Type.cpp revision a8225449421e8c1e996a7c48300521028946482a
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool QualType::isConstant(QualType T, ASTContext &Ctx) {
31  if (T.isConstQualified())
32    return true;
33
34  if (const ArrayType *AT = Ctx.getAsArrayType(T))
35    return AT->getElementType().isConstant(Ctx);
36
37  return false;
38}
39
40unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
41                                                 QualType ElementType,
42                                               const llvm::APInt &NumElements) {
43  llvm::APSInt SizeExtended(NumElements, true);
44  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
45  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
46                                              SizeExtended.getBitWidth()) * 2);
47
48  uint64_t ElementSize
49    = Context.getTypeSizeInChars(ElementType).getQuantity();
50  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
51  TotalSize *= SizeExtended;
52
53  return TotalSize.getActiveBits();
54}
55
56unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
57  unsigned Bits = Context.getTypeSize(Context.getSizeType());
58
59  // GCC appears to only allow 63 bits worth of address space when compiling
60  // for 64-bit, so we do the same.
61  if (Bits == 64)
62    --Bits;
63
64  return Bits;
65}
66
67DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
68                                                 QualType et, QualType can,
69                                                 Expr *e, ArraySizeModifier sm,
70                                                 unsigned tq,
71                                                 SourceRange brackets)
72    : ArrayType(DependentSizedArray, et, can, sm, tq,
73                (et->containsUnexpandedParameterPack() ||
74                 (e && e->containsUnexpandedParameterPack()))),
75      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
76{
77}
78
79void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
80                                      const ASTContext &Context,
81                                      QualType ET,
82                                      ArraySizeModifier SizeMod,
83                                      unsigned TypeQuals,
84                                      Expr *E) {
85  ID.AddPointer(ET.getAsOpaquePtr());
86  ID.AddInteger(SizeMod);
87  ID.AddInteger(TypeQuals);
88  E->Profile(ID, Context, true);
89}
90
91DependentSizedExtVectorType::DependentSizedExtVectorType(const
92                                                         ASTContext &Context,
93                                                         QualType ElementType,
94                                                         QualType can,
95                                                         Expr *SizeExpr,
96                                                         SourceLocation loc)
97    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
98           ElementType->isVariablyModifiedType(),
99           (ElementType->containsUnexpandedParameterPack() ||
100            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
101      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
102      loc(loc)
103{
104}
105
106void
107DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
108                                     const ASTContext &Context,
109                                     QualType ElementType, Expr *SizeExpr) {
110  ID.AddPointer(ElementType.getAsOpaquePtr());
111  SizeExpr->Profile(ID, Context, true);
112}
113
114VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
115                       VectorKind vecKind)
116  : Type(Vector, canonType, vecType->isDependentType(),
117         vecType->isVariablyModifiedType(),
118         vecType->containsUnexpandedParameterPack()),
119    ElementType(vecType)
120{
121  VectorTypeBits.VecKind = vecKind;
122  VectorTypeBits.NumElements = nElements;
123}
124
125VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
126                       QualType canonType, VectorKind vecKind)
127  : Type(tc, canonType, vecType->isDependentType(),
128         vecType->isVariablyModifiedType(),
129         vecType->containsUnexpandedParameterPack()),
130    ElementType(vecType)
131{
132  VectorTypeBits.VecKind = vecKind;
133  VectorTypeBits.NumElements = nElements;
134}
135
136/// getArrayElementTypeNoTypeQual - If this is an array type, return the
137/// element type of the array, potentially with type qualifiers missing.
138/// This method should never be used when type qualifiers are meaningful.
139const Type *Type::getArrayElementTypeNoTypeQual() const {
140  // If this is directly an array type, return it.
141  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
142    return ATy->getElementType().getTypePtr();
143
144  // If the canonical form of this type isn't the right kind, reject it.
145  if (!isa<ArrayType>(CanonicalType))
146    return 0;
147
148  // If this is a typedef for an array type, strip the typedef off without
149  // losing all typedef information.
150  return cast<ArrayType>(getUnqualifiedDesugaredType())
151    ->getElementType().getTypePtr();
152}
153
154/// getDesugaredType - Return the specified type with any "sugar" removed from
155/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
156/// the type is already concrete, it returns it unmodified.  This is similar
157/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
158/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
159/// concrete.
160QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
161  SplitQualType split = getSplitDesugaredType(T);
162  return Context.getQualifiedType(split.first, split.second);
163}
164
165SplitQualType QualType::getSplitDesugaredType(QualType T) {
166  QualifierCollector Qs;
167
168  QualType Cur = T;
169  while (true) {
170    const Type *CurTy = Qs.strip(Cur);
171    switch (CurTy->getTypeClass()) {
172#define ABSTRACT_TYPE(Class, Parent)
173#define TYPE(Class, Parent) \
174    case Type::Class: { \
175      const Class##Type *Ty = cast<Class##Type>(CurTy); \
176      if (!Ty->isSugared()) \
177        return SplitQualType(Ty, Qs); \
178      Cur = Ty->desugar(); \
179      break; \
180    }
181#include "clang/AST/TypeNodes.def"
182    }
183  }
184}
185
186SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
187  SplitQualType split = type.split();
188
189  // All the qualifiers we've seen so far.
190  Qualifiers quals = split.second;
191
192  // The last type node we saw with any nodes inside it.
193  const Type *lastTypeWithQuals = split.first;
194
195  while (true) {
196    QualType next;
197
198    // Do a single-step desugar, aborting the loop if the type isn't
199    // sugared.
200    switch (split.first->getTypeClass()) {
201#define ABSTRACT_TYPE(Class, Parent)
202#define TYPE(Class, Parent) \
203    case Type::Class: { \
204      const Class##Type *ty = cast<Class##Type>(split.first); \
205      if (!ty->isSugared()) goto done; \
206      next = ty->desugar(); \
207      break; \
208    }
209#include "clang/AST/TypeNodes.def"
210    }
211
212    // Otherwise, split the underlying type.  If that yields qualifiers,
213    // update the information.
214    split = next.split();
215    if (!split.second.empty()) {
216      lastTypeWithQuals = split.first;
217      quals.addConsistentQualifiers(split.second);
218    }
219  }
220
221 done:
222  return SplitQualType(lastTypeWithQuals, quals);
223}
224
225QualType QualType::IgnoreParens(QualType T) {
226  // FIXME: this seems inherently un-qualifiers-safe.
227  while (const ParenType *PT = T->getAs<ParenType>())
228    T = PT->getInnerType();
229  return T;
230}
231
232/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
233/// sugar off the given type.  This should produce an object of the
234/// same dynamic type as the canonical type.
235const Type *Type::getUnqualifiedDesugaredType() const {
236  const Type *Cur = this;
237
238  while (true) {
239    switch (Cur->getTypeClass()) {
240#define ABSTRACT_TYPE(Class, Parent)
241#define TYPE(Class, Parent) \
242    case Class: { \
243      const Class##Type *Ty = cast<Class##Type>(Cur); \
244      if (!Ty->isSugared()) return Cur; \
245      Cur = Ty->desugar().getTypePtr(); \
246      break; \
247    }
248#include "clang/AST/TypeNodes.def"
249    }
250  }
251}
252
253/// isVoidType - Helper method to determine if this is the 'void' type.
