CodeGenModule.cpp revision 293361afd4199c92aabff9267fddea890943c586
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44    VMContext(M.getContext()) {
45
46  if (!Features.ObjC1)
47    Runtime = 0;
48  else if (!Features.NeXTRuntime)
49    Runtime = CreateGNUObjCRuntime(*this);
50  else if (Features.ObjCNonFragileABI)
51    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52  else
53    Runtime = CreateMacObjCRuntime(*this);
54
55  // If debug info generation is enabled, create the CGDebugInfo object.
56  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57}
58
59CodeGenModule::~CodeGenModule() {
60  delete Runtime;
61  delete DebugInfo;
62}
63
64void CodeGenModule::Release() {
65  // We need to call this first because it can add deferred declarations.
66  EmitCXXGlobalInitFunc();
67
68  EmitDeferred();
69  if (Runtime)
70    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71      AddGlobalCtor(ObjCInitFunction);
72  EmitCtorList(GlobalCtors, "llvm.global_ctors");
73  EmitCtorList(GlobalDtors, "llvm.global_dtors");
74  EmitAnnotations();
75  EmitLLVMUsed();
76}
77
78/// ErrorUnsupported - Print out an error that codegen doesn't support the
79/// specified stmt yet.
80void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                     bool OmitOnError) {
82  if (OmitOnError && getDiags().hasErrorOccurred())
83    return;
84  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                               "cannot compile this %0 yet");
86  std::string Msg = Type;
87  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88    << Msg << S->getSourceRange();
89}
90
91/// ErrorUnsupported - Print out an error that codegen doesn't support the
92/// specified decl yet.
93void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                     bool OmitOnError) {
95  if (OmitOnError && getDiags().hasErrorOccurred())
96    return;
97  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                               "cannot compile this %0 yet");
99  std::string Msg = Type;
100  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101}
102
103LangOptions::VisibilityMode
104CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106    if (VD->getStorageClass() == VarDecl::PrivateExtern)
107      return LangOptions::Hidden;
108
109  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110    switch (attr->getVisibility()) {
111    default: assert(0 && "Unknown visibility!");
112    case VisibilityAttr::DefaultVisibility:
113      return LangOptions::Default;
114    case VisibilityAttr::HiddenVisibility:
115      return LangOptions::Hidden;
116    case VisibilityAttr::ProtectedVisibility:
117      return LangOptions::Protected;
118    }
119  }
120
121  return getLangOptions().getVisibilityMode();
122}
123
124void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                        const Decl *D) const {
126  // Internal definitions always have default visibility.
127  if (GV->hasLocalLinkage()) {
128    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129    return;
130  }
131
132  switch (getDeclVisibilityMode(D)) {
133  default: assert(0 && "Unknown visibility!");
134  case LangOptions::Default:
135    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136  case LangOptions::Hidden:
137    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138  case LangOptions::Protected:
139    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140  }
141}
142
143const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144  const NamedDecl *ND = GD.getDecl();
145
146  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147    return getMangledCXXCtorName(D, GD.getCtorType());
148  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149    return getMangledCXXDtorName(D, GD.getDtorType());
150
151  return getMangledName(ND);
152}
153
154/// \brief Retrieves the mangled name for the given declaration.
155///
156/// If the given declaration requires a mangled name, returns an
157/// const char* containing the mangled name.  Otherwise, returns
158/// the unmangled name.
159///
160const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161  // In C, functions with no attributes never need to be mangled. Fastpath them.
162  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164    return ND->getNameAsCString();
165  }
166
167  llvm::SmallString<256> Name;
168  llvm::raw_svector_ostream Out(Name);
169  if (!mangleName(ND, Context, Out)) {
170    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171    return ND->getNameAsCString();
172  }
173
174  Name += '\0';
175  return UniqueMangledName(Name.begin(), Name.end());
176}
177
178const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                             const char *NameEnd) {
180  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181
182  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183}
184
185/// AddGlobalCtor - Add a function to the list that will be called before
186/// main() runs.
187void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188  // FIXME: Type coercion of void()* types.
189  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190}
191
192/// AddGlobalDtor - Add a function to the list that will be called
193/// when the module is unloaded.
194void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195  // FIXME: Type coercion of void()* types.
196  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197}
198
199void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200  // Ctor function type is void()*.
201  llvm::FunctionType* CtorFTy =
202    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                            std::vector<const llvm::Type*>(),
204                            false);
205  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206
207  // Get the type of a ctor entry, { i32, void ()* }.
208  llvm::StructType* CtorStructTy =
209    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                          llvm::PointerType::getUnqual(CtorFTy), NULL);
211
212  // Construct the constructor and destructor arrays.
213  std::vector<llvm::Constant*> Ctors;
214  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215    std::vector<llvm::Constant*> S;
216    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                I->second, false));
218    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220  }
221
222  if (!Ctors.empty()) {
223    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224    new llvm::GlobalVariable(TheModule, AT, false,
225                             llvm::GlobalValue::AppendingLinkage,
226                             llvm::ConstantArray::get(AT, Ctors),
227                             GlobalName);
228  }
229}
230
231void CodeGenModule::EmitAnnotations() {
232  if (Annotations.empty())
233    return;
234
235  // Create a new global variable for the ConstantStruct in the Module.
236  llvm::Constant *Array =
237  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                Annotations.size()),
239                           Annotations);
240  llvm::GlobalValue *gv =
241  new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                           llvm::GlobalValue::AppendingLinkage, Array,
243                           "llvm.global.annotations");
244  gv->setSection("llvm.metadata");
245}
246
247static CodeGenModule::GVALinkage
248GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                      const LangOptions &Features) {
250  // The kind of external linkage this function will have, if it is not
251  // inline or static.
252  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253  if (Context.getLangOptions().CPlusPlus &&
254      (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255      !FD->isExplicitSpecialization())
256    External = CodeGenModule::GVA_TemplateInstantiation;
257
258  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259    // C++ member functions defined inside the class are always inline.
260    if (MD->isInline() || !MD->isOutOfLine())
261      return CodeGenModule::GVA_CXXInline;
262
263    return External;
264  }
265
266  // "static" functions get internal linkage.
267  if (FD->getStorageClass() == FunctionDecl::Static)
268    return CodeGenModule::GVA_Internal;
269
270  if (!FD->isInline())
271    return External;
272
273  // If the inline function explicitly has the GNU inline attribute on it, or if
274  // this is C89 mode, we use to GNU semantics.
275  if (!Features.C99 && !Features.CPlusPlus) {
276    // extern inline in GNU mode is like C99 inline.
277    if (FD->getStorageClass() == FunctionDecl::Extern)
278      return CodeGenModule::GVA_C99Inline;
279    // Normal inline is a strong symbol.
