Type.cpp revision b7e9589bce9852b4db9575f55ac9137572147eb5
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool QualType::isConstant(QualType T, ASTContext &Ctx) {
31  if (T.isConstQualified())
32    return true;
33
34  if (const ArrayType *AT = Ctx.getAsArrayType(T))
35    return AT->getElementType().isConstant(Ctx);
36
37  return false;
38}
39
40unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
41                                                 QualType ElementType,
42                                               const llvm::APInt &NumElements) {
43  llvm::APSInt SizeExtended(NumElements, true);
44  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
45  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
46                                              SizeExtended.getBitWidth()) * 2);
47
48  uint64_t ElementSize
49    = Context.getTypeSizeInChars(ElementType).getQuantity();
50  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
51  TotalSize *= SizeExtended;
52
53  return TotalSize.getActiveBits();
54}
55
56unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
57  unsigned Bits = Context.getTypeSize(Context.getSizeType());
58
59  // GCC appears to only allow 63 bits worth of address space when compiling
60  // for 64-bit, so we do the same.
61  if (Bits == 64)
62    --Bits;
63
64  return Bits;
65}
66
67DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
68                                                 QualType et, QualType can,
69                                                 Expr *e, ArraySizeModifier sm,
70                                                 unsigned tq,
71                                                 SourceRange brackets)
72    : ArrayType(DependentSizedArray, et, can, sm, tq,
73                (et->containsUnexpandedParameterPack() ||
74                 (e && e->containsUnexpandedParameterPack()))),
75      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
76{
77}
78
79void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
80                                      const ASTContext &Context,
81                                      QualType ET,
82                                      ArraySizeModifier SizeMod,
83                                      unsigned TypeQuals,
84                                      Expr *E) {
85  ID.AddPointer(ET.getAsOpaquePtr());
86  ID.AddInteger(SizeMod);
87  ID.AddInteger(TypeQuals);
88  E->Profile(ID, Context, true);
89}
90
91DependentSizedExtVectorType::DependentSizedExtVectorType(const
92                                                         ASTContext &Context,
93                                                         QualType ElementType,
94                                                         QualType can,
95                                                         Expr *SizeExpr,
96                                                         SourceLocation loc)
97    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
98           ElementType->isVariablyModifiedType(),
99           (ElementType->containsUnexpandedParameterPack() ||
100            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
101      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
102      loc(loc)
103{
104}
105
106void
107DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
108                                     const ASTContext &Context,
109                                     QualType ElementType, Expr *SizeExpr) {
110  ID.AddPointer(ElementType.getAsOpaquePtr());
111  SizeExpr->Profile(ID, Context, true);
112}
113
114VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
115                       VectorKind vecKind)
116  : Type(Vector, canonType, vecType->isDependentType(),
117         vecType->isVariablyModifiedType(),
118         vecType->containsUnexpandedParameterPack()),
119    ElementType(vecType)
120{
121  VectorTypeBits.VecKind = vecKind;
122  VectorTypeBits.NumElements = nElements;
123}
124
125VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
126                       QualType canonType, VectorKind vecKind)
127  : Type(tc, canonType, vecType->isDependentType(),
128         vecType->isVariablyModifiedType(),
129         vecType->containsUnexpandedParameterPack()),
130    ElementType(vecType)
131{
132  VectorTypeBits.VecKind = vecKind;
133  VectorTypeBits.NumElements = nElements;
134}
135
136/// getArrayElementTypeNoTypeQual - If this is an array type, return the
137/// element type of the array, potentially with type qualifiers missing.
138/// This method should never be used when type qualifiers are meaningful.
139const Type *Type::getArrayElementTypeNoTypeQual() const {
140  // If this is directly an array type, return it.
141  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
142    return ATy->getElementType().getTypePtr();
143
144  // If the canonical form of this type isn't the right kind, reject it.
145  if (!isa<ArrayType>(CanonicalType))
146    return 0;
147
148  // If this is a typedef for an array type, strip the typedef off without
149  // losing all typedef information.
150  return cast<ArrayType>(getUnqualifiedDesugaredType())
151    ->getElementType().getTypePtr();
152}
153
154/// getDesugaredType - Return the specified type with any "sugar" removed from
155/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
156/// the type is already concrete, it returns it unmodified.  This is similar
157/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
158/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
159/// concrete.
160QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
161  SplitQualType split = getSplitDesugaredType(T);
162  return Context.getQualifiedType(split.first, split.second);
163}
164
165SplitQualType QualType::getSplitDesugaredType(QualType T) {
166  QualifierCollector Qs;
167
168  QualType Cur = T;
169  while (true) {
170    const Type *CurTy = Qs.strip(Cur);
171    switch (CurTy->getTypeClass()) {
172#define ABSTRACT_TYPE(Class, Parent)
173#define TYPE(Class, Parent) \
174    case Type::Class: { \
175      const Class##Type *Ty = cast<Class##Type>(CurTy); \
176      if (!Ty->isSugared()) \
177        return SplitQualType(Ty, Qs); \
178      Cur = Ty->desugar(); \
179      break; \
180    }
181#include "clang/AST/TypeNodes.def"
182    }
183  }
184}
185
186SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
187  SplitQualType split = type.split();
188
189  // All the qualifiers we've seen so far.
190  Qualifiers quals = split.second;
191
192  // The last type node we saw with any nodes inside it.
193  const Type *lastTypeWithQuals = split.first;
194
195  while (true) {
196    QualType next;
197
198    // Do a single-step desugar, aborting the loop if the type isn't
199    // sugared.
200    switch (split.first->getTypeClass()) {
201#define ABSTRACT_TYPE(Class, Parent)
202#define TYPE(Class, Parent) \
203    case Type::Class: { \
204      const Class##Type *ty = cast<Class##Type>(split.first); \
205      if (!ty->isSugared()) goto done; \
206      next = ty->desugar(); \
207      break; \
208    }
209#include "clang/AST/TypeNodes.def"
210    }
211
212    // Otherwise, split the underlying type.  If that yields qualifiers,
213    // update the information.
214    split = next.split();
215    if (!split.second.empty()) {
216      lastTypeWithQuals = split.first;
217      quals.addConsistentQualifiers(split.second);
218    }
219  }
220
221 done:
222  return SplitQualType(lastTypeWithQuals, quals);
223}
224
225QualType QualType::IgnoreParens(QualType T) {
226  // FIXME: this seems inherently un-qualifiers-safe.
227  while (const ParenType *PT = T->getAs<ParenType>())
228    T = PT->getInnerType();
229  return T;
230}
231
232/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
233/// sugar off the given type.  This should produce an object of the
234/// same dynamic type as the canonical type.
