Expr.cpp revision e9ff443040cb571ae2c5c2626c4dc9a9a812d84a
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
167                                        const Decl *CurrentDecl) {
168  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
169    if (IT != PrettyFunction)
170      return FD->getNameAsString();
171
172    llvm::SmallString<256> Name;
173    llvm::raw_svector_ostream Out(Name);
174
175    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
176      if (MD->isVirtual())
177        Out << "virtual ";
178      if (MD->isStatic())
179        Out << "static ";
180    }
181
182    PrintingPolicy Policy(Context.getLangOptions());
183    Policy.SuppressTagKind = true;
184
185    std::string Proto = FD->getQualifiedNameAsString(Policy);
186
187    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
188    const FunctionProtoType *FT = 0;
189    if (FD->hasWrittenPrototype())
190      FT = dyn_cast<FunctionProtoType>(AFT);
191
192    Proto += "(";
193    if (FT) {
194      llvm::raw_string_ostream POut(Proto);
195      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
196        if (i) POut << ", ";
197        std::string Param;
198        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
199        POut << Param;
200      }
201
202      if (FT->isVariadic()) {
203        if (FD->getNumParams()) POut << ", ";
204        POut << "...";
205      }
206    }
207    Proto += ")";
208
209    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
210      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
211      if (ThisQuals.hasConst())
212        Proto += " const";
213      if (ThisQuals.hasVolatile())
214        Proto += " volatile";
215    }
216
217    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
218      AFT->getResultType().getAsStringInternal(Proto, Policy);
219
220    Out << Proto;
221
222    Out.flush();
223    return Name.str().str();
224  }
225  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
226    llvm::SmallString<256> Name;
227    llvm::raw_svector_ostream Out(Name);
228    Out << (MD->isInstanceMethod() ? '-' : '+');
229    Out << '[';
230    Out << MD->getClassInterface()->getNameAsString();
231    if (const ObjCCategoryImplDecl *CID =
232        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
233      Out << '(';
234      Out <<  CID->getNameAsString();
235      Out <<  ')';
236    }
237    Out <<  ' ';
238    Out << MD->getSelector().getAsString();
239    Out <<  ']';
240
241    Out.flush();
242    return Name.str().str();
243  }
244  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
245    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
246    return "top level";
247  }
248  return "";
249}
250
251/// getValueAsApproximateDouble - This returns the value as an inaccurate
252/// double.  Note that this may cause loss of precision, but is useful for
253/// debugging dumps, etc.
254double FloatingLiteral::getValueAsApproximateDouble() const {
255  llvm::APFloat V = getValue();
256  bool ignored;
257  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
258            &ignored);
259  return V.convertToDouble();
260}
261
262StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
263                                     unsigned ByteLength, bool Wide,
264                                     QualType Ty,
265                                     const SourceLocation *Loc,
266                                     unsigned NumStrs) {
267  // Allocate enough space for the StringLiteral plus an array of locations for
268  // any concatenated string tokens.
269  void *Mem = C.Allocate(sizeof(StringLiteral)+
270                         sizeof(SourceLocation)*(NumStrs-1),
271                         llvm::alignof<StringLiteral>());
272  StringLiteral *SL = new (Mem) StringLiteral(Ty);
273
274  // OPTIMIZE: could allocate this appended to the StringLiteral.
275  char *AStrData = new (C, 1) char[ByteLength];
276  memcpy(AStrData, StrData, ByteLength);
277  SL->StrData = AStrData;
278  SL->ByteLength = ByteLength;
279  SL->IsWide = Wide;
280  SL->TokLocs[0] = Loc[0];
281  SL->NumConcatenated = NumStrs;
282
283  if (NumStrs != 1)
284    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
285  return SL;
286}
287
288StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
289  void *Mem = C.Allocate(sizeof(StringLiteral)+
290                         sizeof(SourceLocation)*(NumStrs-1),
291                         llvm::alignof<StringLiteral>());
292  StringLiteral *SL = new (Mem) StringLiteral(QualType());
293  SL->StrData = 0;
294  SL->ByteLength = 0;
295  SL->NumConcatenated = NumStrs;
296  return SL;
297}
298
299void StringLiteral::DoDestroy(ASTContext &C) {
300  C.Deallocate(const_cast<char*>(StrData));
301  Expr::DoDestroy(C);
302}
303
304void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
305  if (StrData)
306    C.Deallocate(const_cast<char*>(StrData));
307
308  char *AStrData = new (C, 1) char[Str.size()];
309  memcpy(AStrData, Str.data(), Str.size());
310  StrData = AStrData;
311  ByteLength = Str.size();
312}
313
314/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
315/// corresponds to, e.g. "sizeof" or "[pre]++".
316const char *UnaryOperator::getOpcodeStr(Opcode Op) {
317  switch (Op) {
318  default: assert(0 && "Unknown unary operator");
319  case PostInc: return "++";
320  case PostDec: return "--";
321  case PreInc:  return "++";
322  case PreDec:  return "--";
323  case AddrOf:  return "&";
324  case Deref:   return "*";
325  case Plus:    return "+";
326  case Minus:   return "-";
327  case Not:     return "~";
328  case LNot:    return "!";
329  case Real:    return "__real";
330  case Imag:    return "__imag";
331  case Extension: return "__extension__";
332  case OffsetOf: return "__builtin_offsetof";
333  }
334}
335
336UnaryOperator::Opcode
337UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
338  switch (OO) {
339  default: assert(false && "No unary operator for overloaded function");
340  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
341  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
342  case OO_Amp:        return AddrOf;
343  case OO_Star:       return Deref;
344  case OO_Plus:       return Plus;
345  case OO_Minus:      return Minus;
346  case OO_Tilde:      return Not;
347  case OO_Exclaim:    return LNot;
348  }
349}
350
351OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
352  switch (Opc) {
353  case PostInc: case PreInc: return OO_PlusPlus;
354  case PostDec: case PreDec: return OO_MinusMinus;
355  case AddrOf: return OO_Amp;
356  case Deref: return OO_Star;
357  case Plus: return OO_Plus;
358  case Minus: return OO_Minus;
359  case Not: return OO_Tilde;
360  case LNot: return OO_Exclaim;
361  default: return OO_None;
362  }
363}
364
365
366//===----------------------------------------------------------------------===//
367// Postfix Operators.
368//===----------------------------------------------------------------------===//
369
370CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
371                   unsigned numargs, QualType t, SourceLocation rparenloc)
372  : Expr(SC, t,
373         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
374         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
375    NumArgs(numargs) {
376
377  SubExprs = new (C) Stmt*[numargs+1];
378  SubExprs[FN] = fn;
379  for (unsigned i = 0; i != numargs; ++i)
380    SubExprs[i+ARGS_START] = args[i];
381
382  RParenLoc = rparenloc;
383}
384
385CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
386                   QualType t, SourceLocation rparenloc)
387  : Expr(CallExprClass, t,
388         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
389         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
390    NumArgs(numargs) {
391
392  SubExprs = new (C) Stmt*[numargs+1];
393  SubExprs[FN] = fn;
394  for (unsigned i = 0; i != numargs; ++i)
395    SubExprs[i+ARGS_START] = args[i];
396
397  RParenLoc = rparenloc;
398}
399
400CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
401  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
402  SubExprs = new (C) Stmt*[1];
403}
404
405void CallExpr::DoDestroy(ASTContext& C) {
406  DestroyChildren(C);
407  if (SubExprs) C.Deallocate(SubExprs);
408  this->~CallExpr();
409  C.Deallocate(this);
410}
411
412Decl *CallExpr::getCalleeDecl() {
413  Expr *CEE = getCallee()->IgnoreParenCasts();
414  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
415    return DRE->getDecl();
416  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
417    return ME->getMemberDecl();
418
419  return 0;
420}
421
422FunctionDecl *CallExpr::getDirectCallee() {
423  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
424}
425
426/// setNumArgs - This changes the number of arguments present in this call.
427/// Any orphaned expressions are deleted by this, and any new operands are set
428/// to null.
429void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
430  // No change, just return.
431  if (NumArgs == getNumArgs()) return;
432
433  // If shrinking # arguments, just delete the extras and forgot them.
434  if (NumArgs < getNumArgs()) {
435    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
436      getArg(i)->Destroy(C);
437    this->NumArgs = NumArgs;
438    return;
439  }
440
441  // Otherwise, we are growing the # arguments.  New an bigger argument array.
442  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
443  // Copy over args.
444  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
445    NewSubExprs[i] = SubExprs[i];
446  // Null out new args.
447  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
448    NewSubExprs[i] = 0;
449
450  if (SubExprs) C.Deallocate(SubExprs);
451  SubExprs = NewSubExprs;
452  this->NumArgs = NumArgs;
453}
454
455/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
456/// not, return 0.
457unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
458  // All simple function calls (e.g. func()) are implicitly cast to pointer to
459  // function. As a result, we try and obtain the DeclRefExpr from the
460  // ImplicitCastExpr.
461  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
462  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
463    return 0;
464
465  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
466  if (!DRE)
467    return 0;
468
469  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
470  if (!FDecl)
471    return 0;
472
473  if (!FDecl->getIdentifier())
474    return 0;
475
476  return FDecl->getBuiltinID();
477}
478
479QualType CallExpr::getCallReturnType() const {
480  QualType CalleeType = getCallee()->getType();
481  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
482    CalleeType = FnTypePtr->getPointeeType();
483  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
484    CalleeType = BPT->getPointeeType();
485
486  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
487  return FnType->getResultType();
488}
489
490MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
491                       SourceRange qualrange, ValueDecl *memberdecl,
492                       SourceLocation l, const TemplateArgumentListInfo *targs,
493                       QualType ty)
494  : Expr(MemberExprClass, ty,
495         base->isTypeDependent() || (qual && qual->isDependent()),
496         base->isValueDependent() || (qual && qual->isDependent())),
497    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
498    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
499  // Initialize the qualifier, if any.
