SemaDecl.cpp revision 00d50747e8442a4d0daf2dfc226aec354fd3441e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34/// \brief If the identifier refers to a type name within this scope,
35/// return the declaration of that type.
36///
37/// This routine performs ordinary name lookup of the identifier II
38/// within the given scope, with optional C++ scope specifier SS, to
39/// determine whether the name refers to a type. If so, returns the
40/// declaration corresponding to that type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::DeclTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false);
48  switch (Result.getKind()) {
49    case LookupResult::NotFound:
50    case LookupResult::FoundOverloaded:
51      return 0;
52
53    case LookupResult::AmbiguousBaseSubobjectTypes:
54    case LookupResult::AmbiguousBaseSubobjects:
55    case LookupResult::AmbiguousReference:
56      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
57      return 0;
58
59    case LookupResult::Found:
60      IIDecl = Result.getAsDecl();
61      break;
62  }
63
64  if (IIDecl) {
65    if (isa<TypedefDecl>(IIDecl) ||
66        isa<ObjCInterfaceDecl>(IIDecl) ||
67        isa<TagDecl>(IIDecl) ||
68        isa<TemplateTypeParmDecl>(IIDecl))
69      return IIDecl;
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared in
81    // is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// Add this decl to the scope shadowed decl chains.
117void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
118  // Move up the scope chain until we find the nearest enclosing
119  // non-transparent context. The declaration will be introduced into this
120  // scope.
121  while (S->getEntity() &&
122         ((DeclContext *)S->getEntity())->isTransparentContext())
123    S = S->getParent();
124
125  S->AddDecl(D);
126
127  // Add scoped declarations into their context, so that they can be
128  // found later. Declarations without a context won't be inserted
129  // into any context.
130  CurContext->addDecl(D);
131
132  // C++ [basic.scope]p4:
133  //   -- exactly one declaration shall declare a class name or
134  //   enumeration name that is not a typedef name and the other
135  //   declarations shall all refer to the same object or
136  //   enumerator, or all refer to functions and function templates;
137  //   in this case the class name or enumeration name is hidden.
138  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
139    // We are pushing the name of a tag (enum or class).
140    if (CurContext->getLookupContext()
141          == TD->getDeclContext()->getLookupContext()) {
142      // We're pushing the tag into the current context, which might
143      // require some reshuffling in the identifier resolver.
144      IdentifierResolver::iterator
145        I = IdResolver.begin(TD->getDeclName()),
146        IEnd = IdResolver.end();
147      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
148        NamedDecl *PrevDecl = *I;
149        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
150             PrevDecl = *I, ++I) {
151          if (TD->declarationReplaces(*I)) {
152            // This is a redeclaration. Remove it from the chain and
153            // break out, so that we'll add in the shadowed
154            // declaration.
155            S->RemoveDecl(*I);
156            if (PrevDecl == *I) {
157              IdResolver.RemoveDecl(*I);
158              IdResolver.AddDecl(TD);
159              return;
160            } else {
161              IdResolver.RemoveDecl(*I);
162              break;
163            }
164          }
165        }
166
167        // There is already a declaration with the same name in the same
168        // scope, which is not a tag declaration. It must be found
169        // before we find the new declaration, so insert the new
170        // declaration at the end of the chain.
171        IdResolver.AddShadowedDecl(TD, PrevDecl);
172
173        return;
174      }
175    }
176  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
177    // We are pushing the name of a function, which might be an
178    // overloaded name.
179    FunctionDecl *FD = cast<FunctionDecl>(D);
180    IdentifierResolver::iterator Redecl
181      = std::find_if(IdResolver.begin(FD->getDeclName()),
182                     IdResolver.end(),
183                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
184                                  FD));
185    if (Redecl != IdResolver.end()) {
186      // There is already a declaration of a function on our
187      // IdResolver chain. Replace it with this declaration.
188      S->RemoveDecl(*Redecl);
189      IdResolver.RemoveDecl(*Redecl);
190    }
191  }
192
193  IdResolver.AddDecl(D);
194}
195
196void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
197  if (S->decl_empty()) return;
198  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
199	 "Scope shouldn't contain decls!");
200
201  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
202       I != E; ++I) {
203    Decl *TmpD = static_cast<Decl*>(*I);
204    assert(TmpD && "This decl didn't get pushed??");
205
206    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
207    NamedDecl *D = cast<NamedDecl>(TmpD);
208
209    if (!D->getDeclName()) continue;
210
211    // Remove this name from our lexical scope.
212    IdResolver.RemoveDecl(D);
213  }
214}
215
216/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
217/// return 0 if one not found.
218ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
219  // The third "scope" argument is 0 since we aren't enabling lazy built-in
220  // creation from this context.
221  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
222
223  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
224}
225
226/// getNonFieldDeclScope - Retrieves the innermost scope, starting
227/// from S, where a non-field would be declared. This routine copes
228/// with the difference between C and C++ scoping rules in structs and
229/// unions. For example, the following code is well-formed in C but
230/// ill-formed in C++:
231/// @code
232/// struct S6 {
233///   enum { BAR } e;
234/// };
235///
236/// void test_S6() {
237///   struct S6 a;
238///   a.e = BAR;
239/// }
240/// @endcode
241/// For the declaration of BAR, this routine will return a different
242/// scope. The scope S will be the scope of the unnamed enumeration
243/// within S6. In C++, this routine will return the scope associated
244/// with S6, because the enumeration's scope is a transparent
245/// context but structures can contain non-field names. In C, this
246/// routine will return the translation unit scope, since the
247/// enumeration's scope is a transparent context and structures cannot
248/// contain non-field names.
249Scope *Sema::getNonFieldDeclScope(Scope *S) {
250  while (((S->getFlags() & Scope::DeclScope) == 0) ||
251         (S->getEntity() &&
252          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
253         (S->isClassScope() && !getLangOptions().CPlusPlus))
254    S = S->getParent();
255  return S;
256}
257
258void Sema::InitBuiltinVaListType() {
259  if (!Context.getBuiltinVaListType().isNull())
260    return;
261
262  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
263  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
264  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
265  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
266}
267
268/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
269/// lazily create a decl for it.
270NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
271                                     Scope *S) {
272  Builtin::ID BID = (Builtin::ID)bid;
273
274  if (Context.BuiltinInfo.hasVAListUse(BID))
275    InitBuiltinVaListType();
276
277  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
278  FunctionDecl *New = FunctionDecl::Create(Context,
279                                           Context.getTranslationUnitDecl(),
280                                           SourceLocation(), II, R,
281                                           FunctionDecl::Extern, false);
282
283  // Create Decl objects for each parameter, adding them to the
284  // FunctionDecl.
285  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
286    llvm::SmallVector<ParmVarDecl*, 16> Params;
287    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
288      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
289                                           FT->getArgType(i), VarDecl::None, 0));
290    New->setParams(Context, &Params[0], Params.size());
291  }
292
293
294
295  // TUScope is the translation-unit scope to insert this function into.
296  // FIXME: This is hideous. We need to teach PushOnScopeChains to
297  // relate Scopes to DeclContexts, and probably eliminate CurContext
298  // entirely, but we're not there yet.
299  DeclContext *SavedContext = CurContext;
300  CurContext = Context.getTranslationUnitDecl();
301  PushOnScopeChains(New, TUScope);
302  CurContext = SavedContext;
303  return New;
304}
305
306/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
307/// everything from the standard library is defined.
308NamespaceDecl *Sema::GetStdNamespace() {
309  if (!StdNamespace) {
310    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
311    DeclContext *Global = Context.getTranslationUnitDecl();
312    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
313    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
314  }
315  return StdNamespace;
316}
317
318/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
319/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
320/// situation, merging decls or emitting diagnostics as appropriate.
321///
322TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
323  bool objc_types = false;
324  // Allow multiple definitions for ObjC built-in typedefs.
325  // FIXME: Verify the underlying types are equivalent!
326  if (getLangOptions().ObjC1) {
327    const IdentifierInfo *TypeID = New->getIdentifier();
328    switch (TypeID->getLength()) {
329    default: break;
330    case 2:
331      if (!TypeID->isStr("id"))
332        break;
333      Context.setObjCIdType(New);
334      objc_types = true;
335      break;
336    case 5:
337      if (!TypeID->isStr("Class"))
338        break;
339      Context.setObjCClassType(New);
340      objc_types = true;
341      return New;
342    case 3:
343      if (!TypeID->isStr("SEL"))
344        break;
345      Context.setObjCSelType(New);
346      objc_types = true;
347      return New;
348    case 8:
349      if (!TypeID->isStr("Protocol"))
350        break;
351      Context.setObjCProtoType(New->getUnderlyingType());
352      objc_types = true;
353      return New;
354    }
355    // Fall through - the typedef name was not a builtin type.
356  }
357  // Verify the old decl was also a type.
358  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
359  if (!Old) {
360    Diag(New->getLocation(), diag::err_redefinition_different_kind)
361      << New->getDeclName();
362    if (!objc_types)
363      Diag(OldD->getLocation(), diag::note_previous_definition);
364    return New;
365  }
366
367  // Determine the "old" type we'll use for checking and diagnostics.
368  QualType OldType;
369  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
370    OldType = OldTypedef->getUnderlyingType();
371  else
372    OldType = Context.getTypeDeclType(Old);
373
374  // If the typedef types are not identical, reject them in all languages and
375  // with any extensions enabled.
376
377  if (OldType != New->getUnderlyingType() &&
378      Context.getCanonicalType(OldType) !=
379      Context.getCanonicalType(New->getUnderlyingType())) {
380    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
381      << New->getUnderlyingType() << OldType;
382    if (!objc_types)
383      Diag(Old->getLocation(), diag::note_previous_definition);
384    return New;
385  }
386  if (objc_types) return New;
387  if (getLangOptions().Microsoft) return New;
388
389  // C++ [dcl.typedef]p2:
390  //   In a given non-class scope, a typedef specifier can be used to
391  //   redefine the name of any type declared in that scope to refer
392  //   to the type to which it already refers.
393  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
394    return New;
395
396  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
397  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
398  // *either* declaration is in a system header. The code below implements
399  // this adhoc compatibility rule. FIXME: The following code will not
400  // work properly when compiling ".i" files (containing preprocessed output).
401  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
402    SourceManager &SrcMgr = Context.getSourceManager();
403    if (SrcMgr.isInSystemHeader(Old->getLocation()))
404      return New;
405    if (SrcMgr.isInSystemHeader(New->getLocation()))
406      return New;
407  }
408
409  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
410  Diag(Old->getLocation(), diag::note_previous_definition);
411  return New;
412}
413
414/// DeclhasAttr - returns true if decl Declaration already has the target
415/// attribute.
416static bool DeclHasAttr(const Decl *decl, const Attr *target) {
417  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
418    if (attr->getKind() == target->getKind())
419      return true;
420
421  return false;
422}
423
424/// MergeAttributes - append attributes from the Old decl to the New one.
425static void MergeAttributes(Decl *New, Decl *Old) {
426  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
427
428  while (attr) {
429     tmp = attr;
430     attr = attr->getNext();
431
432    if (!DeclHasAttr(New, tmp)) {
433       tmp->setInherited(true);
434       New->addAttr(tmp);
435    } else {
436       tmp->setNext(0);
437       delete(tmp);
438    }
439  }
440
441  Old->invalidateAttrs();
442}
443
444/// MergeFunctionDecl - We just parsed a function 'New' from
445/// declarator D which has the same name and scope as a previous
446/// declaration 'Old'.  Figure out how to resolve this situation,
447/// merging decls or emitting diagnostics as appropriate.
448/// Redeclaration will be set true if this New is a redeclaration OldD.
449///
450/// In C++, New and Old must be declarations that are not
451/// overloaded. Use IsOverload to determine whether New and Old are
452/// overloaded, and to select the Old declaration that New should be
453/// merged with.
454FunctionDecl *
455Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
456  assert(!isa<OverloadedFunctionDecl>(OldD) &&
457         "Cannot merge with an overloaded function declaration");
458
459  Redeclaration = false;
460  // Verify the old decl was also a function.
461  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
462  if (!Old) {
463    Diag(New->getLocation(), diag::err_redefinition_different_kind)
464      << New->getDeclName();
465    Diag(OldD->getLocation(), diag::note_previous_definition);
466    return New;
467  }
468
469  // Determine whether the previous declaration was a definition,
470  // implicit declaration, or a declaration.
471  diag::kind PrevDiag;
472  if (Old->isThisDeclarationADefinition())
473    PrevDiag = diag::note_previous_definition;
474  else if (Old->isImplicit())
475    PrevDiag = diag::note_previous_implicit_declaration;
476  else
477    PrevDiag = diag::note_previous_declaration;
478
479  QualType OldQType = Context.getCanonicalType(Old->getType());
480  QualType NewQType = Context.getCanonicalType(New->getType());
481
482  if (getLangOptions().CPlusPlus) {
483    // (C++98 13.1p2):
484    //   Certain function declarations cannot be overloaded:
485    //     -- Function declarations that differ only in the return type
486    //        cannot be overloaded.
487    QualType OldReturnType
488      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
489    QualType NewReturnType
490      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
491    if (OldReturnType != NewReturnType) {
492      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
493      Diag(Old->getLocation(), PrevDiag);
494      Redeclaration = true;
495      return New;
496    }
497
498    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
499    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
500    if (OldMethod && NewMethod) {
501      //    -- Member function declarations with the same name and the
502      //       same parameter types cannot be overloaded if any of them
503      //       is a static member function declaration.
504      if (OldMethod->isStatic() || NewMethod->isStatic()) {
505        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
506        Diag(Old->getLocation(), PrevDiag);
507        return New;
508      }
509
510      // C++ [class.mem]p1:
511      //   [...] A member shall not be declared twice in the
512      //   member-specification, except that a nested class or member
513      //   class template can be declared and then later defined.
514      if (OldMethod->getLexicalDeclContext() ==
515            NewMethod->getLexicalDeclContext()) {
516        unsigned NewDiag;
517        if (isa<CXXConstructorDecl>(OldMethod))
518          NewDiag = diag::err_constructor_redeclared;
519        else if (isa<CXXDestructorDecl>(NewMethod))
520          NewDiag = diag::err_destructor_redeclared;
521        else if (isa<CXXConversionDecl>(NewMethod))
522          NewDiag = diag::err_conv_function_redeclared;
523        else
524          NewDiag = diag::err_member_redeclared;
525
526        Diag(New->getLocation(), NewDiag);
527        Diag(Old->getLocation(), PrevDiag);
528      }
529    }
530
531    // (C++98 8.3.5p3):
532    //   All declarations for a function shall agree exactly in both the
533    //   return type and the parameter-type-list.
534    if (OldQType == NewQType) {
535      // We have a redeclaration.
536      MergeAttributes(New, Old);
537      Redeclaration = true;
538      return MergeCXXFunctionDecl(New, Old);
539    }
540
541    // Fall through for conflicting redeclarations and redefinitions.
542  }
543
544  // C: Function types need to be compatible, not identical. This handles
545  // duplicate function decls like "void f(int); void f(enum X);" properly.
546  if (!getLangOptions().CPlusPlus &&
547      Context.typesAreCompatible(OldQType, NewQType)) {
548    MergeAttributes(New, Old);
549    Redeclaration = true;
550    return New;
551  }
552
553  // A function that has already been declared has been redeclared or defined
554  // with a different type- show appropriate diagnostic
555
556  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
557  // TODO: This is totally simplistic.  It should handle merging functions
558  // together etc, merging extern int X; int X; ...
