Expr.cpp revision fb84664349ca6f37f5ec4df440f6c362cca62470
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/TargetInfo.h"
24#include <algorithm>
25using namespace clang;
26
27//===----------------------------------------------------------------------===//
28// Primary Expressions.
29//===----------------------------------------------------------------------===//
30
31PredefinedExpr* PredefinedExpr::Clone(ASTContext &C) const {
32  return new (C) PredefinedExpr(Loc, getType(), Type);
33}
34
35IntegerLiteral* IntegerLiteral::Clone(ASTContext &C) const {
36  return new (C) IntegerLiteral(Value, getType(), Loc);
37}
38
39CharacterLiteral* CharacterLiteral::Clone(ASTContext &C) const {
40  return new (C) CharacterLiteral(Value, IsWide, getType(), Loc);
41}
42
43FloatingLiteral* FloatingLiteral::Clone(ASTContext &C) const {
44  return new (C) FloatingLiteral(Value, IsExact, getType(), Loc);
45}
46
47ImaginaryLiteral* ImaginaryLiteral::Clone(ASTContext &C) const {
48  // FIXME: Use virtual Clone(), once it is available
49  Expr *ClonedVal = 0;
50  if (const IntegerLiteral *IntLit = dyn_cast<IntegerLiteral>(Val))
51    ClonedVal = IntLit->Clone(C);
52  else
53    ClonedVal = cast<FloatingLiteral>(Val)->Clone(C);
54  return new (C) ImaginaryLiteral(ClonedVal, getType());
55}
56
57GNUNullExpr* GNUNullExpr::Clone(ASTContext &C) const {
58  return new (C) GNUNullExpr(getType(), TokenLoc);
59}
60
61/// getValueAsApproximateDouble - This returns the value as an inaccurate
62/// double.  Note that this may cause loss of precision, but is useful for
63/// debugging dumps, etc.
64double FloatingLiteral::getValueAsApproximateDouble() const {
65  llvm::APFloat V = getValue();
66  bool ignored;
67  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
68            &ignored);
69  return V.convertToDouble();
70}
71
72StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
73                                     unsigned ByteLength, bool Wide,
74                                     QualType Ty,
75                                     const SourceLocation *Loc,
76                                     unsigned NumStrs) {
77  // Allocate enough space for the StringLiteral plus an array of locations for
78  // any concatenated string tokens.
79  void *Mem = C.Allocate(sizeof(StringLiteral)+
80                         sizeof(SourceLocation)*(NumStrs-1),
81                         llvm::alignof<StringLiteral>());
82  StringLiteral *SL = new (Mem) StringLiteral(Ty);
83
84  // OPTIMIZE: could allocate this appended to the StringLiteral.
85  char *AStrData = new (C, 1) char[ByteLength];
86  memcpy(AStrData, StrData, ByteLength);
87  SL->StrData = AStrData;
88  SL->ByteLength = ByteLength;
89  SL->IsWide = Wide;
90  SL->TokLocs[0] = Loc[0];
91  SL->NumConcatenated = NumStrs;
92
93  if (NumStrs != 1)
94    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
95  return SL;
96}
97
98StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
99  void *Mem = C.Allocate(sizeof(StringLiteral)+
100                         sizeof(SourceLocation)*(NumStrs-1),
101                         llvm::alignof<StringLiteral>());
102  StringLiteral *SL = new (Mem) StringLiteral(QualType());
103  SL->StrData = 0;
104  SL->ByteLength = 0;
105  SL->NumConcatenated = NumStrs;
106  return SL;
107}
108
109StringLiteral* StringLiteral::Clone(ASTContext &C) const {
110  return Create(C, StrData, ByteLength, IsWide, getType(),
111                TokLocs, NumConcatenated);
112}
113
114void StringLiteral::Destroy(ASTContext &C) {
115  C.Deallocate(const_cast<char*>(StrData));
116  this->~StringLiteral();
117  C.Deallocate(this);
118}
119
120void StringLiteral::setStrData(ASTContext &C, const char *Str, unsigned Len) {
121  if (StrData)
122    C.Deallocate(const_cast<char*>(StrData));
123
124  char *AStrData = new (C, 1) char[Len];
125  memcpy(AStrData, Str, Len);
126  StrData = AStrData;
127  ByteLength = Len;
128}
129
130/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
131/// corresponds to, e.g. "sizeof" or "[pre]++".
132const char *UnaryOperator::getOpcodeStr(Opcode Op) {
133  switch (Op) {
134  default: assert(0 && "Unknown unary operator");
135  case PostInc: return "++";
136  case PostDec: return "--";
137  case PreInc:  return "++";
138  case PreDec:  return "--";
139  case AddrOf:  return "&";
140  case Deref:   return "*";
141  case Plus:    return "+";
142  case Minus:   return "-";
143  case Not:     return "~";
144  case LNot:    return "!";
145  case Real:    return "__real";
146  case Imag:    return "__imag";
147  case Extension: return "__extension__";
148  case OffsetOf: return "__builtin_offsetof";
149  }
150}
151
152UnaryOperator::Opcode
153UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
154  switch (OO) {
155  default: assert(false && "No unary operator for overloaded function");
156  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
157  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
158  case OO_Amp:        return AddrOf;
159  case OO_Star:       return Deref;
160  case OO_Plus:       return Plus;
161  case OO_Minus:      return Minus;
162  case OO_Tilde:      return Not;
163  case OO_Exclaim:    return LNot;
164  }
165}
166
167OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
168  switch (Opc) {
169  case PostInc: case PreInc: return OO_PlusPlus;
170  case PostDec: case PreDec: return OO_MinusMinus;
171  case AddrOf: return OO_Amp;
172  case Deref: return OO_Star;
173  case Plus: return OO_Plus;
174  case Minus: return OO_Minus;
175  case Not: return OO_Tilde;
176  case LNot: return OO_Exclaim;
177  default: return OO_None;
178  }
179}
180
181
182//===----------------------------------------------------------------------===//
183// Postfix Operators.
184//===----------------------------------------------------------------------===//
185
186CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
187                   unsigned numargs, QualType t, SourceLocation rparenloc)
188  : Expr(SC, t,
189         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
190         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
191    NumArgs(numargs) {
192
193  SubExprs = new (C) Stmt*[numargs+1];
194  SubExprs[FN] = fn;
195  for (unsigned i = 0; i != numargs; ++i)
196    SubExprs[i+ARGS_START] = args[i];
197
198  RParenLoc = rparenloc;
199}
200
201CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
202                   QualType t, SourceLocation rparenloc)
203  : Expr(CallExprClass, t,
204         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
205         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
206    NumArgs(numargs) {
207
208  SubExprs = new (C) Stmt*[numargs+1];
209  SubExprs[FN] = fn;
210  for (unsigned i = 0; i != numargs; ++i)
211    SubExprs[i+ARGS_START] = args[i];
212
213  RParenLoc = rparenloc;
214}
215
216CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
217  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
218  SubExprs = new (C) Stmt*[1];
219}
220
221void CallExpr::Destroy(ASTContext& C) {
222  DestroyChildren(C);
223  if (SubExprs) C.Deallocate(SubExprs);
224  this->~CallExpr();
225  C.Deallocate(this);
226}
227
228FunctionDecl *CallExpr::getDirectCallee() {
229  Expr *CEE = getCallee()->IgnoreParenCasts();
230  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
231    return dyn_cast<FunctionDecl>(DRE->getDecl());
232
233  return 0;
234}
235
236/// setNumArgs - This changes the number of arguments present in this call.
237/// Any orphaned expressions are deleted by this, and any new operands are set
238/// to null.
239void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
240  // No change, just return.
241  if (NumArgs == getNumArgs()) return;
242
243  // If shrinking # arguments, just delete the extras and forgot them.
244  if (NumArgs < getNumArgs()) {
245    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
246      getArg(i)->Destroy(C);
247    this->NumArgs = NumArgs;
248    return;
249  }
250
251  // Otherwise, we are growing the # arguments.  New an bigger argument array.
252  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
253  // Copy over args.
