Expr.cpp revision 900fc6388e803868a34b9483510c345e9b49d7eb
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30/// isKnownToHaveBooleanValue - Return true if this is an integer expression
31/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
32/// but also int expressions which are produced by things like comparisons in
33/// C.
34bool Expr::isKnownToHaveBooleanValue() const {
35  // If this value has _Bool type, it is obvious 0/1.
36  if (getType()->isBooleanType()) return true;
37  // If this is a non-scalar-integer type, we don't care enough to try.
38  if (!getType()->isIntegralType()) return false;
39
40  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
41    return PE->getSubExpr()->isKnownToHaveBooleanValue();
42
43  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
44    switch (UO->getOpcode()) {
45    case UnaryOperator::Plus:
46    case UnaryOperator::Extension:
47      return UO->getSubExpr()->isKnownToHaveBooleanValue();
48    default:
49      return false;
50    }
51  }
52
53  if (const CastExpr *CE = dyn_cast<CastExpr>(this))
54    return CE->getSubExpr()->isKnownToHaveBooleanValue();
55
56  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
57    switch (BO->getOpcode()) {
58    default: return false;
59    case BinaryOperator::LT:   // Relational operators.
60    case BinaryOperator::GT:
61    case BinaryOperator::LE:
62    case BinaryOperator::GE:
63    case BinaryOperator::EQ:   // Equality operators.
64    case BinaryOperator::NE:
65    case BinaryOperator::LAnd: // AND operator.
66    case BinaryOperator::LOr:  // Logical OR operator.
67      return true;
68
69    case BinaryOperator::And:  // Bitwise AND operator.
70    case BinaryOperator::Xor:  // Bitwise XOR operator.
71    case BinaryOperator::Or:   // Bitwise OR operator.
72      // Handle things like (x==2)|(y==12).
73      return BO->getLHS()->isKnownToHaveBooleanValue() &&
74             BO->getRHS()->isKnownToHaveBooleanValue();
75
76    case BinaryOperator::Comma:
77    case BinaryOperator::Assign:
78      return BO->getRHS()->isKnownToHaveBooleanValue();
79    }
80  }
81
82  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
83    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
84           CO->getFalseExpr()->isKnownToHaveBooleanValue();
85
86  return false;
87}
88
89//===----------------------------------------------------------------------===//
90// Primary Expressions.
91//===----------------------------------------------------------------------===//
92
93void ExplicitTemplateArgumentList::initializeFrom(
94                                      const TemplateArgumentListInfo &Info) {
95  LAngleLoc = Info.getLAngleLoc();
96  RAngleLoc = Info.getRAngleLoc();
97  NumTemplateArgs = Info.size();
98
99  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
100  for (unsigned i = 0; i != NumTemplateArgs; ++i)
101    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
102}
103
104void ExplicitTemplateArgumentList::copyInto(
105                                      TemplateArgumentListInfo &Info) const {
106  Info.setLAngleLoc(LAngleLoc);
107  Info.setRAngleLoc(RAngleLoc);
108  for (unsigned I = 0; I != NumTemplateArgs; ++I)
109    Info.addArgument(getTemplateArgs()[I]);
110}
111
112std::size_t ExplicitTemplateArgumentList::sizeFor(
113                                      const TemplateArgumentListInfo &Info) {
114  return sizeof(ExplicitTemplateArgumentList) +
115         sizeof(TemplateArgumentLoc) * Info.size();
116}
117
118void DeclRefExpr::computeDependence() {
119  TypeDependent = false;
120  ValueDependent = false;
121
122  NamedDecl *D = getDecl();
123
124  // (TD) C++ [temp.dep.expr]p3:
125  //   An id-expression is type-dependent if it contains:
126  //
127  // and
128  //
129  // (VD) C++ [temp.dep.constexpr]p2:
130  //  An identifier is value-dependent if it is:
131
132  //  (TD)  - an identifier that was declared with dependent type
133  //  (VD)  - a name declared with a dependent type,
134  if (getType()->isDependentType()) {
135    TypeDependent = true;
136    ValueDependent = true;
137  }
138  //  (TD)  - a conversion-function-id that specifies a dependent type
139  else if (D->getDeclName().getNameKind()
140                               == DeclarationName::CXXConversionFunctionName &&
141           D->getDeclName().getCXXNameType()->isDependentType()) {
142    TypeDependent = true;
143    ValueDependent = true;
144  }
145  //  (TD)  - a template-id that is dependent,
146  else if (hasExplicitTemplateArgumentList() &&
147           TemplateSpecializationType::anyDependentTemplateArguments(
148                                                       getTemplateArgs(),
149                                                       getNumTemplateArgs())) {
150    TypeDependent = true;
151    ValueDependent = true;
152  }
153  //  (VD)  - the name of a non-type template parameter,
154  else if (isa<NonTypeTemplateParmDecl>(D))
155    ValueDependent = true;
156  //  (VD) - a constant with integral or enumeration type and is
157  //         initialized with an expression that is value-dependent.
158  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
159    if (Var->getType()->isIntegralType() &&
160        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
161      if (const Expr *Init = Var->getAnyInitializer())
162        if (Init->isValueDependent())
163          ValueDependent = true;
164    }
165  }
166  //  (TD)  - a nested-name-specifier or a qualified-id that names a
167  //          member of an unknown specialization.
168  //        (handled by DependentScopeDeclRefExpr)
169}
170
171DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
172                         SourceRange QualifierRange,
173                         ValueDecl *D, SourceLocation NameLoc,
174                         const TemplateArgumentListInfo *TemplateArgs,
175                         QualType T)
176  : Expr(DeclRefExprClass, T, false, false),
177    DecoratedD(D,
178               (Qualifier? HasQualifierFlag : 0) |
179               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
180    Loc(NameLoc) {
181  if (Qualifier) {
182    NameQualifier *NQ = getNameQualifier();
183    NQ->NNS = Qualifier;
184    NQ->Range = QualifierRange;
185  }
186
187  if (TemplateArgs)
188    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
189
190  computeDependence();
191}
192
193DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
194                                 NestedNameSpecifier *Qualifier,
195                                 SourceRange QualifierRange,
196                                 ValueDecl *D,
197                                 SourceLocation NameLoc,
198                                 QualType T,
199                                 const TemplateArgumentListInfo *TemplateArgs) {
200  std::size_t Size = sizeof(DeclRefExpr);
201  if (Qualifier != 0)
202    Size += sizeof(NameQualifier);
203
204  if (TemplateArgs)
205    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
206
207  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
208  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
209                               TemplateArgs, T);
210}
211
212SourceRange DeclRefExpr::getSourceRange() const {
213  // FIXME: Does not handle multi-token names well, e.g., operator[].
214  SourceRange R(Loc);
215
216  if (hasQualifier())
217    R.setBegin(getQualifierRange().getBegin());
218  if (hasExplicitTemplateArgumentList())
219    R.setEnd(getRAngleLoc());
220  return R;
221}
222
223// FIXME: Maybe this should use DeclPrinter with a special "print predefined
224// expr" policy instead.
225std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
226  ASTContext &Context = CurrentDecl->getASTContext();
227
228  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
229    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
230      return FD->getNameAsString();
231
232    llvm::SmallString<256> Name;
233    llvm::raw_svector_ostream Out(Name);
234
235    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
236      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
237        Out << "virtual ";
238      if (MD->isStatic())
239        Out << "static ";
240    }
241
242    PrintingPolicy Policy(Context.getLangOptions());
243
244    std::string Proto = FD->getQualifiedNameAsString(Policy);
245
246    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
247    const FunctionProtoType *FT = 0;
248    if (FD->hasWrittenPrototype())
249      FT = dyn_cast<FunctionProtoType>(AFT);
250
251    Proto += "(";
252    if (FT) {
253      llvm::raw_string_ostream POut(Proto);
254      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
255        if (i) POut << ", ";
256        std::string Param;
257        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
258        POut << Param;
259      }
260
261      if (FT->isVariadic()) {
262        if (FD->getNumParams()) POut << ", ";
263        POut << "...";
264      }
265    }
266    Proto += ")";
267
268    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
269      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
270      if (ThisQuals.hasConst())
271        Proto += " const";
272      if (ThisQuals.hasVolatile())
273        Proto += " volatile";
274    }
275
276    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
277      AFT->getResultType().getAsStringInternal(Proto, Policy);
278
279    Out << Proto;
280
281    Out.flush();
282    return Name.str().str();
283  }
284  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
285    llvm::SmallString<256> Name;
286    llvm::raw_svector_ostream Out(Name);
287    Out << (MD->isInstanceMethod() ? '-' : '+');
288    Out << '[';
289
290    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
291    // a null check to avoid a crash.
292    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
293      Out << ID;
294
295    if (const ObjCCategoryImplDecl *CID =
296        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
297      Out << '(' << CID << ')';
298
299    Out <<  ' ';
300    Out << MD->getSelector().getAsString();
301    Out <<  ']';
302
303    Out.flush();
304    return Name.str().str();
305  }
306  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
307    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
308    return "top level";
309  }
310  return "";
311}
312
313/// getValueAsApproximateDouble - This returns the value as an inaccurate
314/// double.  Note that this may cause loss of precision, but is useful for
315/// debugging dumps, etc.
316double FloatingLiteral::getValueAsApproximateDouble() const {
317  llvm::APFloat V = getValue();
318  bool ignored;
319  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
320            &ignored);
321  return V.convertToDouble();
322}
323
324StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
325                                     unsigned ByteLength, bool Wide,
326                                     QualType Ty,
327                                     const SourceLocation *Loc,
328                                     unsigned NumStrs) {
329  // Allocate enough space for the StringLiteral plus an array of locations for
330  // any concatenated string tokens.
331  void *Mem = C.Allocate(sizeof(StringLiteral)+
332                         sizeof(SourceLocation)*(NumStrs-1),
333                         llvm::alignof<StringLiteral>());
334  StringLiteral *SL = new (Mem) StringLiteral(Ty);
335
336  // OPTIMIZE: could allocate this appended to the StringLiteral.
337  char *AStrData = new (C, 1) char[ByteLength];
338  memcpy(AStrData, StrData, ByteLength);
339  SL->StrData = AStrData;
340  SL->ByteLength = ByteLength;
341  SL->IsWide = Wide;
342  SL->TokLocs[0] = Loc[0];
343  SL->NumConcatenated = NumStrs;
344
345  if (NumStrs != 1)
346    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
347  return SL;
348}
349
350StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
351  void *Mem = C.Allocate(sizeof(StringLiteral)+
352                         sizeof(SourceLocation)*(NumStrs-1),
353                         llvm::alignof<StringLiteral>());
354  StringLiteral *SL = new (Mem) StringLiteral(QualType());
355  SL->StrData = 0;
356  SL->ByteLength = 0;
357  SL->NumConcatenated = NumStrs;
358  return SL;
359}
360
361void StringLiteral::DoDestroy(ASTContext &C) {
362  C.Deallocate(const_cast<char*>(StrData));
363  Expr::DoDestroy(C);
364}
365
366void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
367  if (StrData)
368    C.Deallocate(const_cast<char*>(StrData));
369
370  char *AStrData = new (C, 1) char[Str.size()];
371  memcpy(AStrData, Str.data(), Str.size());
372  StrData = AStrData;
373  ByteLength = Str.size();
374}
375
376/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
377/// corresponds to, e.g. "sizeof" or "[pre]++".
