CGExprAgg.cpp revision 34ebf4d1767e6748a1a59a5d1935c495cd8877e8
1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Aggregate Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "llvm/Constants.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Intrinsics.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===----------------------------------------------------------------------===//
28//                        Aggregate Expression Emitter
29//===----------------------------------------------------------------------===//
30
31namespace  {
32class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33  CodeGenFunction &CGF;
34  CGBuilderTy &Builder;
35  llvm::Value *DestPtr;
36  bool VolatileDest;
37  bool IgnoreResult;
38
39public:
40  AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
41                 bool ignore)
42    : CGF(cgf), Builder(CGF.Builder),
43      DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) {
44  }
45
46  //===--------------------------------------------------------------------===//
47  //                               Utilities
48  //===--------------------------------------------------------------------===//
49
50  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
51  /// represents a value lvalue, this method emits the address of the lvalue,
52  /// then loads the result into DestPtr.
53  void EmitAggLoadOfLValue(const Expr *E);
54
55  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
56  void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
57  void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
58
59  //===--------------------------------------------------------------------===//
60  //                            Visitor Methods
61  //===--------------------------------------------------------------------===//
62
63  void VisitStmt(Stmt *S) {
64    CGF.ErrorUnsupported(S, "aggregate expression");
65  }
66  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
67  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
68
69  // l-values.
70  void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
71  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
72  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
73  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
74  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
75    EmitAggLoadOfLValue(E);
76  }
77  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
78    EmitAggLoadOfLValue(E);
79  }
80  void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
81    EmitAggLoadOfLValue(E);
82  }
83  void VisitPredefinedExpr(const PredefinedExpr *E) {
84    EmitAggLoadOfLValue(E);
85  }
86
87  // Operators.
88  void VisitCStyleCastExpr(CStyleCastExpr *E);
89  void VisitImplicitCastExpr(ImplicitCastExpr *E);
90  void VisitCallExpr(const CallExpr *E);
91  void VisitStmtExpr(const StmtExpr *E);
92  void VisitBinaryOperator(const BinaryOperator *BO);
93  void VisitBinAssign(const BinaryOperator *E);
94  void VisitBinComma(const BinaryOperator *E);
95
96  void VisitObjCMessageExpr(ObjCMessageExpr *E);
97  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
98    EmitAggLoadOfLValue(E);
99  }
100  void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
101  void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
102
103  void VisitConditionalOperator(const ConditionalOperator *CO);
104  void VisitInitListExpr(InitListExpr *E);
105  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
106    Visit(DAE->getExpr());
107  }
108  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
109  void VisitCXXConstructExpr(const CXXConstructExpr *E);
110  void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
111
112  void VisitVAArgExpr(VAArgExpr *E);
113
114  void EmitInitializationToLValue(Expr *E, LValue Address);
115  void EmitNullInitializationToLValue(LValue Address, QualType T);
116  //  case Expr::ChooseExprClass:
117
118};
119}  // end anonymous namespace.
120
121//===----------------------------------------------------------------------===//
122//                                Utilities
123//===----------------------------------------------------------------------===//
124
125/// EmitAggLoadOfLValue - Given an expression with aggregate type that
126/// represents a value lvalue, this method emits the address of the lvalue,
127/// then loads the result into DestPtr.
128void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
129  LValue LV = CGF.EmitLValue(E);
130  EmitFinalDestCopy(E, LV);
131}
132
133/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
134void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
135  assert(Src.isAggregate() && "value must be aggregate value!");
136
137  // If the result is ignored, don't copy from the value.
138  if (DestPtr == 0) {
139    if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
140      return;
141    // If the source is volatile, we must read from it; to do that, we need
142    // some place to put it.
143    DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
144  }
145
146  // If the result of the assignment is used, copy the LHS there also.
147  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
148  // from the source as well, as we can't eliminate it if either operand
149  // is volatile, unless copy has volatile for both source and destination..
