Expr.cpp revision 90e25a8b2cc5d006e4ced052bcdb40c8af999456
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36/// isKnownToHaveBooleanValue - Return true if this is an integer expression
37/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
38/// but also int expressions which are produced by things like comparisons in
39/// C.
40bool Expr::isKnownToHaveBooleanValue() const {
41  const Expr *E = IgnoreParens();
42
43  // If this value has _Bool type, it is obvious 0/1.
44  if (E->getType()->isBooleanType()) return true;
45  // If this is a non-scalar-integer type, we don't care enough to try.
46  if (!E->getType()->isIntegralOrEnumerationType()) return false;
47
48  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
49    switch (UO->getOpcode()) {
50    case UO_Plus:
51      return UO->getSubExpr()->isKnownToHaveBooleanValue();
52    default:
53      return false;
54    }
55  }
56
57  // Only look through implicit casts.  If the user writes
58  // '(int) (a && b)' treat it as an arbitrary int.
59  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
60    return CE->getSubExpr()->isKnownToHaveBooleanValue();
61
62  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
63    switch (BO->getOpcode()) {
64    default: return false;
65    case BO_LT:   // Relational operators.
66    case BO_GT:
67    case BO_LE:
68    case BO_GE:
69    case BO_EQ:   // Equality operators.
70    case BO_NE:
71    case BO_LAnd: // AND operator.
72    case BO_LOr:  // Logical OR operator.
73      return true;
74
75    case BO_And:  // Bitwise AND operator.
76    case BO_Xor:  // Bitwise XOR operator.
77    case BO_Or:   // Bitwise OR operator.
78      // Handle things like (x==2)|(y==12).
79      return BO->getLHS()->isKnownToHaveBooleanValue() &&
80             BO->getRHS()->isKnownToHaveBooleanValue();
81
82    case BO_Comma:
83    case BO_Assign:
84      return BO->getRHS()->isKnownToHaveBooleanValue();
85    }
86  }
87
88  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
89    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
90           CO->getFalseExpr()->isKnownToHaveBooleanValue();
91
92  return false;
93}
94
95// Amusing macro metaprogramming hack: check whether a class provides
96// a more specific implementation of getExprLoc().
97//
98// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
99namespace {
100  /// This implementation is used when a class provides a custom
101  /// implementation of getExprLoc.
102  template <class E, class T>
103  SourceLocation getExprLocImpl(const Expr *expr,
104                                SourceLocation (T::*v)() const) {
105    return static_cast<const E*>(expr)->getExprLoc();
106  }
107
108  /// This implementation is used when a class doesn't provide
109  /// a custom implementation of getExprLoc.  Overload resolution
110  /// should pick it over the implementation above because it's
111  /// more specialized according to function template partial ordering.
112  template <class E>
113  SourceLocation getExprLocImpl(const Expr *expr,
114                                SourceLocation (Expr::*v)() const) {
115    return static_cast<const E*>(expr)->getLocStart();
116  }
117}
118
119SourceLocation Expr::getExprLoc() const {
120  switch (getStmtClass()) {
121  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
122#define ABSTRACT_STMT(type)
123#define STMT(type, base) \
124  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
125#define EXPR(type, base) \
126  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
127#include "clang/AST/StmtNodes.inc"
128  }
129  llvm_unreachable("unknown statement kind");
130}
131
132//===----------------------------------------------------------------------===//
133// Primary Expressions.
134//===----------------------------------------------------------------------===//
135
136/// \brief Compute the type-, value-, and instantiation-dependence of a
137/// declaration reference
138/// based on the declaration being referenced.
139static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
140                                     bool &TypeDependent,
141                                     bool &ValueDependent,
142                                     bool &InstantiationDependent) {
143  TypeDependent = false;
144  ValueDependent = false;
145  InstantiationDependent = false;
146
147  // (TD) C++ [temp.dep.expr]p3:
148  //   An id-expression is type-dependent if it contains:
149  //
150  // and
151  //
152  // (VD) C++ [temp.dep.constexpr]p2:
153  //  An identifier is value-dependent if it is:
154
155  //  (TD)  - an identifier that was declared with dependent type
156  //  (VD)  - a name declared with a dependent type,
157  if (T->isDependentType()) {
158    TypeDependent = true;
159    ValueDependent = true;
160    InstantiationDependent = true;
161    return;
162  } else if (T->isInstantiationDependentType()) {
163    InstantiationDependent = true;
164  }
165
166  //  (TD)  - a conversion-function-id that specifies a dependent type
167  if (D->getDeclName().getNameKind()
168                                == DeclarationName::CXXConversionFunctionName) {
169    QualType T = D->getDeclName().getCXXNameType();
170    if (T->isDependentType()) {
171      TypeDependent = true;
172      ValueDependent = true;
173      InstantiationDependent = true;
174      return;
175    }
176
177    if (T->isInstantiationDependentType())
178      InstantiationDependent = true;
179  }
180
181  //  (VD)  - the name of a non-type template parameter,
182  if (isa<NonTypeTemplateParmDecl>(D)) {
183    ValueDependent = true;
184    InstantiationDependent = true;
185    return;
186  }
187
188  //  (VD) - a constant with integral or enumeration type and is
189  //         initialized with an expression that is value-dependent.
190  //  (VD) - a constant with literal type and is initialized with an
191  //         expression that is value-dependent [C++11].
192  //  (VD) - FIXME: Missing from the standard:
193  //       -  an entity with reference type and is initialized with an
194  //          expression that is value-dependent [C++11]
195  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
196    if ((Ctx.getLangOptions().CPlusPlus0x ?
197           Var->getType()->isLiteralType() :
198           Var->getType()->isIntegralOrEnumerationType()) &&
199        (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
200         Var->getType()->isReferenceType())) {
201      if (const Expr *Init = Var->getAnyInitializer())
202        if (Init->isValueDependent()) {
203          ValueDependent = true;
204          InstantiationDependent = true;
205        }
206    }
207
208    // (VD) - FIXME: Missing from the standard:
209    //      -  a member function or a static data member of the current
210    //         instantiation
211    if (Var->isStaticDataMember() &&
212        Var->getDeclContext()->isDependentContext()) {
213      ValueDependent = true;
214      InstantiationDependent = true;
215    }
216
217    return;
218  }
219
220  // (VD) - FIXME: Missing from the standard:
221  //      -  a member function or a static data member of the current
222  //         instantiation
223  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
224    ValueDependent = true;
225    InstantiationDependent = true;
226  }
227}
228
229void DeclRefExpr::computeDependence(ASTContext &Ctx) {
230  bool TypeDependent = false;
231  bool ValueDependent = false;
232  bool InstantiationDependent = false;
233  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
234                           ValueDependent, InstantiationDependent);
235
236  // (TD) C++ [temp.dep.expr]p3:
237  //   An id-expression is type-dependent if it contains:
238  //
239  // and
240  //
241  // (VD) C++ [temp.dep.constexpr]p2:
242  //  An identifier is value-dependent if it is:
243  if (!TypeDependent && !ValueDependent &&
244      hasExplicitTemplateArgs() &&
245      TemplateSpecializationType::anyDependentTemplateArguments(
246                                                            getTemplateArgs(),
247                                                       getNumTemplateArgs(),
248                                                      InstantiationDependent)) {
249    TypeDependent = true;
250    ValueDependent = true;
251    InstantiationDependent = true;
252  }
253
254  ExprBits.TypeDependent = TypeDependent;
255  ExprBits.ValueDependent = ValueDependent;
256  ExprBits.InstantiationDependent = InstantiationDependent;
257
258  // Is the declaration a parameter pack?
259  if (getDecl()->isParameterPack())
260    ExprBits.ContainsUnexpandedParameterPack = true;
261}
262
263DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
264                         NestedNameSpecifierLoc QualifierLoc,
265                         SourceLocation TemplateKWLoc,
266                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
267                         NamedDecl *FoundD,
268                         const TemplateArgumentListInfo *TemplateArgs,
269                         QualType T, ExprValueKind VK)
270  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
271    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
272  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
273  if (QualifierLoc)
274    getInternalQualifierLoc() = QualifierLoc;
275  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
276  if (FoundD)
277    getInternalFoundDecl() = FoundD;
278  DeclRefExprBits.HasTemplateKWAndArgsInfo
279    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
280  if (TemplateArgs) {
281    bool Dependent = false;
282    bool InstantiationDependent = false;
283    bool ContainsUnexpandedParameterPack = false;
284    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
285                                               Dependent,
286                                               InstantiationDependent,
287                                               ContainsUnexpandedParameterPack);
288    if (InstantiationDependent)
289      setInstantiationDependent(true);
290  } else if (TemplateKWLoc.isValid()) {
291    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
292  }
293  DeclRefExprBits.HadMultipleCandidates = 0;
294
295  computeDependence(Ctx);
296}
297
298DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
299                                 NestedNameSpecifierLoc QualifierLoc,
300                                 SourceLocation TemplateKWLoc,
301                                 ValueDecl *D,
302                                 SourceLocation NameLoc,
303                                 QualType T,
304                                 ExprValueKind VK,
305                                 NamedDecl *FoundD,
306                                 const TemplateArgumentListInfo *TemplateArgs) {
307  return Create(Context, QualifierLoc, TemplateKWLoc, D,
308                DeclarationNameInfo(D->getDeclName(), NameLoc),
309                T, VK, FoundD, TemplateArgs);
310}
311
312DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
313                                 NestedNameSpecifierLoc QualifierLoc,
314                                 SourceLocation TemplateKWLoc,
315                                 ValueDecl *D,
316                                 const DeclarationNameInfo &NameInfo,
317                                 QualType T,
318                                 ExprValueKind VK,
319                                 NamedDecl *FoundD,
320                                 const TemplateArgumentListInfo *TemplateArgs) {
321  // Filter out cases where the found Decl is the same as the value refenenced.
322  if (D == FoundD)
323    FoundD = 0;
324
325  std::size_t Size = sizeof(DeclRefExpr);
326  if (QualifierLoc != 0)
327    Size += sizeof(NestedNameSpecifierLoc);
328  if (FoundD)
329    Size += sizeof(NamedDecl *);
330  if (TemplateArgs)
331    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
332  else if (TemplateKWLoc.isValid())
333    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
334
335  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
336  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
337                               NameInfo, FoundD, TemplateArgs, T, VK);
338}
339
340DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
341                                      bool HasQualifier,
342                                      bool HasFoundDecl,
343                                      bool HasTemplateKWAndArgsInfo,
344                                      unsigned NumTemplateArgs) {
345  std::size_t Size = sizeof(DeclRefExpr);
346  if (HasQualifier)
347    Size += sizeof(NestedNameSpecifierLoc);
348  if (HasFoundDecl)
349    Size += sizeof(NamedDecl *);
350  if (HasTemplateKWAndArgsInfo)
351    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
352
353  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
354  return new (Mem) DeclRefExpr(EmptyShell());
355}
356
357SourceRange DeclRefExpr::getSourceRange() const {
358  SourceRange R = getNameInfo().getSourceRange();
359  if (hasQualifier())
360    R.setBegin(getQualifierLoc().getBeginLoc());
361  if (hasExplicitTemplateArgs())
362    R.setEnd(getRAngleLoc());
363  return R;
364}
365SourceLocation DeclRefExpr::getLocStart() const {
366  if (hasQualifier())
367    return getQualifierLoc().getBeginLoc();
368  return getNameInfo().getLocStart();
369}
370SourceLocation DeclRefExpr::getLocEnd() const {
371  if (hasExplicitTemplateArgs())
372    return getRAngleLoc();
373  return getNameInfo().getLocEnd();
374}
375
376// FIXME: Maybe this should use DeclPrinter with a special "print predefined
377// expr" policy instead.
378std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
379  ASTContext &Context = CurrentDecl->getASTContext();
380
381  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
382    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
383      return FD->getNameAsString();
384
385    SmallString<256> Name;
386    llvm::raw_svector_ostream Out(Name);
387
388    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
389      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
390        Out << "virtual ";
391      if (MD->isStatic())
392        Out << "static ";
393    }
394
395    PrintingPolicy Policy(Context.getLangOptions());
396
397    std::string Proto = FD->getQualifiedNameAsString(Policy);
398
399    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
400    const FunctionProtoType *FT = 0;
401    if (FD->hasWrittenPrototype())
402      FT = dyn_cast<FunctionProtoType>(AFT);
403
404    Proto += "(";
405    if (FT) {
406      llvm::raw_string_ostream POut(Proto);
407      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
408        if (i) POut << ", ";
409        std::string Param;
410        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
411        POut << Param;
412      }
413
414      if (FT->isVariadic()) {
415        if (FD->getNumParams()) POut << ", ";
416        POut << "...";
417      }
418    }
419    Proto += ")";
420
421    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
422      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
423      if (ThisQuals.hasConst())
424        Proto += " const";
425      if (ThisQuals.hasVolatile())
426        Proto += " volatile";
427    }
428
429    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
430      AFT->getResultType().getAsStringInternal(Proto, Policy);
431
432    Out << Proto;
433
434    Out.flush();
435    return Name.str().str();
436  }
437  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
438    SmallString<256> Name;
439    llvm::raw_svector_ostream Out(Name);
440    Out << (MD->isInstanceMethod() ? '-' : '+');
441    Out << '[';
442
443    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
444    // a null check to avoid a crash.
445    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
446      Out << *ID;
447
448    if (const ObjCCategoryImplDecl *CID =
449        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
450      Out << '(' << *CID << ')';
451
452    Out <<  ' ';
453    Out << MD->getSelector().getAsString();
454    Out <<  ']';
455
456    Out.flush();
457    return Name.str().str();
458  }
459  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
460    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
461    return "top level";
462  }
463  return "";
464}
465
466void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
467  if (hasAllocation())
468    C.Deallocate(pVal);
469
470  BitWidth = Val.getBitWidth();
471  unsigned NumWords = Val.getNumWords();
472  const uint64_t* Words = Val.getRawData();
473  if (NumWords > 1) {
474    pVal = new (C) uint64_t[NumWords];
475    std::copy(Words, Words + NumWords, pVal);
476  } else if (NumWords == 1)
477    VAL = Words[0];
478  else
479    VAL = 0;
480}
481
482IntegerLiteral *
483IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
484                       QualType type, SourceLocation l) {
485  return new (C) IntegerLiteral(C, V, type, l);
486}
487
488IntegerLiteral *
489IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
490  return new (C) IntegerLiteral(Empty);
491}
492
493FloatingLiteral *
494FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
495                        bool isexact, QualType Type, SourceLocation L) {
496  return new (C) FloatingLiteral(C, V, isexact, Type, L);
497}
498
499FloatingLiteral *
500FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
501  return new (C) FloatingLiteral(C, Empty);
502}
503
504/// getValueAsApproximateDouble - This returns the value as an inaccurate
505/// double.  Note that this may cause loss of precision, but is useful for
506/// debugging dumps, etc.