500  if (HasQualifier) {
501    NameQualifier *NQ = getMemberQualifier();
502    NQ->NNS = qual;
503    NQ->Range = qualrange;
504  }
505
506  // Initialize the explicit template argument list, if any.
507  if (targs)
508    getExplicitTemplateArgumentList()->initializeFrom(*targs);
509}
510
511MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
512                               NestedNameSpecifier *qual,
513                               SourceRange qualrange,
514                               ValueDecl *memberdecl,
515                               SourceLocation l,
516                               const TemplateArgumentListInfo *targs,
517                               QualType ty) {
518  std::size_t Size = sizeof(MemberExpr);
519  if (qual != 0)
520    Size += sizeof(NameQualifier);
521
522  if (targs)
523    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
524
525  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
526  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
527                              targs, ty);
528}
529
530const char *CastExpr::getCastKindName() const {
531  switch (getCastKind()) {
532  case CastExpr::CK_Unknown:
533    return "Unknown";
534  case CastExpr::CK_BitCast:
535    return "BitCast";
536  case CastExpr::CK_NoOp:
537    return "NoOp";
538  case CastExpr::CK_BaseToDerived:
539    return "BaseToDerived";
540  case CastExpr::CK_DerivedToBase:
541    return "DerivedToBase";
542  case CastExpr::CK_Dynamic:
543    return "Dynamic";
544  case CastExpr::CK_ToUnion:
545    return "ToUnion";
546  case CastExpr::CK_ArrayToPointerDecay:
547    return "ArrayToPointerDecay";
548  case CastExpr::CK_FunctionToPointerDecay:
549    return "FunctionToPointerDecay";
550  case CastExpr::CK_NullToMemberPointer:
551    return "NullToMemberPointer";
552  case CastExpr::CK_BaseToDerivedMemberPointer:
553    return "BaseToDerivedMemberPointer";
554  case CastExpr::CK_DerivedToBaseMemberPointer:
555    return "DerivedToBaseMemberPointer";
556  case CastExpr::CK_UserDefinedConversion:
557    return "UserDefinedConversion";
558  case CastExpr::CK_ConstructorConversion:
559    return "ConstructorConversion";
560  case CastExpr::CK_IntegralToPointer:
561    return "IntegralToPointer";
562  case CastExpr::CK_PointerToIntegral:
563    return "PointerToIntegral";
564  case CastExpr::CK_ToVoid:
565    return "ToVoid";
566  case CastExpr::CK_VectorSplat:
567    return "VectorSplat";
568  case CastExpr::CK_IntegralCast:
569    return "IntegralCast";
570  case CastExpr::CK_IntegralToFloating:
571    return "IntegralToFloating";
572  case CastExpr::CK_FloatingToIntegral:
573    return "FloatingToIntegral";
574  case CastExpr::CK_FloatingCast:
575    return "FloatingCast";
576  case CastExpr::CK_MemberPointerToBoolean:
577    return "MemberPointerToBoolean";
578  case CastExpr::CK_AnyPointerToObjCPointerCast:
579    return "AnyPointerToObjCPointerCast";
580  case CastExpr::CK_AnyPointerToBlockPointerCast:
581    return "AnyPointerToBlockPointerCast";
582  }
583
584  assert(0 && "Unhandled cast kind!");
585  return 0;
586}
587
588Expr *CastExpr::getSubExprAsWritten() {
589  Expr *SubExpr = 0;
590  CastExpr *E = this;
591  do {
592    SubExpr = E->getSubExpr();
593
594    // Skip any temporary bindings; they're implicit.
595    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
596      SubExpr = Binder->getSubExpr();
597
598    // Conversions by constructor and conversion functions have a
599    // subexpression describing the call; strip it off.
600    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
601      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
602    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
603      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
604
605    // If the subexpression we're left with is an implicit cast, look
606    // through that, too.
607  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
608
609  return SubExpr;
610}
611
612/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
613/// corresponds to, e.g. "<<=".
614const char *BinaryOperator::getOpcodeStr(Opcode Op) {
615  switch (Op) {
616  case PtrMemD:   return ".*";
617  case PtrMemI:   return "->*";
618  case Mul:       return "*";
619  case Div:       return "/";
620  case Rem:       return "%";
621  case Add:       return "+";
622  case Sub:       return "-";
623  case Shl:       return "<<";
624  case Shr:       return ">>";
625  case LT:        return "<";
626  case GT:        return ">";
627  case LE:        return "<=";
628  case GE:        return ">=";
629  case EQ:        return "==";
630  case NE:        return "!=";
631  case And:       return "&";
632  case Xor:       return "^";
633  case Or:        return "|";
634  case LAnd:      return "&&";
635  case LOr:       return "||";
636  case Assign:    return "=";
637  case MulAssign: return "*=";
638  case DivAssign: return "/=";
639  case RemAssign: return "%=";
640  case AddAssign: return "+=";
641  case SubAssign: return "-=";
642  case ShlAssign: return "<<=";
643  case ShrAssign: return ">>=";
644  case AndAssign: return "&=";
645  case XorAssign: return "^=";
646  case OrAssign:  return "|=";
647  case Comma:     return ",";
648  }
649
650  return "";
651}
652
653BinaryOperator::Opcode
654BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
655  switch (OO) {
656  default: assert(false && "Not an overloadable binary operator");
657  case OO_Plus: return Add;
658  case OO_Minus: return Sub;
659  case OO_Star: return Mul;
660  case OO_Slash: return Div;
661  case OO_Percent: return Rem;
662  case OO_Caret: return Xor;
663  case OO_Amp: return And;
664  case OO_Pipe: return Or;
665  case OO_Equal: return Assign;
666  case OO_Less: return LT;
667  case OO_Greater: return GT;
668  case OO_PlusEqual: return AddAssign;
669  case OO_MinusEqual: return SubAssign;
670  case OO_StarEqual: return MulAssign;
671  case OO_SlashEqual: return DivAssign;
672  case OO_PercentEqual: return RemAssign;
673  case OO_CaretEqual: return XorAssign;
674  case OO_AmpEqual: return AndAssign;
675  case OO_PipeEqual: return OrAssign;
676  case OO_LessLess: return Shl;
677  case OO_GreaterGreater: return Shr;
678  case OO_LessLessEqual: return ShlAssign;
679  case OO_GreaterGreaterEqual: return ShrAssign;
680  case OO_EqualEqual: return EQ;
681  case OO_ExclaimEqual: return NE;
682  case OO_LessEqual: return LE;
683  case OO_GreaterEqual: return GE;
684  case OO_AmpAmp: return LAnd;
685  case OO_PipePipe: return LOr;
686  case OO_Comma: return Comma;
687  case OO_ArrowStar: return PtrMemI;
688  }
689}
690
691OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
692  static const OverloadedOperatorKind OverOps[] = {
693    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
694    OO_Star, OO_Slash, OO_Percent,
695    OO_Plus, OO_Minus,
696    OO_LessLess, OO_GreaterGreater,
697    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
698    OO_EqualEqual, OO_ExclaimEqual,
699    OO_Amp,
700    OO_Caret,
701    OO_Pipe,
702    OO_AmpAmp,
703    OO_PipePipe,
704    OO_Equal, OO_StarEqual,
705    OO_SlashEqual, OO_PercentEqual,
706    OO_PlusEqual, OO_MinusEqual,
707    OO_LessLessEqual, OO_GreaterGreaterEqual,
708    OO_AmpEqual, OO_CaretEqual,
709    OO_PipeEqual,
710    OO_Comma
711  };
712  return OverOps[Opc];
713}
714
715InitListExpr::InitListExpr(SourceLocation lbraceloc,
716                           Expr **initExprs, unsigned numInits,
717                           SourceLocation rbraceloc)
718  : Expr(InitListExprClass, QualType(), false, false),
719    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
720    UnionFieldInit(0), HadArrayRangeDesignator(false)
721{
722  for (unsigned I = 0; I != numInits; ++I) {
723    if (initExprs[I]->isTypeDependent())
724      TypeDependent = true;
725    if (initExprs[I]->isValueDependent())
726      ValueDependent = true;
727  }
728
729  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
730}
731
732void InitListExpr::reserveInits(unsigned NumInits) {
733  if (NumInits > InitExprs.size())
734    InitExprs.reserve(NumInits);
735}
736
737void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
738  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
739       Idx < LastIdx; ++Idx)
740    InitExprs[Idx]->Destroy(Context);
741  InitExprs.resize(NumInits, 0);
742}
743
744Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
745  if (Init >= InitExprs.size()) {
746    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
747    InitExprs.back() = expr;
748    return 0;
749  }
750
751  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
752  InitExprs[Init] = expr;
753  return Result;
754}
755
756/// getFunctionType - Return the underlying function type for this block.
757///
758const FunctionType *BlockExpr::getFunctionType() const {
759  return getType()->getAs<BlockPointerType>()->
760                    getPointeeType()->getAs<FunctionType>();
761}
762
763SourceLocation BlockExpr::getCaretLocation() const {
764  return TheBlock->getCaretLocation();
765}
766const Stmt *BlockExpr::getBody() const {
767  return TheBlock->getBody();
768}
769Stmt *BlockExpr::getBody() {
770  return TheBlock->getBody();
771}
772
773
774//===----------------------------------------------------------------------===//
775// Generic Expression Routines
776//===----------------------------------------------------------------------===//
777
778/// isUnusedResultAWarning - Return true if this immediate expression should
779/// be warned about if the result is unused.  If so, fill in Loc and Ranges
780/// with location to warn on and the source range[s] to report with the
781/// warning.
782bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
783                                  SourceRange &R2, ASTContext &Ctx) const {
784  // Don't warn if the expr is type dependent. The type could end up
785  // instantiating to void.
786  if (isTypeDependent())
787    return false;
788
789  switch (getStmtClass()) {
790  default:
791    Loc = getExprLoc();
792    R1 = getSourceRange();
793    return true;
794  case ParenExprClass:
795    return cast<ParenExpr>(this)->getSubExpr()->
796      isUnusedResultAWarning(Loc, R1, R2, Ctx);
797  case UnaryOperatorClass: {
798    const UnaryOperator *UO = cast<UnaryOperator>(this);
799
800    switch (UO->getOpcode()) {
801    default: break;
802    case UnaryOperator::PostInc:
803    case UnaryOperator::PostDec:
804    case UnaryOperator::PreInc:
805    case UnaryOperator::PreDec:                 // ++/--
806      return false;  // Not a warning.
807    case UnaryOperator::Deref:
808      // Dereferencing a volatile pointer is a side-effect.
809      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
810        return false;
811      break;
812    case UnaryOperator::Real:
813    case UnaryOperator::Imag:
814      // accessing a piece of a volatile complex is a side-effect.
815      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
816          .isVolatileQualified())
817        return false;
818      break;
819    case UnaryOperator::Extension:
820      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
821    }
822    Loc = UO->getOperatorLoc();
823    R1 = UO->getSubExpr()->getSourceRange();
824    return true;
825  }
826  case BinaryOperatorClass: {
827    const BinaryOperator *BO = cast<BinaryOperator>(this);
828    // Consider comma to have side effects if the LHS or RHS does.
829    if (BO->getOpcode() == BinaryOperator::Comma)
830      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
831              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
832
833    if (BO->isAssignmentOp())
834      return false;
835    Loc = BO->getOperatorLoc();
836    R1 = BO->getLHS()->getSourceRange();
837    R2 = BO->getRHS()->getSourceRange();
838    return true;
839  }
840  case CompoundAssignOperatorClass:
841    return false;
842
843  case ConditionalOperatorClass: {
844    // The condition must be evaluated, but if either the LHS or RHS is a
845    // warning, warn about them.
846    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
847    if (Exp->getLHS() &&
848        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
849      return true;
850    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
851  }
852
853  case MemberExprClass:
854    // If the base pointer or element is to a volatile pointer/field, accessing
855    // it is a side effect.
856    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
857      return false;
858    Loc = cast<MemberExpr>(this)->getMemberLoc();
859    R1 = SourceRange(Loc, Loc);
860    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
861    return true;
862
863  case ArraySubscriptExprClass:
864    // If the base pointer or element is to a volatile pointer/field, accessing
865    // it is a side effect.
866    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
867      return false;
868    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
869    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
870    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
871    return true;
872
873  case CallExprClass:
874  case CXXOperatorCallExprClass:
875  case CXXMemberCallExprClass: {
876    // If this is a direct call, get the callee.
877    const CallExpr *CE = cast<CallExpr>(this);
878    if (const Decl *FD = CE->getCalleeDecl()) {
879      // If the callee has attribute pure, const, or warn_unused_result, warn
880      // about it. void foo() { strlen("bar"); } should warn.
881      //
882      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
883      // updated to match for QoI.
884      if (FD->getAttr<WarnUnusedResultAttr>() ||
885          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
886        Loc = CE->getCallee()->getLocStart();
887        R1 = CE->getCallee()->getSourceRange();
888
889        if (unsigned NumArgs = CE->getNumArgs())
890          R2 = SourceRange(CE->getArg(0)->getLocStart(),
891                           CE->getArg(NumArgs-1)->getLocEnd());
892        return true;
893      }
894    }
895    return false;
896  }
897
898  case CXXTemporaryObjectExprClass:
899  case CXXConstructExprClass:
900    return false;
901
902  case ObjCMessageExprClass:
903    return false;
904
905  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
906#if 0
907    const ObjCImplicitSetterGetterRefExpr *Ref =
908      cast<ObjCImplicitSetterGetterRefExpr>(this);
909    // FIXME: We really want the location of the '.' here.
910    Loc = Ref->getLocation();
911    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
912    if (Ref->getBase())
913      R2 = Ref->getBase()->getSourceRange();
914#else
915    Loc = getExprLoc();
916    R1 = getSourceRange();
917#endif
918    return true;
919  }
920  case StmtExprClass: {
921    // Statement exprs don't logically have side effects themselves, but are
922    // sometimes used in macros in ways that give them a type that is unused.
923    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
924    // however, if the result of the stmt expr is dead, we don't want to emit a
925    // warning.
926    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
927    if (!CS->body_empty())
928      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
929        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
930
931    Loc = cast<StmtExpr>(this)->getLParenLoc();
932    R1 = getSourceRange();
933    return true;
934  }
935  case CStyleCastExprClass:
936    // If this is an explicit cast to void, allow it.  People do this when they
937    // think they know what they're doing :).
938    if (getType()->isVoidType())
939      return false;
940    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
941    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
942    return true;
943  case CXXFunctionalCastExprClass: {
944    const CastExpr *CE = cast<CastExpr>(this);
945
946    // If this is a cast to void or a constructor conversion, check the operand.
947    // Otherwise, the result of the cast is unused.
948    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
949        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
950      return (cast<CastExpr>(this)->getSubExpr()
951              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
952    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
953    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
954    return true;
955  }
956
957  case ImplicitCastExprClass:
958    // Check the operand, since implicit casts are inserted by Sema
959    return (cast<ImplicitCastExpr>(this)
960            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
961
962  case CXXDefaultArgExprClass:
963    return (cast<CXXDefaultArgExpr>(this)
964            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
965
966  case CXXNewExprClass:
967    // FIXME: In theory, there might be new expressions that don't have side
968    // effects (e.g. a placement new with an uninitialized POD).
969  case CXXDeleteExprClass:
970    return false;
971  case CXXBindTemporaryExprClass:
972    return (cast<CXXBindTemporaryExpr>(this)
973            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
974  case CXXExprWithTemporariesClass:
975    return (cast<CXXExprWithTemporaries>(this)
976            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
977  }
978}
979
980/// DeclCanBeLvalue - Determine whether the given declaration can be
981/// an lvalue. This is a helper routine for isLvalue.
982static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
983  // C++ [temp.param]p6:
984  //   A non-type non-reference template-parameter is not an lvalue.
985  if (const NonTypeTemplateParmDecl *NTTParm
986        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
987    return NTTParm->getType()->isReferenceType();
988
989  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
990    // C++ 3.10p2: An lvalue refers to an object or function.
991    (Ctx.getLangOptions().CPlusPlus &&
992     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
993}
994
995/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
996/// incomplete type other than void. Nonarray expressions that can be lvalues:
997///  - name, where name must be a variable
998///  - e[i]
999///  - (e), where e must be an lvalue
1000///  - e.name, where e must be an lvalue
1001///  - e->name
1002///  - *e, the type of e cannot be a function type
1003///  - string-constant
1004///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1005///  - reference type [C++ [expr]]
1006///
1007Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1008  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1009
1010  isLvalueResult Res = isLvalueInternal(Ctx);
1011  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1012    return Res;
1013
1014  // first, check the type (C99 6.3.2.1). Expressions with function
1015  // type in C are not lvalues, but they can be lvalues in C++.
1016  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1017    return LV_NotObjectType;
1018
1019  // Allow qualified void which is an incomplete type other than void (yuck).
1020  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1021    return LV_IncompleteVoidType;
1022
1023  return LV_Valid;
1024}
1025
1026// Check whether the expression can be sanely treated like an l-value
1027Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1028  switch (getStmtClass()) {
1029  case ObjCIsaExprClass:
1030  case StringLiteralClass:  // C99 6.5.1p4
1031  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1032    return LV_Valid;
1033  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1034    // For vectors, make sure base is an lvalue (i.e. not a function call).
1035    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1036      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1037    return LV_Valid;
1038  case DeclRefExprClass: { // C99 6.5.1p2
1039    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1040    if (DeclCanBeLvalue(RefdDecl, Ctx))
1041      return LV_Valid;
1042    break;
1043  }
1044  case BlockDeclRefExprClass: {
1045    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1046    if (isa<VarDecl>(BDR->getDecl()))
1047      return LV_Valid;
1048    break;
1049  }
1050  case MemberExprClass: {
1051    const MemberExpr *m = cast<MemberExpr>(this);
1052    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1053      NamedDecl *Member = m->getMemberDecl();
1054      // C++ [expr.ref]p4:
1055      //   If E2 is declared to have type "reference to T", then E1.E2
1056      //   is an lvalue.
1057      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1058        if (Value->getType()->isReferenceType())
1059          return LV_Valid;
1060
1061      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1062      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1063        return LV_Valid;
1064
1065      //   -- If E2 is a non-static data member [...]. If E1 is an
1066      //      lvalue, then E1.E2 is an lvalue.
1067      if (isa<FieldDecl>(Member)) {
1068        if (m->isArrow())
1069          return LV_Valid;
1070        Expr *BaseExp = m->getBase();
1071        if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass)
1072          return LV_SubObjCPropertySetting;
1073        return
1074          (BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) ?
