Expr.cpp revision bef0efd11bc4430a3ee437a3213cec5c18af855a
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30void Expr::ANCHOR() {} // key function for Expr class.
31
32/// isKnownToHaveBooleanValue - Return true if this is an integer expression
33/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
34/// but also int expressions which are produced by things like comparisons in
35/// C.
36bool Expr::isKnownToHaveBooleanValue() const {
37  // If this value has _Bool type, it is obvious 0/1.
38  if (getType()->isBooleanType()) return true;
39  // If this is a non-scalar-integer type, we don't care enough to try.
40  if (!getType()->isIntegralType()) return false;
41
42  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
43    return PE->getSubExpr()->isKnownToHaveBooleanValue();
44
45  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
46    switch (UO->getOpcode()) {
47    case UnaryOperator::Plus:
48    case UnaryOperator::Extension:
49      return UO->getSubExpr()->isKnownToHaveBooleanValue();
50    default:
51      return false;
52    }
53  }
54
55  if (const CastExpr *CE = dyn_cast<CastExpr>(this))
56    return CE->getSubExpr()->isKnownToHaveBooleanValue();
57
58  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
59    switch (BO->getOpcode()) {
60    default: return false;
61    case BinaryOperator::LT:   // Relational operators.
62    case BinaryOperator::GT:
63    case BinaryOperator::LE:
64    case BinaryOperator::GE:
65    case BinaryOperator::EQ:   // Equality operators.
66    case BinaryOperator::NE:
67    case BinaryOperator::LAnd: // AND operator.
68    case BinaryOperator::LOr:  // Logical OR operator.
69      return true;
70
71    case BinaryOperator::And:  // Bitwise AND operator.
72    case BinaryOperator::Xor:  // Bitwise XOR operator.
73    case BinaryOperator::Or:   // Bitwise OR operator.
74      // Handle things like (x==2)|(y==12).
75      return BO->getLHS()->isKnownToHaveBooleanValue() &&
76             BO->getRHS()->isKnownToHaveBooleanValue();
77
78    case BinaryOperator::Comma:
79    case BinaryOperator::Assign:
80      return BO->getRHS()->isKnownToHaveBooleanValue();
81    }
82  }
83
84  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
85    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
86           CO->getFalseExpr()->isKnownToHaveBooleanValue();
87
88  return false;
89}
90
91//===----------------------------------------------------------------------===//
92// Primary Expressions.
93//===----------------------------------------------------------------------===//
94
95void ExplicitTemplateArgumentList::initializeFrom(
96                                      const TemplateArgumentListInfo &Info) {
97  LAngleLoc = Info.getLAngleLoc();
98  RAngleLoc = Info.getRAngleLoc();
99  NumTemplateArgs = Info.size();
100
101  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
102  for (unsigned i = 0; i != NumTemplateArgs; ++i)
103    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
104}
105
106void ExplicitTemplateArgumentList::copyInto(
107                                      TemplateArgumentListInfo &Info) const {
108  Info.setLAngleLoc(LAngleLoc);
109  Info.setRAngleLoc(RAngleLoc);
110  for (unsigned I = 0; I != NumTemplateArgs; ++I)
111    Info.addArgument(getTemplateArgs()[I]);
112}
113
114std::size_t ExplicitTemplateArgumentList::sizeFor(
115                                      const TemplateArgumentListInfo &Info) {
116  return sizeof(ExplicitTemplateArgumentList) +
117         sizeof(TemplateArgumentLoc) * Info.size();
118}
119
120void DeclRefExpr::computeDependence() {
121  TypeDependent = false;
122  ValueDependent = false;
123
124  NamedDecl *D = getDecl();
125
126  // (TD) C++ [temp.dep.expr]p3:
127  //   An id-expression is type-dependent if it contains:
128  //
129  // and
130  //
131  // (VD) C++ [temp.dep.constexpr]p2:
132  //  An identifier is value-dependent if it is:
133
134  //  (TD)  - an identifier that was declared with dependent type
135  //  (VD)  - a name declared with a dependent type,
136  if (getType()->isDependentType()) {
137    TypeDependent = true;
138    ValueDependent = true;
139  }
140  //  (TD)  - a conversion-function-id that specifies a dependent type
141  else if (D->getDeclName().getNameKind()
142                               == DeclarationName::CXXConversionFunctionName &&
143           D->getDeclName().getCXXNameType()->isDependentType()) {
144    TypeDependent = true;
145    ValueDependent = true;
146  }
147  //  (TD)  - a template-id that is dependent,
148  else if (hasExplicitTemplateArgumentList() &&
149           TemplateSpecializationType::anyDependentTemplateArguments(
150                                                       getTemplateArgs(),
151                                                       getNumTemplateArgs())) {
152    TypeDependent = true;
153    ValueDependent = true;
154  }
155  //  (VD)  - the name of a non-type template parameter,
156  else if (isa<NonTypeTemplateParmDecl>(D))
157    ValueDependent = true;
158  //  (VD) - a constant with integral or enumeration type and is
159  //         initialized with an expression that is value-dependent.
160  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
161    if (Var->getType()->isIntegralType() &&
162        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
163      if (const Expr *Init = Var->getAnyInitializer())
164        if (Init->isValueDependent())
165          ValueDependent = true;
166    }
167    // (VD) - FIXME: Missing from the standard:
168    //      -  a member function or a static data member of the current
169    //         instantiation
170    else if (Var->isStaticDataMember() &&
171             Var->getDeclContext()->isDependentContext())
172      ValueDependent = true;
173  }
174  // (VD) - FIXME: Missing from the standard:
175  //      -  a member function or a static data member of the current
176  //         instantiation
177  else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
178    ValueDependent = true;
179  //  (TD)  - a nested-name-specifier or a qualified-id that names a
180  //          member of an unknown specialization.
181  //        (handled by DependentScopeDeclRefExpr)
182}
183
184DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
185                         SourceRange QualifierRange,
186                         ValueDecl *D, SourceLocation NameLoc,
187                         const TemplateArgumentListInfo *TemplateArgs,
188                         QualType T)
189  : Expr(DeclRefExprClass, T, false, false),
190    DecoratedD(D,
191               (Qualifier? HasQualifierFlag : 0) |
192               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
193    Loc(NameLoc) {
194  if (Qualifier) {
195    NameQualifier *NQ = getNameQualifier();
196    NQ->NNS = Qualifier;
197    NQ->Range = QualifierRange;
198  }
199
200  if (TemplateArgs)
201    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
202
203  computeDependence();
204}
205
206DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
207                                 NestedNameSpecifier *Qualifier,
208                                 SourceRange QualifierRange,
209                                 ValueDecl *D,
210                                 SourceLocation NameLoc,
211                                 QualType T,
212                                 const TemplateArgumentListInfo *TemplateArgs) {
213  std::size_t Size = sizeof(DeclRefExpr);
214  if (Qualifier != 0)
215    Size += sizeof(NameQualifier);
216
217  if (TemplateArgs)
218    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
219
220  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
221  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
222                               TemplateArgs, T);
223}
224
225SourceRange DeclRefExpr::getSourceRange() const {
226  // FIXME: Does not handle multi-token names well, e.g., operator[].
227  SourceRange R(Loc);
228
229  if (hasQualifier())
230    R.setBegin(getQualifierRange().getBegin());
231  if (hasExplicitTemplateArgumentList())
232    R.setEnd(getRAngleLoc());
233  return R;
234}
235
236// FIXME: Maybe this should use DeclPrinter with a special "print predefined
237// expr" policy instead.
238std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
239  ASTContext &Context = CurrentDecl->getASTContext();
240
241  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
242    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
243      return FD->getNameAsString();
244
245    llvm::SmallString<256> Name;
246    llvm::raw_svector_ostream Out(Name);
247
248    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
249      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
250        Out << "virtual ";
251      if (MD->isStatic())
252        Out << "static ";
253    }
254
255    PrintingPolicy Policy(Context.getLangOptions());
256
257    std::string Proto = FD->getQualifiedNameAsString(Policy);
258
259    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
260    const FunctionProtoType *FT = 0;
261    if (FD->hasWrittenPrototype())
262      FT = dyn_cast<FunctionProtoType>(AFT);
263
264    Proto += "(";
265    if (FT) {
266      llvm::raw_string_ostream POut(Proto);
267      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
268        if (i) POut << ", ";
269        std::string Param;
270        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
271        POut << Param;
272      }
273
274      if (FT->isVariadic()) {
275        if (FD->getNumParams()) POut << ", ";
276        POut << "...";
277      }
278    }
279    Proto += ")";
280
281    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
282      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
283      if (ThisQuals.hasConst())
284        Proto += " const";
285      if (ThisQuals.hasVolatile())
286        Proto += " volatile";
287    }
288
289    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
290      AFT->getResultType().getAsStringInternal(Proto, Policy);
291
292    Out << Proto;
293
294    Out.flush();
295    return Name.str().str();
296  }
297  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
298    llvm::SmallString<256> Name;
299    llvm::raw_svector_ostream Out(Name);
300    Out << (MD->isInstanceMethod() ? '-' : '+');
301    Out << '[';
302
303    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
304    // a null check to avoid a crash.
305    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
306      Out << ID;
307
308    if (const ObjCCategoryImplDecl *CID =
309        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
310      Out << '(' << CID << ')';
311
312    Out <<  ' ';
313    Out << MD->getSelector().getAsString();
314    Out <<  ']';
315
316    Out.flush();
317    return Name.str().str();
318  }
319  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
320    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
321    return "top level";
322  }
323  return "";
324}
325
326/// getValueAsApproximateDouble - This returns the value as an inaccurate
327/// double.  Note that this may cause loss of precision, but is useful for
328/// debugging dumps, etc.