254bool Type::isVoidType() const {
255  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
256    return BT->getKind() == BuiltinType::Void;
257  return false;
258}
259
260bool Type::isDerivedType() const {
261  switch (CanonicalType->getTypeClass()) {
262  case Pointer:
263  case VariableArray:
264  case ConstantArray:
265  case IncompleteArray:
266  case FunctionProto:
267  case FunctionNoProto:
268  case LValueReference:
269  case RValueReference:
270  case Record:
271    return true;
272  default:
273    return false;
274  }
275}
276
277bool Type::isClassType() const {
278  if (const RecordType *RT = getAs<RecordType>())
279    return RT->getDecl()->isClass();
280  return false;
281}
282bool Type::isStructureType() const {
283  if (const RecordType *RT = getAs<RecordType>())
284    return RT->getDecl()->isStruct();
285  return false;
286}
287bool Type::isStructureOrClassType() const {
288  if (const RecordType *RT = getAs<RecordType>())
289    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
290  return false;
291}
292bool Type::isVoidPointerType() const {
293  if (const PointerType *PT = getAs<PointerType>())
294    return PT->getPointeeType()->isVoidType();
295  return false;
296}
297
298bool Type::isUnionType() const {
299  if (const RecordType *RT = getAs<RecordType>())
300    return RT->getDecl()->isUnion();
301  return false;
302}
303
304bool Type::isComplexType() const {
305  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
306    return CT->getElementType()->isFloatingType();
307  return false;
308}
309
310bool Type::isComplexIntegerType() const {
311  // Check for GCC complex integer extension.
312  return getAsComplexIntegerType();
313}
314
315const ComplexType *Type::getAsComplexIntegerType() const {
316  if (const ComplexType *Complex = getAs<ComplexType>())
317    if (Complex->getElementType()->isIntegerType())
318      return Complex;
319  return 0;
320}
321
322QualType Type::getPointeeType() const {
323  if (const PointerType *PT = getAs<PointerType>())
324    return PT->getPointeeType();
325  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
326    return OPT->getPointeeType();
327  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
328    return BPT->getPointeeType();
329  if (const ReferenceType *RT = getAs<ReferenceType>())
330    return RT->getPointeeType();
331  return QualType();
332}
333
334const RecordType *Type::getAsStructureType() const {
335  // If this is directly a structure type, return it.
336  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
337    if (RT->getDecl()->isStruct())
338      return RT;
339  }
340
341  // If the canonical form of this type isn't the right kind, reject it.
342  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
343    if (!RT->getDecl()->isStruct())
344      return 0;
345
346    // If this is a typedef for a structure type, strip the typedef off without
347    // losing all typedef information.
348    return cast<RecordType>(getUnqualifiedDesugaredType());
349  }
350  return 0;
351}
352
353const RecordType *Type::getAsUnionType() const {
354  // If this is directly a union type, return it.
355  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
356    if (RT->getDecl()->isUnion())
357      return RT;
358  }
359
360  // If the canonical form of this type isn't the right kind, reject it.
361  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
362    if (!RT->getDecl()->isUnion())
363      return 0;
364
365    // If this is a typedef for a union type, strip the typedef off without
366    // losing all typedef information.
367    return cast<RecordType>(getUnqualifiedDesugaredType());
368  }
369
370  return 0;
371}
372
373ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
374                               ObjCProtocolDecl * const *Protocols,
375                               unsigned NumProtocols)
376  : Type(ObjCObject, Canonical, false, false, false),
377    BaseType(Base)
378{
379  ObjCObjectTypeBits.NumProtocols = NumProtocols;
380  assert(getNumProtocols() == NumProtocols &&
381         "bitfield overflow in protocol count");
382  if (NumProtocols)
383    memcpy(getProtocolStorage(), Protocols,
384           NumProtocols * sizeof(ObjCProtocolDecl*));
385}
386
387const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
388  // There is no sugar for ObjCObjectType's, just return the canonical
389  // type pointer if it is the right class.  There is no typedef information to
390  // return and these cannot be Address-space qualified.
391  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
392    if (T->getNumProtocols() && T->getInterface())
393      return T;
394  return 0;
395}
396
397bool Type::isObjCQualifiedInterfaceType() const {
398  return getAsObjCQualifiedInterfaceType() != 0;
399}
400
401const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
402  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
403  // type pointer if it is the right class.
404  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
405    if (OPT->isObjCQualifiedIdType())
406      return OPT;
407  }
408  return 0;
409}
410
411const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
412  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
413  // type pointer if it is the right class.
414  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
415    if (OPT->isObjCQualifiedClassType())
416      return OPT;
417  }
418  return 0;
419}
420
421const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
422  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
423    if (OPT->getInterfaceType())
424      return OPT;
425  }
426  return 0;
427}
428
429const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
430  if (const PointerType *PT = getAs<PointerType>())
431    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
432      return dyn_cast<CXXRecordDecl>(RT->getDecl());
433  return 0;
434}
435
436CXXRecordDecl *Type::getAsCXXRecordDecl() const {
437  if (const RecordType *RT = getAs<RecordType>())
438    return dyn_cast<CXXRecordDecl>(RT->getDecl());
439  else if (const InjectedClassNameType *Injected
440                                  = getAs<InjectedClassNameType>())
441    return Injected->getDecl();
442
443  return 0;
444}
445
446namespace {
447  class GetContainedAutoVisitor :
448    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
449  public:
450    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
451    AutoType *Visit(QualType T) {
452      if (T.isNull())
453        return 0;
454      return Visit(T.getTypePtr());
455    }
456
457    // The 'auto' type itself.
458    AutoType *VisitAutoType(const AutoType *AT) {
459      return const_cast<AutoType*>(AT);
460    }
461
462    // Only these types can contain the desired 'auto' type.
463    AutoType *VisitPointerType(const PointerType *T) {
464      return Visit(T->getPointeeType());
465    }
466    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
467      return Visit(T->getPointeeType());
468    }
469    AutoType *VisitReferenceType(const ReferenceType *T) {
470      return Visit(T->getPointeeTypeAsWritten());
471    }
472    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
473      return Visit(T->getPointeeType());
474    }
475    AutoType *VisitArrayType(const ArrayType *T) {
476      return Visit(T->getElementType());
477    }
478    AutoType *VisitDependentSizedExtVectorType(
479      const DependentSizedExtVectorType *T) {
480      return Visit(T->getElementType());
481    }
482    AutoType *VisitVectorType(const VectorType *T) {
483      return Visit(T->getElementType());
484    }
485    AutoType *VisitFunctionType(const FunctionType *T) {
486      return Visit(T->getResultType());
487    }
488    AutoType *VisitParenType(const ParenType *T) {
489      return Visit(T->getInnerType());
490    }
491    AutoType *VisitAttributedType(const AttributedType *T) {
492      return Visit(T->getModifiedType());
493    }
494  };
495}
496
497AutoType *Type::getContainedAutoType() const {
498  return GetContainedAutoVisitor().Visit(this);
499}
500
501bool Type::isIntegerType() const {
502  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
503    return BT->getKind() >= BuiltinType::Bool &&
504           BT->getKind() <= BuiltinType::Int128;
505  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
506    // Incomplete enum types are not treated as integer types.
