CGVTables.cpp revision 5f9e272e632e951b1efe824cd16acb4d96077930
1//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with C++ code generation of virtual tables.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Format.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include <algorithm>
26#include <cstdio>
27
28using namespace clang;
29using namespace CodeGen;
30
31namespace {
32
33/// BaseOffset - Represents an offset from a derived class to a direct or
34/// indirect base class.
35struct BaseOffset {
36  /// DerivedClass - The derived class.
37  const CXXRecordDecl *DerivedClass;
38
39  /// VirtualBase - If the path from the derived class to the base class
40  /// involves a virtual base class, this holds its declaration.
41  const CXXRecordDecl *VirtualBase;
42
43  /// NonVirtualOffset - The offset from the derived class to the base class.
44  /// (Or the offset from the virtual base class to the base class, if the
45  /// path from the derived class to the base class involves a virtual base
46  /// class.
47  CharUnits NonVirtualOffset;
48
49  BaseOffset() : DerivedClass(0), VirtualBase(0),
50    NonVirtualOffset(CharUnits::Zero()) { }
51  BaseOffset(const CXXRecordDecl *DerivedClass,
52             const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
53    : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
54    NonVirtualOffset(NonVirtualOffset) { }
55
56  bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
57};
58
59/// FinalOverriders - Contains the final overrider member functions for all
60/// member functions in the base subobjects of a class.
61class FinalOverriders {
62public:
63  /// OverriderInfo - Information about a final overrider.
64  struct OverriderInfo {
65    /// Method - The method decl of the overrider.
66    const CXXMethodDecl *Method;
67
68    /// Offset - the base offset of the overrider in the layout class.
69    CharUnits Offset;
70
71    OverriderInfo() : Method(0), Offset(CharUnits::Zero()) { }
72  };
73
74private:
75  /// MostDerivedClass - The most derived class for which the final overriders
76  /// are stored.
77  const CXXRecordDecl *MostDerivedClass;
78
79  /// MostDerivedClassOffset - If we're building final overriders for a
80  /// construction vtable, this holds the offset from the layout class to the
81  /// most derived class.
82  const CharUnits MostDerivedClassOffset;
83
84  /// LayoutClass - The class we're using for layout information. Will be
85  /// different than the most derived class if the final overriders are for a
86  /// construction vtable.
87  const CXXRecordDecl *LayoutClass;
88
89  ASTContext &Context;
90
91  /// MostDerivedClassLayout - the AST record layout of the most derived class.
92  const ASTRecordLayout &MostDerivedClassLayout;
93
94  /// MethodBaseOffsetPairTy - Uniquely identifies a member function
95  /// in a base subobject.
96  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
97
98  typedef llvm::DenseMap<MethodBaseOffsetPairTy,
99                         OverriderInfo> OverridersMapTy;
100
101  /// OverridersMap - The final overriders for all virtual member functions of
102  /// all the base subobjects of the most derived class.
103  OverridersMapTy OverridersMap;
104
105  /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
106  /// as a record decl and a subobject number) and its offsets in the most
107  /// derived class as well as the layout class.
108  typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
109                         CharUnits> SubobjectOffsetMapTy;
110
111  typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
112
113  /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
114  /// given base.
115  void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
116                          CharUnits OffsetInLayoutClass,
117                          SubobjectOffsetMapTy &SubobjectOffsets,
118                          SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
119                          SubobjectCountMapTy &SubobjectCounts);
120
121  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
122
123  /// dump - dump the final overriders for a base subobject, and all its direct
124  /// and indirect base subobjects.
125  void dump(raw_ostream &Out, BaseSubobject Base,
126            VisitedVirtualBasesSetTy& VisitedVirtualBases);
127
128public:
129  FinalOverriders(const CXXRecordDecl *MostDerivedClass,
130                  CharUnits MostDerivedClassOffset,
131                  const CXXRecordDecl *LayoutClass);
132
133  /// getOverrider - Get the final overrider for the given method declaration in
134  /// the subobject with the given base offset.
135  OverriderInfo getOverrider(const CXXMethodDecl *MD,
136                             CharUnits BaseOffset) const {
137    assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
138           "Did not find overrider!");
139
140    return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
141  }
142
143  /// dump - dump the final overriders.
144  void dump() {
145    VisitedVirtualBasesSetTy VisitedVirtualBases;
146    dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
147         VisitedVirtualBases);
148  }
149
150};
151
152#define DUMP_OVERRIDERS 0
153
154FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
155                                 CharUnits MostDerivedClassOffset,
156                                 const CXXRecordDecl *LayoutClass)
157  : MostDerivedClass(MostDerivedClass),
158  MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
159  Context(MostDerivedClass->getASTContext()),
160  MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
161
162  // Compute base offsets.
163  SubobjectOffsetMapTy SubobjectOffsets;
164  SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
165  SubobjectCountMapTy SubobjectCounts;
166  ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
167                     /*IsVirtual=*/false,
168                     MostDerivedClassOffset,
169                     SubobjectOffsets, SubobjectLayoutClassOffsets,
170                     SubobjectCounts);
171
172  // Get the the final overriders.
173  CXXFinalOverriderMap FinalOverriders;
174  MostDerivedClass->getFinalOverriders(FinalOverriders);
175
176  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
177       E = FinalOverriders.end(); I != E; ++I) {
178    const CXXMethodDecl *MD = I->first;
179    const OverridingMethods& Methods = I->second;
180
181    for (OverridingMethods::const_iterator I = Methods.begin(),
182         E = Methods.end(); I != E; ++I) {
183      unsigned SubobjectNumber = I->first;
184      assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
185                                                   SubobjectNumber)) &&
186             "Did not find subobject offset!");
187
188      CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
189                                                            SubobjectNumber)];
190
191      assert(I->second.size() == 1 && "Final overrider is not unique!");
192      const UniqueVirtualMethod &Method = I->second.front();
193
194      const CXXRecordDecl *OverriderRD = Method.Method->getParent();
195      assert(SubobjectLayoutClassOffsets.count(
196             std::make_pair(OverriderRD, Method.Subobject))
197             && "Did not find subobject offset!");
198      CharUnits OverriderOffset =
199        SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
200                                                   Method.Subobject)];
201
202      OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
203      assert(!Overrider.Method && "Overrider should not exist yet!");
204
205      Overrider.Offset = OverriderOffset;
206      Overrider.Method = Method.Method;
207    }
208  }
209
210#if DUMP_OVERRIDERS
211  // And dump them (for now).
212  dump();
213#endif
214}
215
216static BaseOffset ComputeBaseOffset(ASTContext &Context,
217                                    const CXXRecordDecl *DerivedRD,
218                                    const CXXBasePath &Path) {
219  CharUnits NonVirtualOffset = CharUnits::Zero();
220
221  unsigned NonVirtualStart = 0;
222  const CXXRecordDecl *VirtualBase = 0;
223
224  // First, look for the virtual base class.
225  for (unsigned I = 0, E = Path.size(); I != E; ++I) {
226    const CXXBasePathElement &Element = Path[I];
227
228    if (Element.Base->isVirtual()) {
229      // FIXME: Can we break when we find the first virtual base?
230      // (If we can't, can't we just iterate over the path in reverse order?)
231      NonVirtualStart = I + 1;
232      QualType VBaseType = Element.Base->getType();
233      VirtualBase =
234        cast<CXXRecordDecl>(VBaseType->getAs<RecordType>()->getDecl());
235    }
236  }
237
238  // Now compute the non-virtual offset.
239  for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
240    const CXXBasePathElement &Element = Path[I];
241
242    // Check the base class offset.
243    const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
244
245    const RecordType *BaseType = Element.Base->getType()->getAs<RecordType>();
246    const CXXRecordDecl *Base = cast<CXXRecordDecl>(BaseType->getDecl());
247
248    NonVirtualOffset += Layout.getBaseClassOffset(Base);
249  }
250
251  // FIXME: This should probably use CharUnits or something. Maybe we should
252  // even change the base offsets in ASTRecordLayout to be specified in
253  // CharUnits.
254  return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256}
257
258static BaseOffset ComputeBaseOffset(ASTContext &Context,
259                                    const CXXRecordDecl *BaseRD,
260                                    const CXXRecordDecl *DerivedRD) {
261  CXXBasePaths Paths(/*FindAmbiguities=*/false,
262                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264  if (!const_cast<CXXRecordDecl *>(DerivedRD)->
265      isDerivedFrom(const_cast<CXXRecordDecl *>(BaseRD), Paths)) {
266    assert(false && "Class must be derived from the passed in base class!");
267    return BaseOffset();
268  }
269
270  return ComputeBaseOffset(Context, DerivedRD, Paths.front());
271}
272
273static BaseOffset
274ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
275                                  const CXXMethodDecl *DerivedMD,
276                                  const CXXMethodDecl *BaseMD) {
277  const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
278  const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
279
280  // Canonicalize the return types.
281  CanQualType CanDerivedReturnType =
282    Context.getCanonicalType(DerivedFT->getResultType());
283  CanQualType CanBaseReturnType =
284    Context.getCanonicalType(BaseFT->getResultType());
285
286  assert(CanDerivedReturnType->getTypeClass() ==
287         CanBaseReturnType->getTypeClass() &&
288         "Types must have same type class!");
289
290  if (CanDerivedReturnType == CanBaseReturnType) {
291    // No adjustment needed.
292    return BaseOffset();
293  }
294
295  if (isa<ReferenceType>(CanDerivedReturnType)) {
296    CanDerivedReturnType =
297      CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
298    CanBaseReturnType =
299      CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
300  } else if (isa<PointerType>(CanDerivedReturnType)) {
301    CanDerivedReturnType =
302      CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
303    CanBaseReturnType =
304      CanBaseReturnType->getAs<PointerType>()->getPointeeType();
305  } else {
306    assert(false && "Unexpected return type!");
307  }
308
309  // We need to compare unqualified types here; consider
310  //   const T *Base::foo();
311  //   T *Derived::foo();
312  if (CanDerivedReturnType.getUnqualifiedType() ==
313      CanBaseReturnType.getUnqualifiedType()) {
314    // No adjustment needed.
315    return BaseOffset();
316  }
317
318  const CXXRecordDecl *DerivedRD =
319    cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
320
321  const CXXRecordDecl *BaseRD =
322    cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
323
324  return ComputeBaseOffset(Context, BaseRD, DerivedRD);
325}
326
327void
328FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
329                              CharUnits OffsetInLayoutClass,
330                              SubobjectOffsetMapTy &SubobjectOffsets,
331                              SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
332                              SubobjectCountMapTy &SubobjectCounts) {
333  const CXXRecordDecl *RD = Base.getBase();
334
335  unsigned SubobjectNumber = 0;
336  if (!IsVirtual)
337    SubobjectNumber = ++SubobjectCounts[RD];
338
339  // Set up the subobject to offset mapping.
340  assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
341         && "Subobject offset already exists!");
342  assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
343         && "Subobject offset already exists!");
344
345  SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
346  SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
347    OffsetInLayoutClass;
348
349  // Traverse our bases.
350  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
351       E = RD->bases_end(); I != E; ++I) {
352    const CXXRecordDecl *BaseDecl =
353      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
354
355    CharUnits BaseOffset;
356    CharUnits BaseOffsetInLayoutClass;
357    if (I->isVirtual()) {
358      // Check if we've visited this virtual base before.
359      if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
360        continue;
361
362      const ASTRecordLayout &LayoutClassLayout =
363        Context.getASTRecordLayout(LayoutClass);
364
365      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
366      BaseOffsetInLayoutClass =
367        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
368    } else {
369      const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
370      CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
371
372      BaseOffset = Base.getBaseOffset() + Offset;
373      BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
374    }
375
376    ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
377                       I->isVirtual(), BaseOffsetInLayoutClass,
378                       SubobjectOffsets, SubobjectLayoutClassOffsets,
379                       SubobjectCounts);
380  }
381}
382
383void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
384                           VisitedVirtualBasesSetTy &VisitedVirtualBases) {
385  const CXXRecordDecl *RD = Base.getBase();
386  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
387
388  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
389       E = RD->bases_end(); I != E; ++I) {
390    const CXXRecordDecl *BaseDecl =
391      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
392
393    // Ignore bases that don't have any virtual member functions.
394    if (!BaseDecl->isPolymorphic())
395      continue;
396
397    CharUnits BaseOffset;
398    if (I->isVirtual()) {
399      if (!VisitedVirtualBases.insert(BaseDecl)) {
400        // We've visited this base before.
401        continue;
402      }
403
404      BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
405    } else {
406      BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
407    }
408
409    dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
410  }
411
412  Out << "Final overriders for (" << RD->getQualifiedNameAsString() << ", ";
413  Out << Base.getBaseOffset().getQuantity() << ")\n";
414
415  // Now dump the overriders for this base subobject.
416  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
417       E = RD->method_end(); I != E; ++I) {
418    const CXXMethodDecl *MD = *I;
419
420    if (!MD->isVirtual())
421      continue;
422
423    OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
424
425    Out << "  " << MD->getQualifiedNameAsString() << " - (";
426    Out << Overrider.Method->getQualifiedNameAsString();
427    Out << ", " << ", " << Overrider.Offset.getQuantity() << ')';
428
429    BaseOffset Offset;
430    if (!Overrider.Method->isPure())
431      Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
432
433    if (!Offset.isEmpty()) {
434      Out << " [ret-adj: ";
435      if (Offset.VirtualBase)
436        Out << Offset.VirtualBase->getQualifiedNameAsString() << " vbase, ";
437
438      Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
439    }
440
441    Out << "\n";
442  }
443}
444
445/// VTableComponent - Represents a single component in a vtable.
446class VTableComponent {
447public:
448  enum Kind {
449    CK_VCallOffset,
450    CK_VBaseOffset,
451    CK_OffsetToTop,
452    CK_RTTI,
453    CK_FunctionPointer,
454
455    /// CK_CompleteDtorPointer - A pointer to the complete destructor.
