Expr.cpp revision daa8e4e888758d55a7a759dd4a91b83921cef222
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30void Expr::ANCHOR() {} // key function for Expr class.
31
32/// isKnownToHaveBooleanValue - Return true if this is an integer expression
33/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
34/// but also int expressions which are produced by things like comparisons in
35/// C.
36bool Expr::isKnownToHaveBooleanValue() const {
37  // If this value has _Bool type, it is obvious 0/1.
38  if (getType()->isBooleanType()) return true;
39  // If this is a non-scalar-integer type, we don't care enough to try.
40  if (!getType()->isIntegralOrEnumerationType()) return false;
41
42  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
43    return PE->getSubExpr()->isKnownToHaveBooleanValue();
44
45  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
46    switch (UO->getOpcode()) {
47    case UO_Plus:
48    case UO_Extension:
49      return UO->getSubExpr()->isKnownToHaveBooleanValue();
50    default:
51      return false;
52    }
53  }
54
55  // Only look through implicit casts.  If the user writes
56  // '(int) (a && b)' treat it as an arbitrary int.
57  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
58    return CE->getSubExpr()->isKnownToHaveBooleanValue();
59
60  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
61    switch (BO->getOpcode()) {
62    default: return false;
63    case BO_LT:   // Relational operators.
64    case BO_GT:
65    case BO_LE:
66    case BO_GE:
67    case BO_EQ:   // Equality operators.
68    case BO_NE:
69    case BO_LAnd: // AND operator.
70    case BO_LOr:  // Logical OR operator.
71      return true;
72
73    case BO_And:  // Bitwise AND operator.
74    case BO_Xor:  // Bitwise XOR operator.
75    case BO_Or:   // Bitwise OR operator.
76      // Handle things like (x==2)|(y==12).
77      return BO->getLHS()->isKnownToHaveBooleanValue() &&
78             BO->getRHS()->isKnownToHaveBooleanValue();
79
80    case BO_Comma:
81    case BO_Assign:
82      return BO->getRHS()->isKnownToHaveBooleanValue();
83    }
84  }
85
86  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
87    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
88           CO->getFalseExpr()->isKnownToHaveBooleanValue();
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Primary Expressions.
95//===----------------------------------------------------------------------===//
96
97void ExplicitTemplateArgumentList::initializeFrom(
98                                      const TemplateArgumentListInfo &Info) {
99  LAngleLoc = Info.getLAngleLoc();
100  RAngleLoc = Info.getRAngleLoc();
101  NumTemplateArgs = Info.size();
102
103  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
104  for (unsigned i = 0; i != NumTemplateArgs; ++i)
105    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
106}
107
108void ExplicitTemplateArgumentList::copyInto(
109                                      TemplateArgumentListInfo &Info) const {
110  Info.setLAngleLoc(LAngleLoc);
111  Info.setRAngleLoc(RAngleLoc);
112  for (unsigned I = 0; I != NumTemplateArgs; ++I)
113    Info.addArgument(getTemplateArgs()[I]);
114}
115
116std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
117  return sizeof(ExplicitTemplateArgumentList) +
118         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
119}
120
121std::size_t ExplicitTemplateArgumentList::sizeFor(
122                                      const TemplateArgumentListInfo &Info) {
123  return sizeFor(Info.size());
124}
125
126void DeclRefExpr::computeDependence() {
127  ExprBits.TypeDependent = false;
128  ExprBits.ValueDependent = false;
129
130  NamedDecl *D = getDecl();
131
132  // (TD) C++ [temp.dep.expr]p3:
133  //   An id-expression is type-dependent if it contains:
134  //
135  // and
136  //
137  // (VD) C++ [temp.dep.constexpr]p2:
138  //  An identifier is value-dependent if it is:
139
140  //  (TD)  - an identifier that was declared with dependent type
141  //  (VD)  - a name declared with a dependent type,
142  if (getType()->isDependentType()) {
143    ExprBits.TypeDependent = true;
144    ExprBits.ValueDependent = true;
145  }
146  //  (TD)  - a conversion-function-id that specifies a dependent type
147  else if (D->getDeclName().getNameKind()
148                               == DeclarationName::CXXConversionFunctionName &&
149           D->getDeclName().getCXXNameType()->isDependentType()) {
150    ExprBits.TypeDependent = true;
151    ExprBits.ValueDependent = true;
152  }
153  //  (TD)  - a template-id that is dependent,
154  else if (hasExplicitTemplateArgs() &&
155           TemplateSpecializationType::anyDependentTemplateArguments(
156                                                       getTemplateArgs(),
157                                                       getNumTemplateArgs())) {
158    ExprBits.TypeDependent = true;
159    ExprBits.ValueDependent = true;
160  }
161  //  (VD)  - the name of a non-type template parameter,
162  else if (isa<NonTypeTemplateParmDecl>(D))
163    ExprBits.ValueDependent = true;
164  //  (VD) - a constant with integral or enumeration type and is
165  //         initialized with an expression that is value-dependent.
166  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
167    if (Var->getType()->isIntegralOrEnumerationType() &&
168        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
169      if (const Expr *Init = Var->getAnyInitializer())
170        if (Init->isValueDependent())
171          ExprBits.ValueDependent = true;
172    }
173    // (VD) - FIXME: Missing from the standard:
174    //      -  a member function or a static data member of the current
175    //         instantiation
176    else if (Var->isStaticDataMember() &&
177             Var->getDeclContext()->isDependentContext())
178      ExprBits.ValueDependent = true;
179  }
180  // (VD) - FIXME: Missing from the standard:
181  //      -  a member function or a static data member of the current
182  //         instantiation
183  else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
184    ExprBits.ValueDependent = true;
185  //  (TD)  - a nested-name-specifier or a qualified-id that names a
186  //          member of an unknown specialization.
187  //        (handled by DependentScopeDeclRefExpr)
188}
189
190DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
191                         SourceRange QualifierRange,
192                         ValueDecl *D, SourceLocation NameLoc,
193                         const TemplateArgumentListInfo *TemplateArgs,
194                         QualType T)
195  : Expr(DeclRefExprClass, T, false, false),
196    DecoratedD(D,
197               (Qualifier? HasQualifierFlag : 0) |
198               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
199    Loc(NameLoc) {
200  if (Qualifier) {
201    NameQualifier *NQ = getNameQualifier();
202    NQ->NNS = Qualifier;
203    NQ->Range = QualifierRange;
204  }
205
206  if (TemplateArgs)
207    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
208
209  computeDependence();
210}
211
212DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
213                         SourceRange QualifierRange,
214                         ValueDecl *D, const DeclarationNameInfo &NameInfo,
215                         const TemplateArgumentListInfo *TemplateArgs,
216                         QualType T)
217  : Expr(DeclRefExprClass, T, false, false),
218    DecoratedD(D,
219               (Qualifier? HasQualifierFlag : 0) |
220               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
221    Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
222  if (Qualifier) {
223    NameQualifier *NQ = getNameQualifier();
224    NQ->NNS = Qualifier;
225    NQ->Range = QualifierRange;
226  }
227
228  if (TemplateArgs)
229    getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
230
231  computeDependence();
232}
233
234DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
235                                 NestedNameSpecifier *Qualifier,
236                                 SourceRange QualifierRange,
237                                 ValueDecl *D,
238                                 SourceLocation NameLoc,
239                                 QualType T,
240                                 const TemplateArgumentListInfo *TemplateArgs) {
241  return Create(Context, Qualifier, QualifierRange, D,
242                DeclarationNameInfo(D->getDeclName(), NameLoc),
243                T, TemplateArgs);
244}
245
246DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
247                                 NestedNameSpecifier *Qualifier,
248                                 SourceRange QualifierRange,
249                                 ValueDecl *D,
250                                 const DeclarationNameInfo &NameInfo,
251                                 QualType T,
252                                 const TemplateArgumentListInfo *TemplateArgs) {
253  std::size_t Size = sizeof(DeclRefExpr);
254  if (Qualifier != 0)
255    Size += sizeof(NameQualifier);
256
257  if (TemplateArgs)
258    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
259
260  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
261  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameInfo,
262                               TemplateArgs, T);
263}
264
265DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier,
266                                      unsigned NumTemplateArgs) {
267  std::size_t Size = sizeof(DeclRefExpr);
268  if (HasQualifier)
269    Size += sizeof(NameQualifier);
270
271  if (NumTemplateArgs)
272    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
273
274  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
275  return new (Mem) DeclRefExpr(EmptyShell());
276}
277
278SourceRange DeclRefExpr::getSourceRange() const {
279  SourceRange R = getNameInfo().getSourceRange();
280  if (hasQualifier())
281    R.setBegin(getQualifierRange().getBegin());
282  if (hasExplicitTemplateArgs())
283    R.setEnd(getRAngleLoc());
284  return R;
285}
286
287// FIXME: Maybe this should use DeclPrinter with a special "print predefined
288// expr" policy instead.
289std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
290  ASTContext &Context = CurrentDecl->getASTContext();
291
292  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
293    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
294      return FD->getNameAsString();
295
296    llvm::SmallString<256> Name;
297    llvm::raw_svector_ostream Out(Name);
298
299    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
300      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
301        Out << "virtual ";
302      if (MD->isStatic())
303        Out << "static ";
304    }
305
306    PrintingPolicy Policy(Context.getLangOptions());
307
308    std::string Proto = FD->getQualifiedNameAsString(Policy);
309
310    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
311    const FunctionProtoType *FT = 0;
312    if (FD->hasWrittenPrototype())
313      FT = dyn_cast<FunctionProtoType>(AFT);
314
315    Proto += "(";
316    if (FT) {
317      llvm::raw_string_ostream POut(Proto);
318      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
319        if (i) POut << ", ";
320        std::string Param;
321        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
322        POut << Param;
323      }
324
325      if (FT->isVariadic()) {
326        if (FD->getNumParams()) POut << ", ";
327        POut << "...";
328      }
329    }
330    Proto += ")";
331
332    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
333      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
334      if (ThisQuals.hasConst())
335        Proto += " const";
336      if (ThisQuals.hasVolatile())
337        Proto += " volatile";
338    }
339
340    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
341      AFT->getResultType().getAsStringInternal(Proto, Policy);
342
343    Out << Proto;
344
345    Out.flush();
346    return Name.str().str();
347  }
348  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
349    llvm::SmallString<256> Name;
350    llvm::raw_svector_ostream Out(Name);
351    Out << (MD->isInstanceMethod() ? '-' : '+');
352    Out << '[';
353
354    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
355    // a null check to avoid a crash.