507    // FIXME: In C++, enum types are never integer types.
508    return ET->getDecl()->isComplete();
509  return false;
510}
511
512bool Type::hasIntegerRepresentation() const {
513  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
514    return VT->getElementType()->isIntegerType();
515  else
516    return isIntegerType();
517}
518
519/// \brief Determine whether this type is an integral type.
520///
521/// This routine determines whether the given type is an integral type per
522/// C++ [basic.fundamental]p7. Although the C standard does not define the
523/// term "integral type", it has a similar term "integer type", and in C++
524/// the two terms are equivalent. However, C's "integer type" includes
525/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
526/// parameter is used to determine whether we should be following the C or
527/// C++ rules when determining whether this type is an integral/integer type.
528///
529/// For cases where C permits "an integer type" and C++ permits "an integral
530/// type", use this routine.
531///
532/// For cases where C permits "an integer type" and C++ permits "an integral
533/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
534///
535/// \param Ctx The context in which this type occurs.
536///
537/// \returns true if the type is considered an integral type, false otherwise.
538bool Type::isIntegralType(ASTContext &Ctx) const {
539  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
540    return BT->getKind() >= BuiltinType::Bool &&
541    BT->getKind() <= BuiltinType::Int128;
542
543  if (!Ctx.getLangOptions().CPlusPlus)
544    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
545      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
546
547  return false;
548}
549
550bool Type::isIntegralOrEnumerationType() const {
551  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
552    return BT->getKind() >= BuiltinType::Bool &&
553           BT->getKind() <= BuiltinType::Int128;
554
555  // Check for a complete enum type; incomplete enum types are not properly an
556  // enumeration type in the sense required here.
557  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
558    return ET->getDecl()->isComplete();
559
560  return false;
561}
562
563bool Type::isIntegralOrUnscopedEnumerationType() const {
564  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
565    return BT->getKind() >= BuiltinType::Bool &&
566           BT->getKind() <= BuiltinType::Int128;
567
568  // Check for a complete enum type; incomplete enum types are not properly an
569  // enumeration type in the sense required here.
570  // C++0x: However, if the underlying type of the enum is fixed, it is
571  // considered complete.
572  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
573    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
574
575  return false;
576}
577
578
579bool Type::isBooleanType() const {
580  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
581    return BT->getKind() == BuiltinType::Bool;
582  return false;
583}
584
585bool Type::isCharType() const {
586  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
587    return BT->getKind() == BuiltinType::Char_U ||
588           BT->getKind() == BuiltinType::UChar ||
589           BT->getKind() == BuiltinType::Char_S ||
590           BT->getKind() == BuiltinType::SChar;
591  return false;
592}
593
594bool Type::isWideCharType() const {
595  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
596    return BT->getKind() == BuiltinType::WChar_S ||
597           BT->getKind() == BuiltinType::WChar_U;
598  return false;
599}
600
601/// \brief Determine whether this type is any of the built-in character
602/// types.
603bool Type::isAnyCharacterType() const {
604  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
605  if (BT == 0) return false;
606  switch (BT->getKind()) {
607  default: return false;
608  case BuiltinType::Char_U:
609  case BuiltinType::UChar:
610  case BuiltinType::WChar_U:
611  case BuiltinType::Char16:
612  case BuiltinType::Char32:
613  case BuiltinType::Char_S:
614  case BuiltinType::SChar:
615  case BuiltinType::WChar_S:
616    return true;
617  }
618}
619
620/// isSignedIntegerType - Return true if this is an integer type that is
621/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
622/// an enum decl which has a signed representation
623bool Type::isSignedIntegerType() const {
624  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
625    return BT->getKind() >= BuiltinType::Char_S &&
626           BT->getKind() <= BuiltinType::Int128;
627  }
628
629  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
630    // Incomplete enum types are not treated as integer types.
631    // FIXME: In C++, enum types are never integer types.
632    if (ET->getDecl()->isComplete())
633      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
634  }
635
636  return false;
637}
638
639bool Type::hasSignedIntegerRepresentation() const {
640  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
641    return VT->getElementType()->isSignedIntegerType();
642  else
643    return isSignedIntegerType();
644}
645
646/// isUnsignedIntegerType - Return true if this is an integer type that is
647/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
648/// decl which has an unsigned representation
649bool Type::isUnsignedIntegerType() const {
650  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
651    return BT->getKind() >= BuiltinType::Bool &&
652           BT->getKind() <= BuiltinType::UInt128;
653  }
654
655  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
656    // Incomplete enum types are not treated as integer types.
657    // FIXME: In C++, enum types are never integer types.
658    if (ET->getDecl()->isComplete())
659      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
660  }
661
662  return false;
663}
664
665bool Type::hasUnsignedIntegerRepresentation() const {
666  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
667    return VT->getElementType()->isUnsignedIntegerType();
668  else
669    return isUnsignedIntegerType();
670}
671
672bool Type::isFloatingType() const {
673  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
674    return BT->getKind() >= BuiltinType::Float &&
675           BT->getKind() <= BuiltinType::LongDouble;
676  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
677    return CT->getElementType()->isFloatingType();
678  return false;
679}
680
681bool Type::hasFloatingRepresentation() const {
682  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
683    return VT->getElementType()->isFloatingType();
684  else
685    return isFloatingType();
686}
687
688bool Type::isRealFloatingType() const {
689  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
690    return BT->isFloatingPoint();
691  return false;
692}
693
694bool Type::isRealType() const {
695  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
696    return BT->getKind() >= BuiltinType::Bool &&
697           BT->getKind() <= BuiltinType::LongDouble;
698  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
699      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
700  return false;
701}
702
703bool Type::isArithmeticType() const {
704  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
705    return BT->getKind() >= BuiltinType::Bool &&
706           BT->getKind() <= BuiltinType::LongDouble;
707  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
708    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
709    // If a body isn't seen by the time we get here, return false.
710    //
711    // C++0x: Enumerations are not arithmetic types. For now, just return
712    // false for scoped enumerations since that will disable any
713    // unwanted implicit conversions.
714    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
715  return isa<ComplexType>(CanonicalType);
716}
717
718bool Type::isScalarType() const {
719  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
720    return BT->getKind() > BuiltinType::Void &&
721           BT->getKind() <= BuiltinType::NullPtr;
722  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
723    // Enums are scalar types, but only if they are defined.  Incomplete enums
724    // are not treated as scalar types.