254  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
255    NewSubExprs[i] = SubExprs[i];
256  // Null out new args.
257  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
258    NewSubExprs[i] = 0;
259
260  if (SubExprs) C.Deallocate(SubExprs);
261  SubExprs = NewSubExprs;
262  this->NumArgs = NumArgs;
263}
264
265/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
266/// not, return 0.
267unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
268  // All simple function calls (e.g. func()) are implicitly cast to pointer to
269  // function. As a result, we try and obtain the DeclRefExpr from the
270  // ImplicitCastExpr.
271  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
272  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
273    return 0;
274
275  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
276  if (!DRE)
277    return 0;
278
279  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
280  if (!FDecl)
281    return 0;
282
283  if (!FDecl->getIdentifier())
284    return 0;
285
286  return FDecl->getBuiltinID(Context);
287}
288
289QualType CallExpr::getCallReturnType() const {
290  QualType CalleeType = getCallee()->getType();
291  if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
292    CalleeType = FnTypePtr->getPointeeType();
293  else if (const BlockPointerType *BPT = CalleeType->getAsBlockPointerType())
294    CalleeType = BPT->getPointeeType();
295
296  const FunctionType *FnType = CalleeType->getAsFunctionType();
297  return FnType->getResultType();
298}
299
300/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
301/// corresponds to, e.g. "<<=".
302const char *BinaryOperator::getOpcodeStr(Opcode Op) {
303  switch (Op) {
304  case PtrMemD:   return ".*";
305  case PtrMemI:   return "->*";
306  case Mul:       return "*";
307  case Div:       return "/";
308  case Rem:       return "%";
309  case Add:       return "+";
310  case Sub:       return "-";
311  case Shl:       return "<<";
312  case Shr:       return ">>";
313  case LT:        return "<";
314  case GT:        return ">";
315  case LE:        return "<=";
316  case GE:        return ">=";
317  case EQ:        return "==";
318  case NE:        return "!=";
319  case And:       return "&";
320  case Xor:       return "^";
321  case Or:        return "|";
322  case LAnd:      return "&&";
323  case LOr:       return "||";
324  case Assign:    return "=";
325  case MulAssign: return "*=";
326  case DivAssign: return "/=";
327  case RemAssign: return "%=";
328  case AddAssign: return "+=";
329  case SubAssign: return "-=";
330  case ShlAssign: return "<<=";
331  case ShrAssign: return ">>=";
332  case AndAssign: return "&=";
333  case XorAssign: return "^=";
334  case OrAssign:  return "|=";
335  case Comma:     return ",";
336  }
337
338  return "";
339}
340
341BinaryOperator::Opcode
342BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
343  switch (OO) {
344  default: assert(false && "Not an overloadable binary operator");
345  case OO_Plus: return Add;
346  case OO_Minus: return Sub;
347  case OO_Star: return Mul;
348  case OO_Slash: return Div;
349  case OO_Percent: return Rem;
350  case OO_Caret: return Xor;
351  case OO_Amp: return And;
352  case OO_Pipe: return Or;
353  case OO_Equal: return Assign;
354  case OO_Less: return LT;
355  case OO_Greater: return GT;
356  case OO_PlusEqual: return AddAssign;
357  case OO_MinusEqual: return SubAssign;
358  case OO_StarEqual: return MulAssign;
359  case OO_SlashEqual: return DivAssign;
360  case OO_PercentEqual: return RemAssign;
361  case OO_CaretEqual: return XorAssign;
362  case OO_AmpEqual: return AndAssign;
363  case OO_PipeEqual: return OrAssign;
364  case OO_LessLess: return Shl;
365  case OO_GreaterGreater: return Shr;
366  case OO_LessLessEqual: return ShlAssign;
367  case OO_GreaterGreaterEqual: return ShrAssign;
368  case OO_EqualEqual: return EQ;
369  case OO_ExclaimEqual: return NE;
370  case OO_LessEqual: return LE;
371  case OO_GreaterEqual: return GE;
372  case OO_AmpAmp: return LAnd;
373  case OO_PipePipe: return LOr;
374  case OO_Comma: return Comma;
375  case OO_ArrowStar: return PtrMemI;
376  }
377}
378
379OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
380  static const OverloadedOperatorKind OverOps[] = {
381    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
382    OO_Star, OO_Slash, OO_Percent,
383    OO_Plus, OO_Minus,
384    OO_LessLess, OO_GreaterGreater,
385    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
386    OO_EqualEqual, OO_ExclaimEqual,
387    OO_Amp,
388    OO_Caret,
389    OO_Pipe,
390    OO_AmpAmp,
391    OO_PipePipe,
392    OO_Equal, OO_StarEqual,
393    OO_SlashEqual, OO_PercentEqual,
394    OO_PlusEqual, OO_MinusEqual,
395    OO_LessLessEqual, OO_GreaterGreaterEqual,
396    OO_AmpEqual, OO_CaretEqual,
397    OO_PipeEqual,
398    OO_Comma
399  };
400  return OverOps[Opc];
401}
402
403InitListExpr::InitListExpr(SourceLocation lbraceloc,
404                           Expr **initExprs, unsigned numInits,
405                           SourceLocation rbraceloc)
406  : Expr(InitListExprClass, QualType(),
407         hasAnyTypeDependentArguments(initExprs, numInits),
408         hasAnyValueDependentArguments(initExprs, numInits)),
409    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
410    UnionFieldInit(0), HadArrayRangeDesignator(false) {
411
412  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
413}
414
415void InitListExpr::reserveInits(unsigned NumInits) {
416  if (NumInits > InitExprs.size())
417    InitExprs.reserve(NumInits);
418}
419
420void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
421  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
422       Idx < LastIdx; ++Idx)
423    InitExprs[Idx]->Destroy(Context);
424  InitExprs.resize(NumInits, 0);
425}
426
427Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
428  if (Init >= InitExprs.size()) {
429    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
430    InitExprs.back() = expr;
431    return 0;
432  }
433
434  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
435  InitExprs[Init] = expr;
436  return Result;
437}
438
439/// getFunctionType - Return the underlying function type for this block.
440///
441const FunctionType *BlockExpr::getFunctionType() const {
442  return getType()->getAsBlockPointerType()->
443                    getPointeeType()->getAsFunctionType();
444}
445
446SourceLocation BlockExpr::getCaretLocation() const {
447  return TheBlock->getCaretLocation();
448}
449const Stmt *BlockExpr::getBody() const {
450  return TheBlock->getBody();
451}
452Stmt *BlockExpr::getBody() {
453  return TheBlock->getBody();
454}
455
456
457//===----------------------------------------------------------------------===//
458// Generic Expression Routines
459//===----------------------------------------------------------------------===//
460
461/// isUnusedResultAWarning - Return true if this immediate expression should
462/// be warned about if the result is unused.  If so, fill in Loc and Ranges
463/// with location to warn on and the source range[s] to report with the
464/// warning.
465bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
466                                  SourceRange &R2) const {
467  // Don't warn if the expr is type dependent. The type could end up
468  // instantiating to void.
469  if (isTypeDependent())
470    return false;
471
472  switch (getStmtClass()) {
473  default:
474    Loc = getExprLoc();
475    R1 = getSourceRange();
476    return true;
477  case ParenExprClass:
478    return cast<ParenExpr>(this)->getSubExpr()->
479      isUnusedResultAWarning(Loc, R1, R2);
480  case UnaryOperatorClass: {
481    const UnaryOperator *UO = cast<UnaryOperator>(this);
482
483    switch (UO->getOpcode()) {
484    default: break;
485    case UnaryOperator::PostInc:
486    case UnaryOperator::PostDec:
487    case UnaryOperator::PreInc:
488    case UnaryOperator::PreDec:                 // ++/--
489      return false;  // Not a warning.
490    case UnaryOperator::Deref:
491      // Dereferencing a volatile pointer is a side-effect.
492      if (getType().isVolatileQualified())
493        return false;
494      break;
495    case UnaryOperator::Real:
496    case UnaryOperator::Imag:
497      // accessing a piece of a volatile complex is a side-effect.