456    CK_CompleteDtorPointer,
457
458    /// CK_DeletingDtorPointer - A pointer to the deleting destructor.
459    CK_DeletingDtorPointer,
460
461    /// CK_UnusedFunctionPointer - In some cases, a vtable function pointer
462    /// will end up never being called. Such vtable function pointers are
463    /// represented as a CK_UnusedFunctionPointer.
464    CK_UnusedFunctionPointer
465  };
466
467  static VTableComponent MakeVCallOffset(CharUnits Offset) {
468    return VTableComponent(CK_VCallOffset, Offset);
469  }
470
471  static VTableComponent MakeVBaseOffset(CharUnits Offset) {
472    return VTableComponent(CK_VBaseOffset, Offset);
473  }
474
475  static VTableComponent MakeOffsetToTop(CharUnits Offset) {
476    return VTableComponent(CK_OffsetToTop, Offset);
477  }
478
479  static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
480    return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
481  }
482
483  static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
484    assert(!isa<CXXDestructorDecl>(MD) &&
485           "Don't use MakeFunction with destructors!");
486
487    return VTableComponent(CK_FunctionPointer,
488                           reinterpret_cast<uintptr_t>(MD));
489  }
490
491  static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
492    return VTableComponent(CK_CompleteDtorPointer,
493                           reinterpret_cast<uintptr_t>(DD));
494  }
495
496  static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
497    return VTableComponent(CK_DeletingDtorPointer,
498                           reinterpret_cast<uintptr_t>(DD));
499  }
500
501  static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
502    assert(!isa<CXXDestructorDecl>(MD) &&
503           "Don't use MakeUnusedFunction with destructors!");
504    return VTableComponent(CK_UnusedFunctionPointer,
505                           reinterpret_cast<uintptr_t>(MD));
506  }
507
508  static VTableComponent getFromOpaqueInteger(uint64_t I) {
509    return VTableComponent(I);
510  }
511
512  /// getKind - Get the kind of this vtable component.
513  Kind getKind() const {
514    return (Kind)(Value & 0x7);
515  }
516
517  CharUnits getVCallOffset() const {
518    assert(getKind() == CK_VCallOffset && "Invalid component kind!");
519
520    return getOffset();
521  }
522
523  CharUnits getVBaseOffset() const {
524    assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
525
526    return getOffset();
527  }
528
529  CharUnits getOffsetToTop() const {
530    assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
531
532    return getOffset();
533  }
534
535  const CXXRecordDecl *getRTTIDecl() const {
536    assert(getKind() == CK_RTTI && "Invalid component kind!");
537
538    return reinterpret_cast<CXXRecordDecl *>(getPointer());
539  }
540
541  const CXXMethodDecl *getFunctionDecl() const {
542    assert(getKind() == CK_FunctionPointer);
543
544    return reinterpret_cast<CXXMethodDecl *>(getPointer());
545  }
546
547  const CXXDestructorDecl *getDestructorDecl() const {
548    assert((getKind() == CK_CompleteDtorPointer ||
549            getKind() == CK_DeletingDtorPointer) && "Invalid component kind!");
550
551    return reinterpret_cast<CXXDestructorDecl *>(getPointer());
552  }
553
554  const CXXMethodDecl *getUnusedFunctionDecl() const {
555    assert(getKind() == CK_UnusedFunctionPointer);
556
557    return reinterpret_cast<CXXMethodDecl *>(getPointer());
558  }
559
560private:
561  VTableComponent(Kind ComponentKind, CharUnits Offset) {
562    assert((ComponentKind == CK_VCallOffset ||
563            ComponentKind == CK_VBaseOffset ||
564            ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
565    assert(Offset.getQuantity() <= ((1LL << 56) - 1) && "Offset is too big!");
566
567    Value = ((Offset.getQuantity() << 3) | ComponentKind);
568  }
569
570  VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
571    assert((ComponentKind == CK_RTTI ||
572            ComponentKind == CK_FunctionPointer ||
573            ComponentKind == CK_CompleteDtorPointer ||
574            ComponentKind == CK_DeletingDtorPointer ||
575            ComponentKind == CK_UnusedFunctionPointer) &&
576            "Invalid component kind!");
577
578    assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
579
580    Value = Ptr | ComponentKind;
581  }
582
583  CharUnits getOffset() const {
584    assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
585            getKind() == CK_OffsetToTop) && "Invalid component kind!");
586
587    return CharUnits::fromQuantity(Value >> 3);
588  }
589
590  uintptr_t getPointer() const {
591    assert((getKind() == CK_RTTI ||
592            getKind() == CK_FunctionPointer ||
593            getKind() == CK_CompleteDtorPointer ||
594            getKind() == CK_DeletingDtorPointer ||
595            getKind() == CK_UnusedFunctionPointer) &&
596           "Invalid component kind!");
597
598    return static_cast<uintptr_t>(Value & ~7ULL);
599  }
600
601  explicit VTableComponent(uint64_t Value)
602    : Value(Value) { }
603
604  /// The kind is stored in the lower 3 bits of the value. For offsets, we
605  /// make use of the facts that classes can't be larger than 2^55 bytes,
606  /// so we store the offset in the lower part of the 61 bytes that remain.
607  /// (The reason that we're not simply using a PointerIntPair here is that we
608  /// need the offsets to be 64-bit, even when on a 32-bit machine).
609  int64_t Value;
610};
611
612/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
613struct VCallOffsetMap {
614
615  typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
616
617  /// Offsets - Keeps track of methods and their offsets.
618  // FIXME: This should be a real map and not a vector.
619  SmallVector<MethodAndOffsetPairTy, 16> Offsets;
620
621  /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
622  /// can share the same vcall offset.
623  static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
624                                         const CXXMethodDecl *RHS);
625
626public:
627  /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
628  /// add was successful, or false if there was already a member function with
629  /// the same signature in the map.
630  bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
631
632  /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
633  /// vtable address point) for the given virtual member function.
634  CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
635
636  // empty - Return whether the offset map is empty or not.
637  bool empty() const { return Offsets.empty(); }
638};
639
640static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
641                                    const CXXMethodDecl *RHS) {
642  ASTContext &C = LHS->getASTContext(); // TODO: thread this down
643  CanQual<FunctionProtoType>
644    LT = C.getCanonicalType(LHS->getType()).getAs<FunctionProtoType>(),
645    RT = C.getCanonicalType(RHS->getType()).getAs<FunctionProtoType>();
646
647  // Fast-path matches in the canonical types.
648  if (LT == RT) return true;
649
650  // Force the signatures to match.  We can't rely on the overrides
651  // list here because there isn't necessarily an inheritance
652  // relationship between the two methods.
653  if (LT.getQualifiers() != RT.getQualifiers() ||
654      LT->getNumArgs() != RT->getNumArgs())
655    return false;
656  for (unsigned I = 0, E = LT->getNumArgs(); I != E; ++I)
657    if (LT->getArgType(I) != RT->getArgType(I))
658      return false;
659  return true;
660}
661
662bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
663                                                const CXXMethodDecl *RHS) {
664  assert(LHS->isVirtual() && "LHS must be virtual!");
665  assert(RHS->isVirtual() && "LHS must be virtual!");
666
667  // A destructor can share a vcall offset with another destructor.
668  if (isa<CXXDestructorDecl>(LHS))
669    return isa<CXXDestructorDecl>(RHS);
670
671  // FIXME: We need to check more things here.
672
673  // The methods must have the same name.
674  DeclarationName LHSName = LHS->getDeclName();
675  DeclarationName RHSName = RHS->getDeclName();
676  if (LHSName != RHSName)
677    return false;
678
679  // And the same signatures.
680  return HasSameVirtualSignature(LHS, RHS);
681}
682
683bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
684                                    CharUnits OffsetOffset) {
685  // Check if we can reuse an offset.
686  for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
687    if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
688      return false;
689  }
690
691  // Add the offset.
692  Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
693  return true;
694}
695
696CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
697  // Look for an offset.
698  for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
699    if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
700      return Offsets[I].second;
701  }
702
703  assert(false && "Should always find a vcall offset offset!");
704  return CharUnits::Zero();
705}
706
707/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
708class VCallAndVBaseOffsetBuilder {
709public:
710  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
711    VBaseOffsetOffsetsMapTy;
712
713private:
714  /// MostDerivedClass - The most derived class for which we're building vcall
715  /// and vbase offsets.
716  const CXXRecordDecl *MostDerivedClass;
717
718  /// LayoutClass - The class we're using for layout information. Will be
719  /// different than the most derived class if we're building a construction
720  /// vtable.
721  const CXXRecordDecl *LayoutClass;
722
723  /// Context - The ASTContext which we will use for layout information.
724  ASTContext &Context;
725
726  /// Components - vcall and vbase offset components
727  typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
728  VTableComponentVectorTy Components;
729
730  /// VisitedVirtualBases - Visited virtual bases.
731  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
732
733  /// VCallOffsets - Keeps track of vcall offsets.
734  VCallOffsetMap VCallOffsets;
735
736
737  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
738  /// relative to the address point.
739  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
740
741  /// FinalOverriders - The final overriders of the most derived class.
742  /// (Can be null when we're not building a vtable of the most derived class).
743  const FinalOverriders *Overriders;
744
745  /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
746  /// given base subobject.
747  void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
748                               CharUnits RealBaseOffset);
749
750  /// AddVCallOffsets - Add vcall offsets for the given base subobject.
751  void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
752
753  /// AddVBaseOffsets - Add vbase offsets for the given class.
754  void AddVBaseOffsets(const CXXRecordDecl *Base,
755                       CharUnits OffsetInLayoutClass);
756
757  /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
758  /// chars, relative to the vtable address point.
759  CharUnits getCurrentOffsetOffset() const;
760
761public:
762  VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
763                             const CXXRecordDecl *LayoutClass,
764                             const FinalOverriders *Overriders,
765                             BaseSubobject Base, bool BaseIsVirtual,
766                             CharUnits OffsetInLayoutClass)
767    : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
768    Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
769
770    // Add vcall and vbase offsets.
771    AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
772  }
773
774  /// Methods for iterating over the components.
775  typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
776  const_iterator components_begin() const { return Components.rbegin(); }
777  const_iterator components_end() const { return Components.rend(); }
778
779  const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
780  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
781    return VBaseOffsetOffsets;
782  }
783};
784
785void
786VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
787                                                    bool BaseIsVirtual,
788                                                    CharUnits RealBaseOffset) {
789  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
790
791  // Itanium C++ ABI 2.5.2:
792  //   ..in classes sharing a virtual table with a primary base class, the vcall
793  //   and vbase offsets added by the derived class all come before the vcall
794  //   and vbase offsets required by the base class, so that the latter may be
795  //   laid out as required by the base class without regard to additions from
796  //   the derived class(es).
797
798  // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
799  // emit them for the primary base first).
800  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
801    bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
802
803    CharUnits PrimaryBaseOffset;
804
805    // Get the base offset of the primary base.
806    if (PrimaryBaseIsVirtual) {
807      assert(Layout.getVBaseClassOffsetInBits(PrimaryBase) == 0 &&
808             "Primary vbase should have a zero offset!");
809
810      const ASTRecordLayout &MostDerivedClassLayout =
811        Context.getASTRecordLayout(MostDerivedClass);
812
813      PrimaryBaseOffset =
814        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
815    } else {
816      assert(Layout.getBaseClassOffsetInBits(PrimaryBase) == 0 &&
817             "Primary base should have a zero offset!");
818
819      PrimaryBaseOffset = Base.getBaseOffset();
820    }
821
822    AddVCallAndVBaseOffsets(
823      BaseSubobject(PrimaryBase,PrimaryBaseOffset),
824      PrimaryBaseIsVirtual, RealBaseOffset);
825  }
826
827  AddVBaseOffsets(Base.getBase(), RealBaseOffset);
828
829  // We only want to add vcall offsets for virtual bases.
830  if (BaseIsVirtual)
831    AddVCallOffsets(Base, RealBaseOffset);
832}
833
834CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
835  // OffsetIndex is the index of this vcall or vbase offset, relative to the
836  // vtable address point. (We subtract 3 to account for the information just
837  // above the address point, the RTTI info, the offset to top, and the
838  // vcall offset itself).
839  int64_t OffsetIndex = -(int64_t)(3 + Components.size());
840
841  CharUnits PointerWidth =
842    Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
843  CharUnits OffsetOffset = PointerWidth * OffsetIndex;
844  return OffsetOffset;
845}
846
847void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
848                                                 CharUnits VBaseOffset) {
849  const CXXRecordDecl *RD = Base.getBase();
850  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
851
852  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
853
854  // Handle the primary base first.
855  // We only want to add vcall offsets if the base is non-virtual; a virtual
856  // primary base will have its vcall and vbase offsets emitted already.
857  if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
858    // Get the base offset of the primary base.
859    assert(Layout.getBaseClassOffsetInBits(PrimaryBase) == 0 &&
860           "Primary base should have a zero offset!");
861
862    AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
863                    VBaseOffset);
864  }
865
866  // Add the vcall offsets.
867  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
868       E = RD->method_end(); I != E; ++I) {
869    const CXXMethodDecl *MD = *I;
870
871    if (!MD->isVirtual())
872      continue;
873
874    CharUnits OffsetOffset = getCurrentOffsetOffset();
875
876    // Don't add a vcall offset if we already have one for this member function
877    // signature.
878    if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
879      continue;
880
881    CharUnits Offset = CharUnits::Zero();
882
883    if (Overriders) {
884      // Get the final overrider.
885      FinalOverriders::OverriderInfo Overrider =
886        Overriders->getOverrider(MD, Base.getBaseOffset());
887
888      /// The vcall offset is the offset from the virtual base to the object
889      /// where the function was overridden.
890      Offset = Overrider.Offset - VBaseOffset;
891    }
892
893    Components.push_back(
894      VTableComponent::MakeVCallOffset(Offset));
895  }
896
897  // And iterate over all non-virtual bases (ignoring the primary base).