378const char *UnaryOperator::getOpcodeStr(Opcode Op) {
379  switch (Op) {
380  default: assert(0 && "Unknown unary operator");
381  case PostInc: return "++";
382  case PostDec: return "--";
383  case PreInc:  return "++";
384  case PreDec:  return "--";
385  case AddrOf:  return "&";
386  case Deref:   return "*";
387  case Plus:    return "+";
388  case Minus:   return "-";
389  case Not:     return "~";
390  case LNot:    return "!";
391  case Real:    return "__real";
392  case Imag:    return "__imag";
393  case Extension: return "__extension__";
394  case OffsetOf: return "__builtin_offsetof";
395  }
396}
397
398UnaryOperator::Opcode
399UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
400  switch (OO) {
401  default: assert(false && "No unary operator for overloaded function");
402  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
403  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
404  case OO_Amp:        return AddrOf;
405  case OO_Star:       return Deref;
406  case OO_Plus:       return Plus;
407  case OO_Minus:      return Minus;
408  case OO_Tilde:      return Not;
409  case OO_Exclaim:    return LNot;
410  }
411}
412
413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
414  switch (Opc) {
415  case PostInc: case PreInc: return OO_PlusPlus;
416  case PostDec: case PreDec: return OO_MinusMinus;
417  case AddrOf: return OO_Amp;
418  case Deref: return OO_Star;
419  case Plus: return OO_Plus;
420  case Minus: return OO_Minus;
421  case Not: return OO_Tilde;
422  case LNot: return OO_Exclaim;
423  default: return OO_None;
424  }
425}
426
427
428//===----------------------------------------------------------------------===//
429// Postfix Operators.
430//===----------------------------------------------------------------------===//
431
432CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
433                   unsigned numargs, QualType t, SourceLocation rparenloc)
434  : Expr(SC, t,
435         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
436         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
437    NumArgs(numargs) {
438
439  SubExprs = new (C) Stmt*[numargs+1];
440  SubExprs[FN] = fn;
441  for (unsigned i = 0; i != numargs; ++i)
442    SubExprs[i+ARGS_START] = args[i];
443
444  RParenLoc = rparenloc;
445}
446
447CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
448                   QualType t, SourceLocation rparenloc)
449  : Expr(CallExprClass, t,
450         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
451         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
452    NumArgs(numargs) {
453
454  SubExprs = new (C) Stmt*[numargs+1];
455  SubExprs[FN] = fn;
456  for (unsigned i = 0; i != numargs; ++i)
457    SubExprs[i+ARGS_START] = args[i];
458
459  RParenLoc = rparenloc;
460}
461
462CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
463  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
464  SubExprs = new (C) Stmt*[1];
465}
466
467void CallExpr::DoDestroy(ASTContext& C) {
468  DestroyChildren(C);
469  if (SubExprs) C.Deallocate(SubExprs);
470  this->~CallExpr();
471  C.Deallocate(this);
472}
473
474Decl *CallExpr::getCalleeDecl() {
475  Expr *CEE = getCallee()->IgnoreParenCasts();
476  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
477    return DRE->getDecl();
478  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
479    return ME->getMemberDecl();
480
481  return 0;
482}
483
484FunctionDecl *CallExpr::getDirectCallee() {
485  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
486}
487
488/// setNumArgs - This changes the number of arguments present in this call.
489/// Any orphaned expressions are deleted by this, and any new operands are set
490/// to null.
491void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
492  // No change, just return.
493  if (NumArgs == getNumArgs()) return;
494
495  // If shrinking # arguments, just delete the extras and forgot them.
496  if (NumArgs < getNumArgs()) {
497    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
498      getArg(i)->Destroy(C);
499    this->NumArgs = NumArgs;
500    return;
501  }
502
503  // Otherwise, we are growing the # arguments.  New an bigger argument array.
504  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
505  // Copy over args.
506  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
507    NewSubExprs[i] = SubExprs[i];
508  // Null out new args.
509  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
510    NewSubExprs[i] = 0;
511
512  if (SubExprs) C.Deallocate(SubExprs);
513  SubExprs = NewSubExprs;
514  this->NumArgs = NumArgs;
515}
516
517/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
518/// not, return 0.
519unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
520  // All simple function calls (e.g. func()) are implicitly cast to pointer to
521  // function. As a result, we try and obtain the DeclRefExpr from the
522  // ImplicitCastExpr.
523  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
524  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
525    return 0;
526
527  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
528  if (!DRE)
529    return 0;
530
531  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
532  if (!FDecl)
533    return 0;
534
535  if (!FDecl->getIdentifier())
536    return 0;
537
538  return FDecl->getBuiltinID();
539}
540
541QualType CallExpr::getCallReturnType() const {
542  QualType CalleeType = getCallee()->getType();
543  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
544    CalleeType = FnTypePtr->getPointeeType();
545  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
546    CalleeType = BPT->getPointeeType();
547
548  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
549  return FnType->getResultType();
550}
551
552MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
553                               NestedNameSpecifier *qual,
554                               SourceRange qualrange,
555                               ValueDecl *memberdecl,
556                               DeclAccessPair founddecl,
557                               SourceLocation l,
558                               const TemplateArgumentListInfo *targs,
559                               QualType ty) {
560  std::size_t Size = sizeof(MemberExpr);
561
562  bool hasQualOrFound = (qual != 0 ||
563                         founddecl.getDecl() != memberdecl ||
564                         founddecl.getAccess() != memberdecl->getAccess());
565  if (hasQualOrFound)
566    Size += sizeof(MemberNameQualifier);
567
568  if (targs)
569    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
570
571  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
572  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
573
574  if (hasQualOrFound) {
575    if (qual && qual->isDependent()) {
576      E->setValueDependent(true);
577      E->setTypeDependent(true);
578    }
579    E->HasQualifierOrFoundDecl = true;
580
581    MemberNameQualifier *NQ = E->getMemberQualifier();
582    NQ->NNS = qual;
583    NQ->Range = qualrange;
584    NQ->FoundDecl = founddecl;
585  }
586
587  if (targs) {
588    E->HasExplicitTemplateArgumentList = true;
589    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
590  }
591
592  return E;
593}
594
595const char *CastExpr::getCastKindName() const {
596  switch (getCastKind()) {
597  case CastExpr::CK_Unknown:
598    return "Unknown";
599  case CastExpr::CK_BitCast:
600    return "BitCast";
601  case CastExpr::CK_NoOp:
602    return "NoOp";
603  case CastExpr::CK_BaseToDerived:
604    return "BaseToDerived";
605  case CastExpr::CK_DerivedToBase:
606    return "DerivedToBase";
607  case CastExpr::CK_UncheckedDerivedToBase:
608    return "UncheckedDerivedToBase";
609  case CastExpr::CK_Dynamic:
610    return "Dynamic";
611  case CastExpr::CK_ToUnion:
612    return "ToUnion";
613  case CastExpr::CK_ArrayToPointerDecay:
614    return "ArrayToPointerDecay";
615  case CastExpr::CK_FunctionToPointerDecay:
616    return "FunctionToPointerDecay";
617  case CastExpr::CK_NullToMemberPointer:
618    return "NullToMemberPointer";
619  case CastExpr::CK_BaseToDerivedMemberPointer:
620    return "BaseToDerivedMemberPointer";
621  case CastExpr::CK_DerivedToBaseMemberPointer:
622    return "DerivedToBaseMemberPointer";
623  case CastExpr::CK_UserDefinedConversion:
624    return "UserDefinedConversion";
625  case CastExpr::CK_ConstructorConversion:
626    return "ConstructorConversion";
627  case CastExpr::CK_IntegralToPointer:
628    return "IntegralToPointer";
629  case CastExpr::CK_PointerToIntegral:
630    return "PointerToIntegral";
631  case CastExpr::CK_ToVoid:
632    return "ToVoid";
633  case CastExpr::CK_VectorSplat:
634    return "VectorSplat";
635  case CastExpr::CK_IntegralCast:
636    return "IntegralCast";
637  case CastExpr::CK_IntegralToFloating:
638    return "IntegralToFloating";
639  case CastExpr::CK_FloatingToIntegral:
640    return "FloatingToIntegral";
641  case CastExpr::CK_FloatingCast:
642    return "FloatingCast";
643  case CastExpr::CK_MemberPointerToBoolean:
644    return "MemberPointerToBoolean";
645  case CastExpr::CK_AnyPointerToObjCPointerCast:
646    return "AnyPointerToObjCPointerCast";
647  case CastExpr::CK_AnyPointerToBlockPointerCast:
648    return "AnyPointerToBlockPointerCast";
649  }
650
651  assert(0 && "Unhandled cast kind!");
652  return 0;
653}
654
655Expr *CastExpr::getSubExprAsWritten() {
656  Expr *SubExpr = 0;
657  CastExpr *E = this;
658  do {
659    SubExpr = E->getSubExpr();
660
661    // Skip any temporary bindings; they're implicit.
662    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
663      SubExpr = Binder->getSubExpr();
664
665    // Conversions by constructor and conversion functions have a
666    // subexpression describing the call; strip it off.
667    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
668      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
669    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
670      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
671
672    // If the subexpression we're left with is an implicit cast, look
673    // through that, too.
674  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
675
676  return SubExpr;
677}
678
679/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
680/// corresponds to, e.g. "<<=".