507double FloatingLiteral::getValueAsApproximateDouble() const {
508  llvm::APFloat V = getValue();
509  bool ignored;
510  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
511            &ignored);
512  return V.convertToDouble();
513}
514
515int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
516  int CharByteWidth = 0;
517  switch(k) {
518    case Ascii:
519    case UTF8:
520      CharByteWidth = target.getCharWidth();
521      break;
522    case Wide:
523      CharByteWidth = target.getWCharWidth();
524      break;
525    case UTF16:
526      CharByteWidth = target.getChar16Width();
527      break;
528    case UTF32:
529      CharByteWidth = target.getChar32Width();
530      break;
531  }
532  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
533  CharByteWidth /= 8;
534  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
535         && "character byte widths supported are 1, 2, and 4 only");
536  return CharByteWidth;
537}
538
539StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
540                                     StringKind Kind, bool Pascal, QualType Ty,
541                                     const SourceLocation *Loc,
542                                     unsigned NumStrs) {
543  // Allocate enough space for the StringLiteral plus an array of locations for
544  // any concatenated string tokens.
545  void *Mem = C.Allocate(sizeof(StringLiteral)+
546                         sizeof(SourceLocation)*(NumStrs-1),
547                         llvm::alignOf<StringLiteral>());
548  StringLiteral *SL = new (Mem) StringLiteral(Ty);
549
550  // OPTIMIZE: could allocate this appended to the StringLiteral.
551  SL->setString(C,Str,Kind,Pascal);
552
553  SL->TokLocs[0] = Loc[0];
554  SL->NumConcatenated = NumStrs;
555
556  if (NumStrs != 1)
557    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
558  return SL;
559}
560
561StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
562  void *Mem = C.Allocate(sizeof(StringLiteral)+
563                         sizeof(SourceLocation)*(NumStrs-1),
564                         llvm::alignOf<StringLiteral>());
565  StringLiteral *SL = new (Mem) StringLiteral(QualType());
566  SL->CharByteWidth = 0;
567  SL->Length = 0;
568  SL->NumConcatenated = NumStrs;
569  return SL;
570}
571
572void StringLiteral::setString(ASTContext &C, StringRef Str,
573                              StringKind Kind, bool IsPascal) {
574  //FIXME: we assume that the string data comes from a target that uses the same
575  // code unit size and endianess for the type of string.
576  this->Kind = Kind;
577  this->IsPascal = IsPascal;
578
579  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
580  assert((Str.size()%CharByteWidth == 0)
581         && "size of data must be multiple of CharByteWidth");
582  Length = Str.size()/CharByteWidth;
583
584  switch(CharByteWidth) {
585    case 1: {
586      char *AStrData = new (C) char[Length];
587      std::memcpy(AStrData,Str.data(),Str.size());
588      StrData.asChar = AStrData;
589      break;
590    }
591    case 2: {
592      uint16_t *AStrData = new (C) uint16_t[Length];
593      std::memcpy(AStrData,Str.data(),Str.size());
594      StrData.asUInt16 = AStrData;
595      break;
596    }
597    case 4: {
598      uint32_t *AStrData = new (C) uint32_t[Length];
599      std::memcpy(AStrData,Str.data(),Str.size());
600      StrData.asUInt32 = AStrData;
601      break;
602    }
603    default:
604      assert(false && "unsupported CharByteWidth");
605  }
606}
607
608/// getLocationOfByte - Return a source location that points to the specified
609/// byte of this string literal.
610///
611/// Strings are amazingly complex.  They can be formed from multiple tokens and
612/// can have escape sequences in them in addition to the usual trigraph and
613/// escaped newline business.  This routine handles this complexity.
614///
615SourceLocation StringLiteral::
616getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
617                  const LangOptions &Features, const TargetInfo &Target) const {
618  assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
619
620  // Loop over all of the tokens in this string until we find the one that
621  // contains the byte we're looking for.
622  unsigned TokNo = 0;
623  while (1) {
624    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
625    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
626
627    // Get the spelling of the string so that we can get the data that makes up
628    // the string literal, not the identifier for the macro it is potentially
629    // expanded through.
630    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
631
632    // Re-lex the token to get its length and original spelling.
633    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
634    bool Invalid = false;
635    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
636    if (Invalid)
637      return StrTokSpellingLoc;
638
639    const char *StrData = Buffer.data()+LocInfo.second;
640
641    // Create a langops struct and enable trigraphs.  This is sufficient for
642    // relexing tokens.
643    LangOptions LangOpts;
644    LangOpts.Trigraphs = true;
645
646    // Create a lexer starting at the beginning of this token.
647    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
648                   Buffer.end());
649    Token TheTok;
650    TheLexer.LexFromRawLexer(TheTok);
651
652    // Use the StringLiteralParser to compute the length of the string in bytes.
653    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
654    unsigned TokNumBytes = SLP.GetStringLength();
655
656    // If the byte is in this token, return the location of the byte.
657    if (ByteNo < TokNumBytes ||
658        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
659      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
660
661      // Now that we know the offset of the token in the spelling, use the
662      // preprocessor to get the offset in the original source.
663      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
664    }
665
666    // Move to the next string token.
667    ++TokNo;
668    ByteNo -= TokNumBytes;
669  }
670}
671
672
673
674/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
675/// corresponds to, e.g. "sizeof" or "[pre]++".
676const char *UnaryOperator::getOpcodeStr(Opcode Op) {
677  switch (Op) {
678  case UO_PostInc: return "++";
679  case UO_PostDec: return "--";
680  case UO_PreInc:  return "++";
681  case UO_PreDec:  return "--";
682  case UO_AddrOf:  return "&";
683  case UO_Deref:   return "*";
684  case UO_Plus:    return "+";
685  case UO_Minus:   return "-";
686  case UO_Not:     return "~";
687  case UO_LNot:    return "!";
688  case UO_Real:    return "__real";
689  case UO_Imag:    return "__imag";
690  case UO_Extension: return "__extension__";
691  }
692  llvm_unreachable("Unknown unary operator");
693}
694
695UnaryOperatorKind
696UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
697  switch (OO) {
698  default: llvm_unreachable("No unary operator for overloaded function");
699  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
700  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
701  case OO_Amp:        return UO_AddrOf;
702  case OO_Star:       return UO_Deref;
703  case OO_Plus:       return UO_Plus;
704  case OO_Minus:      return UO_Minus;
705  case OO_Tilde:      return UO_Not;
706  case OO_Exclaim:    return UO_LNot;
707  }
708}
709
710OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
711  switch (Opc) {
712  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
713  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
714  case UO_AddrOf: return OO_Amp;
715  case UO_Deref: return OO_Star;
716  case UO_Plus: return OO_Plus;
717  case UO_Minus: return OO_Minus;
718  case UO_Not: return OO_Tilde;
719  case UO_LNot: return OO_Exclaim;
720  default: return OO_None;
721  }
722}
723
724
725//===----------------------------------------------------------------------===//
726// Postfix Operators.
727//===----------------------------------------------------------------------===//
728
729CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
730                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
731                   SourceLocation rparenloc)
732  : Expr(SC, t, VK, OK_Ordinary,
733         fn->isTypeDependent(),
734         fn->isValueDependent(),
735         fn->isInstantiationDependent(),
736         fn->containsUnexpandedParameterPack()),
737    NumArgs(numargs) {
738
739  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
740  SubExprs[FN] = fn;
741  for (unsigned i = 0; i != numargs; ++i) {
742    if (args[i]->isTypeDependent())
743      ExprBits.TypeDependent = true;
744    if (args[i]->isValueDependent())
745      ExprBits.ValueDependent = true;
746    if (args[i]->isInstantiationDependent())
747      ExprBits.InstantiationDependent = true;
748    if (args[i]->containsUnexpandedParameterPack())
749      ExprBits.ContainsUnexpandedParameterPack = true;
750
751    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
752  }
753
754  CallExprBits.NumPreArgs = NumPreArgs;
755  RParenLoc = rparenloc;
756}
757
758CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
759                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
760  : Expr(CallExprClass, t, VK, OK_Ordinary,
761         fn->isTypeDependent(),
762         fn->isValueDependent(),
763         fn->isInstantiationDependent(),
764         fn->containsUnexpandedParameterPack()),
765    NumArgs(numargs) {
766
767  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
768  SubExprs[FN] = fn;
769  for (unsigned i = 0; i != numargs; ++i) {
770    if (args[i]->isTypeDependent())
771      ExprBits.TypeDependent = true;
772    if (args[i]->isValueDependent())
773      ExprBits.ValueDependent = true;
774    if (args[i]->isInstantiationDependent())
775      ExprBits.InstantiationDependent = true;
776    if (args[i]->containsUnexpandedParameterPack())
777      ExprBits.ContainsUnexpandedParameterPack = true;
778
779    SubExprs[i+PREARGS_START] = args[i];
780  }
781
782  CallExprBits.NumPreArgs = 0;
783  RParenLoc = rparenloc;
784}
785
786CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
787  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
788  // FIXME: Why do we allocate this?
789  SubExprs = new (C) Stmt*[PREARGS_START];
790  CallExprBits.NumPreArgs = 0;
791}
792
793CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
794                   EmptyShell Empty)
795  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
796  // FIXME: Why do we allocate this?
797  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
798  CallExprBits.NumPreArgs = NumPreArgs;
799}
800
801Decl *CallExpr::getCalleeDecl() {
802  Expr *CEE = getCallee()->IgnoreParenImpCasts();
803
804  while (SubstNonTypeTemplateParmExpr *NTTP
805                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
806    CEE = NTTP->getReplacement()->IgnoreParenCasts();
807  }
808
809  // If we're calling a dereference, look at the pointer instead.
810  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
811    if (BO->isPtrMemOp())
812      CEE = BO->getRHS()->IgnoreParenCasts();
813  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
814    if (UO->getOpcode() == UO_Deref)
815      CEE = UO->getSubExpr()->IgnoreParenCasts();
816  }
817  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
818    return DRE->getDecl();
819  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
820    return ME->getMemberDecl();
821
822  return 0;
823}
824
825FunctionDecl *CallExpr::getDirectCallee() {
826  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
827}
828
829/// setNumArgs - This changes the number of arguments present in this call.
830/// Any orphaned expressions are deleted by this, and any new operands are set
831/// to null.
832void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
833  // No change, just return.
834  if (NumArgs == getNumArgs()) return;
835
836  // If shrinking # arguments, just delete the extras and forgot them.
837  if (NumArgs < getNumArgs()) {
838    this->NumArgs = NumArgs;
839    return;
840  }
841
842  // Otherwise, we are growing the # arguments.  New an bigger argument array.
843  unsigned NumPreArgs = getNumPreArgs();
844  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
845  // Copy over args.
846  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
847    NewSubExprs[i] = SubExprs[i];
848  // Null out new args.
849  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
850       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
851    NewSubExprs[i] = 0;
852
853  if (SubExprs) C.Deallocate(SubExprs);
854  SubExprs = NewSubExprs;
855  this->NumArgs = NumArgs;
856}
857
858/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
859/// not, return 0.
860unsigned CallExpr::isBuiltinCall() const {
861  // All simple function calls (e.g. func()) are implicitly cast to pointer to
862  // function. As a result, we try and obtain the DeclRefExpr from the
863  // ImplicitCastExpr.
864  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
865  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
866    return 0;
867
868  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
869  if (!DRE)
870    return 0;
871
872  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
873  if (!FDecl)
874    return 0;
875
876  if (!FDecl->getIdentifier())
877    return 0;
878
879  return FDecl->getBuiltinID();
880}
881
882QualType CallExpr::getCallReturnType() const {
883  QualType CalleeType = getCallee()->getType();
884  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
885    CalleeType = FnTypePtr->getPointeeType();
886  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
887    CalleeType = BPT->getPointeeType();
888  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
889    // This should never be overloaded and so should never return null.
890    CalleeType = Expr::findBoundMemberType(getCallee());
891
892  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
893  return FnType->getResultType();
894}
895
896SourceRange CallExpr::getSourceRange() const {
897  if (isa<CXXOperatorCallExpr>(this))
898    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
899
900  SourceLocation begin = getCallee()->getLocStart();
901  if (begin.isInvalid() && getNumArgs() > 0)
902    begin = getArg(0)->getLocStart();
903  SourceLocation end = getRParenLoc();
904  if (end.isInvalid() && getNumArgs() > 0)
905    end = getArg(getNumArgs() - 1)->getLocEnd();
906  return SourceRange(begin, end);
907}
908
909OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
910                                   SourceLocation OperatorLoc,
911                                   TypeSourceInfo *tsi,
912                                   OffsetOfNode* compsPtr, unsigned numComps,
913                                   Expr** exprsPtr, unsigned numExprs,
914                                   SourceLocation RParenLoc) {
915  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
916                         sizeof(OffsetOfNode) * numComps +
917                         sizeof(Expr*) * numExprs);
918
919  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
920                                exprsPtr, numExprs, RParenLoc);
921}
922
923OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
924                                        unsigned numComps, unsigned numExprs) {
925  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
926                         sizeof(OffsetOfNode) * numComps +
927                         sizeof(Expr*) * numExprs);
928  return new (Mem) OffsetOfExpr(numComps, numExprs);
929}
930
931OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
932                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
933                           OffsetOfNode* compsPtr, unsigned numComps,
934                           Expr** exprsPtr, unsigned numExprs,
935                           SourceLocation RParenLoc)
936  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
937         /*TypeDependent=*/false,
938         /*ValueDependent=*/tsi->getType()->isDependentType(),
939         tsi->getType()->isInstantiationDependentType(),
940         tsi->getType()->containsUnexpandedParameterPack()),
941    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
942    NumComps(numComps), NumExprs(numExprs)
943{
944  for(unsigned i = 0; i < numComps; ++i) {
945    setComponent(i, compsPtr[i]);
946  }
947
948  for(unsigned i = 0; i < numExprs; ++i) {
949    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
950      ExprBits.ValueDependent = true;
951    if (exprsPtr[i]->containsUnexpandedParameterPack())
952      ExprBits.ContainsUnexpandedParameterPack = true;
953
954    setIndexExpr(i, exprsPtr[i]);
955  }
956}
957
958IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
959  assert(getKind() == Field || getKind() == Identifier);
960  if (getKind() == Field)
961    return getField()->getIdentifier();
962
963  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
964}
965
966MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
967                               NestedNameSpecifierLoc QualifierLoc,
968                               SourceLocation TemplateKWLoc,
969                               ValueDecl *memberdecl,
970                               DeclAccessPair founddecl,
971                               DeclarationNameInfo nameinfo,
972                               const TemplateArgumentListInfo *targs,
973                               QualType ty,
974                               ExprValueKind vk,
975                               ExprObjectKind ok) {
976  std::size_t Size = sizeof(MemberExpr);
977
978  bool hasQualOrFound = (QualifierLoc ||
979                         founddecl.getDecl() != memberdecl ||
980                         founddecl.getAccess() != memberdecl->getAccess());
981  if (hasQualOrFound)
982    Size += sizeof(MemberNameQualifier);
983
984  if (targs)
985    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
986  else if (TemplateKWLoc.isValid())
987    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
988
989  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
990  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
991                                       ty, vk, ok);
992
993  if (hasQualOrFound) {
994    // FIXME: Wrong. We should be looking at the member declaration we found.
