Expr.cpp revision 9d293dfc0ad7c44ae0b5eb9517f1ed8c8d8b7ff7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22using namespace clang;
23
24//===----------------------------------------------------------------------===//
25// Primary Expressions.
26//===----------------------------------------------------------------------===//
27
28/// getValueAsApproximateDouble - This returns the value as an inaccurate
29/// double.  Note that this may cause loss of precision, but is useful for
30/// debugging dumps, etc.
31double FloatingLiteral::getValueAsApproximateDouble() const {
32  llvm::APFloat V = getValue();
33  bool ignored;
34  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
35            &ignored);
36  return V.convertToDouble();
37}
38
39
40StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
41                             bool Wide, QualType t, SourceLocation firstLoc,
42                             SourceLocation lastLoc) :
43  Expr(StringLiteralClass, t) {
44  // OPTIMIZE: could allocate this appended to the StringLiteral.
45  char *AStrData = new char[byteLength];
46  memcpy(AStrData, strData, byteLength);
47  StrData = AStrData;
48  ByteLength = byteLength;
49  IsWide = Wide;
50  firstTokLoc = firstLoc;
51  lastTokLoc = lastLoc;
52}
53
54StringLiteral::~StringLiteral() {
55  delete[] StrData;
56}
57
58bool UnaryOperator::isPostfix(Opcode Op) {
59  switch (Op) {
60  case PostInc:
61  case PostDec:
62    return true;
63  default:
64    return false;
65  }
66}
67
68bool UnaryOperator::isPrefix(Opcode Op) {
69  switch (Op) {
70    case PreInc:
71    case PreDec:
72      return true;
73    default:
74      return false;
75  }
76}
77
78/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
79/// corresponds to, e.g. "sizeof" or "[pre]++".
80const char *UnaryOperator::getOpcodeStr(Opcode Op) {
81  switch (Op) {
82  default: assert(0 && "Unknown unary operator");
83  case PostInc: return "++";
84  case PostDec: return "--";
85  case PreInc:  return "++";
86  case PreDec:  return "--";
87  case AddrOf:  return "&";
88  case Deref:   return "*";
89  case Plus:    return "+";
90  case Minus:   return "-";
91  case Not:     return "~";
92  case LNot:    return "!";
93  case Real:    return "__real";
94  case Imag:    return "__imag";
95  case SizeOf:  return "sizeof";
96  case AlignOf: return "alignof";
97  case Extension: return "__extension__";
98  case OffsetOf: return "__builtin_offsetof";
99  }
100}
101
102//===----------------------------------------------------------------------===//
103// Postfix Operators.
104//===----------------------------------------------------------------------===//
105
106
107CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
108                   SourceLocation rparenloc)
109  : Expr(CallExprClass, t), NumArgs(numargs) {
110  SubExprs = new Stmt*[numargs+1];
111  SubExprs[FN] = fn;
112  for (unsigned i = 0; i != numargs; ++i)
113    SubExprs[i+ARGS_START] = args[i];
114  RParenLoc = rparenloc;
115}
116
117/// setNumArgs - This changes the number of arguments present in this call.
118/// Any orphaned expressions are deleted by this, and any new operands are set
119/// to null.
120void CallExpr::setNumArgs(unsigned NumArgs) {
121  // No change, just return.
122  if (NumArgs == getNumArgs()) return;
123
124  // If shrinking # arguments, just delete the extras and forgot them.
125  if (NumArgs < getNumArgs()) {
126    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
127      delete getArg(i);
128    this->NumArgs = NumArgs;
129    return;
130  }
131
132  // Otherwise, we are growing the # arguments.  New an bigger argument array.
133  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
134  // Copy over args.
135  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
136    NewSubExprs[i] = SubExprs[i];
137  // Null out new args.
138  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
139    NewSubExprs[i] = 0;
140
141  delete[] SubExprs;
142  SubExprs = NewSubExprs;
143  this->NumArgs = NumArgs;
144}
145
146/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
147/// not, return 0.
148unsigned CallExpr::isBuiltinCall() const {
149  // All simple function calls (e.g. func()) are implicitly cast to pointer to
150  // function. As a result, we try and obtain the DeclRefExpr from the
151  // ImplicitCastExpr.
152  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
153  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
154    return 0;
155
156  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
157  if (!DRE)
158    return 0;
159
160  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
161  if (!FDecl)
162    return 0;
163
164  return FDecl->getIdentifier()->getBuiltinID();
165}
166
167
168/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
169/// corresponds to, e.g. "<<=".
170const char *BinaryOperator::getOpcodeStr(Opcode Op) {
171  switch (Op) {
172  default: assert(0 && "Unknown binary operator");
173  case Mul:       return "*";
174  case Div:       return "/";
175  case Rem:       return "%";
176  case Add:       return "+";
177  case Sub:       return "-";
178  case Shl:       return "<<";
179  case Shr:       return ">>";
180  case LT:        return "<";
181  case GT:        return ">";
182  case LE:        return "<=";
183  case GE:        return ">=";
184  case EQ:        return "==";
185  case NE:        return "!=";
186  case And:       return "&";
187  case Xor:       return "^";
188  case Or:        return "|";
189  case LAnd:      return "&&";
190  case LOr:       return "||";
191  case Assign:    return "=";
192  case MulAssign: return "*=";
193  case DivAssign: return "/=";
194  case RemAssign: return "%=";
195  case AddAssign: return "+=";
196  case SubAssign: return "-=";
197  case ShlAssign: return "<<=";
198  case ShrAssign: return ">>=";
199  case AndAssign: return "&=";
200  case XorAssign: return "^=";
201  case OrAssign:  return "|=";
202  case Comma:     return ",";
203  }
204}
205
206InitListExpr::InitListExpr(SourceLocation lbraceloc,
207                           Expr **initExprs, unsigned numInits,
208                           SourceLocation rbraceloc, bool hadDesignators)
209  : Expr(InitListExprClass, QualType()),
210    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), HadDesignators(hadDesignators) {
211
212  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
213}
214
215/// getFunctionType - Return the underlying function type for this block.