235const Type *Type::getUnqualifiedDesugaredType() const {
236  const Type *Cur = this;
237
238  while (true) {
239    switch (Cur->getTypeClass()) {
240#define ABSTRACT_TYPE(Class, Parent)
241#define TYPE(Class, Parent) \
242    case Class: { \
243      const Class##Type *Ty = cast<Class##Type>(Cur); \
244      if (!Ty->isSugared()) return Cur; \
245      Cur = Ty->desugar().getTypePtr(); \
246      break; \
247    }
248#include "clang/AST/TypeNodes.def"
249    }
250  }
251}
252
253/// isVoidType - Helper method to determine if this is the 'void' type.
254bool Type::isVoidType() const {
255  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
256    return BT->getKind() == BuiltinType::Void;
257  return false;
258}
259
260bool Type::isDerivedType() const {
261  switch (CanonicalType->getTypeClass()) {
262  case Pointer:
263  case VariableArray:
264  case ConstantArray:
265  case IncompleteArray:
266  case FunctionProto:
267  case FunctionNoProto:
268  case LValueReference:
269  case RValueReference:
270  case Record:
271    return true;
272  default:
273    return false;
274  }
275}
276
277bool Type::isClassType() const {
278  if (const RecordType *RT = getAs<RecordType>())
279    return RT->getDecl()->isClass();
280  return false;
281}
282bool Type::isStructureType() const {
283  if (const RecordType *RT = getAs<RecordType>())
284    return RT->getDecl()->isStruct();
285  return false;
286}
287bool Type::isStructureOrClassType() const {
288  if (const RecordType *RT = getAs<RecordType>())
289    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
290  return false;
291}
292bool Type::isVoidPointerType() const {
293  if (const PointerType *PT = getAs<PointerType>())
294    return PT->getPointeeType()->isVoidType();
295  return false;
296}
297
298bool Type::isUnionType() const {
299  if (const RecordType *RT = getAs<RecordType>())
300    return RT->getDecl()->isUnion();
301  return false;
302}
303
304bool Type::isComplexType() const {
305  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
306    return CT->getElementType()->isFloatingType();
307  return false;
308}
309
310bool Type::isComplexIntegerType() const {
311  // Check for GCC complex integer extension.
312  return getAsComplexIntegerType();
313}
314
315const ComplexType *Type::getAsComplexIntegerType() const {
316  if (const ComplexType *Complex = getAs<ComplexType>())
317    if (Complex->getElementType()->isIntegerType())
318      return Complex;
319  return 0;
320}
321
322QualType Type::getPointeeType() const {
323  if (const PointerType *PT = getAs<PointerType>())
324    return PT->getPointeeType();
325  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
326    return OPT->getPointeeType();
327  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
328    return BPT->getPointeeType();
329  if (const ReferenceType *RT = getAs<ReferenceType>())
330    return RT->getPointeeType();
331  return QualType();
332}
333
334const RecordType *Type::getAsStructureType() const {
335  // If this is directly a structure type, return it.
336  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
337    if (RT->getDecl()->isStruct())
338      return RT;
339  }
340
341  // If the canonical form of this type isn't the right kind, reject it.
342  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
343    if (!RT->getDecl()->isStruct())
344      return 0;
345
346    // If this is a typedef for a structure type, strip the typedef off without
347    // losing all typedef information.
348    return cast<RecordType>(getUnqualifiedDesugaredType());
349  }
350  return 0;
351}
352
353const RecordType *Type::getAsUnionType() const {
354  // If this is directly a union type, return it.
355  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
356    if (RT->getDecl()->isUnion())
357      return RT;
358  }
359
360  // If the canonical form of this type isn't the right kind, reject it.
361  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
362    if (!RT->getDecl()->isUnion())
363      return 0;
364
365    // If this is a typedef for a union type, strip the typedef off without
366    // losing all typedef information.
367    return cast<RecordType>(getUnqualifiedDesugaredType());
368  }
369
370  return 0;
371}
372
373ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
374                               ObjCProtocolDecl * const *Protocols,
375                               unsigned NumProtocols)
376  : Type(ObjCObject, Canonical, false, false, false),
377    BaseType(Base)
378{
379  ObjCObjectTypeBits.NumProtocols = NumProtocols;
380  assert(getNumProtocols() == NumProtocols &&
381         "bitfield overflow in protocol count");
382  if (NumProtocols)
383    memcpy(getProtocolStorage(), Protocols,
384           NumProtocols * sizeof(ObjCProtocolDecl*));
385}
386
387const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
388  // There is no sugar for ObjCObjectType's, just return the canonical
389  // type pointer if it is the right class.  There is no typedef information to
390  // return and these cannot be Address-space qualified.
391  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
392    if (T->getNumProtocols() && T->getInterface())
393      return T;
394  return 0;
395}
396
397bool Type::isObjCQualifiedInterfaceType() const {
398  return getAsObjCQualifiedInterfaceType() != 0;
399}
400
401const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
402  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
403  // type pointer if it is the right class.
404  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
405    if (OPT->isObjCQualifiedIdType())
406      return OPT;
407  }
408  return 0;
409}
410
411const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
412  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
413  // type pointer if it is the right class.
414  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
415    if (OPT->isObjCQualifiedClassType())
416      return OPT;
417  }
418  return 0;
419}
420
421const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
422  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
423    if (OPT->getInterfaceType())
424      return OPT;
425  }
426  return 0;
427}
428
429const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
430  if (const PointerType *PT = getAs<PointerType>())
431    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
432      return dyn_cast<CXXRecordDecl>(RT->getDecl());
433  return 0;
434}
435
436CXXRecordDecl *Type::getAsCXXRecordDecl() const {
437  if (const RecordType *RT = getAs<RecordType>())
438    return dyn_cast<CXXRecordDecl>(RT->getDecl());
439  else if (const InjectedClassNameType *Injected
440                                  = getAs<InjectedClassNameType>())
441    return Injected->getDecl();
442
443  return 0;
444}
445
446namespace {
447  class GetContainedAutoVisitor :
448    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
449  public:
450    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
451    AutoType *Visit(QualType T) {
452      if (T.isNull())
453        return 0;
454      return Visit(T.getTypePtr());
455    }
456
457    // The 'auto' type itself.
458    AutoType *VisitAutoType(const AutoType *AT) {
459      return const_cast<AutoType*>(AT);
460    }
461
462    // Only these types can contain the desired 'auto' type.