280    return CodeGenModule::GVA_StrongExternal;
281  } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282    // GCC in C99 mode seems to use a different decision-making
283    // process for extern inline, which factors in previous
284    // declarations.
285    if (FD->isExternGNUInline(Context))
286      return CodeGenModule::GVA_C99Inline;
287    // Normal inline is a strong symbol.
288    return External;
289  }
290
291  // The definition of inline changes based on the language.  Note that we
292  // have already handled "static inline" above, with the GVA_Internal case.
293  if (Features.CPlusPlus)  // inline and extern inline.
294    return CodeGenModule::GVA_CXXInline;
295
296  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297  if (FD->isC99InlineDefinition())
298    return CodeGenModule::GVA_C99Inline;
299
300  return CodeGenModule::GVA_StrongExternal;
301}
302
303/// SetFunctionDefinitionAttributes - Set attributes for a global.
304///
305/// FIXME: This is currently only done for aliases and functions, but not for
306/// variables (these details are set in EmitGlobalVarDefinition for variables).
307void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                    llvm::GlobalValue *GV) {
309  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310
311  if (Linkage == GVA_Internal) {
312    GV->setLinkage(llvm::Function::InternalLinkage);
313  } else if (D->hasAttr<DLLExportAttr>()) {
314    GV->setLinkage(llvm::Function::DLLExportLinkage);
315  } else if (D->hasAttr<WeakAttr>()) {
316    GV->setLinkage(llvm::Function::WeakAnyLinkage);
317  } else if (Linkage == GVA_C99Inline) {
318    // In C99 mode, 'inline' functions are guaranteed to have a strong
319    // definition somewhere else, so we can use available_externally linkage.
320    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322    // In C++, the compiler has to emit a definition in every translation unit
323    // that references the function.  We should use linkonce_odr because
324    // a) if all references in this translation unit are optimized away, we
325    // don't need to codegen it.  b) if the function persists, it needs to be
326    // merged with other definitions. c) C++ has the ODR, so we know the
327    // definition is dependable.
328    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329  } else {
330    assert(Linkage == GVA_StrongExternal);
331    // Otherwise, we have strong external linkage.
332    GV->setLinkage(llvm::Function::ExternalLinkage);
333  }
334
335  SetCommonAttributes(D, GV);
336}
337
338void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                              const CGFunctionInfo &Info,
340                                              llvm::Function *F) {
341  AttributeListType AttributeList;
342  ConstructAttributeList(Info, D, AttributeList);
343
344  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                        AttributeList.size()));
346
347  // Set the appropriate calling convention for the Function.
348  if (D->hasAttr<FastCallAttr>())
349    F->setCallingConv(llvm::CallingConv::X86_FastCall);
350
351  if (D->hasAttr<StdCallAttr>())
352    F->setCallingConv(llvm::CallingConv::X86_StdCall);
353}
354
355void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                           llvm::Function *F) {
357  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358    F->addFnAttr(llvm::Attribute::NoUnwind);
359
360  if (D->hasAttr<AlwaysInlineAttr>())
361    F->addFnAttr(llvm::Attribute::AlwaysInline);
362
363  if (D->hasAttr<NoinlineAttr>())
364    F->addFnAttr(llvm::Attribute::NoInline);
365}
366
367void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                        llvm::GlobalValue *GV) {
369  setGlobalVisibility(GV, D);
370
371  if (D->hasAttr<UsedAttr>())
372    AddUsedGlobal(GV);
373
374  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375    GV->setSection(SA->getName());
376}
377
378void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                  llvm::Function *F,
380                                                  const CGFunctionInfo &FI) {
381  SetLLVMFunctionAttributes(D, FI, F);
382  SetLLVMFunctionAttributesForDefinition(D, F);
383
384  F->setLinkage(llvm::Function::InternalLinkage);
385
386  SetCommonAttributes(D, F);
387}
388
389void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                          llvm::Function *F,
391                                          bool IsIncompleteFunction) {
392  if (!IsIncompleteFunction)
393    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394
395  // Only a few attributes are set on declarations; these may later be
396  // overridden by a definition.
397
398  if (FD->hasAttr<DLLImportAttr>()) {
399    F->setLinkage(llvm::Function::DLLImportLinkage);
400  } else if (FD->hasAttr<WeakAttr>() ||
401             FD->hasAttr<WeakImportAttr>()) {
402    // "extern_weak" is overloaded in LLVM; we probably should have
403    // separate linkage types for this.
404    F->setLinkage(llvm::Function::ExternalWeakLinkage);
405  } else {
406    F->setLinkage(llvm::Function::ExternalLinkage);
407  }
408
409  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410    F->setSection(SA->getName());
411}
412
413void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414  assert(!GV->isDeclaration() &&
415         "Only globals with definition can force usage.");
416  LLVMUsed.push_back(GV);
417}
418
419void CodeGenModule::EmitLLVMUsed() {
420  // Don't create llvm.used if there is no need.
421  if (LLVMUsed.empty())
422    return;
423
424  llvm::Type *i8PTy =
425      llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
426
427  // Convert LLVMUsed to what ConstantArray needs.
428  std::vector<llvm::Constant*> UsedArray;
429  UsedArray.resize(LLVMUsed.size());
430  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
431    UsedArray[i] =
432     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
433                                      i8PTy);
434  }
435
436  if (UsedArray.empty())
437    return;
438  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
439
440  llvm::GlobalVariable *GV =
441    new llvm::GlobalVariable(getModule(), ATy, false,
442                             llvm::GlobalValue::AppendingLinkage,
443                             llvm::ConstantArray::get(ATy, UsedArray),
444                             "llvm.used");
445
446  GV->setSection("llvm.metadata");
447}
448
449void CodeGenModule::EmitDeferred() {
450  // Emit code for any potentially referenced deferred decls.  Since a
451  // previously unused static decl may become used during the generation of code
452  // for a static function, iterate until no  changes are made.
453  while (!DeferredDeclsToEmit.empty()) {
454    GlobalDecl D = DeferredDeclsToEmit.back();
455    DeferredDeclsToEmit.pop_back();
456
457    // The mangled name for the decl must have been emitted in GlobalDeclMap.
458    // Look it up to see if it was defined with a stronger definition (e.g. an
459    // extern inline function with a strong function redefinition).  If so,
460    // just ignore the deferred decl.
461    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
462    assert(CGRef && "Deferred decl wasn't referenced?");
463
464    if (!CGRef->isDeclaration())
465      continue;
466
467    // Otherwise, emit the definition and move on to the next one.
468    EmitGlobalDefinition(D);
469  }
470}
471
472/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
473/// annotation information for a given GlobalValue.  The annotation struct is
474/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
475/// GlobalValue being annotated.  The second field is the constant string
476/// created from the AnnotateAttr's annotation.  The third field is a constant
477/// string containing the name of the translation unit.  The fourth field is
478/// the line number in the file of the annotated value declaration.