356    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
357      Out << ID;
358
359    if (const ObjCCategoryImplDecl *CID =
360        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
361      Out << '(' << CID << ')';
362
363    Out <<  ' ';
364    Out << MD->getSelector().getAsString();
365    Out <<  ']';
366
367    Out.flush();
368    return Name.str().str();
369  }
370  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
371    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
372    return "top level";
373  }
374  return "";
375}
376
377void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
378  if (hasAllocation())
379    C.Deallocate(pVal);
380
381  BitWidth = Val.getBitWidth();
382  unsigned NumWords = Val.getNumWords();
383  const uint64_t* Words = Val.getRawData();
384  if (NumWords > 1) {
385    pVal = new (C) uint64_t[NumWords];
386    std::copy(Words, Words + NumWords, pVal);
387  } else if (NumWords == 1)
388    VAL = Words[0];
389  else
390    VAL = 0;
391}
392
393IntegerLiteral *
394IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
395                       QualType type, SourceLocation l) {
396  return new (C) IntegerLiteral(C, V, type, l);
397}
398
399IntegerLiteral *
400IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
401  return new (C) IntegerLiteral(Empty);
402}
403
404FloatingLiteral *
405FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
406                        bool isexact, QualType Type, SourceLocation L) {
407  return new (C) FloatingLiteral(C, V, isexact, Type, L);
408}
409
410FloatingLiteral *
411FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
412  return new (C) FloatingLiteral(Empty);
413}
414
415/// getValueAsApproximateDouble - This returns the value as an inaccurate
416/// double.  Note that this may cause loss of precision, but is useful for
417/// debugging dumps, etc.
418double FloatingLiteral::getValueAsApproximateDouble() const {
419  llvm::APFloat V = getValue();
420  bool ignored;
421  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
422            &ignored);
423  return V.convertToDouble();
424}
425
426StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
427                                     unsigned ByteLength, bool Wide,
428                                     QualType Ty,
429                                     const SourceLocation *Loc,
430                                     unsigned NumStrs) {
431  // Allocate enough space for the StringLiteral plus an array of locations for
432  // any concatenated string tokens.
433  void *Mem = C.Allocate(sizeof(StringLiteral)+
434                         sizeof(SourceLocation)*(NumStrs-1),
435                         llvm::alignOf<StringLiteral>());
436  StringLiteral *SL = new (Mem) StringLiteral(Ty);
437
438  // OPTIMIZE: could allocate this appended to the StringLiteral.
439  char *AStrData = new (C, 1) char[ByteLength];
440  memcpy(AStrData, StrData, ByteLength);
441  SL->StrData = AStrData;
442  SL->ByteLength = ByteLength;
443  SL->IsWide = Wide;
444  SL->TokLocs[0] = Loc[0];
445  SL->NumConcatenated = NumStrs;
446
447  if (NumStrs != 1)
448    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
449  return SL;
450}
451
452StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
453  void *Mem = C.Allocate(sizeof(StringLiteral)+
454                         sizeof(SourceLocation)*(NumStrs-1),
455                         llvm::alignOf<StringLiteral>());
456  StringLiteral *SL = new (Mem) StringLiteral(QualType());
457  SL->StrData = 0;
458  SL->ByteLength = 0;
459  SL->NumConcatenated = NumStrs;
460  return SL;
461}
462
463void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
464  char *AStrData = new (C, 1) char[Str.size()];
465  memcpy(AStrData, Str.data(), Str.size());
466  StrData = AStrData;
467  ByteLength = Str.size();
468}
469
470/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
471/// corresponds to, e.g. "sizeof" or "[pre]++".
472const char *UnaryOperator::getOpcodeStr(Opcode Op) {
473  switch (Op) {
474  default: assert(0 && "Unknown unary operator");
475  case UO_PostInc: return "++";
476  case UO_PostDec: return "--";
477  case UO_PreInc:  return "++";
478  case UO_PreDec:  return "--";
479  case UO_AddrOf:  return "&";
480  case UO_Deref:   return "*";
481  case UO_Plus:    return "+";
482  case UO_Minus:   return "-";
483  case UO_Not:     return "~";
484  case UO_LNot:    return "!";
485  case UO_Real:    return "__real";
486  case UO_Imag:    return "__imag";
487  case UO_Extension: return "__extension__";
488  }
489}
490
491UnaryOperatorKind
492UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
493  switch (OO) {
494  default: assert(false && "No unary operator for overloaded function");
495  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
496  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
497  case OO_Amp:        return UO_AddrOf;
498  case OO_Star:       return UO_Deref;
499  case OO_Plus:       return UO_Plus;
500  case OO_Minus:      return UO_Minus;
501  case OO_Tilde:      return UO_Not;
502  case OO_Exclaim:    return UO_LNot;
503  }
504}
505
506OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
507  switch (Opc) {
508  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
509  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
510  case UO_AddrOf: return OO_Amp;
511  case UO_Deref: return OO_Star;
512  case UO_Plus: return OO_Plus;
513  case UO_Minus: return OO_Minus;
514  case UO_Not: return OO_Tilde;
515  case UO_LNot: return OO_Exclaim;
516  default: return OO_None;
517  }
518}
519
520
521//===----------------------------------------------------------------------===//
522// Postfix Operators.
523//===----------------------------------------------------------------------===//
524
525CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
526                   unsigned numargs, QualType t, SourceLocation rparenloc)
527  : Expr(SC, t,
528         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
529         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
530    NumArgs(numargs) {
531
532  SubExprs = new (C) Stmt*[numargs+1];
533  SubExprs[FN] = fn;
534  for (unsigned i = 0; i != numargs; ++i)
535    SubExprs[i+ARGS_START] = args[i];
536
537  RParenLoc = rparenloc;
538}
539
540CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
541                   QualType t, SourceLocation rparenloc)
542  : Expr(CallExprClass, t,
543         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
544         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
545    NumArgs(numargs) {
546
547  SubExprs = new (C) Stmt*[numargs+1];
548  SubExprs[FN] = fn;
549  for (unsigned i = 0; i != numargs; ++i)
550    SubExprs[i+ARGS_START] = args[i];
551
552  RParenLoc = rparenloc;
553}
554
555CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
556  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
557  SubExprs = new (C) Stmt*[1];
558}
559
560Decl *CallExpr::getCalleeDecl() {
561  Expr *CEE = getCallee()->IgnoreParenCasts();
562  // If we're calling a dereference, look at the pointer instead.
563  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
564    if (BO->isPtrMemOp())
565      CEE = BO->getRHS()->IgnoreParenCasts();
566  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
567    if (UO->getOpcode() == UO_Deref)
568      CEE = UO->getSubExpr()->IgnoreParenCasts();
569  }
570  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
571    return DRE->getDecl();
572  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
573    return ME->getMemberDecl();
574
575  return 0;
576}
577
578FunctionDecl *CallExpr::getDirectCallee() {
579  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
580}
581
582/// setNumArgs - This changes the number of arguments present in this call.
583/// Any orphaned expressions are deleted by this, and any new operands are set
584/// to null.
585void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
586  // No change, just return.
587  if (NumArgs == getNumArgs()) return;
588
589  // If shrinking # arguments, just delete the extras and forgot them.
590  if (NumArgs < getNumArgs()) {
591    this->NumArgs = NumArgs;
592    return;
593  }
594
595  // Otherwise, we are growing the # arguments.  New an bigger argument array.
596  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
597  // Copy over args.
598  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
599    NewSubExprs[i] = SubExprs[i];
600  // Null out new args.
601  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
602    NewSubExprs[i] = 0;
603
604  if (SubExprs) C.Deallocate(SubExprs);
605  SubExprs = NewSubExprs;
606  this->NumArgs = NumArgs;
607}
608
609/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
610/// not, return 0.
611unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
612  // All simple function calls (e.g. func()) are implicitly cast to pointer to
613  // function. As a result, we try and obtain the DeclRefExpr from the
614  // ImplicitCastExpr.