498      if (UO->getSubExpr()->getType().isVolatileQualified())
499        return false;
500      break;
501    case UnaryOperator::Extension:
502      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
503    }
504    Loc = UO->getOperatorLoc();
505    R1 = UO->getSubExpr()->getSourceRange();
506    return true;
507  }
508  case BinaryOperatorClass: {
509    const BinaryOperator *BO = cast<BinaryOperator>(this);
510    // Consider comma to have side effects if the LHS or RHS does.
511    if (BO->getOpcode() == BinaryOperator::Comma)
512      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
513             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
514
515    if (BO->isAssignmentOp())
516      return false;
517    Loc = BO->getOperatorLoc();
518    R1 = BO->getLHS()->getSourceRange();
519    R2 = BO->getRHS()->getSourceRange();
520    return true;
521  }
522  case CompoundAssignOperatorClass:
523    return false;
524
525  case ConditionalOperatorClass: {
526    // The condition must be evaluated, but if either the LHS or RHS is a
527    // warning, warn about them.
528    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
529    if (Exp->getLHS() &&
530        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
531      return true;
532    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
533  }
534
535  case MemberExprClass:
536    // If the base pointer or element is to a volatile pointer/field, accessing
537    // it is a side effect.
538    if (getType().isVolatileQualified())
539      return false;
540    Loc = cast<MemberExpr>(this)->getMemberLoc();
541    R1 = SourceRange(Loc, Loc);
542    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
543    return true;
544
545  case ArraySubscriptExprClass:
546    // If the base pointer or element is to a volatile pointer/field, accessing
547    // it is a side effect.
548    if (getType().isVolatileQualified())
549      return false;
550    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
551    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
552    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
553    return true;
554
555  case CallExprClass:
556  case CXXOperatorCallExprClass:
557  case CXXMemberCallExprClass: {
558    // If this is a direct call, get the callee.
559    const CallExpr *CE = cast<CallExpr>(this);
560    const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
561    if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
562      // If the callee has attribute pure, const, or warn_unused_result, warn
563      // about it. void foo() { strlen("bar"); } should warn.
564      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
565        if (FD->getAttr<WarnUnusedResultAttr>() ||
566            FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
567          Loc = CE->getCallee()->getLocStart();
568          R1 = CE->getCallee()->getSourceRange();
569
570          if (unsigned NumArgs = CE->getNumArgs())
571            R2 = SourceRange(CE->getArg(0)->getLocStart(),
572                             CE->getArg(NumArgs-1)->getLocEnd());
573          return true;
574        }
575    }
576    return false;
577  }
578  case ObjCMessageExprClass:
579    return false;
580  case StmtExprClass: {
581    // Statement exprs don't logically have side effects themselves, but are
582    // sometimes used in macros in ways that give them a type that is unused.
583    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
584    // however, if the result of the stmt expr is dead, we don't want to emit a
585    // warning.
586    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
587    if (!CS->body_empty())
588      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
589        return E->isUnusedResultAWarning(Loc, R1, R2);
590
591    Loc = cast<StmtExpr>(this)->getLParenLoc();
592    R1 = getSourceRange();
593    return true;
594  }
595  case CStyleCastExprClass:
596    // If this is an explicit cast to void, allow it.  People do this when they
597    // think they know what they're doing :).
598    if (getType()->isVoidType())
599      return false;
600    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
601    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
602    return true;
603  case CXXFunctionalCastExprClass:
604    // If this is a cast to void, check the operand.  Otherwise, the result of
605    // the cast is unused.
606    if (getType()->isVoidType())
607      return cast<CastExpr>(this)->getSubExpr()
608               ->isUnusedResultAWarning(Loc, R1, R2);
609    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
610    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
611    return true;
612
613  case ImplicitCastExprClass:
614    // Check the operand, since implicit casts are inserted by Sema
615    return cast<ImplicitCastExpr>(this)
616      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
617
618  case CXXDefaultArgExprClass:
619    return cast<CXXDefaultArgExpr>(this)
620      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
621
622  case CXXNewExprClass:
623    // FIXME: In theory, there might be new expressions that don't have side
624    // effects (e.g. a placement new with an uninitialized POD).
625  case CXXDeleteExprClass:
626    return false;
627  case CXXExprWithTemporariesClass:
628    return cast<CXXExprWithTemporaries>(this)
629      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
630  }
631}
632
633/// DeclCanBeLvalue - Determine whether the given declaration can be
634/// an lvalue. This is a helper routine for isLvalue.
635static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
636  // C++ [temp.param]p6:
637  //   A non-type non-reference template-parameter is not an lvalue.
638  if (const NonTypeTemplateParmDecl *NTTParm
639        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
640    return NTTParm->getType()->isReferenceType();
641
642  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
643    // C++ 3.10p2: An lvalue refers to an object or function.
644    (Ctx.getLangOptions().CPlusPlus &&
645     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
646      isa<FunctionTemplateDecl>(Decl)));
647}
648
649/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
650/// incomplete type other than void. Nonarray expressions that can be lvalues:
651///  - name, where name must be a variable
652///  - e[i]
653///  - (e), where e must be an lvalue
654///  - e.name, where e must be an lvalue
655///  - e->name
656///  - *e, the type of e cannot be a function type
657///  - string-constant
658///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
659///  - reference type [C++ [expr]]
660///
661Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
662  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
663
664  isLvalueResult Res = isLvalueInternal(Ctx);
665  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
666    return Res;
667
668  // first, check the type (C99 6.3.2.1). Expressions with function
669  // type in C are not lvalues, but they can be lvalues in C++.
670  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
671    return LV_NotObjectType;
672
673  // Allow qualified void which is an incomplete type other than void (yuck).
674  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
675    return LV_IncompleteVoidType;
676
677  return LV_Valid;
678}
679
680// Check whether the expression can be sanely treated like an l-value
681Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
682  switch (getStmtClass()) {
683  case StringLiteralClass:  // C99 6.5.1p4
684  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
685    return LV_Valid;
686  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
687    // For vectors, make sure base is an lvalue (i.e. not a function call).
688    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
689      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
690    return LV_Valid;
691  case DeclRefExprClass:
692  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
693    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
694    if (DeclCanBeLvalue(RefdDecl, Ctx))
695      return LV_Valid;
696    break;
697  }
698  case BlockDeclRefExprClass: {
699    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
700    if (isa<VarDecl>(BDR->getDecl()))
701      return LV_Valid;
702    break;
703  }
704  case MemberExprClass: {
705    const MemberExpr *m = cast<MemberExpr>(this);
706    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
707      NamedDecl *Member = m->getMemberDecl();
708      // C++ [expr.ref]p4:
709      //   If E2 is declared to have type "reference to T", then E1.E2
710      //   is an lvalue.
711      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
712        if (Value->getType()->isReferenceType())
713          return LV_Valid;
714
715      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
716      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
717        return LV_Valid;
718
719      //   -- If E2 is a non-static data member [...]. If E1 is an
720      //      lvalue, then E1.E2 is an lvalue.
721      if (isa<FieldDecl>(Member))
722        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
723
724      //   -- If it refers to a static member function [...], then
725      //      E1.E2 is an lvalue.
726      //   -- Otherwise, if E1.E2 refers to a non-static member
727      //      function [...], then E1.E2 is not an lvalue.
728      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
729        return Method->isStatic()? LV_Valid : LV_MemberFunction;
730
731      //   -- If E2 is a member enumerator [...], the expression E1.E2
732      //      is not an lvalue.
733      if (isa<EnumConstantDecl>(Member))
734        return LV_InvalidExpression;
735
736        // Not an lvalue.