725    return ET->getDecl()->isComplete();
726  return isa<PointerType>(CanonicalType) ||
727         isa<BlockPointerType>(CanonicalType) ||
728         isa<MemberPointerType>(CanonicalType) ||
729         isa<ComplexType>(CanonicalType) ||
730         isa<ObjCObjectPointerType>(CanonicalType);
731}
732
733Type::ScalarTypeKind Type::getScalarTypeKind() const {
734  assert(isScalarType());
735
736  const Type *T = CanonicalType.getTypePtr();
737  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
738    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
739    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
740    if (BT->isInteger()) return STK_Integral;
741    if (BT->isFloatingPoint()) return STK_Floating;
742    llvm_unreachable("unknown scalar builtin type");
743  } else if (isa<PointerType>(T) ||
744             isa<BlockPointerType>(T) ||
745             isa<ObjCObjectPointerType>(T)) {
746    return STK_Pointer;
747  } else if (isa<MemberPointerType>(T)) {
748    return STK_MemberPointer;
749  } else if (isa<EnumType>(T)) {
750    assert(cast<EnumType>(T)->getDecl()->isComplete());
751    return STK_Integral;
752  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
753    if (CT->getElementType()->isRealFloatingType())
754      return STK_FloatingComplex;
755    return STK_IntegralComplex;
756  }
757
758  llvm_unreachable("unknown scalar type");
759  return STK_Pointer;
760}
761
762/// \brief Determines whether the type is a C++ aggregate type or C
763/// aggregate or union type.
764///
765/// An aggregate type is an array or a class type (struct, union, or
766/// class) that has no user-declared constructors, no private or
767/// protected non-static data members, no base classes, and no virtual
768/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
769/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
770/// includes union types.
771bool Type::isAggregateType() const {
772  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
773    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
774      return ClassDecl->isAggregate();
775
776    return true;
777  }
778
779  return isa<ArrayType>(CanonicalType);
780}
781
782/// isConstantSizeType - Return true if this is not a variable sized type,
783/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
784/// incomplete types or dependent types.
785bool Type::isConstantSizeType() const {
786  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
787  assert(!isDependentType() && "This doesn't make sense for dependent types");
788  // The VAT must have a size, as it is known to be complete.
789  return !isa<VariableArrayType>(CanonicalType);
790}
791
792/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
793/// - a type that can describe objects, but which lacks information needed to
794/// determine its size.
795bool Type::isIncompleteType() const {
796  switch (CanonicalType->getTypeClass()) {
797  default: return false;
798  case Builtin:
799    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
800    // be completed.
801    return isVoidType();
802  case Enum:
803    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
804    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
805        return false;
806    // Fall through.
807  case Record:
808    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
809    // forward declaration, but not a full definition (C99 6.2.5p22).
810    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
811  case ConstantArray:
812    // An array is incomplete if its element type is incomplete
813    // (C++ [dcl.array]p1).
814    // We don't handle variable arrays (they're not allowed in C++) or
815    // dependent-sized arrays (dependent types are never treated as incomplete).
816    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
817  case IncompleteArray:
818    // An array of unknown size is an incomplete type (C99 6.2.5p22).
819    return true;
820  case ObjCObject:
821    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
822                                                         ->isIncompleteType();
823  case ObjCInterface:
824    // ObjC interfaces are incomplete if they are @class, not @interface.
825    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
826  }
827}
828
829/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
830bool Type::isPODType() const {
831  // The compiler shouldn't query this for incomplete types, but the user might.
832  // We return false for that case. Except for incomplete arrays of PODs, which
833  // are PODs according to the standard.
834  if (isIncompleteArrayType() &&
835      cast<ArrayType>(CanonicalType)->getElementType()->isPODType())
836    return true;
837  if (isIncompleteType())
838    return false;
839
840  switch (CanonicalType->getTypeClass()) {
841    // Everything not explicitly mentioned is not POD.
842  default: return false;
843  case VariableArray:
844  case ConstantArray:
845    // IncompleteArray is handled above.
846    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
847
848  case Builtin:
849  case Complex:
850  case Pointer:
851  case MemberPointer:
852  case Vector:
853  case ExtVector:
854  case ObjCObjectPointer:
855  case BlockPointer:
856    return true;
857
858  case Enum:
859    return true;
860
861  case Record:
862    if (CXXRecordDecl *ClassDecl
863          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
864      return ClassDecl->isPOD();
865
866    // C struct/union is POD.
867    return true;
868  }
869}
870
871bool Type::isLiteralType() const {
872  if (isIncompleteType())
873    return false;
874
875  // C++0x [basic.types]p10:
876  //   A type is a literal type if it is:
877  //   [...]
878  //   -- an array of literal type
879  // Extension: variable arrays cannot be literal types, since they're
880  // runtime-sized.
881  if (isArrayType() && !isConstantArrayType())
882    return false;
883  const Type *BaseTy = getBaseElementTypeUnsafe();
884  assert(BaseTy && "NULL element type");
885
886  // C++0x [basic.types]p10:
887  //   A type is a literal type if it is:
888  //    -- a scalar type; or
889  if (BaseTy->isScalarType()) return true;
890  //    -- a reference type; or
891  if (BaseTy->isReferenceType()) return true;
892  //    -- a class type that has all of the following properties:
893  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
894    if (const CXXRecordDecl *ClassDecl =
895        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
896      //    -- a trivial destructor,
897      if (!ClassDecl->hasTrivialDestructor()) return false;
898      //    -- every constructor call and full-expression in the
899      //       brace-or-equal-initializers for non-static data members (if any)
900      //       is a constant expression,
901      // FIXME: C++0x: Clang doesn't yet support non-static data member
902      // declarations with initializers, or constexprs.
903      //    -- it is an aggregate type or has at least one constexpr
904      //       constructor or constructor template that is not a copy or move
905      //       constructor, and
906      if (!ClassDecl->isAggregate() &&
907          !ClassDecl->hasConstExprNonCopyMoveConstructor())
908        return false;
909      //    -- all non-static data members and base classes of literal types
910      if (ClassDecl->hasNonLiteralTypeFieldsOrBases()) return false;
911    }
912
913    return true;
914  }
915  return false;
916}
917
918bool Type::isTrivialType() const {
919  if (isIncompleteType())
920    return false;
921
922  // C++0x [basic.types]p9:
923  //   Scalar types, trivial class types, arrays of such types, and
924  //   cv-qualified versions of these types are collectively called trivial
925  //   types.
926  const Type *BaseTy = getBaseElementTypeUnsafe();
927  assert(BaseTy && "NULL element type");
928  if (BaseTy->isScalarType()) return true;
929  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
930    if (const CXXRecordDecl *ClassDecl =
931        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
932      // C++0x [class]p5:
933      //   A trivial class is a class that has a trivial default constructor
934      if (!ClassDecl->hasTrivialConstructor()) return false;
935      //   and is trivially copyable.
936      if (!ClassDecl->isTriviallyCopyable()) return false;
937    }
938
939    return true;
940  }
941
942  // No other types can match.
943  return false;
944}
945
946// This is effectively the intersection of isTrivialType and hasStandardLayout.
947// We implement it dircetly to avoid redundant conversions from a type to
948// a CXXRecordDecl.