150  CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
151                        VolatileDest|Src.isVolatileQualified());
152}
153
154/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
155void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
156  assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
157
158  EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
159                                            Src.isVolatileQualified()),
160                    Ignore);
161}
162
163//===----------------------------------------------------------------------===//
164//                            Visitor Methods
165//===----------------------------------------------------------------------===//
166
167void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
168  // GCC union extension
169  if (E->getSubExpr()->getType()->isScalarType()) {
170    QualType PtrTy =
171        CGF.getContext().getPointerType(E->getSubExpr()->getType());
172    llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
173                                                 CGF.ConvertType(PtrTy));
174    EmitInitializationToLValue(E->getSubExpr(), LValue::MakeAddr(CastPtr, 0));
175    return;
176  }
177
178  Visit(E->getSubExpr());
179}
180
181void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
182  assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
183                                                 E->getType()) &&
184         "Implicit cast types must be compatible");
185  Visit(E->getSubExpr());
186}
187
188void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
189  if (E->getCallReturnType()->isReferenceType()) {
190    EmitAggLoadOfLValue(E);
191    return;
192  }
193
194  RValue RV = CGF.EmitCallExpr(E);
195  EmitFinalDestCopy(E, RV);
196}
197
198void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
199  RValue RV = CGF.EmitObjCMessageExpr(E);
200  EmitFinalDestCopy(E, RV);
201}
202
203void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
204  RValue RV = CGF.EmitObjCPropertyGet(E);
205  EmitFinalDestCopy(E, RV);
206}
207
208void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
209  RValue RV = CGF.EmitObjCPropertyGet(E);
210  EmitFinalDestCopy(E, RV);
211}
212
213void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
214  CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
215  CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest);
216}
217
218void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
219  CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
220}
221
222void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
223  CGF.ErrorUnsupported(E, "aggregate binary expression");
224}
225
226void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
227  // For an assignment to work, the value on the right has
228  // to be compatible with the value on the left.
229  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
230                                                 E->getRHS()->getType())
231         && "Invalid assignment");
232  LValue LHS = CGF.EmitLValue(E->getLHS());
233
234  // We have to special case property setters, otherwise we must have
235  // a simple lvalue (no aggregates inside vectors, bitfields).
236  if (LHS.isPropertyRef()) {
237    llvm::Value *AggLoc = DestPtr;
238    if (!AggLoc)
239      AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
240    CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
241    CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
242                            RValue::getAggregate(AggLoc, VolatileDest));
243  }
244  else if (LHS.isKVCRef()) {
245    llvm::Value *AggLoc = DestPtr;
246    if (!AggLoc)
247      AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
248    CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
249    CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
250                            RValue::getAggregate(AggLoc, VolatileDest));
251  } else {
252    // Codegen the RHS so that it stores directly into the LHS.
253    CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
254    EmitFinalDestCopy(E, LHS, true);
255  }
256}
257
258void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
259  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
260  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
261  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
262
263  llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
264  Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
265
266  CGF.EmitBlock(LHSBlock);
267
268  // Handle the GNU extension for missing LHS.
269  assert(E->getLHS() && "Must have LHS for aggregate value");
270
271  Visit(E->getLHS());
272  CGF.EmitBranch(ContBlock);
273
274  CGF.EmitBlock(RHSBlock);
275
276  Visit(E->getRHS());
277  CGF.EmitBranch(ContBlock);
278
279  CGF.EmitBlock(ContBlock);
280}
281
282void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
283  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
284  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
285
286  if (!ArgPtr) {
287    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
288    return;
289  }
290
291  EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
292}
293
294void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
295  llvm::Value *Val = DestPtr;
296
297  if (!Val) {
298    // Create a temporary variable.
299    Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
300
301    // FIXME: volatile
302    CGF.EmitAggExpr(E->getSubExpr(), Val, false);
303  } else
304    Visit(E->getSubExpr());
305
306  CGF.PushCXXTemporary(E->getTemporary(), Val);
307}
308
309void
310AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
311  llvm::Value *Val = DestPtr;
312
313  if (!Val) {
314    // Create a temporary variable.