737      return LV_InvalidExpression;
738    }
739
740    // C99 6.5.2.3p4
741    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
742  }
743  case UnaryOperatorClass:
744    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
745      return LV_Valid; // C99 6.5.3p4
746
747    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
748        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
749        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
750      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
751
752    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
753        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
754         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
755      return LV_Valid;
756    break;
757  case ImplicitCastExprClass:
758    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
759                                                       : LV_InvalidExpression;
760  case ParenExprClass: // C99 6.5.1p5
761    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
762  case BinaryOperatorClass:
763  case CompoundAssignOperatorClass: {
764    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
765
766    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
767        BinOp->getOpcode() == BinaryOperator::Comma)
768      return BinOp->getRHS()->isLvalue(Ctx);
769
770    // C++ [expr.mptr.oper]p6
771    if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
772         BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
773        !BinOp->getType()->isFunctionType())
774      return BinOp->getLHS()->isLvalue(Ctx);
775
776    if (!BinOp->isAssignmentOp())
777      return LV_InvalidExpression;
778
779    if (Ctx.getLangOptions().CPlusPlus)
780      // C++ [expr.ass]p1:
781      //   The result of an assignment operation [...] is an lvalue.
782      return LV_Valid;
783
784
785    // C99 6.5.16:
786    //   An assignment expression [...] is not an lvalue.
787    return LV_InvalidExpression;
788  }
789  case CallExprClass:
790  case CXXOperatorCallExprClass:
791  case CXXMemberCallExprClass: {
792    // C++0x [expr.call]p10
793    //   A function call is an lvalue if and only if the result type
794    //   is an lvalue reference.
795    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
796    if (ReturnType->isLValueReferenceType())
797      return LV_Valid;
798
799    break;
800  }
801  case CompoundLiteralExprClass: // C99 6.5.2.5p5
802    return LV_Valid;
803  case ChooseExprClass:
804    // __builtin_choose_expr is an lvalue if the selected operand is.
805    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
806  case ExtVectorElementExprClass:
807    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
808      return LV_DuplicateVectorComponents;
809    return LV_Valid;
810  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
811    return LV_Valid;
812  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
813    return LV_Valid;
814  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
815    return LV_Valid;
816  case PredefinedExprClass:
817    return LV_Valid;
818  case CXXDefaultArgExprClass:
819    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
820  case CXXConditionDeclExprClass:
821    return LV_Valid;
822  case CStyleCastExprClass:
823  case CXXFunctionalCastExprClass:
824  case CXXStaticCastExprClass:
825  case CXXDynamicCastExprClass:
826  case CXXReinterpretCastExprClass:
827  case CXXConstCastExprClass:
828    // The result of an explicit cast is an lvalue if the type we are
829    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
830    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
831    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
832    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
833          isLValueReferenceType())
834      return LV_Valid;
835    break;
836  case CXXTypeidExprClass:
837    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
838    return LV_Valid;
839  case ConditionalOperatorClass: {
840    // Complicated handling is only for C++.
841    if (!Ctx.getLangOptions().CPlusPlus)
842      return LV_InvalidExpression;
843
844    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
845    // everywhere there's an object converted to an rvalue. Also, any other
846    // casts should be wrapped by ImplicitCastExprs. There's just the special
847    // case involving throws to work out.
848    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
849    Expr *True = Cond->getTrueExpr();
850    Expr *False = Cond->getFalseExpr();
851    // C++0x 5.16p2
852    //   If either the second or the third operand has type (cv) void, [...]
853    //   the result [...] is an rvalue.
854    if (True->getType()->isVoidType() || False->getType()->isVoidType())
855      return LV_InvalidExpression;
856
857    // Both sides must be lvalues for the result to be an lvalue.
858    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
859      return LV_InvalidExpression;
860
861    // That's it.
862    return LV_Valid;
863  }
864
865  default:
866    break;
867  }
868  return LV_InvalidExpression;
869}
870
871/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
872/// does not have an incomplete type, does not have a const-qualified type, and
873/// if it is a structure or union, does not have any member (including,
874/// recursively, any member or element of all contained aggregates or unions)
875/// with a const-qualified type.
876Expr::isModifiableLvalueResult
877Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
878  isLvalueResult lvalResult = isLvalue(Ctx);
879
880  switch (lvalResult) {
881  case LV_Valid:
882    // C++ 3.10p11: Functions cannot be modified, but pointers to
883    // functions can be modifiable.
884    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
885      return MLV_NotObjectType;
886    break;
887
888  case LV_NotObjectType: return MLV_NotObjectType;
889  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
890  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
891  case LV_InvalidExpression:
892    // If the top level is a C-style cast, and the subexpression is a valid
893    // lvalue, then this is probably a use of the old-school "cast as lvalue"
894    // GCC extension.  We don't support it, but we want to produce good
895    // diagnostics when it happens so that the user knows why.
896    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
897      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
898        if (Loc)
899          *Loc = CE->getLParenLoc();
900        return MLV_LValueCast;
901      }
902    }
903    return MLV_InvalidExpression;
904  case LV_MemberFunction: return MLV_MemberFunction;
905  }
906
907  // The following is illegal:
908  //   void takeclosure(void (^C)(void));
909  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
910  //
911  if (isa<BlockDeclRefExpr>(this)) {
912    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
913    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
914      return MLV_NotBlockQualified;
915  }
916
917  QualType CT = Ctx.getCanonicalType(getType());
918
919  if (CT.isConstQualified())
920    return MLV_ConstQualified;
921  if (CT->isArrayType())
922    return MLV_ArrayType;
923  if (CT->isIncompleteType())
924    return MLV_IncompleteType;
925
926  if (const RecordType *r = CT->getAsRecordType()) {
927    if (r->hasConstFields())
928      return MLV_ConstQualified;
929  }
930
931  // Assigning to an 'implicit' property?
932  else if (isa<ObjCKVCRefExpr>(this)) {
933    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
934    if (KVCExpr->getSetterMethod() == 0)
935      return MLV_NoSetterProperty;
936  }
937  return MLV_Valid;
938}
939
940/// hasGlobalStorage - Return true if this expression has static storage
941/// duration.  This means that the address of this expression is a link-time
942/// constant.
943bool Expr::hasGlobalStorage() const {
944  switch (getStmtClass()) {
945  default:
946    return false;
947  case BlockExprClass:
948    return true;
949  case ParenExprClass:
950    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
951  case ImplicitCastExprClass:
952    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
953  case CompoundLiteralExprClass:
954    return cast<CompoundLiteralExpr>(this)->isFileScope();
955  case DeclRefExprClass:
956  case QualifiedDeclRefExprClass: {
957    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
958    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
959      return VD->hasGlobalStorage();
960    if (isa<FunctionDecl>(D))
961      return true;
962    return false;
963  }
964  case MemberExprClass: {
965    const MemberExpr *M = cast<MemberExpr>(this);
966    return !M->isArrow() && M->getBase()->hasGlobalStorage();
967  }
968  case ArraySubscriptExprClass:
969    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
970  case PredefinedExprClass:
971    return true;
972  case CXXDefaultArgExprClass:
973    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
974  }
975}
976
977/// isOBJCGCCandidate - Check if an expression is objc gc'able.
978///
979bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
980  switch (getStmtClass()) {
981  default:
982    return false;
983  case ObjCIvarRefExprClass:
984    return true;
985  case Expr::UnaryOperatorClass:
986    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
987  case ParenExprClass:
988    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
989  case ImplicitCastExprClass:
990    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
991  case CStyleCastExprClass:
992    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
993  case DeclRefExprClass:
994  case QualifiedDeclRefExprClass: {
995    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
996    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
997      if (VD->hasGlobalStorage())
998        return true;
999      QualType T = VD->getType();
1000      // dereferencing to an object pointer is always a gc'able candidate
1001      if (T->isPointerType() &&
1002          T->getAsPointerType()->getPointeeType()->isObjCObjectPointerType())
1003        return true;
1004
1005    }
1006    return false;
1007  }
1008  case MemberExprClass: {
1009    const MemberExpr *M = cast<MemberExpr>(this);
1010    return M->getBase()->isOBJCGCCandidate(Ctx);
1011  }
1012  case ArraySubscriptExprClass:
1013    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1014  }
1015}
1016Expr* Expr::IgnoreParens() {
1017  Expr* E = this;
1018  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1019    E = P->getSubExpr();
1020
1021  return E;
1022}
1023
1024/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1025/// or CastExprs or ImplicitCastExprs, returning their operand.
