Expr.cpp revision b03d33edaf24af2893a50caee4d2c99839242c44
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
167  ASTContext &Context = CurrentDecl->getASTContext();
168
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184
185    std::string Proto = FD->getQualifiedNameAsString(Policy);
186
187    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
188    const FunctionProtoType *FT = 0;
189    if (FD->hasWrittenPrototype())
190      FT = dyn_cast<FunctionProtoType>(AFT);
191
192    Proto += "(";
193    if (FT) {
194      llvm::raw_string_ostream POut(Proto);
195      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
196        if (i) POut << ", ";
197        std::string Param;
198        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
199        POut << Param;
200      }
201
202      if (FT->isVariadic()) {
203        if (FD->getNumParams()) POut << ", ";
204        POut << "...";
205      }
206    }
207    Proto += ")";
208
209    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
210      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
211      if (ThisQuals.hasConst())
212        Proto += " const";
213      if (ThisQuals.hasVolatile())
214        Proto += " volatile";
215    }
216
217    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
218      AFT->getResultType().getAsStringInternal(Proto, Policy);
219
220    Out << Proto;
221
222    Out.flush();
223    return Name.str().str();
224  }
225  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
226    llvm::SmallString<256> Name;
227    llvm::raw_svector_ostream Out(Name);
228    Out << (MD->isInstanceMethod() ? '-' : '+');
229    Out << '[';
230
231    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
232    // a null check to avoid a crash.
233    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
234      Out << ID->getNameAsString();
235
236    if (const ObjCCategoryImplDecl *CID =
237        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
238      Out << '(';
239      Out <<  CID->getNameAsString();
240      Out <<  ')';
241    }
242    Out <<  ' ';
243    Out << MD->getSelector().getAsString();
244    Out <<  ']';
245
246    Out.flush();
247    return Name.str().str();
248  }
249  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
250    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
251    return "top level";
252  }
253  return "";
254}
255
256/// getValueAsApproximateDouble - This returns the value as an inaccurate
257/// double.  Note that this may cause loss of precision, but is useful for
258/// debugging dumps, etc.
259double FloatingLiteral::getValueAsApproximateDouble() const {
260  llvm::APFloat V = getValue();
261  bool ignored;
262  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
263            &ignored);
264  return V.convertToDouble();
265}
266
267StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
268                                     unsigned ByteLength, bool Wide,
269                                     QualType Ty,
270                                     const SourceLocation *Loc,
271                                     unsigned NumStrs) {
272  // Allocate enough space for the StringLiteral plus an array of locations for
273  // any concatenated string tokens.
274  void *Mem = C.Allocate(sizeof(StringLiteral)+
275                         sizeof(SourceLocation)*(NumStrs-1),
276                         llvm::alignof<StringLiteral>());
277  StringLiteral *SL = new (Mem) StringLiteral(Ty);
278
279  // OPTIMIZE: could allocate this appended to the StringLiteral.
280  char *AStrData = new (C, 1) char[ByteLength];
281  memcpy(AStrData, StrData, ByteLength);
282  SL->StrData = AStrData;
283  SL->ByteLength = ByteLength;
284  SL->IsWide = Wide;
285  SL->TokLocs[0] = Loc[0];
286  SL->NumConcatenated = NumStrs;
287
288  if (NumStrs != 1)
289    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
290  return SL;
291}
292
293StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
294  void *Mem = C.Allocate(sizeof(StringLiteral)+
295                         sizeof(SourceLocation)*(NumStrs-1),
296                         llvm::alignof<StringLiteral>());
297  StringLiteral *SL = new (Mem) StringLiteral(QualType());
298  SL->StrData = 0;
299  SL->ByteLength = 0;
300  SL->NumConcatenated = NumStrs;
301  return SL;
302}
303
304void StringLiteral::DoDestroy(ASTContext &C) {
305  C.Deallocate(const_cast<char*>(StrData));
306  Expr::DoDestroy(C);
307}
308
309void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
310  if (StrData)
311    C.Deallocate(const_cast<char*>(StrData));
312
313  char *AStrData = new (C, 1) char[Str.size()];
314  memcpy(AStrData, Str.data(), Str.size());
315  StrData = AStrData;
316  ByteLength = Str.size();
317}
318
319/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
320/// corresponds to, e.g. "sizeof" or "[pre]++".
321const char *UnaryOperator::getOpcodeStr(Opcode Op) {
322  switch (Op) {
323  default: assert(0 && "Unknown unary operator");
324  case PostInc: return "++";
325  case PostDec: return "--";
326  case PreInc:  return "++";
327  case PreDec:  return "--";
328  case AddrOf:  return "&";
329  case Deref:   return "*";
330  case Plus:    return "+";
331  case Minus:   return "-";
332  case Not:     return "~";
333  case LNot:    return "!";
334  case Real:    return "__real";
335  case Imag:    return "__imag";
336  case Extension: return "__extension__";
337  case OffsetOf: return "__builtin_offsetof";
338  }
339}
340
341UnaryOperator::Opcode
342UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
343  switch (OO) {
344  default: assert(false && "No unary operator for overloaded function");
345  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
346  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
347  case OO_Amp:        return AddrOf;
348  case OO_Star:       return Deref;
349  case OO_Plus:       return Plus;
350  case OO_Minus:      return Minus;
351  case OO_Tilde:      return Not;
352  case OO_Exclaim:    return LNot;
353  }
354}
355
356OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
357  switch (Opc) {
358  case PostInc: case PreInc: return OO_PlusPlus;
359  case PostDec: case PreDec: return OO_MinusMinus;
360  case AddrOf: return OO_Amp;
361  case Deref: return OO_Star;
362  case Plus: return OO_Plus;
363  case Minus: return OO_Minus;
364  case Not: return OO_Tilde;
365  case LNot: return OO_Exclaim;
366  default: return OO_None;
367  }
368}
369
370
371//===----------------------------------------------------------------------===//
372// Postfix Operators.
373//===----------------------------------------------------------------------===//
374
375CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
376                   unsigned numargs, QualType t, SourceLocation rparenloc)
377  : Expr(SC, t,
378         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
379         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
380    NumArgs(numargs) {
381
382  SubExprs = new (C) Stmt*[numargs+1];
383  SubExprs[FN] = fn;
384  for (unsigned i = 0; i != numargs; ++i)
385    SubExprs[i+ARGS_START] = args[i];
386
387  RParenLoc = rparenloc;
388}
389
390CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
391                   QualType t, SourceLocation rparenloc)
392  : Expr(CallExprClass, t,
393         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
394         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
395    NumArgs(numargs) {
396
397  SubExprs = new (C) Stmt*[numargs+1];
398  SubExprs[FN] = fn;
399  for (unsigned i = 0; i != numargs; ++i)
400    SubExprs[i+ARGS_START] = args[i];
401
402  RParenLoc = rparenloc;
403}
404
405CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
406  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
407  SubExprs = new (C) Stmt*[1];
408}
409
410void CallExpr::DoDestroy(ASTContext& C) {
411  DestroyChildren(C);
412  if (SubExprs) C.Deallocate(SubExprs);
413  this->~CallExpr();
414  C.Deallocate(this);
415}
416
417Decl *CallExpr::getCalleeDecl() {
418  Expr *CEE = getCallee()->IgnoreParenCasts();
419  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
420    return DRE->getDecl();
421  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
422    return ME->getMemberDecl();
423
424  return 0;
425}
426
427FunctionDecl *CallExpr::getDirectCallee() {
428  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
429}
430
431/// setNumArgs - This changes the number of arguments present in this call.
432/// Any orphaned expressions are deleted by this, and any new operands are set
433/// to null.
434void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
435  // No change, just return.
436  if (NumArgs == getNumArgs()) return;
437
438  // If shrinking # arguments, just delete the extras and forgot them.
439  if (NumArgs < getNumArgs()) {
440    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
441      getArg(i)->Destroy(C);
442    this->NumArgs = NumArgs;
443    return;
444  }
445
446  // Otherwise, we are growing the # arguments.  New an bigger argument array.
447  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
448  // Copy over args.
449  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
450    NewSubExprs[i] = SubExprs[i];
451  // Null out new args.
452  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
453    NewSubExprs[i] = 0;
454
455  if (SubExprs) C.Deallocate(SubExprs);
456  SubExprs = NewSubExprs;
457  this->NumArgs = NumArgs;
458}
459
460/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
461/// not, return 0.
462unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
463  // All simple function calls (e.g. func()) are implicitly cast to pointer to
464  // function. As a result, we try and obtain the DeclRefExpr from the
465  // ImplicitCastExpr.
466  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
467  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
468    return 0;
469
470  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
471  if (!DRE)
472    return 0;
473
474  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
475  if (!FDecl)
476    return 0;
477
478  if (!FDecl->getIdentifier())
479    return 0;
480
481  return FDecl->getBuiltinID();
482}
483
484QualType CallExpr::getCallReturnType() const {
485  QualType CalleeType = getCallee()->getType();
486  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
487    CalleeType = FnTypePtr->getPointeeType();
488  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
489    CalleeType = BPT->getPointeeType();
490
491  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
492  return FnType->getResultType();
493}
494
495MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
496                       SourceRange qualrange, ValueDecl *memberdecl,
497                       SourceLocation l, const TemplateArgumentListInfo *targs,
498                       QualType ty)
499  : Expr(MemberExprClass, ty,
500         base->isTypeDependent() || (qual && qual->isDependent()),
501         base->isValueDependent() || (qual && qual->isDependent())),
502    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
503    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
504  // Initialize the qualifier, if any.
505  if (HasQualifier) {
506    NameQualifier *NQ = getMemberQualifier();
507    NQ->NNS = qual;
508    NQ->Range = qualrange;
509  }
510
511  // Initialize the explicit template argument list, if any.