949bool Type::isCXX11PODType() const {
950  if (isIncompleteType())
951    return false;
952
953  // C++11 [basic.types]p9:
954  //   Scalar types, POD classes, arrays of such types, and cv-qualified
955  //   versions of these types are collectively called trivial types.
956  const Type *BaseTy = getBaseElementTypeUnsafe();
957  assert(BaseTy && "NULL element type");
958  if (BaseTy->isScalarType()) return true;
959  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
960    if (const CXXRecordDecl *ClassDecl =
961        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
962      // C++11 [class]p10:
963      //   A POD struct is a non-union class that is both a trivial class [...]
964      // C++11 [class]p5:
965      //   A trivial class is a class that has a trivial default constructor
966      if (!ClassDecl->hasTrivialConstructor()) return false;
967      //   and is trivially copyable.
968      if (!ClassDecl->isTriviallyCopyable()) return false;
969
970      // C++11 [class]p10:
971      //   A POD struct is a non-union class that is both a trivial class and
972      //   a standard-layout class [...]
973      if (!ClassDecl->hasStandardLayout()) return false;
974
975      // C++11 [class]p10:
976      //   A POD struct is a non-union class that is both a trivial class and
977      //   a standard-layout class, and has no non-static data members of type
978      //   non-POD struct, non-POD union (or array of such types). [...]
979      //
980      // We don't directly query the recursive aspect as the requiremets for
981      // both standard-layout classes and trivial classes apply recursively
982      // already.
983    }
984
985    return true;
986  }
987
988  // No other types can match.
989  return false;
990}
991
992bool Type::isPromotableIntegerType() const {
993  if (const BuiltinType *BT = getAs<BuiltinType>())
994    switch (BT->getKind()) {
995    case BuiltinType::Bool:
996    case BuiltinType::Char_S:
997    case BuiltinType::Char_U:
998    case BuiltinType::SChar:
999    case BuiltinType::UChar:
1000    case BuiltinType::Short:
1001    case BuiltinType::UShort:
1002      return true;
1003    default:
1004      return false;
1005    }
1006
1007  // Enumerated types are promotable to their compatible integer types
1008  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1009  if (const EnumType *ET = getAs<EnumType>()){
1010    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1011        || ET->getDecl()->isScoped())
1012      return false;
1013
1014    const BuiltinType *BT
1015      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
1016    return BT->getKind() == BuiltinType::Int
1017           || BT->getKind() == BuiltinType::UInt;
1018  }
1019
1020  return false;
1021}
1022
1023bool Type::isNullPtrType() const {
1024  if (const BuiltinType *BT = getAs<BuiltinType>())
1025    return BT->getKind() == BuiltinType::NullPtr;
1026  return false;
1027}
1028
1029bool Type::isSpecifierType() const {
1030  // Note that this intentionally does not use the canonical type.
1031  switch (getTypeClass()) {
1032  case Builtin:
1033  case Record:
1034  case Enum:
1035  case Typedef:
1036  case Complex:
1037  case TypeOfExpr:
1038  case TypeOf:
1039  case TemplateTypeParm:
1040  case SubstTemplateTypeParm:
1041  case TemplateSpecialization:
1042  case Elaborated:
1043  case DependentName:
1044  case DependentTemplateSpecialization:
1045  case ObjCInterface:
1046  case ObjCObject:
1047  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1048    return true;
1049  default:
1050    return false;
1051  }
1052}
1053
1054ElaboratedTypeKeyword
1055TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1056  switch (TypeSpec) {
1057  default: return ETK_None;
1058  case TST_typename: return ETK_Typename;
1059  case TST_class: return ETK_Class;
1060  case TST_struct: return ETK_Struct;
1061  case TST_union: return ETK_Union;
1062  case TST_enum: return ETK_Enum;
1063  }
1064}
1065
1066TagTypeKind
1067TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1068  switch(TypeSpec) {
1069  case TST_class: return TTK_Class;
1070  case TST_struct: return TTK_Struct;
1071  case TST_union: return TTK_Union;
1072  case TST_enum: return TTK_Enum;
1073  }
1074
1075  llvm_unreachable("Type specifier is not a tag type kind.");
1076  return TTK_Union;
1077}
1078
1079ElaboratedTypeKeyword
1080TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1081  switch (Kind) {
1082  case TTK_Class: return ETK_Class;
1083  case TTK_Struct: return ETK_Struct;
1084  case TTK_Union: return ETK_Union;
1085  case TTK_Enum: return ETK_Enum;
1086  }
1087  llvm_unreachable("Unknown tag type kind.");
1088}
1089
1090TagTypeKind
1091TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1092  switch (Keyword) {
1093  case ETK_Class: return TTK_Class;
1094  case ETK_Struct: return TTK_Struct;
1095  case ETK_Union: return TTK_Union;
1096  case ETK_Enum: return TTK_Enum;
1097  case ETK_None: // Fall through.
1098  case ETK_Typename:
1099    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1100  }
1101  llvm_unreachable("Unknown elaborated type keyword.");
1102}
1103
1104bool
1105TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1106  switch (Keyword) {
1107  case ETK_None:
1108  case ETK_Typename:
1109    return false;
1110  case ETK_Class:
1111  case ETK_Struct:
1112  case ETK_Union:
1113  case ETK_Enum:
1114    return true;
1115  }
1116  llvm_unreachable("Unknown elaborated type keyword.");
1117}
1118
1119const char*
1120TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1121  switch (Keyword) {
1122  case ETK_None: return "";
1123  case ETK_Typename: return "typename";
1124  case ETK_Class:  return "class";
1125  case ETK_Struct: return "struct";
1126  case ETK_Union:  return "union";
1127  case ETK_Enum:   return "enum";
1128  }
1129
1130  llvm_unreachable("Unknown elaborated type keyword.");
1131  return "";
1132}
1133
1134DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1135                         ElaboratedTypeKeyword Keyword,
1136                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1137                         unsigned NumArgs, const TemplateArgument *Args,
1138                         QualType Canon)
1139  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true,
1140                    /*VariablyModified=*/false,
1141                    NNS && NNS->containsUnexpandedParameterPack()),
1142    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1143  assert((!NNS || NNS->isDependent()) &&
1144         "DependentTemplateSpecializatonType requires dependent qualifier");
1145  for (unsigned I = 0; I != NumArgs; ++I) {
1146    if (Args[I].containsUnexpandedParameterPack())
1147      setContainsUnexpandedParameterPack();
1148
1149    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1150  }
1151}
1152
1153void
1154DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1155                                             const ASTContext &Context,
1156                                             ElaboratedTypeKeyword Keyword,
1157                                             NestedNameSpecifier *Qualifier,
1158                                             const IdentifierInfo *Name,
1159                                             unsigned NumArgs,
1160                                             const TemplateArgument *Args) {
1161  ID.AddInteger(Keyword);
1162  ID.AddPointer(Qualifier);
1163  ID.AddPointer(Name);
1164  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1165    Args[Idx].Profile(ID, Context);
1166}
1167
1168bool Type::isElaboratedTypeSpecifier() const {
1169  ElaboratedTypeKeyword Keyword;
1170  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1171    Keyword = Elab->getKeyword();
1172  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1173    Keyword = DepName->getKeyword();
1174  else if (const DependentTemplateSpecializationType *DepTST =
1175             dyn_cast<DependentTemplateSpecializationType>(this))
1176    Keyword = DepTST->getKeyword();
1177  else
1178    return false;
1179
1180  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1181}
1182
1183const char *Type::getTypeClassName() const {
1184  switch (TypeBits.TC) {
1185#define ABSTRACT_TYPE(Derived, Base)
1186#define TYPE(Derived, Base) case Derived: return #Derived;
1187#include "clang/AST/TypeNodes.def"
1188  }
1189
1190  llvm_unreachable("Invalid type class.");
1191  return 0;
1192}
1193
1194const char *BuiltinType::getName(const LangOptions &LO) const {