216///
217const FunctionType *BlockExpr::getFunctionType() const {
218  return getType()->getAsBlockPointerType()->
219                    getPointeeType()->getAsFunctionType();
220}
221
222SourceLocation BlockExpr::getCaretLocation() const {
223  return TheBlock->getCaretLocation();
224}
225const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); }
226Stmt *BlockExpr::getBody() { return TheBlock->getBody(); }
227
228
229//===----------------------------------------------------------------------===//
230// Generic Expression Routines
231//===----------------------------------------------------------------------===//
232
233/// hasLocalSideEffect - Return true if this immediate expression has side
234/// effects, not counting any sub-expressions.
235bool Expr::hasLocalSideEffect() const {
236  switch (getStmtClass()) {
237  default:
238    return false;
239  case ParenExprClass:
240    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
241  case UnaryOperatorClass: {
242    const UnaryOperator *UO = cast<UnaryOperator>(this);
243
244    switch (UO->getOpcode()) {
245    default: return false;
246    case UnaryOperator::PostInc:
247    case UnaryOperator::PostDec:
248    case UnaryOperator::PreInc:
249    case UnaryOperator::PreDec:
250      return true;                     // ++/--
251
252    case UnaryOperator::Deref:
253      // Dereferencing a volatile pointer is a side-effect.
254      return getType().isVolatileQualified();
255    case UnaryOperator::Real:
256    case UnaryOperator::Imag:
257      // accessing a piece of a volatile complex is a side-effect.
258      return UO->getSubExpr()->getType().isVolatileQualified();
259
260    case UnaryOperator::Extension:
261      return UO->getSubExpr()->hasLocalSideEffect();
262    }
263  }
264  case BinaryOperatorClass: {
265    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
266    // Consider comma to have side effects if the LHS and RHS both do.
267    if (BinOp->getOpcode() == BinaryOperator::Comma)
268      return BinOp->getLHS()->hasLocalSideEffect() &&
269             BinOp->getRHS()->hasLocalSideEffect();
270
271    return BinOp->isAssignmentOp();
272  }
273  case CompoundAssignOperatorClass:
274    return true;
275
276  case ConditionalOperatorClass: {
277    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
278    return Exp->getCond()->hasLocalSideEffect()
279           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
280           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
281  }
282
283  case MemberExprClass:
284  case ArraySubscriptExprClass:
285    // If the base pointer or element is to a volatile pointer/field, accessing
286    // if is a side effect.
287    return getType().isVolatileQualified();
288
289  case CallExprClass:
290    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
291    // should warn.
292    return true;
293  case ObjCMessageExprClass:
294    return true;
295  case StmtExprClass: {
296    // Statement exprs don't logically have side effects themselves, but are
297    // sometimes used in macros in ways that give them a type that is unused.
298    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
299    // however, if the result of the stmt expr is dead, we don't want to emit a
300    // warning.
301    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
302    if (!CS->body_empty())
303      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
304        return E->hasLocalSideEffect();
305    return false;
306  }
307  case ExplicitCCastExprClass:
308  case CXXFunctionalCastExprClass:
309    // If this is a cast to void, check the operand.  Otherwise, the result of
310    // the cast is unused.
311    if (getType()->isVoidType())
312      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
313    return false;
314
315  case ImplicitCastExprClass:
316    // Check the operand, since implicit casts are inserted by Sema
317    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
318
319  case CXXDefaultArgExprClass:
320    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
321  }
322}
323
324/// DeclCanBeLvalue - Determine whether the given declaration can be
325/// an lvalue. This is a helper routine for isLvalue.
326static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
327  return isa<VarDecl>(Decl) || isa<CXXFieldDecl>(Decl) ||
328    // C++ 3.10p2: An lvalue refers to an object or function.
329    (Ctx.getLangOptions().CPlusPlus &&
330     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
331}
332
333/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
334/// incomplete type other than void. Nonarray expressions that can be lvalues:
335///  - name, where name must be a variable
336///  - e[i]
337///  - (e), where e must be an lvalue
338///  - e.name, where e must be an lvalue
339///  - e->name
340///  - *e, the type of e cannot be a function type
341///  - string-constant
342///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
343///  - reference type [C++ [expr]]
344///
345Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
346  // first, check the type (C99 6.3.2.1). Expressions with function
347  // type in C are not lvalues, but they can be lvalues in C++.
348  if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
349    return LV_NotObjectType;
350
351  // Allow qualified void which is an incomplete type other than void (yuck).
352  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
353    return LV_IncompleteVoidType;
354
355  /// FIXME: Expressions can't have reference type, so the following
356  /// isn't needed.
357  if (TR->isReferenceType()) // C++ [expr]
358    return LV_Valid;
359
360  // the type looks fine, now check the expression
361  switch (getStmtClass()) {
362  case StringLiteralClass: // C99 6.5.1p4
363    return LV_Valid;
364  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
365    // For vectors, make sure base is an lvalue (i.e. not a function call).