479///
480/// FIXME: this does not unique the annotation string constants, as llvm-gcc
481///        appears to.
482///
483llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
484                                                const AnnotateAttr *AA,
485                                                unsigned LineNo) {
486  llvm::Module *M = &getModule();
487
488  // get [N x i8] constants for the annotation string, and the filename string
489  // which are the 2nd and 3rd elements of the global annotation structure.
490  const llvm::Type *SBP =
491      llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
492  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
493                                                  AA->getAnnotation(), true);
494  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
495                                                  M->getModuleIdentifier(),
496                                                  true);
497
498  // Get the two global values corresponding to the ConstantArrays we just
499  // created to hold the bytes of the strings.
500  llvm::GlobalValue *annoGV =
501    new llvm::GlobalVariable(*M, anno->getType(), false,
502                             llvm::GlobalValue::PrivateLinkage, anno,
503                             GV->getName());
504  // translation unit name string, emitted into the llvm.metadata section.
505  llvm::GlobalValue *unitGV =
506    new llvm::GlobalVariable(*M, unit->getType(), false,
507                             llvm::GlobalValue::PrivateLinkage, unit,
508                             ".str");
509
510  // Create the ConstantStruct for the global annotation.
511  llvm::Constant *Fields[4] = {
512    llvm::ConstantExpr::getBitCast(GV, SBP),
513    llvm::ConstantExpr::getBitCast(annoGV, SBP),
514    llvm::ConstantExpr::getBitCast(unitGV, SBP),
515    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
516  };
517  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
518}
519
520bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
521  // Never defer when EmitAllDecls is specified or the decl has
522  // attribute used.
523  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
524    return false;
525
526  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
527    // Constructors and destructors should never be deferred.
528    if (FD->hasAttr<ConstructorAttr>() ||
529        FD->hasAttr<DestructorAttr>())
530      return false;
531
532    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
533
534    // static, static inline, always_inline, and extern inline functions can
535    // always be deferred.  Normal inline functions can be deferred in C99/C++.
536    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
537        Linkage == GVA_CXXInline)
538      return true;
539    return false;
540  }
541
542  const VarDecl *VD = cast<VarDecl>(Global);
543  assert(VD->isFileVarDecl() && "Invalid decl");
544
545  return VD->getStorageClass() == VarDecl::Static;
546}
547
548void CodeGenModule::EmitGlobal(GlobalDecl GD) {
549  const ValueDecl *Global = GD.getDecl();
550
551  // If this is an alias definition (which otherwise looks like a declaration)
552  // emit it now.
553  if (Global->hasAttr<AliasAttr>())
554    return EmitAliasDefinition(Global);
555
556  // Ignore declarations, they will be emitted on their first use.
557  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
558    // Forward declarations are emitted lazily on first use.
559    if (!FD->isThisDeclarationADefinition())
560      return;
561  } else {
562    const VarDecl *VD = cast<VarDecl>(Global);
563    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
564
565    // In C++, if this is marked "extern", defer code generation.
566    if (getLangOptions().CPlusPlus && !VD->getInit() &&
567        (VD->getStorageClass() == VarDecl::Extern ||
568         VD->isExternC(getContext())))
569      return;
570
571    // In C, if this isn't a definition, defer code generation.
572    if (!getLangOptions().CPlusPlus && !VD->getInit())
573      return;
574  }
575
576  // Defer code generation when possible if this is a static definition, inline
577  // function etc.  These we only want to emit if they are used.
578  if (MayDeferGeneration(Global)) {
579    // If the value has already been used, add it directly to the
580    // DeferredDeclsToEmit list.
581    const char *MangledName = getMangledName(GD);
582    if (GlobalDeclMap.count(MangledName))
583      DeferredDeclsToEmit.push_back(GD);
584    else {
585      // Otherwise, remember that we saw a deferred decl with this name.  The
586      // first use of the mangled name will cause it to move into
587      // DeferredDeclsToEmit.
588      DeferredDecls[MangledName] = GD;
589    }
590    return;
591  }
592
593  // Otherwise emit the definition.
594  EmitGlobalDefinition(GD);
595}
596
597void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
598  const ValueDecl *D = GD.getDecl();
599
600  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
601    EmitCXXConstructor(CD, GD.getCtorType());
602  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
603    EmitCXXDestructor(DD, GD.getDtorType());
604  else if (isa<FunctionDecl>(D))
605    EmitGlobalFunctionDefinition(GD);
606  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
607    EmitGlobalVarDefinition(VD);
608  else {
609    assert(0 && "Invalid argument to EmitGlobalDefinition()");
610  }
611}
612
613/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
614/// module, create and return an llvm Function with the specified type. If there
615/// is something in the module with the specified name, return it potentially
616/// bitcasted to the right type.
617///
618/// If D is non-null, it specifies a decl that correspond to this.  This is used
619/// to set the attributes on the function when it is first created.
620llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
621                                                       const llvm::Type *Ty,
622                                                       GlobalDecl D) {
623  // Lookup the entry, lazily creating it if necessary.
624  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
625  if (Entry) {
626    if (Entry->getType()->getElementType() == Ty)
627      return Entry;
628
629    // Make sure the result is of the correct type.
630    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
631    return llvm::ConstantExpr::getBitCast(Entry, PTy);
632  }
633
634  // This is the first use or definition of a mangled name.  If there is a
635  // deferred decl with this name, remember that we need to emit it at the end
636  // of the file.
637  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
638    DeferredDecls.find(MangledName);
639  if (DDI != DeferredDecls.end()) {
640    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
641    // list, and remove it from DeferredDecls (since we don't need it anymore).
642    DeferredDeclsToEmit.push_back(DDI->second);
643    DeferredDecls.erase(DDI);
644  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
645    // If this the first reference to a C++ inline function in a class, queue up
646    // the deferred function body for emission.  These are not seen as
647    // top-level declarations.
648    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
649      DeferredDeclsToEmit.push_back(D);
650    // A called constructor which has no definition or declaration need be
651    // synthesized.
652    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
653      const CXXRecordDecl *ClassDecl =
654        cast<CXXRecordDecl>(CD->getDeclContext());
655      if (CD->isCopyConstructor(getContext()))
656        DeferredCopyConstructorToEmit(D);
657      else if (!ClassDecl->hasUserDeclaredConstructor())
658        DeferredDeclsToEmit.push_back(D);
659    }
660    else if (isa<CXXDestructorDecl>(FD))
661       DeferredDestructorToEmit(D);
662    else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
663           if (MD->isCopyAssignment())
664             DeferredCopyAssignmentToEmit(D);
665  }
666
667  // This function doesn't have a complete type (for example, the return
668  // type is an incomplete struct). Use a fake type instead, and make
669  // sure not to try to set attributes.