995    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
996      E->setValueDependent(true);
997      E->setTypeDependent(true);
998      E->setInstantiationDependent(true);
999    }
1000    else if (QualifierLoc &&
1001             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1002      E->setInstantiationDependent(true);
1003
1004    E->HasQualifierOrFoundDecl = true;
1005
1006    MemberNameQualifier *NQ = E->getMemberQualifier();
1007    NQ->QualifierLoc = QualifierLoc;
1008    NQ->FoundDecl = founddecl;
1009  }
1010
1011  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1012
1013  if (targs) {
1014    bool Dependent = false;
1015    bool InstantiationDependent = false;
1016    bool ContainsUnexpandedParameterPack = false;
1017    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1018                                                  Dependent,
1019                                                  InstantiationDependent,
1020                                             ContainsUnexpandedParameterPack);
1021    if (InstantiationDependent)
1022      E->setInstantiationDependent(true);
1023  } else if (TemplateKWLoc.isValid()) {
1024    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1025  }
1026
1027  return E;
1028}
1029
1030SourceRange MemberExpr::getSourceRange() const {
1031  return SourceRange(getLocStart(), getLocEnd());
1032}
1033SourceLocation MemberExpr::getLocStart() const {
1034  if (isImplicitAccess()) {
1035    if (hasQualifier())
1036      return getQualifierLoc().getBeginLoc();
1037    return MemberLoc;
1038  }
1039
1040  // FIXME: We don't want this to happen. Rather, we should be able to
1041  // detect all kinds of implicit accesses more cleanly.
1042  SourceLocation BaseStartLoc = getBase()->getLocStart();
1043  if (BaseStartLoc.isValid())
1044    return BaseStartLoc;
1045  return MemberLoc;
1046}
1047SourceLocation MemberExpr::getLocEnd() const {
1048  if (hasExplicitTemplateArgs())
1049    return getRAngleLoc();
1050  return getMemberNameInfo().getEndLoc();
1051}
1052
1053void CastExpr::CheckCastConsistency() const {
1054  switch (getCastKind()) {
1055  case CK_DerivedToBase:
1056  case CK_UncheckedDerivedToBase:
1057  case CK_DerivedToBaseMemberPointer:
1058  case CK_BaseToDerived:
1059  case CK_BaseToDerivedMemberPointer:
1060    assert(!path_empty() && "Cast kind should have a base path!");
1061    break;
1062
1063  case CK_CPointerToObjCPointerCast:
1064    assert(getType()->isObjCObjectPointerType());
1065    assert(getSubExpr()->getType()->isPointerType());
1066    goto CheckNoBasePath;
1067
1068  case CK_BlockPointerToObjCPointerCast:
1069    assert(getType()->isObjCObjectPointerType());
1070    assert(getSubExpr()->getType()->isBlockPointerType());
1071    goto CheckNoBasePath;
1072
1073  case CK_ReinterpretMemberPointer:
1074    assert(getType()->isMemberPointerType());
1075    assert(getSubExpr()->getType()->isMemberPointerType());
1076    goto CheckNoBasePath;
1077
1078  case CK_BitCast:
1079    // Arbitrary casts to C pointer types count as bitcasts.
1080    // Otherwise, we should only have block and ObjC pointer casts
1081    // here if they stay within the type kind.
1082    if (!getType()->isPointerType()) {
1083      assert(getType()->isObjCObjectPointerType() ==
1084             getSubExpr()->getType()->isObjCObjectPointerType());
1085      assert(getType()->isBlockPointerType() ==
1086             getSubExpr()->getType()->isBlockPointerType());
1087    }
1088    goto CheckNoBasePath;
1089
1090  case CK_AnyPointerToBlockPointerCast:
1091    assert(getType()->isBlockPointerType());
1092    assert(getSubExpr()->getType()->isAnyPointerType() &&
1093           !getSubExpr()->getType()->isBlockPointerType());
1094    goto CheckNoBasePath;
1095
1096  case CK_CopyAndAutoreleaseBlockObject:
1097    assert(getType()->isBlockPointerType());
1098    assert(getSubExpr()->getType()->isBlockPointerType());
1099    goto CheckNoBasePath;
1100
1101  // These should not have an inheritance path.
1102  case CK_Dynamic:
1103  case CK_ToUnion:
1104  case CK_ArrayToPointerDecay:
1105  case CK_FunctionToPointerDecay:
1106  case CK_NullToMemberPointer:
1107  case CK_NullToPointer:
1108  case CK_ConstructorConversion:
1109  case CK_IntegralToPointer:
1110  case CK_PointerToIntegral:
1111  case CK_ToVoid:
1112  case CK_VectorSplat:
1113  case CK_IntegralCast:
1114  case CK_IntegralToFloating:
1115  case CK_FloatingToIntegral:
1116  case CK_FloatingCast:
1117  case CK_ObjCObjectLValueCast:
1118  case CK_FloatingRealToComplex:
1119  case CK_FloatingComplexToReal:
1120  case CK_FloatingComplexCast:
1121  case CK_FloatingComplexToIntegralComplex:
1122  case CK_IntegralRealToComplex:
1123  case CK_IntegralComplexToReal:
1124  case CK_IntegralComplexCast:
1125  case CK_IntegralComplexToFloatingComplex:
1126  case CK_ARCProduceObject:
1127  case CK_ARCConsumeObject:
1128  case CK_ARCReclaimReturnedObject:
1129  case CK_ARCExtendBlockObject:
1130    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1131    goto CheckNoBasePath;
1132
1133  case CK_Dependent:
1134  case CK_LValueToRValue:
1135  case CK_NoOp:
1136  case CK_AtomicToNonAtomic:
1137  case CK_NonAtomicToAtomic:
1138  case CK_PointerToBoolean:
1139  case CK_IntegralToBoolean:
1140  case CK_FloatingToBoolean:
1141  case CK_MemberPointerToBoolean:
1142  case CK_FloatingComplexToBoolean:
1143  case CK_IntegralComplexToBoolean:
1144  case CK_LValueBitCast:            // -> bool&
1145  case CK_UserDefinedConversion:    // operator bool()
1146  CheckNoBasePath:
1147    assert(path_empty() && "Cast kind should not have a base path!");
1148    break;
1149  }
1150}
1151
1152const char *CastExpr::getCastKindName() const {
1153  switch (getCastKind()) {
1154  case CK_Dependent:
1155    return "Dependent";
1156  case CK_BitCast:
1157    return "BitCast";
1158  case CK_LValueBitCast:
1159    return "LValueBitCast";
1160  case CK_LValueToRValue:
1161    return "LValueToRValue";
1162  case CK_NoOp:
1163    return "NoOp";
1164  case CK_BaseToDerived:
1165    return "BaseToDerived";
1166  case CK_DerivedToBase:
1167    return "DerivedToBase";
1168  case CK_UncheckedDerivedToBase:
1169    return "UncheckedDerivedToBase";
1170  case CK_Dynamic:
1171    return "Dynamic";
1172  case CK_ToUnion:
1173    return "ToUnion";
1174  case CK_ArrayToPointerDecay:
1175    return "ArrayToPointerDecay";
1176  case CK_FunctionToPointerDecay:
1177    return "FunctionToPointerDecay";
1178  case CK_NullToMemberPointer:
1179    return "NullToMemberPointer";
1180  case CK_NullToPointer:
1181    return "NullToPointer";
1182  case CK_BaseToDerivedMemberPointer:
1183    return "BaseToDerivedMemberPointer";
1184  case CK_DerivedToBaseMemberPointer:
1185    return "DerivedToBaseMemberPointer";
1186  case CK_ReinterpretMemberPointer:
1187    return "ReinterpretMemberPointer";
1188  case CK_UserDefinedConversion:
1189    return "UserDefinedConversion";
1190  case CK_ConstructorConversion:
1191    return "ConstructorConversion";
1192  case CK_IntegralToPointer:
1193    return "IntegralToPointer";
1194  case CK_PointerToIntegral:
1195    return "PointerToIntegral";
1196  case CK_PointerToBoolean:
1197    return "PointerToBoolean";
1198  case CK_ToVoid:
1199    return "ToVoid";
1200  case CK_VectorSplat:
1201    return "VectorSplat";
1202  case CK_IntegralCast:
1203    return "IntegralCast";
1204  case CK_IntegralToBoolean:
1205    return "IntegralToBoolean";
1206  case CK_IntegralToFloating:
1207    return "IntegralToFloating";
1208  case CK_FloatingToIntegral:
1209    return "FloatingToIntegral";
1210  case CK_FloatingCast:
1211    return "FloatingCast";
1212  case CK_FloatingToBoolean:
1213    return "FloatingToBoolean";
1214  case CK_MemberPointerToBoolean:
1215    return "MemberPointerToBoolean";
1216  case CK_CPointerToObjCPointerCast:
1217    return "CPointerToObjCPointerCast";
1218  case CK_BlockPointerToObjCPointerCast:
1219    return "BlockPointerToObjCPointerCast";
1220  case CK_AnyPointerToBlockPointerCast:
1221    return "AnyPointerToBlockPointerCast";
1222  case CK_ObjCObjectLValueCast:
1223    return "ObjCObjectLValueCast";
1224  case CK_FloatingRealToComplex:
1225    return "FloatingRealToComplex";
1226  case CK_FloatingComplexToReal:
1227    return "FloatingComplexToReal";
1228  case CK_FloatingComplexToBoolean:
1229    return "FloatingComplexToBoolean";
1230  case CK_FloatingComplexCast:
1231    return "FloatingComplexCast";
1232  case CK_FloatingComplexToIntegralComplex:
1233    return "FloatingComplexToIntegralComplex";
1234  case CK_IntegralRealToComplex:
1235    return "IntegralRealToComplex";
1236  case CK_IntegralComplexToReal:
1237    return "IntegralComplexToReal";
1238  case CK_IntegralComplexToBoolean:
1239    return "IntegralComplexToBoolean";
1240  case CK_IntegralComplexCast:
1241    return "IntegralComplexCast";
1242  case CK_IntegralComplexToFloatingComplex:
1243    return "IntegralComplexToFloatingComplex";
1244  case CK_ARCConsumeObject:
1245    return "ARCConsumeObject";
1246  case CK_ARCProduceObject:
1247    return "ARCProduceObject";
1248  case CK_ARCReclaimReturnedObject:
1249    return "ARCReclaimReturnedObject";
1250  case CK_ARCExtendBlockObject:
1251    return "ARCCExtendBlockObject";
1252  case CK_AtomicToNonAtomic:
1253    return "AtomicToNonAtomic";
1254  case CK_NonAtomicToAtomic:
1255    return "NonAtomicToAtomic";
1256  case CK_CopyAndAutoreleaseBlockObject:
1257    return "CopyAndAutoreleaseBlockObject";
1258  }
1259
1260  llvm_unreachable("Unhandled cast kind!");
1261}
1262
1263Expr *CastExpr::getSubExprAsWritten() {
1264  Expr *SubExpr = 0;
1265  CastExpr *E = this;
1266  do {
1267    SubExpr = E->getSubExpr();
1268
1269    // Skip through reference binding to temporary.
1270    if (MaterializeTemporaryExpr *Materialize
1271                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1272      SubExpr = Materialize->GetTemporaryExpr();
1273
1274    // Skip any temporary bindings; they're implicit.
1275    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1276      SubExpr = Binder->getSubExpr();
1277
1278    // Conversions by constructor and conversion functions have a
1279    // subexpression describing the call; strip it off.
1280    if (E->getCastKind() == CK_ConstructorConversion)
1281      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1282    else if (E->getCastKind() == CK_UserDefinedConversion)
1283      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1284
1285    // If the subexpression we're left with is an implicit cast, look
1286    // through that, too.
1287  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1288
1289  return SubExpr;
1290}
1291
1292CXXBaseSpecifier **CastExpr::path_buffer() {
1293  switch (getStmtClass()) {
1294#define ABSTRACT_STMT(x)
1295#define CASTEXPR(Type, Base) \
1296  case Stmt::Type##Class: \
1297    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1298#define STMT(Type, Base)
1299#include "clang/AST/StmtNodes.inc"
1300  default:
1301    llvm_unreachable("non-cast expressions not possible here");
1302  }
1303}
1304
1305void CastExpr::setCastPath(const CXXCastPath &Path) {
1306  assert(Path.size() == path_size());
1307  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1308}
1309
1310ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1311                                           CastKind Kind, Expr *Operand,
1312                                           const CXXCastPath *BasePath,
1313                                           ExprValueKind VK) {
1314  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1315  void *Buffer =
1316    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1317  ImplicitCastExpr *E =
1318    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1319  if (PathSize) E->setCastPath(*BasePath);
1320  return E;
1321}
1322
1323ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1324                                                unsigned PathSize) {
1325  void *Buffer =
1326    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1327  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1328}
1329
1330
1331CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1332                                       ExprValueKind VK, CastKind K, Expr *Op,
1333                                       const CXXCastPath *BasePath,
1334                                       TypeSourceInfo *WrittenTy,
1335                                       SourceLocation L, SourceLocation R) {
1336  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1337  void *Buffer =
1338    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1339  CStyleCastExpr *E =
1340    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1341  if (PathSize) E->setCastPath(*BasePath);
1342  return E;
1343}
1344
1345CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1346  void *Buffer =
1347    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1348  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1349}
1350
1351/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1352/// corresponds to, e.g. "<<=".