463    AutoType *VisitPointerType(const PointerType *T) {
464      return Visit(T->getPointeeType());
465    }
466    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
467      return Visit(T->getPointeeType());
468    }
469    AutoType *VisitReferenceType(const ReferenceType *T) {
470      return Visit(T->getPointeeTypeAsWritten());
471    }
472    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
473      return Visit(T->getPointeeType());
474    }
475    AutoType *VisitArrayType(const ArrayType *T) {
476      return Visit(T->getElementType());
477    }
478    AutoType *VisitDependentSizedExtVectorType(
479      const DependentSizedExtVectorType *T) {
480      return Visit(T->getElementType());
481    }
482    AutoType *VisitVectorType(const VectorType *T) {
483      return Visit(T->getElementType());
484    }
485    AutoType *VisitFunctionType(const FunctionType *T) {
486      return Visit(T->getResultType());
487    }
488    AutoType *VisitParenType(const ParenType *T) {
489      return Visit(T->getInnerType());
490    }
491    AutoType *VisitAttributedType(const AttributedType *T) {
492      return Visit(T->getModifiedType());
493    }
494  };
495}
496
497AutoType *Type::getContainedAutoType() const {
498  return GetContainedAutoVisitor().Visit(this);
499}
500
501bool Type::isIntegerType() const {
502  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
503    return BT->getKind() >= BuiltinType::Bool &&
504           BT->getKind() <= BuiltinType::Int128;
505  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
506    // Incomplete enum types are not treated as integer types.
507    // FIXME: In C++, enum types are never integer types.
508    return ET->getDecl()->isComplete();
509  return false;
510}
511
512bool Type::hasIntegerRepresentation() const {
513  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
514    return VT->getElementType()->isIntegerType();
515  else
516    return isIntegerType();
517}
518
519/// \brief Determine whether this type is an integral type.
520///
521/// This routine determines whether the given type is an integral type per
522/// C++ [basic.fundamental]p7. Although the C standard does not define the
523/// term "integral type", it has a similar term "integer type", and in C++
524/// the two terms are equivalent. However, C's "integer type" includes
525/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
526/// parameter is used to determine whether we should be following the C or
527/// C++ rules when determining whether this type is an integral/integer type.
528///
529/// For cases where C permits "an integer type" and C++ permits "an integral
530/// type", use this routine.
531///
532/// For cases where C permits "an integer type" and C++ permits "an integral
533/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
534///
535/// \param Ctx The context in which this type occurs.
536///
537/// \returns true if the type is considered an integral type, false otherwise.
538bool Type::isIntegralType(ASTContext &Ctx) const {
539  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
540    return BT->getKind() >= BuiltinType::Bool &&
541    BT->getKind() <= BuiltinType::Int128;
542
543  if (!Ctx.getLangOptions().CPlusPlus)
544    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
545      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
546
547  return false;
548}
549
550bool Type::isIntegralOrEnumerationType() const {
551  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
552    return BT->getKind() >= BuiltinType::Bool &&
553           BT->getKind() <= BuiltinType::Int128;
554
555  // Check for a complete enum type; incomplete enum types are not properly an
556  // enumeration type in the sense required here.
557  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
558    return ET->getDecl()->isComplete();
559
560  return false;
561}
562
563bool Type::isIntegralOrUnscopedEnumerationType() const {
564  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
565    return BT->getKind() >= BuiltinType::Bool &&
566           BT->getKind() <= BuiltinType::Int128;
567
568  // Check for a complete enum type; incomplete enum types are not properly an
569  // enumeration type in the sense required here.
570  // C++0x: However, if the underlying type of the enum is fixed, it is
571  // considered complete.
572  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
573    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
574
575  return false;
576}
577
578
579bool Type::isBooleanType() const {
580  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
581    return BT->getKind() == BuiltinType::Bool;
582  return false;
583}
584
585bool Type::isCharType() const {
586  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
587    return BT->getKind() == BuiltinType::Char_U ||
588           BT->getKind() == BuiltinType::UChar ||
589           BT->getKind() == BuiltinType::Char_S ||
590           BT->getKind() == BuiltinType::SChar;
591  return false;
592}
593
594bool Type::isWideCharType() const {
595  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
596    return BT->getKind() == BuiltinType::WChar_S ||
597           BT->getKind() == BuiltinType::WChar_U;
598  return false;
599}
600
601/// \brief Determine whether this type is any of the built-in character
602/// types.
603bool Type::isAnyCharacterType() const {
604  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
605  if (BT == 0) return false;
606  switch (BT->getKind()) {
607  default: return false;
608  case BuiltinType::Char_U:
609  case BuiltinType::UChar:
610  case BuiltinType::WChar_U:
611  case BuiltinType::Char16:
612  case BuiltinType::Char32:
613  case BuiltinType::Char_S:
614  case BuiltinType::SChar:
615  case BuiltinType::WChar_S:
616    return true;
617  }
618}
619
620/// isSignedIntegerType - Return true if this is an integer type that is
621/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
622/// an enum decl which has a signed representation
623bool Type::isSignedIntegerType() const {
624  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
625    return BT->getKind() >= BuiltinType::Char_S &&
626           BT->getKind() <= BuiltinType::Int128;
627  }
628
629  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
630    // Incomplete enum types are not treated as integer types.
631    // FIXME: In C++, enum types are never integer types.
632    if (ET->getDecl()->isComplete())
633      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
634  }
635
636  return false;
637}
638
639bool Type::hasSignedIntegerRepresentation() const {
640  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
641    return VT->getElementType()->isSignedIntegerType();
642  else
643    return isSignedIntegerType();
644}
645
646/// isUnsignedIntegerType - Return true if this is an integer type that is
647/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
648/// decl which has an unsigned representation
649bool Type::isUnsignedIntegerType() const {
650  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
651    return BT->getKind() >= BuiltinType::Bool &&
652           BT->getKind() <= BuiltinType::UInt128;
653  }
654
655  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
656    // Incomplete enum types are not treated as integer types.
657    // FIXME: In C++, enum types are never integer types.