615  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
616  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
617    return 0;
618
619  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
620  if (!DRE)
621    return 0;
622
623  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
624  if (!FDecl)
625    return 0;
626
627  if (!FDecl->getIdentifier())
628    return 0;
629
630  return FDecl->getBuiltinID();
631}
632
633QualType CallExpr::getCallReturnType() const {
634  QualType CalleeType = getCallee()->getType();
635  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
636    CalleeType = FnTypePtr->getPointeeType();
637  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
638    CalleeType = BPT->getPointeeType();
639  else if (const MemberPointerType *MPT
640                                      = CalleeType->getAs<MemberPointerType>())
641    CalleeType = MPT->getPointeeType();
642
643  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
644  return FnType->getResultType();
645}
646
647OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
648                                   SourceLocation OperatorLoc,
649                                   TypeSourceInfo *tsi,
650                                   OffsetOfNode* compsPtr, unsigned numComps,
651                                   Expr** exprsPtr, unsigned numExprs,
652                                   SourceLocation RParenLoc) {
653  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
654                         sizeof(OffsetOfNode) * numComps +
655                         sizeof(Expr*) * numExprs);
656
657  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
658                                exprsPtr, numExprs, RParenLoc);
659}
660
661OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
662                                        unsigned numComps, unsigned numExprs) {
663  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
664                         sizeof(OffsetOfNode) * numComps +
665                         sizeof(Expr*) * numExprs);
666  return new (Mem) OffsetOfExpr(numComps, numExprs);
667}
668
669OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
670                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
671                           OffsetOfNode* compsPtr, unsigned numComps,
672                           Expr** exprsPtr, unsigned numExprs,
673                           SourceLocation RParenLoc)
674  : Expr(OffsetOfExprClass, type, /*TypeDependent=*/false,
675         /*ValueDependent=*/tsi->getType()->isDependentType() ||
676         hasAnyTypeDependentArguments(exprsPtr, numExprs) ||
677         hasAnyValueDependentArguments(exprsPtr, numExprs)),
678    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
679    NumComps(numComps), NumExprs(numExprs)
680{
681  for(unsigned i = 0; i < numComps; ++i) {
682    setComponent(i, compsPtr[i]);
683  }
684
685  for(unsigned i = 0; i < numExprs; ++i) {
686    setIndexExpr(i, exprsPtr[i]);
687  }
688}
689
690IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
691  assert(getKind() == Field || getKind() == Identifier);
692  if (getKind() == Field)
693    return getField()->getIdentifier();
694
695  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
696}
697
698MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
699                               NestedNameSpecifier *qual,
700                               SourceRange qualrange,
701                               ValueDecl *memberdecl,
702                               DeclAccessPair founddecl,
703                               DeclarationNameInfo nameinfo,
704                               const TemplateArgumentListInfo *targs,
705                               QualType ty) {
706  std::size_t Size = sizeof(MemberExpr);
707
708  bool hasQualOrFound = (qual != 0 ||
709                         founddecl.getDecl() != memberdecl ||
710                         founddecl.getAccess() != memberdecl->getAccess());
711  if (hasQualOrFound)
712    Size += sizeof(MemberNameQualifier);
713
714  if (targs)
715    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
716
717  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
718  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, ty);
719
720  if (hasQualOrFound) {
721    if (qual && qual->isDependent()) {
722      E->setValueDependent(true);
723      E->setTypeDependent(true);
724    }
725    E->HasQualifierOrFoundDecl = true;
726
727    MemberNameQualifier *NQ = E->getMemberQualifier();
728    NQ->NNS = qual;
729    NQ->Range = qualrange;
730    NQ->FoundDecl = founddecl;
731  }
732
733  if (targs) {
734    E->HasExplicitTemplateArgumentList = true;
735    E->getExplicitTemplateArgs().initializeFrom(*targs);
736  }
737
738  return E;
739}
740
741const char *CastExpr::getCastKindName() const {
742  switch (getCastKind()) {
743  case CK_Unknown:
744    return "Unknown";
745  case CK_Dependent:
746    return "Dependent";
747  case CK_BitCast:
748    return "BitCast";
749  case CK_LValueBitCast:
750    return "LValueBitCast";
751  case CK_NoOp:
752    return "NoOp";
753  case CK_BaseToDerived:
754    return "BaseToDerived";
755  case CK_DerivedToBase:
756    return "DerivedToBase";
757  case CK_UncheckedDerivedToBase:
758    return "UncheckedDerivedToBase";
759  case CK_Dynamic:
760    return "Dynamic";
761  case CK_ToUnion:
762    return "ToUnion";
763  case CK_ArrayToPointerDecay:
764    return "ArrayToPointerDecay";
765  case CK_FunctionToPointerDecay:
766    return "FunctionToPointerDecay";
767  case CK_NullToMemberPointer:
768    return "NullToMemberPointer";
769  case CK_NullToPointer:
770    return "NullToPointer";
771  case CK_BaseToDerivedMemberPointer:
772    return "BaseToDerivedMemberPointer";
773  case CK_DerivedToBaseMemberPointer:
774    return "DerivedToBaseMemberPointer";
775  case CK_UserDefinedConversion:
776    return "UserDefinedConversion";
777  case CK_ConstructorConversion:
778    return "ConstructorConversion";
779  case CK_IntegralToPointer:
780    return "IntegralToPointer";
781  case CK_PointerToIntegral:
782    return "PointerToIntegral";
783  case CK_PointerToBoolean:
784    return "PointerToBoolean";
785  case CK_ToVoid:
786    return "ToVoid";
787  case CK_VectorSplat:
788    return "VectorSplat";
789  case CK_IntegralCast:
790    return "IntegralCast";
791  case CK_IntegralToBoolean:
792    return "IntegralToBoolean";
793  case CK_IntegralToFloating:
794    return "IntegralToFloating";
795  case CK_FloatingToIntegral:
796    return "FloatingToIntegral";
797  case CK_FloatingCast:
798    return "FloatingCast";
799  case CK_FloatingToBoolean:
800    return "FloatingToBoolean";
801  case CK_MemberPointerToBoolean:
802    return "MemberPointerToBoolean";
803  case CK_AnyPointerToObjCPointerCast:
804    return "AnyPointerToObjCPointerCast";
805  case CK_AnyPointerToBlockPointerCast:
806    return "AnyPointerToBlockPointerCast";
807  case CK_ObjCObjectLValueCast:
808    return "ObjCObjectLValueCast";
809  case CK_FloatingRealToComplex:
810    return "FloatingRealToComplex";
811  case CK_FloatingComplexToReal:
812    return "FloatingComplexToReal";
813  case CK_FloatingComplexToBoolean:
814    return "FloatingComplexToBoolean";
815  case CK_FloatingComplexCast:
816    return "FloatingComplexCast";
817  case CK_FloatingComplexToIntegralComplex:
818    return "FloatingComplexToIntegralComplex";
819  case CK_IntegralRealToComplex:
820    return "IntegralRealToComplex";
821  case CK_IntegralComplexToReal:
822    return "IntegralComplexToReal";
823  case CK_IntegralComplexToBoolean:
824    return "IntegralComplexToBoolean";
825  case CK_IntegralComplexCast:
826    return "IntegralComplexCast";
827  case CK_IntegralComplexToFloatingComplex:
828    return "IntegralComplexToFloatingComplex";
829  }
830
831  llvm_unreachable("Unhandled cast kind!");
832  return 0;
833}
834
835Expr *CastExpr::getSubExprAsWritten() {
836  Expr *SubExpr = 0;
837  CastExpr *E = this;
838  do {
839    SubExpr = E->getSubExpr();
840
841    // Skip any temporary bindings; they're implicit.
842    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
843      SubExpr = Binder->getSubExpr();
844
845    // Conversions by constructor and conversion functions have a
846    // subexpression describing the call; strip it off.
847    if (E->getCastKind() == CK_ConstructorConversion)
848      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
849    else if (E->getCastKind() == CK_UserDefinedConversion)
850      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
851
852    // If the subexpression we're left with is an implicit cast, look
853    // through that, too.
854  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
855
856  return SubExpr;
857}
858
859CXXBaseSpecifier **CastExpr::path_buffer() {
860  switch (getStmtClass()) {
861#define ABSTRACT_STMT(x)
862#define CASTEXPR(Type, Base) \
863  case Stmt::Type##Class: \
864    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
865#define STMT(Type, Base)
866#include "clang/AST/StmtNodes.inc"
867  default:
868    llvm_unreachable("non-cast expressions not possible here");
869    return 0;
870  }
871}
872
873void CastExpr::setCastPath(const CXXCastPath &Path) {
874  assert(Path.size() == path_size());
875  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
876}
877
878ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
879                                           CastKind Kind, Expr *Operand,
880                                           const CXXCastPath *BasePath,
881                                           ExprValueKind VK) {
882  unsigned PathSize = (BasePath ? BasePath->size() : 0);
883  void *Buffer =
884    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
885  ImplicitCastExpr *E =
886    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
887  if (PathSize) E->setCastPath(*BasePath);
888  return E;
889}
890
891ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
892                                                unsigned PathSize) {
893  void *Buffer =
894    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
895  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
896}
897
898
899CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
900                                       CastKind K, Expr *Op,
901                                       const CXXCastPath *BasePath,
902                                       TypeSourceInfo *WrittenTy,
903                                       SourceLocation L, SourceLocation R) {
904  unsigned PathSize = (BasePath ? BasePath->size() : 0);
905  void *Buffer =
906    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
907  CStyleCastExpr *E =
908    new (Buffer) CStyleCastExpr(T, K, Op, PathSize, WrittenTy, L, R);
909  if (PathSize) E->setCastPath(*BasePath);
910  return E;
911}
912
913CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
914  void *Buffer =
915    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
916  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
917}
918
919/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
920/// corresponds to, e.g. "<<=".
921const char *BinaryOperator::getOpcodeStr(Opcode Op) {
922  switch (Op) {
923  case BO_PtrMemD:   return ".*";
924  case BO_PtrMemI:   return "->*";
925  case BO_Mul:       return "*";
926  case BO_Div:       return "/";
927  case BO_Rem:       return "%";
928  case BO_Add:       return "+";
929  case BO_Sub:       return "-";
930  case BO_Shl:       return "<<";
931  case BO_Shr:       return ">>";
932  case BO_LT:        return "<";
933  case BO_GT:        return ">";
934  case BO_LE:        return "<=";
935  case BO_GE:        return ">=";
936  case BO_EQ:        return "==";
937  case BO_NE:        return "!=";
938  case BO_And:       return "&";
939  case BO_Xor:       return "^";
940  case BO_Or:        return "|";
941  case BO_LAnd:      return "&&";
942  case BO_LOr:       return "||";
943  case BO_Assign:    return "=";
944  case BO_MulAssign: return "*=";
945  case BO_DivAssign: return "/=";
946  case BO_RemAssign: return "%=";
947  case BO_AddAssign: return "+=";
948  case BO_SubAssign: return "-=";
949  case BO_ShlAssign: return "<<=";
950  case BO_ShrAssign: return ">>=";
951  case BO_AndAssign: return "&=";
952  case BO_XorAssign: return "^=";
953  case BO_OrAssign:  return "|=";
954  case BO_Comma:     return ",";
955  }
956
957  return "";
958}
959
960BinaryOperatorKind
961BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
962  switch (OO) {
963  default: assert(false && "Not an overloadable binary operator");
964  case OO_Plus: return BO_Add;
965  case OO_Minus: return BO_Sub;
966  case OO_Star: return BO_Mul;
967  case OO_Slash: return BO_Div;
968  case OO_Percent: return BO_Rem;
969  case OO_Caret: return BO_Xor;
970  case OO_Amp: return BO_And;
971  case OO_Pipe: return BO_Or;
972  case OO_Equal: return BO_Assign;
973  case OO_Less: return BO_LT;
974  case OO_Greater: return BO_GT;
975  case OO_PlusEqual: return BO_AddAssign;
976  case OO_MinusEqual: return BO_SubAssign;
977  case OO_StarEqual: return BO_MulAssign;
978  case OO_SlashEqual: return BO_DivAssign;
979  case OO_PercentEqual: return BO_RemAssign;
980  case OO_CaretEqual: return BO_XorAssign;
981  case OO_AmpEqual: return BO_AndAssign;
982  case OO_PipeEqual: return BO_OrAssign;
983  case OO_LessLess: return BO_Shl;
984  case OO_GreaterGreater: return BO_Shr;
985  case OO_LessLessEqual: return BO_ShlAssign;
986  case OO_GreaterGreaterEqual: return BO_ShrAssign;
987  case OO_EqualEqual: return BO_EQ;
988  case OO_ExclaimEqual: return BO_NE;
989  case OO_LessEqual: return BO_LE;
990  case OO_GreaterEqual: return BO_GE;
991  case OO_AmpAmp: return BO_LAnd;
992  case OO_PipePipe: return BO_LOr;
993  case OO_Comma: return BO_Comma;
994  case OO_ArrowStar: return BO_PtrMemI;
995  }
996}
997
998OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
999  static const OverloadedOperatorKind OverOps[] = {
1000    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1001    OO_Star, OO_Slash, OO_Percent,
1002    OO_Plus, OO_Minus,
1003    OO_LessLess, OO_GreaterGreater,
1004    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1005    OO_EqualEqual, OO_ExclaimEqual,
1006    OO_Amp,
1007    OO_Caret,
1008    OO_Pipe,
1009    OO_AmpAmp,
1010    OO_PipePipe,
1011    OO_Equal, OO_StarEqual,
1012    OO_SlashEqual, OO_PercentEqual,
1013    OO_PlusEqual, OO_MinusEqual,
1014    OO_LessLessEqual, OO_GreaterGreaterEqual,
1015    OO_AmpEqual, OO_CaretEqual,
1016    OO_PipeEqual,
1017    OO_Comma
1018  };
1019  return OverOps[Opc];
1020}
1021
1022InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1023                           Expr **initExprs, unsigned numInits,
1024                           SourceLocation rbraceloc)
1025  : Expr(InitListExprClass, QualType(), false, false),
1026    InitExprs(C, numInits),
1027    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
1028    UnionFieldInit(0), HadArrayRangeDesignator(false)
1029{
1030  for (unsigned I = 0; I != numInits; ++I) {
1031    if (initExprs[I]->isTypeDependent())
1032      ExprBits.TypeDependent = true;
1033    if (initExprs[I]->isValueDependent())
1034      ExprBits.ValueDependent = true;
1035  }
1036
1037  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1038}
1039
1040void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1041  if (NumInits > InitExprs.size())
1042    InitExprs.reserve(C, NumInits);
1043}
1044
1045void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1046  InitExprs.resize(C, NumInits, 0);
1047}
1048
1049Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1050  if (Init >= InitExprs.size()) {
1051    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1052    InitExprs.back() = expr;
1053    return 0;
1054  }
1055
1056  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1057  InitExprs[Init] = expr;
1058  return Result;
1059}
1060
1061SourceRange InitListExpr::getSourceRange() const {
1062  if (SyntacticForm)
1063    return SyntacticForm->getSourceRange();
1064  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1065  if (Beg.isInvalid()) {
1066    // Find the first non-null initializer.