898  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
899       E = RD->bases_end(); I != E; ++I) {
900
901    if (I->isVirtual())
902      continue;
903
904    const CXXRecordDecl *BaseDecl =
905      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
906    if (BaseDecl == PrimaryBase)
907      continue;
908
909    // Get the base offset of this base.
910    CharUnits BaseOffset = Base.getBaseOffset() +
911      Layout.getBaseClassOffset(BaseDecl);
912
913    AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
914                    VBaseOffset);
915  }
916}
917
918void
919VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
920                                            CharUnits OffsetInLayoutClass) {
921  const ASTRecordLayout &LayoutClassLayout =
922    Context.getASTRecordLayout(LayoutClass);
923
924  // Add vbase offsets.
925  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
926       E = RD->bases_end(); I != E; ++I) {
927    const CXXRecordDecl *BaseDecl =
928      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
929
930    // Check if this is a virtual base that we haven't visited before.
931    if (I->isVirtual() && VisitedVirtualBases.insert(BaseDecl)) {
932      CharUnits Offset =
933        LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
934
935      // Add the vbase offset offset.
936      assert(!VBaseOffsetOffsets.count(BaseDecl) &&
937             "vbase offset offset already exists!");
938
939      CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
940      VBaseOffsetOffsets.insert(
941          std::make_pair(BaseDecl, VBaseOffsetOffset));
942
943      Components.push_back(
944          VTableComponent::MakeVBaseOffset(Offset));
945    }
946
947    // Check the base class looking for more vbase offsets.
948    AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
949  }
950}
951
952/// VTableBuilder - Class for building vtable layout information.
953class VTableBuilder {
954public:
955  /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
956  /// primary bases.
957  typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
958    PrimaryBasesSetVectorTy;
959
960  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
961    VBaseOffsetOffsetsMapTy;
962
963  typedef llvm::DenseMap<BaseSubobject, uint64_t>
964    AddressPointsMapTy;
965
966private:
967  /// VTables - Global vtable information.
968  CodeGenVTables &VTables;
969
970  /// MostDerivedClass - The most derived class for which we're building this
971  /// vtable.
972  const CXXRecordDecl *MostDerivedClass;
973
974  /// MostDerivedClassOffset - If we're building a construction vtable, this
975  /// holds the offset from the layout class to the most derived class.
976  const CharUnits MostDerivedClassOffset;
977
978  /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
979  /// base. (This only makes sense when building a construction vtable).
980  bool MostDerivedClassIsVirtual;
981
982  /// LayoutClass - The class we're using for layout information. Will be
983  /// different than the most derived class if we're building a construction
984  /// vtable.
985  const CXXRecordDecl *LayoutClass;
986
987  /// Context - The ASTContext which we will use for layout information.
988  ASTContext &Context;
989
990  /// FinalOverriders - The final overriders of the most derived class.
991  const FinalOverriders Overriders;
992
993  /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
994  /// bases in this vtable.
995  llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
996
997  /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
998  /// the most derived class.
999  VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
1000
1001  /// Components - The components of the vtable being built.
1002  SmallVector<VTableComponent, 64> Components;
1003
1004  /// AddressPoints - Address points for the vtable being built.
1005  AddressPointsMapTy AddressPoints;
1006
1007  /// MethodInfo - Contains information about a method in a vtable.
1008  /// (Used for computing 'this' pointer adjustment thunks.
1009  struct MethodInfo {
1010    /// BaseOffset - The base offset of this method.
1011    const CharUnits BaseOffset;
1012
1013    /// BaseOffsetInLayoutClass - The base offset in the layout class of this
1014    /// method.
1015    const CharUnits BaseOffsetInLayoutClass;
1016
1017    /// VTableIndex - The index in the vtable that this method has.
1018    /// (For destructors, this is the index of the complete destructor).
1019    const uint64_t VTableIndex;
1020
1021    MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
1022               uint64_t VTableIndex)
1023      : BaseOffset(BaseOffset),
1024      BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
1025      VTableIndex(VTableIndex) { }
1026
1027    MethodInfo()
1028      : BaseOffset(CharUnits::Zero()),
1029      BaseOffsetInLayoutClass(CharUnits::Zero()),
1030      VTableIndex(0) { }
1031  };
1032
1033  typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
1034
1035  /// MethodInfoMap - The information for all methods in the vtable we're
1036  /// currently building.
1037  MethodInfoMapTy MethodInfoMap;
1038
1039  typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
1040
1041  /// VTableThunks - The thunks by vtable index in the vtable currently being
1042  /// built.
1043  VTableThunksMapTy VTableThunks;
1044
1045  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
1046  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
1047
1048  /// Thunks - A map that contains all the thunks needed for all methods in the
1049  /// most derived class for which the vtable is currently being built.
1050  ThunksMapTy Thunks;
1051
1052  /// AddThunk - Add a thunk for the given method.
1053  void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
1054
1055  /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
1056  /// part of the vtable we're currently building.
1057  void ComputeThisAdjustments();
1058
1059  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1060
1061  /// PrimaryVirtualBases - All known virtual bases who are a primary base of
1062  /// some other base.
1063  VisitedVirtualBasesSetTy PrimaryVirtualBases;
1064
1065  /// ComputeReturnAdjustment - Compute the return adjustment given a return
1066  /// adjustment base offset.
1067  ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
1068
1069  /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
1070  /// the 'this' pointer from the base subobject to the derived subobject.
1071  BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
1072                                             BaseSubobject Derived) const;
1073
1074  /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
1075  /// given virtual member function, its offset in the layout class and its
1076  /// final overrider.
1077  ThisAdjustment
1078  ComputeThisAdjustment(const CXXMethodDecl *MD,
1079                        CharUnits BaseOffsetInLayoutClass,
1080                        FinalOverriders::OverriderInfo Overrider);
1081
1082  /// AddMethod - Add a single virtual member function to the vtable
1083  /// components vector.
1084  void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
1085
1086  /// IsOverriderUsed - Returns whether the overrider will ever be used in this
1087  /// part of the vtable.
1088  ///
1089  /// Itanium C++ ABI 2.5.2:
1090  ///
1091  ///   struct A { virtual void f(); };
1092  ///   struct B : virtual public A { int i; };
1093  ///   struct C : virtual public A { int j; };
1094  ///   struct D : public B, public C {};
1095  ///
1096  ///   When B and C are declared, A is a primary base in each case, so although
1097  ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
1098  ///   adjustment is required and no thunk is generated. However, inside D
1099  ///   objects, A is no longer a primary base of C, so if we allowed calls to
1100  ///   C::f() to use the copy of A's vtable in the C subobject, we would need
1101  ///   to adjust this from C* to B::A*, which would require a third-party
1102  ///   thunk. Since we require that a call to C::f() first convert to A*,
1103  ///   C-in-D's copy of A's vtable is never referenced, so this is not
1104  ///   necessary.
1105  bool IsOverriderUsed(const CXXMethodDecl *Overrider,
1106                       CharUnits BaseOffsetInLayoutClass,
1107                       const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1108                       CharUnits FirstBaseOffsetInLayoutClass) const;
1109
1110
1111  /// AddMethods - Add the methods of this base subobject and all its
1112  /// primary bases to the vtable components vector.
1113  void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1114                  const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1115                  CharUnits FirstBaseOffsetInLayoutClass,
1116                  PrimaryBasesSetVectorTy &PrimaryBases);
1117
1118  // LayoutVTable - Layout the vtable for the given base class, including its
1119  // secondary vtables and any vtables for virtual bases.
1120  void LayoutVTable();
1121
1122  /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
1123  /// given base subobject, as well as all its secondary vtables.
1124  ///
1125  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
1126  /// or a direct or indirect base of a virtual base.
1127  ///
1128  /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
1129  /// in the layout class.
1130  void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
1131                                        bool BaseIsMorallyVirtual,
1132                                        bool BaseIsVirtualInLayoutClass,
1133                                        CharUnits OffsetInLayoutClass);
1134
1135  /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
1136  /// subobject.
1137  ///
1138  /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
1139  /// or a direct or indirect base of a virtual base.
1140  void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
1141                              CharUnits OffsetInLayoutClass);
1142
1143  /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
1144  /// class hierarchy.
1145  void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
1146                                    CharUnits OffsetInLayoutClass,
1147                                    VisitedVirtualBasesSetTy &VBases);
1148
1149  /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
1150  /// given base (excluding any primary bases).
1151  void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
1152                                    VisitedVirtualBasesSetTy &VBases);
1153
1154  /// isBuildingConstructionVTable - Return whether this vtable builder is
1155  /// building a construction vtable.
1156  bool isBuildingConstructorVTable() const {
1157    return MostDerivedClass != LayoutClass;
1158  }
1159
1160public:
1161  VTableBuilder(CodeGenVTables &VTables, const CXXRecordDecl *MostDerivedClass,
1162                CharUnits MostDerivedClassOffset,
1163                bool MostDerivedClassIsVirtual, const
1164                CXXRecordDecl *LayoutClass)
1165    : VTables(VTables), MostDerivedClass(MostDerivedClass),
1166    MostDerivedClassOffset(MostDerivedClassOffset),
1167    MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1168    LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1169    Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1170
1171    LayoutVTable();
1172  }
1173
1174  ThunksMapTy::const_iterator thunks_begin() const {
1175    return Thunks.begin();
1176  }
1177
1178  ThunksMapTy::const_iterator thunks_end() const {
1179    return Thunks.end();
1180  }
1181
1182  const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1183    return VBaseOffsetOffsets;
1184  }
1185
1186  /// getNumVTableComponents - Return the number of components in the vtable
1187  /// currently built.
1188  uint64_t getNumVTableComponents() const {
1189    return Components.size();
1190  }
1191
1192  const uint64_t *vtable_components_data_begin() const {
1193    return reinterpret_cast<const uint64_t *>(Components.begin());
1194  }
1195
1196  const uint64_t *vtable_components_data_end() const {
1197    return reinterpret_cast<const uint64_t *>(Components.end());
1198  }
1199
1200  AddressPointsMapTy::const_iterator address_points_begin() const {
1201    return AddressPoints.begin();
1202  }
1203
1204  AddressPointsMapTy::const_iterator address_points_end() const {
1205    return AddressPoints.end();
1206  }
1207
1208  VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1209    return VTableThunks.begin();
1210  }
1211
1212  VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1213    return VTableThunks.end();
1214  }
1215
1216  /// dumpLayout - Dump the vtable layout.
1217  void dumpLayout(raw_ostream&);
1218};
1219
1220void VTableBuilder::AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
1221  assert(!isBuildingConstructorVTable() &&
1222         "Can't add thunks for construction vtable");
1223
1224  SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
1225
1226  // Check if we have this thunk already.
1227  if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1228      ThunksVector.end())
1229    return;
1230
1231  ThunksVector.push_back(Thunk);
1232}
1233
1234typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1235
1236/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1237/// the overridden methods that the function decl overrides.
1238static void
1239ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1240                            OverriddenMethodsSetTy& OverriddenMethods) {
1241  assert(MD->isVirtual() && "Method is not virtual!");
1242
1243  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1244       E = MD->end_overridden_methods(); I != E; ++I) {
1245    const CXXMethodDecl *OverriddenMD = *I;
1246
1247    OverriddenMethods.insert(OverriddenMD);
1248
1249    ComputeAllOverriddenMethods(OverriddenMD, OverriddenMethods);
1250  }
1251}
1252
1253void VTableBuilder::ComputeThisAdjustments() {
1254  // Now go through the method info map and see if any of the methods need
1255  // 'this' pointer adjustments.
1256  for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
1257       E = MethodInfoMap.end(); I != E; ++I) {
1258    const CXXMethodDecl *MD = I->first;
1259    const MethodInfo &MethodInfo = I->second;
1260
1261    // Ignore adjustments for unused function pointers.
1262    uint64_t VTableIndex = MethodInfo.VTableIndex;
1263    if (Components[VTableIndex].getKind() ==
1264        VTableComponent::CK_UnusedFunctionPointer)
1265      continue;
1266
1267    // Get the final overrider for this method.
1268    FinalOverriders::OverriderInfo Overrider =
1269      Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1270
1271    // Check if we need an adjustment at all.
1272    if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1273      // When a return thunk is needed by a derived class that overrides a
1274      // virtual base, gcc uses a virtual 'this' adjustment as well.
1275      // While the thunk itself might be needed by vtables in subclasses or
1276      // in construction vtables, there doesn't seem to be a reason for using
1277      // the thunk in this vtable. Still, we do so to match gcc.
1278      if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1279        continue;
1280    }
1281
1282    ThisAdjustment ThisAdjustment =
1283      ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1284
1285    if (ThisAdjustment.isEmpty())
1286      continue;
1287
1288    // Add it.
1289    VTableThunks[VTableIndex].This = ThisAdjustment;
1290
1291    if (isa<CXXDestructorDecl>(MD)) {
1292      // Add an adjustment for the deleting destructor as well.
1293      VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1294    }
1295  }
1296
1297  /// Clear the method info map.
1298  MethodInfoMap.clear();
1299
1300  if (isBuildingConstructorVTable()) {
1301    // We don't need to store thunk information for construction vtables.
1302    return;
1303  }
1304
1305  for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
1306       E = VTableThunks.end(); I != E; ++I) {
1307    const VTableComponent &Component = Components[I->first];
1308    const ThunkInfo &Thunk = I->second;
1309    const CXXMethodDecl *MD;
1310
1311    switch (Component.getKind()) {
1312    default:
1313      llvm_unreachable("Unexpected vtable component kind!");
1314    case VTableComponent::CK_FunctionPointer:
1315      MD = Component.getFunctionDecl();
1316      break;
1317    case VTableComponent::CK_CompleteDtorPointer:
1318      MD = Component.getDestructorDecl();
1319      break;
1320    case VTableComponent::CK_DeletingDtorPointer:
1321      // We've already added the thunk when we saw the complete dtor pointer.
