Expr.cpp revision cc324ad80ab940efca006b0064f7ca70a6181816
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Lexer.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31using namespace clang;
32
33void Expr::ANCHOR() {} // key function for Expr class.
34
35/// isKnownToHaveBooleanValue - Return true if this is an integer expression
36/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
37/// but also int expressions which are produced by things like comparisons in
38/// C.
39bool Expr::isKnownToHaveBooleanValue() const {
40  // If this value has _Bool type, it is obvious 0/1.
41  if (getType()->isBooleanType()) return true;
42  // If this is a non-scalar-integer type, we don't care enough to try.
43  if (!getType()->isIntegralOrEnumerationType()) return false;
44
45  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
46    return PE->getSubExpr()->isKnownToHaveBooleanValue();
47
48  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
49    switch (UO->getOpcode()) {
50    case UO_Plus:
51    case UO_Extension:
52      return UO->getSubExpr()->isKnownToHaveBooleanValue();
53    default:
54      return false;
55    }
56  }
57
58  // Only look through implicit casts.  If the user writes
59  // '(int) (a && b)' treat it as an arbitrary int.
60  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
61    return CE->getSubExpr()->isKnownToHaveBooleanValue();
62
63  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
64    switch (BO->getOpcode()) {
65    default: return false;
66    case BO_LT:   // Relational operators.
67    case BO_GT:
68    case BO_LE:
69    case BO_GE:
70    case BO_EQ:   // Equality operators.
71    case BO_NE:
72    case BO_LAnd: // AND operator.
73    case BO_LOr:  // Logical OR operator.
74      return true;
75
76    case BO_And:  // Bitwise AND operator.
77    case BO_Xor:  // Bitwise XOR operator.
78    case BO_Or:   // Bitwise OR operator.
79      // Handle things like (x==2)|(y==12).
80      return BO->getLHS()->isKnownToHaveBooleanValue() &&
81             BO->getRHS()->isKnownToHaveBooleanValue();
82
83    case BO_Comma:
84    case BO_Assign:
85      return BO->getRHS()->isKnownToHaveBooleanValue();
86    }
87  }
88
89  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
90    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
91           CO->getFalseExpr()->isKnownToHaveBooleanValue();
92
93  return false;
94}
95
96//===----------------------------------------------------------------------===//
97// Primary Expressions.
98//===----------------------------------------------------------------------===//
99
100void ExplicitTemplateArgumentList::initializeFrom(
101                                      const TemplateArgumentListInfo &Info) {
102  LAngleLoc = Info.getLAngleLoc();
103  RAngleLoc = Info.getRAngleLoc();
104  NumTemplateArgs = Info.size();
105
106  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
107  for (unsigned i = 0; i != NumTemplateArgs; ++i)
108    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
109}
110
111void ExplicitTemplateArgumentList::initializeFrom(
112                                   const TemplateArgumentListInfo &Info,
113                                   bool &Dependent,
114                                   bool &ContainsUnexpandedParameterPack) {
115  LAngleLoc = Info.getLAngleLoc();
116  RAngleLoc = Info.getRAngleLoc();
117  NumTemplateArgs = Info.size();
118
119  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
120  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
121    Dependent = Dependent || Info[i].getArgument().isDependent();
122    ContainsUnexpandedParameterPack
123      = ContainsUnexpandedParameterPack ||
124        Info[i].getArgument().containsUnexpandedParameterPack();
125
126    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
127  }
128}
129
130void ExplicitTemplateArgumentList::copyInto(
131                                      TemplateArgumentListInfo &Info) const {
132  Info.setLAngleLoc(LAngleLoc);
133  Info.setRAngleLoc(RAngleLoc);
134  for (unsigned I = 0; I != NumTemplateArgs; ++I)
135    Info.addArgument(getTemplateArgs()[I]);
136}
137
138std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
139  return sizeof(ExplicitTemplateArgumentList) +
140         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
141}
142
143std::size_t ExplicitTemplateArgumentList::sizeFor(
144                                      const TemplateArgumentListInfo &Info) {
145  return sizeFor(Info.size());
146}
147
148/// \brief Compute the type- and value-dependence of a declaration reference
149/// based on the declaration being referenced.
150static void computeDeclRefDependence(NamedDecl *D, QualType T,
151                                     bool &TypeDependent,
152                                     bool &ValueDependent) {
153  TypeDependent = false;
154  ValueDependent = false;
155
156
157  // (TD) C++ [temp.dep.expr]p3:
158  //   An id-expression is type-dependent if it contains:
159  //
160  // and
161  //
162  // (VD) C++ [temp.dep.constexpr]p2:
163  //  An identifier is value-dependent if it is:
164
165  //  (TD)  - an identifier that was declared with dependent type
166  //  (VD)  - a name declared with a dependent type,
167  if (T->isDependentType()) {
168    TypeDependent = true;
169    ValueDependent = true;
170    return;
171  }
172
173  //  (TD)  - a conversion-function-id that specifies a dependent type
174  if (D->getDeclName().getNameKind()
175           == DeclarationName::CXXConversionFunctionName &&
176           D->getDeclName().getCXXNameType()->isDependentType()) {
177    TypeDependent = true;
178    ValueDependent = true;
179    return;
180  }
181  //  (VD)  - the name of a non-type template parameter,
182  if (isa<NonTypeTemplateParmDecl>(D)) {
183    ValueDependent = true;
184    return;
185  }
186
187  //  (VD) - a constant with integral or enumeration type and is
188  //         initialized with an expression that is value-dependent.
189  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
190    if (Var->getType()->isIntegralOrEnumerationType() &&
191        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
192      if (const Expr *Init = Var->getAnyInitializer())
193        if (Init->isValueDependent())
194          ValueDependent = true;
195    }
196
197    // (VD) - FIXME: Missing from the standard:
198    //      -  a member function or a static data member of the current
199    //         instantiation
200    else if (Var->isStaticDataMember() &&
201             Var->getDeclContext()->isDependentContext())
202      ValueDependent = true;
203
204    return;
205  }
206
207  // (VD) - FIXME: Missing from the standard:
208  //      -  a member function or a static data member of the current
209  //         instantiation
210  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
211    ValueDependent = true;
212    return;
213  }
214}
215
216void DeclRefExpr::computeDependence() {
217  bool TypeDependent = false;
218  bool ValueDependent = false;
219  computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
220
221  // (TD) C++ [temp.dep.expr]p3:
222  //   An id-expression is type-dependent if it contains:
223  //
224  // and
225  //
226  // (VD) C++ [temp.dep.constexpr]p2:
227  //  An identifier is value-dependent if it is:
228  if (!TypeDependent && !ValueDependent &&
229      hasExplicitTemplateArgs() &&
230      TemplateSpecializationType::anyDependentTemplateArguments(
231                                                            getTemplateArgs(),
232                                                       getNumTemplateArgs())) {
233    TypeDependent = true;
234    ValueDependent = true;
235  }
236
237  ExprBits.TypeDependent = TypeDependent;
238  ExprBits.ValueDependent = ValueDependent;
239
240  // Is the declaration a parameter pack?
241  if (getDecl()->isParameterPack())
242    ExprBits.ContainsUnexpandedParameterPack = true;
243}
244
245DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
246                         SourceRange QualifierRange,
247                         ValueDecl *D, SourceLocation NameLoc,
248                         const TemplateArgumentListInfo *TemplateArgs,
249                         QualType T, ExprValueKind VK)
250  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
251    DecoratedD(D,
252               (Qualifier? HasQualifierFlag : 0) |
253               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
254    Loc(NameLoc) {
255  if (Qualifier) {
256    NameQualifier *NQ = getNameQualifier();
257    NQ->NNS = Qualifier;
258    NQ->Range = QualifierRange;
259  }
260
261  if (TemplateArgs)
262    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
263
264  computeDependence();
265}
266
267DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
268                         SourceRange QualifierRange,
269                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
270                         const TemplateArgumentListInfo *TemplateArgs,
271                         QualType T, ExprValueKind VK)
272  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
273    DecoratedD(D,
274               (Qualifier? HasQualifierFlag : 0) |
275               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
276    Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
277  if (Qualifier) {
278    NameQualifier *NQ = getNameQualifier();
279    NQ->NNS = Qualifier;
280    NQ->Range = QualifierRange;
281  }
282
283  if (TemplateArgs)
284    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
285
286  computeDependence();
287}
288
289DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
290                                 NestedNameSpecifier *Qualifier,
291                                 SourceRange QualifierRange,
292                                 ValueDecl *D,
293                                 SourceLocation NameLoc,
294                                 QualType T,
295                                 ExprValueKind VK,
296                                 const TemplateArgumentListInfo *TemplateArgs) {
297  return Create(Context, Qualifier, QualifierRange, D,
298                DeclarationNameInfo(D->getDeclName(), NameLoc),
299                T, VK, TemplateArgs);
300}
301
302DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
303                                 NestedNameSpecifier *Qualifier,
304                                 SourceRange QualifierRange,
305                                 ValueDecl *D,
306                                 const DeclarationNameInfo &NameInfo,
307                                 QualType T,
308                                 ExprValueKind VK,
309                                 const TemplateArgumentListInfo *TemplateArgs) {
310  std::size_t Size = sizeof(DeclRefExpr);
311  if (Qualifier != 0)
312    Size += sizeof(NameQualifier);
313
314  if (TemplateArgs)
315    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
316
317  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
318  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
319                               TemplateArgs, T, VK);
320}
321
322DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
323                                      bool HasQualifier,
324                                      bool HasExplicitTemplateArgs,
325                                      unsigned NumTemplateArgs) {
326  std::size_t Size = sizeof(DeclRefExpr);
327  if (HasQualifier)
328    Size += sizeof(NameQualifier);
329
330  if (HasExplicitTemplateArgs)
331    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
332
333  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
334  return new (Mem) DeclRefExpr(EmptyShell());
335}
336
337SourceRange DeclRefExpr::getSourceRange() const {
338  SourceRange R = getNameInfo().getSourceRange();
339  if (hasQualifier())
340    R.setBegin(getQualifierRange().getBegin());
341  if (hasExplicitTemplateArgs())
342    R.setEnd(getRAngleLoc());
343  return R;
344}
345
346// FIXME: Maybe this should use DeclPrinter with a special "print predefined
347// expr" policy instead.
348std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
349  ASTContext &Context = CurrentDecl->getASTContext();
350
351  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
352    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
353      return FD->getNameAsString();
354
355    llvm::SmallString<256> Name;
356    llvm::raw_svector_ostream Out(Name);
357
358    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
359      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
360        Out << "virtual ";
361      if (MD->isStatic())
362        Out << "static ";
363    }
364
365    PrintingPolicy Policy(Context.getLangOptions());
366
367    std::string Proto = FD->getQualifiedNameAsString(Policy);
368
369    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
370    const FunctionProtoType *FT = 0;
371    if (FD->hasWrittenPrototype())
372      FT = dyn_cast<FunctionProtoType>(AFT);
373
374    Proto += "(";
375    if (FT) {
376      llvm::raw_string_ostream POut(Proto);
377      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
378        if (i) POut << ", ";
379        std::string Param;
380        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
381        POut << Param;
382      }
383
384      if (FT->isVariadic()) {
385        if (FD->getNumParams()) POut << ", ";
386        POut << "...";
387      }
388    }
389    Proto += ")";
390
391    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
392      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
393      if (ThisQuals.hasConst())
394        Proto += " const";
395      if (ThisQuals.hasVolatile())
396        Proto += " volatile";
397    }
398
399    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
400      AFT->getResultType().getAsStringInternal(Proto, Policy);
401
402    Out << Proto;
403
404    Out.flush();
405    return Name.str().str();
406  }
407  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
408    llvm::SmallString<256> Name;
409    llvm::raw_svector_ostream Out(Name);
410    Out << (MD->isInstanceMethod() ? '-' : '+');
411    Out << '[';
412
413    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
414    // a null check to avoid a crash.