329double FloatingLiteral::getValueAsApproximateDouble() const {
330  llvm::APFloat V = getValue();
331  bool ignored;
332  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
333            &ignored);
334  return V.convertToDouble();
335}
336
337StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
338                                     unsigned ByteLength, bool Wide,
339                                     QualType Ty,
340                                     const SourceLocation *Loc,
341                                     unsigned NumStrs) {
342  // Allocate enough space for the StringLiteral plus an array of locations for
343  // any concatenated string tokens.
344  void *Mem = C.Allocate(sizeof(StringLiteral)+
345                         sizeof(SourceLocation)*(NumStrs-1),
346                         llvm::alignof<StringLiteral>());
347  StringLiteral *SL = new (Mem) StringLiteral(Ty);
348
349  // OPTIMIZE: could allocate this appended to the StringLiteral.
350  char *AStrData = new (C, 1) char[ByteLength];
351  memcpy(AStrData, StrData, ByteLength);
352  SL->StrData = AStrData;
353  SL->ByteLength = ByteLength;
354  SL->IsWide = Wide;
355  SL->TokLocs[0] = Loc[0];
356  SL->NumConcatenated = NumStrs;
357
358  if (NumStrs != 1)
359    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
360  return SL;
361}
362
363StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
364  void *Mem = C.Allocate(sizeof(StringLiteral)+
365                         sizeof(SourceLocation)*(NumStrs-1),
366                         llvm::alignof<StringLiteral>());
367  StringLiteral *SL = new (Mem) StringLiteral(QualType());
368  SL->StrData = 0;
369  SL->ByteLength = 0;
370  SL->NumConcatenated = NumStrs;
371  return SL;
372}
373
374void StringLiteral::DoDestroy(ASTContext &C) {
375  C.Deallocate(const_cast<char*>(StrData));
376  Expr::DoDestroy(C);
377}
378
379void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
380  if (StrData)
381    C.Deallocate(const_cast<char*>(StrData));
382
383  char *AStrData = new (C, 1) char[Str.size()];
384  memcpy(AStrData, Str.data(), Str.size());
385  StrData = AStrData;
386  ByteLength = Str.size();
387}
388
389/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
390/// corresponds to, e.g. "sizeof" or "[pre]++".
391const char *UnaryOperator::getOpcodeStr(Opcode Op) {
392  switch (Op) {
393  default: assert(0 && "Unknown unary operator");
394  case PostInc: return "++";
395  case PostDec: return "--";
396  case PreInc:  return "++";
397  case PreDec:  return "--";
398  case AddrOf:  return "&";
399  case Deref:   return "*";
400  case Plus:    return "+";
401  case Minus:   return "-";
402  case Not:     return "~";
403  case LNot:    return "!";
404  case Real:    return "__real";
405  case Imag:    return "__imag";
406  case Extension: return "__extension__";
407  case OffsetOf: return "__builtin_offsetof";
408  }
409}
410
411UnaryOperator::Opcode
412UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
413  switch (OO) {
414  default: assert(false && "No unary operator for overloaded function");
415  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
416  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
417  case OO_Amp:        return AddrOf;
418  case OO_Star:       return Deref;
419  case OO_Plus:       return Plus;
420  case OO_Minus:      return Minus;
421  case OO_Tilde:      return Not;
422  case OO_Exclaim:    return LNot;
423  }
424}
425
426OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
427  switch (Opc) {
428  case PostInc: case PreInc: return OO_PlusPlus;
429  case PostDec: case PreDec: return OO_MinusMinus;
430  case AddrOf: return OO_Amp;
431  case Deref: return OO_Star;
432  case Plus: return OO_Plus;
433  case Minus: return OO_Minus;
434  case Not: return OO_Tilde;
435  case LNot: return OO_Exclaim;
436  default: return OO_None;
437  }
438}
439
440
441//===----------------------------------------------------------------------===//
442// Postfix Operators.
443//===----------------------------------------------------------------------===//
444
445CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
446                   unsigned numargs, QualType t, SourceLocation rparenloc)
447  : Expr(SC, t,
448         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
449         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
450    NumArgs(numargs) {
451
452  SubExprs = new (C) Stmt*[numargs+1];
453  SubExprs[FN] = fn;
454  for (unsigned i = 0; i != numargs; ++i)
455    SubExprs[i+ARGS_START] = args[i];
456
457  RParenLoc = rparenloc;
458}
459
460CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
461                   QualType t, SourceLocation rparenloc)
462  : Expr(CallExprClass, t,
463         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
464         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
465    NumArgs(numargs) {
466
467  SubExprs = new (C) Stmt*[numargs+1];
468  SubExprs[FN] = fn;
469  for (unsigned i = 0; i != numargs; ++i)
470    SubExprs[i+ARGS_START] = args[i];
471
472  RParenLoc = rparenloc;
473}
474
475CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
476  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
477  SubExprs = new (C) Stmt*[1];
478}
479
480void CallExpr::DoDestroy(ASTContext& C) {
481  DestroyChildren(C);
482  if (SubExprs) C.Deallocate(SubExprs);
483  this->~CallExpr();
484  C.Deallocate(this);
485}
486
487Decl *CallExpr::getCalleeDecl() {
488  Expr *CEE = getCallee()->IgnoreParenCasts();
489  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
490    return DRE->getDecl();
491  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
492    return ME->getMemberDecl();
493
494  return 0;
495}
496
497FunctionDecl *CallExpr::getDirectCallee() {
498  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
499}
500
501/// setNumArgs - This changes the number of arguments present in this call.
502/// Any orphaned expressions are deleted by this, and any new operands are set
503/// to null.
504void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
505  // No change, just return.
506  if (NumArgs == getNumArgs()) return;
507
508  // If shrinking # arguments, just delete the extras and forgot them.
509  if (NumArgs < getNumArgs()) {
510    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
511      getArg(i)->Destroy(C);
512    this->NumArgs = NumArgs;
513    return;
514  }
515
516  // Otherwise, we are growing the # arguments.  New an bigger argument array.
517  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
518  // Copy over args.
519  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
520    NewSubExprs[i] = SubExprs[i];
521  // Null out new args.
522  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
523    NewSubExprs[i] = 0;
524
525  if (SubExprs) C.Deallocate(SubExprs);
526  SubExprs = NewSubExprs;
527  this->NumArgs = NumArgs;
528}
529
530/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
531/// not, return 0.
532unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
533  // All simple function calls (e.g. func()) are implicitly cast to pointer to
534  // function. As a result, we try and obtain the DeclRefExpr from the
535  // ImplicitCastExpr.
536  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
537  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
538    return 0;
539
540  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
541  if (!DRE)
542    return 0;
543
544  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
545  if (!FDecl)
546    return 0;
547
548  if (!FDecl->getIdentifier())
549    return 0;
550
551  return FDecl->getBuiltinID();
552}
553
554QualType CallExpr::getCallReturnType() const {
555  QualType CalleeType = getCallee()->getType();
556  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
557    CalleeType = FnTypePtr->getPointeeType();
558  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
559    CalleeType = BPT->getPointeeType();
560
561  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
562  return FnType->getResultType();
563}
564
565OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
566                                   SourceLocation OperatorLoc,
567                                   TypeSourceInfo *tsi,
568                                   OffsetOfNode* compsPtr, unsigned numComps,
569                                   Expr** exprsPtr, unsigned numExprs,
570                                   SourceLocation RParenLoc) {
571  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
572                         sizeof(OffsetOfNode) * numComps +
573                         sizeof(Expr*) * numExprs);
574
575  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
576                                exprsPtr, numExprs, RParenLoc);
577}
578
579OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
580                                        unsigned numComps, unsigned numExprs) {
581  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
582                         sizeof(OffsetOfNode) * numComps +
583                         sizeof(Expr*) * numExprs);
584  return new (Mem) OffsetOfExpr(numComps, numExprs);
585}
586
587OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
588                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
589                           OffsetOfNode* compsPtr, unsigned numComps,
590                           Expr** exprsPtr, unsigned numExprs,
591                           SourceLocation RParenLoc)
592  : Expr(OffsetOfExprClass, type, /*TypeDependent=*/false,
593         /*ValueDependent=*/tsi->getType()->isDependentType() ||
594         hasAnyTypeDependentArguments(exprsPtr, numExprs) ||
595         hasAnyValueDependentArguments(exprsPtr, numExprs)),
596    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
597    NumComps(numComps), NumExprs(numExprs)
598{
599  for(unsigned i = 0; i < numComps; ++i) {
600    setComponent(i, compsPtr[i]);
601  }
602
603  for(unsigned i = 0; i < numExprs; ++i) {
604    setIndexExpr(i, exprsPtr[i]);
605  }
606}
607
608IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
609  assert(getKind() == Field || getKind() == Identifier);
610  if (getKind() == Field)
611    return getField()->getIdentifier();
612
613  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
614}
615
616MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
617                               NestedNameSpecifier *qual,
618                               SourceRange qualrange,
619                               ValueDecl *memberdecl,
620                               DeclAccessPair founddecl,
621                               SourceLocation l,
622                               const TemplateArgumentListInfo *targs,
623                               QualType ty) {