1075           LV_SubObjCPropertyGetterSetting : BaseExp->isLvalue(Ctx);
1076      }
1077
1078      //   -- If it refers to a static member function [...], then
1079      //      E1.E2 is an lvalue.
1080      //   -- Otherwise, if E1.E2 refers to a non-static member
1081      //      function [...], then E1.E2 is not an lvalue.
1082      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1083        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1084
1085      //   -- If E2 is a member enumerator [...], the expression E1.E2
1086      //      is not an lvalue.
1087      if (isa<EnumConstantDecl>(Member))
1088        return LV_InvalidExpression;
1089
1090        // Not an lvalue.
1091      return LV_InvalidExpression;
1092    }
1093
1094    // C99 6.5.2.3p4
1095    if (m->isArrow())
1096      return LV_Valid;
1097    Expr *BaseExp = m->getBase();
1098    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass)
1099          return LV_SubObjCPropertySetting;
1100    return
1101      (BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) ?
1102       LV_SubObjCPropertyGetterSetting : BaseExp->isLvalue(Ctx);
1103  }
1104  case UnaryOperatorClass:
1105    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1106      return LV_Valid; // C99 6.5.3p4
1107
1108    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1109        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1110        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1111      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1112
1113    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1114        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1115         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1116      return LV_Valid;
1117    break;
1118  case ImplicitCastExprClass:
1119    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1120                                                       : LV_InvalidExpression;
1121  case ParenExprClass: // C99 6.5.1p5
1122    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1123  case BinaryOperatorClass:
1124  case CompoundAssignOperatorClass: {
1125    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1126
1127    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1128        BinOp->getOpcode() == BinaryOperator::Comma)
1129      return BinOp->getRHS()->isLvalue(Ctx);
1130
1131    // C++ [expr.mptr.oper]p6
1132    // The result of a .* expression is an lvalue only if its first operand is
1133    // an lvalue and its second operand is a pointer to data member.
1134    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1135        !BinOp->getType()->isFunctionType())
1136      return BinOp->getLHS()->isLvalue(Ctx);
1137
1138    // The result of an ->* expression is an lvalue only if its second operand
1139    // is a pointer to data member.
1140    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1141        !BinOp->getType()->isFunctionType()) {
1142      QualType Ty = BinOp->getRHS()->getType();
1143      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1144        return LV_Valid;
1145    }
1146
1147    if (!BinOp->isAssignmentOp())
1148      return LV_InvalidExpression;
1149
1150    if (Ctx.getLangOptions().CPlusPlus)
1151      // C++ [expr.ass]p1:
1152      //   The result of an assignment operation [...] is an lvalue.
1153      return LV_Valid;
1154
1155
1156    // C99 6.5.16:
1157    //   An assignment expression [...] is not an lvalue.
1158    return LV_InvalidExpression;
1159  }
1160  case CallExprClass:
1161  case CXXOperatorCallExprClass:
1162  case CXXMemberCallExprClass: {
1163    // C++0x [expr.call]p10
1164    //   A function call is an lvalue if and only if the result type
1165    //   is an lvalue reference.
1166    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1167    if (ReturnType->isLValueReferenceType())
1168      return LV_Valid;
1169
1170    break;
1171  }
1172  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1173    return LV_Valid;
1174  case ChooseExprClass:
1175    // __builtin_choose_expr is an lvalue if the selected operand is.
1176    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1177  case ExtVectorElementExprClass:
1178    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1179      return LV_DuplicateVectorComponents;
1180    return LV_Valid;
1181  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1182    return LV_Valid;
1183  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1184    return LV_Valid;
1185  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1186    return LV_Valid;
1187  case PredefinedExprClass:
1188    return LV_Valid;
1189  case UnresolvedLookupExprClass:
1190    return LV_Valid;
1191  case CXXDefaultArgExprClass:
1192    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1193  case CStyleCastExprClass:
1194  case CXXFunctionalCastExprClass:
1195  case CXXStaticCastExprClass:
1196  case CXXDynamicCastExprClass:
1197  case CXXReinterpretCastExprClass:
1198  case CXXConstCastExprClass:
1199    // The result of an explicit cast is an lvalue if the type we are
1200    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1201    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1202    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1203    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1204          isLValueReferenceType())
1205      return LV_Valid;
1206    break;
1207  case CXXTypeidExprClass:
1208    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1209    return LV_Valid;
1210  case CXXBindTemporaryExprClass:
1211    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1212      isLvalueInternal(Ctx);
1213  case CXXBindReferenceExprClass:
1214    // Something that's bound to a reference is always an lvalue.
1215    return LV_Valid;
1216  case ConditionalOperatorClass: {
1217    // Complicated handling is only for C++.
1218    if (!Ctx.getLangOptions().CPlusPlus)
1219      return LV_InvalidExpression;
1220
1221    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1222    // everywhere there's an object converted to an rvalue. Also, any other
1223    // casts should be wrapped by ImplicitCastExprs. There's just the special
1224    // case involving throws to work out.
1225    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1226    Expr *True = Cond->getTrueExpr();
1227    Expr *False = Cond->getFalseExpr();
1228    // C++0x 5.16p2
1229    //   If either the second or the third operand has type (cv) void, [...]
1230    //   the result [...] is an rvalue.
1231    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1232      return LV_InvalidExpression;
1233
1234    // Both sides must be lvalues for the result to be an lvalue.
1235    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1236      return LV_InvalidExpression;
1237
1238    // That's it.
1239    return LV_Valid;
1240  }
1241
1242  case Expr::CXXExprWithTemporariesClass:
1243    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1244
1245  case Expr::ObjCMessageExprClass:
1246    if (const ObjCMethodDecl *Method
1247          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1248      if (Method->getResultType()->isLValueReferenceType())
1249        return LV_Valid;
1250    break;
1251
1252  default:
1253    break;
1254  }
1255  return LV_InvalidExpression;
1256}
1257
1258/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1259/// does not have an incomplete type, does not have a const-qualified type, and
1260/// if it is a structure or union, does not have any member (including,
1261/// recursively, any member or element of all contained aggregates or unions)
1262/// with a const-qualified type.
1263Expr::isModifiableLvalueResult
1264Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1265  isLvalueResult lvalResult = isLvalue(Ctx);
1266
1267  switch (lvalResult) {
1268  case LV_Valid:
1269    // C++ 3.10p11: Functions cannot be modified, but pointers to
1270    // functions can be modifiable.
1271    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1272      return MLV_NotObjectType;
1273    break;
1274
1275  case LV_NotObjectType: return MLV_NotObjectType;
1276  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1277  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1278  case LV_InvalidExpression:
1279    // If the top level is a C-style cast, and the subexpression is a valid
1280    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1281    // GCC extension.  We don't support it, but we want to produce good
1282    // diagnostics when it happens so that the user knows why.
1283    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1284      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1285        if (Loc)
1286          *Loc = CE->getLParenLoc();
1287        return MLV_LValueCast;
1288      }
1289    }
1290    return MLV_InvalidExpression;
1291  case LV_MemberFunction: return MLV_MemberFunction;
1292  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1293  case LV_SubObjCPropertyGetterSetting:
1294    return MLV_SubObjCPropertyGetterSetting;
1295  }
1296
1297  // The following is illegal:
1298  //   void takeclosure(void (^C)(void));
1299  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1300  //
1301  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1302    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1303      return MLV_NotBlockQualified;
1304  }
1305
1306  // Assigning to an 'implicit' property?
1307  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1308        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1309    if (Expr->getSetterMethod() == 0)
1310      return MLV_NoSetterProperty;
1311  }
1312
1313  QualType CT = Ctx.getCanonicalType(getType());
1314
1315  if (CT.isConstQualified())
1316    return MLV_ConstQualified;
1317  if (CT->isArrayType())
1318    return MLV_ArrayType;
1319  if (CT->isIncompleteType())
1320    return MLV_IncompleteType;
1321
1322  if (const RecordType *r = CT->getAs<RecordType>()) {
1323    if (r->hasConstFields())
1324      return MLV_ConstQualified;
1325  }
1326
1327  return MLV_Valid;
1328}
1329
1330/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1331/// returns true, if it is; false otherwise.
1332bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1333  switch (getStmtClass()) {
1334  default:
1335    return false;
1336  case ObjCIvarRefExprClass:
1337    return true;
1338  case Expr::UnaryOperatorClass:
1339    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1340  case ParenExprClass:
1341    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1342  case ImplicitCastExprClass:
1343    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1344  case CStyleCastExprClass:
1345    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1346  case DeclRefExprClass: {
1347    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1348    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1349      if (VD->hasGlobalStorage())
1350        return true;
1351      QualType T = VD->getType();
1352      // dereferencing to a  pointer is always a gc'able candidate,
1353      // unless it is __weak.
1354      return T->isPointerType() &&
1355             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1356    }
1357    return false;
1358  }
1359  case MemberExprClass: {
1360    const MemberExpr *M = cast<MemberExpr>(this);
1361    return M->getBase()->isOBJCGCCandidate(Ctx);
1362  }
1363  case ArraySubscriptExprClass:
1364    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1365  }
1366}
1367Expr* Expr::IgnoreParens() {
1368  Expr* E = this;
1369  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1370    E = P->getSubExpr();
1371
1372  return E;
1373}
1374
1375/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1376/// or CastExprs or ImplicitCastExprs, returning their operand.
1377Expr *Expr::IgnoreParenCasts() {
1378  Expr *E = this;
1379  while (true) {
1380    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1381      E = P->getSubExpr();
1382    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1383      E = P->getSubExpr();
1384    else
1385      return E;
1386  }
1387}
1388
1389/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1390/// value (including ptr->int casts of the same size).  Strip off any
1391/// ParenExpr or CastExprs, returning their operand.