415    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
416      Out << ID;
417
418    if (const ObjCCategoryImplDecl *CID =
419        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
420      Out << '(' << CID << ')';
421
422    Out <<  ' ';
423    Out << MD->getSelector().getAsString();
424    Out <<  ']';
425
426    Out.flush();
427    return Name.str().str();
428  }
429  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
430    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
431    return "top level";
432  }
433  return "";
434}
435
436void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
437  if (hasAllocation())
438    C.Deallocate(pVal);
439
440  BitWidth = Val.getBitWidth();
441  unsigned NumWords = Val.getNumWords();
442  const uint64_t* Words = Val.getRawData();
443  if (NumWords > 1) {
444    pVal = new (C) uint64_t[NumWords];
445    std::copy(Words, Words + NumWords, pVal);
446  } else if (NumWords == 1)
447    VAL = Words[0];
448  else
449    VAL = 0;
450}
451
452IntegerLiteral *
453IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
454                       QualType type, SourceLocation l) {
455  return new (C) IntegerLiteral(C, V, type, l);
456}
457
458IntegerLiteral *
459IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
460  return new (C) IntegerLiteral(Empty);
461}
462
463FloatingLiteral *
464FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
465                        bool isexact, QualType Type, SourceLocation L) {
466  return new (C) FloatingLiteral(C, V, isexact, Type, L);
467}
468
469FloatingLiteral *
470FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
471  return new (C) FloatingLiteral(Empty);
472}
473
474/// getValueAsApproximateDouble - This returns the value as an inaccurate
475/// double.  Note that this may cause loss of precision, but is useful for
476/// debugging dumps, etc.
477double FloatingLiteral::getValueAsApproximateDouble() const {
478  llvm::APFloat V = getValue();
479  bool ignored;
480  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
481            &ignored);
482  return V.convertToDouble();
483}
484
485StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
486                                     unsigned ByteLength, bool Wide,
487                                     QualType Ty,
488                                     const SourceLocation *Loc,
489                                     unsigned NumStrs) {
490  // Allocate enough space for the StringLiteral plus an array of locations for
491  // any concatenated string tokens.
492  void *Mem = C.Allocate(sizeof(StringLiteral)+
493                         sizeof(SourceLocation)*(NumStrs-1),
494                         llvm::alignOf<StringLiteral>());
495  StringLiteral *SL = new (Mem) StringLiteral(Ty);
496
497  // OPTIMIZE: could allocate this appended to the StringLiteral.
498  char *AStrData = new (C, 1) char[ByteLength];
499  memcpy(AStrData, StrData, ByteLength);
500  SL->StrData = AStrData;
501  SL->ByteLength = ByteLength;
502  SL->IsWide = Wide;
503  SL->TokLocs[0] = Loc[0];
504  SL->NumConcatenated = NumStrs;
505
506  if (NumStrs != 1)
507    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
508  return SL;
509}
510
511StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
512  void *Mem = C.Allocate(sizeof(StringLiteral)+
513                         sizeof(SourceLocation)*(NumStrs-1),
514                         llvm::alignOf<StringLiteral>());
515  StringLiteral *SL = new (Mem) StringLiteral(QualType());
516  SL->StrData = 0;
517  SL->ByteLength = 0;
518  SL->NumConcatenated = NumStrs;
519  return SL;
520}
521
522void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
523  char *AStrData = new (C, 1) char[Str.size()];
524  memcpy(AStrData, Str.data(), Str.size());
525  StrData = AStrData;
526  ByteLength = Str.size();
527}
528
529/// getLocationOfByte - Return a source location that points to the specified
530/// byte of this string literal.
531///
532/// Strings are amazingly complex.  They can be formed from multiple tokens and
533/// can have escape sequences in them in addition to the usual trigraph and
534/// escaped newline business.  This routine handles this complexity.
535///
536SourceLocation StringLiteral::
537getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
538                  const LangOptions &Features, const TargetInfo &Target) const {
539  assert(!isWide() && "This doesn't work for wide strings yet");
540
541  // Loop over all of the tokens in this string until we find the one that
542  // contains the byte we're looking for.
543  unsigned TokNo = 0;
544  while (1) {
545    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
546    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
547
548    // Get the spelling of the string so that we can get the data that makes up
549    // the string literal, not the identifier for the macro it is potentially
550    // expanded through.
551    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
552
553    // Re-lex the token to get its length and original spelling.
554    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
555    bool Invalid = false;
556    llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
557    if (Invalid)
558      return StrTokSpellingLoc;
559
560    const char *StrData = Buffer.data()+LocInfo.second;
561
562    // Create a langops struct and enable trigraphs.  This is sufficient for
563    // relexing tokens.
564    LangOptions LangOpts;
565    LangOpts.Trigraphs = true;
566
567    // Create a lexer starting at the beginning of this token.
568    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
569                   Buffer.end());
570    Token TheTok;
571    TheLexer.LexFromRawLexer(TheTok);
572
573    // Use the StringLiteralParser to compute the length of the string in bytes.
574    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
575    unsigned TokNumBytes = SLP.GetStringLength();
576
577    // If the byte is in this token, return the location of the byte.
578    if (ByteNo < TokNumBytes ||
579        (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
580      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
581
582      // Now that we know the offset of the token in the spelling, use the
583      // preprocessor to get the offset in the original source.
584      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
585    }
586
587    // Move to the next string token.
588    ++TokNo;
589    ByteNo -= TokNumBytes;
590  }
591}
592
593
594
595/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
596/// corresponds to, e.g. "sizeof" or "[pre]++".
597const char *UnaryOperator::getOpcodeStr(Opcode Op) {
598  switch (Op) {
599  default: assert(0 && "Unknown unary operator");
600  case UO_PostInc: return "++";
601  case UO_PostDec: return "--";
602  case UO_PreInc:  return "++";
603  case UO_PreDec:  return "--";
604  case UO_AddrOf:  return "&";
605  case UO_Deref:   return "*";
606  case UO_Plus:    return "+";
607  case UO_Minus:   return "-";
608  case UO_Not:     return "~";
609  case UO_LNot:    return "!";
610  case UO_Real:    return "__real";
611  case UO_Imag:    return "__imag";
612  case UO_Extension: return "__extension__";
613  }
614}
615
616UnaryOperatorKind
617UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
618  switch (OO) {
619  default: assert(false && "No unary operator for overloaded function");
620  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
621  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
622  case OO_Amp:        return UO_AddrOf;
623  case OO_Star:       return UO_Deref;
624  case OO_Plus:       return UO_Plus;
625  case OO_Minus:      return UO_Minus;
626  case OO_Tilde:      return UO_Not;
627  case OO_Exclaim:    return UO_LNot;
628  }
629}
630
631OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
632  switch (Opc) {
633  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
634  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
635  case UO_AddrOf: return OO_Amp;
636  case UO_Deref: return OO_Star;
637  case UO_Plus: return OO_Plus;
638  case UO_Minus: return OO_Minus;
639  case UO_Not: return OO_Tilde;
640  case UO_LNot: return OO_Exclaim;
641  default: return OO_None;
642  }
643}
644
645
646//===----------------------------------------------------------------------===//
647// Postfix Operators.
648//===----------------------------------------------------------------------===//
649
650CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
651                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
652                   SourceLocation rparenloc)
653  : Expr(SC, t, VK, OK_Ordinary,
654         fn->isTypeDependent(),
655         fn->isValueDependent(),
656         fn->containsUnexpandedParameterPack()),
657    NumArgs(numargs) {
658
659  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
660  SubExprs[FN] = fn;
661  for (unsigned i = 0; i != numargs; ++i) {
662    if (args[i]->isTypeDependent())
663      ExprBits.TypeDependent = true;
664    if (args[i]->isValueDependent())
665      ExprBits.ValueDependent = true;
666    if (args[i]->containsUnexpandedParameterPack())
667      ExprBits.ContainsUnexpandedParameterPack = true;
668
669    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
670  }
671
672  CallExprBits.NumPreArgs = NumPreArgs;
673  RParenLoc = rparenloc;
674}
675
676CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
677                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
678  : Expr(CallExprClass, t, VK, OK_Ordinary,
679         fn->isTypeDependent(),
680         fn->isValueDependent(),
681         fn->containsUnexpandedParameterPack()),
682    NumArgs(numargs) {
683
684  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
685  SubExprs[FN] = fn;
686  for (unsigned i = 0; i != numargs; ++i) {
687    if (args[i]->isTypeDependent())
688      ExprBits.TypeDependent = true;
689    if (args[i]->isValueDependent())
690      ExprBits.ValueDependent = true;
691    if (args[i]->containsUnexpandedParameterPack())
692      ExprBits.ContainsUnexpandedParameterPack = true;
693
694    SubExprs[i+PREARGS_START] = args[i];
695  }
696
697  CallExprBits.NumPreArgs = 0;
698  RParenLoc = rparenloc;
699}
700
701CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
702  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
703  // FIXME: Why do we allocate this?
704  SubExprs = new (C) Stmt*[PREARGS_START];
705  CallExprBits.NumPreArgs = 0;
706}
707
708CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
709                   EmptyShell Empty)
710  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
711  // FIXME: Why do we allocate this?
712  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
713  CallExprBits.NumPreArgs = NumPreArgs;
714}
715
716Decl *CallExpr::getCalleeDecl() {
717  Expr *CEE = getCallee()->IgnoreParenCasts();
718  // If we're calling a dereference, look at the pointer instead.
719  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
720    if (BO->isPtrMemOp())
721      CEE = BO->getRHS()->IgnoreParenCasts();
722  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
723    if (UO->getOpcode() == UO_Deref)
724      CEE = UO->getSubExpr()->IgnoreParenCasts();
725  }
726  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
727    return DRE->getDecl();
728  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
729    return ME->getMemberDecl();
730
731  return 0;
732}
733
734FunctionDecl *CallExpr::getDirectCallee() {
735  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
736}
737
738/// setNumArgs - This changes the number of arguments present in this call.
739/// Any orphaned expressions are deleted by this, and any new operands are set
740/// to null.
741void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
742  // No change, just return.
743  if (NumArgs == getNumArgs()) return;
744
745  // If shrinking # arguments, just delete the extras and forgot them.
746  if (NumArgs < getNumArgs()) {
747    this->NumArgs = NumArgs;
748    return;
749  }
750
751  // Otherwise, we are growing the # arguments.  New an bigger argument array.
752  unsigned NumPreArgs = getNumPreArgs();
753  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
754  // Copy over args.
755  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
756    NewSubExprs[i] = SubExprs[i];
757  // Null out new args.
758  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
759       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
760    NewSubExprs[i] = 0;
761
762  if (SubExprs) C.Deallocate(SubExprs);
763  SubExprs = NewSubExprs;
764  this->NumArgs = NumArgs;
765}
766
767/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
768/// not, return 0.
769unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
770  // All simple function calls (e.g. func()) are implicitly cast to pointer to
771  // function. As a result, we try and obtain the DeclRefExpr from the
772  // ImplicitCastExpr.
773  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
774  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
775    return 0;
776
777  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
778  if (!DRE)
779    return 0;
780
781  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
782  if (!FDecl)
783    return 0;
784
785  if (!FDecl->getIdentifier())
786    return 0;
787
788  return FDecl->getBuiltinID();
789}
790
791QualType CallExpr::getCallReturnType() const {
792  QualType CalleeType = getCallee()->getType();
793  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
794    CalleeType = FnTypePtr->getPointeeType();
795  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
796    CalleeType = BPT->getPointeeType();
797  else if (const MemberPointerType *MPT
798                                      = CalleeType->getAs<MemberPointerType>())
799    CalleeType = MPT->getPointeeType();
800
801  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
802  return FnType->getResultType();
803}
804
805OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
806                                   SourceLocation OperatorLoc,
807                                   TypeSourceInfo *tsi,
808                                   OffsetOfNode* compsPtr, unsigned numComps,
809                                   Expr** exprsPtr, unsigned numExprs,
810                                   SourceLocation RParenLoc) {
811  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
812                         sizeof(OffsetOfNode) * numComps +
813                         sizeof(Expr*) * numExprs);
814
815  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
816                                exprsPtr, numExprs, RParenLoc);
817}
818
819OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
820                                        unsigned numComps, unsigned numExprs) {
821  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
822                         sizeof(OffsetOfNode) * numComps +
823                         sizeof(Expr*) * numExprs);
824  return new (Mem) OffsetOfExpr(numComps, numExprs);
825}
826
827OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
828                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
829                           OffsetOfNode* compsPtr, unsigned numComps,
830                           Expr** exprsPtr, unsigned numExprs,
831                           SourceLocation RParenLoc)
832  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
833         /*TypeDependent=*/false,
834         /*ValueDependent=*/tsi->getType()->isDependentType(),
835         tsi->getType()->containsUnexpandedParameterPack()),
836    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
837    NumComps(numComps), NumExprs(numExprs)
838{
839  for(unsigned i = 0; i < numComps; ++i) {
840    setComponent(i, compsPtr[i]);
841  }
842
843  for(unsigned i = 0; i < numExprs; ++i) {
844    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
845      ExprBits.ValueDependent = true;
846    if (exprsPtr[i]->containsUnexpandedParameterPack())
847      ExprBits.ContainsUnexpandedParameterPack = true;
848
849    setIndexExpr(i, exprsPtr[i]);
850  }
851}
852
853IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
854  assert(getKind() == Field || getKind() == Identifier);
855  if (getKind() == Field)
856    return getField()->getIdentifier();
857
858  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
859}
860
861MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
862                               NestedNameSpecifier *qual,
863                               SourceRange qualrange,
864                               ValueDecl *memberdecl,
865                               DeclAccessPair founddecl,
866                               DeclarationNameInfo nameinfo,
867                               const TemplateArgumentListInfo *targs,
868                               QualType ty,
869                               ExprValueKind vk,
870                               ExprObjectKind ok) {
871  std::size_t Size = sizeof(MemberExpr);
872
873  bool hasQualOrFound = (qual != 0 ||
874                         founddecl.getDecl() != memberdecl ||
875                         founddecl.getAccess() != memberdecl->getAccess());
876  if (hasQualOrFound)
877    Size += sizeof(MemberNameQualifier);
878
879  if (targs)
880    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
881
882  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
883  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
884                                       ty, vk, ok);
885
886  if (hasQualOrFound) {
887    if (qual && qual->isDependent()) {
888      E->setValueDependent(true);
889      E->setTypeDependent(true);
890    }
891    E->HasQualifierOrFoundDecl = true;
892
893    MemberNameQualifier *NQ = E->getMemberQualifier();
894    NQ->NNS = qual;
895    NQ->Range = qualrange;
896    NQ->FoundDecl = founddecl;
897  }
898
899  if (targs) {
900    E->HasExplicitTemplateArgumentList = true;
901    E->getExplicitTemplateArgs().initializeFrom(*targs);
902  }
903
904  return E;
905}
906
907const char *CastExpr::getCastKindName() const {
908  switch (getCastKind()) {
909  case CK_Dependent:
910    return "Dependent";
911  case CK_BitCast:
912    return "BitCast";
913  case CK_LValueBitCast:
914    return "LValueBitCast";
915  case CK_LValueToRValue:
916    return "LValueToRValue";
917  case CK_GetObjCProperty:
918    return "GetObjCProperty";
919  case CK_NoOp:
920    return "NoOp";
921  case CK_BaseToDerived:
922    return "BaseToDerived";
923  case CK_DerivedToBase:
924    return "DerivedToBase";
925  case CK_UncheckedDerivedToBase:
926    return "UncheckedDerivedToBase";
927  case CK_Dynamic:
928    return "Dynamic";
929  case CK_ToUnion:
930    return "ToUnion";
931  case CK_ArrayToPointerDecay:
932    return "ArrayToPointerDecay";
933  case CK_FunctionToPointerDecay:
934    return "FunctionToPointerDecay";
935  case CK_NullToMemberPointer:
936    return "NullToMemberPointer";
937  case CK_NullToPointer:
938    return "NullToPointer";
939  case CK_BaseToDerivedMemberPointer:
940    return "BaseToDerivedMemberPointer";
941  case CK_DerivedToBaseMemberPointer:
942    return "DerivedToBaseMemberPointer";
943  case CK_UserDefinedConversion:
944    return "UserDefinedConversion";
945  case CK_ConstructorConversion:
946    return "ConstructorConversion";
947  case CK_IntegralToPointer:
948    return "IntegralToPointer";
949  case CK_PointerToIntegral:
950    return "PointerToIntegral";
951  case CK_PointerToBoolean:
952    return "PointerToBoolean";
953  case CK_ToVoid:
954    return "ToVoid";
955  case CK_VectorSplat:
956    return "VectorSplat";
957  case CK_IntegralCast:
958    return "IntegralCast";
959  case CK_IntegralToBoolean:
960    return "IntegralToBoolean";
961  case CK_IntegralToFloating:
962    return "IntegralToFloating";
963  case CK_FloatingToIntegral:
964    return "FloatingToIntegral";
965  case CK_FloatingCast:
966    return "FloatingCast";
967  case CK_FloatingToBoolean:
968    return "FloatingToBoolean";
969  case CK_MemberPointerToBoolean:
970    return "MemberPointerToBoolean";
971  case CK_AnyPointerToObjCPointerCast:
972    return "AnyPointerToObjCPointerCast";
973  case CK_AnyPointerToBlockPointerCast:
974    return "AnyPointerToBlockPointerCast";
975  case CK_ObjCObjectLValueCast:
976    return "ObjCObjectLValueCast";
977  case CK_FloatingRealToComplex:
978    return "FloatingRealToComplex";
979  case CK_FloatingComplexToReal:
980    return "FloatingComplexToReal";
981  case CK_FloatingComplexToBoolean:
982    return "FloatingComplexToBoolean";
983  case CK_FloatingComplexCast:
984    return "FloatingComplexCast";
985  case CK_FloatingComplexToIntegralComplex:
986    return "FloatingComplexToIntegralComplex";
987  case CK_IntegralRealToComplex:
988    return "IntegralRealToComplex";
989  case CK_IntegralComplexToReal:
990    return "IntegralComplexToReal";
991  case CK_IntegralComplexToBoolean:
992    return "IntegralComplexToBoolean";
993  case CK_IntegralComplexCast:
994    return "IntegralComplexCast";
995  case CK_IntegralComplexToFloatingComplex:
996    return "IntegralComplexToFloatingComplex";
997  }
998
999  llvm_unreachable("Unhandled cast kind!");
1000  return 0;
1001}
1002
1003Expr *CastExpr::getSubExprAsWritten() {
1004  Expr *SubExpr = 0;
1005  CastExpr *E = this;
1006  do {
1007    SubExpr = E->getSubExpr();
1008
1009    // Skip any temporary bindings; they're implicit.
1010    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1011      SubExpr = Binder->getSubExpr();
1012
1013    // Conversions by constructor and conversion functions have a
1014    // subexpression describing the call; strip it off.
1015    if (E->getCastKind() == CK_ConstructorConversion)
1016      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1017    else if (E->getCastKind() == CK_UserDefinedConversion)
1018      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1019
1020    // If the subexpression we're left with is an implicit cast, look
1021    // through that, too.
1022  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1023
1024  return SubExpr;
1025}
1026
1027CXXBaseSpecifier **CastExpr::path_buffer() {
1028  switch (getStmtClass()) {
1029#define ABSTRACT_STMT(x)
1030#define CASTEXPR(Type, Base) \
1031  case Stmt::Type##Class: \
1032    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1033#define STMT(Type, Base)
1034#include "clang/AST/StmtNodes.inc"
1035  default:
1036    llvm_unreachable("non-cast expressions not possible here");
1037    return 0;
1038  }
1039}
1040
1041void CastExpr::setCastPath(const CXXCastPath &Path) {
1042  assert(Path.size() == path_size());
1043  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1044}
1045
1046ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1047                                           CastKind Kind, Expr *Operand,
1048                                           const CXXCastPath *BasePath,
1049                                           ExprValueKind VK) {
1050  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1051  void *Buffer =
1052    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1053  ImplicitCastExpr *E =
1054    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1055  if (PathSize) E->setCastPath(*BasePath);
1056  return E;
1057}
1058
1059ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1060                                                unsigned PathSize) {
1061  void *Buffer =
1062    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1063  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1064}
1065
1066
1067CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1068                                       ExprValueKind VK, CastKind K, Expr *Op,
1069                                       const CXXCastPath *BasePath,
1070                                       TypeSourceInfo *WrittenTy,
1071                                       SourceLocation L, SourceLocation R) {
1072  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1073  void *Buffer =
1074    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1075  CStyleCastExpr *E =
1076    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1077  if (PathSize) E->setCastPath(*BasePath);
1078  return E;
1079}
1080
1081CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1082  void *Buffer =
1083    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1084  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1085}
1086
1087/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1088/// corresponds to, e.g. "<<=".