512  if (targs)
513    getExplicitTemplateArgumentList()->initializeFrom(*targs);
514}
515
516MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
517                               NestedNameSpecifier *qual,
518                               SourceRange qualrange,
519                               ValueDecl *memberdecl,
520                               SourceLocation l,
521                               const TemplateArgumentListInfo *targs,
522                               QualType ty) {
523  std::size_t Size = sizeof(MemberExpr);
524  if (qual != 0)
525    Size += sizeof(NameQualifier);
526
527  if (targs)
528    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
529
530  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
531  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
532                              targs, ty);
533}
534
535const char *CastExpr::getCastKindName() const {
536  switch (getCastKind()) {
537  case CastExpr::CK_Unknown:
538    return "Unknown";
539  case CastExpr::CK_BitCast:
540    return "BitCast";
541  case CastExpr::CK_NoOp:
542    return "NoOp";
543  case CastExpr::CK_BaseToDerived:
544    return "BaseToDerived";
545  case CastExpr::CK_DerivedToBase:
546    return "DerivedToBase";
547  case CastExpr::CK_Dynamic:
548    return "Dynamic";
549  case CastExpr::CK_ToUnion:
550    return "ToUnion";
551  case CastExpr::CK_ArrayToPointerDecay:
552    return "ArrayToPointerDecay";
553  case CastExpr::CK_FunctionToPointerDecay:
554    return "FunctionToPointerDecay";
555  case CastExpr::CK_NullToMemberPointer:
556    return "NullToMemberPointer";
557  case CastExpr::CK_BaseToDerivedMemberPointer:
558    return "BaseToDerivedMemberPointer";
559  case CastExpr::CK_DerivedToBaseMemberPointer:
560    return "DerivedToBaseMemberPointer";
561  case CastExpr::CK_UserDefinedConversion:
562    return "UserDefinedConversion";
563  case CastExpr::CK_ConstructorConversion:
564    return "ConstructorConversion";
565  case CastExpr::CK_IntegralToPointer:
566    return "IntegralToPointer";
567  case CastExpr::CK_PointerToIntegral:
568    return "PointerToIntegral";
569  case CastExpr::CK_ToVoid:
570    return "ToVoid";
571  case CastExpr::CK_VectorSplat:
572    return "VectorSplat";
573  case CastExpr::CK_IntegralCast:
574    return "IntegralCast";
575  case CastExpr::CK_IntegralToFloating:
576    return "IntegralToFloating";
577  case CastExpr::CK_FloatingToIntegral:
578    return "FloatingToIntegral";
579  case CastExpr::CK_FloatingCast:
580    return "FloatingCast";
581  case CastExpr::CK_MemberPointerToBoolean:
582    return "MemberPointerToBoolean";
583  case CastExpr::CK_AnyPointerToObjCPointerCast:
584    return "AnyPointerToObjCPointerCast";
585  case CastExpr::CK_AnyPointerToBlockPointerCast:
586    return "AnyPointerToBlockPointerCast";
587  }
588
589  assert(0 && "Unhandled cast kind!");
590  return 0;
591}
592
593Expr *CastExpr::getSubExprAsWritten() {
594  Expr *SubExpr = 0;
595  CastExpr *E = this;
596  do {
597    SubExpr = E->getSubExpr();
598
599    // Skip any temporary bindings; they're implicit.
600    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
601      SubExpr = Binder->getSubExpr();
602
603    // Conversions by constructor and conversion functions have a
604    // subexpression describing the call; strip it off.
605    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
606      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
607    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
608      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
609
610    // If the subexpression we're left with is an implicit cast, look
611    // through that, too.
612  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
613
614  return SubExpr;
615}
616
617/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
618/// corresponds to, e.g. "<<=".
619const char *BinaryOperator::getOpcodeStr(Opcode Op) {
620  switch (Op) {
621  case PtrMemD:   return ".*";
622  case PtrMemI:   return "->*";
623  case Mul:       return "*";
624  case Div:       return "/";
625  case Rem:       return "%";
626  case Add:       return "+";
627  case Sub:       return "-";
628  case Shl:       return "<<";
629  case Shr:       return ">>";
630  case LT:        return "<";
631  case GT:        return ">";
632  case LE:        return "<=";
633  case GE:        return ">=";
634  case EQ:        return "==";
635  case NE:        return "!=";
636  case And:       return "&";
637  case Xor:       return "^";
638  case Or:        return "|";
639  case LAnd:      return "&&";
640  case LOr:       return "||";
641  case Assign:    return "=";
642  case MulAssign: return "*=";
643  case DivAssign: return "/=";
644  case RemAssign: return "%=";
645  case AddAssign: return "+=";
646  case SubAssign: return "-=";
647  case ShlAssign: return "<<=";
648  case ShrAssign: return ">>=";
649  case AndAssign: return "&=";
650  case XorAssign: return "^=";
651  case OrAssign:  return "|=";
652  case Comma:     return ",";
653  }
654
655  return "";
656}
657
658BinaryOperator::Opcode
659BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
660  switch (OO) {
661  default: assert(false && "Not an overloadable binary operator");
662  case OO_Plus: return Add;
663  case OO_Minus: return Sub;
664  case OO_Star: return Mul;
665  case OO_Slash: return Div;
666  case OO_Percent: return Rem;
667  case OO_Caret: return Xor;
668  case OO_Amp: return And;
669  case OO_Pipe: return Or;
670  case OO_Equal: return Assign;
671  case OO_Less: return LT;
672  case OO_Greater: return GT;
673  case OO_PlusEqual: return AddAssign;
674  case OO_MinusEqual: return SubAssign;
675  case OO_StarEqual: return MulAssign;
676  case OO_SlashEqual: return DivAssign;
677  case OO_PercentEqual: return RemAssign;
678  case OO_CaretEqual: return XorAssign;
679  case OO_AmpEqual: return AndAssign;
680  case OO_PipeEqual: return OrAssign;
681  case OO_LessLess: return Shl;
682  case OO_GreaterGreater: return Shr;
683  case OO_LessLessEqual: return ShlAssign;
684  case OO_GreaterGreaterEqual: return ShrAssign;
685  case OO_EqualEqual: return EQ;
686  case OO_ExclaimEqual: return NE;
687  case OO_LessEqual: return LE;
688  case OO_GreaterEqual: return GE;
689  case OO_AmpAmp: return LAnd;
690  case OO_PipePipe: return LOr;
691  case OO_Comma: return Comma;
692  case OO_ArrowStar: return PtrMemI;
693  }
694}
695
696OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
697  static const OverloadedOperatorKind OverOps[] = {
698    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
699    OO_Star, OO_Slash, OO_Percent,
700    OO_Plus, OO_Minus,
701    OO_LessLess, OO_GreaterGreater,
702    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
703    OO_EqualEqual, OO_ExclaimEqual,
704    OO_Amp,
705    OO_Caret,
706    OO_Pipe,
707    OO_AmpAmp,
708    OO_PipePipe,
709    OO_Equal, OO_StarEqual,
710    OO_SlashEqual, OO_PercentEqual,
711    OO_PlusEqual, OO_MinusEqual,
712    OO_LessLessEqual, OO_GreaterGreaterEqual,
713    OO_AmpEqual, OO_CaretEqual,
714    OO_PipeEqual,
715    OO_Comma
716  };
717  return OverOps[Opc];
718}
719
720InitListExpr::InitListExpr(SourceLocation lbraceloc,
721                           Expr **initExprs, unsigned numInits,
722                           SourceLocation rbraceloc)
723  : Expr(InitListExprClass, QualType(), false, false),
724    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
725    UnionFieldInit(0), HadArrayRangeDesignator(false)
726{
727  for (unsigned I = 0; I != numInits; ++I) {
728    if (initExprs[I]->isTypeDependent())
729      TypeDependent = true;
730    if (initExprs[I]->isValueDependent())
731      ValueDependent = true;
732  }
733
734  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
735}
736
737void InitListExpr::reserveInits(unsigned NumInits) {
738  if (NumInits > InitExprs.size())
739    InitExprs.reserve(NumInits);
740}
741
742void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
743  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
744       Idx < LastIdx; ++Idx)
745    InitExprs[Idx]->Destroy(Context);
746  InitExprs.resize(NumInits, 0);
747}
748
749Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
750  if (Init >= InitExprs.size()) {
751    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
752    InitExprs.back() = expr;
753    return 0;
754  }
755
756  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
757  InitExprs[Init] = expr;
758  return Result;
759}
760
761/// getFunctionType - Return the underlying function type for this block.
762///
763const FunctionType *BlockExpr::getFunctionType() const {
764  return getType()->getAs<BlockPointerType>()->
765                    getPointeeType()->getAs<FunctionType>();
766}
767
768SourceLocation BlockExpr::getCaretLocation() const {
769  return TheBlock->getCaretLocation();
770}
771const Stmt *BlockExpr::getBody() const {
772  return TheBlock->getBody();
773}
774Stmt *BlockExpr::getBody() {
775  return TheBlock->getBody();
776}
777
778
779//===----------------------------------------------------------------------===//
780// Generic Expression Routines
781//===----------------------------------------------------------------------===//
782
783/// isUnusedResultAWarning - Return true if this immediate expression should
784/// be warned about if the result is unused.  If so, fill in Loc and Ranges
785/// with location to warn on and the source range[s] to report with the
786/// warning.
787bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
788                                  SourceRange &R2, ASTContext &Ctx) const {
789  // Don't warn if the expr is type dependent. The type could end up
790  // instantiating to void.