681const char *BinaryOperator::getOpcodeStr(Opcode Op) {
682  switch (Op) {
683  case PtrMemD:   return ".*";
684  case PtrMemI:   return "->*";
685  case Mul:       return "*";
686  case Div:       return "/";
687  case Rem:       return "%";
688  case Add:       return "+";
689  case Sub:       return "-";
690  case Shl:       return "<<";
691  case Shr:       return ">>";
692  case LT:        return "<";
693  case GT:        return ">";
694  case LE:        return "<=";
695  case GE:        return ">=";
696  case EQ:        return "==";
697  case NE:        return "!=";
698  case And:       return "&";
699  case Xor:       return "^";
700  case Or:        return "|";
701  case LAnd:      return "&&";
702  case LOr:       return "||";
703  case Assign:    return "=";
704  case MulAssign: return "*=";
705  case DivAssign: return "/=";
706  case RemAssign: return "%=";
707  case AddAssign: return "+=";
708  case SubAssign: return "-=";
709  case ShlAssign: return "<<=";
710  case ShrAssign: return ">>=";
711  case AndAssign: return "&=";
712  case XorAssign: return "^=";
713  case OrAssign:  return "|=";
714  case Comma:     return ",";
715  }
716
717  return "";
718}
719
720BinaryOperator::Opcode
721BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
722  switch (OO) {
723  default: assert(false && "Not an overloadable binary operator");
724  case OO_Plus: return Add;
725  case OO_Minus: return Sub;
726  case OO_Star: return Mul;
727  case OO_Slash: return Div;
728  case OO_Percent: return Rem;
729  case OO_Caret: return Xor;
730  case OO_Amp: return And;
731  case OO_Pipe: return Or;
732  case OO_Equal: return Assign;
733  case OO_Less: return LT;
734  case OO_Greater: return GT;
735  case OO_PlusEqual: return AddAssign;
736  case OO_MinusEqual: return SubAssign;
737  case OO_StarEqual: return MulAssign;
738  case OO_SlashEqual: return DivAssign;
739  case OO_PercentEqual: return RemAssign;
740  case OO_CaretEqual: return XorAssign;
741  case OO_AmpEqual: return AndAssign;
742  case OO_PipeEqual: return OrAssign;
743  case OO_LessLess: return Shl;
744  case OO_GreaterGreater: return Shr;
745  case OO_LessLessEqual: return ShlAssign;
746  case OO_GreaterGreaterEqual: return ShrAssign;
747  case OO_EqualEqual: return EQ;
748  case OO_ExclaimEqual: return NE;
749  case OO_LessEqual: return LE;
750  case OO_GreaterEqual: return GE;
751  case OO_AmpAmp: return LAnd;
752  case OO_PipePipe: return LOr;
753  case OO_Comma: return Comma;
754  case OO_ArrowStar: return PtrMemI;
755  }
756}
757
758OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
759  static const OverloadedOperatorKind OverOps[] = {
760    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
761    OO_Star, OO_Slash, OO_Percent,
762    OO_Plus, OO_Minus,
763    OO_LessLess, OO_GreaterGreater,
764    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
765    OO_EqualEqual, OO_ExclaimEqual,
766    OO_Amp,
767    OO_Caret,
768    OO_Pipe,
769    OO_AmpAmp,
770    OO_PipePipe,
771    OO_Equal, OO_StarEqual,
772    OO_SlashEqual, OO_PercentEqual,
773    OO_PlusEqual, OO_MinusEqual,
774    OO_LessLessEqual, OO_GreaterGreaterEqual,
775    OO_AmpEqual, OO_CaretEqual,
776    OO_PipeEqual,
777    OO_Comma
778  };
779  return OverOps[Opc];
780}
781
782InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
783                           Expr **initExprs, unsigned numInits,
784                           SourceLocation rbraceloc)
785  : Expr(InitListExprClass, QualType(), false, false),
786    InitExprs(C, numInits),
787    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
788    UnionFieldInit(0), HadArrayRangeDesignator(false)
789{
790  for (unsigned I = 0; I != numInits; ++I) {
791    if (initExprs[I]->isTypeDependent())
792      TypeDependent = true;
793    if (initExprs[I]->isValueDependent())
794      ValueDependent = true;
795  }
796
797  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
798}
799
800void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
801  if (NumInits > InitExprs.size())
802    InitExprs.reserve(C, NumInits);
803}
804
805void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
806  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
807       Idx < LastIdx; ++Idx)
808    InitExprs[Idx]->Destroy(C);
809  InitExprs.resize(C, NumInits, 0);
810}
811
812Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
813  if (Init >= InitExprs.size()) {
814    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
815    InitExprs.back() = expr;
816    return 0;
817  }
818
819  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
820  InitExprs[Init] = expr;
821  return Result;
822}
823
824/// getFunctionType - Return the underlying function type for this block.
825///
826const FunctionType *BlockExpr::getFunctionType() const {
827  return getType()->getAs<BlockPointerType>()->
828                    getPointeeType()->getAs<FunctionType>();
829}
830
831SourceLocation BlockExpr::getCaretLocation() const {
832  return TheBlock->getCaretLocation();
833}
834const Stmt *BlockExpr::getBody() const {
835  return TheBlock->getBody();
836}
837Stmt *BlockExpr::getBody() {
838  return TheBlock->getBody();
839}
840
841
842//===----------------------------------------------------------------------===//
843// Generic Expression Routines
844//===----------------------------------------------------------------------===//
845
846/// isUnusedResultAWarning - Return true if this immediate expression should
847/// be warned about if the result is unused.  If so, fill in Loc and Ranges
848/// with location to warn on and the source range[s] to report with the
849/// warning.
850bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
851                                  SourceRange &R2, ASTContext &Ctx) const {
852  // Don't warn if the expr is type dependent. The type could end up
853  // instantiating to void.
854  if (isTypeDependent())
855    return false;
856
857  switch (getStmtClass()) {
858  default:
859    if (getType()->isVoidType())
860      return false;
861    Loc = getExprLoc();
862    R1 = getSourceRange();
863    return true;
864  case ParenExprClass:
865    return cast<ParenExpr>(this)->getSubExpr()->
866      isUnusedResultAWarning(Loc, R1, R2, Ctx);
867  case UnaryOperatorClass: {
868    const UnaryOperator *UO = cast<UnaryOperator>(this);
869
870    switch (UO->getOpcode()) {
871    default: break;
872    case UnaryOperator::PostInc:
873    case UnaryOperator::PostDec:
874    case UnaryOperator::PreInc:
875    case UnaryOperator::PreDec:                 // ++/--
876      return false;  // Not a warning.
877    case UnaryOperator::Deref:
878      // Dereferencing a volatile pointer is a side-effect.
879      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
880        return false;
881      break;
882    case UnaryOperator::Real:
883    case UnaryOperator::Imag:
884      // accessing a piece of a volatile complex is a side-effect.
885      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
886          .isVolatileQualified())
887        return false;
888      break;
889    case UnaryOperator::Extension:
890      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
891    }
892    Loc = UO->getOperatorLoc();
893    R1 = UO->getSubExpr()->getSourceRange();
894    return true;
895  }
896  case BinaryOperatorClass: {
897    const BinaryOperator *BO = cast<BinaryOperator>(this);
898    switch (BO->getOpcode()) {
899      default:
900        break;
901      // Consider ',', '||', '&&' to have side effects if the LHS or RHS does.
902      case BinaryOperator::Comma:
903        // ((foo = <blah>), 0) is an idiom for hiding the result (and
904        // lvalue-ness) of an assignment written in a macro.
905        if (IntegerLiteral *IE =
906              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
907          if (IE->getValue() == 0)
908            return false;
909      case BinaryOperator::LAnd:
910      case BinaryOperator::LOr:
911        return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
912                BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
913    }
914    if (BO->isAssignmentOp())
915      return false;
916    Loc = BO->getOperatorLoc();
917    R1 = BO->getLHS()->getSourceRange();
918    R2 = BO->getRHS()->getSourceRange();
919    return true;
920  }
921  case CompoundAssignOperatorClass:
922    return false;
923
924  case ConditionalOperatorClass: {
925    // The condition must be evaluated, but if either the LHS or RHS is a
926    // warning, warn about them.
927    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
928    if (Exp->getLHS() &&
929        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
930      return true;
931    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
932  }
933
934  case MemberExprClass:
935    // If the base pointer or element is to a volatile pointer/field, accessing
936    // it is a side effect.
937    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
938      return false;
939    Loc = cast<MemberExpr>(this)->getMemberLoc();
940    R1 = SourceRange(Loc, Loc);
941    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
942    return true;
943
944  case ArraySubscriptExprClass:
945    // If the base pointer or element is to a volatile pointer/field, accessing
946    // it is a side effect.
947    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
948      return false;
949    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
950    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
951    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
952    return true;
953
954  case CallExprClass:
955  case CXXOperatorCallExprClass:
956  case CXXMemberCallExprClass: {
957    // If this is a direct call, get the callee.
958    const CallExpr *CE = cast<CallExpr>(this);
959    if (const Decl *FD = CE->getCalleeDecl()) {
960      // If the callee has attribute pure, const, or warn_unused_result, warn
961      // about it. void foo() { strlen("bar"); } should warn.
962      //
963      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
964      // updated to match for QoI.
965      if (FD->getAttr<WarnUnusedResultAttr>() ||
966          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
967        Loc = CE->getCallee()->getLocStart();
968        R1 = CE->getCallee()->getSourceRange();
969
970        if (unsigned NumArgs = CE->getNumArgs())
971          R2 = SourceRange(CE->getArg(0)->getLocStart(),
972                           CE->getArg(NumArgs-1)->getLocEnd());
973        return true;
974      }
975    }
976    return false;
977  }
978
979  case CXXTemporaryObjectExprClass:
980  case CXXConstructExprClass:
981    return false;
982
983  case ObjCMessageExprClass: {
984    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
985    const ObjCMethodDecl *MD = ME->getMethodDecl();
986    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
987      Loc = getExprLoc();
988      return true;
989    }
990    return false;
991  }
992
993  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
994#if 0
995    const ObjCImplicitSetterGetterRefExpr *Ref =
996      cast<ObjCImplicitSetterGetterRefExpr>(this);
997    // FIXME: We really want the location of the '.' here.
998    Loc = Ref->getLocation();
999    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
1000    if (Ref->getBase())
1001      R2 = Ref->getBase()->getSourceRange();
1002#else
1003    Loc = getExprLoc();
1004    R1 = getSourceRange();
1005#endif
1006    return true;
1007  }
1008  case StmtExprClass: {
1009    // Statement exprs don't logically have side effects themselves, but are
1010    // sometimes used in macros in ways that give them a type that is unused.
1011    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1012    // however, if the result of the stmt expr is dead, we don't want to emit a
1013    // warning.
1014    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1015    if (!CS->body_empty())
1016      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1017        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1018
1019    if (getType()->isVoidType())
1020      return false;
1021    Loc = cast<StmtExpr>(this)->getLParenLoc();
1022    R1 = getSourceRange();
1023    return true;
1024  }
1025  case CStyleCastExprClass:
1026    // If this is an explicit cast to void, allow it.  People do this when they
1027    // think they know what they're doing :).
1028    if (getType()->isVoidType())
1029      return false;
1030    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1031    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1032    return true;
1033  case CXXFunctionalCastExprClass: {
1034    if (getType()->isVoidType())
1035      return false;
1036    const CastExpr *CE = cast<CastExpr>(this);
1037
1038    // If this is a cast to void or a constructor conversion, check the operand.
1039    // Otherwise, the result of the cast is unused.
1040    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
1041        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
1042      return (cast<CastExpr>(this)->getSubExpr()
1043              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1044    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1045    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1046    return true;
1047  }
1048
1049  case ImplicitCastExprClass:
1050    // Check the operand, since implicit casts are inserted by Sema
1051    return (cast<ImplicitCastExpr>(this)
1052            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1053
1054  case CXXDefaultArgExprClass:
1055    return (cast<CXXDefaultArgExpr>(this)
1056            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1057
1058  case CXXNewExprClass:
1059    // FIXME: In theory, there might be new expressions that don't have side
1060    // effects (e.g. a placement new with an uninitialized POD).