1392Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1393  Expr *E = this;
1394  while (true) {
1395    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1396      E = P->getSubExpr();
1397      continue;
1398    }
1399
1400    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1401      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1402      // ptr<->int casts of the same width.  We also ignore all identify casts.
1403      Expr *SE = P->getSubExpr();
1404
1405      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1406        E = SE;
1407        continue;
1408      }
1409
1410      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1411          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1412          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1413        E = SE;
1414        continue;
1415      }
1416    }
1417
1418    return E;
1419  }
1420}
1421
1422bool Expr::isDefaultArgument() const {
1423  const Expr *E = this;
1424  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1425    E = ICE->getSubExprAsWritten();
1426
1427  return isa<CXXDefaultArgExpr>(E);
1428}
1429
1430/// hasAnyTypeDependentArguments - Determines if any of the expressions
1431/// in Exprs is type-dependent.
1432bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1433  for (unsigned I = 0; I < NumExprs; ++I)
1434    if (Exprs[I]->isTypeDependent())
1435      return true;
1436
1437  return false;
1438}
1439
1440/// hasAnyValueDependentArguments - Determines if any of the expressions
1441/// in Exprs is value-dependent.
1442bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1443  for (unsigned I = 0; I < NumExprs; ++I)
1444    if (Exprs[I]->isValueDependent())
1445      return true;
1446
1447  return false;
1448}
1449
1450bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1451  // This function is attempting whether an expression is an initializer
1452  // which can be evaluated at compile-time.  isEvaluatable handles most
1453  // of the cases, but it can't deal with some initializer-specific
1454  // expressions, and it can't deal with aggregates; we deal with those here,
1455  // and fall back to isEvaluatable for the other cases.
1456
1457  // FIXME: This function assumes the variable being assigned to
1458  // isn't a reference type!
1459
1460  switch (getStmtClass()) {
1461  default: break;
1462  case StringLiteralClass:
1463  case ObjCStringLiteralClass:
1464  case ObjCEncodeExprClass:
1465    return true;
1466  case CompoundLiteralExprClass: {
1467    // This handles gcc's extension that allows global initializers like
1468    // "struct x {int x;} x = (struct x) {};".
1469    // FIXME: This accepts other cases it shouldn't!
1470    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1471    return Exp->isConstantInitializer(Ctx);
1472  }
1473  case InitListExprClass: {
1474    // FIXME: This doesn't deal with fields with reference types correctly.
1475    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1476    // to bitfields.
1477    const InitListExpr *Exp = cast<InitListExpr>(this);
1478    unsigned numInits = Exp->getNumInits();
1479    for (unsigned i = 0; i < numInits; i++) {
1480      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1481        return false;
1482    }
1483    return true;
1484  }
1485  case ImplicitValueInitExprClass:
1486    return true;
1487  case ParenExprClass:
1488    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1489  case UnaryOperatorClass: {
1490    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1491    if (Exp->getOpcode() == UnaryOperator::Extension)
1492      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1493    break;
1494  }
1495  case BinaryOperatorClass: {
1496    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1497    // but this handles the common case.
1498    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1499    if (Exp->getOpcode() == BinaryOperator::Sub &&
1500        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1501        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1502      return true;
1503    break;
1504  }
1505  case ImplicitCastExprClass:
1506  case CStyleCastExprClass:
1507    // Handle casts with a destination that's a struct or union; this
1508    // deals with both the gcc no-op struct cast extension and the
1509    // cast-to-union extension.
1510    if (getType()->isRecordType())
1511      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1512
1513    // Integer->integer casts can be handled here, which is important for
1514    // things like (int)(&&x-&&y).  Scary but true.
1515    if (getType()->isIntegerType() &&
1516        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1517      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1518
1519    break;
1520  }
1521  return isEvaluatable(Ctx);
1522}
1523
1524/// isIntegerConstantExpr - this recursive routine will test if an expression is
1525/// an integer constant expression.
1526
1527/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1528/// comma, etc
1529///
1530/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1531/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1532/// cast+dereference.
1533
1534// CheckICE - This function does the fundamental ICE checking: the returned
1535// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1536// Note that to reduce code duplication, this helper does no evaluation
1537// itself; the caller checks whether the expression is evaluatable, and
1538// in the rare cases where CheckICE actually cares about the evaluated
1539// value, it calls into Evalute.
1540//
1541// Meanings of Val:
1542// 0: This expression is an ICE if it can be evaluated by Evaluate.
1543// 1: This expression is not an ICE, but if it isn't evaluated, it's
1544//    a legal subexpression for an ICE. This return value is used to handle
1545//    the comma operator in C99 mode.
1546// 2: This expression is not an ICE, and is not a legal subexpression for one.
1547
1548struct ICEDiag {
1549  unsigned Val;
1550  SourceLocation Loc;
1551
1552  public:
1553  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1554  ICEDiag() : Val(0) {}
1555};
1556
1557ICEDiag NoDiag() { return ICEDiag(); }
1558
1559static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1560  Expr::EvalResult EVResult;
1561  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1562      !EVResult.Val.isInt()) {
1563    return ICEDiag(2, E->getLocStart());
1564  }
1565  return NoDiag();
1566}
1567
1568static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1569  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1570  if (!E->getType()->isIntegralType()) {
1571    return ICEDiag(2, E->getLocStart());
1572  }
1573
1574  switch (E->getStmtClass()) {
1575#define STMT(Node, Base) case Expr::Node##Class:
1576#define EXPR(Node, Base)
1577#include "clang/AST/StmtNodes.def"
1578  case Expr::PredefinedExprClass:
1579  case Expr::FloatingLiteralClass:
1580  case Expr::ImaginaryLiteralClass:
1581  case Expr::StringLiteralClass:
1582  case Expr::ArraySubscriptExprClass:
1583  case Expr::MemberExprClass:
1584  case Expr::CompoundAssignOperatorClass:
1585  case Expr::CompoundLiteralExprClass:
1586  case Expr::ExtVectorElementExprClass:
1587  case Expr::InitListExprClass:
1588  case Expr::DesignatedInitExprClass:
1589  case Expr::ImplicitValueInitExprClass:
1590  case Expr::ParenListExprClass:
1591  case Expr::VAArgExprClass:
1592  case Expr::AddrLabelExprClass:
1593  case Expr::StmtExprClass:
1594  case Expr::CXXMemberCallExprClass:
1595  case Expr::CXXDynamicCastExprClass:
1596  case Expr::CXXTypeidExprClass:
1597  case Expr::CXXNullPtrLiteralExprClass:
1598  case Expr::CXXThisExprClass:
1599  case Expr::CXXThrowExprClass:
1600  case Expr::CXXNewExprClass:
1601  case Expr::CXXDeleteExprClass:
1602  case Expr::CXXPseudoDestructorExprClass:
1603  case Expr::UnresolvedLookupExprClass:
1604  case Expr::DependentScopeDeclRefExprClass:
1605  case Expr::CXXConstructExprClass:
1606  case Expr::CXXBindTemporaryExprClass:
1607  case Expr::CXXBindReferenceExprClass:
1608  case Expr::CXXExprWithTemporariesClass:
1609  case Expr::CXXTemporaryObjectExprClass:
1610  case Expr::CXXUnresolvedConstructExprClass:
1611  case Expr::CXXDependentScopeMemberExprClass:
1612  case Expr::UnresolvedMemberExprClass:
1613  case Expr::ObjCStringLiteralClass:
1614  case Expr::ObjCEncodeExprClass:
1615  case Expr::ObjCMessageExprClass:
1616  case Expr::ObjCSelectorExprClass:
1617  case Expr::ObjCProtocolExprClass:
1618  case Expr::ObjCIvarRefExprClass:
1619  case Expr::ObjCPropertyRefExprClass:
1620  case Expr::ObjCImplicitSetterGetterRefExprClass:
1621  case Expr::ObjCSuperExprClass:
1622  case Expr::ObjCIsaExprClass:
1623  case Expr::ShuffleVectorExprClass:
1624  case Expr::BlockExprClass:
1625  case Expr::BlockDeclRefExprClass:
1626  case Expr::NoStmtClass:
1627    return ICEDiag(2, E->getLocStart());
1628
1629  case Expr::GNUNullExprClass:
1630    // GCC considers the GNU __null value to be an integral constant expression.
1631    return NoDiag();
1632
1633  case Expr::ParenExprClass:
1634    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1635  case Expr::IntegerLiteralClass:
1636  case Expr::CharacterLiteralClass:
1637  case Expr::CXXBoolLiteralExprClass:
1638  case Expr::CXXZeroInitValueExprClass:
1639  case Expr::TypesCompatibleExprClass:
1640  case Expr::UnaryTypeTraitExprClass:
1641    return NoDiag();
1642  case Expr::CallExprClass:
1643  case Expr::CXXOperatorCallExprClass: {
1644    const CallExpr *CE = cast<CallExpr>(E);
1645    if (CE->isBuiltinCall(Ctx))
1646      return CheckEvalInICE(E, Ctx);
1647    return ICEDiag(2, E->getLocStart());
1648  }
1649  case Expr::DeclRefExprClass:
1650    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1651      return NoDiag();
1652    if (Ctx.getLangOptions().CPlusPlus &&
1653        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1654      // C++ 7.1.5.1p2
1655      //   A variable of non-volatile const-qualified integral or enumeration
1656      //   type initialized by an ICE can be used in ICEs.