559  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
560  Diag(Old->getLocation(), PrevDiag);
561  return New;
562}
563
564/// Predicate for C "tentative" external object definitions (C99 6.9.2).
565static bool isTentativeDefinition(VarDecl *VD) {
566  if (VD->isFileVarDecl())
567    return (!VD->getInit() &&
568            (VD->getStorageClass() == VarDecl::None ||
569             VD->getStorageClass() == VarDecl::Static));
570  return false;
571}
572
573/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
574/// when dealing with C "tentative" external object definitions (C99 6.9.2).
575void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
576  bool VDIsTentative = isTentativeDefinition(VD);
577  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
578
579  // FIXME: I don't think this will actually see all of the
580  // redefinitions. Can't we check this property on-the-fly?
581  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
582                                    E = IdResolver.end();
583       I != E; ++I) {
584    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
585      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
586
587      // Handle the following case:
588      //   int a[10];
589      //   int a[];   - the code below makes sure we set the correct type.
590      //   int a[11]; - this is an error, size isn't 10.
591      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
592          OldDecl->getType()->isConstantArrayType())
593        VD->setType(OldDecl->getType());
594
595      // Check for "tentative" definitions. We can't accomplish this in
596      // MergeVarDecl since the initializer hasn't been attached.
597      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
598        continue;
599
600      // Handle __private_extern__ just like extern.
601      if (OldDecl->getStorageClass() != VarDecl::Extern &&
602          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
603          VD->getStorageClass() != VarDecl::Extern &&
604          VD->getStorageClass() != VarDecl::PrivateExtern) {
605        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
606        Diag(OldDecl->getLocation(), diag::note_previous_definition);
607        // One redefinition error is enough.
608        break;
609      }
610    }
611  }
612}
613
614/// MergeVarDecl - We just parsed a variable 'New' which has the same name
615/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
616/// situation, merging decls or emitting diagnostics as appropriate.
617///
618/// Tentative definition rules (C99 6.9.2p2) are checked by
619/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
620/// definitions here, since the initializer hasn't been attached.
621///
622VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
623  // Verify the old decl was also a variable.
624  VarDecl *Old = dyn_cast<VarDecl>(OldD);
625  if (!Old) {
626    Diag(New->getLocation(), diag::err_redefinition_different_kind)
627      << New->getDeclName();
628    Diag(OldD->getLocation(), diag::note_previous_definition);
629    return New;
630  }
631
632  MergeAttributes(New, Old);
633
634  // Merge the types
635  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
636  if (MergedT.isNull()) {
637    Diag(New->getLocation(), diag::err_redefinition_different_type)
638      << New->getDeclName();
639    Diag(Old->getLocation(), diag::note_previous_definition);
640    return New;
641  }
642  New->setType(MergedT);
643  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
644  if (New->getStorageClass() == VarDecl::Static &&
645      (Old->getStorageClass() == VarDecl::None ||
646       Old->getStorageClass() == VarDecl::Extern)) {
647    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
648    Diag(Old->getLocation(), diag::note_previous_definition);
649    return New;
650  }
651  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
652  if (New->getStorageClass() != VarDecl::Static &&
653      Old->getStorageClass() == VarDecl::Static) {
654    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
655    Diag(Old->getLocation(), diag::note_previous_definition);
656    return New;
657  }
658  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
659  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
660    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
661    Diag(Old->getLocation(), diag::note_previous_definition);
662  }
663  return New;
664}
665
666/// CheckParmsForFunctionDef - Check that the parameters of the given
667/// function are appropriate for the definition of a function. This
668/// takes care of any checks that cannot be performed on the
669/// declaration itself, e.g., that the types of each of the function
670/// parameters are complete.
671bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
672  bool HasInvalidParm = false;
673  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
674    ParmVarDecl *Param = FD->getParamDecl(p);
675
676    // C99 6.7.5.3p4: the parameters in a parameter type list in a
677    // function declarator that is part of a function definition of
678    // that function shall not have incomplete type.
679    if (!Param->isInvalidDecl() &&
680        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
681                               diag::err_typecheck_decl_incomplete_type)) {
682      Param->setInvalidDecl();
683      HasInvalidParm = true;
684    }
685
686    // C99 6.9.1p5: If the declarator includes a parameter type list, the
687    // declaration of each parameter shall include an identifier.
688    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
689      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
690  }
691
692  return HasInvalidParm;
693}
694
695/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
696/// no declarator (e.g. "struct foo;") is parsed.
697Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
698  TagDecl *Tag
699    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
700  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
701    if (!Record->getDeclName() && Record->isDefinition() &&
702        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
703      return BuildAnonymousStructOrUnion(S, DS, Record);
704
705    // Microsoft allows unnamed struct/union fields. Don't complain
706    // about them.
707    // FIXME: Should we support Microsoft's extensions in this area?
708    if (Record->getDeclName() && getLangOptions().Microsoft)
709      return Tag;
710  }
711
712  if (!DS.isMissingDeclaratorOk() &&
713      DS.getTypeSpecType() != DeclSpec::TST_error) {
714    // Warn about typedefs of enums without names, since this is an
715    // extension in both Microsoft an GNU.
716    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
717        Tag && isa<EnumDecl>(Tag)) {
718      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
719        << DS.getSourceRange();
720      return Tag;
721    }
722
723    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
724      << DS.getSourceRange();
725    return 0;
726  }
727
728  return Tag;
729}
730
731/// InjectAnonymousStructOrUnionMembers - Inject the members of the
732/// anonymous struct or union AnonRecord into the owning context Owner
733/// and scope S. This routine will be invoked just after we realize
734/// that an unnamed union or struct is actually an anonymous union or
735/// struct, e.g.,
736///
737/// @code
738/// union {
739///   int i;
740///   float f;
741/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
742///    // f into the surrounding scope.x
743/// @endcode
744///
745/// This routine is recursive, injecting the names of nested anonymous
746/// structs/unions into the owning context and scope as well.
747bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
748                                               RecordDecl *AnonRecord) {
749  bool Invalid = false;
750  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
751                               FEnd = AnonRecord->field_end();
752       F != FEnd; ++F) {
753    if ((*F)->getDeclName()) {
754      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
755                                                LookupOrdinaryName, true);
756      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
757        // C++ [class.union]p2:
758        //   The names of the members of an anonymous union shall be
759        //   distinct from the names of any other entity in the
760        //   scope in which the anonymous union is declared.
761        unsigned diagKind
762          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
763                                 : diag::err_anonymous_struct_member_redecl;
764        Diag((*F)->getLocation(), diagKind)
765          << (*F)->getDeclName();
766        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
767        Invalid = true;
768      } else {
769        // C++ [class.union]p2:
770        //   For the purpose of name lookup, after the anonymous union
771        //   definition, the members of the anonymous union are
772        //   considered to have been defined in the scope in which the
773        //   anonymous union is declared.
774        Owner->makeDeclVisibleInContext(*F);
775        S->AddDecl(*F);
776        IdResolver.AddDecl(*F);
777      }
778    } else if (const RecordType *InnerRecordType
779                 = (*F)->getType()->getAsRecordType()) {
780      RecordDecl *InnerRecord = InnerRecordType->getDecl();
781      if (InnerRecord->isAnonymousStructOrUnion())
782        Invalid = Invalid ||
783          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
784    }
785  }
786
787  return Invalid;
788}
789
790/// ActOnAnonymousStructOrUnion - Handle the declaration of an
791/// anonymous structure or union. Anonymous unions are a C++ feature
792/// (C++ [class.union]) and a GNU C extension; anonymous structures
793/// are a GNU C and GNU C++ extension.
794Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
795                                                RecordDecl *Record) {
796  DeclContext *Owner = Record->getDeclContext();
797
798  // Diagnose whether this anonymous struct/union is an extension.
799  if (Record->isUnion() && !getLangOptions().CPlusPlus)
800    Diag(Record->getLocation(), diag::ext_anonymous_union);
801  else if (!Record->isUnion())
802    Diag(Record->getLocation(), diag::ext_anonymous_struct);
803
804  // C and C++ require different kinds of checks for anonymous
805  // structs/unions.
806  bool Invalid = false;
807  if (getLangOptions().CPlusPlus) {
808    const char* PrevSpec = 0;
809    // C++ [class.union]p3:
810    //   Anonymous unions declared in a named namespace or in the
811    //   global namespace shall be declared static.
812    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
813        (isa<TranslationUnitDecl>(Owner) ||
814         (isa<NamespaceDecl>(Owner) &&
815          cast<NamespaceDecl>(Owner)->getDeclName()))) {
816      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
817      Invalid = true;
818
819      // Recover by adding 'static'.
820      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
821    }
822    // C++ [class.union]p3:
823    //   A storage class is not allowed in a declaration of an
824    //   anonymous union in a class scope.
825    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
826             isa<RecordDecl>(Owner)) {
827      Diag(DS.getStorageClassSpecLoc(),
828           diag::err_anonymous_union_with_storage_spec);
829      Invalid = true;
830
831      // Recover by removing the storage specifier.
832      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
833                             PrevSpec);
834    }
835
836    // C++ [class.union]p2:
837    //   The member-specification of an anonymous union shall only
838    //   define non-static data members. [Note: nested types and
839    //   functions cannot be declared within an anonymous union. ]
840    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
841                                 MemEnd = Record->decls_end();
842         Mem != MemEnd; ++Mem) {
843      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
844        // C++ [class.union]p3:
845        //   An anonymous union shall not have private or protected
846        //   members (clause 11).
847        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
848          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
849            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
850          Invalid = true;
851        }
852      } else if ((*Mem)->isImplicit()) {
853        // Any implicit members are fine.
854      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
855        // This is a type that showed up in an
856        // elaborated-type-specifier inside the anonymous struct or
857        // union, but which actually declares a type outside of the
858        // anonymous struct or union. It's okay.
859      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
860        if (!MemRecord->isAnonymousStructOrUnion() &&
861            MemRecord->getDeclName()) {
862          // This is a nested type declaration.
863          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
864            << (int)Record->isUnion();
865          Invalid = true;
866        }
867      } else {
868        // We have something that isn't a non-static data
869        // member. Complain about it.
870        unsigned DK = diag::err_anonymous_record_bad_member;
871        if (isa<TypeDecl>(*Mem))
872          DK = diag::err_anonymous_record_with_type;
873        else if (isa<FunctionDecl>(*Mem))
874          DK = diag::err_anonymous_record_with_function;
875        else if (isa<VarDecl>(*Mem))
876          DK = diag::err_anonymous_record_with_static;
877        Diag((*Mem)->getLocation(), DK)
878            << (int)Record->isUnion();
879          Invalid = true;
880      }
881    }
882  } else {
883    // FIXME: Check GNU C semantics
884    if (Record->isUnion() && !Owner->isRecord()) {
885      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
886        << (int)getLangOptions().CPlusPlus;
887      Invalid = true;
888    }
889  }
890
891  if (!Record->isUnion() && !Owner->isRecord()) {
892    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
893      << (int)getLangOptions().CPlusPlus;
894    Invalid = true;
895  }
896
897  // Create a declaration for this anonymous struct/union.
898  NamedDecl *Anon = 0;
899  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
900    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
901                             /*IdentifierInfo=*/0,
902                             Context.getTypeDeclType(Record),
903                             /*BitWidth=*/0, /*Mutable=*/false);
904    Anon->setAccess(AS_public);
905    if (getLangOptions().CPlusPlus)
906      FieldCollector->Add(cast<FieldDecl>(Anon));
907  } else {
908    VarDecl::StorageClass SC;
909    switch (DS.getStorageClassSpec()) {
910    default: assert(0 && "Unknown storage class!");
911    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
912    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
913    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
914    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
915    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
916    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
917    case DeclSpec::SCS_mutable:
918      // mutable can only appear on non-static class members, so it's always
919      // an error here
920      Diag(Record->getLocation(), diag::err_mutable_nonmember);
921      Invalid = true;
922      SC = VarDecl::None;
923      break;
924    }
925
926    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
927                           /*IdentifierInfo=*/0,
928                           Context.getTypeDeclType(Record),
929                           SC, DS.getSourceRange().getBegin());
930  }
931  Anon->setImplicit();
932
933  // Add the anonymous struct/union object to the current
934  // context. We'll be referencing this object when we refer to one of
935  // its members.
936  Owner->addDecl(Anon);
937
938  // Inject the members of the anonymous struct/union into the owning
939  // context and into the identifier resolver chain for name lookup
940  // purposes.
941  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
942    Invalid = true;
943
944  // Mark this as an anonymous struct/union type. Note that we do not
945  // do this until after we have already checked and injected the
946  // members of this anonymous struct/union type, because otherwise
947  // the members could be injected twice: once by DeclContext when it
948  // builds its lookup table, and once by
949  // InjectAnonymousStructOrUnionMembers.
950  Record->setAnonymousStructOrUnion(true);
951
952  if (Invalid)
953    Anon->setInvalidDecl();
954
955  return Anon;
956}
957
958bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
959                                  bool DirectInit) {
960  // Get the type before calling CheckSingleAssignmentConstraints(), since
961  // it can promote the expression.
962  QualType InitType = Init->getType();
963
964  if (getLangOptions().CPlusPlus) {
965    // FIXME: I dislike this error message. A lot.
966    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
967      return Diag(Init->getSourceRange().getBegin(),
968                  diag::err_typecheck_convert_incompatible)
969        << DeclType << Init->getType() << "initializing"
970        << Init->getSourceRange();
971
972    return false;
973  }
974
975  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
976  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
977                                  InitType, Init, "initializing");
978}
979
980bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
981  const ArrayType *AT = Context.getAsArrayType(DeclT);
982
983  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
984    // C99 6.7.8p14. We have an array of character type with unknown size
985    // being initialized to a string literal.
986    llvm::APSInt ConstVal(32);
987    ConstVal = strLiteral->getByteLength() + 1;
988    // Return a new array type (C99 6.7.8p22).
989    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
990                                         ArrayType::Normal, 0);
991  } else {
992    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
993    // C99 6.7.8p14. We have an array of character type with known size.
994    // FIXME: Avoid truncation for 64-bit length strings.
995    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
996      Diag(strLiteral->getSourceRange().getBegin(),
997           diag::warn_initializer_string_for_char_array_too_long)
998        << strLiteral->getSourceRange();
999  }
1000  // Set type from "char *" to "constant array of char".
1001  strLiteral->setType(DeclT);
1002  // For now, we always return false (meaning success).
1003  return false;
1004}
1005
1006StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1007  const ArrayType *AT = Context.getAsArrayType(DeclType);
1008  if (AT && AT->getElementType()->isCharType()) {
1009    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1010  }
1011  return 0;
1012}
1013
1014bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1015                                 SourceLocation InitLoc,
1016                                 DeclarationName InitEntity,
1017                                 bool DirectInit) {
1018  if (DeclType->isDependentType() || Init->isTypeDependent())
1019    return false;
1020
1021  // C++ [dcl.init.ref]p1:
1022  //   A variable declared to be a T&, that is "reference to type T"
1023  //   (8.3.2), shall be initialized by an object, or function, of
1024  //   type T or by an object that can be converted into a T.
1025  if (DeclType->isReferenceType())
1026    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1027
1028  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1029  // of unknown size ("[]") or an object type that is not a variable array type.