1061  case CXXDeleteExprClass:
1062    return false;
1063  case CXXBindTemporaryExprClass:
1064    return (cast<CXXBindTemporaryExpr>(this)
1065            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1066  case CXXExprWithTemporariesClass:
1067    return (cast<CXXExprWithTemporaries>(this)
1068            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1069  }
1070}
1071
1072/// DeclCanBeLvalue - Determine whether the given declaration can be
1073/// an lvalue. This is a helper routine for isLvalue.
1074static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1075  // C++ [temp.param]p6:
1076  //   A non-type non-reference template-parameter is not an lvalue.
1077  if (const NonTypeTemplateParmDecl *NTTParm
1078        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1079    return NTTParm->getType()->isReferenceType();
1080
1081  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1082    // C++ 3.10p2: An lvalue refers to an object or function.
1083    (Ctx.getLangOptions().CPlusPlus &&
1084     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1085}
1086
1087/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1088/// incomplete type other than void. Nonarray expressions that can be lvalues:
1089///  - name, where name must be a variable
1090///  - e[i]
1091///  - (e), where e must be an lvalue
1092///  - e.name, where e must be an lvalue
1093///  - e->name
1094///  - *e, the type of e cannot be a function type
1095///  - string-constant
1096///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1097///  - reference type [C++ [expr]]
1098///
1099Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1100  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1101
1102  isLvalueResult Res = isLvalueInternal(Ctx);
1103  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1104    return Res;
1105
1106  // first, check the type (C99 6.3.2.1). Expressions with function
1107  // type in C are not lvalues, but they can be lvalues in C++.
1108  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1109    return LV_NotObjectType;
1110
1111  // Allow qualified void which is an incomplete type other than void (yuck).
1112  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1113    return LV_IncompleteVoidType;
1114
1115  return LV_Valid;
1116}
1117
1118// Check whether the expression can be sanely treated like an l-value
1119Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1120  switch (getStmtClass()) {
1121  case ObjCIsaExprClass:
1122  case StringLiteralClass:  // C99 6.5.1p4
1123  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1124    return LV_Valid;
1125  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1126    // For vectors, make sure base is an lvalue (i.e. not a function call).
1127    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1128      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1129    return LV_Valid;
1130  case DeclRefExprClass: { // C99 6.5.1p2
1131    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1132    if (DeclCanBeLvalue(RefdDecl, Ctx))
1133      return LV_Valid;
1134    break;
1135  }
1136  case BlockDeclRefExprClass: {
1137    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1138    if (isa<VarDecl>(BDR->getDecl()))
1139      return LV_Valid;
1140    break;
1141  }
1142  case MemberExprClass: {
1143    const MemberExpr *m = cast<MemberExpr>(this);
1144    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1145      NamedDecl *Member = m->getMemberDecl();
1146      // C++ [expr.ref]p4:
1147      //   If E2 is declared to have type "reference to T", then E1.E2
1148      //   is an lvalue.
1149      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1150        if (Value->getType()->isReferenceType())
1151          return LV_Valid;
1152
1153      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1154      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1155        return LV_Valid;
1156
1157      //   -- If E2 is a non-static data member [...]. If E1 is an
1158      //      lvalue, then E1.E2 is an lvalue.
1159      if (isa<FieldDecl>(Member)) {
1160        if (m->isArrow())
1161          return LV_Valid;
1162        return m->getBase()->isLvalue(Ctx);
1163      }
1164
1165      //   -- If it refers to a static member function [...], then
1166      //      E1.E2 is an lvalue.
1167      //   -- Otherwise, if E1.E2 refers to a non-static member
1168      //      function [...], then E1.E2 is not an lvalue.
1169      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1170        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1171
1172      //   -- If E2 is a member enumerator [...], the expression E1.E2
1173      //      is not an lvalue.
1174      if (isa<EnumConstantDecl>(Member))
1175        return LV_InvalidExpression;
1176
1177        // Not an lvalue.
1178      return LV_InvalidExpression;
1179    }
1180
1181    // C99 6.5.2.3p4
1182    if (m->isArrow())
1183      return LV_Valid;
1184    Expr *BaseExp = m->getBase();
1185    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1186        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1187          return LV_SubObjCPropertySetting;
1188    return
1189       BaseExp->isLvalue(Ctx);
1190  }
1191  case UnaryOperatorClass:
1192    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1193      return LV_Valid; // C99 6.5.3p4
1194
1195    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1196        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1197        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1198      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1199
1200    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1201        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1202         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1203      return LV_Valid;
1204    break;
1205  case ImplicitCastExprClass:
1206    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1207      return LV_Valid;
1208
1209    // If this is a conversion to a class temporary, make a note of
1210    // that.
1211    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1212      return LV_ClassTemporary;
1213
1214    break;
1215  case ParenExprClass: // C99 6.5.1p5
1216    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1217  case BinaryOperatorClass:
1218  case CompoundAssignOperatorClass: {
1219    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1220
1221    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1222        BinOp->getOpcode() == BinaryOperator::Comma)
1223      return BinOp->getRHS()->isLvalue(Ctx);
1224
1225    // C++ [expr.mptr.oper]p6
1226    // The result of a .* expression is an lvalue only if its first operand is
1227    // an lvalue and its second operand is a pointer to data member.
1228    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1229        !BinOp->getType()->isFunctionType())
1230      return BinOp->getLHS()->isLvalue(Ctx);
1231
1232    // The result of an ->* expression is an lvalue only if its second operand
1233    // is a pointer to data member.
1234    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1235        !BinOp->getType()->isFunctionType()) {
1236      QualType Ty = BinOp->getRHS()->getType();
1237      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1238        return LV_Valid;
1239    }
1240
1241    if (!BinOp->isAssignmentOp())
1242      return LV_InvalidExpression;
1243
1244    if (Ctx.getLangOptions().CPlusPlus)
1245      // C++ [expr.ass]p1:
1246      //   The result of an assignment operation [...] is an lvalue.
1247      return LV_Valid;
1248
1249
1250    // C99 6.5.16:
1251    //   An assignment expression [...] is not an lvalue.
1252    return LV_InvalidExpression;
1253  }
1254  case CallExprClass:
1255  case CXXOperatorCallExprClass:
1256  case CXXMemberCallExprClass: {
1257    // C++0x [expr.call]p10
1258    //   A function call is an lvalue if and only if the result type
1259    //   is an lvalue reference.
1260    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1261    if (ReturnType->isLValueReferenceType())
1262      return LV_Valid;
1263
1264    // If the function is returning a class temporary, make a note of
1265    // that.
1266    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1267      return LV_ClassTemporary;
1268
1269    break;
1270  }
1271  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1272    // FIXME: Is this what we want in C++?
1273    return LV_Valid;
1274  case ChooseExprClass:
1275    // __builtin_choose_expr is an lvalue if the selected operand is.
1276    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1277  case ExtVectorElementExprClass:
1278    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1279      return LV_DuplicateVectorComponents;
1280    return LV_Valid;
1281  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1282    return LV_Valid;
1283  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1284    return LV_Valid;
1285  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1286    return LV_Valid;
1287  case PredefinedExprClass:
1288    return LV_Valid;
1289  case UnresolvedLookupExprClass:
1290    return LV_Valid;
1291  case CXXDefaultArgExprClass:
1292    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1293  case CStyleCastExprClass:
1294  case CXXFunctionalCastExprClass:
1295  case CXXStaticCastExprClass:
1296  case CXXDynamicCastExprClass:
1297  case CXXReinterpretCastExprClass:
1298  case CXXConstCastExprClass:
1299    // The result of an explicit cast is an lvalue if the type we are
1300    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1301    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1302    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1303    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1304          isLValueReferenceType())
1305      return LV_Valid;
1306
1307    // If this is a conversion to a class temporary, make a note of
1308    // that.
1309    if (Ctx.getLangOptions().CPlusPlus &&
1310        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1311      return LV_ClassTemporary;
1312
1313    break;
1314  case CXXTypeidExprClass:
1315    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1316    return LV_Valid;
1317  case CXXBindTemporaryExprClass:
1318    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1319      isLvalueInternal(Ctx);
1320  case CXXBindReferenceExprClass:
1321    // Something that's bound to a reference is always an lvalue.
1322    return LV_Valid;
1323  case ConditionalOperatorClass: {
1324    // Complicated handling is only for C++.
1325    if (!Ctx.getLangOptions().CPlusPlus)
1326      return LV_InvalidExpression;
1327
1328    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1329    // everywhere there's an object converted to an rvalue. Also, any other
1330    // casts should be wrapped by ImplicitCastExprs. There's just the special
1331    // case involving throws to work out.
1332    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1333    Expr *True = Cond->getTrueExpr();
1334    Expr *False = Cond->getFalseExpr();
1335    // C++0x 5.16p2
1336    //   If either the second or the third operand has type (cv) void, [...]
1337    //   the result [...] is an rvalue.
1338    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1339      return LV_InvalidExpression;
1340
1341    // Both sides must be lvalues for the result to be an lvalue.
1342    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1343      return LV_InvalidExpression;
1344
1345    // That's it.
1346    return LV_Valid;
1347  }
1348
1349  case Expr::CXXExprWithTemporariesClass:
1350    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1351
1352  case Expr::ObjCMessageExprClass:
1353    if (const ObjCMethodDecl *Method
1354          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1355      if (Method->getResultType()->isLValueReferenceType())
1356        return LV_Valid;
1357    break;
1358
1359  case Expr::CXXConstructExprClass:
1360  case Expr::CXXTemporaryObjectExprClass:
1361  case Expr::CXXZeroInitValueExprClass:
1362    return LV_ClassTemporary;
1363
1364  default:
1365    break;
1366  }
1367  return LV_InvalidExpression;
1368}
1369
1370/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1371/// does not have an incomplete type, does not have a const-qualified type, and
1372/// if it is a structure or union, does not have any member (including,
1373/// recursively, any member or element of all contained aggregates or unions)
1374/// with a const-qualified type.
1375Expr::isModifiableLvalueResult
1376Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1377  isLvalueResult lvalResult = isLvalue(Ctx);
1378
1379  switch (lvalResult) {
1380  case LV_Valid:
1381    // C++ 3.10p11: Functions cannot be modified, but pointers to
1382    // functions can be modifiable.
1383    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1384      return MLV_NotObjectType;
1385    break;
1386
1387  case LV_NotObjectType: return MLV_NotObjectType;
1388  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1389  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1390  case LV_InvalidExpression:
1391    // If the top level is a C-style cast, and the subexpression is a valid
1392    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1393    // GCC extension.  We don't support it, but we want to produce good
1394    // diagnostics when it happens so that the user knows why.