624  std::size_t Size = sizeof(MemberExpr);
625
626  bool hasQualOrFound = (qual != 0 ||
627                         founddecl.getDecl() != memberdecl ||
628                         founddecl.getAccess() != memberdecl->getAccess());
629  if (hasQualOrFound)
630    Size += sizeof(MemberNameQualifier);
631
632  if (targs)
633    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
634
635  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
636  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
637
638  if (hasQualOrFound) {
639    if (qual && qual->isDependent()) {
640      E->setValueDependent(true);
641      E->setTypeDependent(true);
642    }
643    E->HasQualifierOrFoundDecl = true;
644
645    MemberNameQualifier *NQ = E->getMemberQualifier();
646    NQ->NNS = qual;
647    NQ->Range = qualrange;
648    NQ->FoundDecl = founddecl;
649  }
650
651  if (targs) {
652    E->HasExplicitTemplateArgumentList = true;
653    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
654  }
655
656  return E;
657}
658
659const char *CastExpr::getCastKindName() const {
660  switch (getCastKind()) {
661  case CastExpr::CK_Unknown:
662    return "Unknown";
663  case CastExpr::CK_BitCast:
664    return "BitCast";
665  case CastExpr::CK_NoOp:
666    return "NoOp";
667  case CastExpr::CK_BaseToDerived:
668    return "BaseToDerived";
669  case CastExpr::CK_DerivedToBase:
670    return "DerivedToBase";
671  case CastExpr::CK_UncheckedDerivedToBase:
672    return "UncheckedDerivedToBase";
673  case CastExpr::CK_Dynamic:
674    return "Dynamic";
675  case CastExpr::CK_ToUnion:
676    return "ToUnion";
677  case CastExpr::CK_ArrayToPointerDecay:
678    return "ArrayToPointerDecay";
679  case CastExpr::CK_FunctionToPointerDecay:
680    return "FunctionToPointerDecay";
681  case CastExpr::CK_NullToMemberPointer:
682    return "NullToMemberPointer";
683  case CastExpr::CK_BaseToDerivedMemberPointer:
684    return "BaseToDerivedMemberPointer";
685  case CastExpr::CK_DerivedToBaseMemberPointer:
686    return "DerivedToBaseMemberPointer";
687  case CastExpr::CK_UserDefinedConversion:
688    return "UserDefinedConversion";
689  case CastExpr::CK_ConstructorConversion:
690    return "ConstructorConversion";
691  case CastExpr::CK_IntegralToPointer:
692    return "IntegralToPointer";
693  case CastExpr::CK_PointerToIntegral:
694    return "PointerToIntegral";
695  case CastExpr::CK_ToVoid:
696    return "ToVoid";
697  case CastExpr::CK_VectorSplat:
698    return "VectorSplat";
699  case CastExpr::CK_IntegralCast:
700    return "IntegralCast";
701  case CastExpr::CK_IntegralToFloating:
702    return "IntegralToFloating";
703  case CastExpr::CK_FloatingToIntegral:
704    return "FloatingToIntegral";
705  case CastExpr::CK_FloatingCast:
706    return "FloatingCast";
707  case CastExpr::CK_MemberPointerToBoolean:
708    return "MemberPointerToBoolean";
709  case CastExpr::CK_AnyPointerToObjCPointerCast:
710    return "AnyPointerToObjCPointerCast";
711  case CastExpr::CK_AnyPointerToBlockPointerCast:
712    return "AnyPointerToBlockPointerCast";
713  }
714
715  assert(0 && "Unhandled cast kind!");
716  return 0;
717}
718
719void CastExpr::DoDestroy(ASTContext &C)
720{
721  BasePath.Destroy();
722  Expr::DoDestroy(C);
723}
724
725Expr *CastExpr::getSubExprAsWritten() {
726  Expr *SubExpr = 0;
727  CastExpr *E = this;
728  do {
729    SubExpr = E->getSubExpr();
730
731    // Skip any temporary bindings; they're implicit.
732    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
733      SubExpr = Binder->getSubExpr();
734
735    // Conversions by constructor and conversion functions have a
736    // subexpression describing the call; strip it off.
737    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
738      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
739    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
740      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
741
742    // If the subexpression we're left with is an implicit cast, look
743    // through that, too.
744  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
745
746  return SubExpr;
747}
748
749/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
750/// corresponds to, e.g. "<<=".
751const char *BinaryOperator::getOpcodeStr(Opcode Op) {
752  switch (Op) {
753  case PtrMemD:   return ".*";
754  case PtrMemI:   return "->*";
755  case Mul:       return "*";
756  case Div:       return "/";
757  case Rem:       return "%";
758  case Add:       return "+";
759  case Sub:       return "-";
760  case Shl:       return "<<";
761  case Shr:       return ">>";
762  case LT:        return "<";
763  case GT:        return ">";
764  case LE:        return "<=";
765  case GE:        return ">=";
766  case EQ:        return "==";
767  case NE:        return "!=";
768  case And:       return "&";
769  case Xor:       return "^";
770  case Or:        return "|";
771  case LAnd:      return "&&";
772  case LOr:       return "||";
773  case Assign:    return "=";
774  case MulAssign: return "*=";
775  case DivAssign: return "/=";
776  case RemAssign: return "%=";
777  case AddAssign: return "+=";
778  case SubAssign: return "-=";
779  case ShlAssign: return "<<=";
780  case ShrAssign: return ">>=";
781  case AndAssign: return "&=";
782  case XorAssign: return "^=";
783  case OrAssign:  return "|=";
784  case Comma:     return ",";
785  }
786
787  return "";
788}
789
790BinaryOperator::Opcode
791BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
792  switch (OO) {
793  default: assert(false && "Not an overloadable binary operator");
794  case OO_Plus: return Add;
795  case OO_Minus: return Sub;
796  case OO_Star: return Mul;
797  case OO_Slash: return Div;
798  case OO_Percent: return Rem;
799  case OO_Caret: return Xor;
800  case OO_Amp: return And;
801  case OO_Pipe: return Or;
802  case OO_Equal: return Assign;
803  case OO_Less: return LT;
804  case OO_Greater: return GT;
805  case OO_PlusEqual: return AddAssign;
806  case OO_MinusEqual: return SubAssign;
807  case OO_StarEqual: return MulAssign;
808  case OO_SlashEqual: return DivAssign;
809  case OO_PercentEqual: return RemAssign;
810  case OO_CaretEqual: return XorAssign;
811  case OO_AmpEqual: return AndAssign;
812  case OO_PipeEqual: return OrAssign;
813  case OO_LessLess: return Shl;
814  case OO_GreaterGreater: return Shr;
815  case OO_LessLessEqual: return ShlAssign;
816  case OO_GreaterGreaterEqual: return ShrAssign;
817  case OO_EqualEqual: return EQ;
818  case OO_ExclaimEqual: return NE;
819  case OO_LessEqual: return LE;
820  case OO_GreaterEqual: return GE;
821  case OO_AmpAmp: return LAnd;
822  case OO_PipePipe: return LOr;
823  case OO_Comma: return Comma;
824  case OO_ArrowStar: return PtrMemI;
825  }
826}
827
828OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
829  static const OverloadedOperatorKind OverOps[] = {
830    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
831    OO_Star, OO_Slash, OO_Percent,
832    OO_Plus, OO_Minus,
833    OO_LessLess, OO_GreaterGreater,
834    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
835    OO_EqualEqual, OO_ExclaimEqual,
836    OO_Amp,
837    OO_Caret,
838    OO_Pipe,
839    OO_AmpAmp,
840    OO_PipePipe,
841    OO_Equal, OO_StarEqual,
842    OO_SlashEqual, OO_PercentEqual,
843    OO_PlusEqual, OO_MinusEqual,
844    OO_LessLessEqual, OO_GreaterGreaterEqual,
845    OO_AmpEqual, OO_CaretEqual,
846    OO_PipeEqual,
847    OO_Comma
848  };
849  return OverOps[Opc];
850}
851
852InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
853                           Expr **initExprs, unsigned numInits,
854                           SourceLocation rbraceloc)
855  : Expr(InitListExprClass, QualType(), false, false),
856    InitExprs(C, numInits),
857    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
858    UnionFieldInit(0), HadArrayRangeDesignator(false)
859{
860  for (unsigned I = 0; I != numInits; ++I) {
861    if (initExprs[I]->isTypeDependent())
862      TypeDependent = true;
863    if (initExprs[I]->isValueDependent())
864      ValueDependent = true;
865  }
866
867  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
868}
869
870void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
871  if (NumInits > InitExprs.size())
872    InitExprs.reserve(C, NumInits);
873}
874
875void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
876  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
877       Idx < LastIdx; ++Idx)
878    InitExprs[Idx]->Destroy(C);
879  InitExprs.resize(C, NumInits, 0);
880}
881
882Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
883  if (Init >= InitExprs.size()) {
884    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
885    InitExprs.back() = expr;
886    return 0;
887  }
888
889  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
890  InitExprs[Init] = expr;
891  return Result;
892}
893
894/// getFunctionType - Return the underlying function type for this block.
895///
896const FunctionType *BlockExpr::getFunctionType() const {
897  return getType()->getAs<BlockPointerType>()->
898                    getPointeeType()->getAs<FunctionType>();
899}
900
901SourceLocation BlockExpr::getCaretLocation() const {
902  return TheBlock->getCaretLocation();
903}
904const Stmt *BlockExpr::getBody() const {
905  return TheBlock->getBody();
906}
907Stmt *BlockExpr::getBody() {
908  return TheBlock->getBody();
909}
910
911
912//===----------------------------------------------------------------------===//
913// Generic Expression Routines
914//===----------------------------------------------------------------------===//
915
916/// isUnusedResultAWarning - Return true if this immediate expression should
917/// be warned about if the result is unused.  If so, fill in Loc and Ranges
918/// with location to warn on and the source range[s] to report with the
919/// warning.
920bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
921                                  SourceRange &R2, ASTContext &Ctx) const {
922  // Don't warn if the expr is type dependent. The type could end up
923  // instantiating to void.
924  if (isTypeDependent())
925    return false;
926
927  switch (getStmtClass()) {
928  default:
929    if (getType()->isVoidType())
930      return false;
931    Loc = getExprLoc();
932    R1 = getSourceRange();
933    return true;
934  case ParenExprClass:
935    return cast<ParenExpr>(this)->getSubExpr()->
936      isUnusedResultAWarning(Loc, R1, R2, Ctx);
937  case UnaryOperatorClass: {
938    const UnaryOperator *UO = cast<UnaryOperator>(this);
939
940    switch (UO->getOpcode()) {
941    default: break;
942    case UnaryOperator::PostInc:
943    case UnaryOperator::PostDec:
944    case UnaryOperator::PreInc:
945    case UnaryOperator::PreDec:                 // ++/--
946      return false;  // Not a warning.