1353const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1354  switch (Op) {
1355  case BO_PtrMemD:   return ".*";
1356  case BO_PtrMemI:   return "->*";
1357  case BO_Mul:       return "*";
1358  case BO_Div:       return "/";
1359  case BO_Rem:       return "%";
1360  case BO_Add:       return "+";
1361  case BO_Sub:       return "-";
1362  case BO_Shl:       return "<<";
1363  case BO_Shr:       return ">>";
1364  case BO_LT:        return "<";
1365  case BO_GT:        return ">";
1366  case BO_LE:        return "<=";
1367  case BO_GE:        return ">=";
1368  case BO_EQ:        return "==";
1369  case BO_NE:        return "!=";
1370  case BO_And:       return "&";
1371  case BO_Xor:       return "^";
1372  case BO_Or:        return "|";
1373  case BO_LAnd:      return "&&";
1374  case BO_LOr:       return "||";
1375  case BO_Assign:    return "=";
1376  case BO_MulAssign: return "*=";
1377  case BO_DivAssign: return "/=";
1378  case BO_RemAssign: return "%=";
1379  case BO_AddAssign: return "+=";
1380  case BO_SubAssign: return "-=";
1381  case BO_ShlAssign: return "<<=";
1382  case BO_ShrAssign: return ">>=";
1383  case BO_AndAssign: return "&=";
1384  case BO_XorAssign: return "^=";
1385  case BO_OrAssign:  return "|=";
1386  case BO_Comma:     return ",";
1387  }
1388
1389  llvm_unreachable("Invalid OpCode!");
1390}
1391
1392BinaryOperatorKind
1393BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1394  switch (OO) {
1395  default: llvm_unreachable("Not an overloadable binary operator");
1396  case OO_Plus: return BO_Add;
1397  case OO_Minus: return BO_Sub;
1398  case OO_Star: return BO_Mul;
1399  case OO_Slash: return BO_Div;
1400  case OO_Percent: return BO_Rem;
1401  case OO_Caret: return BO_Xor;
1402  case OO_Amp: return BO_And;
1403  case OO_Pipe: return BO_Or;
1404  case OO_Equal: return BO_Assign;
1405  case OO_Less: return BO_LT;
1406  case OO_Greater: return BO_GT;
1407  case OO_PlusEqual: return BO_AddAssign;
1408  case OO_MinusEqual: return BO_SubAssign;
1409  case OO_StarEqual: return BO_MulAssign;
1410  case OO_SlashEqual: return BO_DivAssign;
1411  case OO_PercentEqual: return BO_RemAssign;
1412  case OO_CaretEqual: return BO_XorAssign;
1413  case OO_AmpEqual: return BO_AndAssign;
1414  case OO_PipeEqual: return BO_OrAssign;
1415  case OO_LessLess: return BO_Shl;
1416  case OO_GreaterGreater: return BO_Shr;
1417  case OO_LessLessEqual: return BO_ShlAssign;
1418  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1419  case OO_EqualEqual: return BO_EQ;
1420  case OO_ExclaimEqual: return BO_NE;
1421  case OO_LessEqual: return BO_LE;
1422  case OO_GreaterEqual: return BO_GE;
1423  case OO_AmpAmp: return BO_LAnd;
1424  case OO_PipePipe: return BO_LOr;
1425  case OO_Comma: return BO_Comma;
1426  case OO_ArrowStar: return BO_PtrMemI;
1427  }
1428}
1429
1430OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1431  static const OverloadedOperatorKind OverOps[] = {
1432    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1433    OO_Star, OO_Slash, OO_Percent,
1434    OO_Plus, OO_Minus,
1435    OO_LessLess, OO_GreaterGreater,
1436    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1437    OO_EqualEqual, OO_ExclaimEqual,
1438    OO_Amp,
1439    OO_Caret,
1440    OO_Pipe,
1441    OO_AmpAmp,
1442    OO_PipePipe,
1443    OO_Equal, OO_StarEqual,
1444    OO_SlashEqual, OO_PercentEqual,
1445    OO_PlusEqual, OO_MinusEqual,
1446    OO_LessLessEqual, OO_GreaterGreaterEqual,
1447    OO_AmpEqual, OO_CaretEqual,
1448    OO_PipeEqual,
1449    OO_Comma
1450  };
1451  return OverOps[Opc];
1452}
1453
1454InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1455                           Expr **initExprs, unsigned numInits,
1456                           SourceLocation rbraceloc)
1457  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1458         false, false),
1459    InitExprs(C, numInits),
1460    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1461{
1462  sawArrayRangeDesignator(false);
1463  setInitializesStdInitializerList(false);
1464  for (unsigned I = 0; I != numInits; ++I) {
1465    if (initExprs[I]->isTypeDependent())
1466      ExprBits.TypeDependent = true;
1467    if (initExprs[I]->isValueDependent())
1468      ExprBits.ValueDependent = true;
1469    if (initExprs[I]->isInstantiationDependent())
1470      ExprBits.InstantiationDependent = true;
1471    if (initExprs[I]->containsUnexpandedParameterPack())
1472      ExprBits.ContainsUnexpandedParameterPack = true;
1473  }
1474
1475  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1476}
1477
1478void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1479  if (NumInits > InitExprs.size())
1480    InitExprs.reserve(C, NumInits);
1481}
1482
1483void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1484  InitExprs.resize(C, NumInits, 0);
1485}
1486
1487Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1488  if (Init >= InitExprs.size()) {
1489    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1490    InitExprs.back() = expr;
1491    return 0;
1492  }
1493
1494  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1495  InitExprs[Init] = expr;
1496  return Result;
1497}
1498
1499void InitListExpr::setArrayFiller(Expr *filler) {
1500  assert(!hasArrayFiller() && "Filler already set!");
1501  ArrayFillerOrUnionFieldInit = filler;
1502  // Fill out any "holes" in the array due to designated initializers.
1503  Expr **inits = getInits();
1504  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1505    if (inits[i] == 0)
1506      inits[i] = filler;
1507}
1508
1509SourceRange InitListExpr::getSourceRange() const {
1510  if (SyntacticForm)
1511    return SyntacticForm->getSourceRange();
1512  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1513  if (Beg.isInvalid()) {
1514    // Find the first non-null initializer.
1515    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1516                                     E = InitExprs.end();
1517      I != E; ++I) {
1518      if (Stmt *S = *I) {
1519        Beg = S->getLocStart();
1520        break;
1521      }
1522    }
1523  }
1524  if (End.isInvalid()) {
1525    // Find the first non-null initializer from the end.
1526    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1527                                             E = InitExprs.rend();
1528      I != E; ++I) {
1529      if (Stmt *S = *I) {
1530        End = S->getSourceRange().getEnd();
1531        break;
1532      }
1533    }
1534  }
1535  return SourceRange(Beg, End);
1536}
1537
1538/// getFunctionType - Return the underlying function type for this block.
1539///
1540const FunctionProtoType *BlockExpr::getFunctionType() const {
1541  // The block pointer is never sugared, but the function type might be.
1542  return cast<BlockPointerType>(getType())
1543           ->getPointeeType()->castAs<FunctionProtoType>();
1544}
1545
1546SourceLocation BlockExpr::getCaretLocation() const {
1547  return TheBlock->getCaretLocation();
1548}
1549const Stmt *BlockExpr::getBody() const {
1550  return TheBlock->getBody();
1551}
1552Stmt *BlockExpr::getBody() {
1553  return TheBlock->getBody();
1554}
1555
1556
1557//===----------------------------------------------------------------------===//
1558// Generic Expression Routines
1559//===----------------------------------------------------------------------===//
1560
1561/// isUnusedResultAWarning - Return true if this immediate expression should
1562/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1563/// with location to warn on and the source range[s] to report with the
1564/// warning.
1565bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1566                                  SourceRange &R2, ASTContext &Ctx) const {
1567  // Don't warn if the expr is type dependent. The type could end up
1568  // instantiating to void.
1569  if (isTypeDependent())
1570    return false;
1571
1572  switch (getStmtClass()) {
1573  default:
1574    if (getType()->isVoidType())
1575      return false;
1576    Loc = getExprLoc();
1577    R1 = getSourceRange();
1578    return true;
1579  case ParenExprClass:
1580    return cast<ParenExpr>(this)->getSubExpr()->
1581      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1582  case GenericSelectionExprClass:
1583    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1584      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1585  case UnaryOperatorClass: {
1586    const UnaryOperator *UO = cast<UnaryOperator>(this);
1587
1588    switch (UO->getOpcode()) {
1589    default: break;
1590    case UO_PostInc:
1591    case UO_PostDec:
1592    case UO_PreInc:
1593    case UO_PreDec:                 // ++/--
1594      return false;  // Not a warning.
1595    case UO_Deref:
1596      // Dereferencing a volatile pointer is a side-effect.
1597      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1598        return false;
1599      break;
1600    case UO_Real:
1601    case UO_Imag:
1602      // accessing a piece of a volatile complex is a side-effect.
1603      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1604          .isVolatileQualified())
1605        return false;
1606      break;
1607    case UO_Extension:
1608      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1609    }
1610    Loc = UO->getOperatorLoc();
1611    R1 = UO->getSubExpr()->getSourceRange();
1612    return true;
1613  }
1614  case BinaryOperatorClass: {
1615    const BinaryOperator *BO = cast<BinaryOperator>(this);
1616    switch (BO->getOpcode()) {
1617      default:
1618        break;
1619      // Consider the RHS of comma for side effects. LHS was checked by
1620      // Sema::CheckCommaOperands.
1621      case BO_Comma:
1622        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1623        // lvalue-ness) of an assignment written in a macro.
1624        if (IntegerLiteral *IE =
1625              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1626          if (IE->getValue() == 0)
1627            return false;
1628        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1629      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1630      case BO_LAnd:
1631      case BO_LOr:
1632        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1633            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1634          return false;
1635        break;
1636    }
1637    if (BO->isAssignmentOp())
1638      return false;
1639    Loc = BO->getOperatorLoc();
1640    R1 = BO->getLHS()->getSourceRange();
1641    R2 = BO->getRHS()->getSourceRange();
1642    return true;
1643  }
1644  case CompoundAssignOperatorClass:
1645  case VAArgExprClass:
1646  case AtomicExprClass:
1647    return false;
1648
1649  case ConditionalOperatorClass: {
1650    // If only one of the LHS or RHS is a warning, the operator might
1651    // be being used for control flow. Only warn if both the LHS and
1652    // RHS are warnings.
1653    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1654    if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1655      return false;
1656    if (!Exp->getLHS())
1657      return true;
1658    return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1659  }
1660
1661  case MemberExprClass:
1662    // If the base pointer or element is to a volatile pointer/field, accessing
1663    // it is a side effect.
1664    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1665      return false;
1666    Loc = cast<MemberExpr>(this)->getMemberLoc();
1667    R1 = SourceRange(Loc, Loc);
1668    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1669    return true;
1670
1671  case ArraySubscriptExprClass:
1672    // If the base pointer or element is to a volatile pointer/field, accessing
1673    // it is a side effect.
1674    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1675      return false;
1676    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1677    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1678    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1679    return true;
1680
1681  case CXXOperatorCallExprClass: {
1682    // We warn about operator== and operator!= even when user-defined operator
1683    // overloads as there is no reasonable way to define these such that they
1684    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1685    // warning: these operators are commonly typo'ed, and so warning on them
1686    // provides additional value as well. If this list is updated,
1687    // DiagnoseUnusedComparison should be as well.
1688    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1689    if (Op->getOperator() == OO_EqualEqual ||
1690        Op->getOperator() == OO_ExclaimEqual) {
1691      Loc = Op->getOperatorLoc();
1692      R1 = Op->getSourceRange();
1693      return true;
1694    }
1695
1696    // Fallthrough for generic call handling.
1697  }
1698  case CallExprClass:
1699  case CXXMemberCallExprClass:
1700  case UserDefinedLiteralClass: {
1701    // If this is a direct call, get the callee.
1702    const CallExpr *CE = cast<CallExpr>(this);
1703    if (const Decl *FD = CE->getCalleeDecl()) {
1704      // If the callee has attribute pure, const, or warn_unused_result, warn
1705      // about it. void foo() { strlen("bar"); } should warn.
1706      //
1707      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1708      // updated to match for QoI.
1709      if (FD->getAttr<WarnUnusedResultAttr>() ||
1710          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1711        Loc = CE->getCallee()->getLocStart();
1712        R1 = CE->getCallee()->getSourceRange();
1713
1714        if (unsigned NumArgs = CE->getNumArgs())
1715          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1716                           CE->getArg(NumArgs-1)->getLocEnd());
1717        return true;
1718      }
1719    }
1720    return false;
1721  }
1722
1723  case CXXTemporaryObjectExprClass:
1724  case CXXConstructExprClass:
1725    return false;
1726
1727  case ObjCMessageExprClass: {
1728    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1729    if (Ctx.getLangOptions().ObjCAutoRefCount &&
1730        ME->isInstanceMessage() &&
1731        !ME->getType()->isVoidType() &&
1732        ME->getSelector().getIdentifierInfoForSlot(0) &&
1733        ME->getSelector().getIdentifierInfoForSlot(0)
1734                                               ->getName().startswith("init")) {
1735      Loc = getExprLoc();
1736      R1 = ME->getSourceRange();
1737      return true;
1738    }
1739
1740    const ObjCMethodDecl *MD = ME->getMethodDecl();
1741    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1742      Loc = getExprLoc();
1743      return true;
1744    }
1745    return false;
1746  }
1747
1748  case ObjCPropertyRefExprClass:
1749    Loc = getExprLoc();
1750    R1 = getSourceRange();
1751    return true;
1752
1753  case PseudoObjectExprClass: {
1754    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1755
1756    // Only complain about things that have the form of a getter.
1757    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1758        isa<BinaryOperator>(PO->getSyntacticForm()))
1759      return false;
1760
1761    Loc = getExprLoc();
1762    R1 = getSourceRange();
1763    return true;
1764  }
1765
1766  case StmtExprClass: {
1767    // Statement exprs don't logically have side effects themselves, but are
1768    // sometimes used in macros in ways that give them a type that is unused.
1769    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1770    // however, if the result of the stmt expr is dead, we don't want to emit a
1771    // warning.
1772    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1773    if (!CS->body_empty()) {
1774      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1775        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1776      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1777        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1778          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1779    }
1780
1781    if (getType()->isVoidType())
1782      return false;
1783    Loc = cast<StmtExpr>(this)->getLParenLoc();
1784    R1 = getSourceRange();
1785    return true;
1786  }
1787  case CStyleCastExprClass:
1788    // If this is an explicit cast to void, allow it.  People do this when they
1789    // think they know what they're doing :).
1790    if (getType()->isVoidType())
1791      return false;
1792    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1793    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1794    return true;
1795  case CXXFunctionalCastExprClass: {
1796    if (getType()->isVoidType())
1797      return false;
1798    const CastExpr *CE = cast<CastExpr>(this);
1799
1800    // If this is a cast to void or a constructor conversion, check the operand.
1801    // Otherwise, the result of the cast is unused.
1802    if (CE->getCastKind() == CK_ToVoid ||
1803        CE->getCastKind() == CK_ConstructorConversion)
1804      return (cast<CastExpr>(this)->getSubExpr()
1805              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1806    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1807    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1808    return true;
1809  }
1810
1811  case ImplicitCastExprClass:
1812    // Check the operand, since implicit casts are inserted by Sema
1813    return (cast<ImplicitCastExpr>(this)
1814            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1815
1816  case CXXDefaultArgExprClass:
1817    return (cast<CXXDefaultArgExpr>(this)
1818            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1819
1820  case CXXNewExprClass:
1821    // FIXME: In theory, there might be new expressions that don't have side
1822    // effects (e.g. a placement new with an uninitialized POD).
1823  case CXXDeleteExprClass:
1824    return false;
1825  case CXXBindTemporaryExprClass:
1826    return (cast<CXXBindTemporaryExpr>(this)
1827            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1828  case ExprWithCleanupsClass:
1829    return (cast<ExprWithCleanups>(this)
1830            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1831  }
1832}
1833
1834/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1835/// returns true, if it is; false otherwise.
1836bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1837  const Expr *E = IgnoreParens();
1838  switch (E->getStmtClass()) {
1839  default:
1840    return false;
1841  case ObjCIvarRefExprClass:
1842    return true;
1843  case Expr::UnaryOperatorClass:
1844    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1845  case ImplicitCastExprClass:
1846    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1847  case MaterializeTemporaryExprClass:
1848    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1849                                                      ->isOBJCGCCandidate(Ctx);
1850  case CStyleCastExprClass:
1851    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1852  case BlockDeclRefExprClass:
1853  case DeclRefExprClass: {
1854
1855    const Decl *D;
1856    if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E))
1857        D = BDRE->getDecl();
1858    else
1859        D = cast<DeclRefExpr>(E)->getDecl();
1860
1861    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1862      if (VD->hasGlobalStorage())
1863        return true;
1864      QualType T = VD->getType();
1865      // dereferencing to a  pointer is always a gc'able candidate,
1866      // unless it is __weak.
