718                           SourceLocation rbraceloc)
719  : Expr(InitListExprClass, QualType(), false, false),
720    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
721    UnionFieldInit(0), HadArrayRangeDesignator(false)
722{
723  for (unsigned I = 0; I != numInits; ++I) {
724    if (initExprs[I]->isTypeDependent())
725      TypeDependent = true;
726    if (initExprs[I]->isValueDependent())
727      ValueDependent = true;
728  }
729
730  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
731}
732
733void InitListExpr::reserveInits(unsigned NumInits) {
734  if (NumInits > InitExprs.size())
735    InitExprs.reserve(NumInits);
736}
737
738void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
739  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
740       Idx < LastIdx; ++Idx)
741    InitExprs[Idx]->Destroy(Context);
742  InitExprs.resize(NumInits, 0);
743}
744
745Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
746  if (Init >= InitExprs.size()) {
747    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
748    InitExprs.back() = expr;
749    return 0;
750  }
751
752  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
753  InitExprs[Init] = expr;
754  return Result;
755}
756
757/// getFunctionType - Return the underlying function type for this block.
758///
759const FunctionType *BlockExpr::getFunctionType() const {
760  return getType()->getAs<BlockPointerType>()->
761                    getPointeeType()->getAs<FunctionType>();
762}
763
764SourceLocation BlockExpr::getCaretLocation() const {
765  return TheBlock->getCaretLocation();
766}
767const Stmt *BlockExpr::getBody() const {
768  return TheBlock->getBody();
769}
770Stmt *BlockExpr::getBody() {
771  return TheBlock->getBody();
772}
773
774
775//===----------------------------------------------------------------------===//
776// Generic Expression Routines
777//===----------------------------------------------------------------------===//
778
779/// isUnusedResultAWarning - Return true if this immediate expression should
780/// be warned about if the result is unused.  If so, fill in Loc and Ranges
781/// with location to warn on and the source range[s] to report with the
782/// warning.
783bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
784                                  SourceRange &R2, ASTContext &Ctx) const {
785  // Don't warn if the expr is type dependent. The type could end up
786  // instantiating to void.
787  if (isTypeDependent())
788    return false;
789
790  switch (getStmtClass()) {
791  default:
792    Loc = getExprLoc();
793    R1 = getSourceRange();
794    return true;
795  case ParenExprClass:
796    return cast<ParenExpr>(this)->getSubExpr()->
797      isUnusedResultAWarning(Loc, R1, R2, Ctx);
798  case UnaryOperatorClass: {
799    const UnaryOperator *UO = cast<UnaryOperator>(this);
800
801    switch (UO->getOpcode()) {
802    default: break;
803    case UnaryOperator::PostInc:
804    case UnaryOperator::PostDec:
805    case UnaryOperator::PreInc:
806    case UnaryOperator::PreDec:                 // ++/--
807      return false;  // Not a warning.
808    case UnaryOperator::Deref:
809      // Dereferencing a volatile pointer is a side-effect.
810      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
811        return false;
812      break;
813    case UnaryOperator::Real:
814    case UnaryOperator::Imag:
815      // accessing a piece of a volatile complex is a side-effect.
816      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
817          .isVolatileQualified())
818        return false;
819      break;
820    case UnaryOperator::Extension:
821      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
822    }
823    Loc = UO->getOperatorLoc();
824    R1 = UO->getSubExpr()->getSourceRange();
825    return true;
826  }
827  case BinaryOperatorClass: {
828    const BinaryOperator *BO = cast<BinaryOperator>(this);
829    // Consider comma to have side effects if the LHS or RHS does.
830    if (BO->getOpcode() == BinaryOperator::Comma)
831      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
832              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
833
834    if (BO->isAssignmentOp())
835      return false;
836    Loc = BO->getOperatorLoc();
837    R1 = BO->getLHS()->getSourceRange();
838    R2 = BO->getRHS()->getSourceRange();
839    return true;
840  }
841  case CompoundAssignOperatorClass:
842    return false;
843
844  case ConditionalOperatorClass: {
845    // The condition must be evaluated, but if either the LHS or RHS is a
846    // warning, warn about them.
847    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
848    if (Exp->getLHS() &&
849        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
850      return true;
851    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
852  }
853
854  case MemberExprClass:
855    // If the base pointer or element is to a volatile pointer/field, accessing
856    // it is a side effect.
857    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
858      return false;
859    Loc = cast<MemberExpr>(this)->getMemberLoc();
860    R1 = SourceRange(Loc, Loc);
861    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
862    return true;
863
864  case ArraySubscriptExprClass:
865    // If the base pointer or element is to a volatile pointer/field, accessing
866    // it is a side effect.
867    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
868      return false;
869    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
870    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
871    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
872    return true;
873
874  case CallExprClass:
875  case CXXOperatorCallExprClass:
876  case CXXMemberCallExprClass: {
877    // If this is a direct call, get the callee.
878    const CallExpr *CE = cast<CallExpr>(this);
879    if (const Decl *FD = CE->getCalleeDecl()) {
880      // If the callee has attribute pure, const, or warn_unused_result, warn
881      // about it. void foo() { strlen("bar"); } should warn.
882      //
883      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
884      // updated to match for QoI.
885      if (FD->getAttr<WarnUnusedResultAttr>() ||
886          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
887        Loc = CE->getCallee()->getLocStart();
888        R1 = CE->getCallee()->getSourceRange();
889
890        if (unsigned NumArgs = CE->getNumArgs())
891          R2 = SourceRange(CE->getArg(0)->getLocStart(),
892                           CE->getArg(NumArgs-1)->getLocEnd());
893        return true;
894      }
895    }
896    return false;
897  }
898
899  case CXXTemporaryObjectExprClass:
900  case CXXConstructExprClass:
901    return false;
902
903  case ObjCMessageExprClass:
904    return false;
905
906  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
907#if 0
908    const ObjCImplicitSetterGetterRefExpr *Ref =
909      cast<ObjCImplicitSetterGetterRefExpr>(this);
910    // FIXME: We really want the location of the '.' here.
911    Loc = Ref->getLocation();
912    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
913    if (Ref->getBase())
914      R2 = Ref->getBase()->getSourceRange();
915#else
916    Loc = getExprLoc();
917    R1 = getSourceRange();
918#endif
919    return true;
920  }
921  case StmtExprClass: {
922    // Statement exprs don't logically have side effects themselves, but are
923    // sometimes used in macros in ways that give them a type that is unused.
924    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
925    // however, if the result of the stmt expr is dead, we don't want to emit a
926    // warning.
927    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
928    if (!CS->body_empty())
929      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
930        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
931
932    Loc = cast<StmtExpr>(this)->getLParenLoc();
933    R1 = getSourceRange();
934    return true;
935  }
936  case CStyleCastExprClass:
937    // If this is an explicit cast to void, allow it.  People do this when they
938    // think they know what they're doing :).
939    if (getType()->isVoidType())
940      return false;
941    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
942    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
943    return true;
944  case CXXFunctionalCastExprClass: {
945    const CastExpr *CE = cast<CastExpr>(this);
946
947    // If this is a cast to void or a constructor conversion, check the operand.
948    // Otherwise, the result of the cast is unused.