1067    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1068                                     E = InitExprs.end();
1069      I != E; ++I) {
1070      if (Stmt *S = *I) {
1071        Beg = S->getLocStart();
1072        break;
1073      }
1074    }
1075  }
1076  if (End.isInvalid()) {
1077    // Find the first non-null initializer from the end.
1078    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1079                                             E = InitExprs.rend();
1080      I != E; ++I) {
1081      if (Stmt *S = *I) {
1082        End = S->getSourceRange().getEnd();
1083        break;
1084      }
1085    }
1086  }
1087  return SourceRange(Beg, End);
1088}
1089
1090/// getFunctionType - Return the underlying function type for this block.
1091///
1092const FunctionType *BlockExpr::getFunctionType() const {
1093  return getType()->getAs<BlockPointerType>()->
1094                    getPointeeType()->getAs<FunctionType>();
1095}
1096
1097SourceLocation BlockExpr::getCaretLocation() const {
1098  return TheBlock->getCaretLocation();
1099}
1100const Stmt *BlockExpr::getBody() const {
1101  return TheBlock->getBody();
1102}
1103Stmt *BlockExpr::getBody() {
1104  return TheBlock->getBody();
1105}
1106
1107
1108//===----------------------------------------------------------------------===//
1109// Generic Expression Routines
1110//===----------------------------------------------------------------------===//
1111
1112/// isUnusedResultAWarning - Return true if this immediate expression should
1113/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1114/// with location to warn on and the source range[s] to report with the
1115/// warning.
1116bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1117                                  SourceRange &R2, ASTContext &Ctx) const {
1118  // Don't warn if the expr is type dependent. The type could end up
1119  // instantiating to void.
1120  if (isTypeDependent())
1121    return false;
1122
1123  switch (getStmtClass()) {
1124  default:
1125    if (getType()->isVoidType())
1126      return false;
1127    Loc = getExprLoc();
1128    R1 = getSourceRange();
1129    return true;
1130  case ParenExprClass:
1131    return cast<ParenExpr>(this)->getSubExpr()->
1132      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1133  case UnaryOperatorClass: {
1134    const UnaryOperator *UO = cast<UnaryOperator>(this);
1135
1136    switch (UO->getOpcode()) {
1137    default: break;
1138    case UO_PostInc:
1139    case UO_PostDec:
1140    case UO_PreInc:
1141    case UO_PreDec:                 // ++/--
1142      return false;  // Not a warning.
1143    case UO_Deref:
1144      // Dereferencing a volatile pointer is a side-effect.
1145      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1146        return false;
1147      break;
1148    case UO_Real:
1149    case UO_Imag:
1150      // accessing a piece of a volatile complex is a side-effect.
1151      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1152          .isVolatileQualified())
1153        return false;
1154      break;
1155    case UO_Extension:
1156      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1157    }
1158    Loc = UO->getOperatorLoc();
1159    R1 = UO->getSubExpr()->getSourceRange();
1160    return true;
1161  }
1162  case BinaryOperatorClass: {
1163    const BinaryOperator *BO = cast<BinaryOperator>(this);
1164    switch (BO->getOpcode()) {
1165      default:
1166        break;
1167      // Consider the RHS of comma for side effects. LHS was checked by
1168      // Sema::CheckCommaOperands.
1169      case BO_Comma:
1170        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1171        // lvalue-ness) of an assignment written in a macro.
1172        if (IntegerLiteral *IE =
1173              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1174          if (IE->getValue() == 0)
1175            return false;
1176        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1177      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1178      case BO_LAnd:
1179      case BO_LOr:
1180        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1181            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1182          return false;
1183        break;
1184    }
1185    if (BO->isAssignmentOp())
1186      return false;
1187    Loc = BO->getOperatorLoc();
1188    R1 = BO->getLHS()->getSourceRange();
1189    R2 = BO->getRHS()->getSourceRange();
1190    return true;
1191  }
1192  case CompoundAssignOperatorClass:
1193  case VAArgExprClass:
1194    return false;
1195
1196  case ConditionalOperatorClass: {
1197    // The condition must be evaluated, but if either the LHS or RHS is a
1198    // warning, warn about them.
1199    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1200    if (Exp->getLHS() &&
1201        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1202      return true;
1203    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1204  }
1205
1206  case MemberExprClass:
1207    // If the base pointer or element is to a volatile pointer/field, accessing
1208    // it is a side effect.
1209    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1210      return false;
1211    Loc = cast<MemberExpr>(this)->getMemberLoc();
1212    R1 = SourceRange(Loc, Loc);
1213    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1214    return true;
1215
1216  case ArraySubscriptExprClass:
1217    // If the base pointer or element is to a volatile pointer/field, accessing
1218    // it is a side effect.
1219    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1220      return false;
1221    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1222    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1223    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1224    return true;
1225
1226  case CallExprClass:
1227  case CXXOperatorCallExprClass:
1228  case CXXMemberCallExprClass: {
1229    // If this is a direct call, get the callee.
1230    const CallExpr *CE = cast<CallExpr>(this);
1231    if (const Decl *FD = CE->getCalleeDecl()) {
1232      // If the callee has attribute pure, const, or warn_unused_result, warn
1233      // about it. void foo() { strlen("bar"); } should warn.
1234      //
1235      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1236      // updated to match for QoI.
1237      if (FD->getAttr<WarnUnusedResultAttr>() ||
1238          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1239        Loc = CE->getCallee()->getLocStart();
1240        R1 = CE->getCallee()->getSourceRange();
1241
1242        if (unsigned NumArgs = CE->getNumArgs())
1243          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1244                           CE->getArg(NumArgs-1)->getLocEnd());
1245        return true;
1246      }
1247    }
1248    return false;
1249  }
1250
1251  case CXXTemporaryObjectExprClass:
1252  case CXXConstructExprClass:
1253    return false;
1254
1255  case ObjCMessageExprClass: {
1256    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1257    const ObjCMethodDecl *MD = ME->getMethodDecl();
1258    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1259      Loc = getExprLoc();
1260      return true;
1261    }
1262    return false;
1263  }
1264
1265  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
1266#if 0
1267    const ObjCImplicitSetterGetterRefExpr *Ref =
1268      cast<ObjCImplicitSetterGetterRefExpr>(this);
1269    // FIXME: We really want the location of the '.' here.
1270    Loc = Ref->getLocation();
1271    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
1272    if (Ref->getBase())
1273      R2 = Ref->getBase()->getSourceRange();
1274#else
1275    Loc = getExprLoc();
1276    R1 = getSourceRange();
1277#endif
1278    return true;
1279  }
1280  case StmtExprClass: {
1281    // Statement exprs don't logically have side effects themselves, but are
1282    // sometimes used in macros in ways that give them a type that is unused.
1283    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1284    // however, if the result of the stmt expr is dead, we don't want to emit a
1285    // warning.
1286    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1287    if (!CS->body_empty()) {
1288      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1289        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1290      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1291        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1292          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1293    }
1294
1295    if (getType()->isVoidType())
1296      return false;
1297    Loc = cast<StmtExpr>(this)->getLParenLoc();
1298    R1 = getSourceRange();
1299    return true;
1300  }
1301  case CStyleCastExprClass:
1302    // If this is an explicit cast to void, allow it.  People do this when they
1303    // think they know what they're doing :).
1304    if (getType()->isVoidType())
1305      return false;
1306    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1307    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1308    return true;
1309  case CXXFunctionalCastExprClass: {
1310    if (getType()->isVoidType())
1311      return false;
1312    const CastExpr *CE = cast<CastExpr>(this);
1313
1314    // If this is a cast to void or a constructor conversion, check the operand.
1315    // Otherwise, the result of the cast is unused.