658    if (ET->getDecl()->isComplete())
659      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
660  }
661
662  return false;
663}
664
665bool Type::hasUnsignedIntegerRepresentation() const {
666  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
667    return VT->getElementType()->isUnsignedIntegerType();
668  else
669    return isUnsignedIntegerType();
670}
671
672bool Type::isFloatingType() const {
673  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
674    return BT->getKind() >= BuiltinType::Float &&
675           BT->getKind() <= BuiltinType::LongDouble;
676  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
677    return CT->getElementType()->isFloatingType();
678  return false;
679}
680
681bool Type::hasFloatingRepresentation() const {
682  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
683    return VT->getElementType()->isFloatingType();
684  else
685    return isFloatingType();
686}
687
688bool Type::isRealFloatingType() const {
689  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
690    return BT->isFloatingPoint();
691  return false;
692}
693
694bool Type::isRealType() const {
695  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
696    return BT->getKind() >= BuiltinType::Bool &&
697           BT->getKind() <= BuiltinType::LongDouble;
698  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
699      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
700  return false;
701}
702
703bool Type::isArithmeticType() const {
704  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
705    return BT->getKind() >= BuiltinType::Bool &&
706           BT->getKind() <= BuiltinType::LongDouble;
707  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
708    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
709    // If a body isn't seen by the time we get here, return false.
710    //
711    // C++0x: Enumerations are not arithmetic types. For now, just return
712    // false for scoped enumerations since that will disable any
713    // unwanted implicit conversions.
714    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
715  return isa<ComplexType>(CanonicalType);
716}
717
718bool Type::isScalarType() const {
719  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
720    return BT->getKind() > BuiltinType::Void &&
721           BT->getKind() <= BuiltinType::NullPtr;
722  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
723    // Enums are scalar types, but only if they are defined.  Incomplete enums
724    // are not treated as scalar types.
725    return ET->getDecl()->isComplete();
726  return isa<PointerType>(CanonicalType) ||
727         isa<BlockPointerType>(CanonicalType) ||
728         isa<MemberPointerType>(CanonicalType) ||
729         isa<ComplexType>(CanonicalType) ||
730         isa<ObjCObjectPointerType>(CanonicalType);
731}
732
733Type::ScalarTypeKind Type::getScalarTypeKind() const {
734  assert(isScalarType());
735
736  const Type *T = CanonicalType.getTypePtr();
737  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
738    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
739    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
740    if (BT->isInteger()) return STK_Integral;
741    if (BT->isFloatingPoint()) return STK_Floating;
742    llvm_unreachable("unknown scalar builtin type");
743  } else if (isa<PointerType>(T) ||
744             isa<BlockPointerType>(T) ||
745             isa<ObjCObjectPointerType>(T)) {
746    return STK_Pointer;
747  } else if (isa<MemberPointerType>(T)) {
748    return STK_MemberPointer;
749  } else if (isa<EnumType>(T)) {
750    assert(cast<EnumType>(T)->getDecl()->isComplete());
751    return STK_Integral;
752  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
753    if (CT->getElementType()->isRealFloatingType())
754      return STK_FloatingComplex;
755    return STK_IntegralComplex;
756  }
757
758  llvm_unreachable("unknown scalar type");
759  return STK_Pointer;
760}
761
762/// \brief Determines whether the type is a C++ aggregate type or C
763/// aggregate or union type.
764///
765/// An aggregate type is an array or a class type (struct, union, or
766/// class) that has no user-declared constructors, no private or
767/// protected non-static data members, no base classes, and no virtual
768/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
769/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
770/// includes union types.
771bool Type::isAggregateType() const {
772  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
773    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
774      return ClassDecl->isAggregate();
775
776    return true;
777  }
778
779  return isa<ArrayType>(CanonicalType);
780}
781
782/// isConstantSizeType - Return true if this is not a variable sized type,
783/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
784/// incomplete types or dependent types.
785bool Type::isConstantSizeType() const {
786  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
787  assert(!isDependentType() && "This doesn't make sense for dependent types");
788  // The VAT must have a size, as it is known to be complete.
789  return !isa<VariableArrayType>(CanonicalType);
790}
791
792/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
793/// - a type that can describe objects, but which lacks information needed to
794/// determine its size.
795bool Type::isIncompleteType() const {
796  switch (CanonicalType->getTypeClass()) {
797  default: return false;
798  case Builtin:
799    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
800    // be completed.
801    return isVoidType();
802  case Enum:
803    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
804    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
805        return false;
806    // Fall through.
807  case Record:
808    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
809    // forward declaration, but not a full definition (C99 6.2.5p22).
810    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
811  case ConstantArray:
812    // An array is incomplete if its element type is incomplete
813    // (C++ [dcl.array]p1).
814    // We don't handle variable arrays (they're not allowed in C++) or
815    // dependent-sized arrays (dependent types are never treated as incomplete).
816    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
817  case IncompleteArray:
818    // An array of unknown size is an incomplete type (C99 6.2.5p22).
819    return true;
820  case ObjCObject:
821    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
822                                                         ->isIncompleteType();
823  case ObjCInterface:
824    // ObjC interfaces are incomplete if they are @class, not @interface.
825    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
826  }
827}
828
829/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
830bool Type::isPODType() const {
831  // The compiler shouldn't query this for incomplete types, but the user might.
832  // We return false for that case. Except for incomplete arrays of PODs, which
833  // are PODs according to the standard.
834  if (isIncompleteArrayType() &&
835      cast<ArrayType>(CanonicalType)->getElementType()->isPODType())
836    return true;
837  if (isIncompleteType())
838    return false;
839
840  switch (CanonicalType->getTypeClass()) {
841    // Everything not explicitly mentioned is not POD.
842  default: return false;
843  case VariableArray:
844  case ConstantArray:
845    // IncompleteArray is handled above.
846    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
847
848  case Builtin:
849  case Complex:
850  case Pointer:
851  case MemberPointer:
852  case Vector:
853  case ExtVector:
854  case ObjCObjectPointer:
855  case BlockPointer:
856    return true;
857
858  case Enum:
859    return true;
860
861  case Record:
862    if (CXXRecordDecl *ClassDecl
863          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
864      return ClassDecl->isPOD();
865
866    // C struct/union is POD.
867    return true;
868  }
869}
870
871bool Type::isLiteralType() const {
872  if (isIncompleteType())
873    return false;
874
875  // C++0x [basic.types]p10:
876  //   A type is a literal type if it is:
877  switch (CanonicalType->getTypeClass()) {
878    // We're whitelisting
879  default: return false;
880
881    //   -- a scalar type
882  case Builtin:
883  case Complex:
884  case Pointer:
885  case MemberPointer:
886  case Vector:
887  case ExtVector:
888  case ObjCObjectPointer:
889  case Enum:
890    return true;
891
892    //   -- a class type with ...
893  case Record:
894    // FIXME: Do the tests
895    return false;
896
897    //   -- an array of literal type
898    // Extension: variable arrays cannot be literal types, since they're
899    // runtime-sized.