949    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
950        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
951      return (cast<CastExpr>(this)->getSubExpr()
952              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
953    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
954    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
955    return true;
956  }
957
958  case ImplicitCastExprClass:
959    // Check the operand, since implicit casts are inserted by Sema
960    return (cast<ImplicitCastExpr>(this)
961            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
962
963  case CXXDefaultArgExprClass:
964    return (cast<CXXDefaultArgExpr>(this)
965            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
966
967  case CXXNewExprClass:
968    // FIXME: In theory, there might be new expressions that don't have side
969    // effects (e.g. a placement new with an uninitialized POD).
970  case CXXDeleteExprClass:
971    return false;
972  case CXXBindTemporaryExprClass:
973    return (cast<CXXBindTemporaryExpr>(this)
974            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
975  case CXXExprWithTemporariesClass:
976    return (cast<CXXExprWithTemporaries>(this)
977            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
978  }
979}
980
981/// DeclCanBeLvalue - Determine whether the given declaration can be
982/// an lvalue. This is a helper routine for isLvalue.
983static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
984  // C++ [temp.param]p6:
985  //   A non-type non-reference template-parameter is not an lvalue.
986  if (const NonTypeTemplateParmDecl *NTTParm
987        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
988    return NTTParm->getType()->isReferenceType();
989
990  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
991    // C++ 3.10p2: An lvalue refers to an object or function.
992    (Ctx.getLangOptions().CPlusPlus &&
993     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
994}
995
996/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
997/// incomplete type other than void. Nonarray expressions that can be lvalues:
998///  - name, where name must be a variable
999///  - e[i]
1000///  - (e), where e must be an lvalue
1001///  - e.name, where e must be an lvalue
1002///  - e->name
1003///  - *e, the type of e cannot be a function type
1004///  - string-constant
1005///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1006///  - reference type [C++ [expr]]
1007///
1008Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1009  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1010
1011  isLvalueResult Res = isLvalueInternal(Ctx);
1012  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1013    return Res;
1014
1015  // first, check the type (C99 6.3.2.1). Expressions with function
1016  // type in C are not lvalues, but they can be lvalues in C++.
1017  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1018    return LV_NotObjectType;
1019
1020  // Allow qualified void which is an incomplete type other than void (yuck).
1021  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1022    return LV_IncompleteVoidType;
1023
1024  return LV_Valid;
1025}
1026
1027// Check whether the expression can be sanely treated like an l-value
1028Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1029  switch (getStmtClass()) {
1030  case ObjCIsaExprClass:
1031  case StringLiteralClass:  // C99 6.5.1p4
1032  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1033    return LV_Valid;
1034  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1035    // For vectors, make sure base is an lvalue (i.e. not a function call).
1036    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1037      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1038    return LV_Valid;
1039  case DeclRefExprClass: { // C99 6.5.1p2
1040    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1041    if (DeclCanBeLvalue(RefdDecl, Ctx))
1042      return LV_Valid;
1043    break;
1044  }
1045  case BlockDeclRefExprClass: {
1046    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1047    if (isa<VarDecl>(BDR->getDecl()))
1048      return LV_Valid;
1049    break;
1050  }
1051  case MemberExprClass: {
1052    const MemberExpr *m = cast<MemberExpr>(this);
1053    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1054      NamedDecl *Member = m->getMemberDecl();
1055      // C++ [expr.ref]p4:
1056      //   If E2 is declared to have type "reference to T", then E1.E2
1057      //   is an lvalue.
1058      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1059        if (Value->getType()->isReferenceType())
1060          return LV_Valid;
1061
1062      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1063      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1064        return LV_Valid;
1065
1066      //   -- If E2 is a non-static data member [...]. If E1 is an
1067      //      lvalue, then E1.E2 is an lvalue.
1068      if (isa<FieldDecl>(Member)) {
1069        if (m->isArrow())
1070          return LV_Valid;
1071        Expr *BaseExp = m->getBase();
1072        return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1073                 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1074      }
1075
1076      //   -- If it refers to a static member function [...], then
1077      //      E1.E2 is an lvalue.
1078      //   -- Otherwise, if E1.E2 refers to a non-static member
1079      //      function [...], then E1.E2 is not an lvalue.
1080      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1081        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1082
1083      //   -- If E2 is a member enumerator [...], the expression E1.E2
1084      //      is not an lvalue.
1085      if (isa<EnumConstantDecl>(Member))
1086        return LV_InvalidExpression;
1087
1088        // Not an lvalue.
1089      return LV_InvalidExpression;
1090    }
1091
1092    // C99 6.5.2.3p4
1093    if (m->isArrow())
1094      return LV_Valid;
1095    Expr *BaseExp = m->getBase();
1096    return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
1097             LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
1098  }
1099  case UnaryOperatorClass:
1100    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1101      return LV_Valid; // C99 6.5.3p4
1102
1103    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1104        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1105        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1106      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1107
1108    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1109        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1110         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1111      return LV_Valid;
1112    break;
1113  case ImplicitCastExprClass:
1114    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1115                                                       : LV_InvalidExpression;
1116  case ParenExprClass: // C99 6.5.1p5
1117    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1118  case BinaryOperatorClass:
1119  case CompoundAssignOperatorClass: {
1120    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1121
1122    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1123        BinOp->getOpcode() == BinaryOperator::Comma)
1124      return BinOp->getRHS()->isLvalue(Ctx);
1125
1126    // C++ [expr.mptr.oper]p6
1127    // The result of a .* expression is an lvalue only if its first operand is
1128    // an lvalue and its second operand is a pointer to data member.
1129    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1130        !BinOp->getType()->isFunctionType())
1131      return BinOp->getLHS()->isLvalue(Ctx);
1132
1133    // The result of an ->* expression is an lvalue only if its second operand
1134    // is a pointer to data member.
1135    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1136        !BinOp->getType()->isFunctionType()) {
1137      QualType Ty = BinOp->getRHS()->getType();
1138      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1139        return LV_Valid;
1140    }
1141
1142    if (!BinOp->isAssignmentOp())
1143      return LV_InvalidExpression;
1144
1145    if (Ctx.getLangOptions().CPlusPlus)
1146      // C++ [expr.ass]p1:
1147      //   The result of an assignment operation [...] is an lvalue.
1148      return LV_Valid;
1149
1150
1151    // C99 6.5.16:
1152    //   An assignment expression [...] is not an lvalue.
1153    return LV_InvalidExpression;
1154  }
1155  case CallExprClass:
1156  case CXXOperatorCallExprClass:
1157  case CXXMemberCallExprClass: {
1158    // C++0x [expr.call]p10
1159    //   A function call is an lvalue if and only if the result type
1160    //   is an lvalue reference.
1161    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1162    if (ReturnType->isLValueReferenceType())
1163      return LV_Valid;
1164
1165    break;
1166  }
1167  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1168    return LV_Valid;
1169  case ChooseExprClass:
1170    // __builtin_choose_expr is an lvalue if the selected operand is.