791  if (isTypeDependent())
792    return false;
793
794  switch (getStmtClass()) {
795  default:
796    if (getType()->isVoidType())
797      return false;
798    Loc = getExprLoc();
799    R1 = getSourceRange();
800    return true;
801  case ParenExprClass:
802    return cast<ParenExpr>(this)->getSubExpr()->
803      isUnusedResultAWarning(Loc, R1, R2, Ctx);
804  case UnaryOperatorClass: {
805    const UnaryOperator *UO = cast<UnaryOperator>(this);
806
807    switch (UO->getOpcode()) {
808    default: break;
809    case UnaryOperator::PostInc:
810    case UnaryOperator::PostDec:
811    case UnaryOperator::PreInc:
812    case UnaryOperator::PreDec:                 // ++/--
813      return false;  // Not a warning.
814    case UnaryOperator::Deref:
815      // Dereferencing a volatile pointer is a side-effect.
816      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
817        return false;
818      break;
819    case UnaryOperator::Real:
820    case UnaryOperator::Imag:
821      // accessing a piece of a volatile complex is a side-effect.
822      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
823          .isVolatileQualified())
824        return false;
825      break;
826    case UnaryOperator::Extension:
827      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
828    }
829    Loc = UO->getOperatorLoc();
830    R1 = UO->getSubExpr()->getSourceRange();
831    return true;
832  }
833  case BinaryOperatorClass: {
834    const BinaryOperator *BO = cast<BinaryOperator>(this);
835    // Consider comma to have side effects if the LHS or RHS does.
836    if (BO->getOpcode() == BinaryOperator::Comma) {
837      // ((foo = <blah>), 0) is an idiom for hiding the result (and
838      // lvalue-ness) of an assignment written in a macro.
839      if (IntegerLiteral *IE =
840            dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
841        if (IE->getValue() == 0)
842          return false;
843
844      return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
845              BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
846    }
847
848    if (BO->isAssignmentOp())
849      return false;
850    Loc = BO->getOperatorLoc();
851    R1 = BO->getLHS()->getSourceRange();
852    R2 = BO->getRHS()->getSourceRange();
853    return true;
854  }
855  case CompoundAssignOperatorClass:
856    return false;
857
858  case ConditionalOperatorClass: {
859    // The condition must be evaluated, but if either the LHS or RHS is a
860    // warning, warn about them.
861    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
862    if (Exp->getLHS() &&
863        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
864      return true;
865    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
866  }
867
868  case MemberExprClass:
869    // If the base pointer or element is to a volatile pointer/field, accessing
870    // it is a side effect.
871    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
872      return false;
873    Loc = cast<MemberExpr>(this)->getMemberLoc();
874    R1 = SourceRange(Loc, Loc);
875    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
876    return true;
877
878  case ArraySubscriptExprClass:
879    // If the base pointer or element is to a volatile pointer/field, accessing
880    // it is a side effect.
881    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
882      return false;
883    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
884    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
885    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
886    return true;
887
888  case CallExprClass:
889  case CXXOperatorCallExprClass:
890  case CXXMemberCallExprClass: {
891    // If this is a direct call, get the callee.
892    const CallExpr *CE = cast<CallExpr>(this);
893    if (const Decl *FD = CE->getCalleeDecl()) {
894      // If the callee has attribute pure, const, or warn_unused_result, warn
895      // about it. void foo() { strlen("bar"); } should warn.
896      //
897      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
898      // updated to match for QoI.
899      if (FD->getAttr<WarnUnusedResultAttr>() ||
900          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
901        Loc = CE->getCallee()->getLocStart();
902        R1 = CE->getCallee()->getSourceRange();
903
904        if (unsigned NumArgs = CE->getNumArgs())
905          R2 = SourceRange(CE->getArg(0)->getLocStart(),
906                           CE->getArg(NumArgs-1)->getLocEnd());
907        return true;
908      }
909    }
910    return false;
911  }
912
913  case CXXTemporaryObjectExprClass:
914  case CXXConstructExprClass:
915    return false;
916
917  case ObjCMessageExprClass:
918    return false;
919
920  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
921#if 0
922    const ObjCImplicitSetterGetterRefExpr *Ref =
923      cast<ObjCImplicitSetterGetterRefExpr>(this);
924    // FIXME: We really want the location of the '.' here.
925    Loc = Ref->getLocation();
926    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
927    if (Ref->getBase())
928      R2 = Ref->getBase()->getSourceRange();
929#else
930    Loc = getExprLoc();
931    R1 = getSourceRange();
932#endif
933    return true;
934  }
935  case StmtExprClass: {
936    // Statement exprs don't logically have side effects themselves, but are
937    // sometimes used in macros in ways that give them a type that is unused.
938    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
939    // however, if the result of the stmt expr is dead, we don't want to emit a
940    // warning.
941    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
942    if (!CS->body_empty())
943      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
944        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
945
946    if (getType()->isVoidType())
947      return false;
948    Loc = cast<StmtExpr>(this)->getLParenLoc();
949    R1 = getSourceRange();
950    return true;
951  }
952  case CStyleCastExprClass:
953    // If this is an explicit cast to void, allow it.  People do this when they
954    // think they know what they're doing :).
955    if (getType()->isVoidType())
956      return false;
957    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
958    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
959    return true;
960  case CXXFunctionalCastExprClass: {
961    if (getType()->isVoidType())
962      return false;
963    const CastExpr *CE = cast<CastExpr>(this);
964
965    // If this is a cast to void or a constructor conversion, check the operand.
966    // Otherwise, the result of the cast is unused.
967    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
968        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
969      return (cast<CastExpr>(this)->getSubExpr()
970              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
971    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
972    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
973    return true;
974  }
975
976  case ImplicitCastExprClass:
977    // Check the operand, since implicit casts are inserted by Sema
978    return (cast<ImplicitCastExpr>(this)
979            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
980
981  case CXXDefaultArgExprClass:
982    return (cast<CXXDefaultArgExpr>(this)
983            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
984
985  case CXXNewExprClass:
986    // FIXME: In theory, there might be new expressions that don't have side
987    // effects (e.g. a placement new with an uninitialized POD).
988  case CXXDeleteExprClass:
989    return false;
990  case CXXBindTemporaryExprClass:
991    return (cast<CXXBindTemporaryExpr>(this)
992            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
993  case CXXExprWithTemporariesClass:
994    return (cast<CXXExprWithTemporaries>(this)
995            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
996  }
997}
998
999/// DeclCanBeLvalue - Determine whether the given declaration can be
1000/// an lvalue. This is a helper routine for isLvalue.
1001static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1002  // C++ [temp.param]p6:
1003  //   A non-type non-reference template-parameter is not an lvalue.
1004  if (const NonTypeTemplateParmDecl *NTTParm
1005        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1006    return NTTParm->getType()->isReferenceType();
1007
1008  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1009    // C++ 3.10p2: An lvalue refers to an object or function.
1010    (Ctx.getLangOptions().CPlusPlus &&
1011     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1012}
1013
1014/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1015/// incomplete type other than void. Nonarray expressions that can be lvalues:
1016///  - name, where name must be a variable
1017///  - e[i]
1018///  - (e), where e must be an lvalue
1019///  - e.name, where e must be an lvalue
1020///  - e->name
1021///  - *e, the type of e cannot be a function type
1022///  - string-constant
1023///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1024///  - reference type [C++ [expr]]
1025///
1026Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1027  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1028
1029  isLvalueResult Res = isLvalueInternal(Ctx);
1030  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1031    return Res;
1032
1033  // first, check the type (C99 6.3.2.1). Expressions with function
1034  // type in C are not lvalues, but they can be lvalues in C++.
1035  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1036    return LV_NotObjectType;
1037
1038  // Allow qualified void which is an incomplete type other than void (yuck).
1039  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1040    return LV_IncompleteVoidType;
1041
1042  return LV_Valid;
1043}
1044
1045// Check whether the expression can be sanely treated like an l-value
1046Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1047  switch (getStmtClass()) {
1048  case ObjCIsaExprClass:
1049  case StringLiteralClass:  // C99 6.5.1p4
1050  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1051    return LV_Valid;
1052  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1053    // For vectors, make sure base is an lvalue (i.e. not a function call).
1054    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1055      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1056    return LV_Valid;
1057  case DeclRefExprClass: { // C99 6.5.1p2
1058    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1059    if (DeclCanBeLvalue(RefdDecl, Ctx))
1060      return LV_Valid;
1061    break;
1062  }
1063  case BlockDeclRefExprClass: {
1064    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1065    if (isa<VarDecl>(BDR->getDecl()))
1066      return LV_Valid;
1067    break;
1068  }
1069  case MemberExprClass: {
1070    const MemberExpr *m = cast<MemberExpr>(this);
1071    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1072      NamedDecl *Member = m->getMemberDecl();
1073      // C++ [expr.ref]p4:
1074      //   If E2 is declared to have type "reference to T", then E1.E2
1075      //   is an lvalue.
1076      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1077        if (Value->getType()->isReferenceType())
1078          return LV_Valid;
1079
1080      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1081      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1082        return LV_Valid;
1083
1084      //   -- If E2 is a non-static data member [...]. If E1 is an
1085      //      lvalue, then E1.E2 is an lvalue.
1086      if (isa<FieldDecl>(Member)) {
1087        if (m->isArrow())
1088          return LV_Valid;
1089        return m->getBase()->isLvalue(Ctx);
1090      }
1091
1092      //   -- If it refers to a static member function [...], then
1093      //      E1.E2 is an lvalue.
1094      //   -- Otherwise, if E1.E2 refers to a non-static member
1095      //      function [...], then E1.E2 is not an lvalue.
1096      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1097        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1098
1099      //   -- If E2 is a member enumerator [...], the expression E1.E2
1100      //      is not an lvalue.
1101      if (isa<EnumConstantDecl>(Member))
1102        return LV_InvalidExpression;
1103
1104        // Not an lvalue.