1089const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1090  switch (Op) {
1091  case BO_PtrMemD:   return ".*";
1092  case BO_PtrMemI:   return "->*";
1093  case BO_Mul:       return "*";
1094  case BO_Div:       return "/";
1095  case BO_Rem:       return "%";
1096  case BO_Add:       return "+";
1097  case BO_Sub:       return "-";
1098  case BO_Shl:       return "<<";
1099  case BO_Shr:       return ">>";
1100  case BO_LT:        return "<";
1101  case BO_GT:        return ">";
1102  case BO_LE:        return "<=";
1103  case BO_GE:        return ">=";
1104  case BO_EQ:        return "==";
1105  case BO_NE:        return "!=";
1106  case BO_And:       return "&";
1107  case BO_Xor:       return "^";
1108  case BO_Or:        return "|";
1109  case BO_LAnd:      return "&&";
1110  case BO_LOr:       return "||";
1111  case BO_Assign:    return "=";
1112  case BO_MulAssign: return "*=";
1113  case BO_DivAssign: return "/=";
1114  case BO_RemAssign: return "%=";
1115  case BO_AddAssign: return "+=";
1116  case BO_SubAssign: return "-=";
1117  case BO_ShlAssign: return "<<=";
1118  case BO_ShrAssign: return ">>=";
1119  case BO_AndAssign: return "&=";
1120  case BO_XorAssign: return "^=";
1121  case BO_OrAssign:  return "|=";
1122  case BO_Comma:     return ",";
1123  }
1124
1125  return "";
1126}
1127
1128BinaryOperatorKind
1129BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1130  switch (OO) {
1131  default: assert(false && "Not an overloadable binary operator");
1132  case OO_Plus: return BO_Add;
1133  case OO_Minus: return BO_Sub;
1134  case OO_Star: return BO_Mul;
1135  case OO_Slash: return BO_Div;
1136  case OO_Percent: return BO_Rem;
1137  case OO_Caret: return BO_Xor;
1138  case OO_Amp: return BO_And;
1139  case OO_Pipe: return BO_Or;
1140  case OO_Equal: return BO_Assign;
1141  case OO_Less: return BO_LT;
1142  case OO_Greater: return BO_GT;
1143  case OO_PlusEqual: return BO_AddAssign;
1144  case OO_MinusEqual: return BO_SubAssign;
1145  case OO_StarEqual: return BO_MulAssign;
1146  case OO_SlashEqual: return BO_DivAssign;
1147  case OO_PercentEqual: return BO_RemAssign;
1148  case OO_CaretEqual: return BO_XorAssign;
1149  case OO_AmpEqual: return BO_AndAssign;
1150  case OO_PipeEqual: return BO_OrAssign;
1151  case OO_LessLess: return BO_Shl;
1152  case OO_GreaterGreater: return BO_Shr;
1153  case OO_LessLessEqual: return BO_ShlAssign;
1154  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1155  case OO_EqualEqual: return BO_EQ;
1156  case OO_ExclaimEqual: return BO_NE;
1157  case OO_LessEqual: return BO_LE;
1158  case OO_GreaterEqual: return BO_GE;
1159  case OO_AmpAmp: return BO_LAnd;
1160  case OO_PipePipe: return BO_LOr;
1161  case OO_Comma: return BO_Comma;
1162  case OO_ArrowStar: return BO_PtrMemI;
1163  }
1164}
1165
1166OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1167  static const OverloadedOperatorKind OverOps[] = {
1168    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1169    OO_Star, OO_Slash, OO_Percent,
1170    OO_Plus, OO_Minus,
1171    OO_LessLess, OO_GreaterGreater,
1172    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1173    OO_EqualEqual, OO_ExclaimEqual,
1174    OO_Amp,
1175    OO_Caret,
1176    OO_Pipe,
1177    OO_AmpAmp,
1178    OO_PipePipe,
1179    OO_Equal, OO_StarEqual,
1180    OO_SlashEqual, OO_PercentEqual,
1181    OO_PlusEqual, OO_MinusEqual,
1182    OO_LessLessEqual, OO_GreaterGreaterEqual,
1183    OO_AmpEqual, OO_CaretEqual,
1184    OO_PipeEqual,
1185    OO_Comma
1186  };
1187  return OverOps[Opc];
1188}
1189
1190InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1191                           Expr **initExprs, unsigned numInits,
1192                           SourceLocation rbraceloc)
1193  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1194         false),
1195    InitExprs(C, numInits),
1196    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1197    UnionFieldInit(0), HadArrayRangeDesignator(false)
1198{
1199  for (unsigned I = 0; I != numInits; ++I) {
1200    if (initExprs[I]->isTypeDependent())
1201      ExprBits.TypeDependent = true;
1202    if (initExprs[I]->isValueDependent())
1203      ExprBits.ValueDependent = true;
1204    if (initExprs[I]->containsUnexpandedParameterPack())
1205      ExprBits.ContainsUnexpandedParameterPack = true;
1206  }
1207
1208  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1209}
1210
1211void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1212  if (NumInits > InitExprs.size())
1213    InitExprs.reserve(C, NumInits);
1214}
1215
1216void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1217  InitExprs.resize(C, NumInits, 0);
1218}
1219
1220Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1221  if (Init >= InitExprs.size()) {
1222    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1223    InitExprs.back() = expr;
1224    return 0;
1225  }
1226
1227  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1228  InitExprs[Init] = expr;
1229  return Result;
1230}
1231
1232SourceRange InitListExpr::getSourceRange() const {
1233  if (SyntacticForm)
1234    return SyntacticForm->getSourceRange();
1235  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1236  if (Beg.isInvalid()) {
1237    // Find the first non-null initializer.
1238    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1239                                     E = InitExprs.end();
1240      I != E; ++I) {
1241      if (Stmt *S = *I) {
1242        Beg = S->getLocStart();
1243        break;
1244      }
1245    }
1246  }
1247  if (End.isInvalid()) {
1248    // Find the first non-null initializer from the end.
1249    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1250                                             E = InitExprs.rend();
1251      I != E; ++I) {
1252      if (Stmt *S = *I) {
1253        End = S->getSourceRange().getEnd();
1254        break;
1255      }
1256    }
1257  }
1258  return SourceRange(Beg, End);
1259}
1260
1261/// getFunctionType - Return the underlying function type for this block.
1262///
1263const FunctionType *BlockExpr::getFunctionType() const {
1264  return getType()->getAs<BlockPointerType>()->
1265                    getPointeeType()->getAs<FunctionType>();
1266}
1267
1268SourceLocation BlockExpr::getCaretLocation() const {
1269  return TheBlock->getCaretLocation();
1270}
1271const Stmt *BlockExpr::getBody() const {
1272  return TheBlock->getBody();
1273}
1274Stmt *BlockExpr::getBody() {
1275  return TheBlock->getBody();
1276}
1277
1278
1279//===----------------------------------------------------------------------===//
1280// Generic Expression Routines
1281//===----------------------------------------------------------------------===//
1282
1283/// isUnusedResultAWarning - Return true if this immediate expression should
1284/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1285/// with location to warn on and the source range[s] to report with the
1286/// warning.
1287bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1288                                  SourceRange &R2, ASTContext &Ctx) const {
1289  // Don't warn if the expr is type dependent. The type could end up
1290  // instantiating to void.
1291  if (isTypeDependent())
1292    return false;
1293
1294  switch (getStmtClass()) {
1295  default:
1296    if (getType()->isVoidType())
1297      return false;
1298    Loc = getExprLoc();
1299    R1 = getSourceRange();
1300    return true;
1301  case ParenExprClass:
1302    return cast<ParenExpr>(this)->getSubExpr()->
1303      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1304  case UnaryOperatorClass: {
1305    const UnaryOperator *UO = cast<UnaryOperator>(this);
1306
1307    switch (UO->getOpcode()) {
1308    default: break;
1309    case UO_PostInc:
1310    case UO_PostDec:
1311    case UO_PreInc:
1312    case UO_PreDec:                 // ++/--
1313      return false;  // Not a warning.
1314    case UO_Deref:
1315      // Dereferencing a volatile pointer is a side-effect.
1316      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1317        return false;
1318      break;
1319    case UO_Real:
1320    case UO_Imag:
1321      // accessing a piece of a volatile complex is a side-effect.
1322      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1323          .isVolatileQualified())
1324        return false;
1325      break;
1326    case UO_Extension:
1327      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1328    }
1329    Loc = UO->getOperatorLoc();
1330    R1 = UO->getSubExpr()->getSourceRange();
1331    return true;
1332  }
1333  case BinaryOperatorClass: {
1334    const BinaryOperator *BO = cast<BinaryOperator>(this);
1335    switch (BO->getOpcode()) {
1336      default:
1337        break;
1338      // Consider the RHS of comma for side effects. LHS was checked by
1339      // Sema::CheckCommaOperands.
1340      case BO_Comma:
1341        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1342        // lvalue-ness) of an assignment written in a macro.
1343        if (IntegerLiteral *IE =
1344              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1345          if (IE->getValue() == 0)
1346            return false;
1347        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1348      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1349      case BO_LAnd:
1350      case BO_LOr:
1351        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1352            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1353          return false;
1354        break;
1355    }
1356    if (BO->isAssignmentOp())
1357      return false;
1358    Loc = BO->getOperatorLoc();
1359    R1 = BO->getLHS()->getSourceRange();
1360    R2 = BO->getRHS()->getSourceRange();
1361    return true;
1362  }
1363  case CompoundAssignOperatorClass:
1364  case VAArgExprClass:
1365    return false;
1366
1367  case ConditionalOperatorClass: {
1368    // The condition must be evaluated, but if either the LHS or RHS is a
1369    // warning, warn about them.
1370    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1371    if (Exp->getLHS() &&
1372        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1373      return true;
1374    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1375  }
1376
1377  case MemberExprClass:
1378    // If the base pointer or element is to a volatile pointer/field, accessing
1379    // it is a side effect.
1380    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1381      return false;
1382    Loc = cast<MemberExpr>(this)->getMemberLoc();
1383    R1 = SourceRange(Loc, Loc);
1384    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1385    return true;
1386
1387  case ArraySubscriptExprClass:
1388    // If the base pointer or element is to a volatile pointer/field, accessing
1389    // it is a side effect.
1390    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1391      return false;
1392    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1393    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1394    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1395    return true;
1396
1397  case CallExprClass:
1398  case CXXOperatorCallExprClass:
1399  case CXXMemberCallExprClass: {
1400    // If this is a direct call, get the callee.
1401    const CallExpr *CE = cast<CallExpr>(this);
1402    if (const Decl *FD = CE->getCalleeDecl()) {
1403      // If the callee has attribute pure, const, or warn_unused_result, warn
1404      // about it. void foo() { strlen("bar"); } should warn.
1405      //
1406      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1407      // updated to match for QoI.
1408      if (FD->getAttr<WarnUnusedResultAttr>() ||
1409          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1410        Loc = CE->getCallee()->getLocStart();
1411        R1 = CE->getCallee()->getSourceRange();
1412
1413        if (unsigned NumArgs = CE->getNumArgs())
1414          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1415                           CE->getArg(NumArgs-1)->getLocEnd());
1416        return true;
1417      }
1418    }
1419    return false;
1420  }
1421
1422  case CXXTemporaryObjectExprClass:
1423  case CXXConstructExprClass:
1424    return false;
1425
1426  case ObjCMessageExprClass: {
1427    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1428    const ObjCMethodDecl *MD = ME->getMethodDecl();
1429    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1430      Loc = getExprLoc();
1431      return true;
1432    }
1433    return false;
1434  }
1435
1436  case ObjCPropertyRefExprClass:
1437    Loc = getExprLoc();
1438    R1 = getSourceRange();
1439    return true;
1440
1441  case StmtExprClass: {
1442    // Statement exprs don't logically have side effects themselves, but are
1443    // sometimes used in macros in ways that give them a type that is unused.
1444    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1445    // however, if the result of the stmt expr is dead, we don't want to emit a
1446    // warning.
1447    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1448    if (!CS->body_empty()) {
1449      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1450        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1451      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1452        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1453          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1454    }
1455
1456    if (getType()->isVoidType())
1457      return false;
1458    Loc = cast<StmtExpr>(this)->getLParenLoc();
1459    R1 = getSourceRange();
1460    return true;
1461  }
1462  case CStyleCastExprClass:
1463    // If this is an explicit cast to void, allow it.  People do this when they
1464    // think they know what they're doing :).
1465    if (getType()->isVoidType())
1466      return false;
1467    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1468    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1469    return true;
1470  case CXXFunctionalCastExprClass: {
1471    if (getType()->isVoidType())
1472      return false;
1473    const CastExpr *CE = cast<CastExpr>(this);
1474
1475    // If this is a cast to void or a constructor conversion, check the operand.