1195  switch (getKind()) {
1196  case Void:              return "void";
1197  case Bool:              return LO.Bool ? "bool" : "_Bool";
1198  case Char_S:            return "char";
1199  case Char_U:            return "char";
1200  case SChar:             return "signed char";
1201  case Short:             return "short";
1202  case Int:               return "int";
1203  case Long:              return "long";
1204  case LongLong:          return "long long";
1205  case Int128:            return "__int128_t";
1206  case UChar:             return "unsigned char";
1207  case UShort:            return "unsigned short";
1208  case UInt:              return "unsigned int";
1209  case ULong:             return "unsigned long";
1210  case ULongLong:         return "unsigned long long";
1211  case UInt128:           return "__uint128_t";
1212  case Float:             return "float";
1213  case Double:            return "double";
1214  case LongDouble:        return "long double";
1215  case WChar_S:
1216  case WChar_U:           return "wchar_t";
1217  case Char16:            return "char16_t";
1218  case Char32:            return "char32_t";
1219  case NullPtr:           return "nullptr_t";
1220  case Overload:          return "<overloaded function type>";
1221  case BoundMember:       return "<bound member function type>";
1222  case Dependent:         return "<dependent type>";
1223  case UnknownAny:        return "<unknown type>";
1224  case ObjCId:            return "id";
1225  case ObjCClass:         return "Class";
1226  case ObjCSel:           return "SEL";
1227  }
1228
1229  llvm_unreachable("Invalid builtin type.");
1230  return 0;
1231}
1232
1233QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1234  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1235    return RefType->getPointeeType();
1236
1237  // C++0x [basic.lval]:
1238  //   Class prvalues can have cv-qualified types; non-class prvalues always
1239  //   have cv-unqualified types.
1240  //
1241  // See also C99 6.3.2.1p2.
1242  if (!Context.getLangOptions().CPlusPlus ||
1243      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1244    return getUnqualifiedType();
1245
1246  return *this;
1247}
1248
1249llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1250  switch (CC) {
1251  case CC_Default:
1252    llvm_unreachable("no name for default cc");
1253    return "";
1254
1255  case CC_C: return "cdecl";
1256  case CC_X86StdCall: return "stdcall";
1257  case CC_X86FastCall: return "fastcall";
1258  case CC_X86ThisCall: return "thiscall";
1259  case CC_X86Pascal: return "pascal";
1260  case CC_AAPCS: return "aapcs";
1261  case CC_AAPCS_VFP: return "aapcs-vfp";
1262  }
1263
1264  llvm_unreachable("Invalid calling convention.");
1265  return "";
1266}
1267
1268FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1269                                     unsigned numArgs, QualType canonical,
1270                                     const ExtProtoInfo &epi)
1271  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1272                 epi.RefQualifier, canonical,
1273                 result->isDependentType(),
1274                 result->isVariablyModifiedType(),
1275                 result->containsUnexpandedParameterPack(),
1276                 epi.ExtInfo),
1277    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1278    ExceptionSpecType(epi.ExceptionSpecType)
1279{
1280  // Fill in the trailing argument array.
1281  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1282  for (unsigned i = 0; i != numArgs; ++i) {
1283    if (args[i]->isDependentType())
1284      setDependent();
1285
1286    if (args[i]->containsUnexpandedParameterPack())
1287      setContainsUnexpandedParameterPack();
1288
1289    argSlot[i] = args[i];
1290  }
1291
1292  if (getExceptionSpecType() == EST_Dynamic) {
1293    // Fill in the exception array.
1294    QualType *exnSlot = argSlot + numArgs;
1295    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1296      if (epi.Exceptions[i]->isDependentType())
1297        setDependent();
1298
1299      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1300        setContainsUnexpandedParameterPack();
1301
1302      exnSlot[i] = epi.Exceptions[i];
1303    }
1304  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1305    // Store the noexcept expression and context.
1306    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1307    *noexSlot = epi.NoexceptExpr;
1308  }
1309}
1310
1311FunctionProtoType::NoexceptResult
1312FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1313  ExceptionSpecificationType est = getExceptionSpecType();
1314  if (est == EST_BasicNoexcept)
1315    return NR_Nothrow;
1316
1317  if (est != EST_ComputedNoexcept)
1318    return NR_NoNoexcept;
1319
1320  Expr *noexceptExpr = getNoexceptExpr();
1321  if (!noexceptExpr)
1322    return NR_BadNoexcept;
1323  if (noexceptExpr->isValueDependent())
1324    return NR_Dependent;
1325
1326  llvm::APSInt value;
1327  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1328                                                   /*evaluated*/false);
1329  (void)isICE;
1330  assert(isICE && "AST should not contain bad noexcept expressions.");
1331
1332  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1333}
1334
1335bool FunctionProtoType::isTemplateVariadic() const {
1336  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1337    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1338      return true;
1339
1340  return false;
1341}
1342
1343void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1344                                const QualType *ArgTys, unsigned NumArgs,
1345                                const ExtProtoInfo &epi,
1346                                const ASTContext &Context) {
1347  ID.AddPointer(Result.getAsOpaquePtr());
1348  for (unsigned i = 0; i != NumArgs; ++i)
1349    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1350  ID.AddBoolean(epi.Variadic);
1351  ID.AddInteger(epi.TypeQuals);
1352  ID.AddInteger(epi.RefQualifier);
1353  ID.AddInteger(epi.ExceptionSpecType);
1354  if (epi.ExceptionSpecType == EST_Dynamic) {
1355    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1356      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1357  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1358    epi.NoexceptExpr->Profile(ID, Context, true);
1359  }
1360  epi.ExtInfo.Profile(ID);
1361}
1362
1363void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1364                                const ASTContext &Ctx) {
1365  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1366          Ctx);
1367}
1368
1369QualType TypedefType::desugar() const {
1370  return getDecl()->getUnderlyingType();
1371}
1372
1373TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1374  : Type(TypeOfExpr, can, E->isTypeDependent(),
1375         E->getType()->isVariablyModifiedType(),
1376         E->containsUnexpandedParameterPack()),
1377    TOExpr(E) {
1378}
1379
1380QualType TypeOfExprType::desugar() const {
1381  return getUnderlyingExpr()->getType();
1382}
1383
1384void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1385                                      const ASTContext &Context, Expr *E) {
1386  E->Profile(ID, Context, true);
1387}
1388
1389DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1390  : Type(Decltype, can, E->isTypeDependent(),
1391         E->getType()->isVariablyModifiedType(),
1392         E->containsUnexpandedParameterPack()),
1393    E(E),
1394  UnderlyingType(underlyingType) {
1395}
1396
1397DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1398  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1399
1400void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1401                                    const ASTContext &Context, Expr *E) {
1402  E->Profile(ID, Context, true);
1403}
1404
1405TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1406  : Type(TC, can, D->isDependentType(), /*VariablyModified=*/false,
1407         /*ContainsUnexpandedParameterPack=*/false),
1408    decl(const_cast<TagDecl*>(D)) {}
1409
1410static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1411  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1412                                E = decl->redecls_end();
1413       I != E; ++I) {
1414    if (I->isDefinition() || I->isBeingDefined())
1415      return *I;
1416  }
1417  // If there's no definition (not even in progress), return what we have.