1105      return LV_InvalidExpression;
1106    }
1107
1108    // C99 6.5.2.3p4
1109    if (m->isArrow())
1110      return LV_Valid;
1111    Expr *BaseExp = m->getBase();
1112    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1113        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1114          return LV_SubObjCPropertySetting;
1115    return
1116       BaseExp->isLvalue(Ctx);
1117  }
1118  case UnaryOperatorClass:
1119    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1120      return LV_Valid; // C99 6.5.3p4
1121
1122    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1123        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1124        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1125      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1126
1127    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1128        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1129         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1130      return LV_Valid;
1131    break;
1132  case ImplicitCastExprClass:
1133    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1134      return LV_Valid;
1135
1136    // If this is a conversion to a class temporary, make a note of
1137    // that.
1138    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1139      return LV_ClassTemporary;
1140
1141    break;
1142  case ParenExprClass: // C99 6.5.1p5
1143    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1144  case BinaryOperatorClass:
1145  case CompoundAssignOperatorClass: {
1146    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1147
1148    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1149        BinOp->getOpcode() == BinaryOperator::Comma)
1150      return BinOp->getRHS()->isLvalue(Ctx);
1151
1152    // C++ [expr.mptr.oper]p6
1153    // The result of a .* expression is an lvalue only if its first operand is
1154    // an lvalue and its second operand is a pointer to data member.
1155    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1156        !BinOp->getType()->isFunctionType())
1157      return BinOp->getLHS()->isLvalue(Ctx);
1158
1159    // The result of an ->* expression is an lvalue only if its second operand
1160    // is a pointer to data member.
1161    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1162        !BinOp->getType()->isFunctionType()) {
1163      QualType Ty = BinOp->getRHS()->getType();
1164      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1165        return LV_Valid;
1166    }
1167
1168    if (!BinOp->isAssignmentOp())
1169      return LV_InvalidExpression;
1170
1171    if (Ctx.getLangOptions().CPlusPlus)
1172      // C++ [expr.ass]p1:
1173      //   The result of an assignment operation [...] is an lvalue.
1174      return LV_Valid;
1175
1176
1177    // C99 6.5.16:
1178    //   An assignment expression [...] is not an lvalue.
1179    return LV_InvalidExpression;
1180  }
1181  case CallExprClass:
1182  case CXXOperatorCallExprClass:
1183  case CXXMemberCallExprClass: {
1184    // C++0x [expr.call]p10
1185    //   A function call is an lvalue if and only if the result type
1186    //   is an lvalue reference.
1187    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1188    if (ReturnType->isLValueReferenceType())
1189      return LV_Valid;
1190
1191    // If the function is returning a class temporary, make a note of
1192    // that.
1193    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1194      return LV_ClassTemporary;
1195
1196    break;
1197  }
1198  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1199    // FIXME: Is this what we want in C++?
1200    return LV_Valid;
1201  case ChooseExprClass:
1202    // __builtin_choose_expr is an lvalue if the selected operand is.
1203    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1204  case ExtVectorElementExprClass:
1205    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1206      return LV_DuplicateVectorComponents;
1207    return LV_Valid;
1208  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1209    return LV_Valid;
1210  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1211    return LV_Valid;
1212  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1213    return LV_Valid;
1214  case PredefinedExprClass:
1215    return LV_Valid;
1216  case UnresolvedLookupExprClass:
1217    return LV_Valid;
1218  case CXXDefaultArgExprClass:
1219    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1220  case CStyleCastExprClass:
1221  case CXXFunctionalCastExprClass:
1222  case CXXStaticCastExprClass:
1223  case CXXDynamicCastExprClass:
1224  case CXXReinterpretCastExprClass:
1225  case CXXConstCastExprClass:
1226    // The result of an explicit cast is an lvalue if the type we are
1227    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1228    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1229    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1230    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1231          isLValueReferenceType())
1232      return LV_Valid;
1233
1234    // If this is a conversion to a class temporary, make a note of
1235    // that.
1236    if (Ctx.getLangOptions().CPlusPlus &&
1237        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1238      return LV_ClassTemporary;
1239
1240    break;
1241  case CXXTypeidExprClass:
1242    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1243    return LV_Valid;
1244  case CXXBindTemporaryExprClass:
1245    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1246      isLvalueInternal(Ctx);
1247  case CXXBindReferenceExprClass:
1248    // Something that's bound to a reference is always an lvalue.
1249    return LV_Valid;
1250  case ConditionalOperatorClass: {
1251    // Complicated handling is only for C++.
1252    if (!Ctx.getLangOptions().CPlusPlus)
1253      return LV_InvalidExpression;
1254
1255    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1256    // everywhere there's an object converted to an rvalue. Also, any other
1257    // casts should be wrapped by ImplicitCastExprs. There's just the special
1258    // case involving throws to work out.
1259    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1260    Expr *True = Cond->getTrueExpr();
1261    Expr *False = Cond->getFalseExpr();
1262    // C++0x 5.16p2
1263    //   If either the second or the third operand has type (cv) void, [...]
1264    //   the result [...] is an rvalue.
1265    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1266      return LV_InvalidExpression;
1267
1268    // Both sides must be lvalues for the result to be an lvalue.
1269    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1270      return LV_InvalidExpression;
1271
1272    // That's it.
1273    return LV_Valid;
1274  }
1275
1276  case Expr::CXXExprWithTemporariesClass:
1277    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1278
1279  case Expr::ObjCMessageExprClass:
1280    if (const ObjCMethodDecl *Method
1281          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1282      if (Method->getResultType()->isLValueReferenceType())
1283        return LV_Valid;
1284    break;
1285
1286  case Expr::CXXConstructExprClass:
1287  case Expr::CXXTemporaryObjectExprClass:
1288  case Expr::CXXZeroInitValueExprClass:
1289    return LV_ClassTemporary;
1290
1291  default:
1292    break;
1293  }
1294  return LV_InvalidExpression;
1295}
1296
1297/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1298/// does not have an incomplete type, does not have a const-qualified type, and
1299/// if it is a structure or union, does not have any member (including,
1300/// recursively, any member or element of all contained aggregates or unions)
1301/// with a const-qualified type.
1302Expr::isModifiableLvalueResult
1303Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1304  isLvalueResult lvalResult = isLvalue(Ctx);
1305
1306  switch (lvalResult) {
1307  case LV_Valid:
1308    // C++ 3.10p11: Functions cannot be modified, but pointers to
1309    // functions can be modifiable.
1310    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1311      return MLV_NotObjectType;
1312    break;
1313
1314  case LV_NotObjectType: return MLV_NotObjectType;
1315  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1316  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1317  case LV_InvalidExpression:
1318    // If the top level is a C-style cast, and the subexpression is a valid
1319    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1320    // GCC extension.  We don't support it, but we want to produce good
1321    // diagnostics when it happens so that the user knows why.
1322    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1323      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1324        if (Loc)
1325          *Loc = CE->getLParenLoc();
1326        return MLV_LValueCast;
1327      }
1328    }
1329    return MLV_InvalidExpression;
1330  case LV_MemberFunction: return MLV_MemberFunction;
1331  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1332  case LV_ClassTemporary:
1333    return MLV_ClassTemporary;
1334  }
1335
1336  // The following is illegal:
1337  //   void takeclosure(void (^C)(void));
1338  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1339  //
1340  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1341    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1342      return MLV_NotBlockQualified;
1343  }
1344
1345  // Assigning to an 'implicit' property?
1346  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1347        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1348    if (Expr->getSetterMethod() == 0)
1349      return MLV_NoSetterProperty;
1350  }
1351
1352  QualType CT = Ctx.getCanonicalType(getType());
1353
1354  if (CT.isConstQualified())
1355    return MLV_ConstQualified;
1356  if (CT->isArrayType())
1357    return MLV_ArrayType;
1358  if (CT->isIncompleteType())
1359    return MLV_IncompleteType;
1360
1361  if (const RecordType *r = CT->getAs<RecordType>()) {
1362    if (r->hasConstFields())
1363      return MLV_ConstQualified;
1364  }
1365
1366  return MLV_Valid;
1367}
1368
1369/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1370/// returns true, if it is; false otherwise.
1371bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1372  switch (getStmtClass()) {
1373  default:
1374    return false;
1375  case ObjCIvarRefExprClass:
1376    return true;
1377  case Expr::UnaryOperatorClass:
1378    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1379  case ParenExprClass:
1380    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1381  case ImplicitCastExprClass:
1382    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1383  case CStyleCastExprClass:
1384    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1385  case DeclRefExprClass: {
1386    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1387    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1388      if (VD->hasGlobalStorage())
1389        return true;
1390      QualType T = VD->getType();
1391      // dereferencing to a  pointer is always a gc'able candidate,
1392      // unless it is __weak.
1393      return T->isPointerType() &&
1394             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1395    }
1396    return false;
1397  }
1398  case MemberExprClass: {
1399    const MemberExpr *M = cast<MemberExpr>(this);
1400    return M->getBase()->isOBJCGCCandidate(Ctx);
1401  }
1402  case ArraySubscriptExprClass:
1403    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1404  }
1405}
1406Expr* Expr::IgnoreParens() {
1407  Expr* E = this;
1408  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1409    E = P->getSubExpr();
1410
1411  return E;
1412}
1413
1414/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1415/// or CastExprs or ImplicitCastExprs, returning their operand.
1416Expr *Expr::IgnoreParenCasts() {
1417  Expr *E = this;
1418  while (true) {
1419    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1420      E = P->getSubExpr();
1421    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1422      E = P->getSubExpr();
1423    else
1424      return E;
1425  }
1426}
1427
1428/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1429/// value (including ptr->int casts of the same size).  Strip off any
1430/// ParenExpr or CastExprs, returning their operand.
1431Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1432  Expr *E = this;
1433  while (true) {
1434    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1435      E = P->getSubExpr();
1436      continue;
1437    }
1438
1439    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1440      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1441      // ptr<->int casts of the same width.  We also ignore all identify casts.