1867      return T->isPointerType() &&
1868             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1869    }
1870    return false;
1871  }
1872  case MemberExprClass: {
1873    const MemberExpr *M = cast<MemberExpr>(E);
1874    return M->getBase()->isOBJCGCCandidate(Ctx);
1875  }
1876  case ArraySubscriptExprClass:
1877    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1878  }
1879}
1880
1881bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1882  if (isTypeDependent())
1883    return false;
1884  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1885}
1886
1887QualType Expr::findBoundMemberType(const Expr *expr) {
1888  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1889
1890  // Bound member expressions are always one of these possibilities:
1891  //   x->m      x.m      x->*y      x.*y
1892  // (possibly parenthesized)
1893
1894  expr = expr->IgnoreParens();
1895  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1896    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1897    return mem->getMemberDecl()->getType();
1898  }
1899
1900  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1901    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1902                      ->getPointeeType();
1903    assert(type->isFunctionType());
1904    return type;
1905  }
1906
1907  assert(isa<UnresolvedMemberExpr>(expr));
1908  return QualType();
1909}
1910
1911static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1912                                          Expr::CanThrowResult CT2) {
1913  // CanThrowResult constants are ordered so that the maximum is the correct
1914  // merge result.
1915  return CT1 > CT2 ? CT1 : CT2;
1916}
1917
1918static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1919  Expr *E = const_cast<Expr*>(CE);
1920  Expr::CanThrowResult R = Expr::CT_Cannot;
1921  for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
1922    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1923  }
1924  return R;
1925}
1926
1927static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
1928                                           const Decl *D,
1929                                           bool NullThrows = true) {
1930  if (!D)
1931    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1932
1933  // See if we can get a function type from the decl somehow.
1934  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1935  if (!VD) // If we have no clue what we're calling, assume the worst.
1936    return Expr::CT_Can;
1937
1938  // As an extension, we assume that __attribute__((nothrow)) functions don't
1939  // throw.
1940  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1941    return Expr::CT_Cannot;
1942
1943  QualType T = VD->getType();
1944  const FunctionProtoType *FT;
1945  if ((FT = T->getAs<FunctionProtoType>())) {
1946  } else if (const PointerType *PT = T->getAs<PointerType>())
1947    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1948  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1949    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1950  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1951    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1952  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1953    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1954
1955  if (!FT)
1956    return Expr::CT_Can;
1957
1958  if (FT->getExceptionSpecType() == EST_Delayed) {
1959    assert(isa<CXXConstructorDecl>(D) &&
1960           "only constructor exception specs can be unknown");
1961    Ctx.getDiagnostics().Report(E->getLocStart(),
1962                                diag::err_exception_spec_unknown)
1963      << E->getSourceRange();
1964    return Expr::CT_Can;
1965  }
1966
1967  return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
1968}
1969
1970static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1971  if (DC->isTypeDependent())
1972    return Expr::CT_Dependent;
1973
1974  if (!DC->getTypeAsWritten()->isReferenceType())
1975    return Expr::CT_Cannot;
1976
1977  if (DC->getSubExpr()->isTypeDependent())
1978    return Expr::CT_Dependent;
1979
1980  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1981}
1982
1983static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1984                                           const CXXTypeidExpr *DC) {
1985  if (DC->isTypeOperand())
1986    return Expr::CT_Cannot;
1987
1988  Expr *Op = DC->getExprOperand();
1989  if (Op->isTypeDependent())
1990    return Expr::CT_Dependent;
1991
1992  const RecordType *RT = Op->getType()->getAs<RecordType>();
1993  if (!RT)
1994    return Expr::CT_Cannot;
1995
1996  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1997    return Expr::CT_Cannot;
1998
1999  if (Op->Classify(C).isPRValue())
2000    return Expr::CT_Cannot;
2001
2002  return Expr::CT_Can;
2003}
2004
2005Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
2006  // C++ [expr.unary.noexcept]p3:
2007  //   [Can throw] if in a potentially-evaluated context the expression would
2008  //   contain:
2009  switch (getStmtClass()) {
2010  case CXXThrowExprClass:
2011    //   - a potentially evaluated throw-expression
2012    return CT_Can;
2013
2014  case CXXDynamicCastExprClass: {
2015    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
2016    //     where T is a reference type, that requires a run-time check
2017    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
2018    if (CT == CT_Can)
2019      return CT;
2020    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2021  }
2022
2023  case CXXTypeidExprClass:
2024    //   - a potentially evaluated typeid expression applied to a glvalue
2025    //     expression whose type is a polymorphic class type
2026    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
2027
2028    //   - a potentially evaluated call to a function, member function, function
2029    //     pointer, or member function pointer that does not have a non-throwing
2030    //     exception-specification
2031  case CallExprClass:
2032  case CXXMemberCallExprClass:
2033  case CXXOperatorCallExprClass:
2034  case UserDefinedLiteralClass: {
2035    const CallExpr *CE = cast<CallExpr>(this);
2036    CanThrowResult CT;
2037    if (isTypeDependent())
2038      CT = CT_Dependent;
2039    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
2040      CT = CT_Cannot;
2041    else
2042      CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
2043    if (CT == CT_Can)
2044      return CT;
2045    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2046  }
2047
2048  case CXXConstructExprClass:
2049  case CXXTemporaryObjectExprClass: {
2050    CanThrowResult CT = CanCalleeThrow(C, this,
2051        cast<CXXConstructExpr>(this)->getConstructor());
2052    if (CT == CT_Can)
2053      return CT;
2054    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2055  }
2056
2057  case LambdaExprClass: {
2058    const LambdaExpr *Lambda = cast<LambdaExpr>(this);
2059    CanThrowResult CT = Expr::CT_Cannot;
2060    for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
2061                                        CapEnd = Lambda->capture_init_end();
2062         Cap != CapEnd; ++Cap)
2063      CT = MergeCanThrow(CT, (*Cap)->CanThrow(C));
2064    return CT;
2065  }
2066
2067  case CXXNewExprClass: {
2068    CanThrowResult CT;
2069    if (isTypeDependent())
2070      CT = CT_Dependent;
2071    else
2072      CT = CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew());
2073    if (CT == CT_Can)
2074      return CT;
2075    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2076  }
2077
2078  case CXXDeleteExprClass: {
2079    CanThrowResult CT;
2080    QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
2081    if (DTy.isNull() || DTy->isDependentType()) {
2082      CT = CT_Dependent;
2083    } else {
2084      CT = CanCalleeThrow(C, this,
2085                          cast<CXXDeleteExpr>(this)->getOperatorDelete());
2086      if (const RecordType *RT = DTy->getAs<RecordType>()) {
2087        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2088        CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
2089      }
2090      if (CT == CT_Can)
2091        return CT;
2092    }
2093    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2094  }
2095
2096  case CXXBindTemporaryExprClass: {
2097    // The bound temporary has to be destroyed again, which might throw.
2098    CanThrowResult CT = CanCalleeThrow(C, this,
2099      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
2100    if (CT == CT_Can)
2101      return CT;
2102    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2103  }
2104
2105    // ObjC message sends are like function calls, but never have exception
2106    // specs.
2107  case ObjCMessageExprClass:
2108  case ObjCPropertyRefExprClass:
2109  case ObjCSubscriptRefExprClass:
2110    return CT_Can;
2111
2112    // All the ObjC literals that are implemented as calls are
2113    // potentially throwing unless we decide to close off that
2114    // possibility.
2115  case ObjCArrayLiteralClass:
2116  case ObjCBoolLiteralExprClass:
2117  case ObjCDictionaryLiteralClass:
2118  case ObjCNumericLiteralClass:
2119    return CT_Can;
2120
2121    // Many other things have subexpressions, so we have to test those.
2122    // Some are simple:
2123  case ConditionalOperatorClass:
2124  case CompoundLiteralExprClass:
2125  case CXXConstCastExprClass:
2126  case CXXDefaultArgExprClass:
2127  case CXXReinterpretCastExprClass:
2128  case DesignatedInitExprClass:
2129  case ExprWithCleanupsClass:
2130  case ExtVectorElementExprClass:
2131  case InitListExprClass:
2132  case MemberExprClass:
2133  case ObjCIsaExprClass:
2134  case ObjCIvarRefExprClass:
2135  case ParenExprClass:
2136  case ParenListExprClass:
2137  case ShuffleVectorExprClass:
2138  case VAArgExprClass:
2139    return CanSubExprsThrow(C, this);
2140
2141    // Some might be dependent for other reasons.
2142  case ArraySubscriptExprClass:
2143  case BinaryOperatorClass:
2144  case CompoundAssignOperatorClass:
2145  case CStyleCastExprClass:
2146  case CXXStaticCastExprClass:
2147  case CXXFunctionalCastExprClass:
2148  case ImplicitCastExprClass:
2149  case MaterializeTemporaryExprClass:
2150  case UnaryOperatorClass: {
2151    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
2152    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
2153  }
2154
2155    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
2156  case StmtExprClass:
2157    return CT_Can;
2158
2159  case ChooseExprClass:
2160    if (isTypeDependent() || isValueDependent())
2161      return CT_Dependent;
2162    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
2163
2164  case GenericSelectionExprClass:
2165    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2166      return CT_Dependent;
2167    return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
2168
2169    // Some expressions are always dependent.
2170  case CXXDependentScopeMemberExprClass:
2171  case CXXUnresolvedConstructExprClass:
2172  case DependentScopeDeclRefExprClass:
2173    return CT_Dependent;
2174
2175  case AtomicExprClass:
2176  case AsTypeExprClass:
2177  case BinaryConditionalOperatorClass:
2178  case BlockExprClass:
2179  case BlockDeclRefExprClass:
2180  case CUDAKernelCallExprClass:
2181  case DeclRefExprClass:
2182  case ObjCBridgedCastExprClass:
2183  case ObjCIndirectCopyRestoreExprClass:
2184  case ObjCProtocolExprClass:
2185  case ObjCSelectorExprClass:
2186  case OffsetOfExprClass:
2187  case PackExpansionExprClass:
2188  case PseudoObjectExprClass:
2189  case SubstNonTypeTemplateParmExprClass:
2190  case SubstNonTypeTemplateParmPackExprClass:
2191  case UnaryExprOrTypeTraitExprClass:
2192  case UnresolvedLookupExprClass:
2193  case UnresolvedMemberExprClass:
2194    // FIXME: Can any of the above throw?  If so, when?
2195    return CT_Cannot;
2196
2197  case AddrLabelExprClass:
2198  case ArrayTypeTraitExprClass:
2199  case BinaryTypeTraitExprClass:
2200  case TypeTraitExprClass:
2201  case CXXBoolLiteralExprClass:
2202  case CXXNoexceptExprClass:
2203  case CXXNullPtrLiteralExprClass:
2204  case CXXPseudoDestructorExprClass:
2205  case CXXScalarValueInitExprClass:
2206  case CXXThisExprClass:
2207  case CXXUuidofExprClass:
2208  case CharacterLiteralClass:
2209  case ExpressionTraitExprClass:
2210  case FloatingLiteralClass:
2211  case GNUNullExprClass:
2212  case ImaginaryLiteralClass:
2213  case ImplicitValueInitExprClass:
2214  case IntegerLiteralClass:
2215  case ObjCEncodeExprClass:
2216  case ObjCStringLiteralClass:
2217  case OpaqueValueExprClass:
2218  case PredefinedExprClass:
2219  case SizeOfPackExprClass:
2220  case StringLiteralClass:
2221  case UnaryTypeTraitExprClass:
2222    // These expressions can never throw.
2223    return CT_Cannot;
2224
2225#define STMT(CLASS, PARENT) case CLASS##Class:
2226#define STMT_RANGE(Base, First, Last)
2227#define LAST_STMT_RANGE(BASE, FIRST, LAST)
2228#define EXPR(CLASS, PARENT)
2229#define ABSTRACT_STMT(STMT)
2230#include "clang/AST/StmtNodes.inc"
2231  case NoStmtClass:
2232    llvm_unreachable("Invalid class for expression");
2233  }
2234  llvm_unreachable("Bogus StmtClass");
2235}
2236
2237Expr* Expr::IgnoreParens() {
2238  Expr* E = this;
2239  while (true) {
2240    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2241      E = P->getSubExpr();
2242      continue;
2243    }
2244    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2245      if (P->getOpcode() == UO_Extension) {
2246        E = P->getSubExpr();
2247        continue;
2248      }
2249    }
2250    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2251      if (!P->isResultDependent()) {
2252        E = P->getResultExpr();
2253        continue;
2254      }
2255    }
2256    return E;
2257  }
2258}
2259
2260/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2261/// or CastExprs or ImplicitCastExprs, returning their operand.
2262Expr *Expr::IgnoreParenCasts() {
2263  Expr *E = this;
2264  while (true) {
2265    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2266      E = P->getSubExpr();
2267      continue;
2268    }
2269    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2270      E = P->getSubExpr();
2271      continue;
2272    }
2273    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2274      if (P->getOpcode() == UO_Extension) {
2275        E = P->getSubExpr();
2276        continue;
2277      }
2278    }
2279    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2280      if (!P->isResultDependent()) {
2281        E = P->getResultExpr();
2282        continue;
2283      }
2284    }
2285    if (MaterializeTemporaryExpr *Materialize
2286                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2287      E = Materialize->GetTemporaryExpr();
2288      continue;
2289    }
2290    if (SubstNonTypeTemplateParmExpr *NTTP
2291                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2292      E = NTTP->getReplacement();
2293      continue;
2294    }
2295    return E;
2296  }
2297}
2298
2299/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2300/// casts.  This is intended purely as a temporary workaround for code
2301/// that hasn't yet been rewritten to do the right thing about those
2302/// casts, and may disappear along with the last internal use.
2303Expr *Expr::IgnoreParenLValueCasts() {
2304  Expr *E = this;
2305  while (true) {
2306    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2307      E = P->getSubExpr();
2308      continue;
2309    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2310      if (P->getCastKind() == CK_LValueToRValue) {
2311        E = P->getSubExpr();
2312        continue;
2313      }
2314    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2315      if (P->getOpcode() == UO_Extension) {
2316        E = P->getSubExpr();
2317        continue;
2318      }
2319    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2320      if (!P->isResultDependent()) {
2321        E = P->getResultExpr();
2322        continue;
2323      }
2324    } else if (MaterializeTemporaryExpr *Materialize
2325                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2326      E = Materialize->GetTemporaryExpr();
2327      continue;
2328    } else if (SubstNonTypeTemplateParmExpr *NTTP
2329                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2330      E = NTTP->getReplacement();
2331      continue;
2332    }
2333    break;
2334  }
2335  return E;
2336}
2337
2338Expr *Expr::IgnoreParenImpCasts() {
2339  Expr *E = this;
2340  while (true) {
2341    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2342      E = P->getSubExpr();
2343      continue;
2344    }
2345    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2346      E = P->getSubExpr();
2347      continue;
2348    }
2349    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2350      if (P->getOpcode() == UO_Extension) {
2351        E = P->getSubExpr();
2352        continue;
2353      }
2354    }
2355    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2356      if (!P->isResultDependent()) {
2357        E = P->getResultExpr();
2358        continue;
2359      }
2360    }
2361    if (MaterializeTemporaryExpr *Materialize
2362                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2363      E = Materialize->GetTemporaryExpr();
2364      continue;
2365    }
2366    if (SubstNonTypeTemplateParmExpr *NTTP
2367                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2368      E = NTTP->getReplacement();
2369      continue;
2370    }
2371    return E;
2372  }
2373}
2374
2375Expr *Expr::IgnoreConversionOperator() {
2376  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2377    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2378      return MCE->getImplicitObjectArgument();
2379  }
2380  return this;
2381}
2382
2383/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2384/// value (including ptr->int casts of the same size).  Strip off any
2385/// ParenExpr or CastExprs, returning their operand.