1316    if (CE->getCastKind() == CK_ToVoid ||
1317        CE->getCastKind() == CK_ConstructorConversion)
1318      return (cast<CastExpr>(this)->getSubExpr()
1319              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1320    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1321    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1322    return true;
1323  }
1324
1325  case ImplicitCastExprClass:
1326    // Check the operand, since implicit casts are inserted by Sema
1327    return (cast<ImplicitCastExpr>(this)
1328            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1329
1330  case CXXDefaultArgExprClass:
1331    return (cast<CXXDefaultArgExpr>(this)
1332            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1333
1334  case CXXNewExprClass:
1335    // FIXME: In theory, there might be new expressions that don't have side
1336    // effects (e.g. a placement new with an uninitialized POD).
1337  case CXXDeleteExprClass:
1338    return false;
1339  case CXXBindTemporaryExprClass:
1340    return (cast<CXXBindTemporaryExpr>(this)
1341            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1342  case CXXExprWithTemporariesClass:
1343    return (cast<CXXExprWithTemporaries>(this)
1344            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1345  }
1346}
1347
1348/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1349/// returns true, if it is; false otherwise.
1350bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1351  switch (getStmtClass()) {
1352  default:
1353    return false;
1354  case ObjCIvarRefExprClass:
1355    return true;
1356  case Expr::UnaryOperatorClass:
1357    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1358  case ParenExprClass:
1359    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1360  case ImplicitCastExprClass:
1361    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1362  case CStyleCastExprClass:
1363    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1364  case DeclRefExprClass: {
1365    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1366    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1367      if (VD->hasGlobalStorage())
1368        return true;
1369      QualType T = VD->getType();
1370      // dereferencing to a  pointer is always a gc'able candidate,
1371      // unless it is __weak.
1372      return T->isPointerType() &&
1373             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1374    }
1375    return false;
1376  }
1377  case MemberExprClass: {
1378    const MemberExpr *M = cast<MemberExpr>(this);
1379    return M->getBase()->isOBJCGCCandidate(Ctx);
1380  }
1381  case ArraySubscriptExprClass:
1382    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1383  }
1384}
1385
1386bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1387  if (isTypeDependent())
1388    return false;
1389  return isLvalue(Ctx) == Expr::LV_MemberFunction;
1390}
1391
1392static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
1393                                          Expr::CanThrowResult CT2) {
1394  // CanThrowResult constants are ordered so that the maximum is the correct
1395  // merge result.
1396  return CT1 > CT2 ? CT1 : CT2;
1397}
1398
1399static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
1400  Expr *E = const_cast<Expr*>(CE);
1401  Expr::CanThrowResult R = Expr::CT_Cannot;
1402  for (Expr::child_iterator I = E->child_begin(), IE = E->child_end();
1403       I != IE && R != Expr::CT_Can; ++I) {
1404    R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
1405  }
1406  return R;
1407}
1408
1409static Expr::CanThrowResult CanCalleeThrow(const Decl *D,
1410                                           bool NullThrows = true) {
1411  if (!D)
1412    return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
1413
1414  // See if we can get a function type from the decl somehow.
1415  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
1416  if (!VD) // If we have no clue what we're calling, assume the worst.
1417    return Expr::CT_Can;
1418
1419  // As an extension, we assume that __attribute__((nothrow)) functions don't
1420  // throw.
1421  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1422    return Expr::CT_Cannot;
1423
1424  QualType T = VD->getType();
1425  const FunctionProtoType *FT;
1426  if ((FT = T->getAs<FunctionProtoType>())) {
1427  } else if (const PointerType *PT = T->getAs<PointerType>())
1428    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1429  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1430    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1431  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1432    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1433  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1434    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1435
1436  if (!FT)
1437    return Expr::CT_Can;
1438
1439  return FT->hasEmptyExceptionSpec() ? Expr::CT_Cannot : Expr::CT_Can;
1440}
1441
1442static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1443  if (DC->isTypeDependent())
1444    return Expr::CT_Dependent;
1445
1446  if (!DC->getTypeAsWritten()->isReferenceType())
1447    return Expr::CT_Cannot;
1448
1449  return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
1450}
1451
1452static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
1453                                           const CXXTypeidExpr *DC) {
1454  if (DC->isTypeOperand())
1455    return Expr::CT_Cannot;
1456
1457  Expr *Op = DC->getExprOperand();
1458  if (Op->isTypeDependent())
1459    return Expr::CT_Dependent;
1460
1461  const RecordType *RT = Op->getType()->getAs<RecordType>();
1462  if (!RT)
1463    return Expr::CT_Cannot;
1464
1465  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1466    return Expr::CT_Cannot;
1467
1468  if (Op->Classify(C).isPRValue())
1469    return Expr::CT_Cannot;
1470
1471  return Expr::CT_Can;
1472}
1473
1474Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
1475  // C++ [expr.unary.noexcept]p3:
1476  //   [Can throw] if in a potentially-evaluated context the expression would
1477  //   contain:
1478  switch (getStmtClass()) {
1479  case CXXThrowExprClass:
1480    //   - a potentially evaluated throw-expression
1481    return CT_Can;
1482
1483  case CXXDynamicCastExprClass: {
1484    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1485    //     where T is a reference type, that requires a run-time check
1486    CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
1487    if (CT == CT_Can)
1488      return CT;
1489    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1490  }
1491
1492  case CXXTypeidExprClass:
1493    //   - a potentially evaluated typeid expression applied to a glvalue
1494    //     expression whose type is a polymorphic class type
1495    return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
1496
1497    //   - a potentially evaluated call to a function, member function, function
1498    //     pointer, or member function pointer that does not have a non-throwing
1499    //     exception-specification
1500  case CallExprClass:
1501  case CXXOperatorCallExprClass:
1502  case CXXMemberCallExprClass: {
1503    CanThrowResult CT = CanCalleeThrow(cast<CallExpr>(this)->getCalleeDecl());
1504    if (CT == CT_Can)
1505      return CT;
1506    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1507  }
1508
1509  case CXXConstructExprClass:
1510  case CXXTemporaryObjectExprClass: {
1511    CanThrowResult CT = CanCalleeThrow(
1512        cast<CXXConstructExpr>(this)->getConstructor());
1513    if (CT == CT_Can)
1514      return CT;
1515    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1516  }
1517
1518  case CXXNewExprClass: {
1519    CanThrowResult CT = MergeCanThrow(
1520        CanCalleeThrow(cast<CXXNewExpr>(this)->getOperatorNew()),
1521        CanCalleeThrow(cast<CXXNewExpr>(this)->getConstructor(),
1522                       /*NullThrows*/false));
1523    if (CT == CT_Can)
1524      return CT;
1525    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1526  }
1527
1528  case CXXDeleteExprClass: {
1529    CanThrowResult CT = CanCalleeThrow(
1530        cast<CXXDeleteExpr>(this)->getOperatorDelete());
1531    if (CT == CT_Can)
1532      return CT;
1533    const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
1534    // Unwrap exactly one implicit cast, which converts all pointers to void*.
1535    if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1536      Arg = Cast->getSubExpr();
1537    if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
1538      if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
1539        CanThrowResult CT2 = CanCalleeThrow(
1540            cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
1541        if (CT2 == CT_Can)
1542          return CT2;
1543        CT = MergeCanThrow(CT, CT2);
1544      }
1545    }
1546    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1547  }
1548
1549  case CXXBindTemporaryExprClass: {
1550    // The bound temporary has to be destroyed again, which might throw.
1551    CanThrowResult CT = CanCalleeThrow(
1552      cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
1553    if (CT == CT_Can)
1554      return CT;
1555    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1556  }
1557
1558    // ObjC message sends are like function calls, but never have exception
1559    // specs.
1560  case ObjCMessageExprClass:
1561  case ObjCPropertyRefExprClass:
1562  case ObjCImplicitSetterGetterRefExprClass:
1563    return CT_Can;
1564
1565    // Many other things have subexpressions, so we have to test those.
1566    // Some are simple:
1567  case ParenExprClass:
1568  case MemberExprClass:
1569  case CXXReinterpretCastExprClass:
1570  case CXXConstCastExprClass:
1571  case ConditionalOperatorClass:
1572  case CompoundLiteralExprClass:
1573  case ExtVectorElementExprClass:
1574  case InitListExprClass:
1575  case DesignatedInitExprClass:
1576  case ParenListExprClass:
1577  case VAArgExprClass:
1578  case CXXDefaultArgExprClass:
1579  case CXXExprWithTemporariesClass:
1580  case ObjCIvarRefExprClass:
1581  case ObjCIsaExprClass:
1582  case ShuffleVectorExprClass:
1583    return CanSubExprsThrow(C, this);
1584
1585    // Some might be dependent for other reasons.
1586  case UnaryOperatorClass:
1587  case ArraySubscriptExprClass:
1588  case ImplicitCastExprClass:
1589  case CStyleCastExprClass:
1590  case CXXStaticCastExprClass:
1591  case CXXFunctionalCastExprClass:
1592  case BinaryOperatorClass:
1593  case CompoundAssignOperatorClass: {
1594    CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
1595    return MergeCanThrow(CT, CanSubExprsThrow(C, this));
1596  }
1597
1598    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1599  case StmtExprClass:
1600    return CT_Can;
1601
1602  case ChooseExprClass:
1603    if (isTypeDependent() || isValueDependent())
1604      return CT_Dependent;
1605    return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
1606
1607    // Some expressions are always dependent.
1608  case DependentScopeDeclRefExprClass:
1609  case CXXUnresolvedConstructExprClass:
1610  case CXXDependentScopeMemberExprClass:
1611    return CT_Dependent;
1612
1613  default:
1614    // All other expressions don't have subexpressions, or else they are
1615    // unevaluated.
1616    return CT_Cannot;
1617  }
1618}
1619
1620Expr* Expr::IgnoreParens() {
1621  Expr* E = this;
1622  while (true) {
1623    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1624      E = P->getSubExpr();
1625      continue;
1626    }
1627    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1628      if (P->getOpcode() == UO_Extension) {
1629        E = P->getSubExpr();
1630        continue;
1631      }
1632    }
1633    return E;
1634  }
1635}
1636
1637/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1638/// or CastExprs or ImplicitCastExprs, returning their operand.