1442      Expr *SE = P->getSubExpr();
1443
1444      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1445        E = SE;
1446        continue;
1447      }
1448
1449      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1450          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1451          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1452        E = SE;
1453        continue;
1454      }
1455    }
1456
1457    return E;
1458  }
1459}
1460
1461bool Expr::isDefaultArgument() const {
1462  const Expr *E = this;
1463  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1464    E = ICE->getSubExprAsWritten();
1465
1466  return isa<CXXDefaultArgExpr>(E);
1467}
1468
1469/// hasAnyTypeDependentArguments - Determines if any of the expressions
1470/// in Exprs is type-dependent.
1471bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1472  for (unsigned I = 0; I < NumExprs; ++I)
1473    if (Exprs[I]->isTypeDependent())
1474      return true;
1475
1476  return false;
1477}
1478
1479/// hasAnyValueDependentArguments - Determines if any of the expressions
1480/// in Exprs is value-dependent.
1481bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1482  for (unsigned I = 0; I < NumExprs; ++I)
1483    if (Exprs[I]->isValueDependent())
1484      return true;
1485
1486  return false;
1487}
1488
1489bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1490  // This function is attempting whether an expression is an initializer
1491  // which can be evaluated at compile-time.  isEvaluatable handles most
1492  // of the cases, but it can't deal with some initializer-specific
1493  // expressions, and it can't deal with aggregates; we deal with those here,
1494  // and fall back to isEvaluatable for the other cases.
1495
1496  // FIXME: This function assumes the variable being assigned to
1497  // isn't a reference type!
1498
1499  switch (getStmtClass()) {
1500  default: break;
1501  case StringLiteralClass:
1502  case ObjCStringLiteralClass:
1503  case ObjCEncodeExprClass:
1504    return true;
1505  case CompoundLiteralExprClass: {
1506    // This handles gcc's extension that allows global initializers like
1507    // "struct x {int x;} x = (struct x) {};".
1508    // FIXME: This accepts other cases it shouldn't!
1509    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1510    return Exp->isConstantInitializer(Ctx);
1511  }
1512  case InitListExprClass: {
1513    // FIXME: This doesn't deal with fields with reference types correctly.
1514    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1515    // to bitfields.
1516    const InitListExpr *Exp = cast<InitListExpr>(this);
1517    unsigned numInits = Exp->getNumInits();
1518    for (unsigned i = 0; i < numInits; i++) {
1519      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1520        return false;
1521    }
1522    return true;
1523  }
1524  case ImplicitValueInitExprClass:
1525    return true;
1526  case ParenExprClass:
1527    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1528  case UnaryOperatorClass: {
1529    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1530    if (Exp->getOpcode() == UnaryOperator::Extension)
1531      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1532    break;
1533  }
1534  case BinaryOperatorClass: {
1535    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1536    // but this handles the common case.
1537    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1538    if (Exp->getOpcode() == BinaryOperator::Sub &&
1539        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1540        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1541      return true;
1542    break;
1543  }
1544  case ImplicitCastExprClass:
1545  case CStyleCastExprClass:
1546    // Handle casts with a destination that's a struct or union; this
1547    // deals with both the gcc no-op struct cast extension and the
1548    // cast-to-union extension.
1549    if (getType()->isRecordType())
1550      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1551
1552    // Integer->integer casts can be handled here, which is important for
1553    // things like (int)(&&x-&&y).  Scary but true.
1554    if (getType()->isIntegerType() &&
1555        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1556      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1557
1558    break;
1559  }
1560  return isEvaluatable(Ctx);
1561}
1562
1563/// isIntegerConstantExpr - this recursive routine will test if an expression is
1564/// an integer constant expression.
1565
1566/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1567/// comma, etc
1568///
1569/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1570/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1571/// cast+dereference.
1572
1573// CheckICE - This function does the fundamental ICE checking: the returned
1574// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1575// Note that to reduce code duplication, this helper does no evaluation
1576// itself; the caller checks whether the expression is evaluatable, and
1577// in the rare cases where CheckICE actually cares about the evaluated
1578// value, it calls into Evalute.
1579//
1580// Meanings of Val:
1581// 0: This expression is an ICE if it can be evaluated by Evaluate.
1582// 1: This expression is not an ICE, but if it isn't evaluated, it's
1583//    a legal subexpression for an ICE. This return value is used to handle
1584//    the comma operator in C99 mode.
1585// 2: This expression is not an ICE, and is not a legal subexpression for one.
1586
1587struct ICEDiag {
1588  unsigned Val;
1589  SourceLocation Loc;
1590
1591  public:
1592  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1593  ICEDiag() : Val(0) {}
1594};
1595
1596ICEDiag NoDiag() { return ICEDiag(); }
1597
1598static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1599  Expr::EvalResult EVResult;
1600  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1601      !EVResult.Val.isInt()) {
1602    return ICEDiag(2, E->getLocStart());
1603  }
1604  return NoDiag();
1605}
1606
1607static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1608  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1609  if (!E->getType()->isIntegralType()) {
1610    return ICEDiag(2, E->getLocStart());
1611  }
1612
1613  switch (E->getStmtClass()) {
1614#define STMT(Node, Base) case Expr::Node##Class:
1615#define EXPR(Node, Base)
1616#include "clang/AST/StmtNodes.def"
1617  case Expr::PredefinedExprClass:
1618  case Expr::FloatingLiteralClass:
1619  case Expr::ImaginaryLiteralClass:
1620  case Expr::StringLiteralClass:
1621  case Expr::ArraySubscriptExprClass:
1622  case Expr::MemberExprClass:
1623  case Expr::CompoundAssignOperatorClass:
1624  case Expr::CompoundLiteralExprClass:
1625  case Expr::ExtVectorElementExprClass:
1626  case Expr::InitListExprClass:
1627  case Expr::DesignatedInitExprClass:
1628  case Expr::ImplicitValueInitExprClass:
1629  case Expr::ParenListExprClass:
1630  case Expr::VAArgExprClass:
1631  case Expr::AddrLabelExprClass:
1632  case Expr::StmtExprClass:
1633  case Expr::CXXMemberCallExprClass:
1634  case Expr::CXXDynamicCastExprClass:
1635  case Expr::CXXTypeidExprClass:
1636  case Expr::CXXNullPtrLiteralExprClass:
1637  case Expr::CXXThisExprClass:
1638  case Expr::CXXThrowExprClass:
1639  case Expr::CXXNewExprClass:
1640  case Expr::CXXDeleteExprClass:
1641  case Expr::CXXPseudoDestructorExprClass:
1642  case Expr::UnresolvedLookupExprClass:
1643  case Expr::DependentScopeDeclRefExprClass:
1644  case Expr::CXXConstructExprClass:
1645  case Expr::CXXBindTemporaryExprClass:
1646  case Expr::CXXBindReferenceExprClass:
1647  case Expr::CXXExprWithTemporariesClass:
1648  case Expr::CXXTemporaryObjectExprClass:
1649  case Expr::CXXUnresolvedConstructExprClass:
1650  case Expr::CXXDependentScopeMemberExprClass:
1651  case Expr::UnresolvedMemberExprClass:
1652  case Expr::ObjCStringLiteralClass:
1653  case Expr::ObjCEncodeExprClass:
1654  case Expr::ObjCMessageExprClass:
1655  case Expr::ObjCSelectorExprClass:
1656  case Expr::ObjCProtocolExprClass:
1657  case Expr::ObjCIvarRefExprClass:
1658  case Expr::ObjCPropertyRefExprClass:
1659  case Expr::ObjCImplicitSetterGetterRefExprClass:
1660  case Expr::ObjCSuperExprClass:
1661  case Expr::ObjCIsaExprClass:
1662  case Expr::ShuffleVectorExprClass:
1663  case Expr::BlockExprClass:
1664  case Expr::BlockDeclRefExprClass:
1665  case Expr::NoStmtClass:
1666    return ICEDiag(2, E->getLocStart());
1667
1668  case Expr::GNUNullExprClass:
1669    // GCC considers the GNU __null value to be an integral constant expression.
1670    return NoDiag();
1671
1672  case Expr::ParenExprClass:
1673    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1674  case Expr::IntegerLiteralClass:
1675  case Expr::CharacterLiteralClass:
1676  case Expr::CXXBoolLiteralExprClass:
1677  case Expr::CXXZeroInitValueExprClass:
1678  case Expr::TypesCompatibleExprClass:
1679  case Expr::UnaryTypeTraitExprClass:
1680    return NoDiag();
1681  case Expr::CallExprClass:
1682  case Expr::CXXOperatorCallExprClass: {
1683    const CallExpr *CE = cast<CallExpr>(E);
1684    if (CE->isBuiltinCall(Ctx))
1685      return CheckEvalInICE(E, Ctx);
1686    return ICEDiag(2, E->getLocStart());
1687  }
1688  case Expr::DeclRefExprClass:
1689    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1690      return NoDiag();
1691    if (Ctx.getLangOptions().CPlusPlus &&
1692        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1693      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1694
1695      // Parameter variables are never constants.  Without this check,
1696      // getAnyInitializer() can find a default argument, which leads
1697      // to chaos.
1698      if (isa<ParmVarDecl>(D))
1699        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1700
1701      // C++ 7.1.5.1p2
1702      //   A variable of non-volatile const-qualified integral or enumeration
1703      //   type initialized by an ICE can be used in ICEs.
1704      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
1705        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1706        if (Quals.hasVolatile() || !Quals.hasConst())
1707          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1708
1709        // Look for a declaration of this variable that has an initializer.
1710        const VarDecl *ID = 0;
1711        const Expr *Init = Dcl->getAnyInitializer(ID);
1712        if (Init) {
1713          if (ID->isInitKnownICE()) {
1714            // We have already checked whether this subexpression is an
1715            // integral constant expression.