1030  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1031    return Diag(InitLoc,  diag::err_variable_object_no_init)
1032      << VAT->getSizeExpr()->getSourceRange();
1033
1034  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1035  if (!InitList) {
1036    // FIXME: Handle wide strings
1037    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1038      return CheckStringLiteralInit(strLiteral, DeclType);
1039
1040    // C++ [dcl.init]p14:
1041    //   -- If the destination type is a (possibly cv-qualified) class
1042    //      type:
1043    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1044      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1045      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1046
1047      //   -- If the initialization is direct-initialization, or if it is
1048      //      copy-initialization where the cv-unqualified version of the
1049      //      source type is the same class as, or a derived class of, the
1050      //      class of the destination, constructors are considered.
1051      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1052          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1053        CXXConstructorDecl *Constructor
1054          = PerformInitializationByConstructor(DeclType, &Init, 1,
1055                                               InitLoc, Init->getSourceRange(),
1056                                               InitEntity,
1057                                               DirectInit? IK_Direct : IK_Copy);
1058        return Constructor == 0;
1059      }
1060
1061      //   -- Otherwise (i.e., for the remaining copy-initialization
1062      //      cases), user-defined conversion sequences that can
1063      //      convert from the source type to the destination type or
1064      //      (when a conversion function is used) to a derived class
1065      //      thereof are enumerated as described in 13.3.1.4, and the
1066      //      best one is chosen through overload resolution
1067      //      (13.3). If the conversion cannot be done or is
1068      //      ambiguous, the initialization is ill-formed. The
1069      //      function selected is called with the initializer
1070      //      expression as its argument; if the function is a
1071      //      constructor, the call initializes a temporary of the
1072      //      destination type.
1073      // FIXME: We're pretending to do copy elision here; return to
1074      // this when we have ASTs for such things.
1075      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1076        return false;
1077
1078      if (InitEntity)
1079        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1080          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1081          << Init->getType() << Init->getSourceRange();
1082      else
1083        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1084          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1085          << Init->getType() << Init->getSourceRange();
1086    }
1087
1088    // C99 6.7.8p16.
1089    if (DeclType->isArrayType())
1090      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1091        << Init->getSourceRange();
1092
1093    return CheckSingleInitializer(Init, DeclType, DirectInit);
1094  }
1095
1096  bool hadError = CheckInitList(InitList, DeclType);
1097  Init = InitList;
1098  return hadError;
1099}
1100
1101/// GetNameForDeclarator - Determine the full declaration name for the
1102/// given Declarator.
1103DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1104  switch (D.getKind()) {
1105  case Declarator::DK_Abstract:
1106    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1107    return DeclarationName();
1108
1109  case Declarator::DK_Normal:
1110    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1111    return DeclarationName(D.getIdentifier());
1112
1113  case Declarator::DK_Constructor: {
1114    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1115    Ty = Context.getCanonicalType(Ty);
1116    return Context.DeclarationNames.getCXXConstructorName(Ty);
1117  }
1118
1119  case Declarator::DK_Destructor: {
1120    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1121    Ty = Context.getCanonicalType(Ty);
1122    return Context.DeclarationNames.getCXXDestructorName(Ty);
1123  }
1124
1125  case Declarator::DK_Conversion: {
1126    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1127    Ty = Context.getCanonicalType(Ty);
1128    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1129  }
1130
1131  case Declarator::DK_Operator:
1132    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1133    return Context.DeclarationNames.getCXXOperatorName(
1134                                                D.getOverloadedOperator());
1135  }
1136
1137  assert(false && "Unknown name kind");
1138  return DeclarationName();
1139}
1140
1141/// isNearlyMatchingFunction - Determine whether the C++ functions
1142/// Declaration and Definition are "nearly" matching. This heuristic
1143/// is used to improve diagnostics in the case where an out-of-line
1144/// function definition doesn't match any declaration within
1145/// the class or namespace.
1146static bool isNearlyMatchingFunction(ASTContext &Context,
1147                                     FunctionDecl *Declaration,
1148                                     FunctionDecl *Definition) {
1149  if (Declaration->param_size() != Definition->param_size())
1150    return false;
1151  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1152    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1153    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1154
1155    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1156    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1157    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1158      return false;
1159  }
1160
1161  return true;
1162}
1163
1164Sema::DeclTy *
1165Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1166                      bool IsFunctionDefinition) {
1167  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1168  DeclarationName Name = GetNameForDeclarator(D);
1169
1170  // All of these full declarators require an identifier.  If it doesn't have
1171  // one, the ParsedFreeStandingDeclSpec action should be used.
1172  if (!Name) {
1173    if (!D.getInvalidType())  // Reject this if we think it is valid.
1174      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1175           diag::err_declarator_need_ident)
1176        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1177    return 0;
1178  }
1179
1180  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1181  // we find one that is.
1182  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1183         (S->getFlags() & Scope::TemplateParamScope) != 0)
1184    S = S->getParent();
1185
1186  DeclContext *DC;
1187  NamedDecl *PrevDecl;
1188  NamedDecl *New;
1189  bool InvalidDecl = false;
1190
1191  // See if this is a redefinition of a variable in the same scope.
1192  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1193    DC = CurContext;
1194    PrevDecl = LookupName(S, Name, LookupOrdinaryName);
1195  } else { // Something like "int foo::x;"
1196    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1197    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1198
1199    // C++ 7.3.1.2p2:
1200    // Members (including explicit specializations of templates) of a named
1201    // namespace can also be defined outside that namespace by explicit
1202    // qualification of the name being defined, provided that the entity being
1203    // defined was already declared in the namespace and the definition appears
1204    // after the point of declaration in a namespace that encloses the
1205    // declarations namespace.
1206    //
1207    // Note that we only check the context at this point. We don't yet
1208    // have enough information to make sure that PrevDecl is actually
1209    // the declaration we want to match. For example, given:
1210    //
1211    //   class X {
1212    //     void f();
1213    //     void f(float);
1214    //   };
1215    //
1216    //   void X::f(int) { } // ill-formed
1217    //
1218    // In this case, PrevDecl will point to the overload set
1219    // containing the two f's declared in X, but neither of them
1220    // matches.
1221
1222    // First check whether we named the global scope.
1223    if (isa<TranslationUnitDecl>(DC)) {
1224      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1225        << Name << D.getCXXScopeSpec().getRange();
1226    } else if (!CurContext->Encloses(DC)) {
1227      // The qualifying scope doesn't enclose the original declaration.
1228      // Emit diagnostic based on current scope.
1229      SourceLocation L = D.getIdentifierLoc();
1230      SourceRange R = D.getCXXScopeSpec().getRange();
1231      if (isa<FunctionDecl>(CurContext))
1232        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1233      else
1234        Diag(L, diag::err_invalid_declarator_scope)
1235          << Name << cast<NamedDecl>(DC) << R;
1236      InvalidDecl = true;
1237    }
1238  }
1239
1240  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1241    // Maybe we will complain about the shadowed template parameter.
1242    InvalidDecl = InvalidDecl
1243      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1244    // Just pretend that we didn't see the previous declaration.
1245    PrevDecl = 0;
1246  }
1247
1248  // In C++, the previous declaration we find might be a tag type
1249  // (class or enum). In this case, the new declaration will hide the
1250  // tag type. Note that this does does not apply if we're declaring a
1251  // typedef (C++ [dcl.typedef]p4).
1252  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1253      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1254    PrevDecl = 0;
1255
1256  QualType R = GetTypeForDeclarator(D, S);
1257  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1258
1259  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1260    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1261                                 InvalidDecl);
1262  } else if (R.getTypePtr()->isFunctionType()) {
1263    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1264                                  IsFunctionDefinition, InvalidDecl);
1265  } else {
1266    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1267                                  InvalidDecl);
1268  }
1269
1270  if (New == 0)
1271    return 0;
1272
1273  // Set the lexical context. If the declarator has a C++ scope specifier, the
1274  // lexical context will be different from the semantic context.
1275  New->setLexicalDeclContext(CurContext);
1276
1277  // If this has an identifier, add it to the scope stack.
1278  if (Name)
1279    PushOnScopeChains(New, S);
1280  // If any semantic error occurred, mark the decl as invalid.
1281  if (D.getInvalidType() || InvalidDecl)
1282    New->setInvalidDecl();
1283
1284  return New;
1285}
1286
1287NamedDecl*
1288Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1289                             QualType R, Decl* LastDeclarator,
1290                             Decl* PrevDecl, bool& InvalidDecl) {
1291  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1292  if (D.getCXXScopeSpec().isSet()) {
1293    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1294      << D.getCXXScopeSpec().getRange();
1295    InvalidDecl = true;
1296    // Pretend we didn't see the scope specifier.
1297    DC = 0;
1298  }
1299
1300  // Check that there are no default arguments (C++ only).
1301  if (getLangOptions().CPlusPlus)
1302    CheckExtraCXXDefaultArguments(D);
1303
1304  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1305  if (!NewTD) return 0;
1306
1307  // Handle attributes prior to checking for duplicates in MergeVarDecl
1308  ProcessDeclAttributes(NewTD, D);
1309  // Merge the decl with the existing one if appropriate. If the decl is
1310  // in an outer scope, it isn't the same thing.
1311  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1312    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1313    if (NewTD == 0) return 0;
1314  }
1315
1316  if (S->getFnParent() == 0) {
1317    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1318    // then it shall have block scope.
1319    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1320      if (NewTD->getUnderlyingType()->isVariableArrayType())
1321        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1322      else
1323        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1324
1325      InvalidDecl = true;
1326    }
1327  }
1328  return NewTD;
1329}
1330
1331NamedDecl*
1332Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1333                              QualType R, Decl* LastDeclarator,
1334                              Decl* PrevDecl, bool& InvalidDecl) {
1335  DeclarationName Name = GetNameForDeclarator(D);
1336
1337  // Check that there are no default arguments (C++ only).
1338  if (getLangOptions().CPlusPlus)
1339    CheckExtraCXXDefaultArguments(D);
1340
1341  if (R.getTypePtr()->isObjCInterfaceType()) {
1342    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1343      << D.getIdentifier();
1344    InvalidDecl = true;
1345  }
1346
1347  VarDecl *NewVD;
1348  VarDecl::StorageClass SC;
1349  switch (D.getDeclSpec().getStorageClassSpec()) {
1350  default: assert(0 && "Unknown storage class!");
1351  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1352  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1353  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1354  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1355  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1356  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1357  case DeclSpec::SCS_mutable:
1358    // mutable can only appear on non-static class members, so it's always
1359    // an error here
1360    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1361    InvalidDecl = true;
1362    SC = VarDecl::None;
1363    break;
1364  }
1365
1366  IdentifierInfo *II = Name.getAsIdentifierInfo();
1367  if (!II) {
1368    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1369      << Name.getAsString();
1370    return 0;
1371  }
1372
1373  if (DC->isRecord()) {
1374    // This is a static data member for a C++ class.
1375    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1376                                    D.getIdentifierLoc(), II,
1377                                    R);
1378  } else {
1379    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1380    if (S->getFnParent() == 0) {
1381      // C99 6.9p2: The storage-class specifiers auto and register shall not
1382      // appear in the declaration specifiers in an external declaration.
1383      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1384        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1385        InvalidDecl = true;
1386      }
1387    }
1388    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1389                            II, R, SC,
1390                            // FIXME: Move to DeclGroup...
1391                            D.getDeclSpec().getSourceRange().getBegin());
1392    NewVD->setThreadSpecified(ThreadSpecified);
1393  }
1394  NewVD->setNextDeclarator(LastDeclarator);
1395
1396  // Handle attributes prior to checking for duplicates in MergeVarDecl
1397  ProcessDeclAttributes(NewVD, D);
1398
1399  // Handle GNU asm-label extension (encoded as an attribute).
1400  if (Expr *E = (Expr*) D.getAsmLabel()) {
1401    // The parser guarantees this is a string.
1402    StringLiteral *SE = cast<StringLiteral>(E);
1403    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1404                                                SE->getByteLength())));
1405  }
1406
1407  // Emit an error if an address space was applied to decl with local storage.
1408  // This includes arrays of objects with address space qualifiers, but not
1409  // automatic variables that point to other address spaces.
1410  // ISO/IEC TR 18037 S5.1.2
1411  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1412    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1413    InvalidDecl = true;
1414  }
1415  // Merge the decl with the existing one if appropriate. If the decl is
1416  // in an outer scope, it isn't the same thing.
1417  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1418    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1419      // The user tried to define a non-static data member
1420      // out-of-line (C++ [dcl.meaning]p1).
1421      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1422        << D.getCXXScopeSpec().getRange();
1423      NewVD->Destroy(Context);
1424      return 0;
1425    }
1426
1427    NewVD = MergeVarDecl(NewVD, PrevDecl);
1428    if (NewVD == 0) return 0;
1429
1430    if (D.getCXXScopeSpec().isSet()) {
1431      // No previous declaration in the qualifying scope.
1432      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1433        << Name << D.getCXXScopeSpec().getRange();
1434      InvalidDecl = true;
1435    }
1436  }
1437  return NewVD;
1438}
1439
1440NamedDecl*
1441Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1442                              QualType R, Decl *LastDeclarator,
1443                              Decl* PrevDecl, bool IsFunctionDefinition,
1444                              bool& InvalidDecl) {
1445  assert(R.getTypePtr()->isFunctionType());
1446
1447  DeclarationName Name = GetNameForDeclarator(D);
1448  FunctionDecl::StorageClass SC = FunctionDecl::None;
1449  switch (D.getDeclSpec().getStorageClassSpec()) {
1450  default: assert(0 && "Unknown storage class!");
1451  case DeclSpec::SCS_auto:
1452  case DeclSpec::SCS_register:
1453  case DeclSpec::SCS_mutable:
1454    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1455    InvalidDecl = true;
1456    break;
1457  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1458  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1459  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1460  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1461  }
1462
1463  bool isInline = D.getDeclSpec().isInlineSpecified();
1464  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1465  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1466
1467  FunctionDecl *NewFD;
1468  if (D.getKind() == Declarator::DK_Constructor) {
1469    // This is a C++ constructor declaration.
1470    assert(DC->isRecord() &&
1471           "Constructors can only be declared in a member context");
1472
1473    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1474
1475    // Create the new declaration
1476    NewFD = CXXConstructorDecl::Create(Context,
1477                                       cast<CXXRecordDecl>(DC),
1478                                       D.getIdentifierLoc(), Name, R,
1479                                       isExplicit, isInline,
1480                                       /*isImplicitlyDeclared=*/false);
1481
1482    if (InvalidDecl)
1483      NewFD->setInvalidDecl();
1484  } else if (D.getKind() == Declarator::DK_Destructor) {
1485    // This is a C++ destructor declaration.
1486    if (DC->isRecord()) {
1487      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1488
1489      NewFD = CXXDestructorDecl::Create(Context,
1490                                        cast<CXXRecordDecl>(DC),
1491                                        D.getIdentifierLoc(), Name, R,
1492                                        isInline,
1493                                        /*isImplicitlyDeclared=*/false);
1494
1495      if (InvalidDecl)
1496        NewFD->setInvalidDecl();
1497    } else {
1498      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1499
1500      // Create a FunctionDecl to satisfy the function definition parsing
1501      // code path.
1502      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1503                                   Name, R, SC, isInline,
1504                                   // FIXME: Move to DeclGroup...