2386Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2387  Expr *E = this;
2388  while (true) {
2389    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2390      E = P->getSubExpr();
2391      continue;
2392    }
2393
2394    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2395      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2396      // ptr<->int casts of the same width.  We also ignore all identity casts.
2397      Expr *SE = P->getSubExpr();
2398
2399      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2400        E = SE;
2401        continue;
2402      }
2403
2404      if ((E->getType()->isPointerType() ||
2405           E->getType()->isIntegralType(Ctx)) &&
2406          (SE->getType()->isPointerType() ||
2407           SE->getType()->isIntegralType(Ctx)) &&
2408          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2409        E = SE;
2410        continue;
2411      }
2412    }
2413
2414    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2415      if (P->getOpcode() == UO_Extension) {
2416        E = P->getSubExpr();
2417        continue;
2418      }
2419    }
2420
2421    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2422      if (!P->isResultDependent()) {
2423        E = P->getResultExpr();
2424        continue;
2425      }
2426    }
2427
2428    if (SubstNonTypeTemplateParmExpr *NTTP
2429                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2430      E = NTTP->getReplacement();
2431      continue;
2432    }
2433
2434    return E;
2435  }
2436}
2437
2438bool Expr::isDefaultArgument() const {
2439  const Expr *E = this;
2440  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2441    E = M->GetTemporaryExpr();
2442
2443  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2444    E = ICE->getSubExprAsWritten();
2445
2446  return isa<CXXDefaultArgExpr>(E);
2447}
2448
2449/// \brief Skip over any no-op casts and any temporary-binding
2450/// expressions.
2451static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2452  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2453    E = M->GetTemporaryExpr();
2454
2455  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2456    if (ICE->getCastKind() == CK_NoOp)
2457      E = ICE->getSubExpr();
2458    else
2459      break;
2460  }
2461
2462  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2463    E = BE->getSubExpr();
2464
2465  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2466    if (ICE->getCastKind() == CK_NoOp)
2467      E = ICE->getSubExpr();
2468    else
2469      break;
2470  }
2471
2472  return E->IgnoreParens();
2473}
2474
2475/// isTemporaryObject - Determines if this expression produces a
2476/// temporary of the given class type.
2477bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2478  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2479    return false;
2480
2481  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2482
2483  // Temporaries are by definition pr-values of class type.
2484  if (!E->Classify(C).isPRValue()) {
2485    // In this context, property reference is a message call and is pr-value.
2486    if (!isa<ObjCPropertyRefExpr>(E))
2487      return false;
2488  }
2489
2490  // Black-list a few cases which yield pr-values of class type that don't
2491  // refer to temporaries of that type:
2492
2493  // - implicit derived-to-base conversions
2494  if (isa<ImplicitCastExpr>(E)) {
2495    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2496    case CK_DerivedToBase:
2497    case CK_UncheckedDerivedToBase:
2498      return false;
2499    default:
2500      break;
2501    }
2502  }
2503
2504  // - member expressions (all)
2505  if (isa<MemberExpr>(E))
2506    return false;
2507
2508  // - opaque values (all)
2509  if (isa<OpaqueValueExpr>(E))
2510    return false;
2511
2512  return true;
2513}
2514
2515bool Expr::isImplicitCXXThis() const {
2516  const Expr *E = this;
2517
2518  // Strip away parentheses and casts we don't care about.
2519  while (true) {
2520    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2521      E = Paren->getSubExpr();
2522      continue;
2523    }
2524
2525    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2526      if (ICE->getCastKind() == CK_NoOp ||
2527          ICE->getCastKind() == CK_LValueToRValue ||
2528          ICE->getCastKind() == CK_DerivedToBase ||
2529          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2530        E = ICE->getSubExpr();
2531        continue;
2532      }
2533    }
2534
2535    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2536      if (UnOp->getOpcode() == UO_Extension) {
2537        E = UnOp->getSubExpr();
2538        continue;
2539      }
2540    }
2541
2542    if (const MaterializeTemporaryExpr *M
2543                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2544      E = M->GetTemporaryExpr();
2545      continue;
2546    }
2547
2548    break;
2549  }
2550
2551  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2552    return This->isImplicit();
2553
2554  return false;
2555}
2556
2557/// hasAnyTypeDependentArguments - Determines if any of the expressions
2558/// in Exprs is type-dependent.
2559bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2560  for (unsigned I = 0; I < Exprs.size(); ++I)
2561    if (Exprs[I]->isTypeDependent())
2562      return true;
2563
2564  return false;
2565}
2566
2567bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2568  // This function is attempting whether an expression is an initializer
2569  // which can be evaluated at compile-time.  isEvaluatable handles most
2570  // of the cases, but it can't deal with some initializer-specific
2571  // expressions, and it can't deal with aggregates; we deal with those here,
2572  // and fall back to isEvaluatable for the other cases.
2573
2574  // If we ever capture reference-binding directly in the AST, we can
2575  // kill the second parameter.
2576
2577  if (IsForRef) {
2578    EvalResult Result;
2579    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2580  }
2581
2582  switch (getStmtClass()) {
2583  default: break;
2584  case IntegerLiteralClass:
2585  case FloatingLiteralClass:
2586  case StringLiteralClass:
2587  case ObjCStringLiteralClass:
2588  case ObjCEncodeExprClass:
2589    return true;
2590  case CXXTemporaryObjectExprClass:
2591  case CXXConstructExprClass: {
2592    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2593
2594    // Only if it's
2595    if (CE->getConstructor()->isTrivial()) {
2596      // 1) an application of the trivial default constructor or
2597      if (!CE->getNumArgs()) return true;
2598
2599      // 2) an elidable trivial copy construction of an operand which is
2600      //    itself a constant initializer.  Note that we consider the
2601      //    operand on its own, *not* as a reference binding.
2602      if (CE->isElidable() &&
2603          CE->getArg(0)->isConstantInitializer(Ctx, false))
2604        return true;
2605    }
2606
2607    // 3) a foldable constexpr constructor.
2608    break;
2609  }
2610  case CompoundLiteralExprClass: {
2611    // This handles gcc's extension that allows global initializers like
2612    // "struct x {int x;} x = (struct x) {};".
2613    // FIXME: This accepts other cases it shouldn't!
2614    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2615    return Exp->isConstantInitializer(Ctx, false);
2616  }
2617  case InitListExprClass: {
2618    // FIXME: This doesn't deal with fields with reference types correctly.
2619    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2620    // to bitfields.
2621    const InitListExpr *Exp = cast<InitListExpr>(this);
2622    unsigned numInits = Exp->getNumInits();
2623    for (unsigned i = 0; i < numInits; i++) {
2624      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2625        return false;
2626    }
2627    return true;
2628  }
2629  case ImplicitValueInitExprClass:
2630    return true;
2631  case ParenExprClass:
2632    return cast<ParenExpr>(this)->getSubExpr()
2633      ->isConstantInitializer(Ctx, IsForRef);
2634  case GenericSelectionExprClass:
2635    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2636      return false;
2637    return cast<GenericSelectionExpr>(this)->getResultExpr()
2638      ->isConstantInitializer(Ctx, IsForRef);
2639  case ChooseExprClass:
2640    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2641      ->isConstantInitializer(Ctx, IsForRef);
2642  case UnaryOperatorClass: {
2643    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2644    if (Exp->getOpcode() == UO_Extension)
2645      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2646    break;
2647  }
2648  case CXXFunctionalCastExprClass:
2649  case CXXStaticCastExprClass:
2650  case ImplicitCastExprClass:
2651  case CStyleCastExprClass: {
2652    const CastExpr *CE = cast<CastExpr>(this);
2653
2654    // If we're promoting an integer to an _Atomic type then this is constant
2655    // if the integer is constant.  We also need to check the converse in case
2656    // someone does something like:
2657    //
2658    // int a = (_Atomic(int))42;
2659    //
2660    // I doubt anyone would write code like this directly, but it's quite
2661    // possible as the result of macro expansions.
2662    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2663        CE->getCastKind() == CK_AtomicToNonAtomic)
2664      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2665
2666    // Handle bitcasts of vector constants.
2667    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2668      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2669
2670    // Handle misc casts we want to ignore.
2671    // FIXME: Is it really safe to ignore all these?
2672    if (CE->getCastKind() == CK_NoOp ||
2673        CE->getCastKind() == CK_LValueToRValue ||
2674        CE->getCastKind() == CK_ToUnion ||
2675        CE->getCastKind() == CK_ConstructorConversion)
2676      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2677
2678    break;
2679  }
2680  case MaterializeTemporaryExprClass:
2681    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2682                                            ->isConstantInitializer(Ctx, false);
2683  }
2684  return isEvaluatable(Ctx);
2685}
2686
2687namespace {
2688  /// \brief Look for a call to a non-trivial function within an expression.
2689  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2690  {
2691    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2692
2693    bool NonTrivial;
2694
2695  public:
2696    explicit NonTrivialCallFinder(ASTContext &Context)
2697      : Inherited(Context), NonTrivial(false) { }
2698
2699    bool hasNonTrivialCall() const { return NonTrivial; }
2700
2701    void VisitCallExpr(CallExpr *E) {
2702      if (CXXMethodDecl *Method
2703          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2704        if (Method->isTrivial()) {
2705          // Recurse to children of the call.
2706          Inherited::VisitStmt(E);
2707          return;
2708        }
2709      }
2710
2711      NonTrivial = true;
2712    }
2713
2714    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2715      if (E->getConstructor()->isTrivial()) {
2716        // Recurse to children of the call.
2717        Inherited::VisitStmt(E);
2718        return;
2719      }
2720
2721      NonTrivial = true;
2722    }
2723
2724    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2725      if (E->getTemporary()->getDestructor()->isTrivial()) {
2726        Inherited::VisitStmt(E);
2727        return;
2728      }
2729
2730      NonTrivial = true;
2731    }
2732  };
2733}
2734
2735bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2736  NonTrivialCallFinder Finder(Ctx);
2737  Finder.Visit(this);
2738  return Finder.hasNonTrivialCall();
2739}
2740
2741/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2742/// pointer constant or not, as well as the specific kind of constant detected.
2743/// Null pointer constants can be integer constant expressions with the
2744/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2745/// (a GNU extension).
2746Expr::NullPointerConstantKind
2747Expr::isNullPointerConstant(ASTContext &Ctx,
2748                            NullPointerConstantValueDependence NPC) const {
2749  if (isValueDependent()) {
2750    switch (NPC) {
2751    case NPC_NeverValueDependent:
2752      llvm_unreachable("Unexpected value dependent expression!");
2753    case NPC_ValueDependentIsNull:
2754      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2755        return NPCK_ZeroInteger;
2756      else
2757        return NPCK_NotNull;
2758
2759    case NPC_ValueDependentIsNotNull:
2760      return NPCK_NotNull;
2761    }
2762  }
2763
2764  // Strip off a cast to void*, if it exists. Except in C++.
2765  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2766    if (!Ctx.getLangOptions().CPlusPlus) {
2767      // Check that it is a cast to void*.
2768      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2769        QualType Pointee = PT->getPointeeType();
2770        if (!Pointee.hasQualifiers() &&
2771            Pointee->isVoidType() &&                              // to void*
2772            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2773          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2774      }
2775    }
2776  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2777    // Ignore the ImplicitCastExpr type entirely.
2778    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2779  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2780    // Accept ((void*)0) as a null pointer constant, as many other
2781    // implementations do.
2782    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2783  } else if (const GenericSelectionExpr *GE =
2784               dyn_cast<GenericSelectionExpr>(this)) {
2785    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2786  } else if (const CXXDefaultArgExpr *DefaultArg
2787               = dyn_cast<CXXDefaultArgExpr>(this)) {
2788    // See through default argument expressions
2789    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2790  } else if (isa<GNUNullExpr>(this)) {
2791    // The GNU __null extension is always a null pointer constant.
2792    return NPCK_GNUNull;
2793  } else if (const MaterializeTemporaryExpr *M
2794                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2795    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2796  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2797    if (const Expr *Source = OVE->getSourceExpr())
2798      return Source->isNullPointerConstant(Ctx, NPC);
2799  }
2800
2801  // C++0x nullptr_t is always a null pointer constant.
2802  if (getType()->isNullPtrType())
2803    return NPCK_CXX0X_nullptr;
2804
2805  if (const RecordType *UT = getType()->getAsUnionType())
2806    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2807      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2808        const Expr *InitExpr = CLE->getInitializer();
2809        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2810          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2811      }
2812  // This expression must be an integer type.
2813  if (!getType()->isIntegerType() ||
2814      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2815    return NPCK_NotNull;
2816
2817  // If we have an integer constant expression, we need to *evaluate* it and
2818  // test for the value 0. Don't use the C++11 constant expression semantics
2819  // for this, for now; once the dust settles on core issue 903, we might only
2820  // allow a literal 0 here in C++11 mode.
2821  if (Ctx.getLangOptions().CPlusPlus0x) {
2822    if (!isCXX98IntegralConstantExpr(Ctx))
2823      return NPCK_NotNull;
2824  } else {
2825    if (!isIntegerConstantExpr(Ctx))
2826      return NPCK_NotNull;
2827  }
2828
2829  return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2830}
2831
2832/// \brief If this expression is an l-value for an Objective C
2833/// property, find the underlying property reference expression.