1171    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1172  case ExtVectorElementExprClass:
1173    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1174      return LV_DuplicateVectorComponents;
1175    return LV_Valid;
1176  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1177    return LV_Valid;
1178  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1179    return LV_Valid;
1180  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1181    return LV_Valid;
1182  case PredefinedExprClass:
1183    return LV_Valid;
1184  case UnresolvedLookupExprClass:
1185    return LV_Valid;
1186  case CXXDefaultArgExprClass:
1187    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1188  case CStyleCastExprClass:
1189  case CXXFunctionalCastExprClass:
1190  case CXXStaticCastExprClass:
1191  case CXXDynamicCastExprClass:
1192  case CXXReinterpretCastExprClass:
1193  case CXXConstCastExprClass:
1194    // The result of an explicit cast is an lvalue if the type we are
1195    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1196    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1197    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1198    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1199          isLValueReferenceType())
1200      return LV_Valid;
1201    break;
1202  case CXXTypeidExprClass:
1203    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1204    return LV_Valid;
1205  case CXXBindTemporaryExprClass:
1206    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1207      isLvalueInternal(Ctx);
1208  case ConditionalOperatorClass: {
1209    // Complicated handling is only for C++.
1210    if (!Ctx.getLangOptions().CPlusPlus)
1211      return LV_InvalidExpression;
1212
1213    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1214    // everywhere there's an object converted to an rvalue. Also, any other
1215    // casts should be wrapped by ImplicitCastExprs. There's just the special
1216    // case involving throws to work out.
1217    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1218    Expr *True = Cond->getTrueExpr();
1219    Expr *False = Cond->getFalseExpr();
1220    // C++0x 5.16p2
1221    //   If either the second or the third operand has type (cv) void, [...]
1222    //   the result [...] is an rvalue.
1223    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1224      return LV_InvalidExpression;
1225
1226    // Both sides must be lvalues for the result to be an lvalue.
1227    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1228      return LV_InvalidExpression;
1229
1230    // That's it.
1231    return LV_Valid;
1232  }
1233
1234  case Expr::CXXExprWithTemporariesClass:
1235    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1236
1237  case Expr::ObjCMessageExprClass:
1238    if (const ObjCMethodDecl *Method
1239          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1240      if (Method->getResultType()->isLValueReferenceType())
1241        return LV_Valid;
1242    break;
1243
1244  default:
1245    break;
1246  }
1247  return LV_InvalidExpression;
1248}
1249
1250/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1251/// does not have an incomplete type, does not have a const-qualified type, and
1252/// if it is a structure or union, does not have any member (including,
1253/// recursively, any member or element of all contained aggregates or unions)
1254/// with a const-qualified type.
1255Expr::isModifiableLvalueResult
1256Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1257  isLvalueResult lvalResult = isLvalue(Ctx);
1258
1259  switch (lvalResult) {
1260  case LV_Valid:
1261    // C++ 3.10p11: Functions cannot be modified, but pointers to
1262    // functions can be modifiable.
1263    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1264      return MLV_NotObjectType;
1265    break;
1266
1267  case LV_NotObjectType: return MLV_NotObjectType;
1268  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1269  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1270  case LV_InvalidExpression:
1271    // If the top level is a C-style cast, and the subexpression is a valid
1272    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1273    // GCC extension.  We don't support it, but we want to produce good
1274    // diagnostics when it happens so that the user knows why.
1275    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1276      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1277        if (Loc)
1278          *Loc = CE->getLParenLoc();
1279        return MLV_LValueCast;
1280      }
1281    }
1282    return MLV_InvalidExpression;
1283  case LV_MemberFunction: return MLV_MemberFunction;
1284    case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1285  }
1286
1287  // The following is illegal:
1288  //   void takeclosure(void (^C)(void));
1289  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1290  //
1291  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1292    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1293      return MLV_NotBlockQualified;
1294  }
1295
1296  // Assigning to an 'implicit' property?
1297  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1298        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1299    if (Expr->getSetterMethod() == 0)
1300      return MLV_NoSetterProperty;
1301  }
1302
1303  QualType CT = Ctx.getCanonicalType(getType());
1304
1305  if (CT.isConstQualified())
1306    return MLV_ConstQualified;
1307  if (CT->isArrayType())
1308    return MLV_ArrayType;
1309  if (CT->isIncompleteType())
1310    return MLV_IncompleteType;
1311
1312  if (const RecordType *r = CT->getAs<RecordType>()) {
1313    if (r->hasConstFields())
1314      return MLV_ConstQualified;
1315  }
1316
1317  return MLV_Valid;
1318}
1319
1320/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1321/// returns true, if it is; false otherwise.
1322bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1323  switch (getStmtClass()) {
1324  default:
1325    return false;
1326  case ObjCIvarRefExprClass:
1327    return true;
1328  case Expr::UnaryOperatorClass:
1329    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1330  case ParenExprClass:
1331    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1332  case ImplicitCastExprClass:
1333    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1334  case CStyleCastExprClass:
1335    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1336  case DeclRefExprClass: {
1337    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1338    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1339      if (VD->hasGlobalStorage())
1340        return true;
1341      QualType T = VD->getType();
1342      // dereferencing to a  pointer is always a gc'able candidate,
1343      // unless it is __weak.
1344      return T->isPointerType() &&
1345             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1346    }
1347    return false;
1348  }
1349  case MemberExprClass: {
1350    const MemberExpr *M = cast<MemberExpr>(this);
1351    return M->getBase()->isOBJCGCCandidate(Ctx);
1352  }
1353  case ArraySubscriptExprClass:
1354    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1355  }
1356}
1357Expr* Expr::IgnoreParens() {
1358  Expr* E = this;
1359  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1360    E = P->getSubExpr();
1361
1362  return E;
1363}
1364
1365/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1366/// or CastExprs or ImplicitCastExprs, returning their operand.
1367Expr *Expr::IgnoreParenCasts() {
1368  Expr *E = this;
1369  while (true) {
1370    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1371      E = P->getSubExpr();
1372    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1373      E = P->getSubExpr();
1374    else
1375      return E;
1376  }
1377}
1378
1379/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1380/// value (including ptr->int casts of the same size).  Strip off any
1381/// ParenExpr or CastExprs, returning their operand.
1382Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1383  Expr *E = this;
1384  while (true) {
1385    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1386      E = P->getSubExpr();
1387      continue;
1388    }
1389
1390    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1391      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1392      // ptr<->int casts of the same width.  We also ignore all identify casts.
1393      Expr *SE = P->getSubExpr();
1394
1395      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1396        E = SE;
1397        continue;
1398      }
1399
1400      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1401          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1402          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1403        E = SE;
1404        continue;
1405      }
1406    }
1407
1408    return E;
1409  }
1410}
1411
1412bool Expr::isDefaultArgument() const {
1413  const Expr *E = this;
1414  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1415    E = ICE->getSubExprAsWritten();
1416
1417  return isa<CXXDefaultArgExpr>(E);
1418}
1419
1420/// hasAnyTypeDependentArguments - Determines if any of the expressions
1421/// in Exprs is type-dependent.
1422bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1423  for (unsigned I = 0; I < NumExprs; ++I)
1424    if (Exprs[I]->isTypeDependent())
1425      return true;
1426
1427  return false;
1428}
1429
1430/// hasAnyValueDependentArguments - Determines if any of the expressions
1431/// in Exprs is value-dependent.
1432bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1433  for (unsigned I = 0; I < NumExprs; ++I)
1434    if (Exprs[I]->isValueDependent())
1435      return true;
1436
1437  return false;
1438}
1439
1440bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1441  // This function is attempting whether an expression is an initializer
1442  // which can be evaluated at compile-time.  isEvaluatable handles most
1443  // of the cases, but it can't deal with some initializer-specific
1444  // expressions, and it can't deal with aggregates; we deal with those here,
1445  // and fall back to isEvaluatable for the other cases.