1505                                   D.getDeclSpec().getSourceRange().getBegin());
1506      InvalidDecl = true;
1507      NewFD->setInvalidDecl();
1508    }
1509  } else if (D.getKind() == Declarator::DK_Conversion) {
1510    if (!DC->isRecord()) {
1511      Diag(D.getIdentifierLoc(),
1512           diag::err_conv_function_not_member);
1513      return 0;
1514    } else {
1515      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1516
1517      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1518                                        D.getIdentifierLoc(), Name, R,
1519                                        isInline, isExplicit);
1520
1521      if (InvalidDecl)
1522        NewFD->setInvalidDecl();
1523    }
1524  } else if (DC->isRecord()) {
1525    // This is a C++ method declaration.
1526    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1527                                  D.getIdentifierLoc(), Name, R,
1528                                  (SC == FunctionDecl::Static), isInline);
1529  } else {
1530    NewFD = FunctionDecl::Create(Context, DC,
1531                                 D.getIdentifierLoc(),
1532                                 Name, R, SC, isInline,
1533                                 // FIXME: Move to DeclGroup...
1534                                 D.getDeclSpec().getSourceRange().getBegin());
1535  }
1536  NewFD->setNextDeclarator(LastDeclarator);
1537
1538  // Set the lexical context. If the declarator has a C++
1539  // scope specifier, the lexical context will be different
1540  // from the semantic context.
1541  NewFD->setLexicalDeclContext(CurContext);
1542
1543  // Handle GNU asm-label extension (encoded as an attribute).
1544  if (Expr *E = (Expr*) D.getAsmLabel()) {
1545    // The parser guarantees this is a string.
1546    StringLiteral *SE = cast<StringLiteral>(E);
1547    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1548                                                SE->getByteLength())));
1549  }
1550
1551  // Copy the parameter declarations from the declarator D to
1552  // the function declaration NewFD, if they are available.
1553  if (D.getNumTypeObjects() > 0) {
1554    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1555
1556    // Create Decl objects for each parameter, adding them to the
1557    // FunctionDecl.
1558    llvm::SmallVector<ParmVarDecl*, 16> Params;
1559
1560    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1561    // function that takes no arguments, not a function that takes a
1562    // single void argument.
1563    // We let through "const void" here because Sema::GetTypeForDeclarator
1564    // already checks for that case.
1565    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1566        FTI.ArgInfo[0].Param &&
1567        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1568      // empty arg list, don't push any params.
1569      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1570
1571      // In C++, the empty parameter-type-list must be spelled "void"; a
1572      // typedef of void is not permitted.
1573      if (getLangOptions().CPlusPlus &&
1574          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1575        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1576      }
1577    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1578      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1579        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1580    }
1581
1582    NewFD->setParams(Context, &Params[0], Params.size());
1583  } else if (R->getAsTypedefType()) {
1584    // When we're declaring a function with a typedef, as in the
1585    // following example, we'll need to synthesize (unnamed)
1586    // parameters for use in the declaration.
1587    //
1588    // @code
1589    // typedef void fn(int);
1590    // fn f;
1591    // @endcode
1592    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1593    if (!FT) {
1594      // This is a typedef of a function with no prototype, so we
1595      // don't need to do anything.
1596    } else if ((FT->getNumArgs() == 0) ||
1597               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1598                FT->getArgType(0)->isVoidType())) {
1599      // This is a zero-argument function. We don't need to do anything.
1600    } else {
1601      // Synthesize a parameter for each argument type.
1602      llvm::SmallVector<ParmVarDecl*, 16> Params;
1603      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1604           ArgType != FT->arg_type_end(); ++ArgType) {
1605        Params.push_back(ParmVarDecl::Create(Context, DC,
1606                                             SourceLocation(), 0,
1607                                             *ArgType, VarDecl::None,
1608                                             0));
1609      }
1610
1611      NewFD->setParams(Context, &Params[0], Params.size());
1612    }
1613  }
1614
1615  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1616    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1617  else if (isa<CXXDestructorDecl>(NewFD)) {
1618    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1619    Record->setUserDeclaredDestructor(true);
1620    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1621    // user-defined destructor.
1622    Record->setPOD(false);
1623  } else if (CXXConversionDecl *Conversion =
1624             dyn_cast<CXXConversionDecl>(NewFD))
1625    ActOnConversionDeclarator(Conversion);
1626
1627  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1628  if (NewFD->isOverloadedOperator() &&
1629      CheckOverloadedOperatorDeclaration(NewFD))
1630    NewFD->setInvalidDecl();
1631
1632  // Merge the decl with the existing one if appropriate. Since C functions
1633  // are in a flat namespace, make sure we consider decls in outer scopes.
1634  bool Redeclaration = false;
1635  if (PrevDecl &&
1636      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1637    // If C++, determine whether NewFD is an overload of PrevDecl or
1638    // a declaration that requires merging. If it's an overload,
1639    // there's no more work to do here; we'll just add the new
1640    // function to the scope.
1641    OverloadedFunctionDecl::function_iterator MatchedDecl;
1642    if (!getLangOptions().CPlusPlus ||
1643        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1644      Decl *OldDecl = PrevDecl;
1645
1646      // If PrevDecl was an overloaded function, extract the
1647      // FunctionDecl that matched.
1648      if (isa<OverloadedFunctionDecl>(PrevDecl))
1649        OldDecl = *MatchedDecl;
1650
1651      // NewFD and PrevDecl represent declarations that need to be
1652      // merged.
1653      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1654
1655      if (NewFD == 0) return 0;
1656      if (Redeclaration) {
1657        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1658
1659        // An out-of-line member function declaration must also be a
1660        // definition (C++ [dcl.meaning]p1).
1661        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1662            !InvalidDecl) {
1663          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1664            << D.getCXXScopeSpec().getRange();
1665          NewFD->setInvalidDecl();
1666        }
1667      }
1668    }
1669  }
1670
1671  if (D.getCXXScopeSpec().isSet() &&
1672      (!PrevDecl || !Redeclaration)) {
1673    // The user tried to provide an out-of-line definition for a
1674    // function that is a member of a class or namespace, but there
1675    // was no such member function declared (C++ [class.mfct]p2,
1676    // C++ [namespace.memdef]p2). For example:
1677    //
1678    // class X {
1679    //   void f() const;
1680    // };
1681    //
1682    // void X::f() { } // ill-formed
1683    //
1684    // Complain about this problem, and attempt to suggest close
1685    // matches (e.g., those that differ only in cv-qualifiers and
1686    // whether the parameter types are references).
1687    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1688      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1689    InvalidDecl = true;
1690
1691    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1692                                            true);
1693    assert(!Prev.isAmbiguous() &&
1694           "Cannot have an ambiguity in previous-declaration lookup");
1695    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1696         Func != FuncEnd; ++Func) {
1697      if (isa<FunctionDecl>(*Func) &&
1698          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1699        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1700    }
1701
1702    PrevDecl = 0;
1703  }
1704
1705  // Handle attributes. We need to have merged decls when handling attributes
1706  // (for example to check for conflicts, etc).
1707  ProcessDeclAttributes(NewFD, D);
1708
1709  if (getLangOptions().CPlusPlus) {
1710    // In C++, check default arguments now that we have merged decls. Unless
1711    // the lexical context is the class, because in this case this is done
1712    // during delayed parsing anyway.
1713    if (!CurContext->isRecord())
1714      CheckCXXDefaultArguments(NewFD);
1715
1716    // An out-of-line member function declaration must also be a
1717    // definition (C++ [dcl.meaning]p1).
1718    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1719      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1720        << D.getCXXScopeSpec().getRange();
1721      InvalidDecl = true;
1722    }
1723  }
1724  return NewFD;
1725}
1726
1727void Sema::InitializerElementNotConstant(const Expr *Init) {
1728  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1729    << Init->getSourceRange();
1730}
1731
1732bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1733  switch (Init->getStmtClass()) {
1734  default:
1735    InitializerElementNotConstant(Init);
1736    return true;
1737  case Expr::ParenExprClass: {
1738    const ParenExpr* PE = cast<ParenExpr>(Init);
1739    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1740  }
1741  case Expr::CompoundLiteralExprClass:
1742    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1743  case Expr::DeclRefExprClass:
1744  case Expr::QualifiedDeclRefExprClass: {
1745    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1746    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1747      if (VD->hasGlobalStorage())
1748        return false;
1749      InitializerElementNotConstant(Init);
1750      return true;
1751    }
1752    if (isa<FunctionDecl>(D))
1753      return false;
1754    InitializerElementNotConstant(Init);
1755    return true;
1756  }
1757  case Expr::MemberExprClass: {
1758    const MemberExpr *M = cast<MemberExpr>(Init);
1759    if (M->isArrow())
1760      return CheckAddressConstantExpression(M->getBase());
1761    return CheckAddressConstantExpressionLValue(M->getBase());
1762  }
1763  case Expr::ArraySubscriptExprClass: {
1764    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1765    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1766    return CheckAddressConstantExpression(ASE->getBase()) ||
1767           CheckArithmeticConstantExpression(ASE->getIdx());
1768  }
1769  case Expr::StringLiteralClass:
1770  case Expr::PredefinedExprClass:
1771    return false;
1772  case Expr::UnaryOperatorClass: {
1773    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1774
1775    // C99 6.6p9
1776    if (Exp->getOpcode() == UnaryOperator::Deref)
1777      return CheckAddressConstantExpression(Exp->getSubExpr());
1778
1779    InitializerElementNotConstant(Init);
1780    return true;
1781  }
1782  }
1783}
1784
1785bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1786  switch (Init->getStmtClass()) {
1787  default:
1788    InitializerElementNotConstant(Init);
1789    return true;
1790  case Expr::ParenExprClass:
1791    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1792  case Expr::StringLiteralClass:
1793  case Expr::ObjCStringLiteralClass:
1794    return false;
1795  case Expr::CallExprClass:
1796  case Expr::CXXOperatorCallExprClass:
1797    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1798    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1799           Builtin::BI__builtin___CFStringMakeConstantString)
1800      return false;
1801
1802    InitializerElementNotConstant(Init);
1803    return true;
1804
1805  case Expr::UnaryOperatorClass: {
1806    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1807
1808    // C99 6.6p9
1809    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1810      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1811
1812    if (Exp->getOpcode() == UnaryOperator::Extension)
1813      return CheckAddressConstantExpression(Exp->getSubExpr());
1814
1815    InitializerElementNotConstant(Init);
1816    return true;
1817  }
1818  case Expr::BinaryOperatorClass: {
1819    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1820    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1821
1822    Expr *PExp = Exp->getLHS();
1823    Expr *IExp = Exp->getRHS();
1824    if (IExp->getType()->isPointerType())
1825      std::swap(PExp, IExp);
1826
1827    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1828    return CheckAddressConstantExpression(PExp) ||
1829           CheckArithmeticConstantExpression(IExp);
1830  }
1831  case Expr::ImplicitCastExprClass:
1832  case Expr::CStyleCastExprClass: {
1833    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1834    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1835      // Check for implicit promotion
1836      if (SubExpr->getType()->isFunctionType() ||
1837          SubExpr->getType()->isArrayType())
1838        return CheckAddressConstantExpressionLValue(SubExpr);
1839    }
1840
1841    // Check for pointer->pointer cast
1842    if (SubExpr->getType()->isPointerType())
1843      return CheckAddressConstantExpression(SubExpr);
1844
1845    if (SubExpr->getType()->isIntegralType()) {
1846      // Check for the special-case of a pointer->int->pointer cast;
1847      // this isn't standard, but some code requires it. See
1848      // PR2720 for an example.
1849      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1850        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1851          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1852          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1853          if (IntWidth >= PointerWidth) {
1854            return CheckAddressConstantExpression(SubCast->getSubExpr());
1855          }
1856        }
1857      }
1858    }
1859    if (SubExpr->getType()->isArithmeticType()) {
1860      return CheckArithmeticConstantExpression(SubExpr);
1861    }
1862
1863    InitializerElementNotConstant(Init);
1864    return true;
1865  }
1866  case Expr::ConditionalOperatorClass: {
1867    // FIXME: Should we pedwarn here?
1868    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1869    if (!Exp->getCond()->getType()->isArithmeticType()) {
1870      InitializerElementNotConstant(Init);
1871      return true;
1872    }
1873    if (CheckArithmeticConstantExpression(Exp->getCond()))
1874      return true;
1875    if (Exp->getLHS() &&
1876        CheckAddressConstantExpression(Exp->getLHS()))
1877      return true;
1878    return CheckAddressConstantExpression(Exp->getRHS());
1879  }
1880  case Expr::AddrLabelExprClass:
1881    return false;
1882  }
1883}
1884
1885static const Expr* FindExpressionBaseAddress(const Expr* E);
1886
1887static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1888  switch (E->getStmtClass()) {
1889  default:
1890    return E;
1891  case Expr::ParenExprClass: {
1892    const ParenExpr* PE = cast<ParenExpr>(E);
1893    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1894  }
1895  case Expr::MemberExprClass: {
1896    const MemberExpr *M = cast<MemberExpr>(E);
1897    if (M->isArrow())
1898      return FindExpressionBaseAddress(M->getBase());
1899    return FindExpressionBaseAddressLValue(M->getBase());
1900  }
1901  case Expr::ArraySubscriptExprClass: {
1902    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1903    return FindExpressionBaseAddress(ASE->getBase());
1904  }
1905  case Expr::UnaryOperatorClass: {
1906    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1907
1908    if (Exp->getOpcode() == UnaryOperator::Deref)
1909      return FindExpressionBaseAddress(Exp->getSubExpr());
1910
1911    return E;
1912  }
1913  }
1914}
1915
1916static const Expr* FindExpressionBaseAddress(const Expr* E) {
1917  switch (E->getStmtClass()) {
1918  default:
1919    return E;
1920  case Expr::ParenExprClass: {
1921    const ParenExpr* PE = cast<ParenExpr>(E);
1922    return FindExpressionBaseAddress(PE->getSubExpr());
1923  }
1924  case Expr::UnaryOperatorClass: {
1925    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1926
1927    // C99 6.6p9
1928    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1929      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1930
1931    if (Exp->getOpcode() == UnaryOperator::Extension)
1932      return FindExpressionBaseAddress(Exp->getSubExpr());
1933
1934    return E;
1935  }
1936  case Expr::BinaryOperatorClass: {
1937    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1938
1939    Expr *PExp = Exp->getLHS();
1940    Expr *IExp = Exp->getRHS();
1941    if (IExp->getType()->isPointerType())
1942      std::swap(PExp, IExp);
1943
1944    return FindExpressionBaseAddress(PExp);
1945  }
1946  case Expr::ImplicitCastExprClass: {
1947    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1948
1949    // Check for implicit promotion
1950    if (SubExpr->getType()->isFunctionType() ||
1951        SubExpr->getType()->isArrayType())
1952      return FindExpressionBaseAddressLValue(SubExpr);
1953
1954    // Check for pointer->pointer cast
1955    if (SubExpr->getType()->isPointerType())
1956      return FindExpressionBaseAddress(SubExpr);
1957
1958    // We assume that we have an arithmetic expression here;
1959    // if we don't, we'll figure it out later
1960    return 0;
1961  }
1962  case Expr::CStyleCastExprClass: {
1963    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1964
1965    // Check for pointer->pointer cast
1966    if (SubExpr->getType()->isPointerType())
1967      return FindExpressionBaseAddress(SubExpr);
1968
1969    // We assume that we have an arithmetic expression here;
1970    // if we don't, we'll figure it out later
1971    return 0;
1972  }
1973  }
1974}
1975
1976bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1977  switch (Init->getStmtClass()) {
1978  default:
1979    InitializerElementNotConstant(Init);
1980    return true;
1981  case Expr::ParenExprClass: {
1982    const ParenExpr* PE = cast<ParenExpr>(Init);
1983    return CheckArithmeticConstantExpression(PE->getSubExpr());
1984  }
1985  case Expr::FloatingLiteralClass:
1986  case Expr::IntegerLiteralClass:
1987  case Expr::CharacterLiteralClass:
1988  case Expr::ImaginaryLiteralClass:
1989  case Expr::TypesCompatibleExprClass:
1990  case Expr::CXXBoolLiteralExprClass:
1991    return false;
1992  case Expr::CallExprClass:
1993  case Expr::CXXOperatorCallExprClass: {
1994    const CallExpr *CE = cast<CallExpr>(Init);
1995
1996    // Allow any constant foldable calls to builtins.