1322      continue;
1323    }
1324
1325    if (MD->getParent() == MostDerivedClass)
1326      AddThunk(MD, Thunk);
1327  }
1328}
1329
1330ReturnAdjustment VTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1331  ReturnAdjustment Adjustment;
1332
1333  if (!Offset.isEmpty()) {
1334    if (Offset.VirtualBase) {
1335      // Get the virtual base offset offset.
1336      if (Offset.DerivedClass == MostDerivedClass) {
1337        // We can get the offset offset directly from our map.
1338        Adjustment.VBaseOffsetOffset =
1339          VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1340      } else {
1341        Adjustment.VBaseOffsetOffset =
1342          VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1343                                             Offset.VirtualBase).getQuantity();
1344      }
1345    }
1346
1347    Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1348  }
1349
1350  return Adjustment;
1351}
1352
1353BaseOffset
1354VTableBuilder::ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
1355                                               BaseSubobject Derived) const {
1356  const CXXRecordDecl *BaseRD = Base.getBase();
1357  const CXXRecordDecl *DerivedRD = Derived.getBase();
1358
1359  CXXBasePaths Paths(/*FindAmbiguities=*/true,
1360                     /*RecordPaths=*/true, /*DetectVirtual=*/true);
1361
1362  if (!const_cast<CXXRecordDecl *>(DerivedRD)->
1363      isDerivedFrom(const_cast<CXXRecordDecl *>(BaseRD), Paths)) {
1364    assert(false && "Class must be derived from the passed in base class!");
1365    return BaseOffset();
1366  }
1367
1368  // We have to go through all the paths, and see which one leads us to the
1369  // right base subobject.
1370  for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
1371       I != E; ++I) {
1372    BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
1373
1374    CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1375
1376    if (Offset.VirtualBase) {
1377      // If we have a virtual base class, the non-virtual offset is relative
1378      // to the virtual base class offset.
1379      const ASTRecordLayout &LayoutClassLayout =
1380        Context.getASTRecordLayout(LayoutClass);
1381
1382      /// Get the virtual base offset, relative to the most derived class
1383      /// layout.
1384      OffsetToBaseSubobject +=
1385        LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1386    } else {
1387      // Otherwise, the non-virtual offset is relative to the derived class
1388      // offset.
1389      OffsetToBaseSubobject += Derived.getBaseOffset();
1390    }
1391
1392    // Check if this path gives us the right base subobject.
1393    if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1394      // Since we're going from the base class _to_ the derived class, we'll
1395      // invert the non-virtual offset here.
1396      Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1397      return Offset;
1398    }
1399  }
1400
1401  return BaseOffset();
1402}
1403
1404ThisAdjustment
1405VTableBuilder::ComputeThisAdjustment(const CXXMethodDecl *MD,
1406                                     CharUnits BaseOffsetInLayoutClass,
1407                                     FinalOverriders::OverriderInfo Overrider) {
1408  // Ignore adjustments for pure virtual member functions.
1409  if (Overrider.Method->isPure())
1410    return ThisAdjustment();
1411
1412  BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1413                                        BaseOffsetInLayoutClass);
1414
1415  BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1416                                       Overrider.Offset);
1417
1418  // Compute the adjustment offset.
1419  BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1420                                                      OverriderBaseSubobject);
1421  if (Offset.isEmpty())
1422    return ThisAdjustment();
1423
1424  ThisAdjustment Adjustment;
1425
1426  if (Offset.VirtualBase) {
1427    // Get the vcall offset map for this virtual base.
1428    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1429
1430    if (VCallOffsets.empty()) {
1431      // We don't have vcall offsets for this virtual base, go ahead and
1432      // build them.
1433      VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1434                                         /*FinalOverriders=*/0,
1435                                         BaseSubobject(Offset.VirtualBase,
1436                                                       CharUnits::Zero()),
1437                                         /*BaseIsVirtual=*/true,
1438                                         /*OffsetInLayoutClass=*/
1439                                             CharUnits::Zero());
1440
1441      VCallOffsets = Builder.getVCallOffsets();
1442    }
1443
1444    Adjustment.VCallOffsetOffset =
1445      VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1446  }
1447
1448  // Set the non-virtual part of the adjustment.
1449  Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1450
1451  return Adjustment;
1452}
1453
1454void
1455VTableBuilder::AddMethod(const CXXMethodDecl *MD,
1456                         ReturnAdjustment ReturnAdjustment) {
1457  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1458    assert(ReturnAdjustment.isEmpty() &&
1459           "Destructor can't have return adjustment!");
1460
1461    // Add both the complete destructor and the deleting destructor.
1462    Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1463    Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1464  } else {
1465    // Add the return adjustment if necessary.
1466    if (!ReturnAdjustment.isEmpty())
1467      VTableThunks[Components.size()].Return = ReturnAdjustment;
1468
1469    // Add the function.
1470    Components.push_back(VTableComponent::MakeFunction(MD));
1471  }
1472}
1473
1474/// OverridesIndirectMethodInBase - Return whether the given member function
1475/// overrides any methods in the set of given bases.
1476/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1477/// For example, if we have:
1478///
1479/// struct A { virtual void f(); }
1480/// struct B : A { virtual void f(); }
1481/// struct C : B { virtual void f(); }
1482///
1483/// OverridesIndirectMethodInBase will return true if given C::f as the method
1484/// and { A } as the set of bases.
1485static bool
1486OverridesIndirectMethodInBases(const CXXMethodDecl *MD,
1487                               VTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1488  if (Bases.count(MD->getParent()))
1489    return true;
1490
1491  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1492       E = MD->end_overridden_methods(); I != E; ++I) {
1493    const CXXMethodDecl *OverriddenMD = *I;
1494
1495    // Check "indirect overriders".
1496    if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1497      return true;
1498  }
1499
1500  return false;
1501}
1502
1503bool
1504VTableBuilder::IsOverriderUsed(const CXXMethodDecl *Overrider,
1505                               CharUnits BaseOffsetInLayoutClass,
1506                               const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1507                               CharUnits FirstBaseOffsetInLayoutClass) const {
1508  // If the base and the first base in the primary base chain have the same
1509  // offsets, then this overrider will be used.
1510  if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1511   return true;
1512
1513  // We know now that Base (or a direct or indirect base of it) is a primary
1514  // base in part of the class hierarchy, but not a primary base in the most
1515  // derived class.
1516
1517  // If the overrider is the first base in the primary base chain, we know
1518  // that the overrider will be used.
1519  if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1520    return true;
1521
1522  VTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1523
1524  const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1525  PrimaryBases.insert(RD);
1526
1527  // Now traverse the base chain, starting with the first base, until we find
1528  // the base that is no longer a primary base.
1529  while (true) {
1530    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1531    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1532
1533    if (!PrimaryBase)
1534      break;
1535
1536    if (Layout.isPrimaryBaseVirtual()) {
1537      assert(Layout.getVBaseClassOffsetInBits(PrimaryBase) == 0 &&
1538             "Primary base should always be at offset 0!");
1539
1540      const ASTRecordLayout &LayoutClassLayout =
1541        Context.getASTRecordLayout(LayoutClass);
1542
1543      // Now check if this is the primary base that is not a primary base in the
1544      // most derived class.
1545      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1546          FirstBaseOffsetInLayoutClass) {
1547        // We found it, stop walking the chain.
1548        break;
1549      }
1550    } else {
1551      assert(Layout.getBaseClassOffsetInBits(PrimaryBase) == 0 &&
1552             "Primary base should always be at offset 0!");
1553    }
1554
1555    if (!PrimaryBases.insert(PrimaryBase))
1556      assert(false && "Found a duplicate primary base!");
1557
1558    RD = PrimaryBase;
1559  }
1560
1561  // If the final overrider is an override of one of the primary bases,
1562  // then we know that it will be used.
1563  return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1564}
1565
1566/// FindNearestOverriddenMethod - Given a method, returns the overridden method
1567/// from the nearest base. Returns null if no method was found.
1568static const CXXMethodDecl *
1569FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1570                            VTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1571  OverriddenMethodsSetTy OverriddenMethods;
1572  ComputeAllOverriddenMethods(MD, OverriddenMethods);
1573
1574  for (int I = Bases.size(), E = 0; I != E; --I) {
1575    const CXXRecordDecl *PrimaryBase = Bases[I - 1];
1576
1577    // Now check the overriden methods.
1578    for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
1579         E = OverriddenMethods.end(); I != E; ++I) {
1580      const CXXMethodDecl *OverriddenMD = *I;
1581
1582      // We found our overridden method.
1583      if (OverriddenMD->getParent() == PrimaryBase)
1584        return OverriddenMD;
1585    }
1586  }
1587
1588  return 0;
1589}
1590
1591void
1592VTableBuilder::AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1593                          const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1594                          CharUnits FirstBaseOffsetInLayoutClass,
1595                          PrimaryBasesSetVectorTy &PrimaryBases) {
1596  const CXXRecordDecl *RD = Base.getBase();
1597  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1598
1599  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1600    CharUnits PrimaryBaseOffset;
1601    CharUnits PrimaryBaseOffsetInLayoutClass;
1602    if (Layout.isPrimaryBaseVirtual()) {
1603      assert(Layout.getVBaseClassOffsetInBits(PrimaryBase) == 0 &&
1604             "Primary vbase should have a zero offset!");
1605
1606      const ASTRecordLayout &MostDerivedClassLayout =
1607        Context.getASTRecordLayout(MostDerivedClass);
1608
1609      PrimaryBaseOffset =
1610        MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1611
1612      const ASTRecordLayout &LayoutClassLayout =
1613        Context.getASTRecordLayout(LayoutClass);
1614
1615      PrimaryBaseOffsetInLayoutClass =
1616        LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1617    } else {
1618      assert(Layout.getBaseClassOffsetInBits(PrimaryBase) == 0 &&
1619             "Primary base should have a zero offset!");
1620
1621      PrimaryBaseOffset = Base.getBaseOffset();
1622      PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1623    }
1624
1625    AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1626               PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1627               FirstBaseOffsetInLayoutClass, PrimaryBases);
1628
1629    if (!PrimaryBases.insert(PrimaryBase))
1630      assert(false && "Found a duplicate primary base!");
1631  }
1632
1633  // Now go through all virtual member functions and add them.
1634  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
1635       E = RD->method_end(); I != E; ++I) {
1636    const CXXMethodDecl *MD = *I;
1637
1638    if (!MD->isVirtual())
1639      continue;
1640
1641    // Get the final overrider.
1642    FinalOverriders::OverriderInfo Overrider =
1643      Overriders.getOverrider(MD, Base.getBaseOffset());
1644
1645    // Check if this virtual member function overrides a method in a primary
1646    // base. If this is the case, and the return type doesn't require adjustment
1647    // then we can just use the member function from the primary base.
1648    if (const CXXMethodDecl *OverriddenMD =
1649          FindNearestOverriddenMethod(MD, PrimaryBases)) {
1650      if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1651                                            OverriddenMD).isEmpty()) {
1652        // Replace the method info of the overridden method with our own
1653        // method.
1654        assert(MethodInfoMap.count(OverriddenMD) &&
1655               "Did not find the overridden method!");
1656        MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1657
1658        MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1659                              OverriddenMethodInfo.VTableIndex);
1660
1661        assert(!MethodInfoMap.count(MD) &&
1662               "Should not have method info for this method yet!");
1663
1664        MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1665        MethodInfoMap.erase(OverriddenMD);
1666
1667        // If the overridden method exists in a virtual base class or a direct
1668        // or indirect base class of a virtual base class, we need to emit a
1669        // thunk if we ever have a class hierarchy where the base class is not
1670        // a primary base in the complete object.
1671        if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1672          // Compute the this adjustment.
1673          ThisAdjustment ThisAdjustment =
1674            ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1675                                  Overrider);
1676
1677          if (ThisAdjustment.VCallOffsetOffset &&
1678              Overrider.Method->getParent() == MostDerivedClass) {
1679
1680            // There's no return adjustment from OverriddenMD and MD,
1681            // but that doesn't mean there isn't one between MD and
1682            // the final overrider.
1683            BaseOffset ReturnAdjustmentOffset =
1684              ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1685            ReturnAdjustment ReturnAdjustment =
1686              ComputeReturnAdjustment(ReturnAdjustmentOffset);
1687
1688            // This is a virtual thunk for the most derived class, add it.
1689            AddThunk(Overrider.Method,
1690                     ThunkInfo(ThisAdjustment, ReturnAdjustment));
1691          }
1692        }
1693
1694        continue;
1695      }
1696    }
1697
1698    // Insert the method info for this method.
1699    MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1700                          Components.size());
1701
1702    assert(!MethodInfoMap.count(MD) &&
1703           "Should not have method info for this method yet!");
1704    MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1705
1706    // Check if this overrider is going to be used.
1707    const CXXMethodDecl *OverriderMD = Overrider.Method;
1708    if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1709                         FirstBaseInPrimaryBaseChain,
1710                         FirstBaseOffsetInLayoutClass)) {
1711      Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1712      continue;
1713    }
1714
1715    // Check if this overrider needs a return adjustment.
1716    // We don't want to do this for pure virtual member functions.
1717    BaseOffset ReturnAdjustmentOffset;
1718    if (!OverriderMD->isPure()) {
1719      ReturnAdjustmentOffset =
1720        ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1721    }
1722
1723    ReturnAdjustment ReturnAdjustment =
1724      ComputeReturnAdjustment(ReturnAdjustmentOffset);
1725
1726    AddMethod(Overrider.Method, ReturnAdjustment);
1727  }
1728}
1729
1730void VTableBuilder::LayoutVTable() {
1731  LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1732                                                 CharUnits::Zero()),
1733                                   /*BaseIsMorallyVirtual=*/false,
1734                                   MostDerivedClassIsVirtual,
1735                                   MostDerivedClassOffset);
1736
1737  VisitedVirtualBasesSetTy VBases;
1738
1739  // Determine the primary virtual bases.