1026Expr *Expr::IgnoreParenCasts() {
1027  Expr *E = this;
1028  while (true) {
1029    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1030      E = P->getSubExpr();
1031    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1032      E = P->getSubExpr();
1033    else
1034      return E;
1035  }
1036}
1037
1038/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1039/// value (including ptr->int casts of the same size).  Strip off any
1040/// ParenExpr or CastExprs, returning their operand.
1041Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1042  Expr *E = this;
1043  while (true) {
1044    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1045      E = P->getSubExpr();
1046      continue;
1047    }
1048
1049    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1050      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1051      // ptr<->int casts of the same width.  We also ignore all identify casts.
1052      Expr *SE = P->getSubExpr();
1053
1054      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1055        E = SE;
1056        continue;
1057      }
1058
1059      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1060          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1061          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1062        E = SE;
1063        continue;
1064      }
1065    }
1066
1067    return E;
1068  }
1069}
1070
1071
1072/// hasAnyTypeDependentArguments - Determines if any of the expressions
1073/// in Exprs is type-dependent.
1074bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1075  for (unsigned I = 0; I < NumExprs; ++I)
1076    if (Exprs[I]->isTypeDependent())
1077      return true;
1078
1079  return false;
1080}
1081
1082/// hasAnyValueDependentArguments - Determines if any of the expressions
1083/// in Exprs is value-dependent.
1084bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1085  for (unsigned I = 0; I < NumExprs; ++I)
1086    if (Exprs[I]->isValueDependent())
1087      return true;
1088
1089  return false;
1090}
1091
1092bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1093  // This function is attempting whether an expression is an initializer
1094  // which can be evaluated at compile-time.  isEvaluatable handles most
1095  // of the cases, but it can't deal with some initializer-specific
1096  // expressions, and it can't deal with aggregates; we deal with those here,
1097  // and fall back to isEvaluatable for the other cases.
1098
1099  // FIXME: This function assumes the variable being assigned to
1100  // isn't a reference type!
1101
1102  switch (getStmtClass()) {
1103  default: break;
1104  case StringLiteralClass:
1105  case ObjCStringLiteralClass:
1106  case ObjCEncodeExprClass:
1107    return true;
1108  case CompoundLiteralExprClass: {
1109    // This handles gcc's extension that allows global initializers like
1110    // "struct x {int x;} x = (struct x) {};".
1111    // FIXME: This accepts other cases it shouldn't!
1112    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1113    return Exp->isConstantInitializer(Ctx);
1114  }
1115  case InitListExprClass: {
1116    // FIXME: This doesn't deal with fields with reference types correctly.
1117    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1118    // to bitfields.
1119    const InitListExpr *Exp = cast<InitListExpr>(this);
1120    unsigned numInits = Exp->getNumInits();
1121    for (unsigned i = 0; i < numInits; i++) {
1122      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1123        return false;
1124    }
1125    return true;
1126  }
1127  case ImplicitValueInitExprClass:
1128    return true;
1129  case ParenExprClass: {
1130    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1131  }
1132  case UnaryOperatorClass: {
1133    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1134    if (Exp->getOpcode() == UnaryOperator::Extension)
1135      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1136    break;
1137  }
1138  case ImplicitCastExprClass:
1139  case CStyleCastExprClass:
1140    // Handle casts with a destination that's a struct or union; this
1141    // deals with both the gcc no-op struct cast extension and the
1142    // cast-to-union extension.
1143    if (getType()->isRecordType())
1144      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1145    break;
1146  }
1147  return isEvaluatable(Ctx);
1148}
1149
1150/// isIntegerConstantExpr - this recursive routine will test if an expression is
1151/// an integer constant expression.
1152
1153/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1154/// comma, etc
1155///
1156/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1157/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1158/// cast+dereference.
1159
1160// CheckICE - This function does the fundamental ICE checking: the returned
1161// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1162// Note that to reduce code duplication, this helper does no evaluation
1163// itself; the caller checks whether the expression is evaluatable, and
1164// in the rare cases where CheckICE actually cares about the evaluated
1165// value, it calls into Evalute.
1166//
1167// Meanings of Val:
1168// 0: This expression is an ICE if it can be evaluated by Evaluate.
1169// 1: This expression is not an ICE, but if it isn't evaluated, it's
1170//    a legal subexpression for an ICE. This return value is used to handle
1171//    the comma operator in C99 mode.
1172// 2: This expression is not an ICE, and is not a legal subexpression for one.
1173
1174struct ICEDiag {
1175  unsigned Val;
1176  SourceLocation Loc;
1177
1178  public:
1179  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1180  ICEDiag() : Val(0) {}
1181};
1182
1183ICEDiag NoDiag() { return ICEDiag(); }
1184
1185static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1186  Expr::EvalResult EVResult;
1187  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1188      !EVResult.Val.isInt()) {
1189    return ICEDiag(2, E->getLocStart());
1190  }
1191  return NoDiag();
1192}
1193
1194static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1195  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1196  if (!E->getType()->isIntegralType()) {
1197    return ICEDiag(2, E->getLocStart());
1198  }
1199
1200  switch (E->getStmtClass()) {
1201  default:
1202    return ICEDiag(2, E->getLocStart());
1203  case Expr::ParenExprClass:
1204    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1205  case Expr::IntegerLiteralClass:
1206  case Expr::CharacterLiteralClass:
1207  case Expr::CXXBoolLiteralExprClass:
1208  case Expr::CXXZeroInitValueExprClass:
1209  case Expr::TypesCompatibleExprClass:
1210  case Expr::UnaryTypeTraitExprClass:
1211    return NoDiag();
1212  case Expr::CallExprClass:
1213  case Expr::CXXOperatorCallExprClass: {
1214    const CallExpr *CE = cast<CallExpr>(E);
1215    if (CE->isBuiltinCall(Ctx))
1216      return CheckEvalInICE(E, Ctx);
1217    return ICEDiag(2, E->getLocStart());
1218  }
1219  case Expr::DeclRefExprClass:
1220  case Expr::QualifiedDeclRefExprClass:
1221    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1222      return NoDiag();
1223    if (Ctx.getLangOptions().CPlusPlus &&
1224        E->getType().getCVRQualifiers() == QualType::Const) {
1225      // C++ 7.1.5.1p2
1226      //   A variable of non-volatile const-qualified integral or enumeration
1227      //   type initialized by an ICE can be used in ICEs.
1228      if (const VarDecl *Dcl =
1229              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1230        if (Dcl->isInitKnownICE()) {
1231          // We have already checked whether this subexpression is an
1232          // integral constant expression.
1233          if (Dcl->isInitICE())
1234            return NoDiag();
1235          else
1236            return ICEDiag(2, E->getLocStart());
1237        }
1238
1239        if (const Expr *Init = Dcl->getInit()) {
1240          ICEDiag Result = CheckICE(Init, Ctx);
1241          // Cache the result of the ICE test.
1242          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1243          return Result;
1244        }
1245      }
1246    }
1247    return ICEDiag(2, E->getLocStart());
1248  case Expr::UnaryOperatorClass: {
1249    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1250    switch (Exp->getOpcode()) {
1251    default:
1252      return ICEDiag(2, E->getLocStart());
1253    case UnaryOperator::Extension:
1254    case UnaryOperator::LNot:
1255    case UnaryOperator::Plus:
1256    case UnaryOperator::Minus:
1257    case UnaryOperator::Not:
1258    case UnaryOperator::Real:
1259    case UnaryOperator::Imag:
1260      return CheckICE(Exp->getSubExpr(), Ctx);
1261    case UnaryOperator::OffsetOf:
1262      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1263      // Evaluate matches the proposed gcc behavior for cases like
1264      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1265      // compliance: we should warn earlier for offsetof expressions with
1266      // array subscripts that aren't ICEs, and if the array subscripts
1267      // are ICEs, the value of the offsetof must be an integer constant.