1476    // Otherwise, the result of the cast is unused.
1477    if (CE->getCastKind() == CK_ToVoid ||
1478        CE->getCastKind() == CK_ConstructorConversion)
1479      return (cast<CastExpr>(this)->getSubExpr()
1480              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1481    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1482    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1483    return true;
1484  }
1485
1486  case ImplicitCastExprClass:
1487    // Check the operand, since implicit casts are inserted by Sema
1488    return (cast<ImplicitCastExpr>(this)
1489            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1490
1491  case CXXDefaultArgExprClass:
1492    return (cast<CXXDefaultArgExpr>(this)
1493            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1494
1495  case CXXNewExprClass:
1496    // FIXME: In theory, there might be new expressions that don't have side
1497    // effects (e.g. a placement new with an uninitialized POD).
1498  case CXXDeleteExprClass:
1499    return false;
1500  case CXXBindTemporaryExprClass:
1501    return (cast<CXXBindTemporaryExpr>(this)
1502            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1503  case ExprWithCleanupsClass:
1504    return (cast<ExprWithCleanups>(this)
1505            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1506  }
1507}
1508
1509/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1510/// returns true, if it is; false otherwise.
1511bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1512  switch (getStmtClass()) {
1513  default:
1514    return false;
1515  case ObjCIvarRefExprClass:
1516    return true;
1517  case Expr::UnaryOperatorClass:
1518    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1519  case ParenExprClass:
1520    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1521  case ImplicitCastExprClass:
1522    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1523  case CStyleCastExprClass:
1524    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1525  case DeclRefExprClass: {
1526    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1527    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1528      if (VD->hasGlobalStorage())
1529        return true;
1530      QualType T = VD->getType();
1531      // dereferencing to a  pointer is always a gc'able candidate,
1532      // unless it is __weak.
1533      return T->isPointerType() &&
1534             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1535    }
1536    return false;
1537  }
1538  case MemberExprClass: {
1539    const MemberExpr *M = cast<MemberExpr>(this);
1540    return M->getBase()->isOBJCGCCandidate(Ctx);
1541  }
1542  case ArraySubscriptExprClass:
1543    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1544  }
1545}
1546
1547bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1548  if (isTypeDependent())
1549    return false;
1550  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1551}
1552
1553static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1554                                          Expr::CanThrowResult CT2) {
1555  // CanThrowResult constants are ordered so that the maximum is the correct
1556  // merge result.
1557  return CT1 > CT2 ? CT1 : CT2;
1558}
1559
1560static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1561  Expr *E = const_cast<Expr*>(CE);
1562  Expr::CanThrowResult R = Expr::CT_Cannot;
1563  for (Expr::child_iterator I = E->child_begin(), IE = E->child_end();
1564       I != IE && R != Expr::CT_Can; ++I) {
1565    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1566  }
1567  return R;
1568}
1569
1570static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1571                                           bool NullThrows = true) {
1572  if (!D)
1573    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1574
1575  // See if we can get a function type from the decl somehow.
1576  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1577  if (!VD) // If we have no clue what we're calling, assume the worst.
1578    return Expr::CT_Can;
1579
1580  // As an extension, we assume that __attribute__((nothrow)) functions don't
1581  // throw.
1582  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1583    return Expr::CT_Cannot;
1584
1585  QualType T = VD->getType();
1586  const FunctionProtoType *FT;
1587  if ((FT = T->getAs<FunctionProtoType>())) {
1588  } else if (const PointerType *PT = T->getAs<PointerType>())
1589    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1590  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1591    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1592  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1593    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1594  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1595    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1596
1597  if (!FT)
1598    return Expr::CT_Can;
1599
1600  return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1601}
1602
1603static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1604  if (DC->isTypeDependent())
1605    return Expr::CT_Dependent;
1606
1607  if (!DC->getTypeAsWritten()->isReferenceType())
1608    return Expr::CT_Cannot;
1609
1610  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1611}
1612
1613static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1614                                           const CXXTypeidExpr *DC) {
1615  if (DC->isTypeOperand())
1616    return Expr::CT_Cannot;
1617
1618  Expr *Op = DC->getExprOperand();
1619  if (Op->isTypeDependent())
1620    return Expr::CT_Dependent;
1621
1622  const RecordType *RT = Op->getType()->getAs<RecordType>();
1623  if (!RT)
1624    return Expr::CT_Cannot;
1625
1626  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1627    return Expr::CT_Cannot;
1628
1629  if (Op->Classify(C).isPRValue())
1630    return Expr::CT_Cannot;
1631
1632  return Expr::CT_Can;
1633}
1634
1635Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1636  // C++ [expr.unary.noexcept]p3:
1637  //   [Can throw] if in a potentially-evaluated context the expression would
1638  //   contain:
1639  switch (getStmtClass()) {
1640  case CXXThrowExprClass:
1641    //   - a potentially evaluated throw-expression
1642    return CT_Can;
1643
1644  case CXXDynamicCastExprClass: {
1645    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1646    //     where T is a reference type, that requires a run-time check
1647    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1648    if (CT == CT_Can)
1649      return CT;
1650    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1651  }
1652
1653  case CXXTypeidExprClass:
1654    //   - a potentially evaluated typeid expression applied to a glvalue
1655    //     expression whose type is a polymorphic class type
1656    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1657
1658    //   - a potentially evaluated call to a function, member function, function
1659    //     pointer, or member function pointer that does not have a non-throwing
1660    //     exception-specification
1661  case CallExprClass:
1662  case CXXOperatorCallExprClass:
1663  case CXXMemberCallExprClass: {
1664    CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1665    if (CT == CT_Can)
1666      return CT;
1667    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1668  }
1669
1670  case CXXConstructExprClass:
1671  case CXXTemporaryObjectExprClass: {
1672    CanThrowResult CT = CanCalleeThrow(
1673        cast<CXXConstructExpr>(this)->getConstructor());
1674    if (CT == CT_Can)
1675      return CT;
1676    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1677  }
1678
1679  case CXXNewExprClass: {
1680    CanThrowResult CT = MergeCanThrow(
1681        CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1682        CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1683                       /*NullThrows*/false));
1684    if (CT == CT_Can)
1685      return CT;
1686    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1687  }
1688
1689  case CXXDeleteExprClass: {
1690    CanThrowResult CT = CanCalleeThrow(
1691        cast<CXXDeleteExpr>(this)->getOperatorDelete());
1692    if (CT == CT_Can)
1693      return CT;
1694    const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1695    // Unwrap exactly one implicit cast, which converts all pointers to void*.
1696    if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1697      Arg = Cast->getSubExpr();
1698    if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1699      if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1700        CanThrowResult CT2 = CanCalleeThrow(
1701            cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1702        if (CT2 == CT_Can)
1703          return CT2;
1704        CT = MergeCanThrow(CT, CT2);
1705      }
1706    }
1707    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1708  }
1709
1710  case CXXBindTemporaryExprClass: {
1711    // The bound temporary has to be destroyed again, which might throw.
1712    CanThrowResult CT = CanCalleeThrow(
1713      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1714    if (CT == CT_Can)
1715      return CT;
1716    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1717  }
1718
1719    // ObjC message sends are like function calls, but never have exception
1720    // specs.
1721  case ObjCMessageExprClass:
1722  case ObjCPropertyRefExprClass:
1723    return CT_Can;
1724
1725    // Many other things have subexpressions, so we have to test those.
1726    // Some are simple:
1727  case ParenExprClass:
1728  case MemberExprClass:
1729  case CXXReinterpretCastExprClass:
1730  case CXXConstCastExprClass:
1731  case ConditionalOperatorClass:
1732  case CompoundLiteralExprClass:
1733  case ExtVectorElementExprClass:
1734  case InitListExprClass:
1735  case DesignatedInitExprClass:
1736  case ParenListExprClass:
1737  case VAArgExprClass:
1738  case CXXDefaultArgExprClass:
1739  case ExprWithCleanupsClass:
1740  case ObjCIvarRefExprClass:
1741  case ObjCIsaExprClass:
1742  case ShuffleVectorExprClass:
1743    return CanSubExprsThrow(C, this);
1744
1745    // Some might be dependent for other reasons.
1746  case UnaryOperatorClass:
1747  case ArraySubscriptExprClass:
1748  case ImplicitCastExprClass:
1749  case CStyleCastExprClass:
1750  case CXXStaticCastExprClass:
1751  case CXXFunctionalCastExprClass:
1752  case BinaryOperatorClass:
1753  case CompoundAssignOperatorClass: {
1754    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1755    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1756  }
1757
1758    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1759  case StmtExprClass:
1760    return CT_Can;
1761
1762  case ChooseExprClass:
1763    if (isTypeDependent() || isValueDependent())
1764      return CT_Dependent;
1765    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1766
1767    // Some expressions are always dependent.
1768  case DependentScopeDeclRefExprClass:
1769  case CXXUnresolvedConstructExprClass:
1770  case CXXDependentScopeMemberExprClass:
1771    return CT_Dependent;
1772
1773  default:
1774    // All other expressions don't have subexpressions, or else they are
1775    // unevaluated.
1776    return CT_Cannot;
1777  }
1778}
1779
1780Expr* Expr::IgnoreParens() {
1781  Expr* E = this;
1782  while (true) {
1783    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1784      E = P->getSubExpr();
1785      continue;
1786    }
1787    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1788      if (P->getOpcode() == UO_Extension) {
1789        E = P->getSubExpr();
1790        continue;
1791      }
1792    }
1793    return E;
1794  }
1795}
1796
1797/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1798/// or CastExprs or ImplicitCastExprs, returning their operand.
1799Expr *Expr::IgnoreParenCasts() {
1800  Expr *E = this;
1801  while (true) {
1802    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1803      E = P->getSubExpr();
1804      continue;
1805    }
1806    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1807      E = P->getSubExpr();
1808      continue;
1809    }
1810    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1811      if (P->getOpcode() == UO_Extension) {
1812        E = P->getSubExpr();
1813        continue;
1814      }
1815    }
1816    return E;
1817  }
1818}
1819
1820/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
1821/// casts.  This is intended purely as a temporary workaround for code
1822/// that hasn't yet been rewritten to do the right thing about those
1823/// casts, and may disappear along with the last internal use.
1824Expr *Expr::IgnoreParenLValueCasts() {
1825  Expr *E = this;
1826  while (true) {
1827    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1828      E = P->getSubExpr();
1829      continue;
1830    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1831      if (P->getCastKind() == CK_LValueToRValue) {
1832        E = P->getSubExpr();
1833        continue;
1834      }
1835    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1836      if (P->getOpcode() == UO_Extension) {
1837        E = P->getSubExpr();
1838        continue;
1839      }
1840    }
1841    break;
1842  }
1843  return E;
1844}
1845
1846Expr *Expr::IgnoreParenImpCasts() {
1847  Expr *E = this;
1848  while (true) {
1849    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1850      E = P->getSubExpr();
1851      continue;
1852    }
1853    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1854      E = P->getSubExpr();
1855      continue;
1856    }
1857    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1858      if (P->getOpcode() == UO_Extension) {
1859        E = P->getSubExpr();
1860        continue;
1861      }
1862    }
1863    return E;
1864  }
1865}
1866
1867/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1868/// value (including ptr->int casts of the same size).  Strip off any
1869/// ParenExpr or CastExprs, returning their operand.