1418  return decl;
1419}
1420
1421TagDecl *TagType::getDecl() const {
1422  return getInterestingTagDecl(decl);
1423}
1424
1425bool TagType::isBeingDefined() const {
1426  return getDecl()->isBeingDefined();
1427}
1428
1429CXXRecordDecl *InjectedClassNameType::getDecl() const {
1430  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1431}
1432
1433bool RecordType::classof(const TagType *TT) {
1434  return isa<RecordDecl>(TT->getDecl());
1435}
1436
1437static uint64_t countBasesWithFields(QualType BaseType) {
1438  uint64_t BasesWithFields = 0;
1439  if (const RecordType *T = BaseType->getAs<RecordType>()) {
1440    CXXRecordDecl *RD = cast<CXXRecordDecl>(T->getDecl());
1441    for (CXXRecordDecl::field_iterator Field = RD->field_begin(),
1442           E = RD->field_end(); Field != E; ++Field)
1443      BasesWithFields = 1;
1444    for (CXXRecordDecl::base_class_const_iterator B = RD->bases_begin(),
1445           BE = RD->bases_end(); B != BE; ++B)
1446      BasesWithFields += countBasesWithFields(B->getType());
1447  }
1448  return BasesWithFields;
1449}
1450
1451bool RecordType::hasStandardLayout() const {
1452  CXXRecordDecl *RD = cast<CXXRecordDecl>(getDecl());
1453  if (! RD) {
1454    assert(cast<RecordDecl>(getDecl()) &&
1455           "RecordType does not have a corresponding RecordDecl");
1456    return true;
1457  }
1458
1459  return RD->hasStandardLayout();
1460}
1461
1462bool EnumType::classof(const TagType *TT) {
1463  return isa<EnumDecl>(TT->getDecl());
1464}
1465
1466SubstTemplateTypeParmPackType::
1467SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1468                              QualType Canon,
1469                              const TemplateArgument &ArgPack)
1470  : Type(SubstTemplateTypeParmPack, Canon, true, false, true), Replaced(Param),
1471    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1472{
1473}
1474
1475TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1476  return TemplateArgument(Arguments, NumArguments);
1477}
1478
1479void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1480  Profile(ID, getReplacedParameter(), getArgumentPack());
1481}
1482
1483void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1484                                           const TemplateTypeParmType *Replaced,
1485                                            const TemplateArgument &ArgPack) {
1486  ID.AddPointer(Replaced);
1487  ID.AddInteger(ArgPack.pack_size());
1488  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1489                                    PEnd = ArgPack.pack_end();
1490       P != PEnd; ++P)
1491    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1492}
1493
1494bool TemplateSpecializationType::
1495anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
1496  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
1497}
1498
1499bool TemplateSpecializationType::
1500anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
1501  for (unsigned i = 0; i != N; ++i)
1502    if (Args[i].getArgument().isDependent())
1503      return true;
1504  return false;
1505}
1506
1507bool TemplateSpecializationType::
1508anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
1509  for (unsigned i = 0; i != N; ++i)
1510    if (Args[i].isDependent())
1511      return true;
1512  return false;
1513}
1514
1515TemplateSpecializationType::
1516TemplateSpecializationType(TemplateName T,
1517                           const TemplateArgument *Args,
1518                           unsigned NumArgs, QualType Canon)
1519  : Type(TemplateSpecialization,
1520         Canon.isNull()? QualType(this, 0) : Canon,
1521         T.isDependent(), false, T.containsUnexpandedParameterPack()),
1522    Template(T), NumArgs(NumArgs)
1523{
1524  assert(!T.getAsDependentTemplateName() &&
1525         "Use DependentTemplateSpecializationType for dependent template-name");
1526  assert((!Canon.isNull() ||
1527          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
1528         "No canonical type for non-dependent class template specialization");
1529
1530  TemplateArgument *TemplateArgs
1531    = reinterpret_cast<TemplateArgument *>(this + 1);
1532  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1533    // Update dependent and variably-modified bits.
1534    if (Args[Arg].isDependent())
1535      setDependent();
1536    if (Args[Arg].getKind() == TemplateArgument::Type &&
1537        Args[Arg].getAsType()->isVariablyModifiedType())
1538      setVariablyModified();
1539    if (Args[Arg].containsUnexpandedParameterPack())
1540      setContainsUnexpandedParameterPack();
1541
1542    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1543  }
1544}
1545
1546void
1547TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1548                                    TemplateName T,
1549                                    const TemplateArgument *Args,
1550                                    unsigned NumArgs,
1551                                    const ASTContext &Context) {
1552  T.Profile(ID);
1553  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1554    Args[Idx].Profile(ID, Context);
1555}
1556
1557QualType
1558QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1559  if (!hasNonFastQualifiers())
1560    return QT.withFastQualifiers(getFastQualifiers());
1561
1562  return Context.getQualifiedType(QT, *this);
1563}
1564
1565QualType
1566QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1567  if (!hasNonFastQualifiers())
1568    return QualType(T, getFastQualifiers());
1569
1570  return Context.getQualifiedType(T, *this);
1571}
1572
1573void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1574                                 QualType BaseType,
1575                                 ObjCProtocolDecl * const *Protocols,
1576                                 unsigned NumProtocols) {
1577  ID.AddPointer(BaseType.getAsOpaquePtr());
1578  for (unsigned i = 0; i != NumProtocols; i++)
1579    ID.AddPointer(Protocols[i]);
1580}
1581
1582void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1583  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1584}
1585
1586namespace {
1587
1588/// \brief The cached properties of a type.
1589class CachedProperties {
1590  char linkage;
1591  char visibility;
1592  bool local;
1593
1594public:
1595  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1596    : linkage(linkage), visibility(visibility), local(local) {}
1597
1598  Linkage getLinkage() const { return (Linkage) linkage; }
1599  Visibility getVisibility() const { return (Visibility) visibility; }
1600  bool hasLocalOrUnnamedType() const { return local; }
1601
1602  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1603    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1604                            minVisibility(L.getVisibility(), R.getVisibility()),
1605                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1606  }
1607};
1608}
1609
1610static CachedProperties computeCachedProperties(const Type *T);
1611
1612namespace clang {
1613/// The type-property cache.  This is templated so as to be
1614/// instantiated at an internal type to prevent unnecessary symbol
1615/// leakage.