900  case ConstantArray:
901    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
902  }
903}
904
905bool Type::isTrivialType() const {
906  if (isIncompleteType())
907    return false;
908
909  // C++0x [basic.types]p9:
910  //   Scalar types, trivial class types, arrays of such types, and
911  //   cv-qualified versions of these types are collectively called trivial
912  //   types.
913  const Type *BaseTy = getBaseElementTypeUnsafe();
914  assert(BaseTy && "NULL element type");
915  if (BaseTy->isScalarType()) return true;
916  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
917    const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
918
919    // C++0x [class]p5:
920    //   A trivial class is a class that has a trivial default constructor
921    if (!ClassDecl->hasTrivialConstructor()) return false;
922    //   and is trivially copyable.
923    if (!ClassDecl->isTriviallyCopyable()) return false;
924
925    return true;
926  }
927
928  // No other types can match.
929  return false;
930}
931
932bool Type::isPromotableIntegerType() const {
933  if (const BuiltinType *BT = getAs<BuiltinType>())
934    switch (BT->getKind()) {
935    case BuiltinType::Bool:
936    case BuiltinType::Char_S:
937    case BuiltinType::Char_U:
938    case BuiltinType::SChar:
939    case BuiltinType::UChar:
940    case BuiltinType::Short:
941    case BuiltinType::UShort:
942      return true;
943    default:
944      return false;
945    }
946
947  // Enumerated types are promotable to their compatible integer types
948  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
949  if (const EnumType *ET = getAs<EnumType>()){
950    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
951        || ET->getDecl()->isScoped())
952      return false;
953
954    const BuiltinType *BT
955      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
956    return BT->getKind() == BuiltinType::Int
957           || BT->getKind() == BuiltinType::UInt;
958  }
959
960  return false;
961}
962
963bool Type::isNullPtrType() const {
964  if (const BuiltinType *BT = getAs<BuiltinType>())
965    return BT->getKind() == BuiltinType::NullPtr;
966  return false;
967}
968
969bool Type::isSpecifierType() const {
970  // Note that this intentionally does not use the canonical type.
971  switch (getTypeClass()) {
972  case Builtin:
973  case Record:
974  case Enum:
975  case Typedef:
976  case Complex:
977  case TypeOfExpr:
978  case TypeOf:
979  case TemplateTypeParm:
980  case SubstTemplateTypeParm:
981  case TemplateSpecialization:
982  case Elaborated:
983  case DependentName:
984  case DependentTemplateSpecialization:
985  case ObjCInterface:
986  case ObjCObject:
987  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
988    return true;
989  default:
990    return false;
991  }
992}
993
994ElaboratedTypeKeyword
995TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
996  switch (TypeSpec) {
997  default: return ETK_None;
998  case TST_typename: return ETK_Typename;
999  case TST_class: return ETK_Class;
1000  case TST_struct: return ETK_Struct;
1001  case TST_union: return ETK_Union;
1002  case TST_enum: return ETK_Enum;
1003  }
1004}
1005
1006TagTypeKind
1007TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1008  switch(TypeSpec) {
1009  case TST_class: return TTK_Class;
1010  case TST_struct: return TTK_Struct;
1011  case TST_union: return TTK_Union;
1012  case TST_enum: return TTK_Enum;
1013  }
1014
1015  llvm_unreachable("Type specifier is not a tag type kind.");
1016  return TTK_Union;
1017}
1018
1019ElaboratedTypeKeyword
1020TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1021  switch (Kind) {
1022  case TTK_Class: return ETK_Class;
1023  case TTK_Struct: return ETK_Struct;
1024  case TTK_Union: return ETK_Union;
1025  case TTK_Enum: return ETK_Enum;
1026  }
1027  llvm_unreachable("Unknown tag type kind.");
1028}
1029
1030TagTypeKind
1031TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1032  switch (Keyword) {
1033  case ETK_Class: return TTK_Class;
1034  case ETK_Struct: return TTK_Struct;
1035  case ETK_Union: return TTK_Union;
1036  case ETK_Enum: return TTK_Enum;
1037  case ETK_None: // Fall through.
1038  case ETK_Typename:
1039    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1040  }
1041  llvm_unreachable("Unknown elaborated type keyword.");
1042}
1043
1044bool
1045TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1046  switch (Keyword) {
1047  case ETK_None:
1048  case ETK_Typename:
1049    return false;
1050  case ETK_Class:
1051  case ETK_Struct:
1052  case ETK_Union:
1053  case ETK_Enum:
1054    return true;
1055  }
1056  llvm_unreachable("Unknown elaborated type keyword.");
1057}
1058
1059const char*
1060TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1061  switch (Keyword) {
1062  case ETK_None: return "";
1063  case ETK_Typename: return "typename";
1064  case ETK_Class:  return "class";
1065  case ETK_Struct: return "struct";
1066  case ETK_Union:  return "union";
1067  case ETK_Enum:   return "enum";
1068  }
1069
1070  llvm_unreachable("Unknown elaborated type keyword.");
1071  return "";
1072}
1073
1074DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1075                         ElaboratedTypeKeyword Keyword,
1076                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1077                         unsigned NumArgs, const TemplateArgument *Args,
1078                         QualType Canon)
1079  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true,
1080                    /*VariablyModified=*/false,
1081                    NNS && NNS->containsUnexpandedParameterPack()),
1082    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1083  assert((!NNS || NNS->isDependent()) &&
1084         "DependentTemplateSpecializatonType requires dependent qualifier");
1085  for (unsigned I = 0; I != NumArgs; ++I) {
1086    if (Args[I].containsUnexpandedParameterPack())
1087      setContainsUnexpandedParameterPack();
1088
1089    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1090  }
1091}
1092
1093void
1094DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1095                                             const ASTContext &Context,
1096                                             ElaboratedTypeKeyword Keyword,
1097                                             NestedNameSpecifier *Qualifier,
1098                                             const IdentifierInfo *Name,
1099                                             unsigned NumArgs,
1100                                             const TemplateArgument *Args) {
1101  ID.AddInteger(Keyword);
1102  ID.AddPointer(Qualifier);
1103  ID.AddPointer(Name);
1104  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1105    Args[Idx].Profile(ID, Context);
1106}
1107
1108bool Type::isElaboratedTypeSpecifier() const {
1109  ElaboratedTypeKeyword Keyword;
1110  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1111    Keyword = Elab->getKeyword();
1112  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1113    Keyword = DepName->getKeyword();
1114  else if (const DependentTemplateSpecializationType *DepTST =
1115             dyn_cast<DependentTemplateSpecializationType>(this))
1116    Keyword = DepTST->getKeyword();
1117  else
1118    return false;
1119
1120  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1121}
1122
1123const char *Type::getTypeClassName() const {
1124  switch (TypeBits.TC) {
1125#define ABSTRACT_TYPE(Derived, Base)
1126#define TYPE(Derived, Base) case Derived: return #Derived;
1127#include "clang/AST/TypeNodes.def"
1128  }
1129
1130  llvm_unreachable("Invalid type class.");
1131  return 0;
1132}
1133
1134const char *BuiltinType::getName(const LangOptions &LO) const {
1135  switch (getKind()) {
1136  case Void:              return "void";
1137  case Bool:              return LO.Bool ? "bool" : "_Bool";
1138  case Char_S:            return "char";
1139  case Char_U:            return "char";
1140  case SChar:             return "signed char";
1141  case Short:             return "short";