315    Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
316  }
317
318  CGF.EmitCXXConstructExpr(Val, E);
319}
320
321void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
322  CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest);
323}
324
325void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
326  // FIXME: Ignore result?
327  // FIXME: Are initializers affected by volatile?
328  if (isa<ImplicitValueInitExpr>(E)) {
329    EmitNullInitializationToLValue(LV, E->getType());
330  } else if (E->getType()->isComplexType()) {
331    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
332  } else if (CGF.hasAggregateLLVMType(E->getType())) {
333    CGF.EmitAnyExpr(E, LV.getAddress(), false);
334  } else {
335    CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
336  }
337}
338
339void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
340  if (!CGF.hasAggregateLLVMType(T)) {
341    // For non-aggregates, we can store zero
342    llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
343    CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
344  } else {
345    // Otherwise, just memset the whole thing to zero.  This is legal
346    // because in LLVM, all default initializers are guaranteed to have a
347    // bit pattern of all zeros.
348    // FIXME: That isn't true for member pointers!
349    // There's a potential optimization opportunity in combining
350    // memsets; that would be easy for arrays, but relatively
351    // difficult for structures with the current code.
352    CGF.EmitMemSetToZero(LV.getAddress(), T);
353  }
354}
355
356void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
357#if 0
358  // FIXME: Disabled while we figure out what to do about
359  // test/CodeGen/bitfield.c
360  //
361  // If we can, prefer a copy from a global; this is a lot less code for long
362  // globals, and it's easier for the current optimizers to analyze.
363  // FIXME: Should we really be doing this? Should we try to avoid cases where
364  // we emit a global with a lot of zeros?  Should we try to avoid short
365  // globals?
366  if (E->isConstantInitializer(CGF.getContext(), 0)) {
367    llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
368    llvm::GlobalVariable* GV =
369    new llvm::GlobalVariable(C->getType(), true,
370                             llvm::GlobalValue::InternalLinkage,
371                             C, "", &CGF.CGM.getModule(), 0);
372    EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
373    return;
374  }
375#endif
376  if (E->hadArrayRangeDesignator()) {
377    CGF.ErrorUnsupported(E, "GNU array range designator extension");
378  }
379
380  // Handle initialization of an array.
381  if (E->getType()->isArrayType()) {
382    const llvm::PointerType *APType =
383      cast<llvm::PointerType>(DestPtr->getType());
384    const llvm::ArrayType *AType =
385      cast<llvm::ArrayType>(APType->getElementType());
386
387    uint64_t NumInitElements = E->getNumInits();
388
389    if (E->getNumInits() > 0) {
390      QualType T1 = E->getType();
391      QualType T2 = E->getInit(0)->getType();
392      if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
393        EmitAggLoadOfLValue(E->getInit(0));
394        return;
395      }
396    }
397
398    uint64_t NumArrayElements = AType->getNumElements();
399    QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
400    ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
401
402    unsigned CVRqualifier = ElementType.getCVRQualifiers();
403
404    for (uint64_t i = 0; i != NumArrayElements; ++i) {
405      llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
406      if (i < NumInitElements)
407        EmitInitializationToLValue(E->getInit(i),
408                                   LValue::MakeAddr(NextVal, CVRqualifier));
409      else
410        EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
411                                       ElementType);
412    }
413    return;
414  }
415
416  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
417
418  // Do struct initialization; this code just sets each individual member
419  // to the approprate value.  This makes bitfield support automatic;
420  // the disadvantage is that the generated code is more difficult for
421  // the optimizer, especially with bitfields.
422  unsigned NumInitElements = E->getNumInits();
423  RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
424  unsigned CurInitVal = 0;
425
426  if (E->getType()->isUnionType()) {
427    // Only initialize one field of a union. The field itself is
428    // specified by the initializer list.
429    if (!E->getInitializedFieldInUnion()) {
430      // Empty union; we have nothing to do.