1997    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1998      return false;
1999
2000    InitializerElementNotConstant(Init);
2001    return true;
2002  }
2003  case Expr::DeclRefExprClass:
2004  case Expr::QualifiedDeclRefExprClass: {
2005    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2006    if (isa<EnumConstantDecl>(D))
2007      return false;
2008    InitializerElementNotConstant(Init);
2009    return true;
2010  }
2011  case Expr::CompoundLiteralExprClass:
2012    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2013    // but vectors are allowed to be magic.
2014    if (Init->getType()->isVectorType())
2015      return false;
2016    InitializerElementNotConstant(Init);
2017    return true;
2018  case Expr::UnaryOperatorClass: {
2019    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2020
2021    switch (Exp->getOpcode()) {
2022    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2023    // See C99 6.6p3.
2024    default:
2025      InitializerElementNotConstant(Init);
2026      return true;
2027    case UnaryOperator::OffsetOf:
2028      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2029        return false;
2030      InitializerElementNotConstant(Init);
2031      return true;
2032    case UnaryOperator::Extension:
2033    case UnaryOperator::LNot:
2034    case UnaryOperator::Plus:
2035    case UnaryOperator::Minus:
2036    case UnaryOperator::Not:
2037      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2038    }
2039  }
2040  case Expr::SizeOfAlignOfExprClass: {
2041    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2042    // Special check for void types, which are allowed as an extension
2043    if (Exp->getTypeOfArgument()->isVoidType())
2044      return false;
2045    // alignof always evaluates to a constant.
2046    // FIXME: is sizeof(int[3.0]) a constant expression?
2047    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2048      InitializerElementNotConstant(Init);
2049      return true;
2050    }
2051    return false;
2052  }
2053  case Expr::BinaryOperatorClass: {
2054    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2055
2056    if (Exp->getLHS()->getType()->isArithmeticType() &&
2057        Exp->getRHS()->getType()->isArithmeticType()) {
2058      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2059             CheckArithmeticConstantExpression(Exp->getRHS());
2060    }
2061
2062    if (Exp->getLHS()->getType()->isPointerType() &&
2063        Exp->getRHS()->getType()->isPointerType()) {
2064      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2065      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2066
2067      // Only allow a null (constant integer) base; we could
2068      // allow some additional cases if necessary, but this
2069      // is sufficient to cover offsetof-like constructs.
2070      if (!LHSBase && !RHSBase) {
2071        return CheckAddressConstantExpression(Exp->getLHS()) ||
2072               CheckAddressConstantExpression(Exp->getRHS());
2073      }
2074    }
2075
2076    InitializerElementNotConstant(Init);
2077    return true;
2078  }
2079  case Expr::ImplicitCastExprClass:
2080  case Expr::CStyleCastExprClass: {
2081    const CastExpr *CE = cast<CastExpr>(Init);
2082    const Expr *SubExpr = CE->getSubExpr();
2083
2084    if (SubExpr->getType()->isArithmeticType())
2085      return CheckArithmeticConstantExpression(SubExpr);
2086
2087    if (SubExpr->getType()->isPointerType()) {
2088      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2089      if (Base) {
2090        // the cast is only valid if done to a wide enough type
2091        if (Context.getTypeSize(CE->getType()) >=
2092            Context.getTypeSize(SubExpr->getType()))
2093          return false;
2094      } else {
2095        // If the pointer has a null base, this is an offsetof-like construct
2096        return CheckAddressConstantExpression(SubExpr);
2097      }
2098    }
2099
2100    InitializerElementNotConstant(Init);
2101    return true;
2102  }
2103  case Expr::ConditionalOperatorClass: {
2104    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2105
2106    // If GNU extensions are disabled, we require all operands to be arithmetic
2107    // constant expressions.
2108    if (getLangOptions().NoExtensions) {
2109      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2110          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2111             CheckArithmeticConstantExpression(Exp->getRHS());
2112    }
2113
2114    // Otherwise, we have to emulate some of the behavior of fold here.
2115    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2116    // because it can constant fold things away.  To retain compatibility with
2117    // GCC code, we see if we can fold the condition to a constant (which we
2118    // should always be able to do in theory).  If so, we only require the
2119    // specified arm of the conditional to be a constant.  This is a horrible
2120    // hack, but is require by real world code that uses __builtin_constant_p.
2121    Expr::EvalResult EvalResult;
2122    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2123        EvalResult.HasSideEffects) {
2124      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2125      // won't be able to either.  Use it to emit the diagnostic though.
2126      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2127      assert(Res && "Evaluate couldn't evaluate this constant?");
2128      return Res;
2129    }
2130
2131    // Verify that the side following the condition is also a constant.
2132    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2133    if (EvalResult.Val.getInt() == 0)
2134      std::swap(TrueSide, FalseSide);
2135
2136    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2137      return true;
2138
2139    // Okay, the evaluated side evaluates to a constant, so we accept this.
2140    // Check to see if the other side is obviously not a constant.  If so,
2141    // emit a warning that this is a GNU extension.
2142    if (FalseSide && !FalseSide->isEvaluatable(Context))
2143      Diag(Init->getExprLoc(),
2144           diag::ext_typecheck_expression_not_constant_but_accepted)
2145        << FalseSide->getSourceRange();
2146    return false;
2147  }
2148  }
2149}
2150
2151bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2152  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2153    Init = DIE->getInit();
2154
2155  Init = Init->IgnoreParens();
2156
2157  if (Init->isEvaluatable(Context))
2158    return false;
2159
2160  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2161  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2162    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2163
2164  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2165    return CheckForConstantInitializer(e->getInitializer(), DclT);
2166
2167  if (isa<ImplicitValueInitExpr>(Init)) {
2168    // FIXME: In C++, check for non-POD types.
2169    return false;
2170  }
2171
2172  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2173    unsigned numInits = Exp->getNumInits();
2174    for (unsigned i = 0; i < numInits; i++) {
2175      // FIXME: Need to get the type of the declaration for C++,
2176      // because it could be a reference?
2177
2178      if (CheckForConstantInitializer(Exp->getInit(i),
2179                                      Exp->getInit(i)->getType()))
2180        return true;
2181    }
2182    return false;
2183  }
2184
2185  // FIXME: We can probably remove some of this code below, now that
2186  // Expr::Evaluate is doing the heavy lifting for scalars.
2187
2188  if (Init->isNullPointerConstant(Context))
2189    return false;
2190  if (Init->getType()->isArithmeticType()) {
2191    QualType InitTy = Context.getCanonicalType(Init->getType())
2192                             .getUnqualifiedType();
2193    if (InitTy == Context.BoolTy) {
2194      // Special handling for pointers implicitly cast to bool;
2195      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2196      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2197        Expr* SubE = ICE->getSubExpr();
2198        if (SubE->getType()->isPointerType() ||
2199            SubE->getType()->isArrayType() ||
2200            SubE->getType()->isFunctionType()) {
2201          return CheckAddressConstantExpression(Init);
2202        }
2203      }
2204    } else if (InitTy->isIntegralType()) {
2205      Expr* SubE = 0;
2206      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2207        SubE = CE->getSubExpr();
2208      // Special check for pointer cast to int; we allow as an extension
2209      // an address constant cast to an integer if the integer
2210      // is of an appropriate width (this sort of code is apparently used
2211      // in some places).
2212      // FIXME: Add pedwarn?
2213      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2214      if (SubE && (SubE->getType()->isPointerType() ||
2215                   SubE->getType()->isArrayType() ||
2216                   SubE->getType()->isFunctionType())) {
2217        unsigned IntWidth = Context.getTypeSize(Init->getType());
2218        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2219        if (IntWidth >= PointerWidth)
2220          return CheckAddressConstantExpression(Init);
2221      }
2222    }
2223
2224    return CheckArithmeticConstantExpression(Init);
2225  }
2226
2227  if (Init->getType()->isPointerType())
2228    return CheckAddressConstantExpression(Init);
2229
2230  // An array type at the top level that isn't an init-list must
2231  // be a string literal
2232  if (Init->getType()->isArrayType())
2233    return false;
2234
2235  if (Init->getType()->isFunctionType())
2236    return false;
2237
2238  // Allow block exprs at top level.
2239  if (Init->getType()->isBlockPointerType())
2240    return false;
2241
2242  // GCC cast to union extension
2243  // note: the validity of the cast expr is checked by CheckCastTypes()
2244  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2245    QualType T = C->getType();
2246    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2247  }
2248
2249  InitializerElementNotConstant(Init);
2250  return true;
2251}
2252
2253void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2254  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2255}
2256
2257/// AddInitializerToDecl - Adds the initializer Init to the
2258/// declaration dcl. If DirectInit is true, this is C++ direct
2259/// initialization rather than copy initialization.
2260void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2261  Decl *RealDecl = static_cast<Decl *>(dcl);
2262  Expr *Init = static_cast<Expr *>(init.release());
2263  assert(Init && "missing initializer");
2264
2265  // If there is no declaration, there was an error parsing it.  Just ignore
2266  // the initializer.
2267  if (RealDecl == 0) {
2268    Init->Destroy(Context);
2269    return;
2270  }
2271
2272  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2273  if (!VDecl) {
2274    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2275    RealDecl->setInvalidDecl();
2276    return;
2277  }
2278  // Get the decls type and save a reference for later, since
2279  // CheckInitializerTypes may change it.
2280  QualType DclT = VDecl->getType(), SavT = DclT;
2281  if (VDecl->isBlockVarDecl()) {
2282    VarDecl::StorageClass SC = VDecl->getStorageClass();
2283    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2284      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2285      VDecl->setInvalidDecl();
2286    } else if (!VDecl->isInvalidDecl()) {
2287      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2288                                VDecl->getDeclName(), DirectInit))
2289        VDecl->setInvalidDecl();
2290
2291      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2292      if (!getLangOptions().CPlusPlus) {
2293        if (SC == VarDecl::Static) // C99 6.7.8p4.
2294          CheckForConstantInitializer(Init, DclT);
2295      }
2296    }
2297  } else if (VDecl->isFileVarDecl()) {
2298    if (VDecl->getStorageClass() == VarDecl::Extern)
2299      Diag(VDecl->getLocation(), diag::warn_extern_init);
2300    if (!VDecl->isInvalidDecl())
2301      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2302                                VDecl->getDeclName(), DirectInit))
2303        VDecl->setInvalidDecl();
2304
2305    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2306    if (!getLangOptions().CPlusPlus) {
2307      // C99 6.7.8p4. All file scoped initializers need to be constant.
2308      CheckForConstantInitializer(Init, DclT);
2309    }
2310  }
2311  // If the type changed, it means we had an incomplete type that was
2312  // completed by the initializer. For example:
2313  //   int ary[] = { 1, 3, 5 };
2314  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2315  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2316    VDecl->setType(DclT);
2317    Init->setType(DclT);
2318  }
2319
2320  // Attach the initializer to the decl.
2321  VDecl->setInit(Init);
2322  return;
2323}
2324
2325void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2326  Decl *RealDecl = static_cast<Decl *>(dcl);
2327
2328  // If there is no declaration, there was an error parsing it. Just ignore it.
2329  if (RealDecl == 0)
2330    return;
2331
2332  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2333    QualType Type = Var->getType();
2334    // C++ [dcl.init.ref]p3:
2335    //   The initializer can be omitted for a reference only in a
2336    //   parameter declaration (8.3.5), in the declaration of a
2337    //   function return type, in the declaration of a class member
2338    //   within its class declaration (9.2), and where the extern
2339    //   specifier is explicitly used.
2340    if (Type->isReferenceType() &&
2341        Var->getStorageClass() != VarDecl::Extern &&
2342        Var->getStorageClass() != VarDecl::PrivateExtern) {
2343      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2344        << Var->getDeclName()
2345        << SourceRange(Var->getLocation(), Var->getLocation());
2346      Var->setInvalidDecl();
2347      return;
2348    }
2349
2350    // C++ [dcl.init]p9:
2351    //
2352    //   If no initializer is specified for an object, and the object
2353    //   is of (possibly cv-qualified) non-POD class type (or array
2354    //   thereof), the object shall be default-initialized; if the
2355    //   object is of const-qualified type, the underlying class type
2356    //   shall have a user-declared default constructor.
2357    if (getLangOptions().CPlusPlus) {
2358      QualType InitType = Type;
2359      if (const ArrayType *Array = Context.getAsArrayType(Type))
2360        InitType = Array->getElementType();
2361      if (Var->getStorageClass() != VarDecl::Extern &&
2362          Var->getStorageClass() != VarDecl::PrivateExtern &&
2363          InitType->isRecordType()) {
2364        const CXXConstructorDecl *Constructor
2365          = PerformInitializationByConstructor(InitType, 0, 0,
2366                                               Var->getLocation(),
2367                                               SourceRange(Var->getLocation(),
2368                                                           Var->getLocation()),
2369                                               Var->getDeclName(),
2370                                               IK_Default);
2371        if (!Constructor)
2372          Var->setInvalidDecl();
2373      }
2374    }
2375
2376#if 0
2377    // FIXME: Temporarily disabled because we are not properly parsing
2378    // linkage specifications on declarations, e.g.,
2379    //
2380    //   extern "C" const CGPoint CGPointerZero;
2381    //
2382    // C++ [dcl.init]p9:
2383    //
2384    //     If no initializer is specified for an object, and the
2385    //     object is of (possibly cv-qualified) non-POD class type (or
2386    //     array thereof), the object shall be default-initialized; if
2387    //     the object is of const-qualified type, the underlying class
2388    //     type shall have a user-declared default
2389    //     constructor. Otherwise, if no initializer is specified for
2390    //     an object, the object and its subobjects, if any, have an
2391    //     indeterminate initial value; if the object or any of its
2392    //     subobjects are of const-qualified type, the program is
2393    //     ill-formed.
2394    //
2395    // This isn't technically an error in C, so we don't diagnose it.
2396    //
2397    // FIXME: Actually perform the POD/user-defined default
2398    // constructor check.
2399    if (getLangOptions().CPlusPlus &&
2400        Context.getCanonicalType(Type).isConstQualified() &&
2401        Var->getStorageClass() != VarDecl::Extern)
2402      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2403        << Var->getName()
2404        << SourceRange(Var->getLocation(), Var->getLocation());
2405#endif
2406  }
2407}
2408
2409/// The declarators are chained together backwards, reverse the list.
2410Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2411  // Often we have single declarators, handle them quickly.