1870Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1871  Expr *E = this;
1872  while (true) {
1873    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1874      E = P->getSubExpr();
1875      continue;
1876    }
1877
1878    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1879      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1880      // ptr<->int casts of the same width.  We also ignore all identity casts.
1881      Expr *SE = P->getSubExpr();
1882
1883      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1884        E = SE;
1885        continue;
1886      }
1887
1888      if ((E->getType()->isPointerType() ||
1889           E->getType()->isIntegralType(Ctx)) &&
1890          (SE->getType()->isPointerType() ||
1891           SE->getType()->isIntegralType(Ctx)) &&
1892          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1893        E = SE;
1894        continue;
1895      }
1896    }
1897
1898    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1899      if (P->getOpcode() == UO_Extension) {
1900        E = P->getSubExpr();
1901        continue;
1902      }
1903    }
1904
1905    return E;
1906  }
1907}
1908
1909bool Expr::isDefaultArgument() const {
1910  const Expr *E = this;
1911  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1912    E = ICE->getSubExprAsWritten();
1913
1914  return isa<CXXDefaultArgExpr>(E);
1915}
1916
1917/// \brief Skip over any no-op casts and any temporary-binding
1918/// expressions.
1919static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
1920  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1921    if (ICE->getCastKind() == CK_NoOp)
1922      E = ICE->getSubExpr();
1923    else
1924      break;
1925  }
1926
1927  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1928    E = BE->getSubExpr();
1929
1930  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1931    if (ICE->getCastKind() == CK_NoOp)
1932      E = ICE->getSubExpr();
1933    else
1934      break;
1935  }
1936
1937  return E->IgnoreParens();
1938}
1939
1940/// isTemporaryObject - Determines if this expression produces a
1941/// temporary of the given class type.
1942bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1943  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1944    return false;
1945
1946  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
1947
1948  // Temporaries are by definition pr-values of class type.
1949  if (!E->Classify(C).isPRValue()) {
1950    // In this context, property reference is a message call and is pr-value.
1951    if (!isa<ObjCPropertyRefExpr>(E))
1952      return false;
1953  }
1954
1955  // Black-list a few cases which yield pr-values of class type that don't
1956  // refer to temporaries of that type:
1957
1958  // - implicit derived-to-base conversions
1959  if (isa<ImplicitCastExpr>(E)) {
1960    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
1961    case CK_DerivedToBase:
1962    case CK_UncheckedDerivedToBase:
1963      return false;
1964    default:
1965      break;
1966    }
1967  }
1968
1969  // - member expressions (all)
1970  if (isa<MemberExpr>(E))
1971    return false;
1972
1973  return true;
1974}
1975
1976/// hasAnyTypeDependentArguments - Determines if any of the expressions
1977/// in Exprs is type-dependent.
1978bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1979  for (unsigned I = 0; I < NumExprs; ++I)
1980    if (Exprs[I]->isTypeDependent())
1981      return true;
1982
1983  return false;
1984}
1985
1986/// hasAnyValueDependentArguments - Determines if any of the expressions
1987/// in Exprs is value-dependent.
1988bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1989  for (unsigned I = 0; I < NumExprs; ++I)
1990    if (Exprs[I]->isValueDependent())
1991      return true;
1992
1993  return false;
1994}
1995
1996bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
1997  // This function is attempting whether an expression is an initializer
1998  // which can be evaluated at compile-time.  isEvaluatable handles most
1999  // of the cases, but it can't deal with some initializer-specific
2000  // expressions, and it can't deal with aggregates; we deal with those here,
2001  // and fall back to isEvaluatable for the other cases.
2002
2003  // If we ever capture reference-binding directly in the AST, we can
2004  // kill the second parameter.
2005
2006  if (IsForRef) {
2007    EvalResult Result;
2008    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2009  }
2010
2011  switch (getStmtClass()) {
2012  default: break;
2013  case StringLiteralClass:
2014  case ObjCStringLiteralClass:
2015  case ObjCEncodeExprClass:
2016    return true;
2017  case CXXTemporaryObjectExprClass:
2018  case CXXConstructExprClass: {
2019    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2020
2021    // Only if it's
2022    // 1) an application of the trivial default constructor or
2023    if (!CE->getConstructor()->isTrivial()) return false;
2024    if (!CE->getNumArgs()) return true;
2025
2026    // 2) an elidable trivial copy construction of an operand which is
2027    //    itself a constant initializer.  Note that we consider the
2028    //    operand on its own, *not* as a reference binding.
2029    return CE->isElidable() &&
2030           CE->getArg(0)->isConstantInitializer(Ctx, false);
2031  }
2032  case CompoundLiteralExprClass: {
2033    // This handles gcc's extension that allows global initializers like
2034    // "struct x {int x;} x = (struct x) {};".
2035    // FIXME: This accepts other cases it shouldn't!
2036    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2037    return Exp->isConstantInitializer(Ctx, false);
2038  }
2039  case InitListExprClass: {
2040    // FIXME: This doesn't deal with fields with reference types correctly.
2041    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2042    // to bitfields.
2043    const InitListExpr *Exp = cast<InitListExpr>(this);
2044    unsigned numInits = Exp->getNumInits();
2045    for (unsigned i = 0; i < numInits; i++) {
2046      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2047        return false;
2048    }
2049    return true;
2050  }
2051  case ImplicitValueInitExprClass:
2052    return true;
2053  case ParenExprClass:
2054    return cast<ParenExpr>(this)->getSubExpr()
2055      ->isConstantInitializer(Ctx, IsForRef);
2056  case ChooseExprClass:
2057    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2058      ->isConstantInitializer(Ctx, IsForRef);
2059  case UnaryOperatorClass: {
2060    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2061    if (Exp->getOpcode() == UO_Extension)
2062      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2063    break;
2064  }
2065  case BinaryOperatorClass: {
2066    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
2067    // but this handles the common case.
2068    const BinaryOperator *Exp = cast<BinaryOperator>(this);
2069    if (Exp->getOpcode() == BO_Sub &&
2070        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
2071        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
2072      return true;
2073    break;
2074  }
2075  case CXXFunctionalCastExprClass:
2076  case CXXStaticCastExprClass:
2077  case ImplicitCastExprClass:
2078  case CStyleCastExprClass:
2079    // Handle casts with a destination that's a struct or union; this
2080    // deals with both the gcc no-op struct cast extension and the
2081    // cast-to-union extension.
2082    if (getType()->isRecordType())
2083      return cast<CastExpr>(this)->getSubExpr()
2084        ->isConstantInitializer(Ctx, false);
2085
2086    // Integer->integer casts can be handled here, which is important for
2087    // things like (int)(&&x-&&y).  Scary but true.
2088    if (getType()->isIntegerType() &&
2089        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
2090      return cast<CastExpr>(this)->getSubExpr()
2091        ->isConstantInitializer(Ctx, false);
2092
2093    break;
2094  }
2095  return isEvaluatable(Ctx);
2096}
2097
2098/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2099/// integer constant expression with the value zero, or if this is one that is
2100/// cast to void*.
2101bool Expr::isNullPointerConstant(ASTContext &Ctx,
2102                                 NullPointerConstantValueDependence NPC) const {
2103  if (isValueDependent()) {
2104    switch (NPC) {
2105    case NPC_NeverValueDependent:
2106      assert(false && "Unexpected value dependent expression!");
2107      // If the unthinkable happens, fall through to the safest alternative.
2108
2109    case NPC_ValueDependentIsNull:
2110      return isTypeDependent() || getType()->isIntegralType(Ctx);
2111
2112    case NPC_ValueDependentIsNotNull:
2113      return false;
2114    }
2115  }
2116
2117  // Strip off a cast to void*, if it exists. Except in C++.
2118  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2119    if (!Ctx.getLangOptions().CPlusPlus) {
2120      // Check that it is a cast to void*.
2121      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2122        QualType Pointee = PT->getPointeeType();
2123        if (!Pointee.hasQualifiers() &&
2124            Pointee->isVoidType() &&                              // to void*
2125            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2126          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2127      }
2128    }
2129  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2130    // Ignore the ImplicitCastExpr type entirely.
2131    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2132  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2133    // Accept ((void*)0) as a null pointer constant, as many other
2134    // implementations do.
2135    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2136  } else if (const CXXDefaultArgExpr *DefaultArg
2137               = dyn_cast<CXXDefaultArgExpr>(this)) {
2138    // See through default argument expressions
2139    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2140  } else if (isa<GNUNullExpr>(this)) {
2141    // The GNU __null extension is always a null pointer constant.
2142    return true;
2143  }
2144
2145  // C++0x nullptr_t is always a null pointer constant.
2146  if (getType()->isNullPtrType())
2147    return true;
2148
2149  if (const RecordType *UT = getType()->getAsUnionType())
2150    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2151      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2152        const Expr *InitExpr = CLE->getInitializer();
2153        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2154          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2155      }
2156  // This expression must be an integer type.
2157  if (!getType()->isIntegerType() ||
2158      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2159    return false;
2160
2161  // If we have an integer constant expression, we need to *evaluate* it and
2162  // test for the value 0.
2163  llvm::APSInt Result;
2164  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2165}
2166
2167/// \brief If this expression is an l-value for an Objective C
2168/// property, find the underlying property reference expression.
2169const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2170  const Expr *E = this;
2171  while (true) {
2172    assert((E->getValueKind() == VK_LValue &&
2173            E->getObjectKind() == OK_ObjCProperty) &&
2174           "expression is not a property reference");
2175    E = E->IgnoreParenCasts();
2176    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2177      if (BO->getOpcode() == BO_Comma) {
2178        E = BO->getRHS();
2179        continue;
2180      }
2181    }
2182
2183    break;
2184  }
2185
2186  return cast<ObjCPropertyRefExpr>(E);
2187}
2188
2189FieldDecl *Expr::getBitField() {
2190  Expr *E = this->IgnoreParens();
2191
2192  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2193    if (ICE->getCastKind() == CK_LValueToRValue ||
2194        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2195      E = ICE->getSubExpr()->IgnoreParens();
2196    else
2197      break;
2198  }
2199
2200  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2201    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2202      if (Field->isBitField())
2203        return Field;
2204
2205  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2206    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2207      if (Field->isBitField())
2208        return Field;
2209
2210  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2211    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2212      return BinOp->getLHS()->getBitField();
2213
2214  return 0;
2215}
2216
2217bool Expr::refersToVectorElement() const {
2218  const Expr *E = this->IgnoreParens();
2219
2220  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2221    if (ICE->getValueKind() != VK_RValue &&
2222        ICE->getCastKind() == CK_NoOp)
2223      E = ICE->getSubExpr()->IgnoreParens();
2224    else
2225      break;
2226  }
2227
2228  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2229    return ASE->getBase()->getType()->isVectorType();
2230
2231  if (isa<ExtVectorElementExpr>(E))
2232    return true;
2233
2234  return false;
2235}
2236
2237/// isArrow - Return true if the base expression is a pointer to vector,
2238/// return false if the base expression is a vector.
2239bool ExtVectorElementExpr::isArrow() const {
2240  return getBase()->getType()->isPointerType();
2241}
2242
2243unsigned ExtVectorElementExpr::getNumElements() const {
2244  if (const VectorType *VT = getType()->getAs<VectorType>())
2245    return VT->getNumElements();
2246  return 1;
2247}
2248
2249/// containsDuplicateElements - Return true if any element access is repeated.