1639Expr *Expr::IgnoreParenCasts() {
1640  Expr *E = this;
1641  while (true) {
1642    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
1643      E = P->getSubExpr();
1644      continue;
1645    }
1646    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1647      E = P->getSubExpr();
1648      continue;
1649    }
1650    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1651      if (P->getOpcode() == UO_Extension) {
1652        E = P->getSubExpr();
1653        continue;
1654      }
1655    }
1656    return E;
1657  }
1658}
1659
1660Expr *Expr::IgnoreParenImpCasts() {
1661  Expr *E = this;
1662  while (true) {
1663    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1664      E = P->getSubExpr();
1665      continue;
1666    }
1667    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
1668      E = P->getSubExpr();
1669      continue;
1670    }
1671    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1672      if (P->getOpcode() == UO_Extension) {
1673        E = P->getSubExpr();
1674        continue;
1675      }
1676    }
1677    return E;
1678  }
1679}
1680
1681/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1682/// value (including ptr->int casts of the same size).  Strip off any
1683/// ParenExpr or CastExprs, returning their operand.
1684Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1685  Expr *E = this;
1686  while (true) {
1687    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1688      E = P->getSubExpr();
1689      continue;
1690    }
1691
1692    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1693      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1694      // ptr<->int casts of the same width.  We also ignore all identity casts.
1695      Expr *SE = P->getSubExpr();
1696
1697      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1698        E = SE;
1699        continue;
1700      }
1701
1702      if ((E->getType()->isPointerType() ||
1703           E->getType()->isIntegralType(Ctx)) &&
1704          (SE->getType()->isPointerType() ||
1705           SE->getType()->isIntegralType(Ctx)) &&
1706          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1707        E = SE;
1708        continue;
1709      }
1710    }
1711
1712    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
1713      if (P->getOpcode() == UO_Extension) {
1714        E = P->getSubExpr();
1715        continue;
1716      }
1717    }
1718
1719    return E;
1720  }
1721}
1722
1723bool Expr::isDefaultArgument() const {
1724  const Expr *E = this;
1725  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1726    E = ICE->getSubExprAsWritten();
1727
1728  return isa<CXXDefaultArgExpr>(E);
1729}
1730
1731/// \brief Skip over any no-op casts and any temporary-binding
1732/// expressions.
1733static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1734  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1735    if (ICE->getCastKind() == CK_NoOp)
1736      E = ICE->getSubExpr();
1737    else
1738      break;
1739  }
1740
1741  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1742    E = BE->getSubExpr();
1743
1744  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1745    if (ICE->getCastKind() == CK_NoOp)
1746      E = ICE->getSubExpr();
1747    else
1748      break;
1749  }
1750
1751  return E;
1752}
1753
1754/// isTemporaryObject - Determines if this expression produces a
1755/// temporary of the given class type.
1756bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
1757  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
1758    return false;
1759
1760  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1761
1762  // Temporaries are by definition pr-values of class type.
1763  if (!E->Classify(C).isPRValue()) {
1764    // In this context, property reference is a message call and is pr-value.
1765    if (!isa<ObjCPropertyRefExpr>(E) &&
1766        !isa<ObjCImplicitSetterGetterRefExpr>(E))
1767      return false;
1768  }
1769
1770  // Black-list a few cases which yield pr-values of class type that don't
1771  // refer to temporaries of that type:
1772
1773  // - implicit derived-to-base conversions
1774  if (isa<ImplicitCastExpr>(E)) {
1775    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
1776    case CK_DerivedToBase:
1777    case CK_UncheckedDerivedToBase:
1778      return false;
1779    default:
1780      break;
1781    }
1782  }
1783
1784  // - member expressions (all)
1785  if (isa<MemberExpr>(E))
1786    return false;
1787
1788  return true;
1789}
1790
1791/// hasAnyTypeDependentArguments - Determines if any of the expressions
1792/// in Exprs is type-dependent.
1793bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1794  for (unsigned I = 0; I < NumExprs; ++I)
1795    if (Exprs[I]->isTypeDependent())
1796      return true;
1797
1798  return false;
1799}
1800
1801/// hasAnyValueDependentArguments - Determines if any of the expressions
1802/// in Exprs is value-dependent.
1803bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1804  for (unsigned I = 0; I < NumExprs; ++I)
1805    if (Exprs[I]->isValueDependent())
1806      return true;
1807
1808  return false;
1809}
1810
1811bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
1812  // This function is attempting whether an expression is an initializer
1813  // which can be evaluated at compile-time.  isEvaluatable handles most
1814  // of the cases, but it can't deal with some initializer-specific
1815  // expressions, and it can't deal with aggregates; we deal with those here,
1816  // and fall back to isEvaluatable for the other cases.
1817
1818  // If we ever capture reference-binding directly in the AST, we can
1819  // kill the second parameter.
1820
1821  if (IsForRef) {
1822    EvalResult Result;
1823    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
1824  }
1825
1826  switch (getStmtClass()) {
1827  default: break;
1828  case StringLiteralClass:
1829  case ObjCStringLiteralClass:
1830  case ObjCEncodeExprClass:
1831    return true;
1832  case CXXTemporaryObjectExprClass:
1833  case CXXConstructExprClass: {
1834    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
1835
1836    // Only if it's
1837    // 1) an application of the trivial default constructor or
1838    if (!CE->getConstructor()->isTrivial()) return false;
1839    if (!CE->getNumArgs()) return true;
1840
1841    // 2) an elidable trivial copy construction of an operand which is
1842    //    itself a constant initializer.  Note that we consider the
1843    //    operand on its own, *not* as a reference binding.
1844    return CE->isElidable() &&
1845           CE->getArg(0)->isConstantInitializer(Ctx, false);
1846  }
1847  case CompoundLiteralExprClass: {
1848    // This handles gcc's extension that allows global initializers like
1849    // "struct x {int x;} x = (struct x) {};".
1850    // FIXME: This accepts other cases it shouldn't!
1851    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1852    return Exp->isConstantInitializer(Ctx, false);
1853  }
1854  case InitListExprClass: {
1855    // FIXME: This doesn't deal with fields with reference types correctly.
1856    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1857    // to bitfields.
1858    const InitListExpr *Exp = cast<InitListExpr>(this);
1859    unsigned numInits = Exp->getNumInits();
1860    for (unsigned i = 0; i < numInits; i++) {
1861      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
1862        return false;
1863    }
1864    return true;
1865  }
1866  case ImplicitValueInitExprClass:
1867    return true;
1868  case ParenExprClass:
1869    return cast<ParenExpr>(this)->getSubExpr()
1870      ->isConstantInitializer(Ctx, IsForRef);
1871  case ChooseExprClass:
1872    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
1873      ->isConstantInitializer(Ctx, IsForRef);
1874  case UnaryOperatorClass: {
1875    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1876    if (Exp->getOpcode() == UO_Extension)
1877      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
1878    break;
1879  }
1880  case BinaryOperatorClass: {
1881    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1882    // but this handles the common case.
1883    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1884    if (Exp->getOpcode() == BO_Sub &&
1885        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1886        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1887      return true;
1888    break;
1889  }
1890  case CXXFunctionalCastExprClass:
1891  case CXXStaticCastExprClass:
1892  case ImplicitCastExprClass:
1893  case CStyleCastExprClass:
1894    // Handle casts with a destination that's a struct or union; this
1895    // deals with both the gcc no-op struct cast extension and the
1896    // cast-to-union extension.
1897    if (getType()->isRecordType())
1898      return cast<CastExpr>(this)->getSubExpr()
1899        ->isConstantInitializer(Ctx, false);
1900
1901    // Integer->integer casts can be handled here, which is important for
1902    // things like (int)(&&x-&&y).  Scary but true.
1903    if (getType()->isIntegerType() &&
1904        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1905      return cast<CastExpr>(this)->getSubExpr()
1906        ->isConstantInitializer(Ctx, false);
1907
1908    break;
1909  }
1910  return isEvaluatable(Ctx);
1911}
1912
1913/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1914/// integer constant expression with the value zero, or if this is one that is
1915/// cast to void*.
1916bool Expr::isNullPointerConstant(ASTContext &Ctx,
1917                                 NullPointerConstantValueDependence NPC) const {
1918  if (isValueDependent()) {
1919    switch (NPC) {
1920    case NPC_NeverValueDependent:
1921      assert(false && "Unexpected value dependent expression!");
1922      // If the unthinkable happens, fall through to the safest alternative.
1923
1924    case NPC_ValueDependentIsNull:
1925      return isTypeDependent() || getType()->isIntegralType(Ctx);
1926
1927    case NPC_ValueDependentIsNotNull:
1928      return false;
1929    }
1930  }
1931
1932  // Strip off a cast to void*, if it exists. Except in C++.
1933  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1934    if (!Ctx.getLangOptions().CPlusPlus) {
1935      // Check that it is a cast to void*.
1936      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1937        QualType Pointee = PT->getPointeeType();
1938        if (!Pointee.hasQualifiers() &&
1939            Pointee->isVoidType() &&                              // to void*
1940            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1941          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1942      }
1943    }
1944  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1945    // Ignore the ImplicitCastExpr type entirely.
1946    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1947  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1948    // Accept ((void*)0) as a null pointer constant, as many other
1949    // implementations do.
1950    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1951  } else if (const CXXDefaultArgExpr *DefaultArg
1952               = dyn_cast<CXXDefaultArgExpr>(this)) {
1953    // See through default argument expressions
1954    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1955  } else if (isa<GNUNullExpr>(this)) {
1956    // The GNU __null extension is always a null pointer constant.
1957    return true;
1958  }
1959
1960  // C++0x nullptr_t is always a null pointer constant.
1961  if (getType()->isNullPtrType())
1962    return true;
1963
1964  if (const RecordType *UT = getType()->getAsUnionType())
1965    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
1966      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
1967        const Expr *InitExpr = CLE->getInitializer();
1968        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
1969          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
1970      }
1971  // This expression must be an integer type.
1972  if (!getType()->isIntegerType() ||
1973      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1974    return false;
1975
1976  // If we have an integer constant expression, we need to *evaluate* it and
1977  // test for the value 0.