1395    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1396      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1397        if (Loc)
1398          *Loc = CE->getLParenLoc();
1399        return MLV_LValueCast;
1400      }
1401    }
1402    return MLV_InvalidExpression;
1403  case LV_MemberFunction: return MLV_MemberFunction;
1404  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1405  case LV_ClassTemporary:
1406    return MLV_ClassTemporary;
1407  }
1408
1409  // The following is illegal:
1410  //   void takeclosure(void (^C)(void));
1411  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1412  //
1413  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1414    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1415      return MLV_NotBlockQualified;
1416  }
1417
1418  // Assigning to an 'implicit' property?
1419  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1420        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1421    if (Expr->getSetterMethod() == 0)
1422      return MLV_NoSetterProperty;
1423  }
1424
1425  QualType CT = Ctx.getCanonicalType(getType());
1426
1427  if (CT.isConstQualified())
1428    return MLV_ConstQualified;
1429  if (CT->isArrayType())
1430    return MLV_ArrayType;
1431  if (CT->isIncompleteType())
1432    return MLV_IncompleteType;
1433
1434  if (const RecordType *r = CT->getAs<RecordType>()) {
1435    if (r->hasConstFields())
1436      return MLV_ConstQualified;
1437  }
1438
1439  return MLV_Valid;
1440}
1441
1442/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1443/// returns true, if it is; false otherwise.
1444bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1445  switch (getStmtClass()) {
1446  default:
1447    return false;
1448  case ObjCIvarRefExprClass:
1449    return true;
1450  case Expr::UnaryOperatorClass:
1451    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1452  case ParenExprClass:
1453    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1454  case ImplicitCastExprClass:
1455    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1456  case CStyleCastExprClass:
1457    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1458  case DeclRefExprClass: {
1459    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1460    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1461      if (VD->hasGlobalStorage())
1462        return true;
1463      QualType T = VD->getType();
1464      // dereferencing to a  pointer is always a gc'able candidate,
1465      // unless it is __weak.
1466      return T->isPointerType() &&
1467             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1468    }
1469    return false;
1470  }
1471  case MemberExprClass: {
1472    const MemberExpr *M = cast<MemberExpr>(this);
1473    return M->getBase()->isOBJCGCCandidate(Ctx);
1474  }
1475  case ArraySubscriptExprClass:
1476    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1477  }
1478}
1479Expr* Expr::IgnoreParens() {
1480  Expr* E = this;
1481  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1482    E = P->getSubExpr();
1483
1484  return E;
1485}
1486
1487/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1488/// or CastExprs or ImplicitCastExprs, returning their operand.
1489Expr *Expr::IgnoreParenCasts() {
1490  Expr *E = this;
1491  while (true) {
1492    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1493      E = P->getSubExpr();
1494    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1495      E = P->getSubExpr();
1496    else
1497      return E;
1498  }
1499}
1500
1501/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1502/// value (including ptr->int casts of the same size).  Strip off any
1503/// ParenExpr or CastExprs, returning their operand.
1504Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1505  Expr *E = this;
1506  while (true) {
1507    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1508      E = P->getSubExpr();
1509      continue;
1510    }
1511
1512    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1513      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1514      // ptr<->int casts of the same width.  We also ignore all identify casts.
1515      Expr *SE = P->getSubExpr();
1516
1517      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1518        E = SE;
1519        continue;
1520      }
1521
1522      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1523          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1524          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1525        E = SE;
1526        continue;
1527      }
1528    }
1529
1530    return E;
1531  }
1532}
1533
1534bool Expr::isDefaultArgument() const {
1535  const Expr *E = this;
1536  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1537    E = ICE->getSubExprAsWritten();
1538
1539  return isa<CXXDefaultArgExpr>(E);
1540}
1541
1542/// \brief Skip over any no-op casts and any temporary-binding
1543/// expressions.
1544static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1545  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1546    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1547      E = ICE->getSubExpr();
1548    else
1549      break;
1550  }
1551
1552  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1553    E = BE->getSubExpr();
1554
1555  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1556    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1557      E = ICE->getSubExpr();
1558    else
1559      break;
1560  }
1561
1562  return E;
1563}
1564
1565const Expr *Expr::getTemporaryObject() const {
1566  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1567
1568  // A cast can produce a temporary object. The object's construction
1569  // is represented as a CXXConstructExpr.
1570  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1571    // Only user-defined and constructor conversions can produce
1572    // temporary objects.
1573    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1574        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1575      return 0;
1576
1577    // Strip off temporary bindings and no-op casts.
1578    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1579
1580    // If this is a constructor conversion, see if we have an object
1581    // construction.
1582    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1583      return dyn_cast<CXXConstructExpr>(Sub);
1584
1585    // If this is a user-defined conversion, see if we have a call to
1586    // a function that itself returns a temporary object.
1587    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1588      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1589        if (CE->getCallReturnType()->isRecordType())
1590          return CE;
1591
1592    return 0;
1593  }
1594
1595  // A call returning a class type returns a temporary.
1596  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1597    if (CE->getCallReturnType()->isRecordType())
1598      return CE;
1599
1600    return 0;
1601  }
1602
1603  // Explicit temporary object constructors create temporaries.
1604  return dyn_cast<CXXTemporaryObjectExpr>(E);
1605}
1606
1607/// hasAnyTypeDependentArguments - Determines if any of the expressions
1608/// in Exprs is type-dependent.
1609bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1610  for (unsigned I = 0; I < NumExprs; ++I)
1611    if (Exprs[I]->isTypeDependent())
1612      return true;
1613
1614  return false;
1615}
1616
1617/// hasAnyValueDependentArguments - Determines if any of the expressions
1618/// in Exprs is value-dependent.
1619bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1620  for (unsigned I = 0; I < NumExprs; ++I)
1621    if (Exprs[I]->isValueDependent())
1622      return true;
1623
1624  return false;
1625}
1626
1627bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1628  // This function is attempting whether an expression is an initializer
1629  // which can be evaluated at compile-time.  isEvaluatable handles most
1630  // of the cases, but it can't deal with some initializer-specific
1631  // expressions, and it can't deal with aggregates; we deal with those here,
1632  // and fall back to isEvaluatable for the other cases.
1633
1634  // FIXME: This function assumes the variable being assigned to
1635  // isn't a reference type!
1636
1637  switch (getStmtClass()) {
1638  default: break;
1639  case StringLiteralClass:
1640  case ObjCStringLiteralClass:
1641  case ObjCEncodeExprClass:
1642    return true;
1643  case CompoundLiteralExprClass: {
1644    // This handles gcc's extension that allows global initializers like
1645    // "struct x {int x;} x = (struct x) {};".
1646    // FIXME: This accepts other cases it shouldn't!
1647    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1648    return Exp->isConstantInitializer(Ctx);
1649  }
1650  case InitListExprClass: {
1651    // FIXME: This doesn't deal with fields with reference types correctly.
1652    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1653    // to bitfields.
1654    const InitListExpr *Exp = cast<InitListExpr>(this);
1655    unsigned numInits = Exp->getNumInits();
1656    for (unsigned i = 0; i < numInits; i++) {
1657      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1658        return false;
1659    }
1660    return true;
1661  }
1662  case ImplicitValueInitExprClass:
1663    return true;
1664  case ParenExprClass:
1665    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1666  case UnaryOperatorClass: {
1667    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1668    if (Exp->getOpcode() == UnaryOperator::Extension)
1669      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1670    break;
1671  }
1672  case BinaryOperatorClass: {
1673    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1674    // but this handles the common case.
1675    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1676    if (Exp->getOpcode() == BinaryOperator::Sub &&
1677        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1678        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1679      return true;
1680    break;
1681  }
1682  case ImplicitCastExprClass:
1683  case CStyleCastExprClass:
1684    // Handle casts with a destination that's a struct or union; this
1685    // deals with both the gcc no-op struct cast extension and the
1686    // cast-to-union extension.
1687    if (getType()->isRecordType())
1688      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1689
1690    // Integer->integer casts can be handled here, which is important for
1691    // things like (int)(&&x-&&y).  Scary but true.
1692    if (getType()->isIntegerType() &&
1693        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1694      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1695
1696    break;
1697  }
1698  return isEvaluatable(Ctx);
1699}
1700
1701/// isIntegerConstantExpr - this recursive routine will test if an expression is
1702/// an integer constant expression.
1703
1704/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1705/// comma, etc
1706///
1707/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1708/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1709/// cast+dereference.
1710
1711// CheckICE - This function does the fundamental ICE checking: the returned
1712// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1713// Note that to reduce code duplication, this helper does no evaluation
1714// itself; the caller checks whether the expression is evaluatable, and
1715// in the rare cases where CheckICE actually cares about the evaluated
1716// value, it calls into Evalute.
1717//
1718// Meanings of Val:
1719// 0: This expression is an ICE if it can be evaluated by Evaluate.
1720// 1: This expression is not an ICE, but if it isn't evaluated, it's
1721//    a legal subexpression for an ICE. This return value is used to handle
1722//    the comma operator in C99 mode.
1723// 2: This expression is not an ICE, and is not a legal subexpression for one.
1724
1725struct ICEDiag {
1726  unsigned Val;
1727  SourceLocation Loc;
1728
1729  public:
1730  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1731  ICEDiag() : Val(0) {}
1732};
1733
1734ICEDiag NoDiag() { return ICEDiag(); }
1735
1736static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1737  Expr::EvalResult EVResult;
1738  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1739      !EVResult.Val.isInt()) {
1740    return ICEDiag(2, E->getLocStart());
1741  }
1742  return NoDiag();
1743}
1744
1745static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1746  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1747  if (!E->getType()->isIntegralType()) {
1748    return ICEDiag(2, E->getLocStart());
1749  }
1750
1751  switch (E->getStmtClass()) {
1752#define STMT(Node, Base) case Expr::Node##Class:
1753#define EXPR(Node, Base)
1754#include "clang/AST/StmtNodes.def"
1755  case Expr::PredefinedExprClass:
1756  case Expr::FloatingLiteralClass:
1757  case Expr::ImaginaryLiteralClass:
1758  case Expr::StringLiteralClass:
1759  case Expr::ArraySubscriptExprClass:
1760  case Expr::MemberExprClass:
1761  case Expr::CompoundAssignOperatorClass:
1762  case Expr::CompoundLiteralExprClass:
1763  case Expr::ExtVectorElementExprClass:
1764  case Expr::InitListExprClass:
1765  case Expr::DesignatedInitExprClass:
1766  case Expr::ImplicitValueInitExprClass:
1767  case Expr::ParenListExprClass:
1768  case Expr::VAArgExprClass:
1769  case Expr::AddrLabelExprClass:
1770  case Expr::StmtExprClass:
1771  case Expr::CXXMemberCallExprClass:
1772  case Expr::CXXDynamicCastExprClass:
1773  case Expr::CXXTypeidExprClass:
1774  case Expr::CXXNullPtrLiteralExprClass:
1775  case Expr::CXXThisExprClass:
1776  case Expr::CXXThrowExprClass:
1777  case Expr::CXXNewExprClass:
1778  case Expr::CXXDeleteExprClass:
1779  case Expr::CXXPseudoDestructorExprClass:
1780  case Expr::UnresolvedLookupExprClass:
1781  case Expr::DependentScopeDeclRefExprClass:
1782  case Expr::CXXConstructExprClass:
1783  case Expr::CXXBindTemporaryExprClass:
1784  case Expr::CXXBindReferenceExprClass:
1785  case Expr::CXXExprWithTemporariesClass:
1786  case Expr::CXXTemporaryObjectExprClass:
1787  case Expr::CXXUnresolvedConstructExprClass:
1788  case Expr::CXXDependentScopeMemberExprClass:
1789  case Expr::UnresolvedMemberExprClass:
1790  case Expr::ObjCStringLiteralClass:
1791  case Expr::ObjCEncodeExprClass:
1792  case Expr::ObjCMessageExprClass:
1793  case Expr::ObjCSelectorExprClass:
1794  case Expr::ObjCProtocolExprClass:
1795  case Expr::ObjCIvarRefExprClass:
1796  case Expr::ObjCPropertyRefExprClass:
1797  case Expr::ObjCImplicitSetterGetterRefExprClass:
1798  case Expr::ObjCSuperExprClass:
1799  case Expr::ObjCIsaExprClass:
1800  case Expr::ShuffleVectorExprClass:
1801  case Expr::BlockExprClass:
1802  case Expr::BlockDeclRefExprClass:
1803  case Expr::NoStmtClass:
1804    return ICEDiag(2, E->getLocStart());
1805
1806  case Expr::GNUNullExprClass:
1807    // GCC considers the GNU __null value to be an integral constant expression.