1657      if (const VarDecl *Dcl =
1658              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1659        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1660        if (Quals.hasVolatile() || !Quals.hasConst())
1661          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1662
1663        // Look for a declaration of this variable that has an initializer.
1664        const VarDecl *ID = 0;
1665        const Expr *Init = Dcl->getAnyInitializer(ID);
1666        if (Init) {
1667          if (ID->isInitKnownICE()) {
1668            // We have already checked whether this subexpression is an
1669            // integral constant expression.
1670            if (ID->isInitICE())
1671              return NoDiag();
1672            else
1673              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1674          }
1675
1676          // It's an ICE whether or not the definition we found is
1677          // out-of-line.  See DR 721 and the discussion in Clang PR
1678          // 6206 for details.
1679
1680          if (Dcl->isCheckingICE()) {
1681            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1682          }
1683
1684          Dcl->setCheckingICE();
1685          ICEDiag Result = CheckICE(Init, Ctx);
1686          // Cache the result of the ICE test.
1687          Dcl->setInitKnownICE(Result.Val == 0);
1688          return Result;
1689        }
1690      }
1691    }
1692    return ICEDiag(2, E->getLocStart());
1693  case Expr::UnaryOperatorClass: {
1694    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1695    switch (Exp->getOpcode()) {
1696    case UnaryOperator::PostInc:
1697    case UnaryOperator::PostDec:
1698    case UnaryOperator::PreInc:
1699    case UnaryOperator::PreDec:
1700    case UnaryOperator::AddrOf:
1701    case UnaryOperator::Deref:
1702      return ICEDiag(2, E->getLocStart());
1703
1704    case UnaryOperator::Extension:
1705    case UnaryOperator::LNot:
1706    case UnaryOperator::Plus:
1707    case UnaryOperator::Minus:
1708    case UnaryOperator::Not:
1709    case UnaryOperator::Real:
1710    case UnaryOperator::Imag:
1711      return CheckICE(Exp->getSubExpr(), Ctx);
1712    case UnaryOperator::OffsetOf:
1713      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1714      // Evaluate matches the proposed gcc behavior for cases like
1715      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1716      // compliance: we should warn earlier for offsetof expressions with
1717      // array subscripts that aren't ICEs, and if the array subscripts
1718      // are ICEs, the value of the offsetof must be an integer constant.
1719      return CheckEvalInICE(E, Ctx);
1720    }
1721  }
1722  case Expr::SizeOfAlignOfExprClass: {
1723    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1724    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1725      return ICEDiag(2, E->getLocStart());
1726    return NoDiag();
1727  }
1728  case Expr::BinaryOperatorClass: {
1729    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1730    switch (Exp->getOpcode()) {
1731    case BinaryOperator::PtrMemD:
1732    case BinaryOperator::PtrMemI:
1733    case BinaryOperator::Assign:
1734    case BinaryOperator::MulAssign:
1735    case BinaryOperator::DivAssign:
1736    case BinaryOperator::RemAssign:
1737    case BinaryOperator::AddAssign:
1738    case BinaryOperator::SubAssign:
1739    case BinaryOperator::ShlAssign:
1740    case BinaryOperator::ShrAssign:
1741    case BinaryOperator::AndAssign:
1742    case BinaryOperator::XorAssign:
1743    case BinaryOperator::OrAssign:
1744      return ICEDiag(2, E->getLocStart());
1745
1746    case BinaryOperator::Mul:
1747    case BinaryOperator::Div:
1748    case BinaryOperator::Rem:
1749    case BinaryOperator::Add:
1750    case BinaryOperator::Sub:
1751    case BinaryOperator::Shl:
1752    case BinaryOperator::Shr:
1753    case BinaryOperator::LT:
1754    case BinaryOperator::GT:
1755    case BinaryOperator::LE:
1756    case BinaryOperator::GE:
1757    case BinaryOperator::EQ:
1758    case BinaryOperator::NE:
1759    case BinaryOperator::And:
1760    case BinaryOperator::Xor:
1761    case BinaryOperator::Or:
1762    case BinaryOperator::Comma: {
1763      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1764      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1765      if (Exp->getOpcode() == BinaryOperator::Div ||
1766          Exp->getOpcode() == BinaryOperator::Rem) {
1767        // Evaluate gives an error for undefined Div/Rem, so make sure
1768        // we don't evaluate one.
1769        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1770          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1771          if (REval == 0)
1772            return ICEDiag(1, E->getLocStart());
1773          if (REval.isSigned() && REval.isAllOnesValue()) {
1774            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1775            if (LEval.isMinSignedValue())
1776              return ICEDiag(1, E->getLocStart());
1777          }
1778        }
1779      }
1780      if (Exp->getOpcode() == BinaryOperator::Comma) {
1781        if (Ctx.getLangOptions().C99) {
1782          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1783          // if it isn't evaluated.
1784          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1785            return ICEDiag(1, E->getLocStart());
1786        } else {
1787          // In both C89 and C++, commas in ICEs are illegal.
1788          return ICEDiag(2, E->getLocStart());
1789        }
1790      }
1791      if (LHSResult.Val >= RHSResult.Val)
1792        return LHSResult;
1793      return RHSResult;
1794    }
1795    case BinaryOperator::LAnd:
1796    case BinaryOperator::LOr: {
1797      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1798      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1799      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1800        // Rare case where the RHS has a comma "side-effect"; we need
1801        // to actually check the condition to see whether the side
1802        // with the comma is evaluated.
1803        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1804            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1805          return RHSResult;
1806        return NoDiag();
1807      }
1808
1809      if (LHSResult.Val >= RHSResult.Val)
1810        return LHSResult;
1811      return RHSResult;
1812    }
1813    }
1814  }
1815  case Expr::ImplicitCastExprClass:
1816  case Expr::CStyleCastExprClass:
1817  case Expr::CXXFunctionalCastExprClass:
1818  case Expr::CXXNamedCastExprClass:
1819  case Expr::CXXStaticCastExprClass:
1820  case Expr::CXXReinterpretCastExprClass:
1821  case Expr::CXXConstCastExprClass: {
1822    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1823    if (SubExpr->getType()->isIntegralType())
1824      return CheckICE(SubExpr, Ctx);
1825    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1826      return NoDiag();
1827    return ICEDiag(2, E->getLocStart());
1828  }
1829  case Expr::ConditionalOperatorClass: {
1830    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1831    // If the condition (ignoring parens) is a __builtin_constant_p call,
1832    // then only the true side is actually considered in an integer constant
1833    // expression, and it is fully evaluated.  This is an important GNU
1834    // extension.  See GCC PR38377 for discussion.
1835    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1836      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1837        Expr::EvalResult EVResult;
1838        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1839            !EVResult.Val.isInt()) {
1840          return ICEDiag(2, E->getLocStart());
1841        }
1842        return NoDiag();
1843      }
1844    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1845    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1846    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1847    if (CondResult.Val == 2)
1848      return CondResult;
1849    if (TrueResult.Val == 2)
1850      return TrueResult;
1851    if (FalseResult.Val == 2)
1852      return FalseResult;
1853    if (CondResult.Val == 1)
1854      return CondResult;
1855    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1856      return NoDiag();
1857    // Rare case where the diagnostics depend on which side is evaluated
1858    // Note that if we get here, CondResult is 0, and at least one of
1859    // TrueResult and FalseResult is non-zero.
1860    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1861      return FalseResult;
1862    }
1863    return TrueResult;
1864  }
1865  case Expr::CXXDefaultArgExprClass:
1866    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1867  case Expr::ChooseExprClass: {
1868    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1869  }
1870  }
1871
1872  // Silence a GCC warning
1873  return ICEDiag(2, E->getLocStart());
1874}
1875
1876bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1877                                 SourceLocation *Loc, bool isEvaluated) const {
1878  ICEDiag d = CheckICE(this, Ctx);
1879  if (d.Val != 0) {
1880    if (Loc) *Loc = d.Loc;
1881    return false;
1882  }
1883  EvalResult EvalResult;
1884  if (!Evaluate(EvalResult, Ctx))
1885    llvm_unreachable("ICE cannot be evaluated!");
1886  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1887  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1888  Result = EvalResult.Val.getInt();
1889  return true;
1890}
1891
1892/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1893/// integer constant expression with the value zero, or if this is one that is
1894/// cast to void*.
1895bool Expr::isNullPointerConstant(ASTContext &Ctx,
1896                                 NullPointerConstantValueDependence NPC) const {
1897  if (isValueDependent()) {
1898    switch (NPC) {
1899    case NPC_NeverValueDependent:
1900      assert(false && "Unexpected value dependent expression!");
1901      // If the unthinkable happens, fall through to the safest alternative.
1902
1903    case NPC_ValueDependentIsNull:
1904      return isTypeDependent() || getType()->isIntegralType();
1905
1906    case NPC_ValueDependentIsNotNull:
1907      return false;
1908    }
1909  }
1910
1911  // Strip off a cast to void*, if it exists. Except in C++.
1912  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1913    if (!Ctx.getLangOptions().CPlusPlus) {
1914      // Check that it is a cast to void*.
1915      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1916        QualType Pointee = PT->getPointeeType();
1917        if (!Pointee.hasQualifiers() &&
1918            Pointee->isVoidType() &&                              // to void*
1919            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1920          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1921      }
1922    }
1923  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1924    // Ignore the ImplicitCastExpr type entirely.
1925    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1926  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1927    // Accept ((void*)0) as a null pointer constant, as many other
1928    // implementations do.