947    case UnaryOperator::Deref:
948      // Dereferencing a volatile pointer is a side-effect.
949      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
950        return false;
951      break;
952    case UnaryOperator::Real:
953    case UnaryOperator::Imag:
954      // accessing a piece of a volatile complex is a side-effect.
955      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
956          .isVolatileQualified())
957        return false;
958      break;
959    case UnaryOperator::Extension:
960      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
961    }
962    Loc = UO->getOperatorLoc();
963    R1 = UO->getSubExpr()->getSourceRange();
964    return true;
965  }
966  case BinaryOperatorClass: {
967    const BinaryOperator *BO = cast<BinaryOperator>(this);
968    switch (BO->getOpcode()) {
969      default:
970        break;
971      // Consider ',', '||', '&&' to have side effects if the LHS or RHS does.
972      case BinaryOperator::Comma:
973        // ((foo = <blah>), 0) is an idiom for hiding the result (and
974        // lvalue-ness) of an assignment written in a macro.
975        if (IntegerLiteral *IE =
976              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
977          if (IE->getValue() == 0)
978            return false;
979      case BinaryOperator::LAnd:
980      case BinaryOperator::LOr:
981        return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
982                BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
983    }
984    if (BO->isAssignmentOp())
985      return false;
986    Loc = BO->getOperatorLoc();
987    R1 = BO->getLHS()->getSourceRange();
988    R2 = BO->getRHS()->getSourceRange();
989    return true;
990  }
991  case CompoundAssignOperatorClass:
992  case VAArgExprClass:
993    return false;
994
995  case ConditionalOperatorClass: {
996    // The condition must be evaluated, but if either the LHS or RHS is a
997    // warning, warn about them.
998    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
999    if (Exp->getLHS() &&
1000        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1001      return true;
1002    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1003  }
1004
1005  case MemberExprClass:
1006    // If the base pointer or element is to a volatile pointer/field, accessing
1007    // it is a side effect.
1008    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1009      return false;
1010    Loc = cast<MemberExpr>(this)->getMemberLoc();
1011    R1 = SourceRange(Loc, Loc);
1012    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1013    return true;
1014
1015  case ArraySubscriptExprClass:
1016    // If the base pointer or element is to a volatile pointer/field, accessing
1017    // it is a side effect.
1018    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1019      return false;
1020    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1021    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1022    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1023    return true;
1024
1025  case CallExprClass:
1026  case CXXOperatorCallExprClass:
1027  case CXXMemberCallExprClass: {
1028    // If this is a direct call, get the callee.
1029    const CallExpr *CE = cast<CallExpr>(this);
1030    if (const Decl *FD = CE->getCalleeDecl()) {
1031      // If the callee has attribute pure, const, or warn_unused_result, warn
1032      // about it. void foo() { strlen("bar"); } should warn.
1033      //
1034      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1035      // updated to match for QoI.
1036      if (FD->getAttr<WarnUnusedResultAttr>() ||
1037          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1038        Loc = CE->getCallee()->getLocStart();
1039        R1 = CE->getCallee()->getSourceRange();
1040
1041        if (unsigned NumArgs = CE->getNumArgs())
1042          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1043                           CE->getArg(NumArgs-1)->getLocEnd());
1044        return true;
1045      }
1046    }
1047    return false;
1048  }
1049
1050  case CXXTemporaryObjectExprClass:
1051  case CXXConstructExprClass:
1052    return false;
1053
1054  case ObjCMessageExprClass: {
1055    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1056    const ObjCMethodDecl *MD = ME->getMethodDecl();
1057    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1058      Loc = getExprLoc();
1059      return true;
1060    }
1061    return false;
1062  }
1063
1064  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
1065#if 0
1066    const ObjCImplicitSetterGetterRefExpr *Ref =
1067      cast<ObjCImplicitSetterGetterRefExpr>(this);
1068    // FIXME: We really want the location of the '.' here.
1069    Loc = Ref->getLocation();
1070    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
1071    if (Ref->getBase())
1072      R2 = Ref->getBase()->getSourceRange();
1073#else
1074    Loc = getExprLoc();
1075    R1 = getSourceRange();
1076#endif
1077    return true;
1078  }
1079  case StmtExprClass: {
1080    // Statement exprs don't logically have side effects themselves, but are
1081    // sometimes used in macros in ways that give them a type that is unused.
1082    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1083    // however, if the result of the stmt expr is dead, we don't want to emit a
1084    // warning.
1085    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1086    if (!CS->body_empty())
1087      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1088        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1089
1090    if (getType()->isVoidType())
1091      return false;
1092    Loc = cast<StmtExpr>(this)->getLParenLoc();
1093    R1 = getSourceRange();
1094    return true;
1095  }
1096  case CStyleCastExprClass:
1097    // If this is an explicit cast to void, allow it.  People do this when they
1098    // think they know what they're doing :).
1099    if (getType()->isVoidType())
1100      return false;
1101    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1102    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1103    return true;
1104  case CXXFunctionalCastExprClass: {
1105    if (getType()->isVoidType())
1106      return false;
1107    const CastExpr *CE = cast<CastExpr>(this);
1108
1109    // If this is a cast to void or a constructor conversion, check the operand.
1110    // Otherwise, the result of the cast is unused.
1111    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
1112        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
1113      return (cast<CastExpr>(this)->getSubExpr()
1114              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1115    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1116    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1117    return true;
1118  }
1119
1120  case ImplicitCastExprClass:
1121    // Check the operand, since implicit casts are inserted by Sema
1122    return (cast<ImplicitCastExpr>(this)
1123            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1124
1125  case CXXDefaultArgExprClass:
1126    return (cast<CXXDefaultArgExpr>(this)
1127            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1128
1129  case CXXNewExprClass:
1130    // FIXME: In theory, there might be new expressions that don't have side
1131    // effects (e.g. a placement new with an uninitialized POD).
1132  case CXXDeleteExprClass:
1133    return false;
1134  case CXXBindTemporaryExprClass:
1135    return (cast<CXXBindTemporaryExpr>(this)
1136            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1137  case CXXExprWithTemporariesClass:
1138    return (cast<CXXExprWithTemporaries>(this)
1139            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1140  }
1141}
1142
1143/// DeclCanBeLvalue - Determine whether the given declaration can be
1144/// an lvalue. This is a helper routine for isLvalue.
1145static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1146  // C++ [temp.param]p6:
1147  //   A non-type non-reference template-parameter is not an lvalue.
1148  if (const NonTypeTemplateParmDecl *NTTParm
1149        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1150    return NTTParm->getType()->isReferenceType();
1151
1152  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1153    // C++ 3.10p2: An lvalue refers to an object or function.
1154    (Ctx.getLangOptions().CPlusPlus &&
1155     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1156}
1157
1158/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1159/// incomplete type other than void. Nonarray expressions that can be lvalues:
1160///  - name, where name must be a variable
1161///  - e[i]
1162///  - (e), where e must be an lvalue
1163///  - e.name, where e must be an lvalue
1164///  - e->name
1165///  - *e, the type of e cannot be a function type
1166///  - string-constant
1167///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1168///  - reference type [C++ [expr]]
1169///
1170Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1171  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1172
1173  isLvalueResult Res = isLvalueInternal(Ctx);
1174  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1175    return Res;
1176
1177  // first, check the type (C99 6.3.2.1). Expressions with function
1178  // type in C are not lvalues, but they can be lvalues in C++.
1179  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1180    return LV_NotObjectType;
1181
1182  // Allow qualified void which is an incomplete type other than void (yuck).
1183  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1184    return LV_IncompleteVoidType;
1185
1186  return LV_Valid;
1187}
1188
1189// Check whether the expression can be sanely treated like an l-value
1190Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1191  switch (getStmtClass()) {
1192  case ObjCIsaExprClass:
1193  case StringLiteralClass:  // C99 6.5.1p4
1194  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1195    return LV_Valid;
1196  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1197    // For vectors, make sure base is an lvalue (i.e. not a function call).
1198    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1199      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1200    return LV_Valid;
1201  case DeclRefExprClass: { // C99 6.5.1p2
1202    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1203    if (DeclCanBeLvalue(RefdDecl, Ctx))
1204      return LV_Valid;
1205    break;
1206  }
1207  case BlockDeclRefExprClass: {
1208    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1209    if (isa<VarDecl>(BDR->getDecl()))
1210      return LV_Valid;
1211    break;
1212  }
1213  case MemberExprClass: {
1214    const MemberExpr *m = cast<MemberExpr>(this);
1215    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1216      NamedDecl *Member = m->getMemberDecl();
1217      // C++ [expr.ref]p4:
1218      //   If E2 is declared to have type "reference to T", then E1.E2
1219      //   is an lvalue.
1220      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1221        if (Value->getType()->isReferenceType())
1222          return LV_Valid;
1223
1224      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1225      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1226        return LV_Valid;
1227
1228      //   -- If E2 is a non-static data member [...]. If E1 is an
1229      //      lvalue, then E1.E2 is an lvalue.
1230      if (isa<FieldDecl>(Member)) {
1231        if (m->isArrow())
1232          return LV_Valid;
1233        return m->getBase()->isLvalue(Ctx);
1234      }
1235
1236      //   -- If it refers to a static member function [...], then
1237      //      E1.E2 is an lvalue.
1238      //   -- Otherwise, if E1.E2 refers to a non-static member
1239      //      function [...], then E1.E2 is not an lvalue.
1240      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1241        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1242
1243      //   -- If E2 is a member enumerator [...], the expression E1.E2
1244      //      is not an lvalue.