431
432#ifndef NDEBUG
433      // Make sure that it's really an empty and not a failure of
434      // semantic analysis.
435      for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
436                                   FieldEnd = SD->field_end(CGF.getContext());
437           Field != FieldEnd; ++Field)
438        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
439#endif
440      return;
441    }
442
443    // FIXME: volatility
444    FieldDecl *Field = E->getInitializedFieldInUnion();
445    LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
446
447    if (NumInitElements) {
448      // Store the initializer into the field
449      EmitInitializationToLValue(E->getInit(0), FieldLoc);
450    } else {
451      // Default-initialize to null
452      EmitNullInitializationToLValue(FieldLoc, Field->getType());
453    }
454
455    return;
456  }
457
458  // Here we iterate over the fields; this makes it simpler to both
459  // default-initialize fields and skip over unnamed fields.
460  for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
461                               FieldEnd = SD->field_end(CGF.getContext());
462       Field != FieldEnd; ++Field) {
463    // We're done once we hit the flexible array member
464    if (Field->getType()->isIncompleteArrayType())
465      break;
466
467    if (Field->isUnnamedBitfield())
468      continue;
469
470    // FIXME: volatility
471    LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
472    // We never generate write-barries for initialized fields.
473    LValue::SetObjCNonGC(FieldLoc, true);
474    if (CurInitVal < NumInitElements) {
475      // Store the initializer into the field
476      EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
477    } else {
478      // We're out of initalizers; default-initialize to null
479      EmitNullInitializationToLValue(FieldLoc, Field->getType());
480    }
481  }
482}
483
484//===----------------------------------------------------------------------===//
485//                        Entry Points into this File
486//===----------------------------------------------------------------------===//
487
488/// EmitAggExpr - Emit the computation of the specified expression of aggregate
489/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
490/// the value of the aggregate expression is not needed.  If VolatileDest is
491/// true, DestPtr cannot be 0.
492void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
493                                  bool VolatileDest, bool IgnoreResult) {
494  assert(E && hasAggregateLLVMType(E->getType()) &&
495         "Invalid aggregate expression to emit");
496  assert ((DestPtr != 0 || VolatileDest == false)
497          && "volatile aggregate can't be 0");
498
499  AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult)
500    .Visit(const_cast<Expr*>(E));
501}
502
503void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
504  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
505
506  EmitMemSetToZero(DestPtr, Ty);
507}
508
509void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
510                                        llvm::Value *SrcPtr, QualType Ty,
511                                        bool isVolatile) {
512  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
513
514  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
515  // C99 6.5.16.1p3, which states "If the value being stored in an object is
516  // read from another object that overlaps in anyway the storage of the first
517  // object, then the overlap shall be exact and the two objects shall have
518  // qualified or unqualified versions of a compatible type."
519  //
520  // memcpy is not defined if the source and destination pointers are exactly
521  // equal, but other compilers do this optimization, and almost every memcpy
522  // implementation handles this case safely.  If there is a libc that does not
523  // safely handle this, we can add a target hook.
524  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
525  if (DestPtr->getType() != BP)
526    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
527  if (SrcPtr->getType() != BP)
528    SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
529
530  // Get size and alignment info for this aggregate.
531  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
532
533  // FIXME: Handle variable sized types.
534  const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
535
536  // FIXME: If we have a volatile struct, the optimizer can remove what might
537  // appear to be `extra' memory ops:
538  //
539  // volatile struct { int i; } a, b;
540  //
541  // int main() {
542  //   a = b;
543  //   a = b;
544  // }
545  //
546  // we need to use a differnt call here.  We use isVolatile to indicate when
547  // either the source or the destination is volatile.
548  Builder.CreateCall4(CGM.getMemCpyFn(),
549                      DestPtr, SrcPtr,
550                      // TypeInfo.first describes size in bits.
551                      llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
552                      llvm::ConstantInt::get(llvm::Type::Int32Ty,
553                                             TypeInfo.second/8));
554}
555