1929    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1930  } else if (const CXXDefaultArgExpr *DefaultArg
1931               = dyn_cast<CXXDefaultArgExpr>(this)) {
1932    // See through default argument expressions
1933    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1934  } else if (isa<GNUNullExpr>(this)) {
1935    // The GNU __null extension is always a null pointer constant.
1936    return true;
1937  }
1938
1939  // C++0x nullptr_t is always a null pointer constant.
1940  if (getType()->isNullPtrType())
1941    return true;
1942
1943  // This expression must be an integer type.
1944  if (!getType()->isIntegerType() ||
1945      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1946    return false;
1947
1948  // If we have an integer constant expression, we need to *evaluate* it and
1949  // test for the value 0.
1950  llvm::APSInt Result;
1951  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1952}
1953
1954FieldDecl *Expr::getBitField() {
1955  Expr *E = this->IgnoreParens();
1956
1957  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1958    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1959      E = ICE->getSubExpr()->IgnoreParens();
1960    else
1961      break;
1962  }
1963
1964  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1965    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1966      if (Field->isBitField())
1967        return Field;
1968
1969  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1970    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1971      return BinOp->getLHS()->getBitField();
1972
1973  return 0;
1974}
1975
1976bool Expr::refersToVectorElement() const {
1977  const Expr *E = this->IgnoreParens();
1978
1979  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1980    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1981      E = ICE->getSubExpr()->IgnoreParens();
1982    else
1983      break;
1984  }
1985
1986  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
1987    return ASE->getBase()->getType()->isVectorType();
1988
1989  if (isa<ExtVectorElementExpr>(E))
1990    return true;
1991
1992  return false;
1993}
1994
1995/// isArrow - Return true if the base expression is a pointer to vector,
1996/// return false if the base expression is a vector.
1997bool ExtVectorElementExpr::isArrow() const {
1998  return getBase()->getType()->isPointerType();
1999}
2000
2001unsigned ExtVectorElementExpr::getNumElements() const {
2002  if (const VectorType *VT = getType()->getAs<VectorType>())
2003    return VT->getNumElements();
2004  return 1;
2005}
2006
2007/// containsDuplicateElements - Return true if any element access is repeated.
2008bool ExtVectorElementExpr::containsDuplicateElements() const {
2009  // FIXME: Refactor this code to an accessor on the AST node which returns the
2010  // "type" of component access, and share with code below and in Sema.
2011  llvm::StringRef Comp = Accessor->getName();
2012
2013  // Halving swizzles do not contain duplicate elements.
2014  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2015    return false;
2016
2017  // Advance past s-char prefix on hex swizzles.
2018  if (Comp[0] == 's' || Comp[0] == 'S')
2019    Comp = Comp.substr(1);
2020
2021  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2022    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2023        return true;
2024
2025  return false;
2026}
2027
2028/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2029void ExtVectorElementExpr::getEncodedElementAccess(
2030                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2031  llvm::StringRef Comp = Accessor->getName();
2032  if (Comp[0] == 's' || Comp[0] == 'S')
2033    Comp = Comp.substr(1);
2034
2035  bool isHi =   Comp == "hi";
2036  bool isLo =   Comp == "lo";
2037  bool isEven = Comp == "even";
2038  bool isOdd  = Comp == "odd";
2039
2040  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2041    uint64_t Index;
2042
2043    if (isHi)
2044      Index = e + i;
2045    else if (isLo)
2046      Index = i;
2047    else if (isEven)
2048      Index = 2 * i;
2049    else if (isOdd)
2050      Index = 2 * i + 1;
2051    else
2052      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2053
2054    Elts.push_back(Index);
2055  }
2056}
2057
2058// constructor for instance messages.
2059ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2060                QualType retType, ObjCMethodDecl *mproto,
2061                SourceLocation LBrac, SourceLocation RBrac,
2062                Expr **ArgExprs, unsigned nargs)
2063  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2064    MethodProto(mproto) {
2065  NumArgs = nargs;
2066  SubExprs = new Stmt*[NumArgs+1];
2067  SubExprs[RECEIVER] = receiver;
2068  if (NumArgs) {
2069    for (unsigned i = 0; i != NumArgs; ++i)
2070      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2071  }
2072  LBracloc = LBrac;
2073  RBracloc = RBrac;
2074}
2075
2076// constructor for class messages.
2077// FIXME: clsName should be typed to ObjCInterfaceType
2078ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2079                QualType retType, ObjCMethodDecl *mproto,
2080                SourceLocation LBrac, SourceLocation RBrac,
2081                Expr **ArgExprs, unsigned nargs)
2082  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2083    MethodProto(mproto) {
2084  NumArgs = nargs;
2085  SubExprs = new Stmt*[NumArgs+1];
2086  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2087  if (NumArgs) {
2088    for (unsigned i = 0; i != NumArgs; ++i)
2089      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2090  }
2091  LBracloc = LBrac;
2092  RBracloc = RBrac;
2093}
2094
2095// constructor for class messages.
2096ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2097                                 QualType retType, ObjCMethodDecl *mproto,
2098                                 SourceLocation LBrac, SourceLocation RBrac,
2099                                 Expr **ArgExprs, unsigned nargs)
2100: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2101MethodProto(mproto) {
2102  NumArgs = nargs;
2103  SubExprs = new Stmt*[NumArgs+1];
2104  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2105  if (NumArgs) {
2106    for (unsigned i = 0; i != NumArgs; ++i)
2107      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2108  }
2109  LBracloc = LBrac;
2110  RBracloc = RBrac;
2111}
2112
2113ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2114  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2115  switch (x & Flags) {
2116    default:
2117      assert(false && "Invalid ObjCMessageExpr.");
2118    case IsInstMeth:
2119      return ClassInfo(0, 0);
2120    case IsClsMethDeclUnknown:
2121      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2122    case IsClsMethDeclKnown: {
2123      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2124      return ClassInfo(D, D->getIdentifier());
2125    }
2126  }
2127}
2128
2129void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2130  if (CI.first == 0 && CI.second == 0)
2131    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2132  else if (CI.first == 0)
2133    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2134  else
2135    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2136}
2137
2138
2139bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2140  return getCond()->EvaluateAsInt(C) != 0;
2141}
2142
2143void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2144                                 unsigned NumExprs) {
2145  if (SubExprs) C.Deallocate(SubExprs);
2146
2147  SubExprs = new (C) Stmt* [NumExprs];
2148  this->NumExprs = NumExprs;
2149  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2150}
2151
2152void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2153  DestroyChildren(C);
2154  if (SubExprs) C.Deallocate(SubExprs);
2155  this->~ShuffleVectorExpr();
2156  C.Deallocate(this);
2157}
2158
2159void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2160  // Override default behavior of traversing children. If this has a type
2161  // operand and the type is a variable-length array, the child iteration
2162  // will iterate over the size expression. However, this expression belongs
2163  // to the type, not to this, so we don't want to delete it.
2164  // We still want to delete this expression.
2165  if (isArgumentType()) {
2166    this->~SizeOfAlignOfExpr();
2167    C.Deallocate(this);
2168  }
2169  else
2170    Expr::DoDestroy(C);
2171}
2172
2173//===----------------------------------------------------------------------===//
2174//  DesignatedInitExpr
2175//===----------------------------------------------------------------------===//
2176
2177IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2178  assert(Kind == FieldDesignator && "Only valid on a field designator");
2179  if (Field.NameOrField & 0x01)
2180    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2181  else
2182    return getField()->getIdentifier();
2183}
2184
2185DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2186                                       unsigned NumDesignators,
2187                                       const Designator *Designators,
2188                                       SourceLocation EqualOrColonLoc,
2189                                       bool GNUSyntax,
2190                                       Expr **IndexExprs,
2191                                       unsigned NumIndexExprs,
2192                                       Expr *Init)
2193  : Expr(DesignatedInitExprClass, Ty,
2194         Init->isTypeDependent(), Init->isValueDependent()),
2195    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2196    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2197  this->Designators = new (C) Designator[NumDesignators];
2198
2199  // Record the initializer itself.
2200  child_iterator Child = child_begin();
2201  *Child++ = Init;
2202
2203  // Copy the designators and their subexpressions, computing
2204  // value-dependence along the way.
2205  unsigned IndexIdx = 0;
2206  for (unsigned I = 0; I != NumDesignators; ++I) {
2207    this->Designators[I] = Designators[I];
2208
2209    if (this->Designators[I].isArrayDesignator()) {
2210      // Compute type- and value-dependence.
2211      Expr *Index = IndexExprs[IndexIdx];
2212      ValueDependent = ValueDependent ||
2213        Index->isTypeDependent() || Index->isValueDependent();
2214
2215      // Copy the index expressions into permanent storage.
2216      *Child++ = IndexExprs[IndexIdx++];
2217    } else if (this->Designators[I].isArrayRangeDesignator()) {
2218      // Compute type- and value-dependence.
2219      Expr *Start = IndexExprs[IndexIdx];
2220      Expr *End = IndexExprs[IndexIdx + 1];
2221      ValueDependent = ValueDependent ||
2222        Start->isTypeDependent() || Start->isValueDependent() ||
2223        End->isTypeDependent() || End->isValueDependent();
2224
2225      // Copy the start/end expressions into permanent storage.