1446
1447  // FIXME: This function assumes the variable being assigned to
1448  // isn't a reference type!
1449
1450  switch (getStmtClass()) {
1451  default: break;
1452  case StringLiteralClass:
1453  case ObjCStringLiteralClass:
1454  case ObjCEncodeExprClass:
1455    return true;
1456  case CompoundLiteralExprClass: {
1457    // This handles gcc's extension that allows global initializers like
1458    // "struct x {int x;} x = (struct x) {};".
1459    // FIXME: This accepts other cases it shouldn't!
1460    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1461    return Exp->isConstantInitializer(Ctx);
1462  }
1463  case InitListExprClass: {
1464    // FIXME: This doesn't deal with fields with reference types correctly.
1465    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1466    // to bitfields.
1467    const InitListExpr *Exp = cast<InitListExpr>(this);
1468    unsigned numInits = Exp->getNumInits();
1469    for (unsigned i = 0; i < numInits; i++) {
1470      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1471        return false;
1472    }
1473    return true;
1474  }
1475  case ImplicitValueInitExprClass:
1476    return true;
1477  case ParenExprClass:
1478    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1479  case UnaryOperatorClass: {
1480    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1481    if (Exp->getOpcode() == UnaryOperator::Extension)
1482      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1483    break;
1484  }
1485  case BinaryOperatorClass: {
1486    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1487    // but this handles the common case.
1488    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1489    if (Exp->getOpcode() == BinaryOperator::Sub &&
1490        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1491        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1492      return true;
1493    break;
1494  }
1495  case ImplicitCastExprClass:
1496  case CStyleCastExprClass:
1497    // Handle casts with a destination that's a struct or union; this
1498    // deals with both the gcc no-op struct cast extension and the
1499    // cast-to-union extension.
1500    if (getType()->isRecordType())
1501      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1502
1503    // Integer->integer casts can be handled here, which is important for
1504    // things like (int)(&&x-&&y).  Scary but true.
1505    if (getType()->isIntegerType() &&
1506        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1507      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1508
1509    break;
1510  }
1511  return isEvaluatable(Ctx);
1512}
1513
1514/// isIntegerConstantExpr - this recursive routine will test if an expression is
1515/// an integer constant expression.
1516
1517/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1518/// comma, etc
1519///
1520/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1521/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1522/// cast+dereference.
1523
1524// CheckICE - This function does the fundamental ICE checking: the returned
1525// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1526// Note that to reduce code duplication, this helper does no evaluation
1527// itself; the caller checks whether the expression is evaluatable, and
1528// in the rare cases where CheckICE actually cares about the evaluated
1529// value, it calls into Evalute.
1530//
1531// Meanings of Val:
1532// 0: This expression is an ICE if it can be evaluated by Evaluate.
1533// 1: This expression is not an ICE, but if it isn't evaluated, it's
1534//    a legal subexpression for an ICE. This return value is used to handle
1535//    the comma operator in C99 mode.
1536// 2: This expression is not an ICE, and is not a legal subexpression for one.
1537
1538struct ICEDiag {
1539  unsigned Val;
1540  SourceLocation Loc;
1541
1542  public:
1543  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1544  ICEDiag() : Val(0) {}
1545};
1546
1547ICEDiag NoDiag() { return ICEDiag(); }
1548
1549static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1550  Expr::EvalResult EVResult;
1551  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1552      !EVResult.Val.isInt()) {
1553    return ICEDiag(2, E->getLocStart());
1554  }
1555  return NoDiag();
1556}
1557
1558static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1559  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1560  if (!E->getType()->isIntegralType()) {
1561    return ICEDiag(2, E->getLocStart());
1562  }
1563
1564  switch (E->getStmtClass()) {
1565#define STMT(Node, Base) case Expr::Node##Class:
1566#define EXPR(Node, Base)
1567#include "clang/AST/StmtNodes.def"
1568  case Expr::PredefinedExprClass:
1569  case Expr::FloatingLiteralClass:
1570  case Expr::ImaginaryLiteralClass:
1571  case Expr::StringLiteralClass:
1572  case Expr::ArraySubscriptExprClass:
1573  case Expr::MemberExprClass:
1574  case Expr::CompoundAssignOperatorClass:
1575  case Expr::CompoundLiteralExprClass:
1576  case Expr::ExtVectorElementExprClass:
1577  case Expr::InitListExprClass:
1578  case Expr::DesignatedInitExprClass:
1579  case Expr::ImplicitValueInitExprClass:
1580  case Expr::ParenListExprClass:
1581  case Expr::VAArgExprClass:
1582  case Expr::AddrLabelExprClass:
1583  case Expr::StmtExprClass:
1584  case Expr::CXXMemberCallExprClass:
1585  case Expr::CXXDynamicCastExprClass:
1586  case Expr::CXXTypeidExprClass:
1587  case Expr::CXXNullPtrLiteralExprClass:
1588  case Expr::CXXThisExprClass:
1589  case Expr::CXXThrowExprClass:
1590  case Expr::CXXNewExprClass:
1591  case Expr::CXXDeleteExprClass:
1592  case Expr::CXXPseudoDestructorExprClass:
1593  case Expr::UnresolvedLookupExprClass:
1594  case Expr::DependentScopeDeclRefExprClass:
1595  case Expr::CXXConstructExprClass:
1596  case Expr::CXXBindTemporaryExprClass:
1597  case Expr::CXXExprWithTemporariesClass:
1598  case Expr::CXXTemporaryObjectExprClass:
1599  case Expr::CXXUnresolvedConstructExprClass:
1600  case Expr::CXXDependentScopeMemberExprClass:
1601  case Expr::UnresolvedMemberExprClass:
1602  case Expr::ObjCStringLiteralClass:
1603  case Expr::ObjCEncodeExprClass:
1604  case Expr::ObjCMessageExprClass:
1605  case Expr::ObjCSelectorExprClass:
1606  case Expr::ObjCProtocolExprClass:
1607  case Expr::ObjCIvarRefExprClass:
1608  case Expr::ObjCPropertyRefExprClass:
1609  case Expr::ObjCImplicitSetterGetterRefExprClass:
1610  case Expr::ObjCSuperExprClass:
1611  case Expr::ObjCIsaExprClass:
1612  case Expr::ShuffleVectorExprClass:
1613  case Expr::BlockExprClass:
1614  case Expr::BlockDeclRefExprClass:
1615  case Expr::NoStmtClass:
1616  case Expr::ExprClass:
1617    return ICEDiag(2, E->getLocStart());
1618
1619  case Expr::GNUNullExprClass:
1620    // GCC considers the GNU __null value to be an integral constant expression.
1621    return NoDiag();
1622
1623  case Expr::ParenExprClass:
1624    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1625  case Expr::IntegerLiteralClass:
1626  case Expr::CharacterLiteralClass:
1627  case Expr::CXXBoolLiteralExprClass:
1628  case Expr::CXXZeroInitValueExprClass:
1629  case Expr::TypesCompatibleExprClass:
1630  case Expr::UnaryTypeTraitExprClass:
1631    return NoDiag();
1632  case Expr::CallExprClass:
1633  case Expr::CXXOperatorCallExprClass: {
1634    const CallExpr *CE = cast<CallExpr>(E);
1635    if (CE->isBuiltinCall(Ctx))
1636      return CheckEvalInICE(E, Ctx);
1637    return ICEDiag(2, E->getLocStart());
1638  }
1639  case Expr::DeclRefExprClass:
1640    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1641      return NoDiag();
1642    if (Ctx.getLangOptions().CPlusPlus &&
1643        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1644      // C++ 7.1.5.1p2
1645      //   A variable of non-volatile const-qualified integral or enumeration
1646      //   type initialized by an ICE can be used in ICEs.