366    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
367      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
368    return LV_Valid;
369  case DeclRefExprClass: { // C99 6.5.1p2
370    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
371    if (DeclCanBeLvalue(RefdDecl, Ctx))
372      return LV_Valid;
373    break;
374  }
375  case BlockDeclRefExprClass: {
376    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
377    if (isa<VarDecl>(BDR->getDecl()))
378      return LV_Valid;
379    break;
380  }
381  case MemberExprClass: { // C99 6.5.2.3p4
382    const MemberExpr *m = cast<MemberExpr>(this);
383    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
384  }
385  case UnaryOperatorClass:
386    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
387      return LV_Valid; // C99 6.5.3p4
388
389    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
390        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
391        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
392      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
393    break;
394  case ParenExprClass: // C99 6.5.1p5
395    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
396  case CallExprClass: {
397    // C++ [expr.call]p10:
398    //   A function call is an lvalue if and only if the result type
399    //   is a reference.
400    QualType CalleeType
401      = dyn_cast<CallExpr>(this)->getCallee()->IgnoreParens()->getType();
402    if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
403      if (const FunctionType *FnType
404            = FnTypePtr->getPointeeType()->getAsFunctionType())
405        if (FnType->getResultType()->isReferenceType())
406          return LV_Valid;
407
408    break;
409  }
410  case CompoundLiteralExprClass: // C99 6.5.2.5p5
411    return LV_Valid;
412  case ExtVectorElementExprClass:
413    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
414      return LV_DuplicateVectorComponents;
415    return LV_Valid;
416  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
417    return LV_Valid;
418  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
419    return LV_Valid;
420  case PredefinedExprClass:
421    return (cast<PredefinedExpr>(this)->getIdentType()
422               == PredefinedExpr::CXXThis
423            ? LV_InvalidExpression : LV_Valid);
424  case VAArgExprClass:
425    return LV_Valid;
426  case CXXDefaultArgExprClass:
427    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
428  case CXXConditionDeclExprClass:
429    return LV_Valid;
430  case ExplicitCCastExprClass:
431  case CXXFunctionalCastExprClass:
432  case CXXStaticCastExprClass:
433  case CXXDynamicCastExprClass:
434  case CXXReinterpretCastExprClass:
435  case CXXConstCastExprClass:
436    // The result of an explicit cast is an lvalue if the type we are
437    // casting to is a reference type. See C++ [expr.cast]p1,
438    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
439    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
440    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType())
441      return LV_Valid;
442    break;
443  default:
444    break;
445  }
446  return LV_InvalidExpression;
447}
448
449/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
450/// does not have an incomplete type, does not have a const-qualified type, and
451/// if it is a structure or union, does not have any member (including,
452/// recursively, any member or element of all contained aggregates or unions)
453/// with a const-qualified type.
454Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
455  isLvalueResult lvalResult = isLvalue(Ctx);
456
457  switch (lvalResult) {
458  case LV_Valid:
459    // C++ 3.10p11: Functions cannot be modified, but pointers to
460    // functions can be modifiable.
461    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
462      return MLV_NotObjectType;
463    break;
464
465  case LV_NotObjectType: return MLV_NotObjectType;
466  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
467  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
468  case LV_InvalidExpression: return MLV_InvalidExpression;
469  }
470
471  QualType CT = Ctx.getCanonicalType(getType());
472
473  if (CT.isConstQualified())
474    return MLV_ConstQualified;
475  if (CT->isArrayType())
476    return MLV_ArrayType;
477  if (CT->isIncompleteType())
478    return MLV_IncompleteType;
479
480  if (const RecordType *r = CT->getAsRecordType()) {
481    if (r->hasConstFields())
482      return MLV_ConstQualified;
483  }
484  // The following is illegal:
485  //   void takeclosure(void (^C)(void));
486  //   void func() { int x = 1; takeclosure(^{ x = 7 }); }
487  //
488  if (getStmtClass() == BlockDeclRefExprClass) {
489    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
490    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
491      return MLV_NotBlockQualified;
492  }
493  return MLV_Valid;
494}
495
496/// hasGlobalStorage - Return true if this expression has static storage
497/// duration.  This means that the address of this expression is a link-time
498/// constant.
499bool Expr::hasGlobalStorage() const {
500  switch (getStmtClass()) {
501  default:
502    return false;
503  case ParenExprClass:
504    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
505  case ImplicitCastExprClass:
506    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
507  case CompoundLiteralExprClass:
508    return cast<CompoundLiteralExpr>(this)->isFileScope();
509  case DeclRefExprClass: {
510    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
511    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
512      return VD->hasGlobalStorage();
513    if (isa<FunctionDecl>(D))
514      return true;
515    return false;
516  }
517  case MemberExprClass: {
518    const MemberExpr *M = cast<MemberExpr>(this);
519    return !M->isArrow() && M->getBase()->hasGlobalStorage();
520  }
521  case ArraySubscriptExprClass:
522    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
523  case PredefinedExprClass:
524    return true;
525  case CXXDefaultArgExprClass:
526    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
527  }
528}
529
530Expr* Expr::IgnoreParens() {
531  Expr* E = this;
532  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
533    E = P->getSubExpr();
534
535  return E;
536}
537
538/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
539/// or CastExprs or ImplicitCastExprs, returning their operand.