1245      if (isa<EnumConstantDecl>(Member))
1246        return LV_InvalidExpression;
1247
1248        // Not an lvalue.
1249      return LV_InvalidExpression;
1250    }
1251
1252    // C99 6.5.2.3p4
1253    if (m->isArrow())
1254      return LV_Valid;
1255    Expr *BaseExp = m->getBase();
1256    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1257        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1258          return LV_SubObjCPropertySetting;
1259    return
1260       BaseExp->isLvalue(Ctx);
1261  }
1262  case UnaryOperatorClass:
1263    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1264      return LV_Valid; // C99 6.5.3p4
1265
1266    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1267        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1268        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1269      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1270
1271    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1272        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1273         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1274      return LV_Valid;
1275    break;
1276  case ImplicitCastExprClass:
1277    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1278      return LV_Valid;
1279
1280    // If this is a conversion to a class temporary, make a note of
1281    // that.
1282    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1283      return LV_ClassTemporary;
1284
1285    break;
1286  case ParenExprClass: // C99 6.5.1p5
1287    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1288  case BinaryOperatorClass:
1289  case CompoundAssignOperatorClass: {
1290    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1291
1292    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1293        BinOp->getOpcode() == BinaryOperator::Comma)
1294      return BinOp->getRHS()->isLvalue(Ctx);
1295
1296    // C++ [expr.mptr.oper]p6
1297    // The result of a .* expression is an lvalue only if its first operand is
1298    // an lvalue and its second operand is a pointer to data member.
1299    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1300        !BinOp->getType()->isFunctionType())
1301      return BinOp->getLHS()->isLvalue(Ctx);
1302
1303    // The result of an ->* expression is an lvalue only if its second operand
1304    // is a pointer to data member.
1305    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1306        !BinOp->getType()->isFunctionType()) {
1307      QualType Ty = BinOp->getRHS()->getType();
1308      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1309        return LV_Valid;
1310    }
1311
1312    if (!BinOp->isAssignmentOp())
1313      return LV_InvalidExpression;
1314
1315    if (Ctx.getLangOptions().CPlusPlus)
1316      // C++ [expr.ass]p1:
1317      //   The result of an assignment operation [...] is an lvalue.
1318      return LV_Valid;
1319
1320
1321    // C99 6.5.16:
1322    //   An assignment expression [...] is not an lvalue.
1323    return LV_InvalidExpression;
1324  }
1325  case CallExprClass:
1326  case CXXOperatorCallExprClass:
1327  case CXXMemberCallExprClass: {
1328    // C++0x [expr.call]p10
1329    //   A function call is an lvalue if and only if the result type
1330    //   is an lvalue reference.
1331    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1332    if (ReturnType->isLValueReferenceType())
1333      return LV_Valid;
1334
1335    // If the function is returning a class temporary, make a note of
1336    // that.
1337    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1338      return LV_ClassTemporary;
1339
1340    break;
1341  }
1342  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1343    // FIXME: Is this what we want in C++?
1344    return LV_Valid;
1345  case ChooseExprClass:
1346    // __builtin_choose_expr is an lvalue if the selected operand is.
1347    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1348  case ExtVectorElementExprClass:
1349    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1350      return LV_DuplicateVectorComponents;
1351    return LV_Valid;
1352  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1353    return LV_Valid;
1354  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1355    return LV_Valid;
1356  case ObjCImplicitSetterGetterRefExprClass:
1357    // FIXME: check if read-only property.
1358    return LV_Valid;
1359  case PredefinedExprClass:
1360    return LV_Valid;
1361  case UnresolvedLookupExprClass:
1362  case UnresolvedMemberExprClass:
1363    return LV_Valid;
1364  case CXXDefaultArgExprClass:
1365    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1366  case CStyleCastExprClass:
1367  case CXXFunctionalCastExprClass:
1368  case CXXStaticCastExprClass:
1369  case CXXDynamicCastExprClass:
1370  case CXXReinterpretCastExprClass:
1371  case CXXConstCastExprClass:
1372    // The result of an explicit cast is an lvalue if the type we are
1373    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1374    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1375    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1376    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1377          isLValueReferenceType())
1378      return LV_Valid;
1379
1380    // If this is a conversion to a class temporary, make a note of
1381    // that.
1382    if (Ctx.getLangOptions().CPlusPlus &&
1383        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1384      return LV_ClassTemporary;
1385
1386    break;
1387  case CXXTypeidExprClass:
1388    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1389    return LV_Valid;
1390  case CXXBindTemporaryExprClass:
1391    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1392      isLvalueInternal(Ctx);
1393  case CXXBindReferenceExprClass:
1394    // Something that's bound to a reference is always an lvalue.
1395    return LV_Valid;
1396  case ConditionalOperatorClass: {
1397    // Complicated handling is only for C++.
1398    if (!Ctx.getLangOptions().CPlusPlus)
1399      return LV_InvalidExpression;
1400
1401    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1402    // everywhere there's an object converted to an rvalue. Also, any other
1403    // casts should be wrapped by ImplicitCastExprs. There's just the special
1404    // case involving throws to work out.
1405    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1406    Expr *True = Cond->getTrueExpr();
1407    Expr *False = Cond->getFalseExpr();
1408    // C++0x 5.16p2
1409    //   If either the second or the third operand has type (cv) void, [...]
1410    //   the result [...] is an rvalue.
1411    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1412      return LV_InvalidExpression;
1413
1414    // Both sides must be lvalues for the result to be an lvalue.
1415    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1416      return LV_InvalidExpression;
1417
1418    // That's it.
1419    return LV_Valid;
1420  }
1421
1422  case Expr::CXXExprWithTemporariesClass:
1423    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1424
1425  case Expr::ObjCMessageExprClass:
1426    if (const ObjCMethodDecl *Method
1427          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1428      if (Method->getResultType()->isLValueReferenceType())
1429        return LV_Valid;
1430    break;
1431
1432  case Expr::CXXConstructExprClass:
1433  case Expr::CXXTemporaryObjectExprClass:
1434  case Expr::CXXZeroInitValueExprClass:
1435    return LV_ClassTemporary;
1436
1437  default:
1438    break;
1439  }
1440  return LV_InvalidExpression;
1441}
1442
1443/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1444/// does not have an incomplete type, does not have a const-qualified type, and
1445/// if it is a structure or union, does not have any member (including,
1446/// recursively, any member or element of all contained aggregates or unions)
1447/// with a const-qualified type.
1448Expr::isModifiableLvalueResult
1449Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1450  isLvalueResult lvalResult = isLvalue(Ctx);
1451
1452  switch (lvalResult) {
1453  case LV_Valid:
1454    // C++ 3.10p11: Functions cannot be modified, but pointers to
1455    // functions can be modifiable.
1456    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1457      return MLV_NotObjectType;
1458    break;
1459
1460  case LV_NotObjectType: return MLV_NotObjectType;
1461  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1462  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1463  case LV_InvalidExpression:
1464    // If the top level is a C-style cast, and the subexpression is a valid
1465    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1466    // GCC extension.  We don't support it, but we want to produce good
1467    // diagnostics when it happens so that the user knows why.
1468    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1469      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1470        if (Loc)
1471          *Loc = CE->getLParenLoc();
1472        return MLV_LValueCast;
1473      }
1474    }
1475    return MLV_InvalidExpression;
1476  case LV_MemberFunction: return MLV_MemberFunction;
1477  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1478  case LV_ClassTemporary:
1479    return MLV_ClassTemporary;
1480  }
1481
1482  // The following is illegal:
1483  //   void takeclosure(void (^C)(void));
1484  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1485  //
1486  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1487    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1488      return MLV_NotBlockQualified;
1489  }
1490
1491  // Assigning to an 'implicit' property?
1492  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1493        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1494    if (Expr->getSetterMethod() == 0)
1495      return MLV_NoSetterProperty;
1496  }
1497
1498  QualType CT = Ctx.getCanonicalType(getType());
1499
1500  if (CT.isConstQualified())
1501    return MLV_ConstQualified;
1502  if (CT->isArrayType())
1503    return MLV_ArrayType;
1504  if (CT->isIncompleteType())
1505    return MLV_IncompleteType;
1506
1507  if (const RecordType *r = CT->getAs<RecordType>()) {
1508    if (r->hasConstFields())
1509      return MLV_ConstQualified;
1510  }
1511
1512  return MLV_Valid;
1513}
1514
1515/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1516/// returns true, if it is; false otherwise.
1517bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1518  switch (getStmtClass()) {
1519  default:
1520    return false;
1521  case ObjCIvarRefExprClass:
1522    return true;
1523  case Expr::UnaryOperatorClass:
1524    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1525  case ParenExprClass:
1526    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1527  case ImplicitCastExprClass:
1528    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1529  case CStyleCastExprClass:
1530    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1531  case DeclRefExprClass: {
1532    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1533    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1534      if (VD->hasGlobalStorage())
1535        return true;
1536      QualType T = VD->getType();
1537      // dereferencing to a  pointer is always a gc'able candidate,
1538      // unless it is __weak.
1539      return T->isPointerType() &&
1540             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1541    }
1542    return false;
1543  }
1544  case MemberExprClass: {
1545    const MemberExpr *M = cast<MemberExpr>(this);
1546    return M->getBase()->isOBJCGCCandidate(Ctx);
1547  }
1548  case ArraySubscriptExprClass:
1549    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1550  }
1551}
1552Expr* Expr::IgnoreParens() {
1553  Expr* E = this;
1554  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1555    E = P->getSubExpr();
1556
1557  return E;
1558}
1559
1560/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1561/// or CastExprs or ImplicitCastExprs, returning their operand.