670  bool IsIncompleteFunction = false;
671  if (!isa<llvm::FunctionType>(Ty)) {
672    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
673                                 std::vector<const llvm::Type*>(), false);
674    IsIncompleteFunction = true;
675  }
676  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
677                                             llvm::Function::ExternalLinkage,
678                                             "", &getModule());
679  F->setName(MangledName);
680  if (D.getDecl())
681    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
682                          IsIncompleteFunction);
683  Entry = F;
684  return F;
685}
686
687/// Defer definition of copy constructor(s) which need be implicitly defined.
688void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
689  const CXXConstructorDecl *CD =
690    cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
691  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
692  if (ClassDecl->hasTrivialCopyConstructor() ||
693      ClassDecl->hasUserDeclaredCopyConstructor())
694    return;
695
696  // First make sure all direct base classes and virtual bases and non-static
697  // data mebers which need to have their copy constructors implicitly defined
698  // are defined. 12.8.p7
699  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
700       Base != ClassDecl->bases_end(); ++Base) {
701    CXXRecordDecl *BaseClassDecl
702      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
703    if (CXXConstructorDecl *BaseCopyCtor =
704        BaseClassDecl->getCopyConstructor(Context, 0))
705      GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
706  }
707
708  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
709       FieldEnd = ClassDecl->field_end();
710       Field != FieldEnd; ++Field) {
711    QualType FieldType = Context.getCanonicalType((*Field)->getType());
712    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
713      FieldType = Array->getElementType();
714    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
715      if ((*Field)->isAnonymousStructOrUnion())
716        continue;
717      CXXRecordDecl *FieldClassDecl
718        = cast<CXXRecordDecl>(FieldClassType->getDecl());
719      if (CXXConstructorDecl *FieldCopyCtor =
720          FieldClassDecl->getCopyConstructor(Context, 0))
721        GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
722    }
723  }
724  DeferredDeclsToEmit.push_back(CopyCtorDecl);
725}
726
727/// Defer definition of copy assignments which need be implicitly defined.
728void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
729  const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
730  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
731
732  if (ClassDecl->hasTrivialCopyAssignment() ||
733      ClassDecl->hasUserDeclaredCopyAssignment())
734    return;
735
736  // First make sure all direct base classes and virtual bases and non-static
737  // data mebers which need to have their copy assignments implicitly defined
738  // are defined. 12.8.p12
739  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
740       Base != ClassDecl->bases_end(); ++Base) {
741    CXXRecordDecl *BaseClassDecl
742      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
743    const CXXMethodDecl *MD = 0;
744    if (!BaseClassDecl->hasTrivialCopyAssignment() &&
745        !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
746        BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
747      GetAddrOfFunction(GlobalDecl(MD), 0);
748  }
749
750  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
751       FieldEnd = ClassDecl->field_end();
752       Field != FieldEnd; ++Field) {
753    QualType FieldType = Context.getCanonicalType((*Field)->getType());
754    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
755      FieldType = Array->getElementType();
756    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
757      if ((*Field)->isAnonymousStructOrUnion())
758        continue;
759      CXXRecordDecl *FieldClassDecl
760        = cast<CXXRecordDecl>(FieldClassType->getDecl());
761      const CXXMethodDecl *MD = 0;
762      if (!FieldClassDecl->hasTrivialCopyAssignment() &&
763          !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
764          FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
765          GetAddrOfFunction(GlobalDecl(MD), 0);
766    }
767  }
768  DeferredDeclsToEmit.push_back(CopyAssignDecl);
769}
770
771void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
772  const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
773  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
774  if (ClassDecl->hasTrivialDestructor() ||
775      ClassDecl->hasUserDeclaredDestructor())
776    return;
777
778  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
779       Base != ClassDecl->bases_end(); ++Base) {
780    CXXRecordDecl *BaseClassDecl
781      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
782    if (const CXXDestructorDecl *BaseDtor =
783          BaseClassDecl->getDestructor(Context))
784      GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
785  }
786
787  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
788       FieldEnd = ClassDecl->field_end();
789       Field != FieldEnd; ++Field) {
790    QualType FieldType = Context.getCanonicalType((*Field)->getType());
791    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
792      FieldType = Array->getElementType();
793    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
794      if ((*Field)->isAnonymousStructOrUnion())
795        continue;
796      CXXRecordDecl *FieldClassDecl
797        = cast<CXXRecordDecl>(FieldClassType->getDecl());
798      if (const CXXDestructorDecl *FieldDtor =
799            FieldClassDecl->getDestructor(Context))
800        GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
801    }
802  }
803  DeferredDeclsToEmit.push_back(DtorDecl);
804}
805
806
807/// GetAddrOfFunction - Return the address of the given function.  If Ty is
808/// non-null, then this function will use the specified type if it has to
809/// create it (this occurs when we see a definition of the function).
810llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
811                                                 const llvm::Type *Ty) {
812  // If there was no specific requested type, just convert it now.
813  if (!Ty)
814    Ty = getTypes().ConvertType(GD.getDecl()->getType());
815  return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
816}
817
818/// CreateRuntimeFunction - Create a new runtime function with the specified
819/// type and name.
820llvm::Constant *
821CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
822                                     const char *Name) {
823  // Convert Name to be a uniqued string from the IdentifierInfo table.
824  Name = getContext().Idents.get(Name).getName();
825  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
826}
827
828/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
829/// create and return an llvm GlobalVariable with the specified type.  If there
830/// is something in the module with the specified name, return it potentially
831/// bitcasted to the right type.
832///
833/// If D is non-null, it specifies a decl that correspond to this.  This is used
834/// to set the attributes on the global when it is first created.
835llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
836                                                     const llvm::PointerType*Ty,
837                                                     const VarDecl *D) {
838  // Lookup the entry, lazily creating it if necessary.
839  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
840  if (Entry) {
841    if (Entry->getType() == Ty)
842      return Entry;
843
844    // Make sure the result is of the correct type.
845    return llvm::ConstantExpr::getBitCast(Entry, Ty);
846  }
847
848  // This is the first use or definition of a mangled name.  If there is a
849  // deferred decl with this name, remember that we need to emit it at the end
850  // of the file.
851  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
852    DeferredDecls.find(MangledName);
853  if (DDI != DeferredDecls.end()) {
854    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
855    // list, and remove it from DeferredDecls (since we don't need it anymore).
856    DeferredDeclsToEmit.push_back(DDI->second);
857    DeferredDecls.erase(DDI);
858  }
859
860  llvm::GlobalVariable *GV =
861    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
862                             llvm::GlobalValue::ExternalLinkage,
863                             0, "", 0,
864                             false, Ty->getAddressSpace());
865  GV->setName(MangledName);
866
867  // Handle things which are present even on external declarations.
868  if (D) {
869    // FIXME: This code is overly simple and should be merged with other global
870    // handling.