540Expr *Expr::IgnoreParenCasts() {
541  Expr *E = this;
542  while (true) {
543    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
544      E = P->getSubExpr();
545    else if (CastExpr *P = dyn_cast<CastExpr>(E))
546      E = P->getSubExpr();
547    else
548      return E;
549  }
550}
551
552
553bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
554  switch (getStmtClass()) {
555  default:
556    if (Loc) *Loc = getLocStart();
557    return false;
558  case ParenExprClass:
559    return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
560  case StringLiteralClass:
561  case ObjCStringLiteralClass:
562  case FloatingLiteralClass:
563  case IntegerLiteralClass:
564  case CharacterLiteralClass:
565  case ImaginaryLiteralClass:
566  case TypesCompatibleExprClass:
567  case CXXBoolLiteralExprClass:
568  case AddrLabelExprClass:
569    return true;
570  case CallExprClass: {
571    const CallExpr *CE = cast<CallExpr>(this);
572
573    // Allow any constant foldable calls to builtins.
574    if (CE->isBuiltinCall() && CE->isEvaluatable(Ctx))
575      return true;
576
577    if (Loc) *Loc = getLocStart();
578    return false;
579  }
580  case DeclRefExprClass: {
581    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
582    // Accept address of function.
583    if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
584      return true;
585    if (Loc) *Loc = getLocStart();
586    if (isa<VarDecl>(D))
587      return TR->isArrayType();
588    return false;
589  }
590  case CompoundLiteralExprClass:
591    if (Loc) *Loc = getLocStart();
592    // Allow "(int []){2,4}", since the array will be converted to a pointer.
593    // Allow "(vector type){2,4}" since the elements are all constant.
594    return TR->isArrayType() || TR->isVectorType();
595  case UnaryOperatorClass: {
596    const UnaryOperator *Exp = cast<UnaryOperator>(this);
597
598    // C99 6.6p9
599    if (Exp->getOpcode() == UnaryOperator::AddrOf) {
600      if (!Exp->getSubExpr()->hasGlobalStorage()) {
601        if (Loc) *Loc = getLocStart();
602        return false;
603      }
604      return true;
605    }
606
607    // Get the operand value.  If this is sizeof/alignof, do not evalute the
608    // operand.  This affects C99 6.6p3.
609    if (!Exp->isSizeOfAlignOfOp() &&
610        Exp->getOpcode() != UnaryOperator::OffsetOf &&
611        !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
612      return false;
613
614    switch (Exp->getOpcode()) {
615    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
616    // See C99 6.6p3.
617    default:
618      if (Loc) *Loc = Exp->getOperatorLoc();
619      return false;
620    case UnaryOperator::Extension:
621      return true;  // FIXME: this is wrong.
622    case UnaryOperator::SizeOf:
623    case UnaryOperator::AlignOf:
624    case UnaryOperator::OffsetOf:
625      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
626      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
627        if (Loc) *Loc = Exp->getOperatorLoc();
628        return false;
629      }
630      return true;
631    case UnaryOperator::LNot:
632    case UnaryOperator::Plus:
633    case UnaryOperator::Minus:
634    case UnaryOperator::Not:
635      return true;
636    }
637  }
638  case SizeOfAlignOfTypeExprClass: {
639    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
640    // alignof always evaluates to a constant.
641    if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
642        !Exp->getArgumentType()->isConstantSizeType()) {
643      if (Loc) *Loc = Exp->getOperatorLoc();
644      return false;
645    }
646    return true;
647  }
648  case BinaryOperatorClass: {
649    const BinaryOperator *Exp = cast<BinaryOperator>(this);
650
651    // The LHS of a constant expr is always evaluated and needed.
652    if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
653      return false;
654
655    if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
656      return false;
657    return true;
658  }
659  case ImplicitCastExprClass:
660  case ExplicitCCastExprClass:
661  case CXXFunctionalCastExprClass: {
662    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
663    SourceLocation CastLoc = getLocStart();
664    if (!SubExpr->isConstantExpr(Ctx, Loc)) {
665      if (Loc) *Loc = SubExpr->getLocStart();
666      return false;
667    }
668    return true;
669  }
670  case ConditionalOperatorClass: {
671    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
672    if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
673        // Handle the GNU extension for missing LHS.
674        !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
675        !Exp->getRHS()->isConstantExpr(Ctx, Loc))
676      return false;
677    return true;
678  }
679  case InitListExprClass: {
680    const InitListExpr *Exp = cast<InitListExpr>(this);
681    unsigned numInits = Exp->getNumInits();
682    for (unsigned i = 0; i < numInits; i++) {
683      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
684        if (Loc) *Loc = Exp->getInit(i)->getLocStart();
685        return false;
686      }
687    }
688    return true;
689  }
690  case CXXDefaultArgExprClass:
691    return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
692  }
693}
694
695/// isIntegerConstantExpr - this recursive routine will test if an expression is
696/// an integer constant expression. Note: With the introduction of VLA's in
697/// C99 the result of the sizeof operator is no longer always a constant
698/// expression. The generalization of the wording to include any subexpression
699/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
700/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
701/// "0 || f()" can be treated as a constant expression. In C90 this expression,
702/// occurring in a context requiring a constant, would have been a constraint
703/// violation. FIXME: This routine currently implements C90 semantics.
704/// To properly implement C99 semantics this routine will need to evaluate
705/// expressions involving operators previously mentioned.
706
707/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
708/// comma, etc
709///
710/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
711/// permit this.  This includes things like (int)1e1000
712///
713/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
714/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
715/// cast+dereference.
716bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
717                                 SourceLocation *Loc, bool isEvaluated) const {
718  switch (getStmtClass()) {
719  default:
720    if (Loc) *Loc = getLocStart();
721    return false;
722  case ParenExprClass:
723    return cast<ParenExpr>(this)->getSubExpr()->
724                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
725  case IntegerLiteralClass:
726    Result = cast<IntegerLiteral>(this)->getValue();
727    break;
728  case CharacterLiteralClass: {
729    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
730    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
731    Result = CL->getValue();
732    Result.setIsUnsigned(!getType()->isSignedIntegerType());
733    break;
734  }
735  case CXXBoolLiteralExprClass: {
736    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
737    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
738    Result = BL->getValue();
739    Result.setIsUnsigned(!getType()->isSignedIntegerType());
740    break;
741  }
742  case CXXZeroInitValueExprClass:
743    Result.clear();
744    break;
745  case TypesCompatibleExprClass: {
746    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
747    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
748    // Per gcc docs "this built-in function ignores top level
749    // qualifiers".  We need to use the canonical version to properly
750    // be able to strip CRV qualifiers from the type.
751    QualType T0 = Ctx.getCanonicalType(TCE->getArgType1());
752    QualType T1 = Ctx.getCanonicalType(TCE->getArgType2());
753    Result = Ctx.typesAreCompatible(T0.getUnqualifiedType(),
754                                    T1.getUnqualifiedType());
755    break;
756  }
757  case CallExprClass: {
758    const CallExpr *CE = cast<CallExpr>(this);
759    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
760
761    // If this is a call to a builtin function, constant fold it otherwise
762    // reject it.
763    if (CE->isBuiltinCall()) {
764      APValue ResultAP;
765      if (CE->tryEvaluate(ResultAP, Ctx)) {
766        Result = ResultAP.getInt();
767        break;  // It is a constant, expand it.
768      }
769    }
770
771    if (Loc) *Loc = getLocStart();
772    return false;
773  }
774  case DeclRefExprClass:
775    if (const EnumConstantDecl *D =
776          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
777      Result = D->getInitVal();
778      break;
779    }
780    if (Loc) *Loc = getLocStart();
781    return false;
782  case UnaryOperatorClass: {
783    const UnaryOperator *Exp = cast<UnaryOperator>(this);
784
785    // Get the operand value.  If this is sizeof/alignof, do not evalute the
786    // operand.  This affects C99 6.6p3.
787    if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
788        !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
789      return false;
790
791    switch (Exp->getOpcode()) {
792    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
793    // See C99 6.6p3.
794    default:
795      if (Loc) *Loc = Exp->getOperatorLoc();
796      return false;
797    case UnaryOperator::Extension:
798      return true;  // FIXME: this is wrong.
799    case UnaryOperator::SizeOf:
800    case UnaryOperator::AlignOf:
801      // Return the result in the right width.
802      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
803
804      // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
805      if (Exp->getSubExpr()->getType()->isVoidType()) {
806        Result = 1;
807        break;
808      }
809
810      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
811      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
812        if (Loc) *Loc = Exp->getOperatorLoc();
813        return false;
814      }
815
816      // Get information about the size or align.
817      if (Exp->getSubExpr()->getType()->isFunctionType()) {
818        // GCC extension: sizeof(function) = 1.
819        Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
820      } else {
821        unsigned CharSize = Ctx.Target.getCharWidth();
822        if (Exp->getOpcode() == UnaryOperator::AlignOf)
823          Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
824        else
825          Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
826      }
827      break;
828    case UnaryOperator::LNot: {
829      bool Val = Result == 0;
830      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
831      Result = Val;
832      break;
833    }
834    case UnaryOperator::Plus:
835      break;
836    case UnaryOperator::Minus:
837      Result = -Result;
838      break;
839    case UnaryOperator::Not:
840      Result = ~Result;
841      break;
842    case UnaryOperator::OffsetOf:
843      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
844      Result = Exp->evaluateOffsetOf(Ctx);
845    }
846    break;
847  }
848  case SizeOfAlignOfTypeExprClass: {
849    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
850
851    // Return the result in the right width.
852    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
853
854    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
855    if (Exp->getArgumentType()->isVoidType()) {
856      Result = 1;
857      break;
858    }
859
860    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
861    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
862      if (Loc) *Loc = Exp->getOperatorLoc();
863      return false;
864    }
865
866    // Get information about the size or align.
867    if (Exp->getArgumentType()->isFunctionType()) {
868      // GCC extension: sizeof(function) = 1.
869      Result = Exp->isSizeOf() ? 1 : 4;
870    } else {
871      unsigned CharSize = Ctx.Target.getCharWidth();
872      if (Exp->isSizeOf())
873        Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
874      else
875        Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
876    }
877    break;
878  }
879  case BinaryOperatorClass: {
880    const BinaryOperator *Exp = cast<BinaryOperator>(this);
881    llvm::APSInt LHS, RHS;
882
883    // Initialize result to have correct signedness and width.
884    Result = llvm::APSInt(static_cast<uint32_t>(Ctx.getTypeSize(getType())),
885                          !getType()->isSignedIntegerType());
886
887    // The LHS of a constant expr is always evaluated and needed.
888    if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
889      return false;
890
891    // The short-circuiting &&/|| operators don't necessarily evaluate their
892    // RHS.  Make sure to pass isEvaluated down correctly.