1740  DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1741                               VBases);
1742  VBases.clear();
1743
1744  LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1745}
1746
1747void
1748VTableBuilder::LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
1749                                                bool BaseIsMorallyVirtual,
1750                                                bool BaseIsVirtualInLayoutClass,
1751                                                CharUnits OffsetInLayoutClass) {
1752  assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1753
1754  // Add vcall and vbase offsets for this vtable.
1755  VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1756                                     Base, BaseIsVirtualInLayoutClass,
1757                                     OffsetInLayoutClass);
1758  Components.append(Builder.components_begin(), Builder.components_end());
1759
1760  // Check if we need to add these vcall offsets.
1761  if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1762    VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1763
1764    if (VCallOffsets.empty())
1765      VCallOffsets = Builder.getVCallOffsets();
1766  }
1767
1768  // If we're laying out the most derived class we want to keep track of the
1769  // virtual base class offset offsets.
1770  if (Base.getBase() == MostDerivedClass)
1771    VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1772
1773  // Add the offset to top.
1774  CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1775  Components.push_back(
1776    VTableComponent::MakeOffsetToTop(OffsetToTop));
1777
1778  // Next, add the RTTI.
1779  Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1780
1781  uint64_t AddressPoint = Components.size();
1782
1783  // Now go through all virtual member functions and add them.
1784  PrimaryBasesSetVectorTy PrimaryBases;
1785  AddMethods(Base, OffsetInLayoutClass,
1786             Base.getBase(), OffsetInLayoutClass,
1787             PrimaryBases);
1788
1789  // Compute 'this' pointer adjustments.
1790  ComputeThisAdjustments();
1791
1792  // Add all address points.
1793  const CXXRecordDecl *RD = Base.getBase();
1794  while (true) {
1795    AddressPoints.insert(std::make_pair(
1796      BaseSubobject(RD, OffsetInLayoutClass),
1797      AddressPoint));
1798
1799    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1800    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1801
1802    if (!PrimaryBase)
1803      break;
1804
1805    if (Layout.isPrimaryBaseVirtual()) {
1806      // Check if this virtual primary base is a primary base in the layout
1807      // class. If it's not, we don't want to add it.
1808      const ASTRecordLayout &LayoutClassLayout =
1809        Context.getASTRecordLayout(LayoutClass);
1810
1811      if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1812          OffsetInLayoutClass) {
1813        // We don't want to add this class (or any of its primary bases).
1814        break;
1815      }
1816    }
1817
1818    RD = PrimaryBase;
1819  }
1820
1821  // Layout secondary vtables.
1822  LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1823}
1824
1825void VTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1826                                           bool BaseIsMorallyVirtual,
1827                                           CharUnits OffsetInLayoutClass) {
1828  // Itanium C++ ABI 2.5.2:
1829  //   Following the primary virtual table of a derived class are secondary
1830  //   virtual tables for each of its proper base classes, except any primary
1831  //   base(s) with which it shares its primary virtual table.
1832
1833  const CXXRecordDecl *RD = Base.getBase();
1834  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1835  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1836
1837  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1838       E = RD->bases_end(); I != E; ++I) {
1839    // Ignore virtual bases, we'll emit them later.
1840    if (I->isVirtual())
1841      continue;
1842
1843    const CXXRecordDecl *BaseDecl =
1844      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1845
1846    // Ignore bases that don't have a vtable.
1847    if (!BaseDecl->isDynamicClass())
1848      continue;
1849
1850    if (isBuildingConstructorVTable()) {
1851      // Itanium C++ ABI 2.6.4:
1852      //   Some of the base class subobjects may not need construction virtual
1853      //   tables, which will therefore not be present in the construction
1854      //   virtual table group, even though the subobject virtual tables are
1855      //   present in the main virtual table group for the complete object.
1856      if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1857        continue;
1858    }
1859
1860    // Get the base offset of this base.
1861    CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1862    CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1863
1864    CharUnits BaseOffsetInLayoutClass =
1865      OffsetInLayoutClass + RelativeBaseOffset;
1866
1867    // Don't emit a secondary vtable for a primary base. We might however want
1868    // to emit secondary vtables for other bases of this base.
1869    if (BaseDecl == PrimaryBase) {
1870      LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1871                             BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1872      continue;
1873    }
1874
1875    // Layout the primary vtable (and any secondary vtables) for this base.
1876    LayoutPrimaryAndSecondaryVTables(
1877      BaseSubobject(BaseDecl, BaseOffset),
1878      BaseIsMorallyVirtual,
1879      /*BaseIsVirtualInLayoutClass=*/false,
1880      BaseOffsetInLayoutClass);
1881  }
1882}
1883
1884void
1885VTableBuilder::DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
1886                                            CharUnits OffsetInLayoutClass,
1887                                            VisitedVirtualBasesSetTy &VBases) {
1888  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1889
1890  // Check if this base has a primary base.
1891  if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1892
1893    // Check if it's virtual.
1894    if (Layout.isPrimaryBaseVirtual()) {
1895      bool IsPrimaryVirtualBase = true;
1896
1897      if (isBuildingConstructorVTable()) {
1898        // Check if the base is actually a primary base in the class we use for
1899        // layout.
1900        const ASTRecordLayout &LayoutClassLayout =
1901          Context.getASTRecordLayout(LayoutClass);
1902
1903        CharUnits PrimaryBaseOffsetInLayoutClass =
1904          LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1905
1906        // We know that the base is not a primary base in the layout class if
1907        // the base offsets are different.
1908        if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1909          IsPrimaryVirtualBase = false;
1910      }
1911
1912      if (IsPrimaryVirtualBase)
1913        PrimaryVirtualBases.insert(PrimaryBase);
1914    }
1915  }
1916
1917  // Traverse bases, looking for more primary virtual bases.
1918  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1919       E = RD->bases_end(); I != E; ++I) {
1920    const CXXRecordDecl *BaseDecl =
1921      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1922
1923    CharUnits BaseOffsetInLayoutClass;
1924
1925    if (I->isVirtual()) {
1926      if (!VBases.insert(BaseDecl))
1927        continue;
1928
1929      const ASTRecordLayout &LayoutClassLayout =
1930        Context.getASTRecordLayout(LayoutClass);
1931
1932      BaseOffsetInLayoutClass =
1933        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1934    } else {
1935      BaseOffsetInLayoutClass =
1936        OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1937    }
1938
1939    DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1940  }
1941}
1942
1943void
1944VTableBuilder::LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
1945                                            VisitedVirtualBasesSetTy &VBases) {
1946  // Itanium C++ ABI 2.5.2:
1947  //   Then come the virtual base virtual tables, also in inheritance graph
1948  //   order, and again excluding primary bases (which share virtual tables with
1949  //   the classes for which they are primary).
1950  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1951       E = RD->bases_end(); I != E; ++I) {
1952    const CXXRecordDecl *BaseDecl =
1953      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1954
1955    // Check if this base needs a vtable. (If it's virtual, not a primary base
1956    // of some other class, and we haven't visited it before).
1957    if (I->isVirtual() && BaseDecl->isDynamicClass() &&
1958        !PrimaryVirtualBases.count(BaseDecl) && VBases.insert(BaseDecl)) {
1959      const ASTRecordLayout &MostDerivedClassLayout =
1960        Context.getASTRecordLayout(MostDerivedClass);
1961      CharUnits BaseOffset =
1962        MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1963
1964      const ASTRecordLayout &LayoutClassLayout =
1965        Context.getASTRecordLayout(LayoutClass);
1966      CharUnits BaseOffsetInLayoutClass =
1967        LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1968
1969      LayoutPrimaryAndSecondaryVTables(
1970        BaseSubobject(BaseDecl, BaseOffset),
1971        /*BaseIsMorallyVirtual=*/true,
1972        /*BaseIsVirtualInLayoutClass=*/true,
1973        BaseOffsetInLayoutClass);
1974    }
1975
1976    // We only need to check the base for virtual base vtables if it actually
1977    // has virtual bases.
1978    if (BaseDecl->getNumVBases())
1979      LayoutVTablesForVirtualBases(BaseDecl, VBases);
1980  }
1981}
1982
1983/// dumpLayout - Dump the vtable layout.
1984void VTableBuilder::dumpLayout(raw_ostream& Out) {
1985
1986  if (isBuildingConstructorVTable()) {
1987    Out << "Construction vtable for ('";
1988    Out << MostDerivedClass->getQualifiedNameAsString() << "', ";
1989    Out << MostDerivedClassOffset.getQuantity() << ") in '";
1990    Out << LayoutClass->getQualifiedNameAsString();
1991  } else {
1992    Out << "Vtable for '";
1993    Out << MostDerivedClass->getQualifiedNameAsString();
1994  }
1995  Out << "' (" << Components.size() << " entries).\n";
1996
1997  // Iterate through the address points and insert them into a new map where
1998  // they are keyed by the index and not the base object.
1999  // Since an address point can be shared by multiple subobjects, we use an
2000  // STL multimap.
2001  std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
2002  for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
2003       E = AddressPoints.end(); I != E; ++I) {
2004    const BaseSubobject& Base = I->first;
2005    uint64_t Index = I->second;
2006
2007    AddressPointsByIndex.insert(std::make_pair(Index, Base));
2008  }
2009
2010  for (unsigned I = 0, E = Components.size(); I != E; ++I) {
2011    uint64_t Index = I;
2012
2013    Out << llvm::format("%4d | ", I);
2014
2015    const VTableComponent &Component = Components[I];
2016
2017    // Dump the component.
2018    switch (Component.getKind()) {
2019
2020    case VTableComponent::CK_VCallOffset:
2021      Out << "vcall_offset ("
2022          << Component.getVCallOffset().getQuantity()
2023          << ")";
2024      break;
2025
2026    case VTableComponent::CK_VBaseOffset:
2027      Out << "vbase_offset ("
2028          << Component.getVBaseOffset().getQuantity()
2029          << ")";
2030      break;
2031
2032    case VTableComponent::CK_OffsetToTop:
2033      Out << "offset_to_top ("
2034          << Component.getOffsetToTop().getQuantity()
2035          << ")";
2036      break;
2037
2038    case VTableComponent::CK_RTTI:
2039      Out << Component.getRTTIDecl()->getQualifiedNameAsString() << " RTTI";
2040      break;
2041
2042    case VTableComponent::CK_FunctionPointer: {
2043      const CXXMethodDecl *MD = Component.getFunctionDecl();
2044
2045      std::string Str =
2046        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2047                                    MD);
2048      Out << Str;
2049      if (MD->isPure())
2050        Out << " [pure]";
2051
2052      ThunkInfo Thunk = VTableThunks.lookup(I);
2053      if (!Thunk.isEmpty()) {
2054        // If this function pointer has a return adjustment, dump it.
2055        if (!Thunk.Return.isEmpty()) {
2056          Out << "\n       [return adjustment: ";
2057          Out << Thunk.Return.NonVirtual << " non-virtual";
2058
2059          if (Thunk.Return.VBaseOffsetOffset) {
2060            Out << ", " << Thunk.Return.VBaseOffsetOffset;
2061            Out << " vbase offset offset";
2062          }
2063
2064          Out << ']';
2065        }
2066
2067        // If this function pointer has a 'this' pointer adjustment, dump it.
2068        if (!Thunk.This.isEmpty()) {
2069          Out << "\n       [this adjustment: ";
2070          Out << Thunk.This.NonVirtual << " non-virtual";
2071
2072          if (Thunk.This.VCallOffsetOffset) {
2073            Out << ", " << Thunk.This.VCallOffsetOffset;
2074            Out << " vcall offset offset";
2075          }
2076
2077          Out << ']';
2078        }
2079      }
2080
2081      break;
2082    }
2083
2084    case VTableComponent::CK_CompleteDtorPointer:
2085    case VTableComponent::CK_DeletingDtorPointer: {
2086      bool IsComplete =
2087        Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2088
2089      const CXXDestructorDecl *DD = Component.getDestructorDecl();
2090
2091      Out << DD->getQualifiedNameAsString();
2092      if (IsComplete)
2093        Out << "() [complete]";
2094      else
2095        Out << "() [deleting]";
2096
2097      if (DD->isPure())
2098        Out << " [pure]";
2099
2100      ThunkInfo Thunk = VTableThunks.lookup(I);
2101      if (!Thunk.isEmpty()) {
2102        // If this destructor has a 'this' pointer adjustment, dump it.
2103        if (!Thunk.This.isEmpty()) {
2104          Out << "\n       [this adjustment: ";
2105          Out << Thunk.This.NonVirtual << " non-virtual";
2106
2107          if (Thunk.This.VCallOffsetOffset) {
2108            Out << ", " << Thunk.This.VCallOffsetOffset;
2109            Out << " vcall offset offset";
2110          }
2111
2112          Out << ']';
2113        }
2114      }
2115
2116      break;
2117    }
2118
2119    case VTableComponent::CK_UnusedFunctionPointer: {
2120      const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2121
2122      std::string Str =
2123        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2124                                    MD);
2125      Out << "[unused] " << Str;
2126      if (MD->isPure())
2127        Out << " [pure]";
2128    }
2129
2130    }
2131
2132    Out << '\n';
2133
2134    // Dump the next address point.
2135    uint64_t NextIndex = Index + 1;
2136    if (AddressPointsByIndex.count(NextIndex)) {
2137      if (AddressPointsByIndex.count(NextIndex) == 1) {
2138        const BaseSubobject &Base =
2139          AddressPointsByIndex.find(NextIndex)->second;
2140
2141        Out << "       -- (" << Base.getBase()->getQualifiedNameAsString();
2142        Out << ", " << Base.getBaseOffset().getQuantity();
2143        Out << ") vtable address --\n";
2144      } else {
2145        CharUnits BaseOffset =
2146          AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2147
2148        // We store the class names in a set to get a stable order.
