SemaDecl.cpp revision 0827408865e32789e0ec4b8113a302ccdc531423
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  if (OldTypeInfo.getCC() != CC_Default &&
1148      NewTypeInfo.getCC() == CC_Default) {
1149    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1150    New->setType(NewQType);
1151    NewQType = Context.getCanonicalType(NewQType);
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1166    NewQType = Context.getNoReturnType(NewQType);
1167    New->setType(NewQType);
1168    assert(NewQType.isCanonical());
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1173    if (NewType->getRegParmType()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  if (getLangOptions().CPlusPlus) {
1187    // (C++98 13.1p2):
1188    //   Certain function declarations cannot be overloaded:
1189    //     -- Function declarations that differ only in the return type
1190    //        cannot be overloaded.
1191    QualType OldReturnType
1192      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1193    QualType NewReturnType
1194      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1195    QualType ResQT;
1196    if (OldReturnType != NewReturnType) {
1197      if (NewReturnType->isObjCObjectPointerType()
1198          && OldReturnType->isObjCObjectPointerType())
1199        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1200      if (ResQT.isNull()) {
1201        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1202        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1203        return true;
1204      }
1205      else
1206        NewQType = ResQT;
1207    }
1208
1209    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1210    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1211    if (OldMethod && NewMethod) {
1212      // Preserve triviality.
1213      NewMethod->setTrivial(OldMethod->isTrivial());
1214
1215      bool isFriend = NewMethod->getFriendObjectKind();
1216
1217      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1218        //    -- Member function declarations with the same name and the
1219        //       same parameter types cannot be overloaded if any of them
1220        //       is a static member function declaration.
1221        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1222          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1223          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224          return true;
1225        }
1226
1227        // C++ [class.mem]p1:
1228        //   [...] A member shall not be declared twice in the
1229        //   member-specification, except that a nested class or member
1230        //   class template can be declared and then later defined.
1231        unsigned NewDiag;
1232        if (isa<CXXConstructorDecl>(OldMethod))
1233          NewDiag = diag::err_constructor_redeclared;
1234        else if (isa<CXXDestructorDecl>(NewMethod))
1235          NewDiag = diag::err_destructor_redeclared;
1236        else if (isa<CXXConversionDecl>(NewMethod))
1237          NewDiag = diag::err_conv_function_redeclared;
1238        else
1239          NewDiag = diag::err_member_redeclared;
1240
1241        Diag(New->getLocation(), NewDiag);
1242        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1243
1244      // Complain if this is an explicit declaration of a special
1245      // member that was initially declared implicitly.
1246      //
1247      // As an exception, it's okay to befriend such methods in order
1248      // to permit the implicit constructor/destructor/operator calls.
1249      } else if (OldMethod->isImplicit()) {
1250        if (isFriend) {
1251          NewMethod->setImplicit();
1252        } else {
1253          Diag(NewMethod->getLocation(),
1254               diag::err_definition_of_implicitly_declared_member)
1255            << New << getSpecialMember(OldMethod);
1256          return true;
1257        }
1258      }
1259    }
1260
1261    // (C++98 8.3.5p3):
1262    //   All declarations for a function shall agree exactly in both the
1263    //   return type and the parameter-type-list.
1264    // attributes should be ignored when comparing.
1265    if (Context.getNoReturnType(OldQType, false) ==
1266        Context.getNoReturnType(NewQType, false))
1267      return MergeCompatibleFunctionDecls(New, Old);
1268
1269    // Fall through for conflicting redeclarations and redefinitions.
1270  }
1271
1272  // C: Function types need to be compatible, not identical. This handles
1273  // duplicate function decls like "void f(int); void f(enum X);" properly.
1274  if (!getLangOptions().CPlusPlus &&
1275      Context.typesAreCompatible(OldQType, NewQType)) {
1276    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1277    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1278    const FunctionProtoType *OldProto = 0;
1279    if (isa<FunctionNoProtoType>(NewFuncType) &&
1280        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1281      // The old declaration provided a function prototype, but the
1282      // new declaration does not. Merge in the prototype.