1716            if (ID->isInitICE())
1717              return NoDiag();
1718            else
1719              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1720          }
1721
1722          // It's an ICE whether or not the definition we found is
1723          // out-of-line.  See DR 721 and the discussion in Clang PR
1724          // 6206 for details.
1725
1726          if (Dcl->isCheckingICE()) {
1727            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1728          }
1729
1730          Dcl->setCheckingICE();
1731          ICEDiag Result = CheckICE(Init, Ctx);
1732          // Cache the result of the ICE test.
1733          Dcl->setInitKnownICE(Result.Val == 0);
1734          return Result;
1735        }
1736      }
1737    }
1738    return ICEDiag(2, E->getLocStart());
1739  case Expr::UnaryOperatorClass: {
1740    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1741    switch (Exp->getOpcode()) {
1742    case UnaryOperator::PostInc:
1743    case UnaryOperator::PostDec:
1744    case UnaryOperator::PreInc:
1745    case UnaryOperator::PreDec:
1746    case UnaryOperator::AddrOf:
1747    case UnaryOperator::Deref:
1748      return ICEDiag(2, E->getLocStart());
1749
1750    case UnaryOperator::Extension:
1751    case UnaryOperator::LNot:
1752    case UnaryOperator::Plus:
1753    case UnaryOperator::Minus:
1754    case UnaryOperator::Not:
1755    case UnaryOperator::Real:
1756    case UnaryOperator::Imag:
1757      return CheckICE(Exp->getSubExpr(), Ctx);
1758    case UnaryOperator::OffsetOf:
1759      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1760      // Evaluate matches the proposed gcc behavior for cases like
1761      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1762      // compliance: we should warn earlier for offsetof expressions with
1763      // array subscripts that aren't ICEs, and if the array subscripts
1764      // are ICEs, the value of the offsetof must be an integer constant.
1765      return CheckEvalInICE(E, Ctx);
1766    }
1767  }
1768  case Expr::SizeOfAlignOfExprClass: {
1769    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1770    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1771      return ICEDiag(2, E->getLocStart());
1772    return NoDiag();
1773  }
1774  case Expr::BinaryOperatorClass: {
1775    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1776    switch (Exp->getOpcode()) {
1777    case BinaryOperator::PtrMemD:
1778    case BinaryOperator::PtrMemI:
1779    case BinaryOperator::Assign:
1780    case BinaryOperator::MulAssign:
1781    case BinaryOperator::DivAssign:
1782    case BinaryOperator::RemAssign:
1783    case BinaryOperator::AddAssign:
1784    case BinaryOperator::SubAssign:
1785    case BinaryOperator::ShlAssign:
1786    case BinaryOperator::ShrAssign:
1787    case BinaryOperator::AndAssign:
1788    case BinaryOperator::XorAssign:
1789    case BinaryOperator::OrAssign:
1790      return ICEDiag(2, E->getLocStart());
1791
1792    case BinaryOperator::Mul:
1793    case BinaryOperator::Div:
1794    case BinaryOperator::Rem:
1795    case BinaryOperator::Add:
1796    case BinaryOperator::Sub:
1797    case BinaryOperator::Shl:
1798    case BinaryOperator::Shr:
1799    case BinaryOperator::LT:
1800    case BinaryOperator::GT:
1801    case BinaryOperator::LE:
1802    case BinaryOperator::GE:
1803    case BinaryOperator::EQ:
1804    case BinaryOperator::NE:
1805    case BinaryOperator::And:
1806    case BinaryOperator::Xor:
1807    case BinaryOperator::Or:
1808    case BinaryOperator::Comma: {
1809      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1810      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1811      if (Exp->getOpcode() == BinaryOperator::Div ||
1812          Exp->getOpcode() == BinaryOperator::Rem) {
1813        // Evaluate gives an error for undefined Div/Rem, so make sure
1814        // we don't evaluate one.
1815        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1816          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1817          if (REval == 0)
1818            return ICEDiag(1, E->getLocStart());
1819          if (REval.isSigned() && REval.isAllOnesValue()) {
1820            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1821            if (LEval.isMinSignedValue())
1822              return ICEDiag(1, E->getLocStart());
1823          }
1824        }
1825      }
1826      if (Exp->getOpcode() == BinaryOperator::Comma) {
1827        if (Ctx.getLangOptions().C99) {
1828          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1829          // if it isn't evaluated.
1830          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1831            return ICEDiag(1, E->getLocStart());
1832        } else {
1833          // In both C89 and C++, commas in ICEs are illegal.
1834          return ICEDiag(2, E->getLocStart());
1835        }
1836      }
1837      if (LHSResult.Val >= RHSResult.Val)
1838        return LHSResult;
1839      return RHSResult;
1840    }
1841    case BinaryOperator::LAnd:
1842    case BinaryOperator::LOr: {
1843      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1844      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1845      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1846        // Rare case where the RHS has a comma "side-effect"; we need
1847        // to actually check the condition to see whether the side
1848        // with the comma is evaluated.
1849        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1850            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1851          return RHSResult;
1852        return NoDiag();
1853      }
1854
1855      if (LHSResult.Val >= RHSResult.Val)
1856        return LHSResult;
1857      return RHSResult;
1858    }
1859    }
1860  }
1861  case Expr::ImplicitCastExprClass:
1862  case Expr::CStyleCastExprClass:
1863  case Expr::CXXFunctionalCastExprClass:
1864  case Expr::CXXNamedCastExprClass:
1865  case Expr::CXXStaticCastExprClass:
1866  case Expr::CXXReinterpretCastExprClass:
1867  case Expr::CXXConstCastExprClass: {
1868    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1869    if (SubExpr->getType()->isIntegralType())
1870      return CheckICE(SubExpr, Ctx);
1871    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1872      return NoDiag();
1873    return ICEDiag(2, E->getLocStart());
1874  }
1875  case Expr::ConditionalOperatorClass: {
1876    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1877    // If the condition (ignoring parens) is a __builtin_constant_p call,
1878    // then only the true side is actually considered in an integer constant
1879    // expression, and it is fully evaluated.  This is an important GNU
1880    // extension.  See GCC PR38377 for discussion.
1881    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1882      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1883        Expr::EvalResult EVResult;
1884        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1885            !EVResult.Val.isInt()) {
1886          return ICEDiag(2, E->getLocStart());
1887        }
1888        return NoDiag();
1889      }
1890    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1891    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1892    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1893    if (CondResult.Val == 2)
1894      return CondResult;
1895    if (TrueResult.Val == 2)
1896      return TrueResult;
1897    if (FalseResult.Val == 2)
1898      return FalseResult;
1899    if (CondResult.Val == 1)
1900      return CondResult;
1901    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1902      return NoDiag();
1903    // Rare case where the diagnostics depend on which side is evaluated
1904    // Note that if we get here, CondResult is 0, and at least one of
1905    // TrueResult and FalseResult is non-zero.
1906    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1907      return FalseResult;
1908    }
1909    return TrueResult;
1910  }
1911  case Expr::CXXDefaultArgExprClass:
1912    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1913  case Expr::ChooseExprClass: {
1914    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1915  }
1916  }
1917
1918  // Silence a GCC warning
1919  return ICEDiag(2, E->getLocStart());
1920}
1921
1922bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1923                                 SourceLocation *Loc, bool isEvaluated) const {
1924  ICEDiag d = CheckICE(this, Ctx);
1925  if (d.Val != 0) {
1926    if (Loc) *Loc = d.Loc;
1927    return false;
1928  }
1929  EvalResult EvalResult;
1930  if (!Evaluate(EvalResult, Ctx))
1931    llvm_unreachable("ICE cannot be evaluated!");
1932  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1933  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1934  Result = EvalResult.Val.getInt();
1935  return true;
1936}
1937
1938/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1939/// integer constant expression with the value zero, or if this is one that is
1940/// cast to void*.
1941bool Expr::isNullPointerConstant(ASTContext &Ctx,
1942                                 NullPointerConstantValueDependence NPC) const {
1943  if (isValueDependent()) {
1944    switch (NPC) {
1945    case NPC_NeverValueDependent:
1946      assert(false && "Unexpected value dependent expression!");
1947      // If the unthinkable happens, fall through to the safest alternative.
1948
1949    case NPC_ValueDependentIsNull:
1950      return isTypeDependent() || getType()->isIntegralType();
1951
1952    case NPC_ValueDependentIsNotNull:
1953      return false;
1954    }
1955  }
1956
1957  // Strip off a cast to void*, if it exists. Except in C++.
1958  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1959    if (!Ctx.getLangOptions().CPlusPlus) {
1960      // Check that it is a cast to void*.
1961      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1962        QualType Pointee = PT->getPointeeType();
1963        if (!Pointee.hasQualifiers() &&
1964            Pointee->isVoidType() &&                              // to void*
1965            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1966          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1967      }
1968    }
1969  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1970    // Ignore the ImplicitCastExpr type entirely.
1971    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1972  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1973    // Accept ((void*)0) as a null pointer constant, as many other
1974    // implementations do.
1975    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1976  } else if (const CXXDefaultArgExpr *DefaultArg
1977               = dyn_cast<CXXDefaultArgExpr>(this)) {
1978    // See through default argument expressions
1979    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1980  } else if (isa<GNUNullExpr>(this)) {
1981    // The GNU __null extension is always a null pointer constant.
1982    return true;
1983  }
1984
1985  // C++0x nullptr_t is always a null pointer constant.
1986  if (getType()->isNullPtrType())
1987    return true;
1988
1989  // This expression must be an integer type.
1990  if (!getType()->isIntegerType() ||
1991      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1992    return false;
1993
1994  // If we have an integer constant expression, we need to *evaluate* it and
1995  // test for the value 0.