2412  Decl *GroupDecl = static_cast<Decl*>(group);
2413  if (GroupDecl == 0)
2414    return 0;
2415
2416  Decl *Group = dyn_cast<Decl>(GroupDecl);
2417  Decl *NewGroup = 0;
2418  if (Group->getNextDeclarator() == 0)
2419    NewGroup = Group;
2420  else { // reverse the list.
2421    while (Group) {
2422      Decl *Next = Group->getNextDeclarator();
2423      Group->setNextDeclarator(NewGroup);
2424      NewGroup = Group;
2425      Group = Next;
2426    }
2427  }
2428  // Perform semantic analysis that depends on having fully processed both
2429  // the declarator and initializer.
2430  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2431    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2432    if (!IDecl)
2433      continue;
2434    QualType T = IDecl->getType();
2435
2436    if (T->isVariableArrayType()) {
2437      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2438
2439      // FIXME: This won't give the correct result for
2440      // int a[10][n];
2441      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2442      if (IDecl->isFileVarDecl()) {
2443        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2444          SizeRange;
2445
2446        IDecl->setInvalidDecl();
2447      } else {
2448        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2449        // static storage duration, it shall not have a variable length array.
2450        if (IDecl->getStorageClass() == VarDecl::Static) {
2451          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2452            << SizeRange;
2453          IDecl->setInvalidDecl();
2454        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2455          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2456            << SizeRange;
2457          IDecl->setInvalidDecl();
2458        }
2459      }
2460    } else if (T->isVariablyModifiedType()) {
2461      if (IDecl->isFileVarDecl()) {
2462        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2463        IDecl->setInvalidDecl();
2464      } else {
2465        if (IDecl->getStorageClass() == VarDecl::Extern) {
2466          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2467          IDecl->setInvalidDecl();
2468        }
2469      }
2470    }
2471
2472    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2473    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2474    if (IDecl->isBlockVarDecl() &&
2475        IDecl->getStorageClass() != VarDecl::Extern) {
2476      if (!IDecl->isInvalidDecl() &&
2477          DiagnoseIncompleteType(IDecl->getLocation(), T,
2478                                 diag::err_typecheck_decl_incomplete_type))
2479        IDecl->setInvalidDecl();
2480    }
2481    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2482    // object that has file scope without an initializer, and without a
2483    // storage-class specifier or with the storage-class specifier "static",
2484    // constitutes a tentative definition. Note: A tentative definition with
2485    // external linkage is valid (C99 6.2.2p5).
2486    if (isTentativeDefinition(IDecl)) {
2487      if (T->isIncompleteArrayType()) {
2488        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2489        // array to be completed. Don't issue a diagnostic.
2490      } else if (!IDecl->isInvalidDecl() &&
2491                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2492                                        diag::err_typecheck_decl_incomplete_type))
2493        // C99 6.9.2p3: If the declaration of an identifier for an object is
2494        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2495        // declared type shall not be an incomplete type.
2496        IDecl->setInvalidDecl();
2497    }
2498    if (IDecl->isFileVarDecl())
2499      CheckForFileScopedRedefinitions(S, IDecl);
2500  }
2501  return NewGroup;
2502}
2503
2504/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2505/// to introduce parameters into function prototype scope.
2506Sema::DeclTy *
2507Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2508  const DeclSpec &DS = D.getDeclSpec();
2509
2510  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2511  VarDecl::StorageClass StorageClass = VarDecl::None;
2512  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2513    StorageClass = VarDecl::Register;
2514  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2515    Diag(DS.getStorageClassSpecLoc(),
2516         diag::err_invalid_storage_class_in_func_decl);
2517    D.getMutableDeclSpec().ClearStorageClassSpecs();
2518  }
2519  if (DS.isThreadSpecified()) {
2520    Diag(DS.getThreadSpecLoc(),
2521         diag::err_invalid_storage_class_in_func_decl);
2522    D.getMutableDeclSpec().ClearStorageClassSpecs();
2523  }
2524
2525  // Check that there are no default arguments inside the type of this
2526  // parameter (C++ only).
2527  if (getLangOptions().CPlusPlus)
2528    CheckExtraCXXDefaultArguments(D);
2529
2530  // In this context, we *do not* check D.getInvalidType(). If the declarator
2531  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2532  // though it will not reflect the user specified type.
2533  QualType parmDeclType = GetTypeForDeclarator(D, S);
2534
2535  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2536
2537  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2538  // Can this happen for params?  We already checked that they don't conflict
2539  // among each other.  Here they can only shadow globals, which is ok.
2540  IdentifierInfo *II = D.getIdentifier();
2541  if (II) {
2542    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2543      if (PrevDecl->isTemplateParameter()) {
2544        // Maybe we will complain about the shadowed template parameter.
2545        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2546        // Just pretend that we didn't see the previous declaration.
2547        PrevDecl = 0;
2548      } else if (S->isDeclScope(PrevDecl)) {
2549        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2550
2551        // Recover by removing the name
2552        II = 0;
2553        D.SetIdentifier(0, D.getIdentifierLoc());
2554      }
2555    }
2556  }
2557
2558  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2559  // Doing the promotion here has a win and a loss. The win is the type for
2560  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2561  // code generator). The loss is the orginal type isn't preserved. For example:
2562  //
2563  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2564  //    int blockvardecl[5];
2565  //    sizeof(parmvardecl);  // size == 4
2566  //    sizeof(blockvardecl); // size == 20
2567  // }
2568  //
2569  // For expressions, all implicit conversions are captured using the
2570  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2571  //
2572  // FIXME: If a source translation tool needs to see the original type, then
2573  // we need to consider storing both types (in ParmVarDecl)...
2574  //
2575  if (parmDeclType->isArrayType()) {
2576    // int x[restrict 4] ->  int *restrict
2577    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2578  } else if (parmDeclType->isFunctionType())
2579    parmDeclType = Context.getPointerType(parmDeclType);
2580
2581  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2582                                         D.getIdentifierLoc(), II,
2583                                         parmDeclType, StorageClass,
2584                                         0);
2585
2586  if (D.getInvalidType())
2587    New->setInvalidDecl();
2588
2589  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2590  if (D.getCXXScopeSpec().isSet()) {
2591    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2592      << D.getCXXScopeSpec().getRange();
2593    New->setInvalidDecl();
2594  }
2595
2596  // Add the parameter declaration into this scope.
2597  S->AddDecl(New);
2598  if (II)
2599    IdResolver.AddDecl(New);
2600
2601  ProcessDeclAttributes(New, D);
2602  return New;
2603
2604}
2605
2606void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2607  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2608         "Not a function declarator!");
2609  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2610
2611  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2612  // for a K&R function.
2613  if (!FTI.hasPrototype) {
2614    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2615      if (FTI.ArgInfo[i].Param == 0) {
2616        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2617          << FTI.ArgInfo[i].Ident;
2618        // Implicitly declare the argument as type 'int' for lack of a better
2619        // type.
2620        DeclSpec DS;
2621        const char* PrevSpec; // unused
2622        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2623                           PrevSpec);
2624        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2625        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2626        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2627      }
2628    }
2629  }
2630}
2631
2632Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2633  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2634  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2635         "Not a function declarator!");
2636  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2637
2638  if (FTI.hasPrototype) {
2639    // FIXME: Diagnose arguments without names in C.
2640  }
2641
2642  Scope *ParentScope = FnBodyScope->getParent();
2643
2644  return ActOnStartOfFunctionDef(FnBodyScope,
2645                                 ActOnDeclarator(ParentScope, D, 0,
2646                                                 /*IsFunctionDefinition=*/true));
2647}
2648
2649Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2650  Decl *decl = static_cast<Decl*>(D);
2651  FunctionDecl *FD = cast<FunctionDecl>(decl);
2652
2653  // See if this is a redefinition.
2654  const FunctionDecl *Definition;
2655  if (FD->getBody(Definition)) {
2656    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2657    Diag(Definition->getLocation(), diag::note_previous_definition);
2658  }
2659
2660  PushDeclContext(FnBodyScope, FD);
2661
2662  // Check the validity of our function parameters
2663  CheckParmsForFunctionDef(FD);
2664
2665  // Introduce our parameters into the function scope
2666  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2667    ParmVarDecl *Param = FD->getParamDecl(p);
2668    Param->setOwningFunction(FD);
2669
2670    // If this has an identifier, add it to the scope stack.
2671    if (Param->getIdentifier())
2672      PushOnScopeChains(Param, FnBodyScope);
2673  }
2674
2675  // Checking attributes of current function definition
2676  // dllimport attribute.
2677  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2678    // dllimport attribute cannot be applied to definition.
2679    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2680      Diag(FD->getLocation(),
2681           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2682        << "dllimport";
2683      FD->setInvalidDecl();
2684      return FD;
2685    } else {
2686      // If a symbol previously declared dllimport is later defined, the
2687      // attribute is ignored in subsequent references, and a warning is
2688      // emitted.
2689      Diag(FD->getLocation(),
2690           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2691        << FD->getNameAsCString() << "dllimport";
2692    }
2693  }
2694  return FD;
2695}
2696
2697Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2698  Decl *dcl = static_cast<Decl *>(D);
2699  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2700  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2701    FD->setBody(Body);
2702    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2703  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2704    MD->setBody((Stmt*)Body);
2705  } else {
2706    Body->Destroy(Context);
2707    return 0;
2708  }
2709  PopDeclContext();
2710  // Verify and clean out per-function state.
2711
2712  // Check goto/label use.
2713  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2714       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2715    // Verify that we have no forward references left.  If so, there was a goto
2716    // or address of a label taken, but no definition of it.  Label fwd
2717    // definitions are indicated with a null substmt.
2718    if (I->second->getSubStmt() == 0) {
2719      LabelStmt *L = I->second;
2720      // Emit error.
2721      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2722
2723      // At this point, we have gotos that use the bogus label.  Stitch it into
2724      // the function body so that they aren't leaked and that the AST is well
2725      // formed.
2726      if (Body) {
2727#if 0
2728        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2729        // and the AST is malformed anyway.  We should just blow away 'L'.
2730        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2731        cast<CompoundStmt>(Body)->push_back(L);
2732#else
2733        L->Destroy(Context);
2734#endif
2735      } else {
2736        // The whole function wasn't parsed correctly, just delete this.
2737        L->Destroy(Context);
2738      }
2739    }
2740  }
2741  LabelMap.clear();
2742
2743  return D;
2744}
2745
2746/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2747/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2748NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2749                                          IdentifierInfo &II, Scope *S) {
2750  // Extension in C99.  Legal in C90, but warn about it.
2751  if (getLangOptions().C99)
2752    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2753  else
2754    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2755
2756  // FIXME: handle stuff like:
2757  // void foo() { extern float X(); }
2758  // void bar() { X(); }  <-- implicit decl for X in another scope.
2759
2760  // Set a Declarator for the implicit definition: int foo();
2761  const char *Dummy;
2762  DeclSpec DS;
2763  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2764  Error = Error; // Silence warning.
2765  assert(!Error && "Error setting up implicit decl!");
2766  Declarator D(DS, Declarator::BlockContext);
2767  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2768  D.SetIdentifier(&II, Loc);
2769
2770  // Insert this function into translation-unit scope.
2771
2772  DeclContext *PrevDC = CurContext;
2773  CurContext = Context.getTranslationUnitDecl();
2774
2775  FunctionDecl *FD =
2776    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2777  FD->setImplicit();
2778
2779  CurContext = PrevDC;
2780
2781  return FD;
2782}
2783
2784
2785TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2786                                    Decl *LastDeclarator) {
2787  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2788  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2789
2790  // Scope manipulation handled by caller.
2791  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2792                                           D.getIdentifierLoc(),
2793                                           D.getIdentifier(),
2794                                           T);
2795  NewTD->setNextDeclarator(LastDeclarator);
2796  if (D.getInvalidType())
2797    NewTD->setInvalidDecl();
2798  return NewTD;
2799}
2800
2801/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2802/// former case, Name will be non-null.  In the later case, Name will be null.
2803/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2804/// reference/declaration/definition of a tag.
2805Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2806                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2807                             IdentifierInfo *Name, SourceLocation NameLoc,
2808                             AttributeList *Attr) {
2809  // If this is not a definition, it must have a name.
2810  assert((Name != 0 || TK == TK_Definition) &&
2811         "Nameless record must be a definition!");
2812
2813  TagDecl::TagKind Kind;
2814  switch (TagSpec) {
2815  default: assert(0 && "Unknown tag type!");
2816  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2817  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2818  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2819  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2820  }
2821
2822  DeclContext *SearchDC = CurContext;
2823  DeclContext *DC = CurContext;
2824  NamedDecl *PrevDecl = 0;
2825
2826  bool Invalid = false;
2827
2828  if (Name && SS.isNotEmpty()) {
2829    // We have a nested-name tag ('struct foo::bar').
2830
2831    // Check for invalid 'foo::'.
2832    if (SS.isInvalid()) {
2833      Name = 0;
2834      goto CreateNewDecl;
2835    }
2836
2837    DC = static_cast<DeclContext*>(SS.getScopeRep());
2838    SearchDC = DC;
2839    // Look-up name inside 'foo::'.
2840    PrevDecl = dyn_cast_or_null<TagDecl>(
2841                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2842
2843    // A tag 'foo::bar' must already exist.
2844    if (PrevDecl == 0) {
2845      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2846      Name = 0;
2847      goto CreateNewDecl;
2848    }
2849  } else if (Name) {
2850    // If this is a named struct, check to see if there was a previous forward
2851    // declaration or definition.
2852    // FIXME: We're looking into outer scopes here, even when we
2853    // shouldn't be. Doing so can result in ambiguities that we
2854    // shouldn't be diagnosing.
2855    LookupResult R = LookupName(S, Name, LookupTagName,
2856                                /*RedeclarationOnly=*/(TK != TK_Reference));
2857    if (R.isAmbiguous()) {
2858      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2859      // FIXME: This is not best way to recover from case like:
2860      //
2861      // struct S s;
2862      //
2863      // causes needless err_ovl_no_viable_function_in_init latter.
2864      Name = 0;
2865      PrevDecl = 0;
2866      Invalid = true;
2867    }
2868    else
2869      PrevDecl = R;
2870
2871    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2872      // FIXME: This makes sure that we ignore the contexts associated
2873      // with C structs, unions, and enums when looking for a matching
2874      // tag declaration or definition. See the similar lookup tweak
2875      // in Sema::LookupName; is there a better way to deal with this?
2876      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2877        SearchDC = SearchDC->getParent();
2878    }
2879  }
2880
2881  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2882    // Maybe we will complain about the shadowed template parameter.
2883    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2884    // Just pretend that we didn't see the previous declaration.
2885    PrevDecl = 0;
2886  }
2887
2888  if (PrevDecl) {
2889    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2890      // If this is a use of a previous tag, or if the tag is already declared
2891      // in the same scope (so that the definition/declaration completes or
2892      // rementions the tag), reuse the decl.
2893      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2894        // Make sure that this wasn't declared as an enum and now used as a
2895        // struct or something similar.
2896        if (PrevTagDecl->getTagKind() != Kind) {
2897          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2898          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2899          // Recover by making this an anonymous redefinition.
2900          Name = 0;
2901          PrevDecl = 0;
2902          Invalid = true;
2903        } else {
2904          // If this is a use, just return the declaration we found.
2905
2906          // FIXME: In the future, return a variant or some other clue
2907          // for the consumer of this Decl to know it doesn't own it.
2908          // For our current ASTs this shouldn't be a problem, but will
2909          // need to be changed with DeclGroups.