1283      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1284      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1285                                                 OldProto->arg_type_end());
1286      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1287                                         ParamTypes.data(), ParamTypes.size(),
1288                                         OldProto->getExtProtoInfo());
1289      New->setType(NewQType);
1290      New->setHasInheritedPrototype();
1291
1292      // Synthesize a parameter for each argument type.
1293      llvm::SmallVector<ParmVarDecl*, 16> Params;
1294      for (FunctionProtoType::arg_type_iterator
1295             ParamType = OldProto->arg_type_begin(),
1296             ParamEnd = OldProto->arg_type_end();
1297           ParamType != ParamEnd; ++ParamType) {
1298        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1299                                                 SourceLocation(), 0,
1300                                                 *ParamType, /*TInfo=*/0,
1301                                                 SC_None, SC_None,
1302                                                 0);
1303        Param->setImplicit();
1304        Params.push_back(Param);
1305      }
1306
1307      New->setParams(Params.data(), Params.size());
1308    }
1309
1310    return MergeCompatibleFunctionDecls(New, Old);
1311  }
1312
1313  // GNU C permits a K&R definition to follow a prototype declaration
1314  // if the declared types of the parameters in the K&R definition
1315  // match the types in the prototype declaration, even when the
1316  // promoted types of the parameters from the K&R definition differ
1317  // from the types in the prototype. GCC then keeps the types from
1318  // the prototype.
1319  //
1320  // If a variadic prototype is followed by a non-variadic K&R definition,
1321  // the K&R definition becomes variadic.  This is sort of an edge case, but
1322  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1323  // C99 6.9.1p8.
1324  if (!getLangOptions().CPlusPlus &&
1325      Old->hasPrototype() && !New->hasPrototype() &&
1326      New->getType()->getAs<FunctionProtoType>() &&
1327      Old->getNumParams() == New->getNumParams()) {
1328    llvm::SmallVector<QualType, 16> ArgTypes;
1329    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1330    const FunctionProtoType *OldProto
1331      = Old->getType()->getAs<FunctionProtoType>();
1332    const FunctionProtoType *NewProto
1333      = New->getType()->getAs<FunctionProtoType>();
1334
1335    // Determine whether this is the GNU C extension.
1336    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1337                                               NewProto->getResultType());
1338    bool LooseCompatible = !MergedReturn.isNull();
1339    for (unsigned Idx = 0, End = Old->getNumParams();
1340         LooseCompatible && Idx != End; ++Idx) {
1341      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1342      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1343      if (Context.typesAreCompatible(OldParm->getType(),
1344                                     NewProto->getArgType(Idx))) {
1345        ArgTypes.push_back(NewParm->getType());
1346      } else if (Context.typesAreCompatible(OldParm->getType(),
1347                                            NewParm->getType(),
1348                                            /*CompareUnqualified=*/true)) {
1349        GNUCompatibleParamWarning Warn
1350          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1351        Warnings.push_back(Warn);
1352        ArgTypes.push_back(NewParm->getType());
1353      } else
1354        LooseCompatible = false;
1355    }
1356
1357    if (LooseCompatible) {
1358      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1359        Diag(Warnings[Warn].NewParm->getLocation(),
1360             diag::ext_param_promoted_not_compatible_with_prototype)
1361          << Warnings[Warn].PromotedType
1362          << Warnings[Warn].OldParm->getType();
1363        if (Warnings[Warn].OldParm->getLocation().isValid())
1364          Diag(Warnings[Warn].OldParm->getLocation(),
1365               diag::note_previous_declaration);
1366      }
1367
1368      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1369                                           ArgTypes.size(),
1370                                           OldProto->getExtProtoInfo()));
1371      return MergeCompatibleFunctionDecls(New, Old);
1372    }
1373
1374    // Fall through to diagnose conflicting types.