1647      if (const VarDecl *Dcl =
1648              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1649        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1650        if (Quals.hasVolatile() || !Quals.hasConst())
1651          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1652
1653        // Look for the definition of this variable, which will actually have
1654        // an initializer.
1655        const VarDecl *Def = 0;
1656        const Expr *Init = Dcl->getDefinition(Def);
1657        if (Init) {
1658          if (Def->isInitKnownICE()) {
1659            // We have already checked whether this subexpression is an
1660            // integral constant expression.
1661            if (Def->isInitICE())
1662              return NoDiag();
1663            else
1664              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1665          }
1666
1667          // C++ [class.static.data]p4:
1668          //   If a static data member is of const integral or const
1669          //   enumeration type, its declaration in the class definition can
1670          //   specify a constant-initializer which shall be an integral
1671          //   constant expression (5.19). In that case, the member can appear
1672          //   in integral constant expressions.
1673          if (Def->isOutOfLine()) {
1674            Dcl->setInitKnownICE(false);
1675            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1676          }
1677
1678          if (Dcl->isCheckingICE()) {
1679            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1680          }
1681
1682          Dcl->setCheckingICE();
1683          ICEDiag Result = CheckICE(Init, Ctx);
1684          // Cache the result of the ICE test.
1685          Dcl->setInitKnownICE(Result.Val == 0);
1686          return Result;
1687        }
1688      }
1689    }
1690    return ICEDiag(2, E->getLocStart());
1691  case Expr::UnaryOperatorClass: {
1692    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1693    switch (Exp->getOpcode()) {
1694    case UnaryOperator::PostInc:
1695    case UnaryOperator::PostDec:
1696    case UnaryOperator::PreInc:
1697    case UnaryOperator::PreDec:
1698    case UnaryOperator::AddrOf:
1699    case UnaryOperator::Deref:
1700      return ICEDiag(2, E->getLocStart());
1701
1702    case UnaryOperator::Extension:
1703    case UnaryOperator::LNot:
1704    case UnaryOperator::Plus:
1705    case UnaryOperator::Minus:
1706    case UnaryOperator::Not:
1707    case UnaryOperator::Real:
1708    case UnaryOperator::Imag:
1709      return CheckICE(Exp->getSubExpr(), Ctx);
1710    case UnaryOperator::OffsetOf:
1711      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1712      // Evaluate matches the proposed gcc behavior for cases like
1713      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1714      // compliance: we should warn earlier for offsetof expressions with
1715      // array subscripts that aren't ICEs, and if the array subscripts
1716      // are ICEs, the value of the offsetof must be an integer constant.
1717      return CheckEvalInICE(E, Ctx);
1718    }
1719  }
1720  case Expr::SizeOfAlignOfExprClass: {
1721    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1722    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1723      return ICEDiag(2, E->getLocStart());
1724    return NoDiag();
1725  }
1726  case Expr::BinaryOperatorClass: {
1727    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1728    switch (Exp->getOpcode()) {
1729    case BinaryOperator::PtrMemD:
1730    case BinaryOperator::PtrMemI:
1731    case BinaryOperator::Assign:
1732    case BinaryOperator::MulAssign:
1733    case BinaryOperator::DivAssign:
1734    case BinaryOperator::RemAssign:
1735    case BinaryOperator::AddAssign:
1736    case BinaryOperator::SubAssign:
1737    case BinaryOperator::ShlAssign:
1738    case BinaryOperator::ShrAssign:
1739    case BinaryOperator::AndAssign:
1740    case BinaryOperator::XorAssign:
1741    case BinaryOperator::OrAssign:
1742      return ICEDiag(2, E->getLocStart());
1743
1744    case BinaryOperator::Mul:
1745    case BinaryOperator::Div:
1746    case BinaryOperator::Rem:
1747    case BinaryOperator::Add:
1748    case BinaryOperator::Sub:
1749    case BinaryOperator::Shl:
1750    case BinaryOperator::Shr:
1751    case BinaryOperator::LT:
1752    case BinaryOperator::GT:
1753    case BinaryOperator::LE:
1754    case BinaryOperator::GE:
1755    case BinaryOperator::EQ:
1756    case BinaryOperator::NE:
1757    case BinaryOperator::And:
1758    case BinaryOperator::Xor:
1759    case BinaryOperator::Or:
1760    case BinaryOperator::Comma: {
1761      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1762      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1763      if (Exp->getOpcode() == BinaryOperator::Div ||
1764          Exp->getOpcode() == BinaryOperator::Rem) {
1765        // Evaluate gives an error for undefined Div/Rem, so make sure
1766        // we don't evaluate one.
1767        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1768          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1769          if (REval == 0)
1770            return ICEDiag(1, E->getLocStart());
1771          if (REval.isSigned() && REval.isAllOnesValue()) {
1772            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1773            if (LEval.isMinSignedValue())
1774              return ICEDiag(1, E->getLocStart());
1775          }
1776        }
1777      }
1778      if (Exp->getOpcode() == BinaryOperator::Comma) {
1779        if (Ctx.getLangOptions().C99) {
1780          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1781          // if it isn't evaluated.
1782          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1783            return ICEDiag(1, E->getLocStart());
1784        } else {
1785          // In both C89 and C++, commas in ICEs are illegal.
1786          return ICEDiag(2, E->getLocStart());
1787        }
1788      }
1789      if (LHSResult.Val >= RHSResult.Val)
1790        return LHSResult;
1791      return RHSResult;
1792    }
1793    case BinaryOperator::LAnd:
1794    case BinaryOperator::LOr: {
1795      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1796      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1797      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1798        // Rare case where the RHS has a comma "side-effect"; we need
1799        // to actually check the condition to see whether the side
1800        // with the comma is evaluated.
1801        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1802            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1803          return RHSResult;
1804        return NoDiag();
1805      }
1806
1807      if (LHSResult.Val >= RHSResult.Val)
1808        return LHSResult;
1809      return RHSResult;
1810    }
1811    }
1812  }
1813  case Expr::CastExprClass:
1814  case Expr::ImplicitCastExprClass:
1815  case Expr::ExplicitCastExprClass:
1816  case Expr::CStyleCastExprClass:
1817  case Expr::CXXFunctionalCastExprClass:
1818  case Expr::CXXNamedCastExprClass:
1819  case Expr::CXXStaticCastExprClass:
1820  case Expr::CXXReinterpretCastExprClass:
1821  case Expr::CXXConstCastExprClass: {
1822    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1823    if (SubExpr->getType()->isIntegralType())
1824      return CheckICE(SubExpr, Ctx);
1825    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1826      return NoDiag();
1827    return ICEDiag(2, E->getLocStart());
1828  }
1829  case Expr::ConditionalOperatorClass: {
1830    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1831    // If the condition (ignoring parens) is a __builtin_constant_p call,
1832    // then only the true side is actually considered in an integer constant
1833    // expression, and it is fully evaluated.  This is an important GNU
1834    // extension.  See GCC PR38377 for discussion.