2910          if (TK == TK_Reference)
2911            return PrevDecl;
2912
2913          // Diagnose attempts to redefine a tag.
2914          if (TK == TK_Definition) {
2915            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2916              Diag(NameLoc, diag::err_redefinition) << Name;
2917              Diag(Def->getLocation(), diag::note_previous_definition);
2918              // If this is a redefinition, recover by making this
2919              // struct be anonymous, which will make any later
2920              // references get the previous definition.
2921              Name = 0;
2922              PrevDecl = 0;
2923              Invalid = true;
2924            } else {
2925              // If the type is currently being defined, complain
2926              // about a nested redefinition.
2927              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2928              if (Tag->isBeingDefined()) {
2929                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2930                Diag(PrevTagDecl->getLocation(),
2931                     diag::note_previous_definition);
2932                Name = 0;
2933                PrevDecl = 0;
2934                Invalid = true;
2935              }
2936            }
2937
2938            // Okay, this is definition of a previously declared or referenced
2939            // tag PrevDecl. We're going to create a new Decl for it.
2940          }
2941        }
2942        // If we get here we have (another) forward declaration or we
2943        // have a definition.  Just create a new decl.
2944      } else {
2945        // If we get here, this is a definition of a new tag type in a nested
2946        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2947        // new decl/type.  We set PrevDecl to NULL so that the entities
2948        // have distinct types.
2949        PrevDecl = 0;
2950      }
2951      // If we get here, we're going to create a new Decl. If PrevDecl
2952      // is non-NULL, it's a definition of the tag declared by
2953      // PrevDecl. If it's NULL, we have a new definition.
2954    } else {
2955      // PrevDecl is a namespace, template, or anything else
2956      // that lives in the IDNS_Tag identifier namespace.
2957      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2958        // The tag name clashes with a namespace name, issue an error and
2959        // recover by making this tag be anonymous.
2960        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2961        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2962        Name = 0;
2963        PrevDecl = 0;
2964        Invalid = true;
2965      } else {
2966        // The existing declaration isn't relevant to us; we're in a
2967        // new scope, so clear out the previous declaration.
2968        PrevDecl = 0;
2969      }
2970    }
2971  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2972             (Kind != TagDecl::TK_enum))  {
2973    // C++ [basic.scope.pdecl]p5:
2974    //   -- for an elaborated-type-specifier of the form
2975    //
2976    //          class-key identifier
2977    //
2978    //      if the elaborated-type-specifier is used in the
2979    //      decl-specifier-seq or parameter-declaration-clause of a
2980    //      function defined in namespace scope, the identifier is
2981    //      declared as a class-name in the namespace that contains
2982    //      the declaration; otherwise, except as a friend
2983    //      declaration, the identifier is declared in the smallest
2984    //      non-class, non-function-prototype scope that contains the
2985    //      declaration.
2986    //
2987    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2988    // C structs and unions.
2989
2990    // Find the context where we'll be declaring the tag.
2991    // FIXME: We would like to maintain the current DeclContext as the
2992    // lexical context,
2993    while (SearchDC->isRecord())
2994      SearchDC = SearchDC->getParent();
2995
2996    // Find the scope where we'll be declaring the tag.
2997    while (S->isClassScope() ||
2998           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2999           ((S->getFlags() & Scope::DeclScope) == 0) ||
3000           (S->getEntity() &&
3001            ((DeclContext *)S->getEntity())->isTransparentContext()))
3002      S = S->getParent();
3003  }
3004
3005CreateNewDecl:
3006
3007  // If there is an identifier, use the location of the identifier as the
3008  // location of the decl, otherwise use the location of the struct/union
3009  // keyword.
3010  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3011
3012  // Otherwise, create a new declaration. If there is a previous
3013  // declaration of the same entity, the two will be linked via
3014  // PrevDecl.
3015  TagDecl *New;
3016
3017  if (Kind == TagDecl::TK_enum) {
3018    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3019    // enum X { A, B, C } D;    D should chain to X.
3020    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3021                           cast_or_null<EnumDecl>(PrevDecl));
3022    // If this is an undefined enum, warn.
3023    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3024  } else {
3025    // struct/union/class
3026
3027    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3028    // struct X { int A; } D;    D should chain to X.
3029    if (getLangOptions().CPlusPlus)
3030      // FIXME: Look for a way to use RecordDecl for simple structs.
3031      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3032                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3033    else
3034      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3035                               cast_or_null<RecordDecl>(PrevDecl));
3036  }
3037
3038  if (Kind != TagDecl::TK_enum) {
3039    // Handle #pragma pack: if the #pragma pack stack has non-default
3040    // alignment, make up a packed attribute for this decl. These
3041    // attributes are checked when the ASTContext lays out the
3042    // structure.
3043    //
3044    // It is important for implementing the correct semantics that this
3045    // happen here (in act on tag decl). The #pragma pack stack is
3046    // maintained as a result of parser callbacks which can occur at
3047    // many points during the parsing of a struct declaration (because
3048    // the #pragma tokens are effectively skipped over during the
3049    // parsing of the struct).
3050    if (unsigned Alignment = PackContext.getAlignment())
3051      New->addAttr(new PackedAttr(Alignment * 8));
3052  }
3053
3054  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3055    // C++ [dcl.typedef]p3:
3056    //   [...] Similarly, in a given scope, a class or enumeration
3057    //   shall not be declared with the same name as a typedef-name
3058    //   that is declared in that scope and refers to a type other
3059    //   than the class or enumeration itself.
3060    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3061    TypedefDecl *PrevTypedef = 0;
3062    if (Lookup.getKind() == LookupResult::Found)
3063      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3064
3065    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3066        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3067          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3068      Diag(Loc, diag::err_tag_definition_of_typedef)
3069        << Context.getTypeDeclType(New)
3070        << PrevTypedef->getUnderlyingType();
3071      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3072      Invalid = true;
3073    }
3074  }
3075
3076  if (Invalid)
3077    New->setInvalidDecl();
3078
3079  if (Attr)
3080    ProcessDeclAttributeList(New, Attr);
3081
3082  // If we're declaring or defining a tag in function prototype scope
3083  // in C, note that this type can only be used within the function.
3084  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3085    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3086
3087  // Set the lexical context. If the tag has a C++ scope specifier, the
3088  // lexical context will be different from the semantic context.
3089  New->setLexicalDeclContext(CurContext);
3090
3091  if (TK == TK_Definition)
3092    New->startDefinition();
3093
3094  // If this has an identifier, add it to the scope stack.
3095  if (Name) {
3096    S = getNonFieldDeclScope(S);
3097    PushOnScopeChains(New, S);
3098  } else {
3099    CurContext->addDecl(New);
3100  }
3101
3102  return New;
3103}
3104
3105void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3106  AdjustDeclIfTemplate(TagD);
3107  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3108
3109  // Enter the tag context.
3110  PushDeclContext(S, Tag);
3111
3112  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3113    FieldCollector->StartClass();
3114
3115    if (Record->getIdentifier()) {
3116      // C++ [class]p2:
3117      //   [...] The class-name is also inserted into the scope of the
3118      //   class itself; this is known as the injected-class-name. For
3119      //   purposes of access checking, the injected-class-name is treated
3120      //   as if it were a public member name.
3121      RecordDecl *InjectedClassName
3122        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3123                                CurContext, Record->getLocation(),
3124                                Record->getIdentifier(), Record);
3125      InjectedClassName->setImplicit();
3126      PushOnScopeChains(InjectedClassName, S);
3127    }
3128  }
3129}
3130
3131void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3132  AdjustDeclIfTemplate(TagD);
3133  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3134
3135  if (isa<CXXRecordDecl>(Tag))
3136    FieldCollector->FinishClass();
3137
3138  // Exit this scope of this tag's definition.
3139  PopDeclContext();
3140
3141  // Notify the consumer that we've defined a tag.
3142  Consumer.HandleTagDeclDefinition(Tag);
3143}
3144
3145/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3146/// types into constant array types in certain situations which would otherwise
3147/// be errors (for GCC compatibility).
3148static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3149                                                    ASTContext &Context) {
3150  // This method tries to turn a variable array into a constant
3151  // array even when the size isn't an ICE.  This is necessary
3152  // for compatibility with code that depends on gcc's buggy
3153  // constant expression folding, like struct {char x[(int)(char*)2];}
3154  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3155  if (!VLATy) return QualType();
3156
3157  Expr::EvalResult EvalResult;
3158  if (!VLATy->getSizeExpr() ||
3159      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3160    return QualType();
3161
3162  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3163  llvm::APSInt &Res = EvalResult.Val.getInt();
3164  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3165    return Context.getConstantArrayType(VLATy->getElementType(),
3166                                        Res, ArrayType::Normal, 0);
3167  return QualType();
3168}
3169
3170bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3171                          QualType FieldTy, const Expr *BitWidth) {
3172  // FIXME: 6.7.2.1p4 - verify the field type.
3173
3174  llvm::APSInt Value;
3175  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3176    return true;
3177
3178  // Zero-width bitfield is ok for anonymous field.
3179  if (Value == 0 && FieldName)
3180    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3181
3182  if (Value.isNegative())
3183    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3184
3185  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3186  // FIXME: We won't need the 0 size once we check that the field type is valid.
3187  if (TypeSize && Value.getZExtValue() > TypeSize)
3188    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3189       << FieldName << (unsigned)TypeSize;
3190
3191  return false;
3192}
3193
3194/// ActOnField - Each field of a struct/union/class is passed into this in order
3195/// to create a FieldDecl object for it.
3196Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3197                               SourceLocation DeclStart,
3198                               Declarator &D, ExprTy *BitfieldWidth) {
3199  IdentifierInfo *II = D.getIdentifier();
3200  Expr *BitWidth = (Expr*)BitfieldWidth;
3201  SourceLocation Loc = DeclStart;
3202  RecordDecl *Record = (RecordDecl *)TagD;
3203  if (II) Loc = D.getIdentifierLoc();
3204
3205  // FIXME: Unnamed fields can be handled in various different ways, for
3206  // example, unnamed unions inject all members into the struct namespace!
3207
3208  QualType T = GetTypeForDeclarator(D, S);
3209  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3210  bool InvalidDecl = false;
3211
3212  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3213  // than a variably modified type.
3214  if (T->isVariablyModifiedType()) {
3215    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3216    if (!FixedTy.isNull()) {
3217      Diag(Loc, diag::warn_illegal_constant_array_size);
3218      T = FixedTy;
3219    } else {
3220      Diag(Loc, diag::err_typecheck_field_variable_size);
3221      T = Context.IntTy;
3222      InvalidDecl = true;
3223    }
3224  }
3225
3226  if (BitWidth) {
3227    if (VerifyBitField(Loc, II, T, BitWidth))
3228      InvalidDecl = true;
3229  } else {
3230    // Not a bitfield.
3231
3232    // validate II.
3233
3234  }
3235
3236  // FIXME: Chain fielddecls together.
3237  FieldDecl *NewFD;
3238
3239  NewFD = FieldDecl::Create(Context, Record,
3240                            Loc, II, T, BitWidth,
3241                            D.getDeclSpec().getStorageClassSpec() ==
3242                              DeclSpec::SCS_mutable);
3243
3244  if (II) {
3245    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3246    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3247        && !isa<TagDecl>(PrevDecl)) {
3248      Diag(Loc, diag::err_duplicate_member) << II;
3249      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3250      NewFD->setInvalidDecl();
3251      Record->setInvalidDecl();
3252    }
3253  }
3254
3255  if (getLangOptions().CPlusPlus) {
3256    CheckExtraCXXDefaultArguments(D);
3257    if (!T->isPODType())
3258      cast<CXXRecordDecl>(Record)->setPOD(false);
3259  }
3260
3261  ProcessDeclAttributes(NewFD, D);
3262
3263  if (D.getInvalidType() || InvalidDecl)
3264    NewFD->setInvalidDecl();
3265
3266  if (II) {
3267    PushOnScopeChains(NewFD, S);
3268  } else
3269    Record->addDecl(NewFD);
3270
3271  return NewFD;
3272}
3273
3274/// TranslateIvarVisibility - Translate visibility from a token ID to an
3275///  AST enum value.
3276static ObjCIvarDecl::AccessControl
3277TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3278  switch (ivarVisibility) {
3279  default: assert(0 && "Unknown visitibility kind");
3280  case tok::objc_private: return ObjCIvarDecl::Private;
3281  case tok::objc_public: return ObjCIvarDecl::Public;
3282  case tok::objc_protected: return ObjCIvarDecl::Protected;
3283  case tok::objc_package: return ObjCIvarDecl::Package;
3284  }
3285}
3286
3287/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3288/// in order to create an IvarDecl object for it.
3289Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3290                              SourceLocation DeclStart,
3291                              Declarator &D, ExprTy *BitfieldWidth,
3292                              tok::ObjCKeywordKind Visibility) {
3293
3294  IdentifierInfo *II = D.getIdentifier();
3295  Expr *BitWidth = (Expr*)BitfieldWidth;
3296  SourceLocation Loc = DeclStart;
3297  if (II) Loc = D.getIdentifierLoc();
3298
3299  // FIXME: Unnamed fields can be handled in various different ways, for
3300  // example, unnamed unions inject all members into the struct namespace!
3301
3302  QualType T = GetTypeForDeclarator(D, S);
3303  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3304  bool InvalidDecl = false;
3305
3306  if (BitWidth) {
3307    // TODO: Validate.
3308    //printf("WARNING: BITFIELDS IGNORED!\n");
3309
3310    // 6.7.2.1p3
3311    // 6.7.2.1p4
3312
3313  } else {
3314    // Not a bitfield.
3315
3316    // validate II.
3317
3318  }
3319
3320  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3321  // than a variably modified type.
3322  if (T->isVariablyModifiedType()) {
3323    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3324    InvalidDecl = true;
3325  }
3326
3327  // Get the visibility (access control) for this ivar.
3328  ObjCIvarDecl::AccessControl ac =
3329    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3330                                        : ObjCIvarDecl::None;
3331
3332  // Construct the decl.
3333  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3334                                             (Expr *)BitfieldWidth);
3335
3336  if (II) {
3337    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3338    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3339        && !isa<TagDecl>(PrevDecl)) {
3340      Diag(Loc, diag::err_duplicate_member) << II;
3341      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3342      NewID->setInvalidDecl();
3343    }
3344  }
3345
3346  // Process attributes attached to the ivar.
3347  ProcessDeclAttributes(NewID, D);
3348
3349  if (D.getInvalidType() || InvalidDecl)
3350    NewID->setInvalidDecl();
3351
3352  if (II) {
3353    // FIXME: When interfaces are DeclContexts, we'll need to add
3354    // these to the interface.
3355    S->AddDecl(NewID);
3356    IdResolver.AddDecl(NewID);
3357  }
3358
3359  return NewID;
3360}
3361
3362void Sema::ActOnFields(Scope* S,
3363                       SourceLocation RecLoc, DeclTy *RecDecl,
3364                       DeclTy **Fields, unsigned NumFields,
3365                       SourceLocation LBrac, SourceLocation RBrac,
3366                       AttributeList *Attr) {
3367  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3368  assert(EnclosingDecl && "missing record or interface decl");
3369  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3370
3371  // Verify that all the fields are okay.
3372  unsigned NumNamedMembers = 0;
3373  llvm::SmallVector<FieldDecl*, 32> RecFields;
3374
3375  for (unsigned i = 0; i != NumFields; ++i) {
3376    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3377    assert(FD && "missing field decl");
3378
3379    // Get the type for the field.