1375  }
1376
1377  // A function that has already been declared has been redeclared or defined
1378  // with a different type- show appropriate diagnostic
1379  if (unsigned BuiltinID = Old->getBuiltinID()) {
1380    // The user has declared a builtin function with an incompatible
1381    // signature.
1382    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1383      // The function the user is redeclaring is a library-defined
1384      // function like 'malloc' or 'printf'. Warn about the
1385      // redeclaration, then pretend that we don't know about this
1386      // library built-in.
1387      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1388      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1389        << Old << Old->getType();
1390      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1391      Old->setInvalidDecl();
1392      return false;
1393    }
1394
1395    PrevDiag = diag::note_previous_builtin_declaration;
1396  }
1397
1398  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1399  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1400  return true;
1401}
1402
1403/// \brief Completes the merge of two function declarations that are
1404/// known to be compatible.
1405///
1406/// This routine handles the merging of attributes and other
1407/// properties of function declarations form the old declaration to
1408/// the new declaration, once we know that New is in fact a
1409/// redeclaration of Old.
1410///
1411/// \returns false
1412bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1413  // Merge the attributes
1414  MergeDeclAttributes(New, Old, Context);
1415
1416  // Merge the storage class.
1417  if (Old->getStorageClass() != SC_Extern &&
1418      Old->getStorageClass() != SC_None)
1419    New->setStorageClass(Old->getStorageClass());
1420
1421  // Merge "pure" flag.
1422  if (Old->isPure())
1423    New->setPure();
1424
1425  // Merge the "deleted" flag.
1426  if (Old->isDeleted())
1427    New->setDeleted();
1428
1429  if (getLangOptions().CPlusPlus)
1430    return MergeCXXFunctionDecl(New, Old);
1431
1432  return false;
1433}
1434
1435/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1436/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1437/// situation, merging decls or emitting diagnostics as appropriate.
1438///
1439/// Tentative definition rules (C99 6.9.2p2) are checked by
1440/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1441/// definitions here, since the initializer hasn't been attached.
1442///
1443void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1444  // If the new decl is already invalid, don't do any other checking.
1445  if (New->isInvalidDecl())
1446    return;
1447
1448  // Verify the old decl was also a variable.
1449  VarDecl *Old = 0;
1450  if (!Previous.isSingleResult() ||
1451      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1452    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1453      << New->getDeclName();
1454    Diag(Previous.getRepresentativeDecl()->getLocation(),
1455         diag::note_previous_definition);
1456    return New->setInvalidDecl();
1457  }
1458
1459  // C++ [class.mem]p1:
1460  //   A member shall not be declared twice in the member-specification [...]
1461  //
1462  // Here, we need only consider static data members.
1463  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1464    Diag(New->getLocation(), diag::err_duplicate_member)
1465      << New->getIdentifier();
1466    Diag(Old->getLocation(), diag::note_previous_declaration);
1467    New->setInvalidDecl();
1468  }
1469
1470  MergeDeclAttributes(New, Old, Context);
1471
1472  // Merge the types
1473  QualType MergedT;
1474  if (getLangOptions().CPlusPlus) {
1475    if (Context.hasSameType(New->getType(), Old->getType()))
1476      MergedT = New->getType();
1477    // C++ [basic.link]p10:
1478    //   [...] the types specified by all declarations referring to a given
1479    //   object or function shall be identical, except that declarations for an
1480    //   array object can specify array types that differ by the presence or
1481    //   absence of a major array bound (8.3.4).