893    if (Exp->isLogicalOp()) {
894      bool RHSEval;
895      if (Exp->getOpcode() == BinaryOperator::LAnd)
896        RHSEval = LHS != 0;
897      else {
898        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
899        RHSEval = LHS == 0;
900      }
901
902      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
903                                                isEvaluated & RHSEval))
904        return false;
905    } else {
906      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
907        return false;
908    }
909
910    switch (Exp->getOpcode()) {
911    default:
912      if (Loc) *Loc = getLocStart();
913      return false;
914    case BinaryOperator::Mul:
915      Result = LHS * RHS;
916      break;
917    case BinaryOperator::Div:
918      if (RHS == 0) {
919        if (!isEvaluated) break;
920        if (Loc) *Loc = getLocStart();
921        return false;
922      }
923      Result = LHS / RHS;
924      break;
925    case BinaryOperator::Rem:
926      if (RHS == 0) {
927        if (!isEvaluated) break;
928        if (Loc) *Loc = getLocStart();
929        return false;
930      }
931      Result = LHS % RHS;
932      break;
933    case BinaryOperator::Add: Result = LHS + RHS; break;
934    case BinaryOperator::Sub: Result = LHS - RHS; break;
935    case BinaryOperator::Shl:
936      Result = LHS <<
937        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
938    break;
939    case BinaryOperator::Shr:
940      Result = LHS >>
941        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
942      break;
943    case BinaryOperator::LT:  Result = LHS < RHS; break;
944    case BinaryOperator::GT:  Result = LHS > RHS; break;
945    case BinaryOperator::LE:  Result = LHS <= RHS; break;
946    case BinaryOperator::GE:  Result = LHS >= RHS; break;
947    case BinaryOperator::EQ:  Result = LHS == RHS; break;
948    case BinaryOperator::NE:  Result = LHS != RHS; break;
949    case BinaryOperator::And: Result = LHS & RHS; break;
950    case BinaryOperator::Xor: Result = LHS ^ RHS; break;
951    case BinaryOperator::Or:  Result = LHS | RHS; break;
952    case BinaryOperator::LAnd:
953      Result = LHS != 0 && RHS != 0;
954      break;
955    case BinaryOperator::LOr:
956      Result = LHS != 0 || RHS != 0;
957      break;
958
959    case BinaryOperator::Comma:
960      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
961      // *except* when they are contained within a subexpression that is not
962      // evaluated".  Note that Assignment can never happen due to constraints
963      // on the LHS subexpr, so we don't need to check it here.
964      if (isEvaluated) {
965        if (Loc) *Loc = getLocStart();
966        return false;
967      }
968
969      // The result of the constant expr is the RHS.
970      Result = RHS;
971      return true;
972    }
973
974    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
975    break;
976  }
977  case ImplicitCastExprClass:
978  case ExplicitCCastExprClass:
979  case CXXFunctionalCastExprClass: {
980    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
981    SourceLocation CastLoc = getLocStart();
982
983    // C99 6.6p6: shall only convert arithmetic types to integer types.
984    if (!SubExpr->getType()->isArithmeticType() ||
985        !getType()->isIntegerType()) {
986      if (Loc) *Loc = SubExpr->getLocStart();
987      return false;
988    }
989
990    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
991
992    // Handle simple integer->integer casts.
993    if (SubExpr->getType()->isIntegerType()) {
994      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
995        return false;
996
997      // Figure out if this is a truncate, extend or noop cast.
998      // If the input is signed, do a sign extend, noop, or truncate.
999      if (getType()->isBooleanType()) {
1000        // Conversion to bool compares against zero.
1001        Result = Result != 0;
1002        Result.zextOrTrunc(DestWidth);
1003      } else if (SubExpr->getType()->isSignedIntegerType())
1004        Result.sextOrTrunc(DestWidth);
1005      else  // If the input is unsigned, do a zero extend, noop, or truncate.
1006        Result.zextOrTrunc(DestWidth);
1007      break;
1008    }
1009
1010    // Allow floating constants that are the immediate operands of casts or that
1011    // are parenthesized.
1012    const Expr *Operand = SubExpr;
1013    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
1014      Operand = PE->getSubExpr();
1015
1016    // If this isn't a floating literal, we can't handle it.
1017    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
1018    if (!FL) {
1019      if (Loc) *Loc = Operand->getLocStart();
1020      return false;
1021    }
1022
1023    // If the destination is boolean, compare against zero.
1024    if (getType()->isBooleanType()) {
1025      Result = !FL->getValue().isZero();
1026      Result.zextOrTrunc(DestWidth);
1027      break;
1028    }
1029
1030    // Determine whether we are converting to unsigned or signed.
1031    bool DestSigned = getType()->isSignedIntegerType();
1032
1033    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
1034    // be called multiple times per AST.
1035    uint64_t Space[4];
1036    bool ignored;
1037    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
1038                                          llvm::APFloat::rmTowardZero,
1039                                          &ignored);
1040    Result = llvm::APInt(DestWidth, 4, Space);
1041    break;
1042  }
1043  case ConditionalOperatorClass: {
1044    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1045
1046    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1047      return false;
1048
1049    const Expr *TrueExp  = Exp->getLHS();
1050    const Expr *FalseExp = Exp->getRHS();
1051    if (Result == 0) std::swap(TrueExp, FalseExp);
1052
1053    // Evaluate the false one first, discard the result.
1054    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1055      return false;
1056    // Evalute the true one, capture the result.
1057    if (TrueExp &&
1058        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1059      return false;
1060    break;
1061  }
1062  case CXXDefaultArgExprClass:
1063    return cast<CXXDefaultArgExpr>(this)
1064             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1065  }
1066
1067  // Cases that are valid constant exprs fall through to here.