1562Expr *Expr::IgnoreParenCasts() {
1563  Expr *E = this;
1564  while (true) {
1565    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1566      E = P->getSubExpr();
1567    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1568      E = P->getSubExpr();
1569    else
1570      return E;
1571  }
1572}
1573
1574Expr *Expr::IgnoreParenImpCasts() {
1575  Expr *E = this;
1576  while (true) {
1577    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1578      E = P->getSubExpr();
1579    else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
1580      E = P->getSubExpr();
1581    else
1582      return E;
1583  }
1584}
1585
1586/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1587/// value (including ptr->int casts of the same size).  Strip off any
1588/// ParenExpr or CastExprs, returning their operand.
1589Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1590  Expr *E = this;
1591  while (true) {
1592    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1593      E = P->getSubExpr();
1594      continue;
1595    }
1596
1597    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1598      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1599      // ptr<->int casts of the same width.  We also ignore all identify casts.
1600      Expr *SE = P->getSubExpr();
1601
1602      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1603        E = SE;
1604        continue;
1605      }
1606
1607      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1608          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1609          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1610        E = SE;
1611        continue;
1612      }
1613    }
1614
1615    return E;
1616  }
1617}
1618
1619bool Expr::isDefaultArgument() const {
1620  const Expr *E = this;
1621  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1622    E = ICE->getSubExprAsWritten();
1623
1624  return isa<CXXDefaultArgExpr>(E);
1625}
1626
1627/// \brief Skip over any no-op casts and any temporary-binding
1628/// expressions.
1629static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1630  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1631    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1632      E = ICE->getSubExpr();
1633    else
1634      break;
1635  }
1636
1637  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1638    E = BE->getSubExpr();
1639
1640  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1641    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1642      E = ICE->getSubExpr();
1643    else
1644      break;
1645  }
1646
1647  return E;
1648}
1649
1650const Expr *Expr::getTemporaryObject() const {
1651  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1652
1653  // A cast can produce a temporary object. The object's construction
1654  // is represented as a CXXConstructExpr.
1655  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1656    // Only user-defined and constructor conversions can produce
1657    // temporary objects.
1658    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1659        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1660      return 0;
1661
1662    // Strip off temporary bindings and no-op casts.
1663    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1664
1665    // If this is a constructor conversion, see if we have an object
1666    // construction.
1667    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1668      return dyn_cast<CXXConstructExpr>(Sub);
1669
1670    // If this is a user-defined conversion, see if we have a call to
1671    // a function that itself returns a temporary object.
1672    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1673      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1674        if (CE->getCallReturnType()->isRecordType())
1675          return CE;
1676
1677    return 0;
1678  }
1679
1680  // A call returning a class type returns a temporary.
1681  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1682    if (CE->getCallReturnType()->isRecordType())
1683      return CE;
1684
1685    return 0;
1686  }
1687
1688  // Explicit temporary object constructors create temporaries.
1689  return dyn_cast<CXXTemporaryObjectExpr>(E);
1690}
1691
1692/// hasAnyTypeDependentArguments - Determines if any of the expressions
1693/// in Exprs is type-dependent.
1694bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1695  for (unsigned I = 0; I < NumExprs; ++I)
1696    if (Exprs[I]->isTypeDependent())
1697      return true;
1698
1699  return false;
1700}
1701
1702/// hasAnyValueDependentArguments - Determines if any of the expressions
1703/// in Exprs is value-dependent.
1704bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1705  for (unsigned I = 0; I < NumExprs; ++I)
1706    if (Exprs[I]->isValueDependent())
1707      return true;
1708
1709  return false;
1710}
1711
1712bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1713  // This function is attempting whether an expression is an initializer
1714  // which can be evaluated at compile-time.  isEvaluatable handles most
1715  // of the cases, but it can't deal with some initializer-specific
1716  // expressions, and it can't deal with aggregates; we deal with those here,
1717  // and fall back to isEvaluatable for the other cases.
1718
1719  // FIXME: This function assumes the variable being assigned to
1720  // isn't a reference type!
1721
1722  switch (getStmtClass()) {
1723  default: break;
1724  case StringLiteralClass:
1725  case ObjCStringLiteralClass:
1726  case ObjCEncodeExprClass:
1727    return true;
1728  case CompoundLiteralExprClass: {
1729    // This handles gcc's extension that allows global initializers like
1730    // "struct x {int x;} x = (struct x) {};".
1731    // FIXME: This accepts other cases it shouldn't!
1732    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1733    return Exp->isConstantInitializer(Ctx);
1734  }
1735  case InitListExprClass: {
1736    // FIXME: This doesn't deal with fields with reference types correctly.
1737    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1738    // to bitfields.
1739    const InitListExpr *Exp = cast<InitListExpr>(this);
1740    unsigned numInits = Exp->getNumInits();
1741    for (unsigned i = 0; i < numInits; i++) {
1742      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1743        return false;
1744    }
1745    return true;
1746  }
1747  case ImplicitValueInitExprClass:
1748    return true;
1749  case ParenExprClass:
1750    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1751  case UnaryOperatorClass: {
1752    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1753    if (Exp->getOpcode() == UnaryOperator::Extension)
1754      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1755    break;
1756  }
1757  case BinaryOperatorClass: {
1758    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1759    // but this handles the common case.
1760    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1761    if (Exp->getOpcode() == BinaryOperator::Sub &&
1762        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1763        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1764      return true;
1765    break;
1766  }
1767  case ImplicitCastExprClass:
1768  case CStyleCastExprClass:
1769    // Handle casts with a destination that's a struct or union; this
1770    // deals with both the gcc no-op struct cast extension and the
1771    // cast-to-union extension.
1772    if (getType()->isRecordType())
1773      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1774
1775    // Integer->integer casts can be handled here, which is important for
1776    // things like (int)(&&x-&&y).  Scary but true.
1777    if (getType()->isIntegerType() &&
1778        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1779      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1780
1781    break;
1782  }
1783  return isEvaluatable(Ctx);
1784}
1785
1786/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1787/// integer constant expression with the value zero, or if this is one that is
1788/// cast to void*.
1789bool Expr::isNullPointerConstant(ASTContext &Ctx,
1790                                 NullPointerConstantValueDependence NPC) const {
1791  if (isValueDependent()) {
1792    switch (NPC) {
1793    case NPC_NeverValueDependent:
1794      assert(false && "Unexpected value dependent expression!");
1795      // If the unthinkable happens, fall through to the safest alternative.
1796
1797    case NPC_ValueDependentIsNull:
1798      return isTypeDependent() || getType()->isIntegralType();
1799
1800    case NPC_ValueDependentIsNotNull:
1801      return false;
1802    }
1803  }
1804
1805  // Strip off a cast to void*, if it exists. Except in C++.
1806  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1807    if (!Ctx.getLangOptions().CPlusPlus) {
1808      // Check that it is a cast to void*.
1809      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1810        QualType Pointee = PT->getPointeeType();
1811        if (!Pointee.hasQualifiers() &&
1812            Pointee->isVoidType() &&                              // to void*
1813            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1814          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1815      }
1816    }
1817  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1818    // Ignore the ImplicitCastExpr type entirely.
1819    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1820  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1821    // Accept ((void*)0) as a null pointer constant, as many other
1822    // implementations do.
1823    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1824  } else if (const CXXDefaultArgExpr *DefaultArg
1825               = dyn_cast<CXXDefaultArgExpr>(this)) {
1826    // See through default argument expressions
1827    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1828  } else if (isa<GNUNullExpr>(this)) {
1829    // The GNU __null extension is always a null pointer constant.
1830    return true;
1831  }
1832
1833  // C++0x nullptr_t is always a null pointer constant.
1834  if (getType()->isNullPtrType())
1835    return true;
1836
1837  // This expression must be an integer type.
1838  if (!getType()->isIntegerType() ||
1839      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1840    return false;
1841
1842  // If we have an integer constant expression, we need to *evaluate* it and
1843  // test for the value 0.
1844  llvm::APSInt Result;
1845  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1846}
1847
1848FieldDecl *Expr::getBitField() {
1849  Expr *E = this->IgnoreParens();
1850
1851  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1852    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1853      E = ICE->getSubExpr()->IgnoreParens();
1854    else
1855      break;
1856  }
1857
1858  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1859    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1860      if (Field->isBitField())
1861        return Field;
1862
1863  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1864    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1865      return BinOp->getLHS()->getBitField();
1866
1867  return 0;
1868}
1869
1870bool Expr::refersToVectorElement() const {
1871  const Expr *E = this->IgnoreParens();
1872
1873  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1874    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1875      E = ICE->getSubExpr()->IgnoreParens();
1876    else
1877      break;
1878  }
1879
1880  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
1881    return ASE->getBase()->getType()->isVectorType();
1882
1883  if (isa<ExtVectorElementExpr>(E))
1884    return true;
1885
1886  return false;
1887}
1888
1889/// isArrow - Return true if the base expression is a pointer to vector,
1890/// return false if the base expression is a vector.
1891bool ExtVectorElementExpr::isArrow() const {
1892  return getBase()->getType()->isPointerType();
1893}
1894
1895unsigned ExtVectorElementExpr::getNumElements() const {
1896  if (const VectorType *VT = getType()->getAs<VectorType>())
1897    return VT->getNumElements();
1898  return 1;
1899}
1900
1901/// containsDuplicateElements - Return true if any element access is repeated.
1902bool ExtVectorElementExpr::containsDuplicateElements() const {
1903  // FIXME: Refactor this code to an accessor on the AST node which returns the
1904  // "type" of component access, and share with code below and in Sema.
1905  llvm::StringRef Comp = Accessor->getName();
1906
1907  // Halving swizzles do not contain duplicate elements.
1908  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1909    return false;
1910
1911  // Advance past s-char prefix on hex swizzles.