1268      return CheckEvalInICE(E, Ctx);
1269    }
1270  }
1271  case Expr::SizeOfAlignOfExprClass: {
1272    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1273    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1274      return ICEDiag(2, E->getLocStart());
1275    return NoDiag();
1276  }
1277  case Expr::BinaryOperatorClass: {
1278    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1279    switch (Exp->getOpcode()) {
1280    default:
1281      return ICEDiag(2, E->getLocStart());
1282    case BinaryOperator::Mul:
1283    case BinaryOperator::Div:
1284    case BinaryOperator::Rem:
1285    case BinaryOperator::Add:
1286    case BinaryOperator::Sub:
1287    case BinaryOperator::Shl:
1288    case BinaryOperator::Shr:
1289    case BinaryOperator::LT:
1290    case BinaryOperator::GT:
1291    case BinaryOperator::LE:
1292    case BinaryOperator::GE:
1293    case BinaryOperator::EQ:
1294    case BinaryOperator::NE:
1295    case BinaryOperator::And:
1296    case BinaryOperator::Xor:
1297    case BinaryOperator::Or:
1298    case BinaryOperator::Comma: {
1299      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1300      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1301      if (Exp->getOpcode() == BinaryOperator::Div ||
1302          Exp->getOpcode() == BinaryOperator::Rem) {
1303        // Evaluate gives an error for undefined Div/Rem, so make sure
1304        // we don't evaluate one.
1305        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1306          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1307          if (REval == 0)
1308            return ICEDiag(1, E->getLocStart());
1309          if (REval.isSigned() && REval.isAllOnesValue()) {
1310            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1311            if (LEval.isMinSignedValue())
1312              return ICEDiag(1, E->getLocStart());
1313          }
1314        }
1315      }
1316      if (Exp->getOpcode() == BinaryOperator::Comma) {
1317        if (Ctx.getLangOptions().C99) {
1318          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1319          // if it isn't evaluated.
1320          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1321            return ICEDiag(1, E->getLocStart());
1322        } else {
1323          // In both C89 and C++, commas in ICEs are illegal.
1324          return ICEDiag(2, E->getLocStart());
1325        }
1326      }
1327      if (LHSResult.Val >= RHSResult.Val)
1328        return LHSResult;
1329      return RHSResult;
1330    }
1331    case BinaryOperator::LAnd:
1332    case BinaryOperator::LOr: {
1333      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1334      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1335      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1336        // Rare case where the RHS has a comma "side-effect"; we need
1337        // to actually check the condition to see whether the side
1338        // with the comma is evaluated.
1339        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1340            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1341          return RHSResult;
1342        return NoDiag();
1343      }
1344
1345      if (LHSResult.Val >= RHSResult.Val)
1346        return LHSResult;
1347      return RHSResult;
1348    }
1349    }
1350  }
1351  case Expr::ImplicitCastExprClass:
1352  case Expr::CStyleCastExprClass:
1353  case Expr::CXXFunctionalCastExprClass: {
1354    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1355    if (SubExpr->getType()->isIntegralType())
1356      return CheckICE(SubExpr, Ctx);
1357    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1358      return NoDiag();
1359    return ICEDiag(2, E->getLocStart());
1360  }
1361  case Expr::ConditionalOperatorClass: {
1362    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1363    // If the condition (ignoring parens) is a __builtin_constant_p call,
1364    // then only the true side is actually considered in an integer constant
1365    // expression, and it is fully evaluated.  This is an important GNU
1366    // extension.  See GCC PR38377 for discussion.
1367    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1368      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1369        Expr::EvalResult EVResult;
1370        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1371            !EVResult.Val.isInt()) {
1372          return ICEDiag(2, E->getLocStart());
1373        }
1374        return NoDiag();
1375      }
1376    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1377    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1378    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1379    if (CondResult.Val == 2)
1380      return CondResult;
1381    if (TrueResult.Val == 2)
1382      return TrueResult;
1383    if (FalseResult.Val == 2)
1384      return FalseResult;
1385    if (CondResult.Val == 1)
1386      return CondResult;
1387    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1388      return NoDiag();
1389    // Rare case where the diagnostics depend on which side is evaluated
1390    // Note that if we get here, CondResult is 0, and at least one of
1391    // TrueResult and FalseResult is non-zero.
1392    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1393      return FalseResult;
1394    }
1395    return TrueResult;
1396  }
1397  case Expr::CXXDefaultArgExprClass:
1398    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1399  case Expr::ChooseExprClass: {
1400    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1401  }
1402  }
1403}
1404
1405bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1406                                 SourceLocation *Loc, bool isEvaluated) const {
1407  ICEDiag d = CheckICE(this, Ctx);
1408  if (d.Val != 0) {
1409    if (Loc) *Loc = d.Loc;
1410    return false;
1411  }
1412  EvalResult EvalResult;
1413  if (!Evaluate(EvalResult, Ctx))
1414    assert(0 && "ICE cannot be evaluated!");
1415  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1416  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1417  Result = EvalResult.Val.getInt();
1418  return true;
1419}
1420
1421/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1422/// integer constant expression with the value zero, or if this is one that is
1423/// cast to void*.
1424bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1425{
1426  // Strip off a cast to void*, if it exists. Except in C++.
1427  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1428    if (!Ctx.getLangOptions().CPlusPlus) {
1429      // Check that it is a cast to void*.
1430      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1431        QualType Pointee = PT->getPointeeType();
1432        if (Pointee.getCVRQualifiers() == 0 &&
1433            Pointee->isVoidType() &&                              // to void*
1434            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1435          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1436      }
1437    }
1438  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1439    // Ignore the ImplicitCastExpr type entirely.
1440    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1441  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1442    // Accept ((void*)0) as a null pointer constant, as many other
1443    // implementations do.
1444    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1445  } else if (const CXXDefaultArgExpr *DefaultArg
1446               = dyn_cast<CXXDefaultArgExpr>(this)) {
1447    // See through default argument expressions
1448    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1449  } else if (isa<GNUNullExpr>(this)) {
1450    // The GNU __null extension is always a null pointer constant.
1451    return true;
1452  }
1453
1454  // C++0x nullptr_t is always a null pointer constant.
1455  if (getType()->isNullPtrType())
1456    return true;
1457
1458  // This expression must be an integer type.
1459  if (!getType()->isIntegerType())
1460    return false;
1461
1462  // If we have an integer constant expression, we need to *evaluate* it and
1463  // test for the value 0.
1464  llvm::APSInt Result;
1465  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1466}
1467
1468FieldDecl *Expr::getBitField() {
1469  Expr *E = this->IgnoreParens();
1470
1471  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1472    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1473      if (Field->isBitField())
1474        return Field;
1475
1476  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1477    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1478      return BinOp->getLHS()->getBitField();
1479
1480  return 0;
1481}
1482
1483/// isArrow - Return true if the base expression is a pointer to vector,
1484/// return false if the base expression is a vector.
1485bool ExtVectorElementExpr::isArrow() const {
1486  return getBase()->getType()->isPointerType();
1487}
1488
1489unsigned ExtVectorElementExpr::getNumElements() const {
1490  if (const VectorType *VT = getType()->getAsVectorType())
1491    return VT->getNumElements();
1492  return 1;
1493}
1494
1495/// containsDuplicateElements - Return true if any element access is repeated.
1496bool ExtVectorElementExpr::containsDuplicateElements() const {
1497  const char *compStr = Accessor->getName();
1498  unsigned length = Accessor->getLength();
1499
1500  // Halving swizzles do not contain duplicate elements.
1501  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1502      !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
1503    return false;
1504
1505  // Advance past s-char prefix on hex swizzles.