1068  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1069  return true;
1070}
1071
1072/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1073/// integer constant expression with the value zero, or if this is one that is
1074/// cast to void*.
1075bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1076  // Strip off a cast to void*, if it exists.
1077  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1078    // Check that it is a cast to void*.
1079    if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1080      QualType Pointee = PT->getPointeeType();
1081      if (Pointee.getCVRQualifiers() == 0 &&
1082          Pointee->isVoidType() &&                                 // to void*
1083          CE->getSubExpr()->getType()->isIntegerType())            // from int.
1084        return CE->getSubExpr()->isNullPointerConstant(Ctx);
1085    }
1086  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1087    // Ignore the ImplicitCastExpr type entirely.
1088    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1089  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1090    // Accept ((void*)0) as a null pointer constant, as many other
1091    // implementations do.
1092    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1093  } else if (const CXXDefaultArgExpr *DefaultArg
1094               = dyn_cast<CXXDefaultArgExpr>(this)) {
1095    // See through default argument expressions
1096    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1097  }
1098
1099  // This expression must be an integer type.
1100  if (!getType()->isIntegerType())
1101    return false;
1102
1103  // If we have an integer constant expression, we need to *evaluate* it and
1104  // test for the value 0.
1105  llvm::APSInt Val(32);
1106  return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1107}
1108
1109unsigned ExtVectorElementExpr::getNumElements() const {
1110  if (const VectorType *VT = getType()->getAsVectorType())
1111    return VT->getNumElements();
1112  return 1;
1113}
1114
1115/// containsDuplicateElements - Return true if any element access is repeated.
1116bool ExtVectorElementExpr::containsDuplicateElements() const {
1117  const char *compStr = Accessor.getName();
1118  unsigned length = strlen(compStr);
1119
1120  for (unsigned i = 0; i < length-1; i++) {
1121    const char *s = compStr+i;
1122    for (const char c = *s++; *s; s++)
1123      if (c == *s)
1124        return true;
1125  }
1126  return false;
1127}
1128
1129/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1130void ExtVectorElementExpr::getEncodedElementAccess(
1131                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1132  const char *compStr = Accessor.getName();
1133
1134  bool isHi =   !strcmp(compStr, "hi");
1135  bool isLo =   !strcmp(compStr, "lo");
1136  bool isEven = !strcmp(compStr, "e");
1137  bool isOdd  = !strcmp(compStr, "o");
1138
1139  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1140    uint64_t Index;
1141
1142    if (isHi)
1143      Index = e + i;
1144    else if (isLo)
1145      Index = i;
1146    else if (isEven)
1147      Index = 2 * i;
1148    else if (isOdd)
1149      Index = 2 * i + 1;
1150    else
1151      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1152
1153    Elts.push_back(Index);
1154  }
1155}
1156
1157// constructor for instance messages.
1158ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1159                QualType retType, ObjCMethodDecl *mproto,
1160                SourceLocation LBrac, SourceLocation RBrac,
1161                Expr **ArgExprs, unsigned nargs)
1162  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1163    MethodProto(mproto) {
1164  NumArgs = nargs;
1165  SubExprs = new Stmt*[NumArgs+1];
1166  SubExprs[RECEIVER] = receiver;
1167  if (NumArgs) {
1168    for (unsigned i = 0; i != NumArgs; ++i)
1169      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1170  }
1171  LBracloc = LBrac;
1172  RBracloc = RBrac;
1173}
1174
1175// constructor for class messages.
1176// FIXME: clsName should be typed to ObjCInterfaceType
1177ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1178                QualType retType, ObjCMethodDecl *mproto,
1179                SourceLocation LBrac, SourceLocation RBrac,
1180                Expr **ArgExprs, unsigned nargs)
1181  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1182    MethodProto(mproto) {
1183  NumArgs = nargs;
1184  SubExprs = new Stmt*[NumArgs+1];
1185  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1186  if (NumArgs) {
1187    for (unsigned i = 0; i != NumArgs; ++i)
1188      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1189  }
1190  LBracloc = LBrac;
1191  RBracloc = RBrac;
1192}
1193
1194// constructor for class messages.
1195ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1196                                 QualType retType, ObjCMethodDecl *mproto,
1197                                 SourceLocation LBrac, SourceLocation RBrac,
1198                                 Expr **ArgExprs, unsigned nargs)
1199: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1200MethodProto(mproto) {
1201  NumArgs = nargs;
1202  SubExprs = new Stmt*[NumArgs+1];
1203  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1204  if (NumArgs) {
1205    for (unsigned i = 0; i != NumArgs; ++i)
1206      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1207  }
1208  LBracloc = LBrac;
1209  RBracloc = RBrac;
1210}
1211
1212ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1213  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1214  switch (x & Flags) {
1215    default:
1216      assert(false && "Invalid ObjCMessageExpr.");
1217    case IsInstMeth:
1218      return ClassInfo(0, 0);
1219    case IsClsMethDeclUnknown:
1220      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1221    case IsClsMethDeclKnown: {
1222      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1223      return ClassInfo(D, D->getIdentifier());
1224    }
1225  }
1226}
1227
1228bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1229  return getCond()->getIntegerConstantExprValue(C) != 0;
1230}
1231
1232static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1233{
1234  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1235    QualType Ty = ME->getBase()->getType();
1236
1237    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1238    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1239    FieldDecl *FD = ME->getMemberDecl();
1240
1241    // FIXME: This is linear time.