1142  case Int:               return "int";
1143  case Long:              return "long";
1144  case LongLong:          return "long long";
1145  case Int128:            return "__int128_t";
1146  case UChar:             return "unsigned char";
1147  case UShort:            return "unsigned short";
1148  case UInt:              return "unsigned int";
1149  case ULong:             return "unsigned long";
1150  case ULongLong:         return "unsigned long long";
1151  case UInt128:           return "__uint128_t";
1152  case Float:             return "float";
1153  case Double:            return "double";
1154  case LongDouble:        return "long double";
1155  case WChar_S:
1156  case WChar_U:           return "wchar_t";
1157  case Char16:            return "char16_t";
1158  case Char32:            return "char32_t";
1159  case NullPtr:           return "nullptr_t";
1160  case Overload:          return "<overloaded function type>";
1161  case Dependent:         return "<dependent type>";
1162  case UnknownAny:        return "<unknown type>";
1163  case ObjCId:            return "id";
1164  case ObjCClass:         return "Class";
1165  case ObjCSel:           return "SEL";
1166  }
1167
1168  llvm_unreachable("Invalid builtin type.");
1169  return 0;
1170}
1171
1172QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1173  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1174    return RefType->getPointeeType();
1175
1176  // C++0x [basic.lval]:
1177  //   Class prvalues can have cv-qualified types; non-class prvalues always
1178  //   have cv-unqualified types.
1179  //
1180  // See also C99 6.3.2.1p2.
1181  if (!Context.getLangOptions().CPlusPlus ||
1182      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1183    return getUnqualifiedType();
1184
1185  return *this;
1186}
1187
1188llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1189  switch (CC) {
1190  case CC_Default:
1191    llvm_unreachable("no name for default cc");
1192    return "";
1193
1194  case CC_C: return "cdecl";
1195  case CC_X86StdCall: return "stdcall";
1196  case CC_X86FastCall: return "fastcall";
1197  case CC_X86ThisCall: return "thiscall";
1198  case CC_X86Pascal: return "pascal";
1199  case CC_AAPCS: return "aapcs";
1200  case CC_AAPCS_VFP: return "aapcs-vfp";
1201  }
1202
1203  llvm_unreachable("Invalid calling convention.");
1204  return "";
1205}
1206
1207FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1208                                     unsigned numArgs, QualType canonical,
1209                                     const ExtProtoInfo &epi)
1210  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1211                 epi.RefQualifier, canonical,
1212                 result->isDependentType(),
1213                 result->isVariablyModifiedType(),
1214                 result->containsUnexpandedParameterPack(),
1215                 epi.ExtInfo),
1216    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1217    ExceptionSpecType(epi.ExceptionSpecType)
1218{
1219  // Fill in the trailing argument array.
1220  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1221  for (unsigned i = 0; i != numArgs; ++i) {
1222    if (args[i]->isDependentType())
1223      setDependent();
1224
1225    if (args[i]->containsUnexpandedParameterPack())
1226      setContainsUnexpandedParameterPack();
1227
1228    argSlot[i] = args[i];
1229  }
1230
1231  if (getExceptionSpecType() == EST_Dynamic) {
1232    // Fill in the exception array.
1233    QualType *exnSlot = argSlot + numArgs;
1234    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1235      if (epi.Exceptions[i]->isDependentType())
1236        setDependent();
1237
1238      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1239        setContainsUnexpandedParameterPack();
1240
1241      exnSlot[i] = epi.Exceptions[i];
1242    }
1243  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1244    // Store the noexcept expression and context.
1245    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1246    *noexSlot = epi.NoexceptExpr;
1247  }
1248}
1249
1250FunctionProtoType::NoexceptResult
1251FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1252  ExceptionSpecificationType est = getExceptionSpecType();
1253  if (est == EST_BasicNoexcept)
1254    return NR_Nothrow;
1255
1256  if (est != EST_ComputedNoexcept)
1257    return NR_NoNoexcept;
1258
1259  Expr *noexceptExpr = getNoexceptExpr();
1260  if (!noexceptExpr)
1261    return NR_BadNoexcept;
1262  if (noexceptExpr->isValueDependent())
1263    return NR_Dependent;
1264
1265  llvm::APSInt value;
1266  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1267                                                   /*evaluated*/false);
1268  (void)isICE;
1269  assert(isICE && "AST should not contain bad noexcept expressions.");
1270
1271  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1272}
1273
1274bool FunctionProtoType::isTemplateVariadic() const {
1275  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1276    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1277      return true;
1278
1279  return false;
1280}
1281
1282void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1283                                const QualType *ArgTys, unsigned NumArgs,
1284                                const ExtProtoInfo &epi,
1285                                const ASTContext &Context) {
1286  ID.AddPointer(Result.getAsOpaquePtr());
1287  for (unsigned i = 0; i != NumArgs; ++i)
1288    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1289  ID.AddBoolean(epi.Variadic);
1290  ID.AddInteger(epi.TypeQuals);
1291  ID.AddInteger(epi.RefQualifier);
1292  ID.AddInteger(epi.ExceptionSpecType);
1293  if (epi.ExceptionSpecType == EST_Dynamic) {
1294    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1295      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1296  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1297    epi.NoexceptExpr->Profile(ID, Context, true);
1298  }
1299  epi.ExtInfo.Profile(ID);
1300}
1301
1302void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1303                                const ASTContext &Ctx) {
1304  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1305          Ctx);
1306}
1307
1308QualType TypedefType::desugar() const {
1309  return getDecl()->getUnderlyingType();
1310}
1311
1312TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1313  : Type(TypeOfExpr, can, E->isTypeDependent(),
1314         E->getType()->isVariablyModifiedType(),
1315         E->containsUnexpandedParameterPack()),
1316    TOExpr(E) {
1317}
1318
1319QualType TypeOfExprType::desugar() const {
1320  return getUnderlyingExpr()->getType();
1321}
1322
1323void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1324                                      const ASTContext &Context, Expr *E) {
1325  E->Profile(ID, Context, true);
1326}
1327
1328DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1329  : Type(Decltype, can, E->isTypeDependent(),
1330         E->getType()->isVariablyModifiedType(),
1331         E->containsUnexpandedParameterPack()),
1332    E(E),
1333  UnderlyingType(underlyingType) {
1334}
1335
1336DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1337  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1338
1339void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1340                                    const ASTContext &Context, Expr *E) {
1341  E->Profile(ID, Context, true);
1342}
1343
1344TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1345  : Type(TC, can, D->isDependentType(), /*VariablyModified=*/false,
1346         /*ContainsUnexpandedParameterPack=*/false),
1347    decl(const_cast<TagDecl*>(D)) {}
1348
1349static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1350  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1351                                E = decl->redecls_end();
1352       I != E; ++I) {
1353    if (I->isDefinition() || I->isBeingDefined())
1354      return *I;
1355  }
1356  // If there's no definition (not even in progress), return what we have.