1912  if (Comp[0] == 's' || Comp[0] == 'S')
1913    Comp = Comp.substr(1);
1914
1915  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1916    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1917        return true;
1918
1919  return false;
1920}
1921
1922/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1923void ExtVectorElementExpr::getEncodedElementAccess(
1924                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1925  llvm::StringRef Comp = Accessor->getName();
1926  if (Comp[0] == 's' || Comp[0] == 'S')
1927    Comp = Comp.substr(1);
1928
1929  bool isHi =   Comp == "hi";
1930  bool isLo =   Comp == "lo";
1931  bool isEven = Comp == "even";
1932  bool isOdd  = Comp == "odd";
1933
1934  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1935    uint64_t Index;
1936
1937    if (isHi)
1938      Index = e + i;
1939    else if (isLo)
1940      Index = i;
1941    else if (isEven)
1942      Index = 2 * i;
1943    else if (isOdd)
1944      Index = 2 * i + 1;
1945    else
1946      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1947
1948    Elts.push_back(Index);
1949  }
1950}
1951
1952ObjCMessageExpr::ObjCMessageExpr(QualType T,
1953                                 SourceLocation LBracLoc,
1954                                 SourceLocation SuperLoc,
1955                                 bool IsInstanceSuper,
1956                                 QualType SuperType,
1957                                 Selector Sel,
1958                                 ObjCMethodDecl *Method,
1959                                 Expr **Args, unsigned NumArgs,
1960                                 SourceLocation RBracLoc)
1961  : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false,
1962         /*ValueDependent=*/false),
1963    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
1964    HasMethod(Method != 0), SuperLoc(SuperLoc),
1965    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
1966                                                       : Sel.getAsOpaquePtr())),
1967    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
1968{
1969  setReceiverPointer(SuperType.getAsOpaquePtr());
1970  if (NumArgs)
1971    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
1972}
1973
1974ObjCMessageExpr::ObjCMessageExpr(QualType T,
1975                                 SourceLocation LBracLoc,
1976                                 TypeSourceInfo *Receiver,
1977                                 Selector Sel,
1978                                 ObjCMethodDecl *Method,
1979                                 Expr **Args, unsigned NumArgs,
1980                                 SourceLocation RBracLoc)
1981  : Expr(ObjCMessageExprClass, T, T->isDependentType(),
1982         (T->isDependentType() ||
1983          hasAnyValueDependentArguments(Args, NumArgs))),
1984    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
1985    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
1986                                                       : Sel.getAsOpaquePtr())),
1987    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
1988{
1989  setReceiverPointer(Receiver);
1990  if (NumArgs)
1991    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
1992}
1993
1994ObjCMessageExpr::ObjCMessageExpr(QualType T,
1995                                 SourceLocation LBracLoc,
1996                                 Expr *Receiver,
1997                                 Selector Sel,
1998                                 ObjCMethodDecl *Method,
1999                                 Expr **Args, unsigned NumArgs,
2000                                 SourceLocation RBracLoc)
2001  : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(),
2002         (Receiver->isTypeDependent() ||
2003          hasAnyValueDependentArguments(Args, NumArgs))),
2004    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2005    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2006                                                       : Sel.getAsOpaquePtr())),
2007    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2008{
2009  setReceiverPointer(Receiver);
2010  if (NumArgs)
2011    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2012}
2013
2014ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2015                                         SourceLocation LBracLoc,
2016                                         SourceLocation SuperLoc,
2017                                         bool IsInstanceSuper,
2018                                         QualType SuperType,
2019                                         Selector Sel,
2020                                         ObjCMethodDecl *Method,
2021                                         Expr **Args, unsigned NumArgs,
2022                                         SourceLocation RBracLoc) {
2023  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2024    NumArgs * sizeof(Expr *);
2025  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2026  return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper,
2027                                   SuperType, Sel, Method, Args, NumArgs,
2028                                   RBracLoc);
2029}
2030
2031ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2032                                         SourceLocation LBracLoc,
2033                                         TypeSourceInfo *Receiver,
2034                                         Selector Sel,
2035                                         ObjCMethodDecl *Method,
2036                                         Expr **Args, unsigned NumArgs,
2037                                         SourceLocation RBracLoc) {
2038  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2039    NumArgs * sizeof(Expr *);
2040  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2041  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2042                                   NumArgs, RBracLoc);
2043}
2044
2045ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2046                                         SourceLocation LBracLoc,
2047                                         Expr *Receiver,
2048                                         Selector Sel,
2049                                         ObjCMethodDecl *Method,
2050                                         Expr **Args, unsigned NumArgs,
2051                                         SourceLocation RBracLoc) {
2052  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2053    NumArgs * sizeof(Expr *);
2054  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2055  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2056                                   NumArgs, RBracLoc);
2057}
2058
2059ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2060                                              unsigned NumArgs) {
2061  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2062    NumArgs * sizeof(Expr *);
2063  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2064  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2065}
2066
2067Selector ObjCMessageExpr::getSelector() const {
2068  if (HasMethod)
2069    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2070                                                               ->getSelector();
2071  return Selector(SelectorOrMethod);
2072}
2073
2074ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2075  switch (getReceiverKind()) {
2076  case Instance:
2077    if (const ObjCObjectPointerType *Ptr
2078          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2079      return Ptr->getInterfaceDecl();
2080    break;
2081
2082  case Class:
2083    if (const ObjCInterfaceType *Iface
2084                       = getClassReceiver()->getAs<ObjCInterfaceType>())
2085      return Iface->getDecl();
2086    break;
2087
2088  case SuperInstance:
2089    if (const ObjCObjectPointerType *Ptr
2090          = getSuperType()->getAs<ObjCObjectPointerType>())
2091      return Ptr->getInterfaceDecl();
2092    break;
2093
2094  case SuperClass:
2095    if (const ObjCObjectPointerType *Iface
2096                       = getSuperType()->getAs<ObjCObjectPointerType>())
2097      return Iface->getInterfaceDecl();
2098    break;
2099  }
2100
2101  return 0;
2102}
2103
2104bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2105  return getCond()->EvaluateAsInt(C) != 0;
2106}
2107
2108void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2109                                 unsigned NumExprs) {
2110  if (SubExprs) C.Deallocate(SubExprs);
2111
2112  SubExprs = new (C) Stmt* [NumExprs];
2113  this->NumExprs = NumExprs;
2114  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2115}
2116
2117void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2118  DestroyChildren(C);
2119  if (SubExprs) C.Deallocate(SubExprs);
2120  this->~ShuffleVectorExpr();
2121  C.Deallocate(this);
2122}
2123
2124void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2125  // Override default behavior of traversing children. If this has a type
2126  // operand and the type is a variable-length array, the child iteration
2127  // will iterate over the size expression. However, this expression belongs
2128  // to the type, not to this, so we don't want to delete it.
2129  // We still want to delete this expression.
2130  if (isArgumentType()) {
2131    this->~SizeOfAlignOfExpr();
2132    C.Deallocate(this);
2133  }
2134  else
2135    Expr::DoDestroy(C);
2136}
2137
2138//===----------------------------------------------------------------------===//
2139//  DesignatedInitExpr
2140//===----------------------------------------------------------------------===//
2141
2142IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2143  assert(Kind == FieldDesignator && "Only valid on a field designator");
2144  if (Field.NameOrField & 0x01)
2145    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2146  else
2147    return getField()->getIdentifier();
2148}
2149
2150DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2151                                       unsigned NumDesignators,
2152                                       const Designator *Designators,
2153                                       SourceLocation EqualOrColonLoc,
2154                                       bool GNUSyntax,
2155                                       Expr **IndexExprs,
2156                                       unsigned NumIndexExprs,
2157                                       Expr *Init)
2158  : Expr(DesignatedInitExprClass, Ty,
2159         Init->isTypeDependent(), Init->isValueDependent()),
2160    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2161    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2162  this->Designators = new (C) Designator[NumDesignators];
2163
2164  // Record the initializer itself.
2165  child_iterator Child = child_begin();
2166  *Child++ = Init;
2167
2168  // Copy the designators and their subexpressions, computing
2169  // value-dependence along the way.
2170  unsigned IndexIdx = 0;
2171  for (unsigned I = 0; I != NumDesignators; ++I) {
2172    this->Designators[I] = Designators[I];
2173
2174    if (this->Designators[I].isArrayDesignator()) {
2175      // Compute type- and value-dependence.
2176      Expr *Index = IndexExprs[IndexIdx];
2177      ValueDependent = ValueDependent ||
2178        Index->isTypeDependent() || Index->isValueDependent();
2179
2180      // Copy the index expressions into permanent storage.
2181      *Child++ = IndexExprs[IndexIdx++];
2182    } else if (this->Designators[I].isArrayRangeDesignator()) {
2183      // Compute type- and value-dependence.
2184      Expr *Start = IndexExprs[IndexIdx];
2185      Expr *End = IndexExprs[IndexIdx + 1];
2186      ValueDependent = ValueDependent ||
2187        Start->isTypeDependent() || Start->isValueDependent() ||
2188        End->isTypeDependent() || End->isValueDependent();
2189
2190      // Copy the start/end expressions into permanent storage.