1835    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1836      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1837        Expr::EvalResult EVResult;
1838        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1839            !EVResult.Val.isInt()) {
1840          return ICEDiag(2, E->getLocStart());
1841        }
1842        return NoDiag();
1843      }
1844    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1845    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1846    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1847    if (CondResult.Val == 2)
1848      return CondResult;
1849    if (TrueResult.Val == 2)
1850      return TrueResult;
1851    if (FalseResult.Val == 2)
1852      return FalseResult;
1853    if (CondResult.Val == 1)
1854      return CondResult;
1855    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1856      return NoDiag();
1857    // Rare case where the diagnostics depend on which side is evaluated
1858    // Note that if we get here, CondResult is 0, and at least one of
1859    // TrueResult and FalseResult is non-zero.
1860    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1861      return FalseResult;
1862    }
1863    return TrueResult;
1864  }
1865  case Expr::CXXDefaultArgExprClass:
1866    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1867  case Expr::ChooseExprClass: {
1868    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1869  }
1870  }
1871
1872  // Silence a GCC warning
1873  return ICEDiag(2, E->getLocStart());
1874}
1875
1876bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1877                                 SourceLocation *Loc, bool isEvaluated) const {
1878  ICEDiag d = CheckICE(this, Ctx);
1879  if (d.Val != 0) {
1880    if (Loc) *Loc = d.Loc;
1881    return false;
1882  }
1883  EvalResult EvalResult;
1884  if (!Evaluate(EvalResult, Ctx))
1885    llvm_unreachable("ICE cannot be evaluated!");
1886  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1887  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1888  Result = EvalResult.Val.getInt();
1889  return true;
1890}
1891
1892/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1893/// integer constant expression with the value zero, or if this is one that is
1894/// cast to void*.
1895bool Expr::isNullPointerConstant(ASTContext &Ctx,
1896                                 NullPointerConstantValueDependence NPC) const {
1897  if (isValueDependent()) {
1898    switch (NPC) {
1899    case NPC_NeverValueDependent:
1900      assert(false && "Unexpected value dependent expression!");
1901      // If the unthinkable happens, fall through to the safest alternative.
1902
1903    case NPC_ValueDependentIsNull:
1904      return isTypeDependent() || getType()->isIntegralType();
1905
1906    case NPC_ValueDependentIsNotNull:
1907      return false;
1908    }
1909  }
1910
1911  // Strip off a cast to void*, if it exists. Except in C++.
1912  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1913    if (!Ctx.getLangOptions().CPlusPlus) {
1914      // Check that it is a cast to void*.
1915      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1916        QualType Pointee = PT->getPointeeType();
1917        if (!Pointee.hasQualifiers() &&
1918            Pointee->isVoidType() &&                              // to void*
1919            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1920          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1921      }
1922    }
1923  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1924    // Ignore the ImplicitCastExpr type entirely.
1925    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1926  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1927    // Accept ((void*)0) as a null pointer constant, as many other
1928    // implementations do.
1929    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1930  } else if (const CXXDefaultArgExpr *DefaultArg
1931               = dyn_cast<CXXDefaultArgExpr>(this)) {
1932    // See through default argument expressions
1933    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1934  } else if (isa<GNUNullExpr>(this)) {
1935    // The GNU __null extension is always a null pointer constant.
1936    return true;
1937  }
1938
1939  // C++0x nullptr_t is always a null pointer constant.
1940  if (getType()->isNullPtrType())
1941    return true;
1942
1943  // This expression must be an integer type.
1944  if (!getType()->isIntegerType() ||
1945      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1946    return false;
1947
1948  // If we have an integer constant expression, we need to *evaluate* it and
1949  // test for the value 0.
1950  llvm::APSInt Result;
1951  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1952}
1953
1954FieldDecl *Expr::getBitField() {
1955  Expr *E = this->IgnoreParens();
1956
1957  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1958    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1959      if (Field->isBitField())
1960        return Field;
1961
1962  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1963    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1964      return BinOp->getLHS()->getBitField();
1965
1966  return 0;
1967}
1968
1969/// isArrow - Return true if the base expression is a pointer to vector,
1970/// return false if the base expression is a vector.
1971bool ExtVectorElementExpr::isArrow() const {
1972  return getBase()->getType()->isPointerType();
1973}
1974
1975unsigned ExtVectorElementExpr::getNumElements() const {
1976  if (const VectorType *VT = getType()->getAs<VectorType>())
1977    return VT->getNumElements();
1978  return 1;
1979}
1980
1981/// containsDuplicateElements - Return true if any element access is repeated.
1982bool ExtVectorElementExpr::containsDuplicateElements() const {
1983  // FIXME: Refactor this code to an accessor on the AST node which returns the
1984  // "type" of component access, and share with code below and in Sema.
1985  llvm::StringRef Comp = Accessor->getName();
1986
1987  // Halving swizzles do not contain duplicate elements.
1988  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1989    return false;
1990
1991  // Advance past s-char prefix on hex swizzles.
1992  if (Comp[0] == 's' || Comp[0] == 'S')
1993    Comp = Comp.substr(1);
1994
1995  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1996    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1997        return true;
1998
1999  return false;
2000}
2001
2002/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2003void ExtVectorElementExpr::getEncodedElementAccess(
2004                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2005  llvm::StringRef Comp = Accessor->getName();
2006  if (Comp[0] == 's' || Comp[0] == 'S')
2007    Comp = Comp.substr(1);
2008
2009  bool isHi =   Comp == "hi";
2010  bool isLo =   Comp == "lo";
2011  bool isEven = Comp == "even";
2012  bool isOdd  = Comp == "odd";
2013
2014  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2015    uint64_t Index;
2016
2017    if (isHi)
2018      Index = e + i;
2019    else if (isLo)
2020      Index = i;
2021    else if (isEven)
2022      Index = 2 * i;
2023    else if (isOdd)
2024      Index = 2 * i + 1;
2025    else
2026      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2027
2028    Elts.push_back(Index);
2029  }
2030}
2031
2032// constructor for instance messages.
2033ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2034                QualType retType, ObjCMethodDecl *mproto,
2035                SourceLocation LBrac, SourceLocation RBrac,
2036                Expr **ArgExprs, unsigned nargs)
2037  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2038    MethodProto(mproto) {
2039  NumArgs = nargs;
2040  SubExprs = new Stmt*[NumArgs+1];
2041  SubExprs[RECEIVER] = receiver;
2042  if (NumArgs) {
2043    for (unsigned i = 0; i != NumArgs; ++i)
2044      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2045  }
2046  LBracloc = LBrac;
2047  RBracloc = RBrac;
2048}
2049
2050// constructor for class messages.
2051// FIXME: clsName should be typed to ObjCInterfaceType
2052ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2053                QualType retType, ObjCMethodDecl *mproto,
2054                SourceLocation LBrac, SourceLocation RBrac,
2055                Expr **ArgExprs, unsigned nargs)
2056  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2057    MethodProto(mproto) {
2058  NumArgs = nargs;
2059  SubExprs = new Stmt*[NumArgs+1];
2060  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2061  if (NumArgs) {
2062    for (unsigned i = 0; i != NumArgs; ++i)
2063      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2064  }
2065  LBracloc = LBrac;
2066  RBracloc = RBrac;
2067}
2068
2069// constructor for class messages.