1357  return decl;
1358}
1359
1360TagDecl *TagType::getDecl() const {
1361  return getInterestingTagDecl(decl);
1362}
1363
1364bool TagType::isBeingDefined() const {
1365  return getDecl()->isBeingDefined();
1366}
1367
1368CXXRecordDecl *InjectedClassNameType::getDecl() const {
1369  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1370}
1371
1372bool RecordType::classof(const TagType *TT) {
1373  return isa<RecordDecl>(TT->getDecl());
1374}
1375
1376bool EnumType::classof(const TagType *TT) {
1377  return isa<EnumDecl>(TT->getDecl());
1378}
1379
1380SubstTemplateTypeParmPackType::
1381SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1382                              QualType Canon,
1383                              const TemplateArgument &ArgPack)
1384  : Type(SubstTemplateTypeParmPack, Canon, true, false, true), Replaced(Param),
1385    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1386{
1387}
1388
1389TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1390  return TemplateArgument(Arguments, NumArguments);
1391}
1392
1393void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1394  Profile(ID, getReplacedParameter(), getArgumentPack());
1395}
1396
1397void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1398                                           const TemplateTypeParmType *Replaced,
1399                                            const TemplateArgument &ArgPack) {
1400  ID.AddPointer(Replaced);
1401  ID.AddInteger(ArgPack.pack_size());
1402  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1403                                    PEnd = ArgPack.pack_end();
1404       P != PEnd; ++P)
1405    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1406}
1407
1408bool TemplateSpecializationType::
1409anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
1410  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
1411}
1412
1413bool TemplateSpecializationType::
1414anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
1415  for (unsigned i = 0; i != N; ++i)
1416    if (Args[i].getArgument().isDependent())
1417      return true;
1418  return false;
1419}
1420
1421bool TemplateSpecializationType::
1422anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
1423  for (unsigned i = 0; i != N; ++i)
1424    if (Args[i].isDependent())
1425      return true;
1426  return false;
1427}
1428
1429TemplateSpecializationType::
1430TemplateSpecializationType(TemplateName T,
1431                           const TemplateArgument *Args,
1432                           unsigned NumArgs, QualType Canon)
1433  : Type(TemplateSpecialization,
1434         Canon.isNull()? QualType(this, 0) : Canon,
1435         T.isDependent(), false, T.containsUnexpandedParameterPack()),
1436    Template(T), NumArgs(NumArgs)
1437{
1438  assert(!T.getAsDependentTemplateName() &&
1439         "Use DependentTemplateSpecializationType for dependent template-name");
1440  assert((!Canon.isNull() ||
1441          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
1442         "No canonical type for non-dependent class template specialization");
1443
1444  TemplateArgument *TemplateArgs
1445    = reinterpret_cast<TemplateArgument *>(this + 1);
1446  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1447    // Update dependent and variably-modified bits.
1448    if (Args[Arg].isDependent())
1449      setDependent();
1450    if (Args[Arg].getKind() == TemplateArgument::Type &&
1451        Args[Arg].getAsType()->isVariablyModifiedType())
1452      setVariablyModified();
1453    if (Args[Arg].containsUnexpandedParameterPack())
1454      setContainsUnexpandedParameterPack();
1455
1456    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1457  }
1458}
1459
1460void
1461TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1462                                    TemplateName T,
1463                                    const TemplateArgument *Args,
1464                                    unsigned NumArgs,
1465                                    const ASTContext &Context) {
1466  T.Profile(ID);
1467  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1468    Args[Idx].Profile(ID, Context);
1469}
1470
1471QualType
1472QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1473  if (!hasNonFastQualifiers())
1474    return QT.withFastQualifiers(getFastQualifiers());
1475
1476  return Context.getQualifiedType(QT, *this);
1477}
1478
1479QualType
1480QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1481  if (!hasNonFastQualifiers())
1482    return QualType(T, getFastQualifiers());
1483
1484  return Context.getQualifiedType(T, *this);
1485}
1486
1487void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1488                                 QualType BaseType,
1489                                 ObjCProtocolDecl * const *Protocols,
1490                                 unsigned NumProtocols) {
1491  ID.AddPointer(BaseType.getAsOpaquePtr());
1492  for (unsigned i = 0; i != NumProtocols; i++)
1493    ID.AddPointer(Protocols[i]);
1494}
1495
1496void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1497  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1498}
1499
1500namespace {
1501
1502/// \brief The cached properties of a type.
1503class CachedProperties {
1504  char linkage;
1505  char visibility;
1506  bool local;
1507
1508public:
1509  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1510    : linkage(linkage), visibility(visibility), local(local) {}
1511
1512  Linkage getLinkage() const { return (Linkage) linkage; }
1513  Visibility getVisibility() const { return (Visibility) visibility; }
1514  bool hasLocalOrUnnamedType() const { return local; }
1515
1516  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1517    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1518                            minVisibility(L.getVisibility(), R.getVisibility()),
1519                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1520  }
1521};
1522}
1523
1524static CachedProperties computeCachedProperties(const Type *T);
1525
1526namespace clang {
1527/// The type-property cache.  This is templated so as to be
1528/// instantiated at an internal type to prevent unnecessary symbol
1529/// leakage.