2191      *Child++ = IndexExprs[IndexIdx++];
2192      *Child++ = IndexExprs[IndexIdx++];
2193    }
2194  }
2195
2196  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2197}
2198
2199DesignatedInitExpr *
2200DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2201                           unsigned NumDesignators,
2202                           Expr **IndexExprs, unsigned NumIndexExprs,
2203                           SourceLocation ColonOrEqualLoc,
2204                           bool UsesColonSyntax, Expr *Init) {
2205  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2206                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2207  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2208                                      ColonOrEqualLoc, UsesColonSyntax,
2209                                      IndexExprs, NumIndexExprs, Init);
2210}
2211
2212DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2213                                                    unsigned NumIndexExprs) {
2214  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2215                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2216  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2217}
2218
2219void DesignatedInitExpr::setDesignators(ASTContext &C,
2220                                        const Designator *Desigs,
2221                                        unsigned NumDesigs) {
2222  DestroyDesignators(C);
2223
2224  Designators = new (C) Designator[NumDesigs];
2225  NumDesignators = NumDesigs;
2226  for (unsigned I = 0; I != NumDesigs; ++I)
2227    Designators[I] = Desigs[I];
2228}
2229
2230SourceRange DesignatedInitExpr::getSourceRange() const {
2231  SourceLocation StartLoc;
2232  Designator &First =
2233    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2234  if (First.isFieldDesignator()) {
2235    if (GNUSyntax)
2236      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2237    else
2238      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2239  } else
2240    StartLoc =
2241      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2242  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2243}
2244
2245Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2246  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2247  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2248  Ptr += sizeof(DesignatedInitExpr);
2249  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2250  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2251}
2252
2253Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2254  assert(D.Kind == Designator::ArrayRangeDesignator &&
2255         "Requires array range designator");
2256  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2257  Ptr += sizeof(DesignatedInitExpr);
2258  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2259  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2260}
2261
2262Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2263  assert(D.Kind == Designator::ArrayRangeDesignator &&
2264         "Requires array range designator");
2265  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2266  Ptr += sizeof(DesignatedInitExpr);
2267  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2268  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2269}
2270
2271/// \brief Replaces the designator at index @p Idx with the series
2272/// of designators in [First, Last).
2273void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2274                                          const Designator *First,
2275                                          const Designator *Last) {
2276  unsigned NumNewDesignators = Last - First;
2277  if (NumNewDesignators == 0) {
2278    std::copy_backward(Designators + Idx + 1,
2279                       Designators + NumDesignators,
2280                       Designators + Idx);
2281    --NumNewDesignators;
2282    return;
2283  } else if (NumNewDesignators == 1) {
2284    Designators[Idx] = *First;
2285    return;
2286  }
2287
2288  Designator *NewDesignators
2289    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2290  std::copy(Designators, Designators + Idx, NewDesignators);
2291  std::copy(First, Last, NewDesignators + Idx);
2292  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2293            NewDesignators + Idx + NumNewDesignators);
2294  DestroyDesignators(C);
2295  Designators = NewDesignators;
2296  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2297}
2298
2299void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2300  DestroyDesignators(C);
2301  Expr::DoDestroy(C);
2302}
2303
2304void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2305  for (unsigned I = 0; I != NumDesignators; ++I)
2306    Designators[I].~Designator();
2307  C.Deallocate(Designators);
2308  Designators = 0;
2309}
2310
2311ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2312                             Expr **exprs, unsigned nexprs,
2313                             SourceLocation rparenloc)
2314: Expr(ParenListExprClass, QualType(),
2315       hasAnyTypeDependentArguments(exprs, nexprs),
2316       hasAnyValueDependentArguments(exprs, nexprs)),
2317  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2318
2319  Exprs = new (C) Stmt*[nexprs];
2320  for (unsigned i = 0; i != nexprs; ++i)
2321    Exprs[i] = exprs[i];
2322}
2323
2324void ParenListExpr::DoDestroy(ASTContext& C) {
2325  DestroyChildren(C);
2326  if (Exprs) C.Deallocate(Exprs);
2327  this->~ParenListExpr();
2328  C.Deallocate(this);
2329}
2330
2331//===----------------------------------------------------------------------===//
2332//  ExprIterator.
2333//===----------------------------------------------------------------------===//
2334
2335Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2336Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2337Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2338const Expr* ConstExprIterator::operator[](size_t idx) const {
2339  return cast<Expr>(I[idx]);
2340}
2341const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2342const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2343
2344//===----------------------------------------------------------------------===//
2345//  Child Iterators for iterating over subexpressions/substatements
2346//===----------------------------------------------------------------------===//
2347
2348// DeclRefExpr
2349Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2350Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2351
2352// ObjCIvarRefExpr
2353Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2354Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2355
2356// ObjCPropertyRefExpr
2357Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2358Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2359
2360// ObjCImplicitSetterGetterRefExpr
2361Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2362  // If this is accessing a class member, skip that entry.
2363  if (Base) return &Base;
2364  return &Base+1;
2365}
2366Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2367  return &Base+1;
2368}
2369
2370// ObjCSuperExpr
2371Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2372Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2373
2374// ObjCIsaExpr
2375Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2376Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2377
2378// PredefinedExpr
2379Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2380Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2381
2382// IntegerLiteral
2383Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2384Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2385
2386// CharacterLiteral
2387Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2388Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2389
2390// FloatingLiteral
2391Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2392Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2393
2394// ImaginaryLiteral
2395Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2396Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2397
2398// StringLiteral
2399Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2400Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2401
2402// ParenExpr
2403Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2404Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2405
2406// UnaryOperator
2407Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2408Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2409
2410// OffsetOfExpr
2411Stmt::child_iterator OffsetOfExpr::child_begin() {
2412  return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2413                                      + NumComps);
2414}
2415Stmt::child_iterator OffsetOfExpr::child_end() {
2416  return child_iterator(&*child_begin() + NumExprs);
2417}
2418
2419// SizeOfAlignOfExpr
2420Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2421  // If this is of a type and the type is a VLA type (and not a typedef), the
2422  // size expression of the VLA needs to be treated as an executable expression.
2423  // Why isn't this weirdness documented better in StmtIterator?
2424  if (isArgumentType()) {
2425    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2426                                   getArgumentType().getTypePtr()))
2427      return child_iterator(T);
2428    return child_iterator();
2429  }
2430  return child_iterator(&Argument.Ex);
2431}
2432Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2433  if (isArgumentType())
2434    return child_iterator();
2435  return child_iterator(&Argument.Ex + 1);
2436}
2437
2438// ArraySubscriptExpr
2439Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2440  return &SubExprs[0];
2441}
2442Stmt::child_iterator ArraySubscriptExpr::child_end() {
2443  return &SubExprs[0]+END_EXPR;
2444}
2445
2446// CallExpr
2447Stmt::child_iterator CallExpr::child_begin() {
2448  return &SubExprs[0];
2449}
2450Stmt::child_iterator CallExpr::child_end() {
2451  return &SubExprs[0]+NumArgs+ARGS_START;
2452}
2453
2454// MemberExpr
2455Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2456Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2457
2458// ExtVectorElementExpr
2459Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2460Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2461
2462// CompoundLiteralExpr
2463Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2464Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2465
2466// CastExpr
2467Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2468Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2469
2470// BinaryOperator
2471Stmt::child_iterator BinaryOperator::child_begin() {
2472  return &SubExprs[0];
2473}
2474Stmt::child_iterator BinaryOperator::child_end() {
2475  return &SubExprs[0]+END_EXPR;
2476}
2477
2478// ConditionalOperator
2479Stmt::child_iterator ConditionalOperator::child_begin() {
2480  return &SubExprs[0];
2481}
2482Stmt::child_iterator ConditionalOperator::child_end() {
2483  return &SubExprs[0]+END_EXPR;
2484}
2485
2486// AddrLabelExpr
2487Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2488Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2489
2490// StmtExpr
2491Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2492Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2493
2494// TypesCompatibleExpr
2495Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2496  return child_iterator();
2497}
2498
2499Stmt::child_iterator TypesCompatibleExpr::child_end() {
2500  return child_iterator();
2501}
2502
2503// ChooseExpr
2504Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2505Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2506
2507// GNUNullExpr
2508Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2509Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2510
2511// ShuffleVectorExpr
2512Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2513  return &SubExprs[0];
2514}
2515Stmt::child_iterator ShuffleVectorExpr::child_end() {
2516  return &SubExprs[0]+NumExprs;
2517}
2518
2519// VAArgExpr
2520Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2521Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2522
2523// InitListExpr
2524Stmt::child_iterator InitListExpr::child_begin() {
2525  return InitExprs.size() ? &InitExprs[0] : 0;
2526}
2527Stmt::child_iterator InitListExpr::child_end() {
2528  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2529}
2530
2531// DesignatedInitExpr
2532Stmt::child_iterator DesignatedInitExpr::child_begin() {
2533  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2534  Ptr += sizeof(DesignatedInitExpr);
2535  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2536}
2537Stmt::child_iterator DesignatedInitExpr::child_end() {
2538  return child_iterator(&*child_begin() + NumSubExprs);
2539}
2540
2541// ImplicitValueInitExpr
2542Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2543  return child_iterator();
2544}
2545
2546Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2547  return child_iterator();
2548}
2549
2550// ParenListExpr
2551Stmt::child_iterator ParenListExpr::child_begin() {
2552  return &Exprs[0];
2553}
2554Stmt::child_iterator ParenListExpr::child_end() {
2555  return &Exprs[0]+NumExprs;
2556}
2557
2558// ObjCStringLiteral
2559Stmt::child_iterator ObjCStringLiteral::child_begin() {
2560  return &String;
2561}
2562Stmt::child_iterator ObjCStringLiteral::child_end() {
2563  return &String+1;
2564}
2565
2566// ObjCEncodeExpr
2567Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2568Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2569
2570// ObjCSelectorExpr
2571Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2572  return child_iterator();
2573}
2574Stmt::child_iterator ObjCSelectorExpr::child_end() {
2575  return child_iterator();
2576}
2577
2578// ObjCProtocolExpr
2579Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2580  return child_iterator();
2581}
2582Stmt::child_iterator ObjCProtocolExpr::child_end() {
2583  return child_iterator();
2584}
2585
2586// ObjCMessageExpr
2587Stmt::child_iterator ObjCMessageExpr::child_begin() {
2588  if (getReceiverKind() == Instance)
2589    return reinterpret_cast<Stmt **>(this + 1);
2590  return getArgs();
2591}
2592Stmt::child_iterator ObjCMessageExpr::child_end() {
2593  return getArgs() + getNumArgs();
2594}
2595
2596// Blocks
2597Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2598Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2599
2600Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2601Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2602