871    GV->setConstant(D->getType().isConstant(Context));
872
873    // FIXME: Merge with other attribute handling code.
874    if (D->getStorageClass() == VarDecl::PrivateExtern)
875      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
876
877    if (D->hasAttr<WeakAttr>() ||
878        D->hasAttr<WeakImportAttr>())
879      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
880
881    GV->setThreadLocal(D->isThreadSpecified());
882  }
883
884  return Entry = GV;
885}
886
887
888/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
889/// given global variable.  If Ty is non-null and if the global doesn't exist,
890/// then it will be greated with the specified type instead of whatever the
891/// normal requested type would be.
892llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
893                                                  const llvm::Type *Ty) {
894  assert(D->hasGlobalStorage() && "Not a global variable");
895  QualType ASTTy = D->getType();
896  if (Ty == 0)
897    Ty = getTypes().ConvertTypeForMem(ASTTy);
898
899  const llvm::PointerType *PTy =
900    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
901  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
902}
903
904/// CreateRuntimeVariable - Create a new runtime global variable with the
905/// specified type and name.
906llvm::Constant *
907CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
908                                     const char *Name) {
909  // Convert Name to be a uniqued string from the IdentifierInfo table.
910  Name = getContext().Idents.get(Name).getName();
911  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
912}
913
914void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
915  assert(!D->getInit() && "Cannot emit definite definitions here!");
916
917  if (MayDeferGeneration(D)) {
918    // If we have not seen a reference to this variable yet, place it
919    // into the deferred declarations table to be emitted if needed
920    // later.
921    const char *MangledName = getMangledName(D);
922    if (GlobalDeclMap.count(MangledName) == 0) {
923      DeferredDecls[MangledName] = GlobalDecl(D);
924      return;
925    }
926  }
927
928  // The tentative definition is the only definition.
929  EmitGlobalVarDefinition(D);
930}
931
932void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
933  llvm::Constant *Init = 0;
934  QualType ASTTy = D->getType();
935
936  if (D->getInit() == 0) {
937    // This is a tentative definition; tentative definitions are
938    // implicitly initialized with { 0 }.
939    //
940    // Note that tentative definitions are only emitted at the end of
941    // a translation unit, so they should never have incomplete
942    // type. In addition, EmitTentativeDefinition makes sure that we
943    // never attempt to emit a tentative definition if a real one
944    // exists. A use may still exists, however, so we still may need
945    // to do a RAUW.
946    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
947    Init = EmitNullConstant(D->getType());
948  } else {
949    Init = EmitConstantExpr(D->getInit(), D->getType());
950
951    if (!Init) {
952      QualType T = D->getInit()->getType();
953      if (getLangOptions().CPlusPlus) {
954        CXXGlobalInits.push_back(D);
955        Init = EmitNullConstant(T);
956      } else {
957        ErrorUnsupported(D, "static initializer");
958        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
959      }
960    }
961  }
962
963  const llvm::Type* InitType = Init->getType();
964  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
965
966  // Strip off a bitcast if we got one back.
967  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
968    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
969           // all zero index gep.
970           CE->getOpcode() == llvm::Instruction::GetElementPtr);
971    Entry = CE->getOperand(0);
972  }
973
974  // Entry is now either a Function or GlobalVariable.
975  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
976
977  // We have a definition after a declaration with the wrong type.
978  // We must make a new GlobalVariable* and update everything that used OldGV
979  // (a declaration or tentative definition) with the new GlobalVariable*
980  // (which will be a definition).
981  //
982  // This happens if there is a prototype for a global (e.g.
983  // "extern int x[];") and then a definition of a different type (e.g.
984  // "int x[10];"). This also happens when an initializer has a different type
985  // from the type of the global (this happens with unions).
986  if (GV == 0 ||
987      GV->getType()->getElementType() != InitType ||
988      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
989
990    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
991    GlobalDeclMap.erase(getMangledName(D));
992
993    // Make a new global with the correct type, this is now guaranteed to work.
994    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
995    GV->takeName(cast<llvm::GlobalValue>(Entry));
996
997    // Replace all uses of the old global with the new global
998    llvm::Constant *NewPtrForOldDecl =
999        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1000    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1001
1002    // Erase the old global, since it is no longer used.
1003    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1004  }
1005
1006  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1007    SourceManager &SM = Context.getSourceManager();
1008    AddAnnotation(EmitAnnotateAttr(GV, AA,
1009                              SM.getInstantiationLineNumber(D->getLocation())));
1010  }
1011
1012  GV->setInitializer(Init);
1013
1014  // If it is safe to mark the global 'constant', do so now.
1015  GV->setConstant(false);
1016  if (D->getType().isConstant(Context)) {
1017    // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1018    // members, it cannot be declared "LLVM const".
1019    GV->setConstant(true);
1020  }
1021
1022  GV->setAlignment(getContext().getDeclAlignInBytes(D));
1023
1024  // Set the llvm linkage type as appropriate.
1025  if (D->getStorageClass() == VarDecl::Static)
1026    GV->setLinkage(llvm::Function::InternalLinkage);
1027  else if (D->hasAttr<DLLImportAttr>())
1028    GV->setLinkage(llvm::Function::DLLImportLinkage);
1029  else if (D->hasAttr<DLLExportAttr>())
1030    GV->setLinkage(llvm::Function::DLLExportLinkage);
1031  else if (D->hasAttr<WeakAttr>()) {
1032    if (GV->isConstant())
1033      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1034    else
1035      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1036  } else if (!CompileOpts.NoCommon &&
1037           !D->hasExternalStorage() && !D->getInit() &&
1038           !D->getAttr<SectionAttr>()) {
1039    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1040    // common vars aren't constant even if declared const.
1041    GV->setConstant(false);
1042  } else
1043    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1044
1045  SetCommonAttributes(D, GV);
1046
1047  // Emit global variable debug information.
1048  if (CGDebugInfo *DI = getDebugInfo()) {
1049    DI->setLocation(D->getLocation());
1050    DI->EmitGlobalVariable(GV, D);
1051  }
1052}
1053
1054/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1055/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1056/// existing call uses of the old function in the module, this adjusts them to
1057/// call the new function directly.
1058///
1059/// This is not just a cleanup: the always_inline pass requires direct calls to
1060/// functions to be able to inline them.  If there is a bitcast in the way, it
1061/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1062/// run at -O0.
1063static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1064                                                      llvm::Function *NewFn) {
1065  // If we're redefining a global as a function, don't transform it.
1066  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1067  if (OldFn == 0) return;
1068
1069  const llvm::Type *NewRetTy = NewFn->getReturnType();
1070  llvm::SmallVector<llvm::Value*, 4> ArgList;
1071
1072  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1073       UI != E; ) {
1074    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1075    unsigned OpNo = UI.getOperandNo();
1076    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1077    if (!CI || OpNo != 0) continue;
1078
1079    // If the return types don't match exactly, and if the call isn't dead, then
1080    // we can't transform this call.