2149        std::set<std::string> ClassNames;
2150        for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
2151             AddressPointsByIndex.lower_bound(NextIndex), E =
2152             AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
2153          assert(I->second.getBaseOffset() == BaseOffset &&
2154                 "Invalid base offset!");
2155          const CXXRecordDecl *RD = I->second.getBase();
2156          ClassNames.insert(RD->getQualifiedNameAsString());
2157        }
2158
2159        for (std::set<std::string>::const_iterator I = ClassNames.begin(),
2160             E = ClassNames.end(); I != E; ++I) {
2161          Out << "       -- (" << *I;
2162          Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2163        }
2164      }
2165    }
2166  }
2167
2168  Out << '\n';
2169
2170  if (isBuildingConstructorVTable())
2171    return;
2172
2173  if (MostDerivedClass->getNumVBases()) {
2174    // We store the virtual base class names and their offsets in a map to get
2175    // a stable order.
2176
2177    std::map<std::string, CharUnits> ClassNamesAndOffsets;
2178    for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
2179         E = VBaseOffsetOffsets.end(); I != E; ++I) {
2180      std::string ClassName = I->first->getQualifiedNameAsString();
2181      CharUnits OffsetOffset = I->second;
2182      ClassNamesAndOffsets.insert(
2183          std::make_pair(ClassName, OffsetOffset));
2184    }
2185
2186    Out << "Virtual base offset offsets for '";
2187    Out << MostDerivedClass->getQualifiedNameAsString() << "' (";
2188    Out << ClassNamesAndOffsets.size();
2189    Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2190
2191    for (std::map<std::string, CharUnits>::const_iterator I =
2192         ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
2193         I != E; ++I)
2194      Out << "   " << I->first << " | " << I->second.getQuantity() << '\n';
2195
2196    Out << "\n";
2197  }
2198
2199  if (!Thunks.empty()) {
2200    // We store the method names in a map to get a stable order.
2201    std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2202
2203    for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
2204         I != E; ++I) {
2205      const CXXMethodDecl *MD = I->first;
2206      std::string MethodName =
2207        PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2208                                    MD);
2209
2210      MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2211    }
2212
2213    for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
2214         MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
2215         I != E; ++I) {
2216      const std::string &MethodName = I->first;
2217      const CXXMethodDecl *MD = I->second;
2218
2219      ThunkInfoVectorTy ThunksVector = Thunks[MD];
2220      std::sort(ThunksVector.begin(), ThunksVector.end());
2221
2222      Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2223      Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2224
2225      for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2226        const ThunkInfo &Thunk = ThunksVector[I];
2227
2228        Out << llvm::format("%4d | ", I);
2229
2230        // If this function pointer has a return pointer adjustment, dump it.
2231        if (!Thunk.Return.isEmpty()) {
2232          Out << "return adjustment: " << Thunk.This.NonVirtual;
2233          Out << " non-virtual";
2234          if (Thunk.Return.VBaseOffsetOffset) {
2235            Out << ", " << Thunk.Return.VBaseOffsetOffset;
2236            Out << " vbase offset offset";
2237          }
2238
2239          if (!Thunk.This.isEmpty())
2240            Out << "\n       ";
2241        }
2242
2243        // If this function pointer has a 'this' pointer adjustment, dump it.
2244        if (!Thunk.This.isEmpty()) {
2245          Out << "this adjustment: ";
2246          Out << Thunk.This.NonVirtual << " non-virtual";
2247
2248          if (Thunk.This.VCallOffsetOffset) {
2249            Out << ", " << Thunk.This.VCallOffsetOffset;
2250            Out << " vcall offset offset";
2251          }
2252        }
2253
2254        Out << '\n';
2255      }
2256
2257      Out << '\n';
2258    }
2259  }
2260
2261  // Compute the vtable indices for all the member functions.
2262  // Store them in a map keyed by the index so we'll get a sorted table.
2263  std::map<uint64_t, std::string> IndicesMap;
2264
2265  for (CXXRecordDecl::method_iterator i = MostDerivedClass->method_begin(),
2266       e = MostDerivedClass->method_end(); i != e; ++i) {
2267    const CXXMethodDecl *MD = *i;
2268
2269    // We only want virtual member functions.
2270    if (!MD->isVirtual())
2271      continue;
2272
2273    std::string MethodName =
2274      PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2275                                  MD);
2276
2277    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2278      IndicesMap[VTables.getMethodVTableIndex(GlobalDecl(DD, Dtor_Complete))] =
2279        MethodName + " [complete]";
2280      IndicesMap[VTables.getMethodVTableIndex(GlobalDecl(DD, Dtor_Deleting))] =
2281        MethodName + " [deleting]";
2282    } else {
2283      IndicesMap[VTables.getMethodVTableIndex(MD)] = MethodName;
2284    }
2285  }
2286
2287  // Print the vtable indices for all the member functions.
2288  if (!IndicesMap.empty()) {
2289    Out << "VTable indices for '";
2290    Out << MostDerivedClass->getQualifiedNameAsString();
2291    Out << "' (" << IndicesMap.size() << " entries).\n";
2292
2293    for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
2294         E = IndicesMap.end(); I != E; ++I) {
2295      uint64_t VTableIndex = I->first;
2296      const std::string &MethodName = I->second;
2297
2298      Out << llvm::format(" %4u | ", VTableIndex) << MethodName << '\n';
2299    }
2300  }
2301
2302  Out << '\n';
2303}
2304
2305}
2306
2307static void
2308CollectPrimaryBases(const CXXRecordDecl *RD, ASTContext &Context,
2309                    VTableBuilder::PrimaryBasesSetVectorTy &PrimaryBases) {
2310  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2311  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
2312
2313  if (!PrimaryBase)
2314    return;
2315
2316  CollectPrimaryBases(PrimaryBase, Context, PrimaryBases);
2317
2318  if (!PrimaryBases.insert(PrimaryBase))
2319    assert(false && "Found a duplicate primary base!");
2320}
2321
2322void CodeGenVTables::ComputeMethodVTableIndices(const CXXRecordDecl *RD) {
2323
2324  // Itanium C++ ABI 2.5.2:
2325  //   The order of the virtual function pointers in a virtual table is the
2326  //   order of declaration of the corresponding member functions in the class.
2327  //
2328  //   There is an entry for any virtual function declared in a class,
2329  //   whether it is a new function or overrides a base class function,
2330  //   unless it overrides a function from the primary base, and conversion
2331  //   between their return types does not require an adjustment.
2332
2333  int64_t CurrentIndex = 0;
2334
2335  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
2336  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
2337
2338  if (PrimaryBase) {
2339    assert(PrimaryBase->isDefinition() &&
2340           "Should have the definition decl of the primary base!");
2341
2342    // Since the record decl shares its vtable pointer with the primary base
2343    // we need to start counting at the end of the primary base's vtable.
2344    CurrentIndex = getNumVirtualFunctionPointers(PrimaryBase);
2345  }
2346
2347  // Collect all the primary bases, so we can check whether methods override
2348  // a method from the base.
2349  VTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
2350  CollectPrimaryBases(RD, CGM.getContext(), PrimaryBases);
2351
2352  const CXXDestructorDecl *ImplicitVirtualDtor = 0;
2353
2354  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2355       e = RD->method_end(); i != e; ++i) {
2356    const CXXMethodDecl *MD = *i;
2357
2358    // We only want virtual methods.
2359    if (!MD->isVirtual())
2360      continue;
2361
2362    // Check if this method overrides a method in the primary base.
2363    if (const CXXMethodDecl *OverriddenMD =
2364          FindNearestOverriddenMethod(MD, PrimaryBases)) {
2365      // Check if converting from the return type of the method to the
2366      // return type of the overridden method requires conversion.
2367      if (ComputeReturnAdjustmentBaseOffset(CGM.getContext(), MD,
2368                                            OverriddenMD).isEmpty()) {
2369        // This index is shared between the index in the vtable of the primary
2370        // base class.
2371        if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2372          const CXXDestructorDecl *OverriddenDD =
2373            cast<CXXDestructorDecl>(OverriddenMD);
2374
2375          // Add both the complete and deleting entries.
2376          MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] =
2377            getMethodVTableIndex(GlobalDecl(OverriddenDD, Dtor_Complete));
2378          MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] =
2379            getMethodVTableIndex(GlobalDecl(OverriddenDD, Dtor_Deleting));
2380        } else {
2381          MethodVTableIndices[MD] = getMethodVTableIndex(OverriddenMD);
2382        }
2383
2384        // We don't need to add an entry for this method.
2385        continue;
2386      }
2387    }
2388
2389    if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2390      if (MD->isImplicit()) {
2391        assert(!ImplicitVirtualDtor &&
2392               "Did already see an implicit virtual dtor!");
2393        ImplicitVirtualDtor = DD;
2394        continue;
2395      }
2396
2397      // Add the complete dtor.
2398      MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] = CurrentIndex++;
2399
2400      // Add the deleting dtor.
2401      MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] = CurrentIndex++;
2402    } else {
2403      // Add the entry.
2404      MethodVTableIndices[MD] = CurrentIndex++;
2405    }
2406  }
2407
2408  if (ImplicitVirtualDtor) {
2409    // Itanium C++ ABI 2.5.2:
2410    //   If a class has an implicitly-defined virtual destructor,
2411    //   its entries come after the declared virtual function pointers.
2412
2413    // Add the complete dtor.
2414    MethodVTableIndices[GlobalDecl(ImplicitVirtualDtor, Dtor_Complete)] =
2415      CurrentIndex++;
2416
2417    // Add the deleting dtor.
2418    MethodVTableIndices[GlobalDecl(ImplicitVirtualDtor, Dtor_Deleting)] =
2419      CurrentIndex++;
2420  }
2421
2422  NumVirtualFunctionPointers[RD] = CurrentIndex;
2423}
2424
2425bool CodeGenVTables::ShouldEmitVTableInThisTU(const CXXRecordDecl *RD) {
2426  assert(RD->isDynamicClass() && "Non dynamic classes have no VTable.");
2427
2428  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2429  if (TSK == TSK_ExplicitInstantiationDeclaration)
2430    return false;
2431
2432  const CXXMethodDecl *KeyFunction = CGM.getContext().getKeyFunction(RD);
2433  if (!KeyFunction)
2434    return true;
2435
2436  // Itanium C++ ABI, 5.2.6 Instantiated Templates:
2437  //    An instantiation of a class template requires:
2438  //        - In the object where instantiated, the virtual table...
2439  if (TSK == TSK_ImplicitInstantiation ||
2440      TSK == TSK_ExplicitInstantiationDefinition)
2441    return true;
2442
2443  // If we're building with optimization, we always emit VTables since that
2444  // allows for virtual function calls to be devirtualized.
2445  // (We don't want to do this in -fapple-kext mode however).
2446  if (CGM.getCodeGenOpts().OptimizationLevel && !CGM.getLangOptions().AppleKext)
2447    return true;
2448
2449  return KeyFunction->hasBody();
2450}
2451
2452uint64_t CodeGenVTables::getNumVirtualFunctionPointers(const CXXRecordDecl *RD) {
2453  llvm::DenseMap<const CXXRecordDecl *, uint64_t>::iterator I =
2454    NumVirtualFunctionPointers.find(RD);
2455  if (I != NumVirtualFunctionPointers.end())
2456    return I->second;
2457
2458  ComputeMethodVTableIndices(RD);
2459
2460  I = NumVirtualFunctionPointers.find(RD);
2461  assert(I != NumVirtualFunctionPointers.end() && "Did not find entry!");
2462  return I->second;
2463}
2464
2465uint64_t CodeGenVTables::getMethodVTableIndex(GlobalDecl GD) {
2466  MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2467  if (I != MethodVTableIndices.end())
2468    return I->second;
2469
2470  const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2471
2472  ComputeMethodVTableIndices(RD);
2473
2474  I = MethodVTableIndices.find(GD);
2475  assert(I != MethodVTableIndices.end() && "Did not find index!");
2476  return I->second;
2477}
2478
2479CharUnits
2480CodeGenVTables::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2481                                           const CXXRecordDecl *VBase) {
2482  ClassPairTy ClassPair(RD, VBase);
2483
2484  VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2485    VirtualBaseClassOffsetOffsets.find(ClassPair);
2486  if (I != VirtualBaseClassOffsetOffsets.end())
2487    return I->second;
2488
2489  VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/0,
2490                                     BaseSubobject(RD, CharUnits::Zero()),
2491                                     /*BaseIsVirtual=*/false,
2492                                     /*OffsetInLayoutClass=*/CharUnits::Zero());
2493
2494  for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
2495       Builder.getVBaseOffsetOffsets().begin(),
2496       E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
2497    // Insert all types.
2498    ClassPairTy ClassPair(RD, I->first);
2499
2500    VirtualBaseClassOffsetOffsets.insert(
2501        std::make_pair(ClassPair, I->second));
2502  }
2503
2504  I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2505  assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2506
2507  return I->second;
2508}
2509
2510uint64_t
2511CodeGenVTables::getAddressPoint(BaseSubobject Base, const CXXRecordDecl *RD) {
2512  assert(AddressPoints.count(std::make_pair(RD, Base)) &&
2513         "Did not find address point!");
2514
2515  uint64_t AddressPoint = AddressPoints.lookup(std::make_pair(RD, Base));
2516  assert(AddressPoint && "Address point must not be zero!");
2517
2518  return AddressPoint;
2519}
2520
2521llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
2522                                              const ThunkInfo &Thunk) {
2523  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
2524
2525  // Compute the mangled name.
2526  llvm::SmallString<256> Name;
2527  llvm::raw_svector_ostream Out(Name);
2528  if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
2529    getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
2530                                                      Thunk.This, Out);
2531  else
2532    getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
2533  Out.flush();
2534
2535  llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
2536  return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true);
2537}
2538
2539static llvm::Value *PerformTypeAdjustment(CodeGenFunction &CGF,
2540                                          llvm::Value *Ptr,
2541                                          int64_t NonVirtualAdjustment,
2542                                          int64_t VirtualAdjustment) {
2543  if (!NonVirtualAdjustment && !VirtualAdjustment)
2544    return Ptr;
2545
2546  llvm::Type *Int8PtrTy =
2547    llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2548
2549  llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy);
2550
2551  if (NonVirtualAdjustment) {
2552    // Do the non-virtual adjustment.