2070ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2071                                 QualType retType, ObjCMethodDecl *mproto,
2072                                 SourceLocation LBrac, SourceLocation RBrac,
2073                                 Expr **ArgExprs, unsigned nargs)
2074: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2075MethodProto(mproto) {
2076  NumArgs = nargs;
2077  SubExprs = new Stmt*[NumArgs+1];
2078  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2079  if (NumArgs) {
2080    for (unsigned i = 0; i != NumArgs; ++i)
2081      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2082  }
2083  LBracloc = LBrac;
2084  RBracloc = RBrac;
2085}
2086
2087ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2088  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2089  switch (x & Flags) {
2090    default:
2091      assert(false && "Invalid ObjCMessageExpr.");
2092    case IsInstMeth:
2093      return ClassInfo(0, 0);
2094    case IsClsMethDeclUnknown:
2095      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2096    case IsClsMethDeclKnown: {
2097      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2098      return ClassInfo(D, D->getIdentifier());
2099    }
2100  }
2101}
2102
2103void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2104  if (CI.first == 0 && CI.second == 0)
2105    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2106  else if (CI.first == 0)
2107    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2108  else
2109    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2110}
2111
2112
2113bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2114  return getCond()->EvaluateAsInt(C) != 0;
2115}
2116
2117void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2118                                 unsigned NumExprs) {
2119  if (SubExprs) C.Deallocate(SubExprs);
2120
2121  SubExprs = new (C) Stmt* [NumExprs];
2122  this->NumExprs = NumExprs;
2123  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2124}
2125
2126void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2127  DestroyChildren(C);
2128  if (SubExprs) C.Deallocate(SubExprs);
2129  this->~ShuffleVectorExpr();
2130  C.Deallocate(this);
2131}
2132
2133void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2134  // Override default behavior of traversing children. If this has a type
2135  // operand and the type is a variable-length array, the child iteration
2136  // will iterate over the size expression. However, this expression belongs
2137  // to the type, not to this, so we don't want to delete it.
2138  // We still want to delete this expression.
2139  if (isArgumentType()) {
2140    this->~SizeOfAlignOfExpr();
2141    C.Deallocate(this);
2142  }
2143  else
2144    Expr::DoDestroy(C);
2145}
2146
2147//===----------------------------------------------------------------------===//
2148//  DesignatedInitExpr
2149//===----------------------------------------------------------------------===//
2150
2151IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2152  assert(Kind == FieldDesignator && "Only valid on a field designator");
2153  if (Field.NameOrField & 0x01)
2154    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2155  else
2156    return getField()->getIdentifier();
2157}
2158
2159DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2160                                       unsigned NumDesignators,
2161                                       const Designator *Designators,
2162                                       SourceLocation EqualOrColonLoc,
2163                                       bool GNUSyntax,
2164                                       Expr **IndexExprs,
2165                                       unsigned NumIndexExprs,
2166                                       Expr *Init)
2167  : Expr(DesignatedInitExprClass, Ty,
2168         Init->isTypeDependent(), Init->isValueDependent()),
2169    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2170    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2171  this->Designators = new (C) Designator[NumDesignators];
2172
2173  // Record the initializer itself.
2174  child_iterator Child = child_begin();
2175  *Child++ = Init;
2176
2177  // Copy the designators and their subexpressions, computing
2178  // value-dependence along the way.
2179  unsigned IndexIdx = 0;
2180  for (unsigned I = 0; I != NumDesignators; ++I) {
2181    this->Designators[I] = Designators[I];
2182
2183    if (this->Designators[I].isArrayDesignator()) {
2184      // Compute type- and value-dependence.
2185      Expr *Index = IndexExprs[IndexIdx];
2186      ValueDependent = ValueDependent ||
2187        Index->isTypeDependent() || Index->isValueDependent();
2188
2189      // Copy the index expressions into permanent storage.
2190      *Child++ = IndexExprs[IndexIdx++];
2191    } else if (this->Designators[I].isArrayRangeDesignator()) {
2192      // Compute type- and value-dependence.
2193      Expr *Start = IndexExprs[IndexIdx];
2194      Expr *End = IndexExprs[IndexIdx + 1];
2195      ValueDependent = ValueDependent ||
2196        Start->isTypeDependent() || Start->isValueDependent() ||
2197        End->isTypeDependent() || End->isValueDependent();
2198
2199      // Copy the start/end expressions into permanent storage.
2200      *Child++ = IndexExprs[IndexIdx++];
2201      *Child++ = IndexExprs[IndexIdx++];
2202    }
2203  }
2204
2205  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2206}
2207
2208DesignatedInitExpr *
2209DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2210                           unsigned NumDesignators,
2211                           Expr **IndexExprs, unsigned NumIndexExprs,
2212                           SourceLocation ColonOrEqualLoc,
2213                           bool UsesColonSyntax, Expr *Init) {
2214  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2215                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2216  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2217                                      ColonOrEqualLoc, UsesColonSyntax,
2218                                      IndexExprs, NumIndexExprs, Init);
2219}
2220
2221DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2222                                                    unsigned NumIndexExprs) {
2223  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2224                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2225  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2226}
2227
2228void DesignatedInitExpr::setDesignators(ASTContext &C,
2229                                        const Designator *Desigs,
2230                                        unsigned NumDesigs) {
2231  DestroyDesignators(C);
2232
2233  Designators = new (C) Designator[NumDesigs];
2234  NumDesignators = NumDesigs;
2235  for (unsigned I = 0; I != NumDesigs; ++I)
2236    Designators[I] = Desigs[I];
2237}
2238
2239SourceRange DesignatedInitExpr::getSourceRange() const {
2240  SourceLocation StartLoc;
2241  Designator &First =
2242    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2243  if (First.isFieldDesignator()) {
2244    if (GNUSyntax)
2245      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2246    else
2247      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2248  } else
2249    StartLoc =
2250      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2251  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2252}
2253
2254Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2255  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2256  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2257  Ptr += sizeof(DesignatedInitExpr);
2258  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2259  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2260}
2261
2262Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2263  assert(D.Kind == Designator::ArrayRangeDesignator &&
2264         "Requires array range designator");
2265  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2266  Ptr += sizeof(DesignatedInitExpr);
2267  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2268  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2269}
2270
2271Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2272  assert(D.Kind == Designator::ArrayRangeDesignator &&
2273         "Requires array range designator");
2274  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2275  Ptr += sizeof(DesignatedInitExpr);
2276  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2277  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2278}
2279
2280/// \brief Replaces the designator at index @p Idx with the series
2281/// of designators in [First, Last).