1482    else if (Old->getType()->isIncompleteArrayType() &&
1483             New->getType()->isArrayType()) {
1484      CanQual<ArrayType> OldArray
1485        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1486      CanQual<ArrayType> NewArray
1487        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1488      if (OldArray->getElementType() == NewArray->getElementType())
1489        MergedT = New->getType();
1490    } else if (Old->getType()->isArrayType() &&
1491             New->getType()->isIncompleteArrayType()) {
1492      CanQual<ArrayType> OldArray
1493        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1494      CanQual<ArrayType> NewArray
1495        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1496      if (OldArray->getElementType() == NewArray->getElementType())
1497        MergedT = Old->getType();
1498    } else if (New->getType()->isObjCObjectPointerType()
1499               && Old->getType()->isObjCObjectPointerType()) {
1500        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1501    }
1502  } else {
1503    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1504  }
1505  if (MergedT.isNull()) {
1506    Diag(New->getLocation(), diag::err_redefinition_different_type)
1507      << New->getDeclName();
1508    Diag(Old->getLocation(), diag::note_previous_definition);
1509    return New->setInvalidDecl();
1510  }
1511  New->setType(MergedT);
1512
1513  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1514  if (New->getStorageClass() == SC_Static &&
1515      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1516    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1517    Diag(Old->getLocation(), diag::note_previous_definition);
1518    return New->setInvalidDecl();
1519  }
1520  // C99 6.2.2p4:
1521  //   For an identifier declared with the storage-class specifier
1522  //   extern in a scope in which a prior declaration of that
1523  //   identifier is visible,23) if the prior declaration specifies
1524  //   internal or external linkage, the linkage of the identifier at
1525  //   the later declaration is the same as the linkage specified at
1526  //   the prior declaration. If no prior declaration is visible, or
1527  //   if the prior declaration specifies no linkage, then the
1528  //   identifier has external linkage.
1529  if (New->hasExternalStorage() && Old->hasLinkage())
1530    /* Okay */;
1531  else if (New->getStorageClass() != SC_Static &&
1532           Old->getStorageClass() == SC_Static) {
1533    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1534    Diag(Old->getLocation(), diag::note_previous_definition);
1535    return New->setInvalidDecl();
1536  }
1537
1538  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1539
1540  // FIXME: The test for external storage here seems wrong? We still
1541  // need to check for mismatches.
1542  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1543      // Don't complain about out-of-line definitions of static members.
1544      !(Old->getLexicalDeclContext()->isRecord() &&
1545        !New->getLexicalDeclContext()->isRecord())) {
1546    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1547    Diag(Old->getLocation(), diag::note_previous_definition);
1548    return New->setInvalidDecl();
1549  }
1550
1551  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1552    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1553    Diag(Old->getLocation(), diag::note_previous_definition);
1554  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1555    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1556    Diag(Old->getLocation(), diag::note_previous_definition);
1557  }
1558
1559  // C++ doesn't have tentative definitions, so go right ahead and check here.
1560  const VarDecl *Def;
1561  if (getLangOptions().CPlusPlus &&
1562      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1563      (Def = Old->getDefinition())) {
1564    Diag(New->getLocation(), diag::err_redefinition)
1565      << New->getDeclName();
1566    Diag(Def->getLocation(), diag::note_previous_definition);
1567    New->setInvalidDecl();
1568    return;
1569  }
1570  // c99 6.2.2 P4.
1571  // For an identifier declared with the storage-class specifier extern in a
1572  // scope in which a prior declaration of that identifier is visible, if
1573  // the prior declaration specifies internal or external linkage, the linkage
1574  // of the identifier at the later declaration is the same as the linkage
1575  // specified at the prior declaration.
1576  // FIXME. revisit this code.
1577  if (New->hasExternalStorage() &&
1578      Old->getLinkage() == InternalLinkage &&
1579      New->getDeclContext() == Old->getDeclContext())
1580    New->setStorageClass(Old->getStorageClass());
1581
1582  // Keep a chain of previous declarations.
1583  New->setPreviousDeclaration(Old);
1584
1585  // Inherit access appropriately.
1586  New->setAccess(Old->getAccess());
1587}
1588
1589/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1590/// no declarator (e.g. "struct foo;") is parsed.
1591Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1592                                            DeclSpec &DS) {
1593  // FIXME: Error on inline/virtual/explicit
1594  // FIXME: Warn on useless __thread
1595  // FIXME: Warn on useless const/volatile
1596  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1597  // FIXME: Warn on useless attributes
1598  Decl *TagD = 0;
1599  TagDecl *Tag = 0;
1600  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1601      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1602      DS.getTypeSpecType() == DeclSpec::TST_union ||
1603      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1604    TagD = DS.getRepAsDecl();
1605
1606    if (!TagD) // We probably had an error
1607      return 0;
1608
1609    // Note that the above type specs guarantee that the
1610    // type rep is a Decl, whereas in many of the others
1611    // it's a Type.