2553    V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
2554  }
2555
2556  if (VirtualAdjustment) {
2557    llvm::Type *PtrDiffTy =
2558      CGF.ConvertType(CGF.getContext().getPointerDiffType());
2559
2560    // Do the virtual adjustment.
2561    llvm::Value *VTablePtrPtr =
2562      CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo());
2563
2564    llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
2565
2566    llvm::Value *OffsetPtr =
2567      CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
2568
2569    OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
2570
2571    // Load the adjustment offset from the vtable.
2572    llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr);
2573
2574    // Adjust our pointer.
2575    V = CGF.Builder.CreateInBoundsGEP(V, Offset);
2576  }
2577
2578  // Cast back to the original type.
2579  return CGF.Builder.CreateBitCast(V, Ptr->getType());
2580}
2581
2582static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
2583                               const ThunkInfo &Thunk, llvm::Function *Fn) {
2584  CGM.setGlobalVisibility(Fn, MD);
2585
2586  if (!CGM.getCodeGenOpts().HiddenWeakVTables)
2587    return;
2588
2589  // If the thunk has weak/linkonce linkage, but the function must be
2590  // emitted in every translation unit that references it, then we can
2591  // emit its thunks with hidden visibility, since its thunks must be
2592  // emitted when the function is.
2593
2594  // This follows CodeGenModule::setTypeVisibility; see the comments
2595  // there for explanation.
2596
2597  if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage &&
2598       Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) ||
2599      Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
2600    return;
2601
2602  if (MD->getExplicitVisibility())
2603    return;
2604
2605  switch (MD->getTemplateSpecializationKind()) {
2606  case TSK_ExplicitInstantiationDefinition:
2607  case TSK_ExplicitInstantiationDeclaration:
2608    return;
2609
2610  case TSK_Undeclared:
2611    break;
2612
2613  case TSK_ExplicitSpecialization:
2614  case TSK_ImplicitInstantiation:
2615    if (!CGM.getCodeGenOpts().HiddenWeakTemplateVTables)
2616      return;
2617    break;
2618  }
2619
2620  // If there's an explicit definition, and that definition is
2621  // out-of-line, then we can't assume that all users will have a
2622  // definition to emit.
2623  const FunctionDecl *Def = 0;
2624  if (MD->hasBody(Def) && Def->isOutOfLine())
2625    return;
2626
2627  Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
2628}
2629
2630#ifndef NDEBUG
2631static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
2632                    const ABIArgInfo &infoR, CanQualType typeR) {
2633  return (infoL.getKind() == infoR.getKind() &&
2634          (typeL == typeR ||
2635           (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
2636           (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
2637}
2638#endif
2639
2640static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
2641                                      QualType ResultType, RValue RV,
2642                                      const ThunkInfo &Thunk) {
2643  // Emit the return adjustment.
2644  bool NullCheckValue = !ResultType->isReferenceType();
2645
2646  llvm::BasicBlock *AdjustNull = 0;
2647  llvm::BasicBlock *AdjustNotNull = 0;
2648  llvm::BasicBlock *AdjustEnd = 0;
2649
2650  llvm::Value *ReturnValue = RV.getScalarVal();
2651
2652  if (NullCheckValue) {
2653    AdjustNull = CGF.createBasicBlock("adjust.null");
2654    AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
2655    AdjustEnd = CGF.createBasicBlock("adjust.end");
2656
2657    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
2658    CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
2659    CGF.EmitBlock(AdjustNotNull);
2660  }
2661
2662  ReturnValue = PerformTypeAdjustment(CGF, ReturnValue,
2663                                      Thunk.Return.NonVirtual,
2664                                      Thunk.Return.VBaseOffsetOffset);
2665
2666  if (NullCheckValue) {
2667    CGF.Builder.CreateBr(AdjustEnd);
2668    CGF.EmitBlock(AdjustNull);
2669    CGF.Builder.CreateBr(AdjustEnd);
2670    CGF.EmitBlock(AdjustEnd);
2671
2672    llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
2673    PHI->addIncoming(ReturnValue, AdjustNotNull);
2674    PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
2675                     AdjustNull);
2676    ReturnValue = PHI;
2677  }
2678
2679  return RValue::get(ReturnValue);
2680}
2681
2682// This function does roughly the same thing as GenerateThunk, but in a
2683// very different way, so that va_start and va_end work correctly.
2684// FIXME: This function assumes "this" is the first non-sret LLVM argument of
2685//        a function, and that there is an alloca built in the entry block
2686//        for all accesses to "this".
2687// FIXME: This function assumes there is only one "ret" statement per function.
2688// FIXME: Cloning isn't correct in the presence of indirect goto!
2689// FIXME: This implementation of thunks bloats codesize by duplicating the
2690//        function definition.  There are alternatives:
2691//        1. Add some sort of stub support to LLVM for cases where we can
2692//           do a this adjustment, then a sibcall.
2693//        2. We could transform the definition to take a va_list instead of an
2694//           actual variable argument list, then have the thunks (including a
2695//           no-op thunk for the regular definition) call va_start/va_end.
2696//           There's a bit of per-call overhead for this solution, but it's
2697//           better for codesize if the definition is long.
2698void CodeGenFunction::GenerateVarArgsThunk(
2699                                      llvm::Function *Fn,
2700                                      const CGFunctionInfo &FnInfo,
2701                                      GlobalDecl GD, const ThunkInfo &Thunk) {
2702  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
2703  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
2704  QualType ResultType = FPT->getResultType();
2705
2706  // Get the original function
2707  llvm::Type *Ty =
2708    CGM.getTypes().GetFunctionType(FnInfo, /*IsVariadic*/true);
2709  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
2710  llvm::Function *BaseFn = cast<llvm::Function>(Callee);
2711
2712  // Clone to thunk.
2713  llvm::Function *NewFn = llvm::CloneFunction(BaseFn);
2714  CGM.getModule().getFunctionList().push_back(NewFn);
2715  Fn->replaceAllUsesWith(NewFn);
2716  NewFn->takeName(Fn);
2717  Fn->eraseFromParent();
2718  Fn = NewFn;
2719
2720  // "Initialize" CGF (minimally).
2721  CurFn = Fn;
2722
2723  // Get the "this" value
2724  llvm::Function::arg_iterator AI = Fn->arg_begin();
2725  if (CGM.ReturnTypeUsesSRet(FnInfo))
2726    ++AI;
2727
2728  // Find the first store of "this", which will be to the alloca associated
2729  // with "this".
2730  llvm::Value *ThisPtr = &*AI;
2731  llvm::BasicBlock *EntryBB = Fn->begin();
2732  llvm::Instruction *ThisStore = 0;
2733  for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end();
2734       I != E; I++) {
2735    if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) {
2736      ThisStore = cast<llvm::StoreInst>(I);
2737      break;
2738    }
2739  }
2740  assert(ThisStore && "Store of this should be in entry block?");
2741  // Adjust "this", if necessary.
2742  Builder.SetInsertPoint(ThisStore);
2743  llvm::Value *AdjustedThisPtr =
2744    PerformTypeAdjustment(*this, ThisPtr,
2745                          Thunk.This.NonVirtual,
2746                          Thunk.This.VCallOffsetOffset);
2747  ThisStore->setOperand(0, AdjustedThisPtr);
2748
2749  if (!Thunk.Return.isEmpty()) {
2750    // Fix up the returned value, if necessary.
2751    for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
2752      llvm::Instruction *T = I->getTerminator();
2753      if (isa<llvm::ReturnInst>(T)) {
2754        RValue RV = RValue::get(T->getOperand(0));
2755        T->eraseFromParent();
2756        Builder.SetInsertPoint(&*I);
2757        RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
2758        Builder.CreateRet(RV.getScalarVal());
2759        break;
2760      }
2761    }
2762  }
2763}
2764
2765void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
2766                                    const CGFunctionInfo &FnInfo,
2767                                    GlobalDecl GD, const ThunkInfo &Thunk) {
2768  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
2769  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
2770  QualType ResultType = FPT->getResultType();
2771  QualType ThisType = MD->getThisType(getContext());
2772
2773  FunctionArgList FunctionArgs;
2774
2775  // FIXME: It would be nice if more of this code could be shared with
2776  // CodeGenFunction::GenerateCode.
2777
2778  // Create the implicit 'this' parameter declaration.
2779  CurGD = GD;
2780  CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs);
2781
2782  // Add the rest of the parameters.
2783  for (FunctionDecl::param_const_iterator I = MD->param_begin(),
2784       E = MD->param_end(); I != E; ++I) {
2785    ParmVarDecl *Param = *I;
2786
2787    FunctionArgs.push_back(Param);
2788  }
2789
2790  StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
2791                SourceLocation());
2792
2793  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2794
2795  // Adjust the 'this' pointer if necessary.
2796  llvm::Value *AdjustedThisPtr =
2797    PerformTypeAdjustment(*this, LoadCXXThis(),
2798                          Thunk.This.NonVirtual,
2799                          Thunk.This.VCallOffsetOffset);
2800
2801  CallArgList CallArgs;
2802
2803  // Add our adjusted 'this' pointer.
2804  CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
2805
2806  // Add the rest of the parameters.
2807  for (FunctionDecl::param_const_iterator I = MD->param_begin(),
2808       E = MD->param_end(); I != E; ++I) {
2809    ParmVarDecl *param = *I;
2810    EmitDelegateCallArg(CallArgs, param);
2811  }
2812
2813  // Get our callee.
2814  llvm::Type *Ty =
2815    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(GD),
2816                                   FPT->isVariadic());
2817  llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
2818
2819#ifndef NDEBUG
2820  const CGFunctionInfo &CallFnInfo =
2821    CGM.getTypes().getFunctionInfo(ResultType, CallArgs, FPT->getExtInfo());
2822  assert(CallFnInfo.getRegParm() == FnInfo.getRegParm() &&
2823         CallFnInfo.isNoReturn() == FnInfo.isNoReturn() &&
2824         CallFnInfo.getCallingConvention() == FnInfo.getCallingConvention());
2825  assert(similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
2826                 FnInfo.getReturnInfo(), FnInfo.getReturnType()));
2827  assert(CallFnInfo.arg_size() == FnInfo.arg_size());
2828  for (unsigned i = 0, e = FnInfo.arg_size(); i != e; ++i)
2829    assert(similar(CallFnInfo.arg_begin()[i].info,
2830                   CallFnInfo.arg_begin()[i].type,
2831                   FnInfo.arg_begin()[i].info, FnInfo.arg_begin()[i].type));
2832#endif
2833
2834  // Determine whether we have a return value slot to use.
2835  ReturnValueSlot Slot;
2836  if (!ResultType->isVoidType() &&
2837      FnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2838      hasAggregateLLVMType(CurFnInfo->getReturnType()))
2839    Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
2840
2841  // Now emit our call.
2842  RValue RV = EmitCall(FnInfo, Callee, Slot, CallArgs, MD);
2843
2844  if (!Thunk.Return.isEmpty())
2845    RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
2846
2847  if (!ResultType->isVoidType() && Slot.isNull())
2848    CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
2849
2850  FinishFunction();
2851
2852  // Set the right linkage.
2853  CGM.setFunctionLinkage(MD, Fn);
2854
2855  // Set the right visibility.
2856  setThunkVisibility(CGM, MD, Thunk, Fn);
2857}
2858
2859void CodeGenVTables::EmitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
2860                               bool UseAvailableExternallyLinkage)
2861{
2862  const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(GD);
2863
2864  // FIXME: re-use FnInfo in this computation.
2865  llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk);
2866
2867  // Strip off a bitcast if we got one back.
2868  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2869    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2870    Entry = CE->getOperand(0);
2871  }
2872
2873  // There's already a declaration with the same name, check if it has the same
2874  // type or if we need to replace it.
2875  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() !=
2876      CGM.getTypes().GetFunctionTypeForVTable(GD)) {
2877    llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry);
2878
2879    // If the types mismatch then we have to rewrite the definition.
2880    assert(OldThunkFn->isDeclaration() &&
2881           "Shouldn't replace non-declaration");
2882
2883    // Remove the name from the old thunk function and get a new thunk.
2884    OldThunkFn->setName(StringRef());
2885    Entry = CGM.GetAddrOfThunk(GD, Thunk);
2886
2887    // If needed, replace the old thunk with a bitcast.
2888    if (!OldThunkFn->use_empty()) {
2889      llvm::Constant *NewPtrForOldDecl =
2890        llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
2891      OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
2892    }
2893
2894    // Remove the old thunk.
2895    OldThunkFn->eraseFromParent();
2896  }
2897
2898  llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
2899
2900  if (!ThunkFn->isDeclaration()) {
2901    if (UseAvailableExternallyLinkage) {
2902      // There is already a thunk emitted for this function, do nothing.
2903      return;
2904    }
2905
2906    // If a function has a body, it should have available_externally linkage.
2907    assert(ThunkFn->hasAvailableExternallyLinkage() &&
2908           "Function should have available_externally linkage!");
2909
2910    // Change the linkage.
2911    CGM.setFunctionLinkage(cast<CXXMethodDecl>(GD.getDecl()), ThunkFn);
2912    return;
2913  }
2914
2915  if (ThunkFn->isVarArg()) {
2916    // Varargs thunks are special; we can't just generate a call because
2917    // we can't copy the varargs.  Our implementation is rather
2918    // expensive/sucky at the moment, so don't generate the thunk unless
2919    // we have to.
2920    // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
2921    if (!UseAvailableExternallyLinkage)
2922      CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
2923  } else {
2924    // Normal thunk body generation.
2925    CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
2926  }
2927
2928  if (UseAvailableExternallyLinkage)
2929    ThunkFn->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2930}
2931
2932void CodeGenVTables::MaybeEmitThunkAvailableExternally(GlobalDecl GD,
2933                                                       const ThunkInfo &Thunk) {
2934  // We only want to do this when building with optimizations.