2282void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2283                                          const Designator *First,
2284                                          const Designator *Last) {
2285  unsigned NumNewDesignators = Last - First;
2286  if (NumNewDesignators == 0) {
2287    std::copy_backward(Designators + Idx + 1,
2288                       Designators + NumDesignators,
2289                       Designators + Idx);
2290    --NumNewDesignators;
2291    return;
2292  } else if (NumNewDesignators == 1) {
2293    Designators[Idx] = *First;
2294    return;
2295  }
2296
2297  Designator *NewDesignators
2298    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2299  std::copy(Designators, Designators + Idx, NewDesignators);
2300  std::copy(First, Last, NewDesignators + Idx);
2301  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2302            NewDesignators + Idx + NumNewDesignators);
2303  DestroyDesignators(C);
2304  Designators = NewDesignators;
2305  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2306}
2307
2308void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2309  DestroyDesignators(C);
2310  Expr::DoDestroy(C);
2311}
2312
2313void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2314  for (unsigned I = 0; I != NumDesignators; ++I)
2315    Designators[I].~Designator();
2316  C.Deallocate(Designators);
2317  Designators = 0;
2318}
2319
2320ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2321                             Expr **exprs, unsigned nexprs,
2322                             SourceLocation rparenloc)
2323: Expr(ParenListExprClass, QualType(),
2324       hasAnyTypeDependentArguments(exprs, nexprs),
2325       hasAnyValueDependentArguments(exprs, nexprs)),
2326  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2327
2328  Exprs = new (C) Stmt*[nexprs];
2329  for (unsigned i = 0; i != nexprs; ++i)
2330    Exprs[i] = exprs[i];
2331}
2332
2333void ParenListExpr::DoDestroy(ASTContext& C) {
2334  DestroyChildren(C);
2335  if (Exprs) C.Deallocate(Exprs);
2336  this->~ParenListExpr();
2337  C.Deallocate(this);
2338}
2339
2340//===----------------------------------------------------------------------===//
2341//  ExprIterator.
2342//===----------------------------------------------------------------------===//
2343
2344Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2345Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2346Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2347const Expr* ConstExprIterator::operator[](size_t idx) const {
2348  return cast<Expr>(I[idx]);
2349}
2350const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2351const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2352
2353//===----------------------------------------------------------------------===//
2354//  Child Iterators for iterating over subexpressions/substatements
2355//===----------------------------------------------------------------------===//
2356
2357// DeclRefExpr
2358Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2359Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2360
2361// ObjCIvarRefExpr
2362Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2363Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2364
2365// ObjCPropertyRefExpr
2366Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2367Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2368
2369// ObjCImplicitSetterGetterRefExpr
2370Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2371  return &Base;
2372}
2373Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2374  return &Base+1;
2375}
2376
2377// ObjCSuperExpr
2378Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2379Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2380
2381// ObjCIsaExpr
2382Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2383Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2384
2385// PredefinedExpr
2386Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2387Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2388
2389// IntegerLiteral
2390Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2391Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2392
2393// CharacterLiteral
2394Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2395Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2396
2397// FloatingLiteral
2398Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2399Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2400
2401// ImaginaryLiteral
2402Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2403Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2404
2405// StringLiteral
2406Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2407Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2408
2409// ParenExpr
2410Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2411Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2412
2413// UnaryOperator
2414Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2415Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2416
2417// SizeOfAlignOfExpr
2418Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2419  // If this is of a type and the type is a VLA type (and not a typedef), the
2420  // size expression of the VLA needs to be treated as an executable expression.
2421  // Why isn't this weirdness documented better in StmtIterator?
2422  if (isArgumentType()) {
2423    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2424                                   getArgumentType().getTypePtr()))
2425      return child_iterator(T);
2426    return child_iterator();
2427  }
2428  return child_iterator(&Argument.Ex);
2429}
2430Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2431  if (isArgumentType())
2432    return child_iterator();
2433  return child_iterator(&Argument.Ex + 1);
2434}
2435
2436// ArraySubscriptExpr
2437Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2438  return &SubExprs[0];
2439}
2440Stmt::child_iterator ArraySubscriptExpr::child_end() {
2441  return &SubExprs[0]+END_EXPR;
2442}
2443
2444// CallExpr
2445Stmt::child_iterator CallExpr::child_begin() {
2446  return &SubExprs[0];
2447}
2448Stmt::child_iterator CallExpr::child_end() {
2449  return &SubExprs[0]+NumArgs+ARGS_START;
2450}
2451
2452// MemberExpr
2453Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2454Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2455
2456// ExtVectorElementExpr
2457Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2458Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2459
2460// CompoundLiteralExpr
2461Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2462Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2463
2464// CastExpr
2465Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2466Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2467
2468// BinaryOperator
2469Stmt::child_iterator BinaryOperator::child_begin() {
2470  return &SubExprs[0];
2471}
2472Stmt::child_iterator BinaryOperator::child_end() {
2473  return &SubExprs[0]+END_EXPR;
2474}
2475
2476// ConditionalOperator
2477Stmt::child_iterator ConditionalOperator::child_begin() {
2478  return &SubExprs[0];
2479}
2480Stmt::child_iterator ConditionalOperator::child_end() {
2481  return &SubExprs[0]+END_EXPR;
2482}
2483
2484// AddrLabelExpr
2485Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2486Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2487
2488// StmtExpr
2489Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2490Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2491
2492// TypesCompatibleExpr
2493Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2494  return child_iterator();
2495}
2496
2497Stmt::child_iterator TypesCompatibleExpr::child_end() {
2498  return child_iterator();
2499}
2500
2501// ChooseExpr
2502Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2503Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2504
2505// GNUNullExpr
2506Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2507Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2508
2509// ShuffleVectorExpr
2510Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2511  return &SubExprs[0];
2512}
2513Stmt::child_iterator ShuffleVectorExpr::child_end() {
2514  return &SubExprs[0]+NumExprs;
2515}
2516
2517// VAArgExpr
2518Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2519Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2520
2521// InitListExpr
2522Stmt::child_iterator InitListExpr::child_begin() {
2523  return InitExprs.size() ? &InitExprs[0] : 0;
2524}
2525Stmt::child_iterator InitListExpr::child_end() {
2526  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2527}
2528
2529// DesignatedInitExpr
2530Stmt::child_iterator DesignatedInitExpr::child_begin() {
2531  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2532  Ptr += sizeof(DesignatedInitExpr);
2533  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2534}
2535Stmt::child_iterator DesignatedInitExpr::child_end() {
2536  return child_iterator(&*child_begin() + NumSubExprs);
2537}
2538
2539// ImplicitValueInitExpr
2540Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2541  return child_iterator();
2542}
2543
2544Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2545  return child_iterator();
2546}
2547
2548// ParenListExpr
2549Stmt::child_iterator ParenListExpr::child_begin() {
2550  return &Exprs[0];
2551}
2552Stmt::child_iterator ParenListExpr::child_end() {
2553  return &Exprs[0]+NumExprs;
2554}
2555
2556// ObjCStringLiteral
2557Stmt::child_iterator ObjCStringLiteral::child_begin() {
2558  return &String;
2559}
2560Stmt::child_iterator ObjCStringLiteral::child_end() {
2561  return &String+1;
2562}
2563
2564// ObjCEncodeExpr
2565Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2566Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2567
2568// ObjCSelectorExpr
2569Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2570  return child_iterator();
2571}
2572Stmt::child_iterator ObjCSelectorExpr::child_end() {
2573  return child_iterator();
2574}
2575
2576// ObjCProtocolExpr
2577Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2578  return child_iterator();
2579}
2580Stmt::child_iterator ObjCProtocolExpr::child_end() {
2581  return child_iterator();
2582}
2583
2584// ObjCMessageExpr
2585Stmt::child_iterator ObjCMessageExpr::child_begin() {
2586  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2587}
2588Stmt::child_iterator ObjCMessageExpr::child_end() {
2589  return &SubExprs[0]+ARGS_START+getNumArgs();
2590}
2591
2592// Blocks
2593Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2594Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2595
2596Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2597Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2598