1808    return NoDiag();
1809
1810  case Expr::ParenExprClass:
1811    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1812  case Expr::IntegerLiteralClass:
1813  case Expr::CharacterLiteralClass:
1814  case Expr::CXXBoolLiteralExprClass:
1815  case Expr::CXXZeroInitValueExprClass:
1816  case Expr::TypesCompatibleExprClass:
1817  case Expr::UnaryTypeTraitExprClass:
1818    return NoDiag();
1819  case Expr::CallExprClass:
1820  case Expr::CXXOperatorCallExprClass: {
1821    const CallExpr *CE = cast<CallExpr>(E);
1822    if (CE->isBuiltinCall(Ctx))
1823      return CheckEvalInICE(E, Ctx);
1824    return ICEDiag(2, E->getLocStart());
1825  }
1826  case Expr::DeclRefExprClass:
1827    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1828      return NoDiag();
1829    if (Ctx.getLangOptions().CPlusPlus &&
1830        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1831      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1832
1833      // Parameter variables are never constants.  Without this check,
1834      // getAnyInitializer() can find a default argument, which leads
1835      // to chaos.
1836      if (isa<ParmVarDecl>(D))
1837        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1838
1839      // C++ 7.1.5.1p2
1840      //   A variable of non-volatile const-qualified integral or enumeration
1841      //   type initialized by an ICE can be used in ICEs.
1842      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
1843        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1844        if (Quals.hasVolatile() || !Quals.hasConst())
1845          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1846
1847        // Look for a declaration of this variable that has an initializer.
1848        const VarDecl *ID = 0;
1849        const Expr *Init = Dcl->getAnyInitializer(ID);
1850        if (Init) {
1851          if (ID->isInitKnownICE()) {
1852            // We have already checked whether this subexpression is an
1853            // integral constant expression.
1854            if (ID->isInitICE())
1855              return NoDiag();
1856            else
1857              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1858          }
1859
1860          // It's an ICE whether or not the definition we found is
1861          // out-of-line.  See DR 721 and the discussion in Clang PR
1862          // 6206 for details.
1863
1864          if (Dcl->isCheckingICE()) {
1865            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1866          }
1867
1868          Dcl->setCheckingICE();
1869          ICEDiag Result = CheckICE(Init, Ctx);
1870          // Cache the result of the ICE test.
1871          Dcl->setInitKnownICE(Result.Val == 0);
1872          return Result;
1873        }
1874      }
1875    }
1876    return ICEDiag(2, E->getLocStart());
1877  case Expr::UnaryOperatorClass: {
1878    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1879    switch (Exp->getOpcode()) {
1880    case UnaryOperator::PostInc:
1881    case UnaryOperator::PostDec:
1882    case UnaryOperator::PreInc:
1883    case UnaryOperator::PreDec:
1884    case UnaryOperator::AddrOf:
1885    case UnaryOperator::Deref:
1886      return ICEDiag(2, E->getLocStart());
1887
1888    case UnaryOperator::Extension:
1889    case UnaryOperator::LNot:
1890    case UnaryOperator::Plus:
1891    case UnaryOperator::Minus:
1892    case UnaryOperator::Not:
1893    case UnaryOperator::Real:
1894    case UnaryOperator::Imag:
1895      return CheckICE(Exp->getSubExpr(), Ctx);
1896    case UnaryOperator::OffsetOf:
1897      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1898      // Evaluate matches the proposed gcc behavior for cases like
1899      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1900      // compliance: we should warn earlier for offsetof expressions with
1901      // array subscripts that aren't ICEs, and if the array subscripts
1902      // are ICEs, the value of the offsetof must be an integer constant.
1903      return CheckEvalInICE(E, Ctx);
1904    }
1905  }
1906  case Expr::SizeOfAlignOfExprClass: {
1907    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1908    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1909      return ICEDiag(2, E->getLocStart());
1910    return NoDiag();
1911  }
1912  case Expr::BinaryOperatorClass: {
1913    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1914    switch (Exp->getOpcode()) {
1915    case BinaryOperator::PtrMemD:
1916    case BinaryOperator::PtrMemI:
1917    case BinaryOperator::Assign:
1918    case BinaryOperator::MulAssign:
1919    case BinaryOperator::DivAssign:
1920    case BinaryOperator::RemAssign:
1921    case BinaryOperator::AddAssign:
1922    case BinaryOperator::SubAssign:
1923    case BinaryOperator::ShlAssign:
1924    case BinaryOperator::ShrAssign:
1925    case BinaryOperator::AndAssign:
1926    case BinaryOperator::XorAssign:
1927    case BinaryOperator::OrAssign:
1928      return ICEDiag(2, E->getLocStart());
1929
1930    case BinaryOperator::Mul:
1931    case BinaryOperator::Div:
1932    case BinaryOperator::Rem:
1933    case BinaryOperator::Add:
1934    case BinaryOperator::Sub:
1935    case BinaryOperator::Shl:
1936    case BinaryOperator::Shr:
1937    case BinaryOperator::LT:
1938    case BinaryOperator::GT:
1939    case BinaryOperator::LE:
1940    case BinaryOperator::GE:
1941    case BinaryOperator::EQ:
1942    case BinaryOperator::NE:
1943    case BinaryOperator::And:
1944    case BinaryOperator::Xor:
1945    case BinaryOperator::Or:
1946    case BinaryOperator::Comma: {
1947      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1948      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1949      if (Exp->getOpcode() == BinaryOperator::Div ||
1950          Exp->getOpcode() == BinaryOperator::Rem) {
1951        // Evaluate gives an error for undefined Div/Rem, so make sure
1952        // we don't evaluate one.
1953        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1954          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1955          if (REval == 0)
1956            return ICEDiag(1, E->getLocStart());
1957          if (REval.isSigned() && REval.isAllOnesValue()) {
1958            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1959            if (LEval.isMinSignedValue())
1960              return ICEDiag(1, E->getLocStart());
1961          }
1962        }
1963      }
1964      if (Exp->getOpcode() == BinaryOperator::Comma) {
1965        if (Ctx.getLangOptions().C99) {
1966          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1967          // if it isn't evaluated.
1968          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1969            return ICEDiag(1, E->getLocStart());
1970        } else {
1971          // In both C89 and C++, commas in ICEs are illegal.
1972          return ICEDiag(2, E->getLocStart());
1973        }
1974      }
1975      if (LHSResult.Val >= RHSResult.Val)
1976        return LHSResult;
1977      return RHSResult;
1978    }
1979    case BinaryOperator::LAnd:
1980    case BinaryOperator::LOr: {
1981      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1982      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1983      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1984        // Rare case where the RHS has a comma "side-effect"; we need
1985        // to actually check the condition to see whether the side
1986        // with the comma is evaluated.
1987        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1988            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1989          return RHSResult;
1990        return NoDiag();
1991      }
1992
1993      if (LHSResult.Val >= RHSResult.Val)
1994        return LHSResult;
1995      return RHSResult;
1996    }
1997    }
1998  }
1999  case Expr::ImplicitCastExprClass:
2000  case Expr::CStyleCastExprClass:
2001  case Expr::CXXFunctionalCastExprClass:
2002  case Expr::CXXNamedCastExprClass:
2003  case Expr::CXXStaticCastExprClass:
2004  case Expr::CXXReinterpretCastExprClass:
2005  case Expr::CXXConstCastExprClass: {
2006    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
2007    if (SubExpr->getType()->isIntegralType())
2008      return CheckICE(SubExpr, Ctx);
2009    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
2010      return NoDiag();
2011    return ICEDiag(2, E->getLocStart());
2012  }
2013  case Expr::ConditionalOperatorClass: {
2014    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
2015    // If the condition (ignoring parens) is a __builtin_constant_p call,
2016    // then only the true side is actually considered in an integer constant
2017    // expression, and it is fully evaluated.  This is an important GNU
2018    // extension.  See GCC PR38377 for discussion.
2019    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
2020      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
2021        Expr::EvalResult EVResult;
2022        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
2023            !EVResult.Val.isInt()) {
2024          return ICEDiag(2, E->getLocStart());
2025        }
2026        return NoDiag();
2027      }
2028    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
2029    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
2030    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
2031    if (CondResult.Val == 2)
2032      return CondResult;
2033    if (TrueResult.Val == 2)
2034      return TrueResult;
2035    if (FalseResult.Val == 2)
2036      return FalseResult;
2037    if (CondResult.Val == 1)
2038      return CondResult;
2039    if (TrueResult.Val == 0 && FalseResult.Val == 0)
2040      return NoDiag();
2041    // Rare case where the diagnostics depend on which side is evaluated
2042    // Note that if we get here, CondResult is 0, and at least one of
2043    // TrueResult and FalseResult is non-zero.
2044    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
2045      return FalseResult;
2046    }
2047    return TrueResult;
2048  }
2049  case Expr::CXXDefaultArgExprClass:
2050    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
2051  case Expr::ChooseExprClass: {
2052    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
2053  }
2054  }
2055
2056  // Silence a GCC warning
2057  return ICEDiag(2, E->getLocStart());
2058}
2059
2060bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
2061                                 SourceLocation *Loc, bool isEvaluated) const {
2062  ICEDiag d = CheckICE(this, Ctx);
2063  if (d.Val != 0) {
2064    if (Loc) *Loc = d.Loc;
2065    return false;
2066  }
2067  EvalResult EvalResult;
2068  if (!Evaluate(EvalResult, Ctx))
2069    llvm_unreachable("ICE cannot be evaluated!");
2070  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
2071  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
2072  Result = EvalResult.Val.getInt();
2073  return true;
2074}
2075
2076/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2077/// integer constant expression with the value zero, or if this is one that is
2078/// cast to void*.