1530template <class Private> class TypePropertyCache {
1531public:
1532  static CachedProperties get(QualType T) {
1533    return get(T.getTypePtr());
1534  }
1535
1536  static CachedProperties get(const Type *T) {
1537    ensure(T);
1538    return CachedProperties(T->TypeBits.getLinkage(),
1539                            T->TypeBits.getVisibility(),
1540                            T->TypeBits.hasLocalOrUnnamedType());
1541  }
1542
1543  static void ensure(const Type *T) {
1544    // If the cache is valid, we're okay.
1545    if (T->TypeBits.isCacheValid()) return;
1546
1547    // If this type is non-canonical, ask its canonical type for the
1548    // relevant information.
1549    if (!T->isCanonicalUnqualified()) {
1550      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1551      ensure(CT);
1552      T->TypeBits.CacheValidAndVisibility =
1553        CT->TypeBits.CacheValidAndVisibility;
1554      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1555      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1556      return;
1557    }
1558
1559    // Compute the cached properties and then set the cache.
1560    CachedProperties Result = computeCachedProperties(T);
1561    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1562    assert(T->TypeBits.isCacheValid() &&
1563           T->TypeBits.getVisibility() == Result.getVisibility());
1564    T->TypeBits.CachedLinkage = Result.getLinkage();
1565    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1566  }
1567};
1568}
1569
1570// Instantiate the friend template at a private class.  In a
1571// reasonable implementation, these symbols will be internal.
1572// It is terrible that this is the best way to accomplish this.
1573namespace { class Private {}; }
1574typedef TypePropertyCache<Private> Cache;
1575
1576static CachedProperties computeCachedProperties(const Type *T) {
1577  switch (T->getTypeClass()) {
1578#define TYPE(Class,Base)
1579#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
1580#include "clang/AST/TypeNodes.def"
1581    llvm_unreachable("didn't expect a non-canonical type here");
1582
1583#define TYPE(Class,Base)
1584#define DEPENDENT_TYPE(Class,Base) case Type::Class:
1585#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
1586#include "clang/AST/TypeNodes.def"
1587    // Treat dependent types as external.
1588    assert(T->isDependentType());
1589    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1590
1591  case Type::Builtin:
1592    // C++ [basic.link]p8:
1593    //   A type is said to have linkage if and only if:
1594    //     - it is a fundamental type (3.9.1); or
1595    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1596
1597  case Type::Record:
1598  case Type::Enum: {
1599    const TagDecl *Tag = cast<TagType>(T)->getDecl();
1600
1601    // C++ [basic.link]p8:
1602    //     - it is a class or enumeration type that is named (or has a name
1603    //       for linkage purposes (7.1.3)) and the name has linkage; or
1604    //     -  it is a specialization of a class template (14); or
1605    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
1606    bool IsLocalOrUnnamed =
1607      Tag->getDeclContext()->isFunctionOrMethod() ||
1608      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
1609    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
1610  }
1611
1612    // C++ [basic.link]p8:
1613    //   - it is a compound type (3.9.2) other than a class or enumeration,
1614    //     compounded exclusively from types that have linkage; or
1615  case Type::Complex:
1616    return Cache::get(cast<ComplexType>(T)->getElementType());
1617  case Type::Pointer:
1618    return Cache::get(cast<PointerType>(T)->getPointeeType());
1619  case Type::BlockPointer:
1620    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
1621  case Type::LValueReference:
1622  case Type::RValueReference:
1623    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
1624  case Type::MemberPointer: {
1625    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1626    return merge(Cache::get(MPT->getClass()),
1627                 Cache::get(MPT->getPointeeType()));
1628  }
1629  case Type::ConstantArray:
1630  case Type::IncompleteArray:
1631  case Type::VariableArray:
1632    return Cache::get(cast<ArrayType>(T)->getElementType());
1633  case Type::Vector:
1634  case Type::ExtVector:
1635    return Cache::get(cast<VectorType>(T)->getElementType());
1636  case Type::FunctionNoProto:
1637    return Cache::get(cast<FunctionType>(T)->getResultType());
1638  case Type::FunctionProto: {
1639    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1640    CachedProperties result = Cache::get(FPT->getResultType());
1641    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
1642           ae = FPT->arg_type_end(); ai != ae; ++ai)
1643      result = merge(result, Cache::get(*ai));
1644    return result;
1645  }
1646  case Type::ObjCInterface: {
1647    NamedDecl::LinkageInfo LV =
1648      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
1649    return CachedProperties(LV.linkage(), LV.visibility(), false);
1650  }
1651  case Type::ObjCObject:
1652    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
1653  case Type::ObjCObjectPointer:
1654    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
1655  }
1656
1657  llvm_unreachable("unhandled type class");
1658
1659  // C++ [basic.link]p8:
1660  //   Names not covered by these rules have no linkage.
1661  return CachedProperties(NoLinkage, DefaultVisibility, false);
1662}
1663
1664/// \brief Determine the linkage of this type.
1665Linkage Type::getLinkage() const {
1666  Cache::ensure(this);
1667  return TypeBits.getLinkage();
1668}
1669
1670/// \brief Determine the linkage of this type.
1671Visibility Type::getVisibility() const {
1672  Cache::ensure(this);
1673  return TypeBits.getVisibility();
1674}
1675
1676bool Type::hasUnnamedOrLocalType() const {
1677  Cache::ensure(this);
1678  return TypeBits.hasLocalOrUnnamedType();
1679}
1680
1681std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
1682  Cache::ensure(this);
1683  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
1684}
1685
1686void Type::ClearLinkageCache() {
1687  TypeBits.CacheValidAndVisibility = 0;
1688  if (QualType(this, 0) != CanonicalType)
1689    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
1690}
1691
1692bool Type::hasSizedVLAType() const {
1693  if (!isVariablyModifiedType()) return false;
1694
1695  if (const PointerType *ptr = getAs<PointerType>())
1696    return ptr->getPointeeType()->hasSizedVLAType();
1697  if (const ReferenceType *ref = getAs<ReferenceType>())
1698    return ref->getPointeeType()->hasSizedVLAType();
1699  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
1700    if (isa<VariableArrayType>(arr) &&
1701        cast<VariableArrayType>(arr)->getSizeExpr())
1702      return true;
1703
1704    return arr->getElementType()->hasSizedVLAType();
1705  }
1706
1707  return false;
1708}
1709
1710QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
1711  /// Currently, the only destruction kind we recognize is C++ objects
1712  /// with non-trivial destructors.
1713  const CXXRecordDecl *record =
1714    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1715  if (record && !record->hasTrivialDestructor())
1716    return DK_cxx_destructor;
1717
1718  return DK_none;
1719}
1720