1081    if (CI->getType() != NewRetTy && !CI->use_empty())
1082      continue;
1083
1084    // If the function was passed too few arguments, don't transform.  If extra
1085    // arguments were passed, we silently drop them.  If any of the types
1086    // mismatch, we don't transform.
1087    unsigned ArgNo = 0;
1088    bool DontTransform = false;
1089    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1090         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1091      if (CI->getNumOperands()-1 == ArgNo ||
1092          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1093        DontTransform = true;
1094        break;
1095      }
1096    }
1097    if (DontTransform)
1098      continue;
1099
1100    // Okay, we can transform this.  Create the new call instruction and copy
1101    // over the required information.
1102    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1103    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1104                                                     ArgList.end(), "", CI);
1105    ArgList.clear();
1106    if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1107      NewCall->takeName(CI);
1108    NewCall->setCallingConv(CI->getCallingConv());
1109    NewCall->setAttributes(CI->getAttributes());
1110
1111    // Finally, remove the old call, replacing any uses with the new one.
1112    if (!CI->use_empty())
1113      CI->replaceAllUsesWith(NewCall);
1114    CI->eraseFromParent();
1115  }
1116}
1117
1118
1119void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1120  const llvm::FunctionType *Ty;
1121  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1122
1123  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1124    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1125
1126    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1127  } else {
1128    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1129
1130    // As a special case, make sure that definitions of K&R function
1131    // "type foo()" aren't declared as varargs (which forces the backend
1132    // to do unnecessary work).
1133    if (D->getType()->isFunctionNoProtoType()) {
1134      assert(Ty->isVarArg() && "Didn't lower type as expected");
1135      // Due to stret, the lowered function could have arguments.
1136      // Just create the same type as was lowered by ConvertType
1137      // but strip off the varargs bit.
1138      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1139      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1140    }
1141  }
1142
1143  // Get or create the prototype for the function.
1144  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1145
1146  // Strip off a bitcast if we got one back.
1147  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1148    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1149    Entry = CE->getOperand(0);
1150  }
1151
1152
1153  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1154    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1155
1156    // If the types mismatch then we have to rewrite the definition.
1157    assert(OldFn->isDeclaration() &&
1158           "Shouldn't replace non-declaration");
1159
1160    // F is the Function* for the one with the wrong type, we must make a new
1161    // Function* and update everything that used F (a declaration) with the new
1162    // Function* (which will be a definition).
1163    //
1164    // This happens if there is a prototype for a function
1165    // (e.g. "int f()") and then a definition of a different type
1166    // (e.g. "int f(int x)").  Start by making a new function of the
1167    // correct type, RAUW, then steal the name.
1168    GlobalDeclMap.erase(getMangledName(D));
1169    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1170    NewFn->takeName(OldFn);
1171
1172    // If this is an implementation of a function without a prototype, try to
1173    // replace any existing uses of the function (which may be calls) with uses
1174    // of the new function
1175    if (D->getType()->isFunctionNoProtoType()) {
1176      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1177      OldFn->removeDeadConstantUsers();
1178    }
1179
1180    // Replace uses of F with the Function we will endow with a body.
1181    if (!Entry->use_empty()) {
1182      llvm::Constant *NewPtrForOldDecl =
1183        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1184      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1185    }
1186
1187    // Ok, delete the old function now, which is dead.
1188    OldFn->eraseFromParent();
1189
1190    Entry = NewFn;
1191  }
1192
1193  llvm::Function *Fn = cast<llvm::Function>(Entry);
1194
1195  CodeGenFunction(*this).GenerateCode(D, Fn);
1196
1197  SetFunctionDefinitionAttributes(D, Fn);
1198  SetLLVMFunctionAttributesForDefinition(D, Fn);
1199
1200  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1201    AddGlobalCtor(Fn, CA->getPriority());
1202  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1203    AddGlobalDtor(Fn, DA->getPriority());
1204}
1205
1206void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1207  const AliasAttr *AA = D->getAttr<AliasAttr>();
1208  assert(AA && "Not an alias?");
1209
1210  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1211
1212  // Unique the name through the identifier table.
1213  const char *AliaseeName = AA->getAliasee().c_str();
1214  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1215
1216  // Create a reference to the named value.  This ensures that it is emitted
1217  // if a deferred decl.
1218  llvm::Constant *Aliasee;
1219  if (isa<llvm::FunctionType>(DeclTy))
1220    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1221  else
1222    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1223                                    llvm::PointerType::getUnqual(DeclTy), 0);
1224
1225  // Create the new alias itself, but don't set a name yet.
1226  llvm::GlobalValue *GA =
1227    new llvm::GlobalAlias(Aliasee->getType(),
1228                          llvm::Function::ExternalLinkage,
1229                          "", Aliasee, &getModule());
1230
1231  // See if there is already something with the alias' name in the module.
1232  const char *MangledName = getMangledName(D);
1233  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1234
1235  if (Entry && !Entry->isDeclaration()) {
1236    // If there is a definition in the module, then it wins over the alias.
1237    // This is dubious, but allow it to be safe.  Just ignore the alias.
1238    GA->eraseFromParent();
1239    return;
1240  }
1241
1242  if (Entry) {
1243    // If there is a declaration in the module, then we had an extern followed
1244    // by the alias, as in:
1245    //   extern int test6();
1246    //   ...
1247    //   int test6() __attribute__((alias("test7")));
1248    //
1249    // Remove it and replace uses of it with the alias.
1250
1251    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1252                                                          Entry->getType()));
1253    Entry->eraseFromParent();
1254  }
1255
1256  // Now we know that there is no conflict, set the name.
1257  Entry = GA;
1258  GA->setName(MangledName);
1259
1260  // Set attributes which are particular to an alias; this is a
1261  // specialization of the attributes which may be set on a global
1262  // variable/function.
1263  if (D->hasAttr<DLLExportAttr>()) {
1264    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1265      // The dllexport attribute is ignored for undefined symbols.
1266      if (FD->getBody())
1267        GA->setLinkage(llvm::Function::DLLExportLinkage);
1268    } else {
1269      GA->setLinkage(llvm::Function::DLLExportLinkage);
1270    }
1271  } else if (D->hasAttr<WeakAttr>() ||
1272             D->hasAttr<WeakImportAttr>()) {
1273    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1274  }
1275
1276  SetCommonAttributes(D, GA);
1277}
1278
1279/// getBuiltinLibFunction - Given a builtin id for a function like
1280/// "__builtin_fabsf", return a Function* for "fabsf".
1281llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1282  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1283          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1284         "isn't a lib fn");
1285
1286  // Get the name, skip over the __builtin_ prefix (if necessary).