2079bool Expr::isNullPointerConstant(ASTContext &Ctx,
2080                                 NullPointerConstantValueDependence NPC) const {
2081  if (isValueDependent()) {
2082    switch (NPC) {
2083    case NPC_NeverValueDependent:
2084      assert(false && "Unexpected value dependent expression!");
2085      // If the unthinkable happens, fall through to the safest alternative.
2086
2087    case NPC_ValueDependentIsNull:
2088      return isTypeDependent() || getType()->isIntegralType();
2089
2090    case NPC_ValueDependentIsNotNull:
2091      return false;
2092    }
2093  }
2094
2095  // Strip off a cast to void*, if it exists. Except in C++.
2096  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2097    if (!Ctx.getLangOptions().CPlusPlus) {
2098      // Check that it is a cast to void*.
2099      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2100        QualType Pointee = PT->getPointeeType();
2101        if (!Pointee.hasQualifiers() &&
2102            Pointee->isVoidType() &&                              // to void*
2103            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2104          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2105      }
2106    }
2107  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2108    // Ignore the ImplicitCastExpr type entirely.
2109    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2110  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2111    // Accept ((void*)0) as a null pointer constant, as many other
2112    // implementations do.
2113    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2114  } else if (const CXXDefaultArgExpr *DefaultArg
2115               = dyn_cast<CXXDefaultArgExpr>(this)) {
2116    // See through default argument expressions
2117    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2118  } else if (isa<GNUNullExpr>(this)) {
2119    // The GNU __null extension is always a null pointer constant.
2120    return true;
2121  }
2122
2123  // C++0x nullptr_t is always a null pointer constant.
2124  if (getType()->isNullPtrType())
2125    return true;
2126
2127  // This expression must be an integer type.
2128  if (!getType()->isIntegerType() ||
2129      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2130    return false;
2131
2132  // If we have an integer constant expression, we need to *evaluate* it and
2133  // test for the value 0.
2134  llvm::APSInt Result;
2135  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2136}
2137
2138FieldDecl *Expr::getBitField() {
2139  Expr *E = this->IgnoreParens();
2140
2141  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2142    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2143      E = ICE->getSubExpr()->IgnoreParens();
2144    else
2145      break;
2146  }
2147
2148  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2149    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2150      if (Field->isBitField())
2151        return Field;
2152
2153  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2154    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2155      return BinOp->getLHS()->getBitField();
2156
2157  return 0;
2158}
2159
2160bool Expr::refersToVectorElement() const {
2161  const Expr *E = this->IgnoreParens();
2162
2163  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2164    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2165      E = ICE->getSubExpr()->IgnoreParens();
2166    else
2167      break;
2168  }
2169
2170  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2171    return ASE->getBase()->getType()->isVectorType();
2172
2173  if (isa<ExtVectorElementExpr>(E))
2174    return true;
2175
2176  return false;
2177}
2178
2179/// isArrow - Return true if the base expression is a pointer to vector,
2180/// return false if the base expression is a vector.
2181bool ExtVectorElementExpr::isArrow() const {
2182  return getBase()->getType()->isPointerType();
2183}
2184
2185unsigned ExtVectorElementExpr::getNumElements() const {
2186  if (const VectorType *VT = getType()->getAs<VectorType>())
2187    return VT->getNumElements();
2188  return 1;
2189}
2190
2191/// containsDuplicateElements - Return true if any element access is repeated.
2192bool ExtVectorElementExpr::containsDuplicateElements() const {
2193  // FIXME: Refactor this code to an accessor on the AST node which returns the
2194  // "type" of component access, and share with code below and in Sema.
2195  llvm::StringRef Comp = Accessor->getName();
2196
2197  // Halving swizzles do not contain duplicate elements.
2198  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2199    return false;
2200
2201  // Advance past s-char prefix on hex swizzles.
2202  if (Comp[0] == 's' || Comp[0] == 'S')
2203    Comp = Comp.substr(1);
2204
2205  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2206    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2207        return true;
2208
2209  return false;
2210}
2211
2212/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2213void ExtVectorElementExpr::getEncodedElementAccess(
2214                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2215  llvm::StringRef Comp = Accessor->getName();
2216  if (Comp[0] == 's' || Comp[0] == 'S')
2217    Comp = Comp.substr(1);
2218
2219  bool isHi =   Comp == "hi";
2220  bool isLo =   Comp == "lo";
2221  bool isEven = Comp == "even";
2222  bool isOdd  = Comp == "odd";
2223
2224  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2225    uint64_t Index;
2226
2227    if (isHi)
2228      Index = e + i;
2229    else if (isLo)
2230      Index = i;
2231    else if (isEven)
2232      Index = 2 * i;
2233    else if (isOdd)
2234      Index = 2 * i + 1;
2235    else
2236      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2237
2238    Elts.push_back(Index);
2239  }
2240}
2241
2242// constructor for instance messages.
2243ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, Expr *receiver,
2244                                 Selector selInfo,
2245                                 QualType retType, ObjCMethodDecl *mproto,
2246                                 SourceLocation LBrac, SourceLocation RBrac,
2247                                 Expr **ArgExprs, unsigned nargs)
2248  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2249    MethodProto(mproto) {
2250  NumArgs = nargs;
2251  SubExprs = new (C) Stmt*[NumArgs+1];
2252  SubExprs[RECEIVER] = receiver;
2253  if (NumArgs) {
2254    for (unsigned i = 0; i != NumArgs; ++i)
2255      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2256  }
2257  LBracloc = LBrac;
2258  RBracloc = RBrac;
2259}
2260
2261// constructor for class messages.
2262// FIXME: clsName should be typed to ObjCInterfaceType
2263ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, IdentifierInfo *clsName,
2264                                 SourceLocation clsNameLoc, Selector selInfo,
2265                                 QualType retType, ObjCMethodDecl *mproto,
2266                                 SourceLocation LBrac, SourceLocation RBrac,
2267                                 Expr **ArgExprs, unsigned nargs)
2268  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2269    SelName(selInfo), MethodProto(mproto) {
2270  NumArgs = nargs;
2271  SubExprs = new (C) Stmt*[NumArgs+1];
2272  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2273  if (NumArgs) {
2274    for (unsigned i = 0; i != NumArgs; ++i)
2275      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2276  }
2277  LBracloc = LBrac;
2278  RBracloc = RBrac;
2279}
2280
2281// constructor for class messages.
2282ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, ObjCInterfaceDecl *cls,
2283                                 SourceLocation clsNameLoc, Selector selInfo,
2284                                 QualType retType,
2285                                 ObjCMethodDecl *mproto, SourceLocation LBrac,
2286                                 SourceLocation RBrac, Expr **ArgExprs,
2287                                 unsigned nargs)
2288  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2289    SelName(selInfo), MethodProto(mproto)
2290{
2291  NumArgs = nargs;
2292  SubExprs = new (C) Stmt*[NumArgs+1];
2293  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2294  if (NumArgs) {
2295    for (unsigned i = 0; i != NumArgs; ++i)
2296      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2297  }
2298  LBracloc = LBrac;
2299  RBracloc = RBrac;
2300}
2301
2302ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2303  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2304  switch (x & Flags) {
2305    default:
2306      assert(false && "Invalid ObjCMessageExpr.");
2307    case IsInstMeth:
2308      return ClassInfo(0, 0, SourceLocation());
2309    case IsClsMethDeclUnknown:
2310      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags), ClassNameLoc);
2311    case IsClsMethDeclKnown: {
2312      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2313      return ClassInfo(D, D->getIdentifier(), ClassNameLoc);
2314    }
2315  }
2316}
2317
2318void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2319  if (CI.Decl == 0 && CI.Name == 0) {
2320    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2321    return;
2322  }
2323
2324  if (CI.Decl == 0)
2325    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Name | IsClsMethDeclUnknown);
2326  else
2327    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Decl | IsClsMethDeclKnown);
2328  ClassNameLoc = CI.Loc;
2329}
2330
2331void ObjCMessageExpr::DoDestroy(ASTContext &C) {
2332  DestroyChildren(C);
2333  if (SubExprs)
2334    C.Deallocate(SubExprs);
2335  this->~ObjCMessageExpr();
2336  C.Deallocate((void*) this);
2337}
2338
2339bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2340  return getCond()->EvaluateAsInt(C) != 0;
2341}
2342
2343void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2344                                 unsigned NumExprs) {
2345  if (SubExprs) C.Deallocate(SubExprs);
2346
2347  SubExprs = new (C) Stmt* [NumExprs];
2348  this->NumExprs = NumExprs;
2349  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2350}
2351
2352void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2353  DestroyChildren(C);
2354  if (SubExprs) C.Deallocate(SubExprs);
2355  this->~ShuffleVectorExpr();
2356  C.Deallocate(this);
2357}
2358
2359void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2360  // Override default behavior of traversing children. If this has a type
2361  // operand and the type is a variable-length array, the child iteration
2362  // will iterate over the size expression. However, this expression belongs
2363  // to the type, not to this, so we don't want to delete it.
2364  // We still want to delete this expression.
2365  if (isArgumentType()) {
2366    this->~SizeOfAlignOfExpr();
2367    C.Deallocate(this);
2368  }
2369  else
2370    Expr::DoDestroy(C);
2371}
2372
2373//===----------------------------------------------------------------------===//
2374//  DesignatedInitExpr
2375//===----------------------------------------------------------------------===//
2376
2377IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2378  assert(Kind == FieldDesignator && "Only valid on a field designator");
2379  if (Field.NameOrField & 0x01)
2380    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2381  else
2382    return getField()->getIdentifier();
2383}
2384
2385DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2386                                       unsigned NumDesignators,
2387                                       const Designator *Designators,
2388                                       SourceLocation EqualOrColonLoc,
2389                                       bool GNUSyntax,
2390                                       Expr **IndexExprs,
2391                                       unsigned NumIndexExprs,
2392                                       Expr *Init)
2393  : Expr(DesignatedInitExprClass, Ty,
2394         Init->isTypeDependent(), Init->isValueDependent()),
2395    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2396    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2397  this->Designators = new (C) Designator[NumDesignators];
2398
2399  // Record the initializer itself.
2400  child_iterator Child = child_begin();
2401  *Child++ = Init;
2402
2403  // Copy the designators and their subexpressions, computing
2404  // value-dependence along the way.
2405  unsigned IndexIdx = 0;
2406  for (unsigned I = 0; I != NumDesignators; ++I) {
2407    this->Designators[I] = Designators[I];
2408
2409    if (this->Designators[I].isArrayDesignator()) {
2410      // Compute type- and value-dependence.