1978  llvm::APSInt Result;
1979  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1980}
1981
1982FieldDecl *Expr::getBitField() {
1983  Expr *E = this->IgnoreParens();
1984
1985  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1986    if (ICE->getValueKind() != VK_RValue &&
1987        ICE->getCastKind() == CK_NoOp)
1988      E = ICE->getSubExpr()->IgnoreParens();
1989    else
1990      break;
1991  }
1992
1993  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1994    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1995      if (Field->isBitField())
1996        return Field;
1997
1998  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
1999    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2000      if (Field->isBitField())
2001        return Field;
2002
2003  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2004    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2005      return BinOp->getLHS()->getBitField();
2006
2007  return 0;
2008}
2009
2010bool Expr::refersToVectorElement() const {
2011  const Expr *E = this->IgnoreParens();
2012
2013  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2014    if (ICE->getValueKind() != VK_RValue &&
2015        ICE->getCastKind() == CK_NoOp)
2016      E = ICE->getSubExpr()->IgnoreParens();
2017    else
2018      break;
2019  }
2020
2021  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2022    return ASE->getBase()->getType()->isVectorType();
2023
2024  if (isa<ExtVectorElementExpr>(E))
2025    return true;
2026
2027  return false;
2028}
2029
2030/// isArrow - Return true if the base expression is a pointer to vector,
2031/// return false if the base expression is a vector.
2032bool ExtVectorElementExpr::isArrow() const {
2033  return getBase()->getType()->isPointerType();
2034}
2035
2036unsigned ExtVectorElementExpr::getNumElements() const {
2037  if (const VectorType *VT = getType()->getAs<VectorType>())
2038    return VT->getNumElements();
2039  return 1;
2040}
2041
2042/// containsDuplicateElements - Return true if any element access is repeated.
2043bool ExtVectorElementExpr::containsDuplicateElements() const {
2044  // FIXME: Refactor this code to an accessor on the AST node which returns the
2045  // "type" of component access, and share with code below and in Sema.
2046  llvm::StringRef Comp = Accessor->getName();
2047
2048  // Halving swizzles do not contain duplicate elements.
2049  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2050    return false;
2051
2052  // Advance past s-char prefix on hex swizzles.
2053  if (Comp[0] == 's' || Comp[0] == 'S')
2054    Comp = Comp.substr(1);
2055
2056  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2057    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2058        return true;
2059
2060  return false;
2061}
2062
2063/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2064void ExtVectorElementExpr::getEncodedElementAccess(
2065                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2066  llvm::StringRef Comp = Accessor->getName();
2067  if (Comp[0] == 's' || Comp[0] == 'S')
2068    Comp = Comp.substr(1);
2069
2070  bool isHi =   Comp == "hi";
2071  bool isLo =   Comp == "lo";
2072  bool isEven = Comp == "even";
2073  bool isOdd  = Comp == "odd";
2074
2075  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2076    uint64_t Index;
2077
2078    if (isHi)
2079      Index = e + i;
2080    else if (isLo)
2081      Index = i;
2082    else if (isEven)
2083      Index = 2 * i;
2084    else if (isOdd)
2085      Index = 2 * i + 1;
2086    else
2087      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2088
2089    Elts.push_back(Index);
2090  }
2091}
2092
2093ObjCMessageExpr::ObjCMessageExpr(QualType T,
2094                                 SourceLocation LBracLoc,
2095                                 SourceLocation SuperLoc,
2096                                 bool IsInstanceSuper,
2097                                 QualType SuperType,
2098                                 Selector Sel,
2099                                 ObjCMethodDecl *Method,
2100                                 Expr **Args, unsigned NumArgs,
2101                                 SourceLocation RBracLoc)
2102  : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false,
2103         /*ValueDependent=*/false),
2104    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2105    HasMethod(Method != 0), SuperLoc(SuperLoc),
2106    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2107                                                       : Sel.getAsOpaquePtr())),
2108    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2109{
2110  setReceiverPointer(SuperType.getAsOpaquePtr());
2111  if (NumArgs)
2112    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2113}
2114
2115ObjCMessageExpr::ObjCMessageExpr(QualType T,
2116                                 SourceLocation LBracLoc,
2117                                 TypeSourceInfo *Receiver,
2118                                 Selector Sel,
2119                                 ObjCMethodDecl *Method,
2120                                 Expr **Args, unsigned NumArgs,
2121                                 SourceLocation RBracLoc)
2122  : Expr(ObjCMessageExprClass, T, T->isDependentType(),
2123         (T->isDependentType() ||
2124          hasAnyValueDependentArguments(Args, NumArgs))),
2125    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2126    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2127                                                       : Sel.getAsOpaquePtr())),
2128    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2129{
2130  setReceiverPointer(Receiver);
2131  if (NumArgs)
2132    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2133}
2134
2135ObjCMessageExpr::ObjCMessageExpr(QualType T,
2136                                 SourceLocation LBracLoc,
2137                                 Expr *Receiver,
2138                                 Selector Sel,
2139                                 ObjCMethodDecl *Method,
2140                                 Expr **Args, unsigned NumArgs,
2141                                 SourceLocation RBracLoc)
2142  : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(),
2143         (Receiver->isTypeDependent() ||
2144          hasAnyValueDependentArguments(Args, NumArgs))),
2145    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2146    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2147                                                       : Sel.getAsOpaquePtr())),
2148    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2149{
2150  setReceiverPointer(Receiver);
2151  if (NumArgs)
2152    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2153}
2154
2155ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2156                                         SourceLocation LBracLoc,
2157                                         SourceLocation SuperLoc,
2158                                         bool IsInstanceSuper,
2159                                         QualType SuperType,
2160                                         Selector Sel,
2161                                         ObjCMethodDecl *Method,
2162                                         Expr **Args, unsigned NumArgs,
2163                                         SourceLocation RBracLoc) {
2164  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2165    NumArgs * sizeof(Expr *);
2166  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2167  return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper,
2168                                   SuperType, Sel, Method, Args, NumArgs,
2169                                   RBracLoc);
2170}
2171
2172ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2173                                         SourceLocation LBracLoc,
2174                                         TypeSourceInfo *Receiver,
2175                                         Selector Sel,
2176                                         ObjCMethodDecl *Method,
2177                                         Expr **Args, unsigned NumArgs,
2178                                         SourceLocation RBracLoc) {
2179  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2180    NumArgs * sizeof(Expr *);
2181  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2182  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2183                                   NumArgs, RBracLoc);
2184}
2185
2186ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2187                                         SourceLocation LBracLoc,
2188                                         Expr *Receiver,
2189                                         Selector Sel,
2190                                         ObjCMethodDecl *Method,
2191                                         Expr **Args, unsigned NumArgs,
2192                                         SourceLocation RBracLoc) {
2193  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2194    NumArgs * sizeof(Expr *);
2195  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2196  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2197                                   NumArgs, RBracLoc);
2198}
2199
2200ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2201                                              unsigned NumArgs) {
2202  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2203    NumArgs * sizeof(Expr *);
2204  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2205  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2206}
2207
2208Selector ObjCMessageExpr::getSelector() const {
2209  if (HasMethod)
2210    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2211                                                               ->getSelector();
2212  return Selector(SelectorOrMethod);
2213}
2214
2215ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2216  switch (getReceiverKind()) {
2217  case Instance:
2218    if (const ObjCObjectPointerType *Ptr
2219          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2220      return Ptr->getInterfaceDecl();
2221    break;
2222
2223  case Class:
2224    if (const ObjCObjectType *Ty
2225          = getClassReceiver()->getAs<ObjCObjectType>())
2226      return Ty->getInterface();
2227    break;
2228
2229  case SuperInstance:
2230    if (const ObjCObjectPointerType *Ptr
2231          = getSuperType()->getAs<ObjCObjectPointerType>())
2232      return Ptr->getInterfaceDecl();
2233    break;
2234
2235  case SuperClass:
2236    if (const ObjCObjectPointerType *Iface
2237                       = getSuperType()->getAs<ObjCObjectPointerType>())
2238      return Iface->getInterfaceDecl();
2239    break;
2240  }
2241
2242  return 0;
2243}
2244
2245bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2246  return getCond()->EvaluateAsInt(C) != 0;
2247}
2248
2249void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2250                                 unsigned NumExprs) {
2251  if (SubExprs) C.Deallocate(SubExprs);
2252
2253  SubExprs = new (C) Stmt* [NumExprs];
2254  this->NumExprs = NumExprs;
2255  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2256}
2257
2258//===----------------------------------------------------------------------===//
2259//  DesignatedInitExpr
2260//===----------------------------------------------------------------------===//
2261
2262IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2263  assert(Kind == FieldDesignator && "Only valid on a field designator");
2264  if (Field.NameOrField & 0x01)
2265    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2266  else
2267    return getField()->getIdentifier();
2268}
2269
2270DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2271                                       unsigned NumDesignators,
2272                                       const Designator *Designators,
2273                                       SourceLocation EqualOrColonLoc,
2274                                       bool GNUSyntax,
2275                                       Expr **IndexExprs,
2276                                       unsigned NumIndexExprs,
2277                                       Expr *Init)
2278  : Expr(DesignatedInitExprClass, Ty,
2279         Init->isTypeDependent(), Init->isValueDependent()),
2280    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2281    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2282  this->Designators = new (C) Designator[NumDesignators];
2283
2284  // Record the initializer itself.
2285  child_iterator Child = child_begin();
2286  *Child++ = Init;
2287
2288  // Copy the designators and their subexpressions, computing
2289  // value-dependence along the way.
2290  unsigned IndexIdx = 0;
2291  for (unsigned I = 0; I != NumDesignators; ++I) {
2292    this->Designators[I] = Designators[I];
2293
2294    if (this->Designators[I].isArrayDesignator()) {
2295      // Compute type- and value-dependence.
2296      Expr *Index = IndexExprs[IndexIdx];
2297      ExprBits.ValueDependent = ExprBits.ValueDependent ||
2298        Index->isTypeDependent() || Index->isValueDependent();
2299
2300      // Copy the index expressions into permanent storage.
2301      *Child++ = IndexExprs[IndexIdx++];
2302    } else if (this->Designators[I].isArrayRangeDesignator()) {
2303      // Compute type- and value-dependence.
2304      Expr *Start = IndexExprs[IndexIdx];
2305      Expr *End = IndexExprs[IndexIdx + 1];
2306      ExprBits.ValueDependent = ExprBits.ValueDependent ||
2307        Start->isTypeDependent() || Start->isValueDependent() ||
2308        End->isTypeDependent() || End->isValueDependent();
2309
2310      // Copy the start/end expressions into permanent storage.