1287  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1288  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1289    Name += 10;
1290
1291  // Get the type for the builtin.
1292  ASTContext::GetBuiltinTypeError Error;
1293  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1294  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1295
1296  const llvm::FunctionType *Ty =
1297    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1298
1299  // Unique the name through the identifier table.
1300  Name = getContext().Idents.get(Name).getName();
1301  // FIXME: param attributes for sext/zext etc.
1302  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1303}
1304
1305llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1306                                            unsigned NumTys) {
1307  return llvm::Intrinsic::getDeclaration(&getModule(),
1308                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1309}
1310
1311llvm::Function *CodeGenModule::getMemCpyFn() {
1312  if (MemCpyFn) return MemCpyFn;
1313  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1314  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1315}
1316
1317llvm::Function *CodeGenModule::getMemMoveFn() {
1318  if (MemMoveFn) return MemMoveFn;
1319  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1320  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1321}
1322
1323llvm::Function *CodeGenModule::getMemSetFn() {
1324  if (MemSetFn) return MemSetFn;
1325  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1326  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1327}
1328
1329static llvm::StringMapEntry<llvm::Constant*> &
1330GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1331                         const StringLiteral *Literal,
1332                         bool TargetIsLSB,
1333                         bool &IsUTF16,
1334                         unsigned &StringLength) {
1335  unsigned NumBytes = Literal->getByteLength();
1336
1337  // Check for simple case.
1338  if (!Literal->containsNonAsciiOrNull()) {
1339    StringLength = NumBytes;
1340    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1341                                                StringLength));
1342  }
1343
1344  // Otherwise, convert the UTF8 literals into a byte string.
1345  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1346  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1347  UTF16 *ToPtr = &ToBuf[0];
1348
1349  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1350                                               &ToPtr, ToPtr + NumBytes,
1351                                               strictConversion);
1352
1353  // Check for conversion failure.
1354  if (Result != conversionOK) {
1355    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1356    // this duplicate code.
1357    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1358    StringLength = NumBytes;
1359    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1360                                                StringLength));
1361  }
1362
1363  // ConvertUTF8toUTF16 returns the length in ToPtr.
1364  StringLength = ToPtr - &ToBuf[0];
1365
1366  // Render the UTF-16 string into a byte array and convert to the target byte
1367  // order.
1368  //
1369  // FIXME: This isn't something we should need to do here.
1370  llvm::SmallString<128> AsBytes;
1371  AsBytes.reserve(StringLength * 2);
1372  for (unsigned i = 0; i != StringLength; ++i) {
1373    unsigned short Val = ToBuf[i];
1374    if (TargetIsLSB) {
1375      AsBytes.push_back(Val & 0xFF);
1376      AsBytes.push_back(Val >> 8);
1377    } else {
1378      AsBytes.push_back(Val >> 8);
1379      AsBytes.push_back(Val & 0xFF);
1380    }
1381  }
1382  // Append one extra null character, the second is automatically added by our
1383  // caller.
1384  AsBytes.push_back(0);
1385
1386  IsUTF16 = true;
1387  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1388}
1389
1390llvm::Constant *
1391CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1392  unsigned StringLength = 0;
1393  bool isUTF16 = false;
1394  llvm::StringMapEntry<llvm::Constant*> &Entry =
1395    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1396                             getTargetData().isLittleEndian(),
1397                             isUTF16, StringLength);
1398
1399  if (llvm::Constant *C = Entry.getValue())
1400    return C;
1401
1402  llvm::Constant *Zero =
1403      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1404  llvm::Constant *Zeros[] = { Zero, Zero };
1405
1406  // If we don't already have it, get __CFConstantStringClassReference.
1407  if (!CFConstantStringClassRef) {
1408    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1409    Ty = llvm::ArrayType::get(Ty, 0);
1410    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1411                                           "__CFConstantStringClassReference");
1412    // Decay array -> ptr
1413    CFConstantStringClassRef =
1414      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1415  }
1416
1417  QualType CFTy = getContext().getCFConstantStringType();
1418
1419  const llvm::StructType *STy =
1420    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1421
1422  std::vector<llvm::Constant*> Fields(4);
1423
1424  // Class pointer.
1425  Fields[0] = CFConstantStringClassRef;
1426
1427  // Flags.
1428  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1429  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1430    llvm::ConstantInt::get(Ty, 0x07C8);
1431
1432  // String pointer.
1433  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1434
1435  const char *Sect, *Prefix;
1436  bool isConstant;
1437  llvm::GlobalValue::LinkageTypes Linkage;
1438  if (isUTF16) {
1439    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1440    Sect = getContext().Target.getUnicodeStringSection();
1441    // FIXME: why do utf strings get "l" labels instead of "L" labels?
1442    Linkage = llvm::GlobalValue::InternalLinkage;
1443    // FIXME: Why does GCC not set constant here?
1444    isConstant = false;
1445  } else {
1446    Prefix = ".str";
1447    Sect = getContext().Target.getCFStringDataSection();
1448    Linkage = llvm::GlobalValue::PrivateLinkage;
1449    // FIXME: -fwritable-strings should probably affect this, but we
1450    // are following gcc here.
1451    isConstant = true;
1452  }
1453  llvm::GlobalVariable *GV =
1454    new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1455                             Linkage, C, Prefix);
1456  if (Sect)
1457    GV->setSection(Sect);
1458  if (isUTF16) {
1459    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1460    GV->setAlignment(Align);
1461  }
1462  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1463
1464  // String length.
1465  Ty = getTypes().ConvertType(getContext().LongTy);
1466  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1467
1468  // The struct.
1469  C = llvm::ConstantStruct::get(STy, Fields);
1470  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1471                                llvm::GlobalVariable::PrivateLinkage, C,
1472                                "_unnamed_cfstring_");
1473  if (const char *Sect = getContext().Target.getCFStringSection())
1474    GV->setSection(Sect);
1475  Entry.setValue(GV);
1476
1477  return GV;
1478}
1479
1480/// GetStringForStringLiteral - Return the appropriate bytes for a
1481/// string literal, properly padded to match the literal type.
1482std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1483  const char *StrData = E->getStrData();
1484  unsigned Len = E->getByteLength();
1485
1486  const ConstantArrayType *CAT =
1487    getContext().getAsConstantArrayType(E->getType());
1488  assert(CAT && "String isn't pointer or array!");
1489
1490  // Resize the string to the right size.
1491  std::string Str(StrData, StrData+Len);
1492  uint64_t RealLen = CAT->getSize().getZExtValue();
1493
1494  if (E->isWide())
1495    RealLen *= getContext().Target.getWCharWidth()/8;
1496
1497  Str.resize(RealLen, '\0');
1498
1499  return Str;
1500}
1501
1502/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1503/// constant array for the given string literal.