3380    Type *FDTy = FD->getType().getTypePtr();
3381
3382    if (!FD->isAnonymousStructOrUnion()) {
3383      // Remember all fields written by the user.
3384      RecFields.push_back(FD);
3385    }
3386
3387    // C99 6.7.2.1p2 - A field may not be a function type.
3388    if (FDTy->isFunctionType()) {
3389      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3390        << FD->getDeclName();
3391      FD->setInvalidDecl();
3392      EnclosingDecl->setInvalidDecl();
3393      continue;
3394    }
3395    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3396    if (FDTy->isIncompleteType()) {
3397      if (!Record) {  // Incomplete ivar type is always an error.
3398        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3399                               diag::err_field_incomplete);
3400        FD->setInvalidDecl();
3401        EnclosingDecl->setInvalidDecl();
3402        continue;
3403      }
3404      if (i != NumFields-1 ||                   // ... that the last member ...
3405          !Record->isStruct() ||  // ... of a structure ...
3406          !FDTy->isArrayType()) {         //... may have incomplete array type.
3407        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3408                               diag::err_field_incomplete);
3409        FD->setInvalidDecl();
3410        EnclosingDecl->setInvalidDecl();
3411        continue;
3412      }
3413      if (NumNamedMembers < 1) {  //... must have more than named member ...
3414        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3415          << FD->getDeclName();
3416        FD->setInvalidDecl();
3417        EnclosingDecl->setInvalidDecl();
3418        continue;
3419      }
3420      // Okay, we have a legal flexible array member at the end of the struct.
3421      if (Record)
3422        Record->setHasFlexibleArrayMember(true);
3423    }
3424    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3425    /// field of another structure or the element of an array.
3426    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3427      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3428        // If this is a member of a union, then entire union becomes "flexible".
3429        if (Record && Record->isUnion()) {
3430          Record->setHasFlexibleArrayMember(true);
3431        } else {
3432          // If this is a struct/class and this is not the last element, reject
3433          // it.  Note that GCC supports variable sized arrays in the middle of
3434          // structures.
3435          if (i != NumFields-1) {
3436            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3437              << FD->getDeclName();
3438            FD->setInvalidDecl();
3439            EnclosingDecl->setInvalidDecl();
3440            continue;
3441          }
3442          // We support flexible arrays at the end of structs in other structs
3443          // as an extension.
3444          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3445            << FD->getDeclName();
3446          if (Record)
3447            Record->setHasFlexibleArrayMember(true);
3448        }
3449      }
3450    }
3451    /// A field cannot be an Objective-c object
3452    if (FDTy->isObjCInterfaceType()) {
3453      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3454        << FD->getDeclName();
3455      FD->setInvalidDecl();
3456      EnclosingDecl->setInvalidDecl();
3457      continue;
3458    }
3459    // Keep track of the number of named members.
3460    if (FD->getIdentifier())
3461      ++NumNamedMembers;
3462  }
3463
3464  // Okay, we successfully defined 'Record'.
3465  if (Record) {
3466    Record->completeDefinition(Context);
3467  } else {
3468    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3469    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3470      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3471      // Must enforce the rule that ivars in the base classes may not be
3472      // duplicates.
3473      if (ID->getSuperClass()) {
3474        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3475             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3476          ObjCIvarDecl* Ivar = (*IVI);
3477          IdentifierInfo *II = Ivar->getIdentifier();
3478          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3479          if (prevIvar) {
3480            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3481            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3482          }
3483        }
3484      }
3485    }
3486    else if (ObjCImplementationDecl *IMPDecl =
3487               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3488      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3489      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3490      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3491    }
3492  }
3493
3494  if (Attr)
3495    ProcessDeclAttributeList(Record, Attr);
3496}
3497
3498Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3499                                      DeclTy *lastEnumConst,
3500                                      SourceLocation IdLoc, IdentifierInfo *Id,
3501                                      SourceLocation EqualLoc, ExprTy *val) {
3502  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3503  EnumConstantDecl *LastEnumConst =
3504    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3505  Expr *Val = static_cast<Expr*>(val);
3506
3507  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3508  // we find one that is.
3509  S = getNonFieldDeclScope(S);
3510
3511  // Verify that there isn't already something declared with this name in this
3512  // scope.
3513  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3514  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3515    // Maybe we will complain about the shadowed template parameter.
3516    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3517    // Just pretend that we didn't see the previous declaration.
3518    PrevDecl = 0;
3519  }
3520
3521  if (PrevDecl) {
3522    // When in C++, we may get a TagDecl with the same name; in this case the
3523    // enum constant will 'hide' the tag.
3524    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3525           "Received TagDecl when not in C++!");
3526    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3527      if (isa<EnumConstantDecl>(PrevDecl))
3528        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3529      else
3530        Diag(IdLoc, diag::err_redefinition) << Id;
3531      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3532      Val->Destroy(Context);
3533      return 0;
3534    }
3535  }
3536
3537  llvm::APSInt EnumVal(32);
3538  QualType EltTy;
3539  if (Val) {
3540    // Make sure to promote the operand type to int.
3541    UsualUnaryConversions(Val);
3542
3543    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3544    SourceLocation ExpLoc;
3545    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3546      Val->Destroy(Context);
3547      Val = 0;  // Just forget about it.
3548    } else {
3549      EltTy = Val->getType();
3550    }
3551  }
3552
3553  if (!Val) {
3554    if (LastEnumConst) {
3555      // Assign the last value + 1.
3556      EnumVal = LastEnumConst->getInitVal();
3557      ++EnumVal;
3558
3559      // Check for overflow on increment.
3560      if (EnumVal < LastEnumConst->getInitVal())
3561        Diag(IdLoc, diag::warn_enum_value_overflow);
3562
3563      EltTy = LastEnumConst->getType();
3564    } else {
3565      // First value, set to zero.
3566      EltTy = Context.IntTy;
3567      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3568    }
3569  }
3570
3571  EnumConstantDecl *New =
3572    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3573                             Val, EnumVal);
3574
3575  // Register this decl in the current scope stack.
3576  PushOnScopeChains(New, S);
3577
3578  return New;
3579}
3580
3581// FIXME: For consistency with ActOnFields(), we should have the parser
3582// pass in the source location for the left/right braces.
3583void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3584                         DeclTy **Elements, unsigned NumElements) {
3585  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3586  QualType EnumType = Context.getTypeDeclType(Enum);
3587
3588  // TODO: If the result value doesn't fit in an int, it must be a long or long
3589  // long value.  ISO C does not support this, but GCC does as an extension,
3590  // emit a warning.
3591  unsigned IntWidth = Context.Target.getIntWidth();
3592
3593  // Verify that all the values are okay, compute the size of the values, and
3594  // reverse the list.
3595  unsigned NumNegativeBits = 0;
3596  unsigned NumPositiveBits = 0;
3597
3598  // Keep track of whether all elements have type int.
3599  bool AllElementsInt = true;
3600
3601  for (unsigned i = 0; i != NumElements; ++i) {
3602    EnumConstantDecl *ECD =
3603      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3604    if (!ECD) continue;  // Already issued a diagnostic.
3605
3606    // If the enum value doesn't fit in an int, emit an extension warning.
3607    const llvm::APSInt &InitVal = ECD->getInitVal();
3608    assert(InitVal.getBitWidth() >= IntWidth &&
3609           "Should have promoted value to int");
3610    if (InitVal.getBitWidth() > IntWidth) {
3611      llvm::APSInt V(InitVal);
3612      V.trunc(IntWidth);
3613      V.extend(InitVal.getBitWidth());
3614      if (V != InitVal)
3615        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3616          << InitVal.toString(10);
3617    }
3618
3619    // Keep track of the size of positive and negative values.
3620    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3621      NumPositiveBits = std::max(NumPositiveBits,
3622                                 (unsigned)InitVal.getActiveBits());
3623    else
3624      NumNegativeBits = std::max(NumNegativeBits,
3625                                 (unsigned)InitVal.getMinSignedBits());
3626
3627    // Keep track of whether every enum element has type int (very commmon).
3628    if (AllElementsInt)
3629      AllElementsInt = ECD->getType() == Context.IntTy;
3630  }
3631
3632  // Figure out the type that should be used for this enum.
3633  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3634  QualType BestType;
3635  unsigned BestWidth;
3636
3637  if (NumNegativeBits) {
3638    // If there is a negative value, figure out the smallest integer type (of
3639    // int/long/longlong) that fits.
3640    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3641      BestType = Context.IntTy;
3642      BestWidth = IntWidth;
3643    } else {
3644      BestWidth = Context.Target.getLongWidth();
3645
3646      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3647        BestType = Context.LongTy;
3648      else {
3649        BestWidth = Context.Target.getLongLongWidth();
3650
3651        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3652          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3653        BestType = Context.LongLongTy;
3654      }
3655    }
3656  } else {
3657    // If there is no negative value, figure out which of uint, ulong, ulonglong
3658    // fits.
3659    if (NumPositiveBits <= IntWidth) {
3660      BestType = Context.UnsignedIntTy;
3661      BestWidth = IntWidth;
3662    } else if (NumPositiveBits <=
3663               (BestWidth = Context.Target.getLongWidth())) {
3664      BestType = Context.UnsignedLongTy;
3665    } else {
3666      BestWidth = Context.Target.getLongLongWidth();
3667      assert(NumPositiveBits <= BestWidth &&
3668             "How could an initializer get larger than ULL?");
3669      BestType = Context.UnsignedLongLongTy;
3670    }
3671  }
3672
3673  // Loop over all of the enumerator constants, changing their types to match
3674  // the type of the enum if needed.
3675  for (unsigned i = 0; i != NumElements; ++i) {
3676    EnumConstantDecl *ECD =
3677      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3678    if (!ECD) continue;  // Already issued a diagnostic.
3679
3680    // Standard C says the enumerators have int type, but we allow, as an
3681    // extension, the enumerators to be larger than int size.  If each
3682    // enumerator value fits in an int, type it as an int, otherwise type it the
3683    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3684    // that X has type 'int', not 'unsigned'.
3685    if (ECD->getType() == Context.IntTy) {
3686      // Make sure the init value is signed.
3687      llvm::APSInt IV = ECD->getInitVal();
3688      IV.setIsSigned(true);
3689      ECD->setInitVal(IV);
3690
3691      if (getLangOptions().CPlusPlus)
3692        // C++ [dcl.enum]p4: Following the closing brace of an
3693        // enum-specifier, each enumerator has the type of its
3694        // enumeration.
3695        ECD->setType(EnumType);
3696      continue;  // Already int type.
3697    }
3698
3699    // Determine whether the value fits into an int.
3700    llvm::APSInt InitVal = ECD->getInitVal();
3701    bool FitsInInt;
3702    if (InitVal.isUnsigned() || !InitVal.isNegative())
3703      FitsInInt = InitVal.getActiveBits() < IntWidth;
3704    else
3705      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3706
3707    // If it fits into an integer type, force it.  Otherwise force it to match
3708    // the enum decl type.
3709    QualType NewTy;
3710    unsigned NewWidth;
3711    bool NewSign;
3712    if (FitsInInt) {
3713      NewTy = Context.IntTy;
3714      NewWidth = IntWidth;
3715      NewSign = true;
3716    } else if (ECD->getType() == BestType) {
3717      // Already the right type!
3718      if (getLangOptions().CPlusPlus)
3719        // C++ [dcl.enum]p4: Following the closing brace of an
3720        // enum-specifier, each enumerator has the type of its
3721        // enumeration.
3722        ECD->setType(EnumType);
3723      continue;
3724    } else {
3725      NewTy = BestType;
3726      NewWidth = BestWidth;
3727      NewSign = BestType->isSignedIntegerType();
3728    }
3729
3730    // Adjust the APSInt value.
3731    InitVal.extOrTrunc(NewWidth);
3732    InitVal.setIsSigned(NewSign);
3733    ECD->setInitVal(InitVal);
3734
3735    // Adjust the Expr initializer and type.
3736    if (ECD->getInitExpr())
3737      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3738                                                      /*isLvalue=*/false));
3739    if (getLangOptions().CPlusPlus)
3740      // C++ [dcl.enum]p4: Following the closing brace of an
3741      // enum-specifier, each enumerator has the type of its
3742      // enumeration.
3743      ECD->setType(EnumType);
3744    else
3745      ECD->setType(NewTy);
3746  }
3747
3748  Enum->completeDefinition(Context, BestType);
3749}
3750
3751Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3752                                          ExprArg expr) {
3753  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3754
3755  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3756}
3757
3758
3759void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3760                           ExprTy *alignment, SourceLocation PragmaLoc,
3761                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3762  Expr *Alignment = static_cast<Expr *>(alignment);
3763
3764  // If specified then alignment must be a "small" power of two.
3765  unsigned AlignmentVal = 0;
3766  if (Alignment) {
3767    llvm::APSInt Val;
3768    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3769        !Val.isPowerOf2() ||
3770        Val.getZExtValue() > 16) {
3771      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3772      Alignment->Destroy(Context);
3773      return; // Ignore
3774    }
3775
3776    AlignmentVal = (unsigned) Val.getZExtValue();
3777  }
3778
3779  switch (Kind) {
3780  case Action::PPK_Default: // pack([n])
3781    PackContext.setAlignment(AlignmentVal);
3782    break;
3783
3784  case Action::PPK_Show: // pack(show)
3785    // Show the current alignment, making sure to show the right value
3786    // for the default.
3787    AlignmentVal = PackContext.getAlignment();
3788    // FIXME: This should come from the target.
3789    if (AlignmentVal == 0)
3790      AlignmentVal = 8;
3791    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3792    break;
3793
3794  case Action::PPK_Push: // pack(push [, id] [, [n])
3795    PackContext.push(Name);
3796    // Set the new alignment if specified.
3797    if (Alignment)
3798      PackContext.setAlignment(AlignmentVal);
3799    break;
3800
3801  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3802    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3803    // "#pragma pack(pop, identifier, n) is undefined"
3804    if (Alignment && Name)
3805      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3806
3807    // Do the pop.
3808    if (!PackContext.pop(Name)) {
3809      // If a name was specified then failure indicates the name
3810      // wasn't found. Otherwise failure indicates the stack was
3811      // empty.
3812      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3813        << (Name ? "no record matching name" : "stack empty");
3814
3815      // FIXME: Warn about popping named records as MSVC does.
3816    } else {
3817      // Pop succeeded, set the new alignment if specified.
3818      if (Alignment)
3819        PackContext.setAlignment(AlignmentVal);
3820    }
3821    break;
3822
3823  default:
3824    assert(0 && "Invalid #pragma pack kind.");
3825  }
3826}
3827
3828bool PragmaPackStack::pop(IdentifierInfo *Name) {
3829  if (Stack.empty())
3830    return false;
3831
3832  // If name is empty just pop top.
3833  if (!Name) {
3834    Alignment = Stack.back().first;
3835    Stack.pop_back();
3836    return true;
3837  }
3838
3839  // Otherwise, find the named record.
3840  for (unsigned i = Stack.size(); i != 0; ) {
3841    --i;
3842    if (Stack[i].second == Name) {
3843      // Found it, pop up to and including this record.
3844      Alignment = Stack[i].first;
3845      Stack.erase(Stack.begin() + i, Stack.end());
3846      return true;
3847    }
3848  }
3849
3850  return false;
3851}
3852