1616template <class Private> class TypePropertyCache {
1617public:
1618  static CachedProperties get(QualType T) {
1619    return get(T.getTypePtr());
1620  }
1621
1622  static CachedProperties get(const Type *T) {
1623    ensure(T);
1624    return CachedProperties(T->TypeBits.getLinkage(),
1625                            T->TypeBits.getVisibility(),
1626                            T->TypeBits.hasLocalOrUnnamedType());
1627  }
1628
1629  static void ensure(const Type *T) {
1630    // If the cache is valid, we're okay.
1631    if (T->TypeBits.isCacheValid()) return;
1632
1633    // If this type is non-canonical, ask its canonical type for the
1634    // relevant information.
1635    if (!T->isCanonicalUnqualified()) {
1636      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1637      ensure(CT);
1638      T->TypeBits.CacheValidAndVisibility =
1639        CT->TypeBits.CacheValidAndVisibility;
1640      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1641      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1642      return;
1643    }
1644
1645    // Compute the cached properties and then set the cache.
1646    CachedProperties Result = computeCachedProperties(T);
1647    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1648    assert(T->TypeBits.isCacheValid() &&
1649           T->TypeBits.getVisibility() == Result.getVisibility());
1650    T->TypeBits.CachedLinkage = Result.getLinkage();
1651    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1652  }
1653};
1654}
1655
1656// Instantiate the friend template at a private class.  In a
1657// reasonable implementation, these symbols will be internal.
1658// It is terrible that this is the best way to accomplish this.
1659namespace { class Private {}; }
1660typedef TypePropertyCache<Private> Cache;
1661
1662static CachedProperties computeCachedProperties(const Type *T) {
1663  switch (T->getTypeClass()) {
1664#define TYPE(Class,Base)
1665#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
1666#include "clang/AST/TypeNodes.def"
1667    llvm_unreachable("didn't expect a non-canonical type here");
1668
1669#define TYPE(Class,Base)
1670#define DEPENDENT_TYPE(Class,Base) case Type::Class:
1671#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
1672#include "clang/AST/TypeNodes.def"
1673    // Treat dependent types as external.
1674    assert(T->isDependentType());
1675    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1676
1677  case Type::Builtin:
1678    // C++ [basic.link]p8:
1679    //   A type is said to have linkage if and only if:
1680    //     - it is a fundamental type (3.9.1); or
1681    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1682
1683  case Type::Record:
1684  case Type::Enum: {
1685    const TagDecl *Tag = cast<TagType>(T)->getDecl();
1686
1687    // C++ [basic.link]p8:
1688    //     - it is a class or enumeration type that is named (or has a name
1689    //       for linkage purposes (7.1.3)) and the name has linkage; or
1690    //     -  it is a specialization of a class template (14); or
1691    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
1692    bool IsLocalOrUnnamed =
1693      Tag->getDeclContext()->isFunctionOrMethod() ||
1694      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
1695    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
1696  }
1697
1698    // C++ [basic.link]p8:
1699    //   - it is a compound type (3.9.2) other than a class or enumeration,
1700    //     compounded exclusively from types that have linkage; or
1701  case Type::Complex:
1702    return Cache::get(cast<ComplexType>(T)->getElementType());
1703  case Type::Pointer:
1704    return Cache::get(cast<PointerType>(T)->getPointeeType());
1705  case Type::BlockPointer:
1706    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
1707  case Type::LValueReference:
1708  case Type::RValueReference:
1709    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
1710  case Type::MemberPointer: {
1711    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1712    return merge(Cache::get(MPT->getClass()),
1713                 Cache::get(MPT->getPointeeType()));
1714  }
1715  case Type::ConstantArray:
1716  case Type::IncompleteArray:
1717  case Type::VariableArray:
1718    return Cache::get(cast<ArrayType>(T)->getElementType());
1719  case Type::Vector:
1720  case Type::ExtVector:
1721    return Cache::get(cast<VectorType>(T)->getElementType());
1722  case Type::FunctionNoProto:
1723    return Cache::get(cast<FunctionType>(T)->getResultType());
1724  case Type::FunctionProto: {
1725    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1726    CachedProperties result = Cache::get(FPT->getResultType());
1727    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
1728           ae = FPT->arg_type_end(); ai != ae; ++ai)
1729      result = merge(result, Cache::get(*ai));
1730    return result;
1731  }
1732  case Type::ObjCInterface: {
1733    NamedDecl::LinkageInfo LV =
1734      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
1735    return CachedProperties(LV.linkage(), LV.visibility(), false);
1736  }
1737  case Type::ObjCObject:
1738    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
1739  case Type::ObjCObjectPointer:
1740    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
1741  }
1742
1743  llvm_unreachable("unhandled type class");
1744
1745  // C++ [basic.link]p8:
1746  //   Names not covered by these rules have no linkage.
1747  return CachedProperties(NoLinkage, DefaultVisibility, false);
1748}
1749
1750/// \brief Determine the linkage of this type.
1751Linkage Type::getLinkage() const {
1752  Cache::ensure(this);
1753  return TypeBits.getLinkage();
1754}
1755
1756/// \brief Determine the linkage of this type.
1757Visibility Type::getVisibility() const {
1758  Cache::ensure(this);
1759  return TypeBits.getVisibility();
1760}
1761
1762bool Type::hasUnnamedOrLocalType() const {
1763  Cache::ensure(this);
1764  return TypeBits.hasLocalOrUnnamedType();
1765}
1766
1767std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
1768  Cache::ensure(this);
1769  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
1770}
1771
1772void Type::ClearLinkageCache() {
1773  TypeBits.CacheValidAndVisibility = 0;
1774  if (QualType(this, 0) != CanonicalType)
1775    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
1776}
1777
1778bool Type::hasSizedVLAType() const {
1779  if (!isVariablyModifiedType()) return false;
1780
1781  if (const PointerType *ptr = getAs<PointerType>())
1782    return ptr->getPointeeType()->hasSizedVLAType();
1783  if (const ReferenceType *ref = getAs<ReferenceType>())
1784    return ref->getPointeeType()->hasSizedVLAType();
1785  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
1786    if (isa<VariableArrayType>(arr) &&
1787        cast<VariableArrayType>(arr)->getSizeExpr())
1788      return true;
1789
1790    return arr->getElementType()->hasSizedVLAType();
1791  }
1792
1793  return false;
1794}
1795
1796QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
1797  /// Currently, the only destruction kind we recognize is C++ objects
1798  /// with non-trivial destructors.
1799  const CXXRecordDecl *record =
1800    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1801  if (record && !record->hasTrivialDestructor())
1802    return DK_cxx_destructor;
1803
1804  return DK_none;
1805}
1806