2250bool ExtVectorElementExpr::containsDuplicateElements() const {
2251  // FIXME: Refactor this code to an accessor on the AST node which returns the
2252  // "type" of component access, and share with code below and in Sema.
2253  llvm::StringRef Comp = Accessor->getName();
2254
2255  // Halving swizzles do not contain duplicate elements.
2256  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2257    return false;
2258
2259  // Advance past s-char prefix on hex swizzles.
2260  if (Comp[0] == 's' || Comp[0] == 'S')
2261    Comp = Comp.substr(1);
2262
2263  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2264    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2265        return true;
2266
2267  return false;
2268}
2269
2270/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2271void ExtVectorElementExpr::getEncodedElementAccess(
2272                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2273  llvm::StringRef Comp = Accessor->getName();
2274  if (Comp[0] == 's' || Comp[0] == 'S')
2275    Comp = Comp.substr(1);
2276
2277  bool isHi =   Comp == "hi";
2278  bool isLo =   Comp == "lo";
2279  bool isEven = Comp == "even";
2280  bool isOdd  = Comp == "odd";
2281
2282  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2283    uint64_t Index;
2284
2285    if (isHi)
2286      Index = e + i;
2287    else if (isLo)
2288      Index = i;
2289    else if (isEven)
2290      Index = 2 * i;
2291    else if (isOdd)
2292      Index = 2 * i + 1;
2293    else
2294      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2295
2296    Elts.push_back(Index);
2297  }
2298}
2299
2300ObjCMessageExpr::ObjCMessageExpr(QualType T,
2301                                 ExprValueKind VK,
2302                                 SourceLocation LBracLoc,
2303                                 SourceLocation SuperLoc,
2304                                 bool IsInstanceSuper,
2305                                 QualType SuperType,
2306                                 Selector Sel,
2307                                 SourceLocation SelLoc,
2308                                 ObjCMethodDecl *Method,
2309                                 Expr **Args, unsigned NumArgs,
2310                                 SourceLocation RBracLoc)
2311  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2312         /*TypeDependent=*/false, /*ValueDependent=*/false,
2313         /*ContainsUnexpandedParameterPack=*/false),
2314    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2315    HasMethod(Method != 0), SuperLoc(SuperLoc),
2316    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2317                                                       : Sel.getAsOpaquePtr())),
2318    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2319{
2320  setReceiverPointer(SuperType.getAsOpaquePtr());
2321  if (NumArgs)
2322    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2323}
2324
2325ObjCMessageExpr::ObjCMessageExpr(QualType T,
2326                                 ExprValueKind VK,
2327                                 SourceLocation LBracLoc,
2328                                 TypeSourceInfo *Receiver,
2329                                 Selector Sel,
2330                                 SourceLocation SelLoc,
2331                                 ObjCMethodDecl *Method,
2332                                 Expr **Args, unsigned NumArgs,
2333                                 SourceLocation RBracLoc)
2334  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2335         T->isDependentType(), T->containsUnexpandedParameterPack()),
2336    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2337    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2338                                                       : Sel.getAsOpaquePtr())),
2339    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2340{
2341  setReceiverPointer(Receiver);
2342  Expr **MyArgs = getArgs();
2343  for (unsigned I = 0; I != NumArgs; ++I) {
2344    if (Args[I]->isTypeDependent())
2345      ExprBits.TypeDependent = true;
2346    if (Args[I]->isValueDependent())
2347      ExprBits.ValueDependent = true;
2348    if (Args[I]->containsUnexpandedParameterPack())
2349      ExprBits.ContainsUnexpandedParameterPack = true;
2350
2351    MyArgs[I] = Args[I];
2352  }
2353}
2354
2355ObjCMessageExpr::ObjCMessageExpr(QualType T,
2356                                 ExprValueKind VK,
2357                                 SourceLocation LBracLoc,
2358                                 Expr *Receiver,
2359                                 Selector Sel,
2360                                 SourceLocation SelLoc,
2361                                 ObjCMethodDecl *Method,
2362                                 Expr **Args, unsigned NumArgs,
2363                                 SourceLocation RBracLoc)
2364  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2365         Receiver->isTypeDependent(),
2366         Receiver->containsUnexpandedParameterPack()),
2367    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2368    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2369                                                       : Sel.getAsOpaquePtr())),
2370    SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2371{
2372  setReceiverPointer(Receiver);
2373  Expr **MyArgs = getArgs();
2374  for (unsigned I = 0; I != NumArgs; ++I) {
2375    if (Args[I]->isTypeDependent())
2376      ExprBits.TypeDependent = true;
2377    if (Args[I]->isValueDependent())
2378      ExprBits.ValueDependent = true;
2379    if (Args[I]->containsUnexpandedParameterPack())
2380      ExprBits.ContainsUnexpandedParameterPack = true;
2381
2382    MyArgs[I] = Args[I];
2383  }
2384}
2385
2386ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2387                                         ExprValueKind VK,
2388                                         SourceLocation LBracLoc,
2389                                         SourceLocation SuperLoc,
2390                                         bool IsInstanceSuper,
2391                                         QualType SuperType,
2392                                         Selector Sel,
2393                                         SourceLocation SelLoc,
2394                                         ObjCMethodDecl *Method,
2395                                         Expr **Args, unsigned NumArgs,
2396                                         SourceLocation RBracLoc) {
2397  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2398    NumArgs * sizeof(Expr *);
2399  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2400  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2401                                   SuperType, Sel, SelLoc, Method, Args,NumArgs,
2402                                   RBracLoc);
2403}
2404
2405ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2406                                         ExprValueKind VK,
2407                                         SourceLocation LBracLoc,
2408                                         TypeSourceInfo *Receiver,
2409                                         Selector Sel,
2410                                         SourceLocation SelLoc,
2411                                         ObjCMethodDecl *Method,
2412                                         Expr **Args, unsigned NumArgs,
2413                                         SourceLocation RBracLoc) {
2414  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2415    NumArgs * sizeof(Expr *);
2416  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2417  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2418                                   Method, Args, NumArgs, RBracLoc);
2419}
2420
2421ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2422                                         ExprValueKind VK,
2423                                         SourceLocation LBracLoc,
2424                                         Expr *Receiver,
2425                                         Selector Sel,
2426                                         SourceLocation SelLoc,
2427                                         ObjCMethodDecl *Method,
2428                                         Expr **Args, unsigned NumArgs,
2429                                         SourceLocation RBracLoc) {
2430  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2431    NumArgs * sizeof(Expr *);
2432  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2433  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
2434                                   Method, Args, NumArgs, RBracLoc);
2435}
2436
2437ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2438                                              unsigned NumArgs) {
2439  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2440    NumArgs * sizeof(Expr *);
2441  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2442  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2443}
2444
2445SourceRange ObjCMessageExpr::getReceiverRange() const {
2446  switch (getReceiverKind()) {
2447  case Instance:
2448    return getInstanceReceiver()->getSourceRange();
2449
2450  case Class:
2451    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2452
2453  case SuperInstance:
2454  case SuperClass:
2455    return getSuperLoc();
2456  }
2457
2458  return SourceLocation();
2459}
2460
2461Selector ObjCMessageExpr::getSelector() const {
2462  if (HasMethod)
2463    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2464                                                               ->getSelector();
2465  return Selector(SelectorOrMethod);
2466}
2467
2468ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2469  switch (getReceiverKind()) {
2470  case Instance:
2471    if (const ObjCObjectPointerType *Ptr
2472          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2473      return Ptr->getInterfaceDecl();
2474    break;
2475
2476  case Class:
2477    if (const ObjCObjectType *Ty
2478          = getClassReceiver()->getAs<ObjCObjectType>())
2479      return Ty->getInterface();
2480    break;
2481
2482  case SuperInstance:
2483    if (const ObjCObjectPointerType *Ptr
2484          = getSuperType()->getAs<ObjCObjectPointerType>())
2485      return Ptr->getInterfaceDecl();
2486    break;
2487
2488  case SuperClass:
2489    if (const ObjCObjectType *Iface
2490          = getSuperType()->getAs<ObjCObjectType>())
2491      return Iface->getInterface();
2492    break;
2493  }
2494
2495  return 0;
2496}
2497
2498bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
2499  return getCond()->EvaluateAsInt(C) != 0;
2500}
2501
2502ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2503                                     QualType Type, SourceLocation BLoc,
2504                                     SourceLocation RP)
2505   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
2506          Type->isDependentType(), Type->isDependentType(),
2507          Type->containsUnexpandedParameterPack()),
2508     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
2509{
2510  SubExprs = new (C) Stmt*[nexpr];
2511  for (unsigned i = 0; i < nexpr; i++) {
2512    if (args[i]->isTypeDependent())
2513      ExprBits.TypeDependent = true;
2514    if (args[i]->isValueDependent())
2515      ExprBits.ValueDependent = true;
2516    if (args[i]->containsUnexpandedParameterPack())
2517      ExprBits.ContainsUnexpandedParameterPack = true;
2518
2519    SubExprs[i] = args[i];
2520  }
2521}
2522
2523void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2524                                 unsigned NumExprs) {
2525  if (SubExprs) C.Deallocate(SubExprs);
2526
2527  SubExprs = new (C) Stmt* [NumExprs];
2528  this->NumExprs = NumExprs;
2529  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2530}
2531
2532//===----------------------------------------------------------------------===//
2533//  DesignatedInitExpr
2534//===----------------------------------------------------------------------===//
2535
2536IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2537  assert(Kind == FieldDesignator && "Only valid on a field designator");
2538  if (Field.NameOrField & 0x01)
2539    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2540  else
2541    return getField()->getIdentifier();
2542}
2543
2544DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2545                                       unsigned NumDesignators,
2546                                       const Designator *Designators,
2547                                       SourceLocation EqualOrColonLoc,
2548                                       bool GNUSyntax,
2549                                       Expr **IndexExprs,
2550                                       unsigned NumIndexExprs,
2551                                       Expr *Init)
2552  : Expr(DesignatedInitExprClass, Ty,
2553         Init->getValueKind(), Init->getObjectKind(),
2554         Init->isTypeDependent(), Init->isValueDependent(),
2555         Init->containsUnexpandedParameterPack()),
2556    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2557    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2558  this->Designators = new (C) Designator[NumDesignators];
2559
2560  // Record the initializer itself.
2561  child_iterator Child = child_begin();
2562  *Child++ = Init;
2563
2564  // Copy the designators and their subexpressions, computing
2565  // value-dependence along the way.
2566  unsigned IndexIdx = 0;
2567  for (unsigned I = 0; I != NumDesignators; ++I) {
2568    this->Designators[I] = Designators[I];
2569
2570    if (this->Designators[I].isArrayDesignator()) {
2571      // Compute type- and value-dependence.
2572      Expr *Index = IndexExprs[IndexIdx];
2573      if (Index->isTypeDependent() || Index->isValueDependent())
2574        ExprBits.ValueDependent = true;
2575
2576      // Propagate unexpanded parameter packs.
2577      if (Index->containsUnexpandedParameterPack())
2578        ExprBits.ContainsUnexpandedParameterPack = true;
2579
2580      // Copy the index expressions into permanent storage.
2581      *Child++ = IndexExprs[IndexIdx++];
2582    } else if (this->Designators[I].isArrayRangeDesignator()) {
2583      // Compute type- and value-dependence.