1612    Tag = dyn_cast<TagDecl>(TagD);
1613  }
1614
1615  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1616    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1617    // or incomplete types shall not be restrict-qualified."
1618    if (TypeQuals & DeclSpec::TQ_restrict)
1619      Diag(DS.getRestrictSpecLoc(),
1620           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1621           << DS.getSourceRange();
1622  }
1623
1624  if (DS.isFriendSpecified()) {
1625    // If we're dealing with a decl but not a TagDecl, assume that
1626    // whatever routines created it handled the friendship aspect.
1627    if (TagD && !Tag)
1628      return 0;
1629    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1630  }
1631
1632  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1633    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1634
1635    if (!Record->getDeclName() && Record->isDefinition() &&
1636        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1637      if (getLangOptions().CPlusPlus ||
1638          Record->getDeclContext()->isRecord())
1639        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1640
1641      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1642        << DS.getSourceRange();
1643    }
1644  }
1645
1646  // Check for Microsoft C extension: anonymous struct.
1647  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1648      CurContext->isRecord() &&
1649      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1650    // Handle 2 kinds of anonymous struct:
1651    //   struct STRUCT;
1652    // and
1653    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1654    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1655    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1656        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1657         DS.getRepAsType().get()->isStructureType())) {
1658      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1659        << DS.getSourceRange();
1660      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1661    }
1662  }
1663
1664  if (getLangOptions().CPlusPlus &&
1665      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1666    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1667      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1668          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1669        Diag(Enum->getLocation(), diag::ext_no_declarators)
1670          << DS.getSourceRange();
1671
1672  if (!DS.isMissingDeclaratorOk() &&
1673      DS.getTypeSpecType() != DeclSpec::TST_error) {
1674    // Warn about typedefs of enums without names, since this is an
1675    // extension in both Microsoft and GNU.
1676    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1677        Tag && isa<EnumDecl>(Tag)) {
1678      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1679        << DS.getSourceRange();
1680      return Tag;
1681    }
1682
1683    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1684      << DS.getSourceRange();
1685  }
1686
1687  return TagD;
1688}
1689
1690/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1691/// builds a statement for it and returns it so it is evaluated.
1692StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1693  StmtResult R;
1694  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1695    Expr *Exp = DS.getRepAsExpr();
1696    QualType Ty = Exp->getType();
1697    if (Ty->isPointerType()) {
1698      do
1699        Ty = Ty->getAs<PointerType>()->getPointeeType();
1700      while (Ty->isPointerType());
1701    }
1702    if (Ty->isVariableArrayType()) {
1703      R = ActOnExprStmt(MakeFullExpr(Exp));
1704    }
1705  }
1706  return R;
1707}
1708
1709/// We are trying to inject an anonymous member into the given scope;
1710/// check if there's an existing declaration that can't be overloaded.
1711///
1712/// \return true if this is a forbidden redeclaration
1713static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1714                                         Scope *S,
1715                                         DeclContext *Owner,
1716                                         DeclarationName Name,
1717                                         SourceLocation NameLoc,
1718                                         unsigned diagnostic) {
1719  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1720                 Sema::ForRedeclaration);
1721  if (!SemaRef.LookupName(R, S)) return false;
1722
1723  if (R.getAsSingle<TagDecl>())
1724    return false;
1725
1726  // Pick a representative declaration.