2226      *Child++ = IndexExprs[IndexIdx++];
2227      *Child++ = IndexExprs[IndexIdx++];
2228    }
2229  }
2230
2231  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2232}
2233
2234DesignatedInitExpr *
2235DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2236                           unsigned NumDesignators,
2237                           Expr **IndexExprs, unsigned NumIndexExprs,
2238                           SourceLocation ColonOrEqualLoc,
2239                           bool UsesColonSyntax, Expr *Init) {
2240  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2241                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2242  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2243                                      ColonOrEqualLoc, UsesColonSyntax,
2244                                      IndexExprs, NumIndexExprs, Init);
2245}
2246
2247DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2248                                                    unsigned NumIndexExprs) {
2249  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2250                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2251  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2252}
2253
2254void DesignatedInitExpr::setDesignators(ASTContext &C,
2255                                        const Designator *Desigs,
2256                                        unsigned NumDesigs) {
2257  DestroyDesignators(C);
2258
2259  Designators = new (C) Designator[NumDesigs];
2260  NumDesignators = NumDesigs;
2261  for (unsigned I = 0; I != NumDesigs; ++I)
2262    Designators[I] = Desigs[I];
2263}
2264
2265SourceRange DesignatedInitExpr::getSourceRange() const {
2266  SourceLocation StartLoc;
2267  Designator &First =
2268    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2269  if (First.isFieldDesignator()) {
2270    if (GNUSyntax)
2271      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2272    else
2273      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2274  } else
2275    StartLoc =
2276      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2277  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2278}
2279
2280Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2281  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2282  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2283  Ptr += sizeof(DesignatedInitExpr);
2284  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2285  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2286}
2287
2288Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2289  assert(D.Kind == Designator::ArrayRangeDesignator &&
2290         "Requires array range designator");
2291  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2292  Ptr += sizeof(DesignatedInitExpr);
2293  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2294  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2295}
2296
2297Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2298  assert(D.Kind == Designator::ArrayRangeDesignator &&
2299         "Requires array range designator");
2300  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2301  Ptr += sizeof(DesignatedInitExpr);
2302  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2303  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2304}
2305
2306/// \brief Replaces the designator at index @p Idx with the series
2307/// of designators in [First, Last).
2308void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2309                                          const Designator *First,
2310                                          const Designator *Last) {
2311  unsigned NumNewDesignators = Last - First;
2312  if (NumNewDesignators == 0) {
2313    std::copy_backward(Designators + Idx + 1,
2314                       Designators + NumDesignators,
2315                       Designators + Idx);
2316    --NumNewDesignators;
2317    return;
2318  } else if (NumNewDesignators == 1) {
2319    Designators[Idx] = *First;
2320    return;
2321  }
2322
2323  Designator *NewDesignators
2324    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2325  std::copy(Designators, Designators + Idx, NewDesignators);
2326  std::copy(First, Last, NewDesignators + Idx);
2327  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2328            NewDesignators + Idx + NumNewDesignators);
2329  DestroyDesignators(C);
2330  Designators = NewDesignators;
2331  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2332}
2333
2334void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2335  DestroyDesignators(C);
2336  Expr::DoDestroy(C);
2337}
2338
2339void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2340  for (unsigned I = 0; I != NumDesignators; ++I)
2341    Designators[I].~Designator();
2342  C.Deallocate(Designators);
2343  Designators = 0;
2344}
2345
2346ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2347                             Expr **exprs, unsigned nexprs,
2348                             SourceLocation rparenloc)
2349: Expr(ParenListExprClass, QualType(),
2350       hasAnyTypeDependentArguments(exprs, nexprs),
2351       hasAnyValueDependentArguments(exprs, nexprs)),
2352  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2353
2354  Exprs = new (C) Stmt*[nexprs];
2355  for (unsigned i = 0; i != nexprs; ++i)
2356    Exprs[i] = exprs[i];
2357}
2358
2359void ParenListExpr::DoDestroy(ASTContext& C) {
2360  DestroyChildren(C);
2361  if (Exprs) C.Deallocate(Exprs);
2362  this->~ParenListExpr();
2363  C.Deallocate(this);
2364}
2365
2366//===----------------------------------------------------------------------===//
2367//  ExprIterator.
2368//===----------------------------------------------------------------------===//
2369
2370Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2371Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2372Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2373const Expr* ConstExprIterator::operator[](size_t idx) const {
2374  return cast<Expr>(I[idx]);
2375}
2376const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2377const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2378
2379//===----------------------------------------------------------------------===//
2380//  Child Iterators for iterating over subexpressions/substatements
2381//===----------------------------------------------------------------------===//
2382
2383// DeclRefExpr
2384Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2385Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2386
2387// ObjCIvarRefExpr
2388Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2389Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2390
2391// ObjCPropertyRefExpr
2392Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2393Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2394
2395// ObjCImplicitSetterGetterRefExpr
2396Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2397  return &Base;
2398}
2399Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2400  return &Base+1;
2401}
2402
2403// ObjCSuperExpr
2404Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2405Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2406
2407// ObjCIsaExpr
2408Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2409Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2410
2411// PredefinedExpr
2412Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2413Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2414
2415// IntegerLiteral
2416Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2417Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2418
2419// CharacterLiteral
2420Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2421Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2422
2423// FloatingLiteral
2424Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2425Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2426
2427// ImaginaryLiteral
2428Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2429Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2430
2431// StringLiteral
2432Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2433Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2434
2435// ParenExpr
2436Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2437Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2438
2439// UnaryOperator
2440Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2441Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2442
2443// SizeOfAlignOfExpr
2444Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2445  // If this is of a type and the type is a VLA type (and not a typedef), the
2446  // size expression of the VLA needs to be treated as an executable expression.
2447  // Why isn't this weirdness documented better in StmtIterator?
2448  if (isArgumentType()) {
2449    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2450                                   getArgumentType().getTypePtr()))
2451      return child_iterator(T);
2452    return child_iterator();
2453  }
2454  return child_iterator(&Argument.Ex);
2455}
2456Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2457  if (isArgumentType())
2458    return child_iterator();
2459  return child_iterator(&Argument.Ex + 1);
2460}
2461
2462// ArraySubscriptExpr
2463Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2464  return &SubExprs[0];
2465}
2466Stmt::child_iterator ArraySubscriptExpr::child_end() {
2467  return &SubExprs[0]+END_EXPR;
2468}
2469
2470// CallExpr
2471Stmt::child_iterator CallExpr::child_begin() {
2472  return &SubExprs[0];
2473}
2474Stmt::child_iterator CallExpr::child_end() {
2475  return &SubExprs[0]+NumArgs+ARGS_START;
2476}
2477
2478// MemberExpr
2479Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2480Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2481
2482// ExtVectorElementExpr
2483Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2484Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2485
2486// CompoundLiteralExpr
2487Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2488Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2489
2490// CastExpr
2491Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2492Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2493
2494// BinaryOperator
2495Stmt::child_iterator BinaryOperator::child_begin() {
2496  return &SubExprs[0];
2497}
2498Stmt::child_iterator BinaryOperator::child_end() {
2499  return &SubExprs[0]+END_EXPR;
2500}
2501
2502// ConditionalOperator
2503Stmt::child_iterator ConditionalOperator::child_begin() {
2504  return &SubExprs[0];
2505}
2506Stmt::child_iterator ConditionalOperator::child_end() {
2507  return &SubExprs[0]+END_EXPR;
2508}
2509
2510// AddrLabelExpr
2511Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2512Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2513
2514// StmtExpr
2515Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2516Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2517
2518// TypesCompatibleExpr
2519Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2520  return child_iterator();
2521}
2522
2523Stmt::child_iterator TypesCompatibleExpr::child_end() {
2524  return child_iterator();
2525}
2526
2527// ChooseExpr
2528Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2529Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2530
2531// GNUNullExpr
2532Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2533Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2534
2535// ShuffleVectorExpr
2536Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2537  return &SubExprs[0];
2538}
2539Stmt::child_iterator ShuffleVectorExpr::child_end() {
2540  return &SubExprs[0]+NumExprs;
2541}
2542
2543// VAArgExpr
2544Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2545Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2546
2547// InitListExpr
2548Stmt::child_iterator InitListExpr::child_begin() {
2549  return InitExprs.size() ? &InitExprs[0] : 0;
2550}
2551Stmt::child_iterator InitListExpr::child_end() {
2552  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2553}
2554
2555// DesignatedInitExpr
2556Stmt::child_iterator DesignatedInitExpr::child_begin() {
2557  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2558  Ptr += sizeof(DesignatedInitExpr);
2559  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2560}
2561Stmt::child_iterator DesignatedInitExpr::child_end() {
2562  return child_iterator(&*child_begin() + NumSubExprs);
2563}
2564
2565// ImplicitValueInitExpr
2566Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2567  return child_iterator();
2568}
2569
2570Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2571  return child_iterator();
2572}
2573
2574// ParenListExpr
2575Stmt::child_iterator ParenListExpr::child_begin() {
2576  return &Exprs[0];
2577}
2578Stmt::child_iterator ParenListExpr::child_end() {
2579  return &Exprs[0]+NumExprs;
2580}
2581
2582// ObjCStringLiteral
2583Stmt::child_iterator ObjCStringLiteral::child_begin() {
2584  return &String;
2585}
2586Stmt::child_iterator ObjCStringLiteral::child_end() {
2587  return &String+1;
2588}
2589
2590// ObjCEncodeExpr
2591Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2592Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2593
2594// ObjCSelectorExpr
2595Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2596  return child_iterator();
2597}
2598Stmt::child_iterator ObjCSelectorExpr::child_end() {
2599  return child_iterator();
2600}
2601
2602// ObjCProtocolExpr
2603Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2604  return child_iterator();
2605}
2606Stmt::child_iterator ObjCProtocolExpr::child_end() {
2607  return child_iterator();
2608}
2609
2610// ObjCMessageExpr
2611Stmt::child_iterator ObjCMessageExpr::child_begin() {
2612  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2613}
2614Stmt::child_iterator ObjCMessageExpr::child_end() {
2615  return &SubExprs[0]+ARGS_START+getNumArgs();
2616}
2617
2618// Blocks
2619Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2620Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2621
2622Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2623Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2624