2584      Expr *Start = IndexExprs[IndexIdx];
2585      Expr *End = IndexExprs[IndexIdx + 1];
2586      if (Start->isTypeDependent() || Start->isValueDependent() ||
2587          End->isTypeDependent() || End->isValueDependent())
2588        ExprBits.ValueDependent = true;
2589
2590      // Propagate unexpanded parameter packs.
2591      if (Start->containsUnexpandedParameterPack() ||
2592          End->containsUnexpandedParameterPack())
2593        ExprBits.ContainsUnexpandedParameterPack = true;
2594
2595      // Copy the start/end expressions into permanent storage.
2596      *Child++ = IndexExprs[IndexIdx++];
2597      *Child++ = IndexExprs[IndexIdx++];
2598    }
2599  }
2600
2601  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2602}
2603
2604DesignatedInitExpr *
2605DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2606                           unsigned NumDesignators,
2607                           Expr **IndexExprs, unsigned NumIndexExprs,
2608                           SourceLocation ColonOrEqualLoc,
2609                           bool UsesColonSyntax, Expr *Init) {
2610  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2611                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2612  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2613                                      ColonOrEqualLoc, UsesColonSyntax,
2614                                      IndexExprs, NumIndexExprs, Init);
2615}
2616
2617DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2618                                                    unsigned NumIndexExprs) {
2619  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2620                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2621  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2622}
2623
2624void DesignatedInitExpr::setDesignators(ASTContext &C,
2625                                        const Designator *Desigs,
2626                                        unsigned NumDesigs) {
2627  Designators = new (C) Designator[NumDesigs];
2628  NumDesignators = NumDesigs;
2629  for (unsigned I = 0; I != NumDesigs; ++I)
2630    Designators[I] = Desigs[I];
2631}
2632
2633SourceRange DesignatedInitExpr::getSourceRange() const {
2634  SourceLocation StartLoc;
2635  Designator &First =
2636    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2637  if (First.isFieldDesignator()) {
2638    if (GNUSyntax)
2639      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2640    else
2641      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2642  } else
2643    StartLoc =
2644      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2645  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2646}
2647
2648Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2649  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2650  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2651  Ptr += sizeof(DesignatedInitExpr);
2652  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2653  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2654}
2655
2656Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2657  assert(D.Kind == Designator::ArrayRangeDesignator &&
2658         "Requires array range designator");
2659  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2660  Ptr += sizeof(DesignatedInitExpr);
2661  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2662  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2663}
2664
2665Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2666  assert(D.Kind == Designator::ArrayRangeDesignator &&
2667         "Requires array range designator");
2668  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2669  Ptr += sizeof(DesignatedInitExpr);
2670  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2671  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2672}
2673
2674/// \brief Replaces the designator at index @p Idx with the series
2675/// of designators in [First, Last).
2676void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2677                                          const Designator *First,
2678                                          const Designator *Last) {
2679  unsigned NumNewDesignators = Last - First;
2680  if (NumNewDesignators == 0) {
2681    std::copy_backward(Designators + Idx + 1,
2682                       Designators + NumDesignators,
2683                       Designators + Idx);
2684    --NumNewDesignators;
2685    return;
2686  } else if (NumNewDesignators == 1) {
2687    Designators[Idx] = *First;
2688    return;
2689  }
2690
2691  Designator *NewDesignators
2692    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2693  std::copy(Designators, Designators + Idx, NewDesignators);
2694  std::copy(First, Last, NewDesignators + Idx);
2695  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2696            NewDesignators + Idx + NumNewDesignators);
2697  Designators = NewDesignators;
2698  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2699}
2700
2701ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2702                             Expr **exprs, unsigned nexprs,
2703                             SourceLocation rparenloc)
2704  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
2705         false, false, false),
2706    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2707
2708  Exprs = new (C) Stmt*[nexprs];
2709  for (unsigned i = 0; i != nexprs; ++i) {
2710    if (exprs[i]->isTypeDependent())
2711      ExprBits.TypeDependent = true;
2712    if (exprs[i]->isValueDependent())
2713      ExprBits.ValueDependent = true;
2714    if (exprs[i]->containsUnexpandedParameterPack())
2715      ExprBits.ContainsUnexpandedParameterPack = true;
2716
2717    Exprs[i] = exprs[i];
2718  }
2719}
2720
2721//===----------------------------------------------------------------------===//
2722//  ExprIterator.
2723//===----------------------------------------------------------------------===//
2724
2725Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2726Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2727Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2728const Expr* ConstExprIterator::operator[](size_t idx) const {
2729  return cast<Expr>(I[idx]);
2730}
2731const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2732const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2733
2734//===----------------------------------------------------------------------===//
2735//  Child Iterators for iterating over subexpressions/substatements
2736//===----------------------------------------------------------------------===//
2737
2738// DeclRefExpr
2739Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2740Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2741
2742// ObjCIvarRefExpr
2743Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2744Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2745
2746// ObjCPropertyRefExpr
2747Stmt::child_iterator ObjCPropertyRefExpr::child_begin()
2748{
2749  if (Receiver.is<Stmt*>()) {
2750    // Hack alert!
2751    return reinterpret_cast<Stmt**> (&Receiver);
2752  }
2753  return child_iterator();
2754}
2755
2756Stmt::child_iterator ObjCPropertyRefExpr::child_end()
2757{ return Receiver.is<Stmt*>() ?
2758          reinterpret_cast<Stmt**> (&Receiver)+1 :
2759          child_iterator();
2760}
2761
2762// ObjCIsaExpr
2763Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2764Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2765
2766// PredefinedExpr
2767Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2768Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2769
2770// IntegerLiteral
2771Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2772Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2773
2774// CharacterLiteral
2775Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2776Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2777
2778// FloatingLiteral
2779Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2780Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2781
2782// ImaginaryLiteral
2783Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2784Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2785
2786// StringLiteral
2787Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2788Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2789
2790// ParenExpr
2791Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2792Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2793
2794// UnaryOperator
2795Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2796Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2797
2798// OffsetOfExpr
2799Stmt::child_iterator OffsetOfExpr::child_begin() {
2800  return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2801                                      + NumComps);
2802}
2803Stmt::child_iterator OffsetOfExpr::child_end() {
2804  return child_iterator(&*child_begin() + NumExprs);
2805}
2806
2807// SizeOfAlignOfExpr
2808Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2809  // If this is of a type and the type is a VLA type (and not a typedef), the
2810  // size expression of the VLA needs to be treated as an executable expression.
2811  // Why isn't this weirdness documented better in StmtIterator?
2812  if (isArgumentType()) {
2813    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
2814                                   getArgumentType().getTypePtr()))
2815      return child_iterator(T);
2816    return child_iterator();
2817  }
2818  return child_iterator(&Argument.Ex);
2819}
2820Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2821  if (isArgumentType())
2822    return child_iterator();
2823  return child_iterator(&Argument.Ex + 1);
2824}
2825
2826// ArraySubscriptExpr
2827Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2828  return &SubExprs[0];
2829}
2830Stmt::child_iterator ArraySubscriptExpr::child_end() {
2831  return &SubExprs[0]+END_EXPR;
2832}
2833
2834// CallExpr
2835Stmt::child_iterator CallExpr::child_begin() {
2836  return &SubExprs[0];
2837}
2838Stmt::child_iterator CallExpr::child_end() {
2839  return &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START;
2840}
2841
2842// MemberExpr
2843Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2844Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2845
2846// ExtVectorElementExpr
2847Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2848Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2849
2850// CompoundLiteralExpr
2851Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2852Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2853
2854// CastExpr
2855Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2856Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2857
2858// BinaryOperator
2859Stmt::child_iterator BinaryOperator::child_begin() {
2860  return &SubExprs[0];
2861}
2862Stmt::child_iterator BinaryOperator::child_end() {
2863  return &SubExprs[0]+END_EXPR;
2864}
2865
2866// ConditionalOperator
2867Stmt::child_iterator ConditionalOperator::child_begin() {
2868  return &SubExprs[0];
2869}
2870Stmt::child_iterator ConditionalOperator::child_end() {
2871  return &SubExprs[0]+END_EXPR;
2872}
2873
2874// AddrLabelExpr
2875Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2876Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2877
2878// StmtExpr
2879Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2880Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2881
2882
2883// ChooseExpr
2884Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2885Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2886
2887// GNUNullExpr
2888Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2889Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2890
2891// ShuffleVectorExpr
2892Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2893  return &SubExprs[0];
2894}
2895Stmt::child_iterator ShuffleVectorExpr::child_end() {
2896  return &SubExprs[0]+NumExprs;
2897}
2898
2899// VAArgExpr
2900Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2901Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2902
2903// InitListExpr
2904Stmt::child_iterator InitListExpr::child_begin() {
2905  return InitExprs.size() ? &InitExprs[0] : 0;
2906}
2907Stmt::child_iterator InitListExpr::child_end() {
2908  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2909}
2910
2911// DesignatedInitExpr
2912Stmt::child_iterator DesignatedInitExpr::child_begin() {
2913  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2914  Ptr += sizeof(DesignatedInitExpr);
2915  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2916}
2917Stmt::child_iterator DesignatedInitExpr::child_end() {
2918  return child_iterator(&*child_begin() + NumSubExprs);
2919}
2920
2921// ImplicitValueInitExpr
2922Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2923  return child_iterator();
2924}
2925
2926Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2927  return child_iterator();
2928}
2929
2930// ParenListExpr
2931Stmt::child_iterator ParenListExpr::child_begin() {
2932  return &Exprs[0];
2933}
2934Stmt::child_iterator ParenListExpr::child_end() {
2935  return &Exprs[0]+NumExprs;
2936}
2937
2938// ObjCStringLiteral
2939Stmt::child_iterator ObjCStringLiteral::child_begin() {
2940  return &String;
2941}
2942Stmt::child_iterator ObjCStringLiteral::child_end() {
2943  return &String+1;
2944}
2945
2946// ObjCEncodeExpr
2947Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2948Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2949
2950// ObjCSelectorExpr
2951Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2952  return child_iterator();
2953}
2954Stmt::child_iterator ObjCSelectorExpr::child_end() {
2955  return child_iterator();
2956}
2957
2958// ObjCProtocolExpr
2959Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2960  return child_iterator();
2961}
2962Stmt::child_iterator ObjCProtocolExpr::child_end() {
2963  return child_iterator();
2964}
2965
2966// ObjCMessageExpr
2967Stmt::child_iterator ObjCMessageExpr::child_begin() {
2968  if (getReceiverKind() == Instance)
2969    return reinterpret_cast<Stmt **>(this + 1);
2970  return reinterpret_cast<Stmt **>(getArgs());
2971}
2972Stmt::child_iterator ObjCMessageExpr::child_end() {
2973  return reinterpret_cast<Stmt **>(getArgs() + getNumArgs());
2974}
2975
2976// Blocks
2977BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
2978                                   SourceLocation l, bool ByRef,
2979                                   bool constAdded)
2980  : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
2981         d->isParameterPack()),
2982    D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
2983{
2984  bool TypeDependent = false;
2985  bool ValueDependent = false;
2986  computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
2987  ExprBits.TypeDependent = TypeDependent;
2988  ExprBits.ValueDependent = ValueDependent;
2989}
2990
2991Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2992Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2993
2994Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2995Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2996
2997// OpaqueValueExpr
2998SourceRange OpaqueValueExpr::getSourceRange() const { return Loc; }
2999Stmt::child_iterator OpaqueValueExpr::child_begin() { return child_iterator(); }
3000Stmt::child_iterator OpaqueValueExpr::child_end() { return child_iterator(); }
3001
3002