1506  if (*compStr == 's' || *compStr == 'S') {
1507    compStr++;
1508    length--;
1509  }
1510
1511  for (unsigned i = 0; i != length-1; i++) {
1512    const char *s = compStr+i;
1513    for (const char c = *s++; *s; s++)
1514      if (c == *s)
1515        return true;
1516  }
1517  return false;
1518}
1519
1520/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1521void ExtVectorElementExpr::getEncodedElementAccess(
1522                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1523  const char *compStr = Accessor->getName();
1524  if (*compStr == 's' || *compStr == 'S')
1525    compStr++;
1526
1527  bool isHi =   !strcmp(compStr, "hi");
1528  bool isLo =   !strcmp(compStr, "lo");
1529  bool isEven = !strcmp(compStr, "even");
1530  bool isOdd  = !strcmp(compStr, "odd");
1531
1532  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1533    uint64_t Index;
1534
1535    if (isHi)
1536      Index = e + i;
1537    else if (isLo)
1538      Index = i;
1539    else if (isEven)
1540      Index = 2 * i;
1541    else if (isOdd)
1542      Index = 2 * i + 1;
1543    else
1544      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1545
1546    Elts.push_back(Index);
1547  }
1548}
1549
1550// constructor for instance messages.
1551ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1552                QualType retType, ObjCMethodDecl *mproto,
1553                SourceLocation LBrac, SourceLocation RBrac,
1554                Expr **ArgExprs, unsigned nargs)
1555  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1556    MethodProto(mproto) {
1557  NumArgs = nargs;
1558  SubExprs = new Stmt*[NumArgs+1];
1559  SubExprs[RECEIVER] = receiver;
1560  if (NumArgs) {
1561    for (unsigned i = 0; i != NumArgs; ++i)
1562      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1563  }
1564  LBracloc = LBrac;
1565  RBracloc = RBrac;
1566}
1567
1568ObjCStringLiteral* ObjCStringLiteral::Clone(ASTContext &C) const {
1569  // Clone the string literal.
1570  StringLiteral *NewString =
1571    String ? cast<StringLiteral>(String)->Clone(C) : 0;
1572
1573  return new (C) ObjCStringLiteral(NewString, getType(), AtLoc);
1574}
1575
1576ObjCSelectorExpr *ObjCSelectorExpr::Clone(ASTContext &C) const {
1577  return new (C) ObjCSelectorExpr(getType(), SelName, AtLoc, RParenLoc);
1578}
1579
1580ObjCProtocolExpr *ObjCProtocolExpr::Clone(ASTContext &C) const {
1581  return new (C) ObjCProtocolExpr(getType(), TheProtocol, AtLoc, RParenLoc);
1582}
1583
1584// constructor for class messages.
1585// FIXME: clsName should be typed to ObjCInterfaceType
1586ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1587                QualType retType, ObjCMethodDecl *mproto,
1588                SourceLocation LBrac, SourceLocation RBrac,
1589                Expr **ArgExprs, unsigned nargs)
1590  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1591    MethodProto(mproto) {
1592  NumArgs = nargs;
1593  SubExprs = new Stmt*[NumArgs+1];
1594  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1595  if (NumArgs) {
1596    for (unsigned i = 0; i != NumArgs; ++i)
1597      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1598  }
1599  LBracloc = LBrac;
1600  RBracloc = RBrac;
1601}
1602
1603// constructor for class messages.
1604ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1605                                 QualType retType, ObjCMethodDecl *mproto,
1606                                 SourceLocation LBrac, SourceLocation RBrac,
1607                                 Expr **ArgExprs, unsigned nargs)
1608: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1609MethodProto(mproto) {
1610  NumArgs = nargs;
1611  SubExprs = new Stmt*[NumArgs+1];
1612  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1613  if (NumArgs) {
1614    for (unsigned i = 0; i != NumArgs; ++i)
1615      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1616  }
1617  LBracloc = LBrac;
1618  RBracloc = RBrac;
1619}
1620
1621ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1622  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1623  switch (x & Flags) {
1624    default:
1625      assert(false && "Invalid ObjCMessageExpr.");
1626    case IsInstMeth:
1627      return ClassInfo(0, 0);
1628    case IsClsMethDeclUnknown:
1629      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1630    case IsClsMethDeclKnown: {
1631      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1632      return ClassInfo(D, D->getIdentifier());
1633    }
1634  }
1635}
1636
1637void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
1638  if (CI.first == 0 && CI.second == 0)
1639    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
1640  else if (CI.first == 0)
1641    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
1642  else
1643    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
1644}
1645
1646
1647bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1648  return getCond()->EvaluateAsInt(C) != 0;
1649}
1650
1651void ShuffleVectorExpr::setExprs(Expr ** Exprs, unsigned NumExprs) {
1652  if (NumExprs)
1653    delete [] SubExprs;
1654
1655  SubExprs = new Stmt* [NumExprs];
1656  this->NumExprs = NumExprs;
1657  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1658}
1659
1660void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1661  // Override default behavior of traversing children. If this has a type
1662  // operand and the type is a variable-length array, the child iteration
1663  // will iterate over the size expression. However, this expression belongs
1664  // to the type, not to this, so we don't want to delete it.
1665  // We still want to delete this expression.
1666  if (isArgumentType()) {
1667    this->~SizeOfAlignOfExpr();
1668    C.Deallocate(this);
1669  }
1670  else
1671    Expr::Destroy(C);
1672}
1673
1674//===----------------------------------------------------------------------===//
1675//  DesignatedInitExpr
1676//===----------------------------------------------------------------------===//
1677
1678IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1679  assert(Kind == FieldDesignator && "Only valid on a field designator");
1680  if (Field.NameOrField & 0x01)
1681    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1682  else
1683    return getField()->getIdentifier();
1684}
1685
1686DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1687                                       const Designator *Designators,
1688                                       SourceLocation EqualOrColonLoc,
1689                                       bool GNUSyntax,
1690                                       Expr **IndexExprs,
1691                                       unsigned NumIndexExprs,
1692                                       Expr *Init)
1693  : Expr(DesignatedInitExprClass, Ty,
1694         Init->isTypeDependent(), Init->isValueDependent()),
1695    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1696    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
1697  this->Designators = new Designator[NumDesignators];
1698
1699  // Record the initializer itself.
1700  child_iterator Child = child_begin();
1701  *Child++ = Init;
1702
1703  // Copy the designators and their subexpressions, computing
1704  // value-dependence along the way.
1705  unsigned IndexIdx = 0;
1706  for (unsigned I = 0; I != NumDesignators; ++I) {
1707    this->Designators[I] = Designators[I];
1708
1709    if (this->Designators[I].isArrayDesignator()) {
1710      // Compute type- and value-dependence.
1711      Expr *Index = IndexExprs[IndexIdx];
1712      ValueDependent = ValueDependent ||
1713        Index->isTypeDependent() || Index->isValueDependent();
1714
1715      // Copy the index expressions into permanent storage.
1716      *Child++ = IndexExprs[IndexIdx++];
1717    } else if (this->Designators[I].isArrayRangeDesignator()) {
1718      // Compute type- and value-dependence.
1719      Expr *Start = IndexExprs[IndexIdx];
1720      Expr *End = IndexExprs[IndexIdx + 1];
1721      ValueDependent = ValueDependent ||
1722        Start->isTypeDependent() || Start->isValueDependent() ||
1723        End->isTypeDependent() || End->isValueDependent();
1724
1725      // Copy the start/end expressions into permanent storage.
1726      *Child++ = IndexExprs[IndexIdx++];
1727      *Child++ = IndexExprs[IndexIdx++];
1728    }
1729  }
1730
1731  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
1732}
1733
1734DesignatedInitExpr *
1735DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1736                           unsigned NumDesignators,
1737                           Expr **IndexExprs, unsigned NumIndexExprs,
1738                           SourceLocation ColonOrEqualLoc,
1739                           bool UsesColonSyntax, Expr *Init) {
1740  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1741                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1742  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
1743                                      ColonOrEqualLoc, UsesColonSyntax,
1744                                      IndexExprs, NumIndexExprs, Init);
1745}
1746
1747DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
1748                                                    unsigned NumIndexExprs) {
1749  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1750                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1751  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
1752}
1753
1754void DesignatedInitExpr::setDesignators(const Designator *Desigs,
1755                                        unsigned NumDesigs) {
1756  if (Designators)
1757    delete [] Designators;
1758
1759  Designators = new Designator[NumDesigs];
1760  NumDesignators = NumDesigs;
1761  for (unsigned I = 0; I != NumDesigs; ++I)
1762    Designators[I] = Desigs[I];
1763}
1764
1765SourceRange DesignatedInitExpr::getSourceRange() const {
1766  SourceLocation StartLoc;
1767  Designator &First =
1768    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1769  if (First.isFieldDesignator()) {
1770    if (GNUSyntax)
1771      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1772    else
1773      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1774  } else
1775    StartLoc =
1776      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1777  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1778}
1779
1780Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1781  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1782  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1783  Ptr += sizeof(DesignatedInitExpr);
1784  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1785  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1786}
1787
1788Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1789  assert(D.Kind == Designator::ArrayRangeDesignator &&
1790         "Requires array range designator");
1791  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1792  Ptr += sizeof(DesignatedInitExpr);
1793  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1794  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1795}
1796
1797Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1798  assert(D.Kind == Designator::ArrayRangeDesignator &&
1799         "Requires array range designator");
1800  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1801  Ptr += sizeof(DesignatedInitExpr);
1802  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1803  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1804}
1805
1806/// \brief Replaces the designator at index @p Idx with the series
1807/// of designators in [First, Last).