2935  if (!CGM.getCodeGenOpts().OptimizationLevel)
2936    return;
2937
2938  // We can't emit thunks for member functions with incomplete types.
2939  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
2940  if (!CGM.getTypes().isFuncTypeConvertible(
2941                                cast<FunctionType>(MD->getType().getTypePtr())))
2942    return;
2943
2944  EmitThunk(GD, Thunk, /*UseAvailableExternallyLinkage=*/true);
2945}
2946
2947void CodeGenVTables::EmitThunks(GlobalDecl GD)
2948{
2949  const CXXMethodDecl *MD =
2950    cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
2951
2952  // We don't need to generate thunks for the base destructor.
2953  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
2954    return;
2955
2956  const CXXRecordDecl *RD = MD->getParent();
2957
2958  // Compute VTable related info for this class.
2959  ComputeVTableRelatedInformation(RD, false);
2960
2961  ThunksMapTy::const_iterator I = Thunks.find(MD);
2962  if (I == Thunks.end()) {
2963    // We did not find a thunk for this method.
2964    return;
2965  }
2966
2967  const ThunkInfoVectorTy &ThunkInfoVector = I->second;
2968  for (unsigned I = 0, E = ThunkInfoVector.size(); I != E; ++I)
2969    EmitThunk(GD, ThunkInfoVector[I], /*UseAvailableExternallyLinkage=*/false);
2970}
2971
2972void CodeGenVTables::ComputeVTableRelatedInformation(const CXXRecordDecl *RD,
2973                                                     bool RequireVTable) {
2974  VTableLayoutData &Entry = VTableLayoutMap[RD];
2975
2976  // We may need to generate a definition for this vtable.
2977  if (RequireVTable && !Entry.getInt()) {
2978    if (ShouldEmitVTableInThisTU(RD))
2979      CGM.DeferredVTables.push_back(RD);
2980
2981    Entry.setInt(true);
2982  }
2983
2984  // Check if we've computed this information before.
2985  if (Entry.getPointer())
2986    return;
2987
2988  VTableBuilder Builder(*this, RD, CharUnits::Zero(),
2989                        /*MostDerivedClassIsVirtual=*/0, RD);
2990
2991  // Add the VTable layout.
2992  uint64_t NumVTableComponents = Builder.getNumVTableComponents();
2993  // -fapple-kext adds an extra entry at end of vtbl.
2994  bool IsAppleKext = CGM.getContext().getLangOptions().AppleKext;
2995  if (IsAppleKext)
2996    NumVTableComponents += 1;
2997
2998  uint64_t *LayoutData = new uint64_t[NumVTableComponents + 1];
2999  if (IsAppleKext)
3000    LayoutData[NumVTableComponents] = 0;
3001  Entry.setPointer(LayoutData);
3002
3003  // Store the number of components.
3004  LayoutData[0] = NumVTableComponents;
3005
3006  // Store the components.
3007  std::copy(Builder.vtable_components_data_begin(),
3008            Builder.vtable_components_data_end(),
3009            &LayoutData[1]);
3010
3011  // Add the known thunks.
3012  Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3013
3014  // Add the thunks needed in this vtable.
3015  assert(!VTableThunksMap.count(RD) &&
3016         "Thunks already exists for this vtable!");
3017
3018  VTableThunksTy &VTableThunks = VTableThunksMap[RD];
3019  VTableThunks.append(Builder.vtable_thunks_begin(),
3020                      Builder.vtable_thunks_end());
3021
3022  // Sort them.
3023  std::sort(VTableThunks.begin(), VTableThunks.end());
3024
3025  // Add the address points.
3026  for (VTableBuilder::AddressPointsMapTy::const_iterator I =
3027       Builder.address_points_begin(), E = Builder.address_points_end();
3028       I != E; ++I) {
3029
3030    uint64_t &AddressPoint = AddressPoints[std::make_pair(RD, I->first)];
3031
3032    // Check if we already have the address points for this base.
3033    assert(!AddressPoint && "Address point already exists for this base!");
3034
3035    AddressPoint = I->second;
3036  }
3037
3038  // If we don't have the vbase information for this class, insert it.
3039  // getVirtualBaseOffsetOffset will compute it separately without computing
3040  // the rest of the vtable related information.
3041  if (!RD->getNumVBases())
3042    return;
3043
3044  const RecordType *VBaseRT =
3045    RD->vbases_begin()->getType()->getAs<RecordType>();
3046  const CXXRecordDecl *VBase = cast<CXXRecordDecl>(VBaseRT->getDecl());
3047
3048  if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
3049    return;
3050
3051  for (VTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
3052       Builder.getVBaseOffsetOffsets().begin(),
3053       E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
3054    // Insert all types.
3055    ClassPairTy ClassPair(RD, I->first);
3056
3057    VirtualBaseClassOffsetOffsets.insert(
3058        std::make_pair(ClassPair, I->second));
3059  }
3060}
3061
3062llvm::Constant *
3063CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD,
3064                                        const uint64_t *Components,
3065                                        unsigned NumComponents,
3066                                        const VTableThunksTy &VTableThunks) {
3067  SmallVector<llvm::Constant *, 64> Inits;
3068
3069  llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
3070
3071  llvm::Type *PtrDiffTy =
3072    CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
3073
3074  QualType ClassType = CGM.getContext().getTagDeclType(RD);
3075  llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType);
3076
3077  unsigned NextVTableThunkIndex = 0;
3078
3079  llvm::Constant* PureVirtualFn = 0;
3080
3081  for (unsigned I = 0; I != NumComponents; ++I) {
3082    VTableComponent Component =
3083      VTableComponent::getFromOpaqueInteger(Components[I]);
3084
3085    llvm::Constant *Init = 0;
3086
3087    switch (Component.getKind()) {
3088    case VTableComponent::CK_VCallOffset:
3089      Init = llvm::ConstantInt::get(PtrDiffTy,
3090                                    Component.getVCallOffset().getQuantity());
3091      Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
3092      break;
3093    case VTableComponent::CK_VBaseOffset:
3094      Init = llvm::ConstantInt::get(PtrDiffTy,
3095                                    Component.getVBaseOffset().getQuantity());
3096      Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
3097      break;
3098    case VTableComponent::CK_OffsetToTop:
3099      Init = llvm::ConstantInt::get(PtrDiffTy,
3100                                    Component.getOffsetToTop().getQuantity());
3101      Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
3102      break;
3103    case VTableComponent::CK_RTTI:
3104      Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
3105      break;
3106    case VTableComponent::CK_FunctionPointer:
3107    case VTableComponent::CK_CompleteDtorPointer:
3108    case VTableComponent::CK_DeletingDtorPointer: {
3109      GlobalDecl GD;
3110
3111      // Get the right global decl.
3112      switch (Component.getKind()) {
3113      default:
3114        llvm_unreachable("Unexpected vtable component kind");
3115      case VTableComponent::CK_FunctionPointer:
3116        GD = Component.getFunctionDecl();
3117        break;
3118      case VTableComponent::CK_CompleteDtorPointer:
3119        GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
3120        break;
3121      case VTableComponent::CK_DeletingDtorPointer:
3122        GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
3123        break;
3124      }
3125
3126      if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
3127        // We have a pure virtual member function.
3128        if (!PureVirtualFn) {
3129          llvm::FunctionType *Ty =
3130            llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
3131                                    /*isVarArg=*/false);
3132          PureVirtualFn =
3133            CGM.CreateRuntimeFunction(Ty, "__cxa_pure_virtual");
3134          PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
3135                                                         Int8PtrTy);
3136        }
3137
3138        Init = PureVirtualFn;
3139      } else {
3140        // Check if we should use a thunk.
3141        if (NextVTableThunkIndex < VTableThunks.size() &&
3142            VTableThunks[NextVTableThunkIndex].first == I) {
3143          const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
3144
3145          Init = CGM.GetAddrOfThunk(GD, Thunk);
3146          MaybeEmitThunkAvailableExternally(GD, Thunk);
3147
3148          NextVTableThunkIndex++;
3149        } else {
3150          llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
3151
3152          Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
3153        }
3154
3155        Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
3156      }
3157      break;
3158    }
3159
3160    case VTableComponent::CK_UnusedFunctionPointer:
3161      Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
3162      break;
3163    };
3164
3165    Inits.push_back(Init);
3166  }
3167
3168  llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
3169  return llvm::ConstantArray::get(ArrayType, Inits);
3170}
3171
3172llvm::GlobalVariable *CodeGenVTables::GetAddrOfVTable(const CXXRecordDecl *RD) {
3173  llvm::SmallString<256> OutName;
3174  llvm::raw_svector_ostream Out(OutName);
3175  CGM.getCXXABI().getMangleContext().mangleCXXVTable(RD, Out);
3176  Out.flush();
3177  StringRef Name = OutName.str();
3178
3179  ComputeVTableRelatedInformation(RD, /*VTableRequired=*/true);
3180
3181  llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
3182  llvm::ArrayType *ArrayType =
3183    llvm::ArrayType::get(Int8PtrTy, getNumVTableComponents(RD));
3184
3185  llvm::GlobalVariable *GV =
3186    CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType,
3187                                          llvm::GlobalValue::ExternalLinkage);
3188  GV->setUnnamedAddr(true);
3189  return GV;
3190}
3191
3192void
3193CodeGenVTables::EmitVTableDefinition(llvm::GlobalVariable *VTable,
3194                                     llvm::GlobalVariable::LinkageTypes Linkage,
3195                                     const CXXRecordDecl *RD) {
3196  // Dump the vtable layout if necessary.
3197  if (CGM.getLangOptions().DumpVTableLayouts) {
3198    VTableBuilder Builder(*this, RD, CharUnits::Zero(),
3199                          /*MostDerivedClassIsVirtual=*/0, RD);
3200
3201    Builder.dumpLayout(llvm::errs());
3202  }
3203
3204  assert(VTableThunksMap.count(RD) &&
3205         "No thunk status for this record decl!");
3206
3207  const VTableThunksTy& Thunks = VTableThunksMap[RD];
3208
3209  // Create and set the initializer.
3210  llvm::Constant *Init =
3211    CreateVTableInitializer(RD, getVTableComponentsData(RD),
3212                            getNumVTableComponents(RD), Thunks);
3213  VTable->setInitializer(Init);
3214
3215  // Set the correct linkage.
3216  VTable->setLinkage(Linkage);
3217
3218  // Set the right visibility.
3219  CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForVTable);
3220}
3221
3222llvm::GlobalVariable *
3223CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
3224                                      const BaseSubobject &Base,
3225                                      bool BaseIsVirtual,
3226                                   llvm::GlobalVariable::LinkageTypes Linkage,
3227                                      VTableAddressPointsMapTy& AddressPoints) {
3228  VTableBuilder Builder(*this, Base.getBase(),
3229                        Base.getBaseOffset(),
3230                        /*MostDerivedClassIsVirtual=*/BaseIsVirtual, RD);
3231
3232  // Dump the vtable layout if necessary.
3233  if (CGM.getLangOptions().DumpVTableLayouts)
3234    Builder.dumpLayout(llvm::errs());
3235
3236  // Add the address points.
3237  AddressPoints.insert(Builder.address_points_begin(),
3238                       Builder.address_points_end());
3239
3240  // Get the mangled construction vtable name.
3241  llvm::SmallString<256> OutName;
3242  llvm::raw_svector_ostream Out(OutName);
3243  CGM.getCXXABI().getMangleContext().
3244    mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), Base.getBase(),
3245                        Out);
3246  Out.flush();
3247  StringRef Name = OutName.str();
3248
3249  llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
3250  llvm::ArrayType *ArrayType =
3251    llvm::ArrayType::get(Int8PtrTy, Builder.getNumVTableComponents());
3252
3253  // Create the variable that will hold the construction vtable.
3254  llvm::GlobalVariable *VTable =
3255    CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
3256  CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable);
3257
3258  // V-tables are always unnamed_addr.
3259  VTable->setUnnamedAddr(true);
3260
3261  // Add the thunks.
3262  VTableThunksTy VTableThunks;
3263  VTableThunks.append(Builder.vtable_thunks_begin(),
3264                      Builder.vtable_thunks_end());
3265
3266  // Sort them.
3267  std::sort(VTableThunks.begin(), VTableThunks.end());
3268
3269  // Create and set the initializer.
3270  llvm::Constant *Init =
3271    CreateVTableInitializer(Base.getBase(),
3272                            Builder.vtable_components_data_begin(),
3273                            Builder.getNumVTableComponents(), VTableThunks);
3274  VTable->setInitializer(Init);
3275
3276  return VTable;
3277}
3278
3279void
3280CodeGenVTables::GenerateClassData(llvm::GlobalVariable::LinkageTypes Linkage,
3281                                  const CXXRecordDecl *RD) {
3282  llvm::GlobalVariable *&VTable = VTables[RD];
3283  if (VTable) {
3284    assert(VTable->getInitializer() && "VTable doesn't have a definition!");
3285    return;
3286  }
3287
3288  VTable = GetAddrOfVTable(RD);
3289  EmitVTableDefinition(VTable, Linkage, RD);
3290
3291  if (RD->getNumVBases()) {
3292    llvm::GlobalVariable *VTT = GetAddrOfVTT(RD);
3293    EmitVTTDefinition(VTT, Linkage, RD);
3294  }
3295
3296  // If this is the magic class __cxxabiv1::__fundamental_type_info,
3297  // we will emit the typeinfo for the fundamental types. This is the
3298  // same behaviour as GCC.
3299  const DeclContext *DC = RD->getDeclContext();
3300  if (RD->getIdentifier() &&
3301      RD->getIdentifier()->isStr("__fundamental_type_info") &&
3302      isa<NamespaceDecl>(DC) &&
3303      cast<NamespaceDecl>(DC)->getIdentifier() &&
3304      cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
3305      DC->getParent()->isTranslationUnit())
3306    CGM.EmitFundamentalRTTIDescriptors();
3307}
3308