1996  llvm::APSInt Result;
1997  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1998}
1999
2000FieldDecl *Expr::getBitField() {
2001  Expr *E = this->IgnoreParens();
2002
2003  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2004    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2005      E = ICE->getSubExpr()->IgnoreParens();
2006    else
2007      break;
2008  }
2009
2010  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2011    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2012      if (Field->isBitField())
2013        return Field;
2014
2015  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2016    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2017      return BinOp->getLHS()->getBitField();
2018
2019  return 0;
2020}
2021
2022bool Expr::refersToVectorElement() const {
2023  const Expr *E = this->IgnoreParens();
2024
2025  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2026    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2027      E = ICE->getSubExpr()->IgnoreParens();
2028    else
2029      break;
2030  }
2031
2032  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2033    return ASE->getBase()->getType()->isVectorType();
2034
2035  if (isa<ExtVectorElementExpr>(E))
2036    return true;
2037
2038  return false;
2039}
2040
2041/// isArrow - Return true if the base expression is a pointer to vector,
2042/// return false if the base expression is a vector.
2043bool ExtVectorElementExpr::isArrow() const {
2044  return getBase()->getType()->isPointerType();
2045}
2046
2047unsigned ExtVectorElementExpr::getNumElements() const {
2048  if (const VectorType *VT = getType()->getAs<VectorType>())
2049    return VT->getNumElements();
2050  return 1;
2051}
2052
2053/// containsDuplicateElements - Return true if any element access is repeated.
2054bool ExtVectorElementExpr::containsDuplicateElements() const {
2055  // FIXME: Refactor this code to an accessor on the AST node which returns the
2056  // "type" of component access, and share with code below and in Sema.
2057  llvm::StringRef Comp = Accessor->getName();
2058
2059  // Halving swizzles do not contain duplicate elements.
2060  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2061    return false;
2062
2063  // Advance past s-char prefix on hex swizzles.
2064  if (Comp[0] == 's' || Comp[0] == 'S')
2065    Comp = Comp.substr(1);
2066
2067  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2068    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2069        return true;
2070
2071  return false;
2072}
2073
2074/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2075void ExtVectorElementExpr::getEncodedElementAccess(
2076                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2077  llvm::StringRef Comp = Accessor->getName();
2078  if (Comp[0] == 's' || Comp[0] == 'S')
2079    Comp = Comp.substr(1);
2080
2081  bool isHi =   Comp == "hi";
2082  bool isLo =   Comp == "lo";
2083  bool isEven = Comp == "even";
2084  bool isOdd  = Comp == "odd";
2085
2086  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2087    uint64_t Index;
2088
2089    if (isHi)
2090      Index = e + i;
2091    else if (isLo)
2092      Index = i;
2093    else if (isEven)
2094      Index = 2 * i;
2095    else if (isOdd)
2096      Index = 2 * i + 1;
2097    else
2098      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2099
2100    Elts.push_back(Index);
2101  }
2102}
2103
2104// constructor for instance messages.
2105ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, Expr *receiver,
2106                                 Selector selInfo,
2107                                 QualType retType, ObjCMethodDecl *mproto,
2108                                 SourceLocation LBrac, SourceLocation RBrac,
2109                                 Expr **ArgExprs, unsigned nargs)
2110  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2111    MethodProto(mproto) {
2112  NumArgs = nargs;
2113  SubExprs = new (C) Stmt*[NumArgs+1];
2114  SubExprs[RECEIVER] = receiver;
2115  if (NumArgs) {
2116    for (unsigned i = 0; i != NumArgs; ++i)
2117      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2118  }
2119  LBracloc = LBrac;
2120  RBracloc = RBrac;
2121}
2122
2123// constructor for class messages.
2124// FIXME: clsName should be typed to ObjCInterfaceType
2125ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, IdentifierInfo *clsName,
2126                                 SourceLocation clsNameLoc, Selector selInfo,
2127                                 QualType retType, ObjCMethodDecl *mproto,
2128                                 SourceLocation LBrac, SourceLocation RBrac,
2129                                 Expr **ArgExprs, unsigned nargs)
2130  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2131    SelName(selInfo), MethodProto(mproto) {
2132  NumArgs = nargs;
2133  SubExprs = new (C) Stmt*[NumArgs+1];
2134  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2135  if (NumArgs) {
2136    for (unsigned i = 0; i != NumArgs; ++i)
2137      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2138  }
2139  LBracloc = LBrac;
2140  RBracloc = RBrac;
2141}
2142
2143// constructor for class messages.
2144ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, ObjCInterfaceDecl *cls,
2145                                 SourceLocation clsNameLoc, Selector selInfo,
2146                                 QualType retType,
2147                                 ObjCMethodDecl *mproto, SourceLocation LBrac,
2148                                 SourceLocation RBrac, Expr **ArgExprs,
2149                                 unsigned nargs)
2150  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2151    SelName(selInfo), MethodProto(mproto)
2152{
2153  NumArgs = nargs;
2154  SubExprs = new (C) Stmt*[NumArgs+1];
2155  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2156  if (NumArgs) {
2157    for (unsigned i = 0; i != NumArgs; ++i)
2158      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2159  }
2160  LBracloc = LBrac;
2161  RBracloc = RBrac;
2162}
2163
2164ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2165  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2166  switch (x & Flags) {
2167    default:
2168      assert(false && "Invalid ObjCMessageExpr.");
2169    case IsInstMeth:
2170      return ClassInfo(0, 0, SourceLocation());
2171    case IsClsMethDeclUnknown:
2172      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags), ClassNameLoc);
2173    case IsClsMethDeclKnown: {
2174      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2175      return ClassInfo(D, D->getIdentifier(), ClassNameLoc);
2176    }
2177  }
2178}
2179
2180void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2181  if (CI.Decl == 0 && CI.Name == 0) {
2182    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2183    return;
2184  }
2185
2186  if (CI.Decl == 0)
2187    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Name | IsClsMethDeclUnknown);
2188  else
2189    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Decl | IsClsMethDeclKnown);
2190  ClassNameLoc = CI.Loc;
2191}
2192
2193void ObjCMessageExpr::DoDestroy(ASTContext &C) {
2194  DestroyChildren(C);
2195  if (SubExprs)
2196    C.Deallocate(SubExprs);
2197  this->~ObjCMessageExpr();
2198  C.Deallocate((void*) this);
2199}
2200
2201bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2202  return getCond()->EvaluateAsInt(C) != 0;
2203}
2204
2205void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2206                                 unsigned NumExprs) {
2207  if (SubExprs) C.Deallocate(SubExprs);
2208
2209  SubExprs = new (C) Stmt* [NumExprs];
2210  this->NumExprs = NumExprs;
2211  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2212}
2213
2214void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2215  DestroyChildren(C);
2216  if (SubExprs) C.Deallocate(SubExprs);
2217  this->~ShuffleVectorExpr();
2218  C.Deallocate(this);
2219}
2220
2221void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2222  // Override default behavior of traversing children. If this has a type
2223  // operand and the type is a variable-length array, the child iteration
2224  // will iterate over the size expression. However, this expression belongs
2225  // to the type, not to this, so we don't want to delete it.
2226  // We still want to delete this expression.
2227  if (isArgumentType()) {
2228    this->~SizeOfAlignOfExpr();
2229    C.Deallocate(this);
2230  }
2231  else
2232    Expr::DoDestroy(C);
2233}
2234
2235//===----------------------------------------------------------------------===//
2236//  DesignatedInitExpr
2237//===----------------------------------------------------------------------===//
2238
2239IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2240  assert(Kind == FieldDesignator && "Only valid on a field designator");
2241  if (Field.NameOrField & 0x01)
2242    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2243  else
2244    return getField()->getIdentifier();
2245}
2246
2247DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2248                                       unsigned NumDesignators,
2249                                       const Designator *Designators,
2250                                       SourceLocation EqualOrColonLoc,
2251                                       bool GNUSyntax,
2252                                       Expr **IndexExprs,
2253                                       unsigned NumIndexExprs,
2254                                       Expr *Init)
2255  : Expr(DesignatedInitExprClass, Ty,
2256         Init->isTypeDependent(), Init->isValueDependent()),
2257    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2258    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2259  this->Designators = new (C) Designator[NumDesignators];
2260
2261  // Record the initializer itself.
2262  child_iterator Child = child_begin();
2263  *Child++ = Init;
2264
2265  // Copy the designators and their subexpressions, computing
2266  // value-dependence along the way.
2267  unsigned IndexIdx = 0;
2268  for (unsigned I = 0; I != NumDesignators; ++I) {
2269    this->Designators[I] = Designators[I];
2270
2271    if (this->Designators[I].isArrayDesignator()) {
2272      // Compute type- and value-dependence.
2273      Expr *Index = IndexExprs[IndexIdx];
2274      ValueDependent = ValueDependent ||
2275        Index->isTypeDependent() || Index->isValueDependent();
2276
2277      // Copy the index expressions into permanent storage.
2278      *Child++ = IndexExprs[IndexIdx++];
2279    } else if (this->Designators[I].isArrayRangeDesignator()) {
2280      // Compute type- and value-dependence.
2281      Expr *Start = IndexExprs[IndexIdx];
2282      Expr *End = IndexExprs[IndexIdx + 1];
2283      ValueDependent = ValueDependent ||
2284        Start->isTypeDependent() || Start->isValueDependent() ||
2285        End->isTypeDependent() || End->isValueDependent();
2286
2287      // Copy the start/end expressions into permanent storage.