1242    unsigned i = 0, e = 0;
1243    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1244      if (RD->getMember(i) == FD)
1245        break;
1246    }
1247
1248    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1249  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1250    const Expr *Base = ASE->getBase();
1251
1252    int64_t size = C.getTypeSize(ASE->getType());
1253    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1254
1255    return size + evaluateOffsetOf(C, Base);
1256  } else if (isa<CompoundLiteralExpr>(E))
1257    return 0;
1258
1259  assert(0 && "Unknown offsetof subexpression!");
1260  return 0;
1261}
1262
1263int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1264{
1265  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1266
1267  unsigned CharSize = C.Target.getCharWidth();
1268  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1269}
1270
1271void SizeOfAlignOfTypeExpr::Destroy(ASTContext& C) {
1272  // Override default behavior of traversing children. We do not want
1273  // to delete the type.
1274}
1275
1276//===----------------------------------------------------------------------===//
1277//  ExprIterator.
1278//===----------------------------------------------------------------------===//
1279
1280Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1281Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1282Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1283const Expr* ConstExprIterator::operator[](size_t idx) const {
1284  return cast<Expr>(I[idx]);
1285}
1286const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1287const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1288
1289//===----------------------------------------------------------------------===//
1290//  Child Iterators for iterating over subexpressions/substatements
1291//===----------------------------------------------------------------------===//
1292
1293// DeclRefExpr
1294Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1295Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1296
1297// ObjCIvarRefExpr
1298Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1299Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1300
1301// ObjCPropertyRefExpr
1302Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1303Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1304
1305// PredefinedExpr
1306Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1307Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1308
1309// IntegerLiteral
1310Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1311Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1312
1313// CharacterLiteral
1314Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1315Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1316
1317// FloatingLiteral
1318Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1319Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1320
1321// ImaginaryLiteral
1322Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1323Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1324
1325// StringLiteral
1326Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1327Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1328
1329// ParenExpr
1330Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1331Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1332
1333// UnaryOperator
1334Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1335Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1336
1337// SizeOfAlignOfTypeExpr
1338Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1339  // If the type is a VLA type (and not a typedef), the size expression of the
1340  // VLA needs to be treated as an executable expression.
1341  if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1342    return child_iterator(T);
1343  else
1344    return child_iterator();
1345}
1346Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1347  return child_iterator();
1348}
1349
1350// ArraySubscriptExpr
1351Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1352  return &SubExprs[0];
1353}
1354Stmt::child_iterator ArraySubscriptExpr::child_end() {
1355  return &SubExprs[0]+END_EXPR;
1356}
1357
1358// CallExpr
1359Stmt::child_iterator CallExpr::child_begin() {
1360  return &SubExprs[0];
1361}
1362Stmt::child_iterator CallExpr::child_end() {
1363  return &SubExprs[0]+NumArgs+ARGS_START;
1364}
1365
1366// MemberExpr
1367Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1368Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1369
1370// ExtVectorElementExpr
1371Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1372Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1373
1374// CompoundLiteralExpr
1375Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1376Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1377
1378// CastExpr
1379Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1380Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1381
1382// BinaryOperator
1383Stmt::child_iterator BinaryOperator::child_begin() {
1384  return &SubExprs[0];
1385}
1386Stmt::child_iterator BinaryOperator::child_end() {
1387  return &SubExprs[0]+END_EXPR;
1388}
1389
1390// ConditionalOperator
1391Stmt::child_iterator ConditionalOperator::child_begin() {
1392  return &SubExprs[0];
1393}
1394Stmt::child_iterator ConditionalOperator::child_end() {
1395  return &SubExprs[0]+END_EXPR;
1396}
1397
1398// AddrLabelExpr
1399Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1400Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1401
1402// StmtExpr
1403Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1404Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1405
1406// TypesCompatibleExpr
1407Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1408  return child_iterator();
1409}
1410
1411Stmt::child_iterator TypesCompatibleExpr::child_end() {
1412  return child_iterator();
1413}
1414
1415// ChooseExpr
1416Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1417Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1418
1419// OverloadExpr
1420Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1421Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1422
1423// ShuffleVectorExpr
1424Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1425  return &SubExprs[0];
1426}
1427Stmt::child_iterator ShuffleVectorExpr::child_end() {
1428  return &SubExprs[0]+NumExprs;
1429}
1430
1431// VAArgExpr
1432Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1433Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1434
1435// InitListExpr
1436Stmt::child_iterator InitListExpr::child_begin() {
1437  return InitExprs.size() ? &InitExprs[0] : 0;
1438}
1439Stmt::child_iterator InitListExpr::child_end() {
1440  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1441}
1442
1443// ObjCStringLiteral
1444Stmt::child_iterator ObjCStringLiteral::child_begin() {
1445  return child_iterator();
1446}
1447Stmt::child_iterator ObjCStringLiteral::child_end() {
1448  return child_iterator();
1449}
1450
1451// ObjCEncodeExpr
1452Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1453Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1454
1455// ObjCSelectorExpr
1456Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1457  return child_iterator();
1458}
1459Stmt::child_iterator ObjCSelectorExpr::child_end() {
1460  return child_iterator();
1461}
1462
1463// ObjCProtocolExpr
1464Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1465  return child_iterator();
1466}
1467Stmt::child_iterator ObjCProtocolExpr::child_end() {
1468  return child_iterator();
1469}
1470
1471// ObjCMessageExpr
1472Stmt::child_iterator ObjCMessageExpr::child_begin() {
1473  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1474}
1475Stmt::child_iterator ObjCMessageExpr::child_end() {
1476  return &SubExprs[0]+ARGS_START+getNumArgs();
1477}
1478
1479// Blocks
1480Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
1481Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
1482
1483Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
1484Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
1485