1808void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
1809                                          const Designator *First,
1810                                          const Designator *Last) {
1811  unsigned NumNewDesignators = Last - First;
1812  if (NumNewDesignators == 0) {
1813    std::copy_backward(Designators + Idx + 1,
1814                       Designators + NumDesignators,
1815                       Designators + Idx);
1816    --NumNewDesignators;
1817    return;
1818  } else if (NumNewDesignators == 1) {
1819    Designators[Idx] = *First;
1820    return;
1821  }
1822
1823  Designator *NewDesignators
1824    = new Designator[NumDesignators - 1 + NumNewDesignators];
1825  std::copy(Designators, Designators + Idx, NewDesignators);
1826  std::copy(First, Last, NewDesignators + Idx);
1827  std::copy(Designators + Idx + 1, Designators + NumDesignators,
1828            NewDesignators + Idx + NumNewDesignators);
1829  delete [] Designators;
1830  Designators = NewDesignators;
1831  NumDesignators = NumDesignators - 1 + NumNewDesignators;
1832}
1833
1834void DesignatedInitExpr::Destroy(ASTContext &C) {
1835  delete [] Designators;
1836  Expr::Destroy(C);
1837}
1838
1839ImplicitValueInitExpr *ImplicitValueInitExpr::Clone(ASTContext &C) const {
1840  return new (C) ImplicitValueInitExpr(getType());
1841}
1842
1843//===----------------------------------------------------------------------===//
1844//  ExprIterator.
1845//===----------------------------------------------------------------------===//
1846
1847Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1848Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1849Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1850const Expr* ConstExprIterator::operator[](size_t idx) const {
1851  return cast<Expr>(I[idx]);
1852}
1853const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1854const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1855
1856//===----------------------------------------------------------------------===//
1857//  Child Iterators for iterating over subexpressions/substatements
1858//===----------------------------------------------------------------------===//
1859
1860// DeclRefExpr
1861Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1862Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1863
1864// ObjCIvarRefExpr
1865Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1866Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1867
1868// ObjCPropertyRefExpr
1869Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1870Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1871
1872// ObjCKVCRefExpr
1873Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1874Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1875
1876// ObjCSuperExpr
1877Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1878Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1879
1880// ObjCIsaExpr
1881Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
1882Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
1883
1884// PredefinedExpr
1885Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1886Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1887
1888// IntegerLiteral
1889Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1890Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1891
1892// CharacterLiteral
1893Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
1894Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1895
1896// FloatingLiteral
1897Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1898Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1899
1900// ImaginaryLiteral
1901Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1902Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1903
1904// StringLiteral
1905Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1906Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1907
1908// ParenExpr
1909Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1910Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1911
1912// UnaryOperator
1913Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1914Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1915
1916// SizeOfAlignOfExpr
1917Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1918  // If this is of a type and the type is a VLA type (and not a typedef), the
1919  // size expression of the VLA needs to be treated as an executable expression.
1920  // Why isn't this weirdness documented better in StmtIterator?
1921  if (isArgumentType()) {
1922    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1923                                   getArgumentType().getTypePtr()))
1924      return child_iterator(T);
1925    return child_iterator();
1926  }
1927  return child_iterator(&Argument.Ex);
1928}
1929Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1930  if (isArgumentType())
1931    return child_iterator();
1932  return child_iterator(&Argument.Ex + 1);
1933}
1934
1935// ArraySubscriptExpr
1936Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1937  return &SubExprs[0];
1938}
1939Stmt::child_iterator ArraySubscriptExpr::child_end() {
1940  return &SubExprs[0]+END_EXPR;
1941}
1942
1943// CallExpr
1944Stmt::child_iterator CallExpr::child_begin() {
1945  return &SubExprs[0];
1946}
1947Stmt::child_iterator CallExpr::child_end() {
1948  return &SubExprs[0]+NumArgs+ARGS_START;
1949}
1950
1951// MemberExpr
1952Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1953Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1954
1955// ExtVectorElementExpr
1956Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1957Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1958
1959// CompoundLiteralExpr
1960Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1961Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1962
1963// CastExpr
1964Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1965Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1966
1967// BinaryOperator
1968Stmt::child_iterator BinaryOperator::child_begin() {
1969  return &SubExprs[0];
1970}
1971Stmt::child_iterator BinaryOperator::child_end() {
1972  return &SubExprs[0]+END_EXPR;
1973}
1974
1975// ConditionalOperator
1976Stmt::child_iterator ConditionalOperator::child_begin() {
1977  return &SubExprs[0];
1978}
1979Stmt::child_iterator ConditionalOperator::child_end() {
1980  return &SubExprs[0]+END_EXPR;
1981}
1982
1983// AddrLabelExpr
1984Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1985Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1986
1987// StmtExpr
1988Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1989Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1990
1991// TypesCompatibleExpr
1992Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1993  return child_iterator();
1994}
1995
1996Stmt::child_iterator TypesCompatibleExpr::child_end() {
1997  return child_iterator();
1998}
1999
2000// ChooseExpr
2001Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2002Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2003
2004// GNUNullExpr
2005Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2006Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2007
2008// ShuffleVectorExpr
2009Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2010  return &SubExprs[0];
2011}
2012Stmt::child_iterator ShuffleVectorExpr::child_end() {
2013  return &SubExprs[0]+NumExprs;
2014}
2015
2016// VAArgExpr
2017Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2018Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2019
2020// InitListExpr
2021Stmt::child_iterator InitListExpr::child_begin() {
2022  return InitExprs.size() ? &InitExprs[0] : 0;
2023}
2024Stmt::child_iterator InitListExpr::child_end() {
2025  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2026}
2027
2028// DesignatedInitExpr
2029Stmt::child_iterator DesignatedInitExpr::child_begin() {
2030  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2031  Ptr += sizeof(DesignatedInitExpr);
2032  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2033}
2034Stmt::child_iterator DesignatedInitExpr::child_end() {
2035  return child_iterator(&*child_begin() + NumSubExprs);
2036}
2037
2038// ImplicitValueInitExpr
2039Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2040  return child_iterator();
2041}
2042
2043Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2044  return child_iterator();
2045}
2046
2047// ObjCStringLiteral
2048Stmt::child_iterator ObjCStringLiteral::child_begin() {
2049  return &String;
2050}
2051Stmt::child_iterator ObjCStringLiteral::child_end() {
2052  return &String+1;
2053}
2054
2055// ObjCEncodeExpr
2056Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2057Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2058
2059// ObjCSelectorExpr
2060Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2061  return child_iterator();
2062}
2063Stmt::child_iterator ObjCSelectorExpr::child_end() {
2064  return child_iterator();
2065}
2066
2067// ObjCProtocolExpr
2068Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2069  return child_iterator();
2070}
2071Stmt::child_iterator ObjCProtocolExpr::child_end() {
2072  return child_iterator();
2073}
2074
2075// ObjCMessageExpr
2076Stmt::child_iterator ObjCMessageExpr::child_begin() {
2077  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2078}
2079Stmt::child_iterator ObjCMessageExpr::child_end() {
2080  return &SubExprs[0]+ARGS_START+getNumArgs();
2081}
2082
2083// Blocks
2084Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2085Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2086
2087Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2088Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2089