2411      Expr *Index = IndexExprs[IndexIdx];
2412      ValueDependent = ValueDependent ||
2413        Index->isTypeDependent() || Index->isValueDependent();
2414
2415      // Copy the index expressions into permanent storage.
2416      *Child++ = IndexExprs[IndexIdx++];
2417    } else if (this->Designators[I].isArrayRangeDesignator()) {
2418      // Compute type- and value-dependence.
2419      Expr *Start = IndexExprs[IndexIdx];
2420      Expr *End = IndexExprs[IndexIdx + 1];
2421      ValueDependent = ValueDependent ||
2422        Start->isTypeDependent() || Start->isValueDependent() ||
2423        End->isTypeDependent() || End->isValueDependent();
2424
2425      // Copy the start/end expressions into permanent storage.
2426      *Child++ = IndexExprs[IndexIdx++];
2427      *Child++ = IndexExprs[IndexIdx++];
2428    }
2429  }
2430
2431  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2432}
2433
2434DesignatedInitExpr *
2435DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2436                           unsigned NumDesignators,
2437                           Expr **IndexExprs, unsigned NumIndexExprs,
2438                           SourceLocation ColonOrEqualLoc,
2439                           bool UsesColonSyntax, Expr *Init) {
2440  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2441                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2442  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2443                                      ColonOrEqualLoc, UsesColonSyntax,
2444                                      IndexExprs, NumIndexExprs, Init);
2445}
2446
2447DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2448                                                    unsigned NumIndexExprs) {
2449  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2450                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2451  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2452}
2453
2454void DesignatedInitExpr::setDesignators(ASTContext &C,
2455                                        const Designator *Desigs,
2456                                        unsigned NumDesigs) {
2457  DestroyDesignators(C);
2458
2459  Designators = new (C) Designator[NumDesigs];
2460  NumDesignators = NumDesigs;
2461  for (unsigned I = 0; I != NumDesigs; ++I)
2462    Designators[I] = Desigs[I];
2463}
2464
2465SourceRange DesignatedInitExpr::getSourceRange() const {
2466  SourceLocation StartLoc;
2467  Designator &First =
2468    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2469  if (First.isFieldDesignator()) {
2470    if (GNUSyntax)
2471      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2472    else
2473      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2474  } else
2475    StartLoc =
2476      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2477  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2478}
2479
2480Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2481  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2482  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2483  Ptr += sizeof(DesignatedInitExpr);
2484  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2485  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2486}
2487
2488Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2489  assert(D.Kind == Designator::ArrayRangeDesignator &&
2490         "Requires array range designator");
2491  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2492  Ptr += sizeof(DesignatedInitExpr);
2493  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2494  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2495}
2496
2497Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2498  assert(D.Kind == Designator::ArrayRangeDesignator &&
2499         "Requires array range designator");
2500  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2501  Ptr += sizeof(DesignatedInitExpr);
2502  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2503  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2504}
2505
2506/// \brief Replaces the designator at index @p Idx with the series
2507/// of designators in [First, Last).
2508void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2509                                          const Designator *First,
2510                                          const Designator *Last) {
2511  unsigned NumNewDesignators = Last - First;
2512  if (NumNewDesignators == 0) {
2513    std::copy_backward(Designators + Idx + 1,
2514                       Designators + NumDesignators,
2515                       Designators + Idx);
2516    --NumNewDesignators;
2517    return;
2518  } else if (NumNewDesignators == 1) {
2519    Designators[Idx] = *First;
2520    return;
2521  }
2522
2523  Designator *NewDesignators
2524    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2525  std::copy(Designators, Designators + Idx, NewDesignators);
2526  std::copy(First, Last, NewDesignators + Idx);
2527  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2528            NewDesignators + Idx + NumNewDesignators);
2529  DestroyDesignators(C);
2530  Designators = NewDesignators;
2531  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2532}
2533
2534void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2535  DestroyDesignators(C);
2536  Expr::DoDestroy(C);
2537}
2538
2539void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2540  for (unsigned I = 0; I != NumDesignators; ++I)
2541    Designators[I].~Designator();
2542  C.Deallocate(Designators);
2543  Designators = 0;
2544}
2545
2546ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2547                             Expr **exprs, unsigned nexprs,
2548                             SourceLocation rparenloc)
2549: Expr(ParenListExprClass, QualType(),
2550       hasAnyTypeDependentArguments(exprs, nexprs),
2551       hasAnyValueDependentArguments(exprs, nexprs)),
2552  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2553
2554  Exprs = new (C) Stmt*[nexprs];
2555  for (unsigned i = 0; i != nexprs; ++i)
2556    Exprs[i] = exprs[i];
2557}
2558
2559void ParenListExpr::DoDestroy(ASTContext& C) {
2560  DestroyChildren(C);
2561  if (Exprs) C.Deallocate(Exprs);
2562  this->~ParenListExpr();
2563  C.Deallocate(this);
2564}
2565
2566//===----------------------------------------------------------------------===//
2567//  ExprIterator.
2568//===----------------------------------------------------------------------===//
2569
2570Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2571Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2572Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2573const Expr* ConstExprIterator::operator[](size_t idx) const {
2574  return cast<Expr>(I[idx]);
2575}
2576const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2577const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2578
2579//===----------------------------------------------------------------------===//
2580//  Child Iterators for iterating over subexpressions/substatements
2581//===----------------------------------------------------------------------===//
2582
2583// DeclRefExpr
2584Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2585Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2586
2587// ObjCIvarRefExpr
2588Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2589Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2590
2591// ObjCPropertyRefExpr
2592Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2593Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2594
2595// ObjCImplicitSetterGetterRefExpr
2596Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2597  return &Base;
2598}
2599Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2600  return &Base+1;
2601}
2602
2603// ObjCSuperExpr
2604Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2605Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2606
2607// ObjCIsaExpr
2608Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2609Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2610
2611// PredefinedExpr
2612Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2613Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2614
2615// IntegerLiteral
2616Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2617Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2618
2619// CharacterLiteral
2620Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2621Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2622
2623// FloatingLiteral
2624Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2625Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2626
2627// ImaginaryLiteral
2628Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2629Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2630
2631// StringLiteral
2632Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2633Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2634
2635// ParenExpr
2636Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2637Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2638
2639// UnaryOperator
2640Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2641Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2642
2643// SizeOfAlignOfExpr
2644Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2645  // If this is of a type and the type is a VLA type (and not a typedef), the
2646  // size expression of the VLA needs to be treated as an executable expression.
2647  // Why isn't this weirdness documented better in StmtIterator?
2648  if (isArgumentType()) {
2649    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2650                                   getArgumentType().getTypePtr()))
2651      return child_iterator(T);
2652    return child_iterator();
2653  }
2654  return child_iterator(&Argument.Ex);
2655}
2656Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2657  if (isArgumentType())
2658    return child_iterator();
2659  return child_iterator(&Argument.Ex + 1);
2660}
2661
2662// ArraySubscriptExpr
2663Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2664  return &SubExprs[0];
2665}
2666Stmt::child_iterator ArraySubscriptExpr::child_end() {
2667  return &SubExprs[0]+END_EXPR;
2668}
2669
2670// CallExpr
2671Stmt::child_iterator CallExpr::child_begin() {
2672  return &SubExprs[0];
2673}
2674Stmt::child_iterator CallExpr::child_end() {
2675  return &SubExprs[0]+NumArgs+ARGS_START;
2676}
2677
2678// MemberExpr
2679Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2680Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2681
2682// ExtVectorElementExpr
2683Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2684Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2685
2686// CompoundLiteralExpr
2687Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2688Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2689
2690// CastExpr
2691Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2692Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2693
2694// BinaryOperator
2695Stmt::child_iterator BinaryOperator::child_begin() {
2696  return &SubExprs[0];
2697}
2698Stmt::child_iterator BinaryOperator::child_end() {
2699  return &SubExprs[0]+END_EXPR;
2700}
2701
2702// ConditionalOperator
2703Stmt::child_iterator ConditionalOperator::child_begin() {
2704  return &SubExprs[0];
2705}
2706Stmt::child_iterator ConditionalOperator::child_end() {
2707  return &SubExprs[0]+END_EXPR;
2708}
2709
2710// AddrLabelExpr
2711Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2712Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2713
2714// StmtExpr
2715Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2716Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2717
2718// TypesCompatibleExpr
2719Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2720  return child_iterator();
2721}
2722
2723Stmt::child_iterator TypesCompatibleExpr::child_end() {
2724  return child_iterator();
2725}
2726
2727// ChooseExpr
2728Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2729Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2730
2731// GNUNullExpr
2732Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2733Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2734
2735// ShuffleVectorExpr
2736Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2737  return &SubExprs[0];
2738}
2739Stmt::child_iterator ShuffleVectorExpr::child_end() {
2740  return &SubExprs[0]+NumExprs;
2741}
2742
2743// VAArgExpr
2744Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2745Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2746
2747// InitListExpr
2748Stmt::child_iterator InitListExpr::child_begin() {
2749  return InitExprs.size() ? &InitExprs[0] : 0;
2750}
2751Stmt::child_iterator InitListExpr::child_end() {
2752  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2753}
2754
2755// DesignatedInitExpr
2756Stmt::child_iterator DesignatedInitExpr::child_begin() {
2757  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2758  Ptr += sizeof(DesignatedInitExpr);
2759  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2760}
2761Stmt::child_iterator DesignatedInitExpr::child_end() {
2762  return child_iterator(&*child_begin() + NumSubExprs);
2763}
2764
2765// ImplicitValueInitExpr
2766Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2767  return child_iterator();
2768}
2769
2770Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2771  return child_iterator();
2772}
2773
2774// ParenListExpr
2775Stmt::child_iterator ParenListExpr::child_begin() {
2776  return &Exprs[0];
2777}
2778Stmt::child_iterator ParenListExpr::child_end() {
2779  return &Exprs[0]+NumExprs;
2780}
2781
2782// ObjCStringLiteral
2783Stmt::child_iterator ObjCStringLiteral::child_begin() {
2784  return &String;
2785}
2786Stmt::child_iterator ObjCStringLiteral::child_end() {
2787  return &String+1;
2788}
2789
2790// ObjCEncodeExpr
2791Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2792Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2793
2794// ObjCSelectorExpr
2795Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2796  return child_iterator();
2797}
2798Stmt::child_iterator ObjCSelectorExpr::child_end() {
2799  return child_iterator();
2800}
2801
2802// ObjCProtocolExpr
2803Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2804  return child_iterator();
2805}
2806Stmt::child_iterator ObjCProtocolExpr::child_end() {
2807  return child_iterator();
2808}
2809
2810// ObjCMessageExpr
2811Stmt::child_iterator ObjCMessageExpr::child_begin() {
2812  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2813}
2814Stmt::child_iterator ObjCMessageExpr::child_end() {
2815  return &SubExprs[0]+ARGS_START+getNumArgs();
2816}
2817
2818// Blocks
2819Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2820Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2821
2822Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2823Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2824