2834const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2835  const Expr *E = this;
2836  while (true) {
2837    assert((E->getValueKind() == VK_LValue &&
2838            E->getObjectKind() == OK_ObjCProperty) &&
2839           "expression is not a property reference");
2840    E = E->IgnoreParenCasts();
2841    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2842      if (BO->getOpcode() == BO_Comma) {
2843        E = BO->getRHS();
2844        continue;
2845      }
2846    }
2847
2848    break;
2849  }
2850
2851  return cast<ObjCPropertyRefExpr>(E);
2852}
2853
2854FieldDecl *Expr::getBitField() {
2855  Expr *E = this->IgnoreParens();
2856
2857  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2858    if (ICE->getCastKind() == CK_LValueToRValue ||
2859        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2860      E = ICE->getSubExpr()->IgnoreParens();
2861    else
2862      break;
2863  }
2864
2865  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2866    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2867      if (Field->isBitField())
2868        return Field;
2869
2870  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2871    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2872      if (Field->isBitField())
2873        return Field;
2874
2875  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2876    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2877      return BinOp->getLHS()->getBitField();
2878
2879    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2880      return BinOp->getRHS()->getBitField();
2881  }
2882
2883  return 0;
2884}
2885
2886bool Expr::refersToVectorElement() const {
2887  const Expr *E = this->IgnoreParens();
2888
2889  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2890    if (ICE->getValueKind() != VK_RValue &&
2891        ICE->getCastKind() == CK_NoOp)
2892      E = ICE->getSubExpr()->IgnoreParens();
2893    else
2894      break;
2895  }
2896
2897  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2898    return ASE->getBase()->getType()->isVectorType();
2899
2900  if (isa<ExtVectorElementExpr>(E))
2901    return true;
2902
2903  return false;
2904}
2905
2906/// isArrow - Return true if the base expression is a pointer to vector,
2907/// return false if the base expression is a vector.
2908bool ExtVectorElementExpr::isArrow() const {
2909  return getBase()->getType()->isPointerType();
2910}
2911
2912unsigned ExtVectorElementExpr::getNumElements() const {
2913  if (const VectorType *VT = getType()->getAs<VectorType>())
2914    return VT->getNumElements();
2915  return 1;
2916}
2917
2918/// containsDuplicateElements - Return true if any element access is repeated.
2919bool ExtVectorElementExpr::containsDuplicateElements() const {
2920  // FIXME: Refactor this code to an accessor on the AST node which returns the
2921  // "type" of component access, and share with code below and in Sema.
2922  StringRef Comp = Accessor->getName();
2923
2924  // Halving swizzles do not contain duplicate elements.
2925  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2926    return false;
2927
2928  // Advance past s-char prefix on hex swizzles.
2929  if (Comp[0] == 's' || Comp[0] == 'S')
2930    Comp = Comp.substr(1);
2931
2932  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2933    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2934        return true;
2935
2936  return false;
2937}
2938
2939/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2940void ExtVectorElementExpr::getEncodedElementAccess(
2941                                  SmallVectorImpl<unsigned> &Elts) const {
2942  StringRef Comp = Accessor->getName();
2943  if (Comp[0] == 's' || Comp[0] == 'S')
2944    Comp = Comp.substr(1);
2945
2946  bool isHi =   Comp == "hi";
2947  bool isLo =   Comp == "lo";
2948  bool isEven = Comp == "even";
2949  bool isOdd  = Comp == "odd";
2950
2951  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2952    uint64_t Index;
2953
2954    if (isHi)
2955      Index = e + i;
2956    else if (isLo)
2957      Index = i;
2958    else if (isEven)
2959      Index = 2 * i;
2960    else if (isOdd)
2961      Index = 2 * i + 1;
2962    else
2963      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2964
2965    Elts.push_back(Index);
2966  }
2967}
2968
2969ObjCMessageExpr::ObjCMessageExpr(QualType T,
2970                                 ExprValueKind VK,
2971                                 SourceLocation LBracLoc,
2972                                 SourceLocation SuperLoc,
2973                                 bool IsInstanceSuper,
2974                                 QualType SuperType,
2975                                 Selector Sel,
2976                                 ArrayRef<SourceLocation> SelLocs,
2977                                 SelectorLocationsKind SelLocsK,
2978                                 ObjCMethodDecl *Method,
2979                                 ArrayRef<Expr *> Args,
2980                                 SourceLocation RBracLoc,
2981                                 bool isImplicit)
2982  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2983         /*TypeDependent=*/false, /*ValueDependent=*/false,
2984         /*InstantiationDependent=*/false,
2985         /*ContainsUnexpandedParameterPack=*/false),
2986    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2987                                                       : Sel.getAsOpaquePtr())),
2988    Kind(IsInstanceSuper? SuperInstance : SuperClass),
2989    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2990    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2991{
2992  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2993  setReceiverPointer(SuperType.getAsOpaquePtr());
2994}
2995
2996ObjCMessageExpr::ObjCMessageExpr(QualType T,
2997                                 ExprValueKind VK,
2998                                 SourceLocation LBracLoc,
2999                                 TypeSourceInfo *Receiver,
3000                                 Selector Sel,
3001                                 ArrayRef<SourceLocation> SelLocs,
3002                                 SelectorLocationsKind SelLocsK,
3003                                 ObjCMethodDecl *Method,
3004                                 ArrayRef<Expr *> Args,
3005                                 SourceLocation RBracLoc,
3006                                 bool isImplicit)
3007  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3008         T->isDependentType(), T->isInstantiationDependentType(),
3009         T->containsUnexpandedParameterPack()),
3010    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3011                                                       : Sel.getAsOpaquePtr())),
3012    Kind(Class),
3013    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3014    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3015{
3016  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3017  setReceiverPointer(Receiver);
3018}
3019
3020ObjCMessageExpr::ObjCMessageExpr(QualType T,
3021                                 ExprValueKind VK,
3022                                 SourceLocation LBracLoc,
3023                                 Expr *Receiver,
3024                                 Selector Sel,
3025                                 ArrayRef<SourceLocation> SelLocs,
3026                                 SelectorLocationsKind SelLocsK,
3027                                 ObjCMethodDecl *Method,
3028                                 ArrayRef<Expr *> Args,
3029                                 SourceLocation RBracLoc,
3030                                 bool isImplicit)
3031  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3032         Receiver->isTypeDependent(),
3033         Receiver->isInstantiationDependent(),
3034         Receiver->containsUnexpandedParameterPack()),
3035    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3036                                                       : Sel.getAsOpaquePtr())),
3037    Kind(Instance),
3038    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3039    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3040{
3041  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3042  setReceiverPointer(Receiver);
3043}
3044
3045void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3046                                         ArrayRef<SourceLocation> SelLocs,
3047                                         SelectorLocationsKind SelLocsK) {
3048  setNumArgs(Args.size());
3049  Expr **MyArgs = getArgs();
3050  for (unsigned I = 0; I != Args.size(); ++I) {
3051    if (Args[I]->isTypeDependent())
3052      ExprBits.TypeDependent = true;
3053    if (Args[I]->isValueDependent())
3054      ExprBits.ValueDependent = true;
3055    if (Args[I]->isInstantiationDependent())
3056      ExprBits.InstantiationDependent = true;
3057    if (Args[I]->containsUnexpandedParameterPack())
3058      ExprBits.ContainsUnexpandedParameterPack = true;
3059
3060    MyArgs[I] = Args[I];
3061  }
3062
3063  SelLocsKind = SelLocsK;
3064  if (!isImplicit()) {
3065    if (SelLocsK == SelLoc_NonStandard)
3066      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3067  }
3068}
3069
3070ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3071                                         ExprValueKind VK,
3072                                         SourceLocation LBracLoc,
3073                                         SourceLocation SuperLoc,
3074                                         bool IsInstanceSuper,
3075                                         QualType SuperType,
3076                                         Selector Sel,
3077                                         ArrayRef<SourceLocation> SelLocs,
3078                                         ObjCMethodDecl *Method,
3079                                         ArrayRef<Expr *> Args,
3080                                         SourceLocation RBracLoc,
3081                                         bool isImplicit) {
3082  assert((!SelLocs.empty() || isImplicit) &&
3083         "No selector locs for non-implicit message");
3084  ObjCMessageExpr *Mem;
3085  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3086  if (isImplicit)
3087    Mem = alloc(Context, Args.size(), 0);
3088  else
3089    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3090  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3091                                   SuperType, Sel, SelLocs, SelLocsK,
3092                                   Method, Args, RBracLoc, isImplicit);
3093}
3094
3095ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3096                                         ExprValueKind VK,
3097                                         SourceLocation LBracLoc,
3098                                         TypeSourceInfo *Receiver,
3099                                         Selector Sel,
3100                                         ArrayRef<SourceLocation> SelLocs,
3101                                         ObjCMethodDecl *Method,
3102                                         ArrayRef<Expr *> Args,
3103                                         SourceLocation RBracLoc,
3104                                         bool isImplicit) {
3105  assert((!SelLocs.empty() || isImplicit) &&
3106         "No selector locs for non-implicit message");
3107  ObjCMessageExpr *Mem;
3108  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3109  if (isImplicit)
3110    Mem = alloc(Context, Args.size(), 0);
3111  else
3112    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3113  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3114                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3115                                   isImplicit);
3116}
3117
3118ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3119                                         ExprValueKind VK,
3120                                         SourceLocation LBracLoc,
3121                                         Expr *Receiver,
3122                                         Selector Sel,
3123                                         ArrayRef<SourceLocation> SelLocs,
3124                                         ObjCMethodDecl *Method,
3125                                         ArrayRef<Expr *> Args,
3126                                         SourceLocation RBracLoc,
3127                                         bool isImplicit) {
3128  assert((!SelLocs.empty() || isImplicit) &&
3129         "No selector locs for non-implicit message");
3130  ObjCMessageExpr *Mem;
3131  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3132  if (isImplicit)
3133    Mem = alloc(Context, Args.size(), 0);
3134  else
3135    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3136  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3137                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3138                                   isImplicit);
3139}
3140
3141ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3142                                              unsigned NumArgs,
3143                                              unsigned NumStoredSelLocs) {
3144  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3145  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3146}
3147
3148ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3149                                        ArrayRef<Expr *> Args,
3150                                        SourceLocation RBraceLoc,
3151                                        ArrayRef<SourceLocation> SelLocs,
3152                                        Selector Sel,
3153                                        SelectorLocationsKind &SelLocsK) {
3154  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3155  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3156                                                               : 0;
3157  return alloc(C, Args.size(), NumStoredSelLocs);
3158}
3159
3160ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3161                                        unsigned NumArgs,
3162                                        unsigned NumStoredSelLocs) {
3163  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3164    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3165  return (ObjCMessageExpr *)C.Allocate(Size,
3166                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3167}
3168
3169void ObjCMessageExpr::getSelectorLocs(
3170                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3171  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3172    SelLocs.push_back(getSelectorLoc(i));
3173}
3174
3175SourceRange ObjCMessageExpr::getReceiverRange() const {
3176  switch (getReceiverKind()) {
3177  case Instance:
3178    return getInstanceReceiver()->getSourceRange();
3179
3180  case Class:
3181    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3182
3183  case SuperInstance:
3184  case SuperClass:
3185    return getSuperLoc();
3186  }
3187
3188  llvm_unreachable("Invalid ReceiverKind!");
3189}
3190
3191Selector ObjCMessageExpr::getSelector() const {
3192  if (HasMethod)
3193    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3194                                                               ->getSelector();
3195  return Selector(SelectorOrMethod);
3196}
3197
3198ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3199  switch (getReceiverKind()) {
3200  case Instance:
3201    if (const ObjCObjectPointerType *Ptr
3202          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3203      return Ptr->getInterfaceDecl();
3204    break;
3205
3206  case Class:
3207    if (const ObjCObjectType *Ty
3208          = getClassReceiver()->getAs<ObjCObjectType>())
3209      return Ty->getInterface();
3210    break;
3211
3212  case SuperInstance:
3213    if (const ObjCObjectPointerType *Ptr
3214          = getSuperType()->getAs<ObjCObjectPointerType>())
3215      return Ptr->getInterfaceDecl();
3216    break;
3217
3218  case SuperClass:
3219    if (const ObjCObjectType *Iface
3220          = getSuperType()->getAs<ObjCObjectType>())
3221      return Iface->getInterface();
3222    break;
3223  }
3224
3225  return 0;
3226}
3227
3228StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3229  switch (getBridgeKind()) {
3230  case OBC_Bridge:
3231    return "__bridge";
3232  case OBC_BridgeTransfer:
3233    return "__bridge_transfer";
3234  case OBC_BridgeRetained:
3235    return "__bridge_retained";
3236  }
3237
3238  llvm_unreachable("Invalid BridgeKind!");
3239}
3240
3241bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3242  return getCond()->EvaluateKnownConstInt(C) != 0;
3243}
3244
3245ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3246                                     QualType Type, SourceLocation BLoc,
3247                                     SourceLocation RP)
3248   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3249          Type->isDependentType(), Type->isDependentType(),
3250          Type->isInstantiationDependentType(),
3251          Type->containsUnexpandedParameterPack()),
3252     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3253{
3254  SubExprs = new (C) Stmt*[nexpr];
3255  for (unsigned i = 0; i < nexpr; i++) {
3256    if (args[i]->isTypeDependent())
3257      ExprBits.TypeDependent = true;
3258    if (args[i]->isValueDependent())
3259      ExprBits.ValueDependent = true;
3260    if (args[i]->isInstantiationDependent())
3261      ExprBits.InstantiationDependent = true;
3262    if (args[i]->containsUnexpandedParameterPack())
3263      ExprBits.ContainsUnexpandedParameterPack = true;
3264
3265    SubExprs[i] = args[i];
3266  }
3267}
3268
3269void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3270                                 unsigned NumExprs) {
3271  if (SubExprs) C.Deallocate(SubExprs);
3272
3273  SubExprs = new (C) Stmt* [NumExprs];
3274  this->NumExprs = NumExprs;
3275  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3276}
3277
3278GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3279                               SourceLocation GenericLoc, Expr *ControllingExpr,
3280                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3281                               unsigned NumAssocs, SourceLocation DefaultLoc,
3282                               SourceLocation RParenLoc,
3283                               bool ContainsUnexpandedParameterPack,
3284                               unsigned ResultIndex)
3285  : Expr(GenericSelectionExprClass,
3286         AssocExprs[ResultIndex]->getType(),
3287         AssocExprs[ResultIndex]->getValueKind(),
3288         AssocExprs[ResultIndex]->getObjectKind(),
3289         AssocExprs[ResultIndex]->isTypeDependent(),
3290         AssocExprs[ResultIndex]->isValueDependent(),
3291         AssocExprs[ResultIndex]->isInstantiationDependent(),
3292         ContainsUnexpandedParameterPack),
3293    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3294    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3295    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3296    RParenLoc(RParenLoc) {
3297  SubExprs[CONTROLLING] = ControllingExpr;
3298  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3299  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3300}
3301
3302GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3303                               SourceLocation GenericLoc, Expr *ControllingExpr,
3304                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3305                               unsigned NumAssocs, SourceLocation DefaultLoc,
3306                               SourceLocation RParenLoc,
3307                               bool ContainsUnexpandedParameterPack)
3308  : Expr(GenericSelectionExprClass,
3309         Context.DependentTy,
3310         VK_RValue,
3311         OK_Ordinary,
3312         /*isTypeDependent=*/true,
3313         /*isValueDependent=*/true,
3314         /*isInstantiationDependent=*/true,
3315         ContainsUnexpandedParameterPack),
3316    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3317    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3318    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3319    RParenLoc(RParenLoc) {
3320  SubExprs[CONTROLLING] = ControllingExpr;
3321  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3322  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3323}
3324
3325//===----------------------------------------------------------------------===//
3326//  DesignatedInitExpr
3327//===----------------------------------------------------------------------===//
3328
3329IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3330  assert(Kind == FieldDesignator && "Only valid on a field designator");
3331  if (Field.NameOrField & 0x01)
3332    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3333  else
3334    return getField()->getIdentifier();
3335}
3336
3337DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3338                                       unsigned NumDesignators,
3339                                       const Designator *Designators,
3340                                       SourceLocation EqualOrColonLoc,
3341                                       bool GNUSyntax,
3342                                       Expr **IndexExprs,
3343                                       unsigned NumIndexExprs,
3344                                       Expr *Init)
3345  : Expr(DesignatedInitExprClass, Ty,
3346         Init->getValueKind(), Init->getObjectKind(),
3347         Init->isTypeDependent(), Init->isValueDependent(),
3348         Init->isInstantiationDependent(),
3349         Init->containsUnexpandedParameterPack()),
3350    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3351    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3352  this->Designators = new (C) Designator[NumDesignators];
3353
3354  // Record the initializer itself.