1504llvm::Constant *
1505CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1506  // FIXME: This can be more efficient.
1507  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1508}
1509
1510/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1511/// array for the given ObjCEncodeExpr node.
1512llvm::Constant *
1513CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1514  std::string Str;
1515  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1516
1517  return GetAddrOfConstantCString(Str);
1518}
1519
1520
1521/// GenerateWritableString -- Creates storage for a string literal.
1522static llvm::Constant *GenerateStringLiteral(const std::string &str,
1523                                             bool constant,
1524                                             CodeGenModule &CGM,
1525                                             const char *GlobalName) {
1526  // Create Constant for this string literal. Don't add a '\0'.
1527  llvm::Constant *C =
1528      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1529
1530  // Create a global variable for this string
1531  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1532                                  llvm::GlobalValue::PrivateLinkage,
1533                                  C, GlobalName);
1534}
1535
1536/// GetAddrOfConstantString - Returns a pointer to a character array
1537/// containing the literal. This contents are exactly that of the
1538/// given string, i.e. it will not be null terminated automatically;
1539/// see GetAddrOfConstantCString. Note that whether the result is
1540/// actually a pointer to an LLVM constant depends on
1541/// Feature.WriteableStrings.
1542///
1543/// The result has pointer to array type.
1544llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1545                                                       const char *GlobalName) {
1546  bool IsConstant = !Features.WritableStrings;
1547
1548  // Get the default prefix if a name wasn't specified.
1549  if (!GlobalName)
1550    GlobalName = ".str";
1551
1552  // Don't share any string literals if strings aren't constant.
1553  if (!IsConstant)
1554    return GenerateStringLiteral(str, false, *this, GlobalName);
1555
1556  llvm::StringMapEntry<llvm::Constant *> &Entry =
1557    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1558
1559  if (Entry.getValue())
1560    return Entry.getValue();
1561
1562  // Create a global variable for this.
1563  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1564  Entry.setValue(C);
1565  return C;
1566}
1567
1568/// GetAddrOfConstantCString - Returns a pointer to a character
1569/// array containing the literal and a terminating '\-'
1570/// character. The result has pointer to array type.
1571llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1572                                                        const char *GlobalName){
1573  return GetAddrOfConstantString(str + '\0', GlobalName);
1574}
1575
1576/// EmitObjCPropertyImplementations - Emit information for synthesized
1577/// properties for an implementation.
1578void CodeGenModule::EmitObjCPropertyImplementations(const
1579                                                    ObjCImplementationDecl *D) {
1580  for (ObjCImplementationDecl::propimpl_iterator
1581         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1582    ObjCPropertyImplDecl *PID = *i;
1583
1584    // Dynamic is just for type-checking.
1585    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1586      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1587
1588      // Determine which methods need to be implemented, some may have
1589      // been overridden. Note that ::isSynthesized is not the method
1590      // we want, that just indicates if the decl came from a
1591      // property. What we want to know is if the method is defined in
1592      // this implementation.
1593      if (!D->getInstanceMethod(PD->getGetterName()))
1594        CodeGenFunction(*this).GenerateObjCGetter(
1595                                 const_cast<ObjCImplementationDecl *>(D), PID);
1596      if (!PD->isReadOnly() &&
1597          !D->getInstanceMethod(PD->getSetterName()))
1598        CodeGenFunction(*this).GenerateObjCSetter(
1599                                 const_cast<ObjCImplementationDecl *>(D), PID);
1600    }
1601  }
1602}
1603
1604/// EmitNamespace - Emit all declarations in a namespace.
1605void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1606  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1607       I != E; ++I)
1608    EmitTopLevelDecl(*I);
1609}
1610
1611// EmitLinkageSpec - Emit all declarations in a linkage spec.
1612void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1613  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1614      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1615    ErrorUnsupported(LSD, "linkage spec");
1616    return;
1617  }
1618
1619  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1620       I != E; ++I)
1621    EmitTopLevelDecl(*I);
1622}
1623
1624/// EmitTopLevelDecl - Emit code for a single top level declaration.
1625void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1626  // If an error has occurred, stop code generation, but continue
1627  // parsing and semantic analysis (to ensure all warnings and errors
1628  // are emitted).
1629  if (Diags.hasErrorOccurred())
1630    return;
1631
1632  // Ignore dependent declarations.
1633  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1634    return;
1635
1636  switch (D->getKind()) {
1637  case Decl::CXXConversion:
1638  case Decl::CXXMethod:
1639  case Decl::Function:
1640    // Skip function templates
1641    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1642      return;
1643
1644    // Fall through
1645
1646  case Decl::Var:
1647    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1648    break;
1649
1650  // C++ Decls
1651  case Decl::Namespace:
1652    EmitNamespace(cast<NamespaceDecl>(D));
1653    break;
1654    // No code generation needed.
1655  case Decl::Using:
1656  case Decl::ClassTemplate:
1657  case Decl::FunctionTemplate:
1658    break;
1659  case Decl::CXXConstructor:
1660    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1661    break;
1662  case Decl::CXXDestructor:
1663    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1664    break;
1665
1666  case Decl::StaticAssert:
1667    // Nothing to do.
1668    break;
1669
1670  // Objective-C Decls
1671
1672  // Forward declarations, no (immediate) code generation.
1673  case Decl::ObjCClass:
1674  case Decl::ObjCForwardProtocol:
1675  case Decl::ObjCCategory:
1676  case Decl::ObjCInterface:
1677    break;
1678
1679  case Decl::ObjCProtocol:
1680    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1681    break;
1682
1683  case Decl::ObjCCategoryImpl:
1684    // Categories have properties but don't support synthesize so we
1685    // can ignore them here.
1686    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1687    break;
1688
1689  case Decl::ObjCImplementation: {
1690    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1691    EmitObjCPropertyImplementations(OMD);
1692    Runtime->GenerateClass(OMD);
1693    break;
1694  }
1695  case Decl::ObjCMethod: {
1696    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1697    // If this is not a prototype, emit the body.
1698    if (OMD->getBody())
1699      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1700    break;
1701  }
1702  case Decl::ObjCCompatibleAlias:
1703    // compatibility-alias is a directive and has no code gen.
1704    break;
1705
1706  case Decl::LinkageSpec:
1707    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1708    break;
1709
1710  case Decl::FileScopeAsm: {
1711    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1712    std::string AsmString(AD->getAsmString()->getStrData(),
1713                          AD->getAsmString()->getByteLength());
1714
1715    const std::string &S = getModule().getModuleInlineAsm();
1716    if (S.empty())
1717      getModule().setModuleInlineAsm(AsmString);
1718    else
1719      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1720    break;
1721  }
1722
1723  default:
1724    // Make sure we handled everything we should, every other kind is a
1725    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1726    // function. Need to recode Decl::Kind to do that easily.
1727    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1728  }
1729}
1730