2311      *Child++ = IndexExprs[IndexIdx++];
2312      *Child++ = IndexExprs[IndexIdx++];
2313    }
2314  }
2315
2316  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2317}
2318
2319DesignatedInitExpr *
2320DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2321                           unsigned NumDesignators,
2322                           Expr **IndexExprs, unsigned NumIndexExprs,
2323                           SourceLocation ColonOrEqualLoc,
2324                           bool UsesColonSyntax, Expr *Init) {
2325  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2326                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2327  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2328                                      ColonOrEqualLoc, UsesColonSyntax,
2329                                      IndexExprs, NumIndexExprs, Init);
2330}
2331
2332DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2333                                                    unsigned NumIndexExprs) {
2334  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2335                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2336  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2337}
2338
2339void DesignatedInitExpr::setDesignators(ASTContext &C,
2340                                        const Designator *Desigs,
2341                                        unsigned NumDesigs) {
2342  Designators = new (C) Designator[NumDesigs];
2343  NumDesignators = NumDesigs;
2344  for (unsigned I = 0; I != NumDesigs; ++I)
2345    Designators[I] = Desigs[I];
2346}
2347
2348SourceRange DesignatedInitExpr::getSourceRange() const {
2349  SourceLocation StartLoc;
2350  Designator &First =
2351    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2352  if (First.isFieldDesignator()) {
2353    if (GNUSyntax)
2354      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2355    else
2356      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2357  } else
2358    StartLoc =
2359      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2360  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2361}
2362
2363Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2364  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2365  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2366  Ptr += sizeof(DesignatedInitExpr);
2367  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2368  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2369}
2370
2371Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2372  assert(D.Kind == Designator::ArrayRangeDesignator &&
2373         "Requires array range designator");
2374  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2375  Ptr += sizeof(DesignatedInitExpr);
2376  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2377  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2378}
2379
2380Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2381  assert(D.Kind == Designator::ArrayRangeDesignator &&
2382         "Requires array range designator");
2383  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2384  Ptr += sizeof(DesignatedInitExpr);
2385  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2386  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2387}
2388
2389/// \brief Replaces the designator at index @p Idx with the series
2390/// of designators in [First, Last).
2391void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2392                                          const Designator *First,
2393                                          const Designator *Last) {
2394  unsigned NumNewDesignators = Last - First;
2395  if (NumNewDesignators == 0) {
2396    std::copy_backward(Designators + Idx + 1,
2397                       Designators + NumDesignators,
2398                       Designators + Idx);
2399    --NumNewDesignators;
2400    return;
2401  } else if (NumNewDesignators == 1) {
2402    Designators[Idx] = *First;
2403    return;
2404  }
2405
2406  Designator *NewDesignators
2407    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2408  std::copy(Designators, Designators + Idx, NewDesignators);
2409  std::copy(First, Last, NewDesignators + Idx);
2410  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2411            NewDesignators + Idx + NumNewDesignators);
2412  Designators = NewDesignators;
2413  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2414}
2415
2416ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2417                             Expr **exprs, unsigned nexprs,
2418                             SourceLocation rparenloc)
2419: Expr(ParenListExprClass, QualType(),
2420       hasAnyTypeDependentArguments(exprs, nexprs),
2421       hasAnyValueDependentArguments(exprs, nexprs)),
2422  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2423
2424  Exprs = new (C) Stmt*[nexprs];
2425  for (unsigned i = 0; i != nexprs; ++i)
2426    Exprs[i] = exprs[i];
2427}
2428
2429//===----------------------------------------------------------------------===//
2430//  ExprIterator.
2431//===----------------------------------------------------------------------===//
2432
2433Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2434Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2435Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2436const Expr* ConstExprIterator::operator[](size_t idx) const {
2437  return cast<Expr>(I[idx]);
2438}
2439const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2440const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2441
2442//===----------------------------------------------------------------------===//
2443//  Child Iterators for iterating over subexpressions/substatements
2444//===----------------------------------------------------------------------===//
2445
2446// DeclRefExpr
2447Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2448Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2449
2450// ObjCIvarRefExpr
2451Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2452Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2453
2454// ObjCPropertyRefExpr
2455Stmt::child_iterator ObjCPropertyRefExpr::child_begin()
2456{
2457  if (BaseExprOrSuperType.is<Stmt*>()) {
2458    // Hack alert!
2459    return reinterpret_cast<Stmt**> (&BaseExprOrSuperType);
2460  }
2461  return child_iterator();
2462}
2463
2464Stmt::child_iterator ObjCPropertyRefExpr::child_end()
2465{ return BaseExprOrSuperType.is<Stmt*>() ?
2466          reinterpret_cast<Stmt**> (&BaseExprOrSuperType)+1 :
2467          child_iterator();
2468}
2469
2470// ObjCImplicitSetterGetterRefExpr
2471Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2472  // If this is accessing a class member or super, skip that entry.
2473  // Technically, 2nd condition is sufficient. But I want to be verbose
2474  if (isSuperReceiver() || !Base)
2475    return child_iterator();
2476  return &Base;
2477}
2478Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2479  if (isSuperReceiver() || !Base)
2480    return child_iterator();
2481  return &Base+1;
2482}
2483
2484// ObjCIsaExpr
2485Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2486Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2487
2488// PredefinedExpr
2489Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2490Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2491
2492// IntegerLiteral
2493Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2494Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2495
2496// CharacterLiteral
2497Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2498Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2499
2500// FloatingLiteral
2501Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2502Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2503
2504// ImaginaryLiteral
2505Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2506Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2507
2508// StringLiteral
2509Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2510Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2511
2512// ParenExpr
2513Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2514Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2515
2516// UnaryOperator
2517Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2518Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2519
2520// OffsetOfExpr
2521Stmt::child_iterator OffsetOfExpr::child_begin() {
2522  return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2523                                      + NumComps);
2524}
2525Stmt::child_iterator OffsetOfExpr::child_end() {
2526  return child_iterator(&*child_begin() + NumExprs);
2527}
2528
2529// SizeOfAlignOfExpr
2530Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2531  // If this is of a type and the type is a VLA type (and not a typedef), the
2532  // size expression of the VLA needs to be treated as an executable expression.
2533  // Why isn't this weirdness documented better in StmtIterator?
2534  if (isArgumentType()) {
2535    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2536                                   getArgumentType().getTypePtr()))
2537      return child_iterator(T);
2538    return child_iterator();
2539  }
2540  return child_iterator(&Argument.Ex);
2541}
2542Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2543  if (isArgumentType())
2544    return child_iterator();
2545  return child_iterator(&Argument.Ex + 1);
2546}
2547
2548// ArraySubscriptExpr
2549Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2550  return &SubExprs[0];
2551}
2552Stmt::child_iterator ArraySubscriptExpr::child_end() {
2553  return &SubExprs[0]+END_EXPR;
2554}
2555
2556// CallExpr
2557Stmt::child_iterator CallExpr::child_begin() {
2558  return &SubExprs[0];
2559}
2560Stmt::child_iterator CallExpr::child_end() {
2561  return &SubExprs[0]+NumArgs+ARGS_START;
2562}
2563
2564// MemberExpr
2565Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2566Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2567
2568// ExtVectorElementExpr
2569Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2570Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2571
2572// CompoundLiteralExpr
2573Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2574Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2575
2576// CastExpr
2577Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2578Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2579
2580// BinaryOperator
2581Stmt::child_iterator BinaryOperator::child_begin() {
2582  return &SubExprs[0];
2583}
2584Stmt::child_iterator BinaryOperator::child_end() {
2585  return &SubExprs[0]+END_EXPR;
2586}
2587
2588// ConditionalOperator
2589Stmt::child_iterator ConditionalOperator::child_begin() {
2590  return &SubExprs[0];
2591}
2592Stmt::child_iterator ConditionalOperator::child_end() {
2593  return &SubExprs[0]+END_EXPR;
2594}
2595
2596// AddrLabelExpr
2597Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2598Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2599
2600// StmtExpr
2601Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2602Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2603
2604// TypesCompatibleExpr
2605Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2606  return child_iterator();
2607}
2608
2609Stmt::child_iterator TypesCompatibleExpr::child_end() {
2610  return child_iterator();
2611}
2612
2613// ChooseExpr
2614Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2615Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2616
2617// GNUNullExpr
2618Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2619Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2620
2621// ShuffleVectorExpr
2622Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2623  return &SubExprs[0];
2624}
2625Stmt::child_iterator ShuffleVectorExpr::child_end() {
2626  return &SubExprs[0]+NumExprs;
2627}
2628
2629// VAArgExpr
2630Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2631Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2632
2633// InitListExpr
2634Stmt::child_iterator InitListExpr::child_begin() {
2635  return InitExprs.size() ? &InitExprs[0] : 0;
2636}
2637Stmt::child_iterator InitListExpr::child_end() {
2638  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2639}
2640
2641// DesignatedInitExpr
2642Stmt::child_iterator DesignatedInitExpr::child_begin() {
2643  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2644  Ptr += sizeof(DesignatedInitExpr);
2645  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2646}
2647Stmt::child_iterator DesignatedInitExpr::child_end() {
2648  return child_iterator(&*child_begin() + NumSubExprs);
2649}
2650
2651// ImplicitValueInitExpr
2652Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2653  return child_iterator();
2654}
2655
2656Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2657  return child_iterator();
2658}
2659
2660// ParenListExpr
2661Stmt::child_iterator ParenListExpr::child_begin() {
2662  return &Exprs[0];
2663}
2664Stmt::child_iterator ParenListExpr::child_end() {
2665  return &Exprs[0]+NumExprs;
2666}
2667
2668// ObjCStringLiteral
2669Stmt::child_iterator ObjCStringLiteral::child_begin() {
2670  return &String;
2671}
2672Stmt::child_iterator ObjCStringLiteral::child_end() {
2673  return &String+1;
2674}
2675
2676// ObjCEncodeExpr
2677Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2678Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2679
2680// ObjCSelectorExpr
2681Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2682  return child_iterator();
2683}
2684Stmt::child_iterator ObjCSelectorExpr::child_end() {
2685  return child_iterator();
2686}
2687
2688// ObjCProtocolExpr
2689Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2690  return child_iterator();
2691}
2692Stmt::child_iterator ObjCProtocolExpr::child_end() {
2693  return child_iterator();
2694}
2695
2696// ObjCMessageExpr
2697Stmt::child_iterator ObjCMessageExpr::child_begin() {
2698  if (getReceiverKind() == Instance)
2699    return reinterpret_cast<Stmt **>(this + 1);
2700  return getArgs();
2701}
2702Stmt::child_iterator ObjCMessageExpr::child_end() {
2703  return getArgs() + getNumArgs();
2704}
2705
2706// Blocks
2707Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2708Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2709
2710Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2711Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2712