3355  child_range Child = children();
3356  *Child++ = Init;
3357
3358  // Copy the designators and their subexpressions, computing
3359  // value-dependence along the way.
3360  unsigned IndexIdx = 0;
3361  for (unsigned I = 0; I != NumDesignators; ++I) {
3362    this->Designators[I] = Designators[I];
3363
3364    if (this->Designators[I].isArrayDesignator()) {
3365      // Compute type- and value-dependence.
3366      Expr *Index = IndexExprs[IndexIdx];
3367      if (Index->isTypeDependent() || Index->isValueDependent())
3368        ExprBits.ValueDependent = true;
3369      if (Index->isInstantiationDependent())
3370        ExprBits.InstantiationDependent = true;
3371      // Propagate unexpanded parameter packs.
3372      if (Index->containsUnexpandedParameterPack())
3373        ExprBits.ContainsUnexpandedParameterPack = true;
3374
3375      // Copy the index expressions into permanent storage.
3376      *Child++ = IndexExprs[IndexIdx++];
3377    } else if (this->Designators[I].isArrayRangeDesignator()) {
3378      // Compute type- and value-dependence.
3379      Expr *Start = IndexExprs[IndexIdx];
3380      Expr *End = IndexExprs[IndexIdx + 1];
3381      if (Start->isTypeDependent() || Start->isValueDependent() ||
3382          End->isTypeDependent() || End->isValueDependent()) {
3383        ExprBits.ValueDependent = true;
3384        ExprBits.InstantiationDependent = true;
3385      } else if (Start->isInstantiationDependent() ||
3386                 End->isInstantiationDependent()) {
3387        ExprBits.InstantiationDependent = true;
3388      }
3389
3390      // Propagate unexpanded parameter packs.
3391      if (Start->containsUnexpandedParameterPack() ||
3392          End->containsUnexpandedParameterPack())
3393        ExprBits.ContainsUnexpandedParameterPack = true;
3394
3395      // Copy the start/end expressions into permanent storage.
3396      *Child++ = IndexExprs[IndexIdx++];
3397      *Child++ = IndexExprs[IndexIdx++];
3398    }
3399  }
3400
3401  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3402}
3403
3404DesignatedInitExpr *
3405DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3406                           unsigned NumDesignators,
3407                           Expr **IndexExprs, unsigned NumIndexExprs,
3408                           SourceLocation ColonOrEqualLoc,
3409                           bool UsesColonSyntax, Expr *Init) {
3410  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3411                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3412  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3413                                      ColonOrEqualLoc, UsesColonSyntax,
3414                                      IndexExprs, NumIndexExprs, Init);
3415}
3416
3417DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3418                                                    unsigned NumIndexExprs) {
3419  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3420                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3421  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3422}
3423
3424void DesignatedInitExpr::setDesignators(ASTContext &C,
3425                                        const Designator *Desigs,
3426                                        unsigned NumDesigs) {
3427  Designators = new (C) Designator[NumDesigs];
3428  NumDesignators = NumDesigs;
3429  for (unsigned I = 0; I != NumDesigs; ++I)
3430    Designators[I] = Desigs[I];
3431}
3432
3433SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3434  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3435  if (size() == 1)
3436    return DIE->getDesignator(0)->getSourceRange();
3437  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3438                     DIE->getDesignator(size()-1)->getEndLocation());
3439}
3440
3441SourceRange DesignatedInitExpr::getSourceRange() const {
3442  SourceLocation StartLoc;
3443  Designator &First =
3444    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3445  if (First.isFieldDesignator()) {
3446    if (GNUSyntax)
3447      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3448    else
3449      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3450  } else
3451    StartLoc =
3452      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3453  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3454}
3455
3456Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3457  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3458  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3459  Ptr += sizeof(DesignatedInitExpr);
3460  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3461  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3462}
3463
3464Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3465  assert(D.Kind == Designator::ArrayRangeDesignator &&
3466         "Requires array range designator");
3467  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3468  Ptr += sizeof(DesignatedInitExpr);
3469  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3470  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3471}
3472
3473Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3474  assert(D.Kind == Designator::ArrayRangeDesignator &&
3475         "Requires array range designator");
3476  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3477  Ptr += sizeof(DesignatedInitExpr);
3478  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3479  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3480}
3481
3482/// \brief Replaces the designator at index @p Idx with the series
3483/// of designators in [First, Last).
3484void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3485                                          const Designator *First,
3486                                          const Designator *Last) {
3487  unsigned NumNewDesignators = Last - First;
3488  if (NumNewDesignators == 0) {
3489    std::copy_backward(Designators + Idx + 1,
3490                       Designators + NumDesignators,
3491                       Designators + Idx);
3492    --NumNewDesignators;
3493    return;
3494  } else if (NumNewDesignators == 1) {
3495    Designators[Idx] = *First;
3496    return;
3497  }
3498
3499  Designator *NewDesignators
3500    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3501  std::copy(Designators, Designators + Idx, NewDesignators);
3502  std::copy(First, Last, NewDesignators + Idx);
3503  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3504            NewDesignators + Idx + NumNewDesignators);
3505  Designators = NewDesignators;
3506  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3507}
3508
3509ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3510                             Expr **exprs, unsigned nexprs,
3511                             SourceLocation rparenloc)
3512  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3513         false, false, false, false),
3514    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3515  Exprs = new (C) Stmt*[nexprs];
3516  for (unsigned i = 0; i != nexprs; ++i) {
3517    if (exprs[i]->isTypeDependent())
3518      ExprBits.TypeDependent = true;
3519    if (exprs[i]->isValueDependent())
3520      ExprBits.ValueDependent = true;
3521    if (exprs[i]->isInstantiationDependent())
3522      ExprBits.InstantiationDependent = true;
3523    if (exprs[i]->containsUnexpandedParameterPack())
3524      ExprBits.ContainsUnexpandedParameterPack = true;
3525
3526    Exprs[i] = exprs[i];
3527  }
3528}
3529
3530const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3531  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3532    e = ewc->getSubExpr();
3533  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3534    e = m->GetTemporaryExpr();
3535  e = cast<CXXConstructExpr>(e)->getArg(0);
3536  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3537    e = ice->getSubExpr();
3538  return cast<OpaqueValueExpr>(e);
3539}
3540
3541PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3542                                           unsigned numSemanticExprs) {
3543  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3544                                    (1 + numSemanticExprs) * sizeof(Expr*),
3545                                  llvm::alignOf<PseudoObjectExpr>());
3546  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3547}
3548
3549PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3550  : Expr(PseudoObjectExprClass, shell) {
3551  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3552}
3553
3554PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3555                                           ArrayRef<Expr*> semantics,
3556                                           unsigned resultIndex) {
3557  assert(syntax && "no syntactic expression!");
3558  assert(semantics.size() && "no semantic expressions!");
3559
3560  QualType type;
3561  ExprValueKind VK;
3562  if (resultIndex == NoResult) {
3563    type = C.VoidTy;
3564    VK = VK_RValue;
3565  } else {
3566    assert(resultIndex < semantics.size());
3567    type = semantics[resultIndex]->getType();
3568    VK = semantics[resultIndex]->getValueKind();
3569    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3570  }
3571
3572  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3573                              (1 + semantics.size()) * sizeof(Expr*),
3574                            llvm::alignOf<PseudoObjectExpr>());
3575  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3576                                      resultIndex);
3577}
3578
3579PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3580                                   Expr *syntax, ArrayRef<Expr*> semantics,
3581                                   unsigned resultIndex)
3582  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3583         /*filled in at end of ctor*/ false, false, false, false) {
3584  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3585  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3586
3587  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3588    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3589    getSubExprsBuffer()[i] = E;
3590
3591    if (E->isTypeDependent())
3592      ExprBits.TypeDependent = true;
3593    if (E->isValueDependent())
3594      ExprBits.ValueDependent = true;
3595    if (E->isInstantiationDependent())
3596      ExprBits.InstantiationDependent = true;
3597    if (E->containsUnexpandedParameterPack())
3598      ExprBits.ContainsUnexpandedParameterPack = true;
3599
3600    if (isa<OpaqueValueExpr>(E))
3601      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3602             "opaque-value semantic expressions for pseudo-object "
3603             "operations must have sources");
3604  }
3605}
3606
3607//===----------------------------------------------------------------------===//
3608//  ExprIterator.
3609//===----------------------------------------------------------------------===//
3610
3611Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3612Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3613Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3614const Expr* ConstExprIterator::operator[](size_t idx) const {
3615  return cast<Expr>(I[idx]);
3616}
3617const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3618const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3619
3620//===----------------------------------------------------------------------===//
3621//  Child Iterators for iterating over subexpressions/substatements
3622//===----------------------------------------------------------------------===//
3623
3624// UnaryExprOrTypeTraitExpr
3625Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3626  // If this is of a type and the type is a VLA type (and not a typedef), the
3627  // size expression of the VLA needs to be treated as an executable expression.
3628  // Why isn't this weirdness documented better in StmtIterator?
3629  if (isArgumentType()) {
3630    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3631                                   getArgumentType().getTypePtr()))
3632      return child_range(child_iterator(T), child_iterator());
3633    return child_range();
3634  }
3635  return child_range(&Argument.Ex, &Argument.Ex + 1);
3636}
3637
3638// ObjCMessageExpr
3639Stmt::child_range ObjCMessageExpr::children() {
3640  Stmt **begin;
3641  if (getReceiverKind() == Instance)
3642    begin = reinterpret_cast<Stmt **>(this + 1);
3643  else
3644    begin = reinterpret_cast<Stmt **>(getArgs());
3645  return child_range(begin,
3646                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3647}
3648
3649// Blocks
3650BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3651                                   SourceLocation l, bool ByRef,
3652                                   bool constAdded)
3653  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false,
3654         d->isParameterPack()),
3655    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
3656{
3657  bool TypeDependent = false;
3658  bool ValueDependent = false;
3659  bool InstantiationDependent = false;
3660  computeDeclRefDependence(D->getASTContext(), D, getType(), TypeDependent,
3661                           ValueDependent, InstantiationDependent);
3662  ExprBits.TypeDependent = TypeDependent;
3663  ExprBits.ValueDependent = ValueDependent;
3664  ExprBits.InstantiationDependent = InstantiationDependent;
3665}
3666
3667ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3668                                   QualType T, ObjCMethodDecl *Method,
3669                                   SourceRange SR)
3670  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3671         false, false, false, false),
3672    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3673{
3674  Expr **SaveElements = getElements();
3675  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3676    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3677      ExprBits.ValueDependent = true;
3678    if (Elements[I]->isInstantiationDependent())
3679      ExprBits.InstantiationDependent = true;
3680    if (Elements[I]->containsUnexpandedParameterPack())
3681      ExprBits.ContainsUnexpandedParameterPack = true;
3682
3683    SaveElements[I] = Elements[I];
3684  }
3685}
3686
3687ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3688                                           llvm::ArrayRef<Expr *> Elements,
3689                                           QualType T, ObjCMethodDecl * Method,
3690                                           SourceRange SR) {
3691  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3692                         + Elements.size() * sizeof(Expr *));
3693  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3694}
3695
3696ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3697                                                unsigned NumElements) {
3698
3699  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3700                         + NumElements * sizeof(Expr *));
3701  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3702}
3703
3704ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3705                                             ArrayRef<ObjCDictionaryElement> VK,
3706                                             bool HasPackExpansions,
3707                                             QualType T, ObjCMethodDecl *method,
3708                                             SourceRange SR)
3709  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3710         false, false),
3711    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3712    DictWithObjectsMethod(method)
3713{
3714  KeyValuePair *KeyValues = getKeyValues();
3715  ExpansionData *Expansions = getExpansionData();
3716  for (unsigned I = 0; I < NumElements; I++) {
3717    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3718        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3719      ExprBits.ValueDependent = true;
3720    if (VK[I].Key->isInstantiationDependent() ||
3721        VK[I].Value->isInstantiationDependent())
3722      ExprBits.InstantiationDependent = true;
3723    if (VK[I].EllipsisLoc.isInvalid() &&
3724        (VK[I].Key->containsUnexpandedParameterPack() ||
3725         VK[I].Value->containsUnexpandedParameterPack()))
3726      ExprBits.ContainsUnexpandedParameterPack = true;
3727
3728    KeyValues[I].Key = VK[I].Key;
3729    KeyValues[I].Value = VK[I].Value;
3730    if (Expansions) {
3731      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3732      if (VK[I].NumExpansions)
3733        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3734      else
3735        Expansions[I].NumExpansionsPlusOne = 0;
3736    }
3737  }
3738}
3739
3740ObjCDictionaryLiteral *
3741ObjCDictionaryLiteral::Create(ASTContext &C,
3742                              ArrayRef<ObjCDictionaryElement> VK,
3743                              bool HasPackExpansions,
3744                              QualType T, ObjCMethodDecl *method,
3745                              SourceRange SR) {
3746  unsigned ExpansionsSize = 0;
3747  if (HasPackExpansions)
3748    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3749
3750  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3751                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3752  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3753}
3754
3755ObjCDictionaryLiteral *
3756ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3757                                   bool HasPackExpansions) {
3758  unsigned ExpansionsSize = 0;
3759  if (HasPackExpansions)
3760    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3761  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3762                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3763  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3764                                         HasPackExpansions);
3765}
3766
3767ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3768                                                   Expr *base,
3769                                                   Expr *key, QualType T,
3770                                                   ObjCMethodDecl *getMethod,
3771                                                   ObjCMethodDecl *setMethod,
3772                                                   SourceLocation RB) {
3773  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3774  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3775                                        OK_ObjCSubscript,
3776                                        getMethod, setMethod, RB);
3777}
3778
3779AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3780                       QualType t, AtomicOp op, SourceLocation RP)
3781  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3782         false, false, false, false),
3783    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3784{
3785  for (unsigned i = 0; i < nexpr; i++) {
3786    if (args[i]->isTypeDependent())
3787      ExprBits.TypeDependent = true;
3788    if (args[i]->isValueDependent())
3789      ExprBits.ValueDependent = true;
3790    if (args[i]->isInstantiationDependent())
3791      ExprBits.InstantiationDependent = true;
3792    if (args[i]->containsUnexpandedParameterPack())
3793      ExprBits.ContainsUnexpandedParameterPack = true;
3794
3795    SubExprs[i] = args[i];
3796  }
3797}
3798