2288      *Child++ = IndexExprs[IndexIdx++];
2289      *Child++ = IndexExprs[IndexIdx++];
2290    }
2291  }
2292
2293  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2294}
2295
2296DesignatedInitExpr *
2297DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2298                           unsigned NumDesignators,
2299                           Expr **IndexExprs, unsigned NumIndexExprs,
2300                           SourceLocation ColonOrEqualLoc,
2301                           bool UsesColonSyntax, Expr *Init) {
2302  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2303                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2304  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2305                                      ColonOrEqualLoc, UsesColonSyntax,
2306                                      IndexExprs, NumIndexExprs, Init);
2307}
2308
2309DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2310                                                    unsigned NumIndexExprs) {
2311  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2312                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2313  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2314}
2315
2316void DesignatedInitExpr::setDesignators(ASTContext &C,
2317                                        const Designator *Desigs,
2318                                        unsigned NumDesigs) {
2319  DestroyDesignators(C);
2320
2321  Designators = new (C) Designator[NumDesigs];
2322  NumDesignators = NumDesigs;
2323  for (unsigned I = 0; I != NumDesigs; ++I)
2324    Designators[I] = Desigs[I];
2325}
2326
2327SourceRange DesignatedInitExpr::getSourceRange() const {
2328  SourceLocation StartLoc;
2329  Designator &First =
2330    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2331  if (First.isFieldDesignator()) {
2332    if (GNUSyntax)
2333      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2334    else
2335      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2336  } else
2337    StartLoc =
2338      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2339  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2340}
2341
2342Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2343  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2344  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2345  Ptr += sizeof(DesignatedInitExpr);
2346  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2347  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2348}
2349
2350Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2351  assert(D.Kind == Designator::ArrayRangeDesignator &&
2352         "Requires array range designator");
2353  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2354  Ptr += sizeof(DesignatedInitExpr);
2355  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2356  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2357}
2358
2359Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2360  assert(D.Kind == Designator::ArrayRangeDesignator &&
2361         "Requires array range designator");
2362  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2363  Ptr += sizeof(DesignatedInitExpr);
2364  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2365  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2366}
2367
2368/// \brief Replaces the designator at index @p Idx with the series
2369/// of designators in [First, Last).
2370void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2371                                          const Designator *First,
2372                                          const Designator *Last) {
2373  unsigned NumNewDesignators = Last - First;
2374  if (NumNewDesignators == 0) {
2375    std::copy_backward(Designators + Idx + 1,
2376                       Designators + NumDesignators,
2377                       Designators + Idx);
2378    --NumNewDesignators;
2379    return;
2380  } else if (NumNewDesignators == 1) {
2381    Designators[Idx] = *First;
2382    return;
2383  }
2384
2385  Designator *NewDesignators
2386    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2387  std::copy(Designators, Designators + Idx, NewDesignators);
2388  std::copy(First, Last, NewDesignators + Idx);
2389  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2390            NewDesignators + Idx + NumNewDesignators);
2391  DestroyDesignators(C);
2392  Designators = NewDesignators;
2393  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2394}
2395
2396void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2397  DestroyDesignators(C);
2398  Expr::DoDestroy(C);
2399}
2400
2401void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2402  for (unsigned I = 0; I != NumDesignators; ++I)
2403    Designators[I].~Designator();
2404  C.Deallocate(Designators);
2405  Designators = 0;
2406}
2407
2408ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2409                             Expr **exprs, unsigned nexprs,
2410                             SourceLocation rparenloc)
2411: Expr(ParenListExprClass, QualType(),
2412       hasAnyTypeDependentArguments(exprs, nexprs),
2413       hasAnyValueDependentArguments(exprs, nexprs)),
2414  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2415
2416  Exprs = new (C) Stmt*[nexprs];
2417  for (unsigned i = 0; i != nexprs; ++i)
2418    Exprs[i] = exprs[i];
2419}
2420
2421void ParenListExpr::DoDestroy(ASTContext& C) {
2422  DestroyChildren(C);
2423  if (Exprs) C.Deallocate(Exprs);
2424  this->~ParenListExpr();
2425  C.Deallocate(this);
2426}
2427
2428//===----------------------------------------------------------------------===//
2429//  ExprIterator.
2430//===----------------------------------------------------------------------===//
2431
2432Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2433Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2434Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2435const Expr* ConstExprIterator::operator[](size_t idx) const {
2436  return cast<Expr>(I[idx]);
2437}
2438const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2439const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2440
2441//===----------------------------------------------------------------------===//
2442//  Child Iterators for iterating over subexpressions/substatements
2443//===----------------------------------------------------------------------===//
2444
2445// DeclRefExpr
2446Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2447Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2448
2449// ObjCIvarRefExpr
2450Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2451Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2452
2453// ObjCPropertyRefExpr
2454Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2455Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2456
2457// ObjCImplicitSetterGetterRefExpr
2458Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2459  return &Base;
2460}
2461Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2462  return &Base+1;
2463}
2464
2465// ObjCSuperExpr
2466Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2467Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2468
2469// ObjCIsaExpr
2470Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2471Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2472
2473// PredefinedExpr
2474Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2475Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2476
2477// IntegerLiteral
2478Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2479Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2480
2481// CharacterLiteral
2482Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2483Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2484
2485// FloatingLiteral
2486Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2487Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2488
2489// ImaginaryLiteral
2490Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2491Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2492
2493// StringLiteral
2494Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2495Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2496
2497// ParenExpr
2498Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2499Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2500
2501// UnaryOperator
2502Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2503Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2504
2505// SizeOfAlignOfExpr
2506Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2507  // If this is of a type and the type is a VLA type (and not a typedef), the
2508  // size expression of the VLA needs to be treated as an executable expression.
2509  // Why isn't this weirdness documented better in StmtIterator?
2510  if (isArgumentType()) {
2511    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2512                                   getArgumentType().getTypePtr()))
2513      return child_iterator(T);
2514    return child_iterator();
2515  }
2516  return child_iterator(&Argument.Ex);
2517}
2518Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2519  if (isArgumentType())
2520    return child_iterator();
2521  return child_iterator(&Argument.Ex + 1);
2522}
2523
2524// ArraySubscriptExpr
2525Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2526  return &SubExprs[0];
2527}
2528Stmt::child_iterator ArraySubscriptExpr::child_end() {
2529  return &SubExprs[0]+END_EXPR;
2530}
2531
2532// CallExpr
2533Stmt::child_iterator CallExpr::child_begin() {
2534  return &SubExprs[0];
2535}
2536Stmt::child_iterator CallExpr::child_end() {
2537  return &SubExprs[0]+NumArgs+ARGS_START;
2538}
2539
2540// MemberExpr
2541Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2542Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2543
2544// ExtVectorElementExpr
2545Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2546Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2547
2548// CompoundLiteralExpr
2549Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2550Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2551
2552// CastExpr
2553Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2554Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2555
2556// BinaryOperator
2557Stmt::child_iterator BinaryOperator::child_begin() {
2558  return &SubExprs[0];
2559}
2560Stmt::child_iterator BinaryOperator::child_end() {
2561  return &SubExprs[0]+END_EXPR;
2562}
2563
2564// ConditionalOperator
2565Stmt::child_iterator ConditionalOperator::child_begin() {
2566  return &SubExprs[0];
2567}
2568Stmt::child_iterator ConditionalOperator::child_end() {
2569  return &SubExprs[0]+END_EXPR;
2570}
2571
2572// AddrLabelExpr
2573Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2574Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2575
2576// StmtExpr
2577Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2578Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2579
2580// TypesCompatibleExpr
2581Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2582  return child_iterator();
2583}
2584
2585Stmt::child_iterator TypesCompatibleExpr::child_end() {
2586  return child_iterator();
2587}
2588
2589// ChooseExpr
2590Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2591Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2592
2593// GNUNullExpr
2594Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2595Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2596
2597// ShuffleVectorExpr
2598Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2599  return &SubExprs[0];
2600}
2601Stmt::child_iterator ShuffleVectorExpr::child_end() {
2602  return &SubExprs[0]+NumExprs;
2603}
2604
2605// VAArgExpr
2606Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2607Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2608
2609// InitListExpr
2610Stmt::child_iterator InitListExpr::child_begin() {
2611  return InitExprs.size() ? &InitExprs[0] : 0;
2612}
2613Stmt::child_iterator InitListExpr::child_end() {
2614  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2615}
2616
2617// DesignatedInitExpr
2618Stmt::child_iterator DesignatedInitExpr::child_begin() {
2619  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2620  Ptr += sizeof(DesignatedInitExpr);
2621  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2622}
2623Stmt::child_iterator DesignatedInitExpr::child_end() {
2624  return child_iterator(&*child_begin() + NumSubExprs);
2625}
2626
2627// ImplicitValueInitExpr
2628Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2629  return child_iterator();
2630}
2631
2632Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2633  return child_iterator();
2634}
2635
2636// ParenListExpr
2637Stmt::child_iterator ParenListExpr::child_begin() {
2638  return &Exprs[0];
2639}
2640Stmt::child_iterator ParenListExpr::child_end() {
2641  return &Exprs[0]+NumExprs;
2642}
2643
2644// ObjCStringLiteral
2645Stmt::child_iterator ObjCStringLiteral::child_begin() {
2646  return &String;
2647}
2648Stmt::child_iterator ObjCStringLiteral::child_end() {
2649  return &String+1;
2650}
2651
2652// ObjCEncodeExpr
2653Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2654Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2655
2656// ObjCSelectorExpr
2657Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2658  return child_iterator();
2659}
2660Stmt::child_iterator ObjCSelectorExpr::child_end() {
2661  return child_iterator();
2662}
2663
2664// ObjCProtocolExpr
2665Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2666  return child_iterator();
2667}
2668Stmt::child_iterator ObjCProtocolExpr::child_end() {
2669  return child_iterator();
2670}
2671
2672// ObjCMessageExpr
2673Stmt::child_iterator ObjCMessageExpr::child_begin() {
2674  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2675}
2676Stmt::child_iterator ObjCMessageExpr::child_end() {
2677  return &SubExprs[0]+ARGS_START+getNumArgs();
2678}
2679
2680// Blocks
2681Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2682Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2683
2684Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2685Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2686