1727  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1728  assert(PrevDecl && "Expected a non-null Decl");
1729
1730  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1731    return false;
1732
1733  SemaRef.Diag(NameLoc, diagnostic) << Name;
1734  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1735
1736  return true;
1737}
1738
1739/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1740/// anonymous struct or union AnonRecord into the owning context Owner
1741/// and scope S. This routine will be invoked just after we realize
1742/// that an unnamed union or struct is actually an anonymous union or
1743/// struct, e.g.,
1744///
1745/// @code
1746/// union {
1747///   int i;
1748///   float f;
1749/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1750///    // f into the surrounding scope.x
1751/// @endcode
1752///
1753/// This routine is recursive, injecting the names of nested anonymous
1754/// structs/unions into the owning context and scope as well.
1755static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1756                                                DeclContext *Owner,
1757                                                RecordDecl *AnonRecord,
1758                                                AccessSpecifier AS,
1759                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1760                                                      bool MSAnonStruct) {
1761  unsigned diagKind
1762    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1763                            : diag::err_anonymous_struct_member_redecl;
1764
1765  bool Invalid = false;
1766
1767  // Look every FieldDecl and IndirectFieldDecl with a name.
1768  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1769                               DEnd = AnonRecord->decls_end();
1770       D != DEnd; ++D) {
1771    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1772        cast<NamedDecl>(*D)->getDeclName()) {
1773      ValueDecl *VD = cast<ValueDecl>(*D);
1774      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1775                                       VD->getLocation(), diagKind)) {
1776        // C++ [class.union]p2:
1777        //   The names of the members of an anonymous union shall be
1778        //   distinct from the names of any other entity in the
1779        //   scope in which the anonymous union is declared.
1780        Invalid = true;
1781      } else {
1782        // C++ [class.union]p2:
1783        //   For the purpose of name lookup, after the anonymous union
1784        //   definition, the members of the anonymous union are
1785        //   considered to have been defined in the scope in which the
1786        //   anonymous union is declared.
1787        unsigned OldChainingSize = Chaining.size();
1788        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1789          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1790               PE = IF->chain_end(); PI != PE; ++PI)
1791            Chaining.push_back(*PI);
1792        else
1793          Chaining.push_back(VD);
1794
1795        assert(Chaining.size() >= 2);
1796        NamedDecl **NamedChain =
1797          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1798        for (unsigned i = 0; i < Chaining.size(); i++)
1799          NamedChain[i] = Chaining[i];
1800
1801        IndirectFieldDecl* IndirectField =
1802          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1803                                    VD->getIdentifier(), VD->getType(),
1804                                    NamedChain, Chaining.size());
1805
1806        IndirectField->setAccess(AS);
1807        IndirectField->setImplicit();
1808        SemaRef.PushOnScopeChains(IndirectField, S);
1809
1810        // That includes picking up the appropriate access specifier.
1811        if (AS != AS_none) IndirectField->setAccess(AS);
1812
1813        Chaining.resize(OldChainingSize);
1814      }
1815    }
1816  }
1817
1818  return Invalid;
1819}
1820
1821/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1822/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1823/// illegal input values are mapped to SC_None.
1824static StorageClass
1825StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1826  switch (StorageClassSpec) {
1827  case DeclSpec::SCS_unspecified:    return SC_None;
1828  case DeclSpec::SCS_extern:         return SC_Extern;
1829  case DeclSpec::SCS_static:         return SC_Static;
1830  case DeclSpec::SCS_auto:           return SC_Auto;
1831  case DeclSpec::SCS_register:       return SC_Register;
1832  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1833    // Illegal SCSs map to None: error reporting is up to the caller.
1834  case DeclSpec::SCS_mutable:        // Fall through.
1835  case DeclSpec::SCS_typedef:        return SC_None;
1836  }
1837  llvm_unreachable("unknown storage class specifier");
1838}
1839
1840/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1841/// a StorageClass. Any error reporting is up to the caller:
1842/// illegal input values are mapped to SC_None.
1843static StorageClass
1844StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1845  switch (StorageClassSpec) {
1846  case DeclSpec::SCS_unspecified:    return SC_None;
1847  case DeclSpec::SCS_extern:         return SC_Extern;
1848  case DeclSpec::SCS_static:         return SC_Static;
1849  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1850    // Illegal SCSs map to None: error reporting is up to the caller.
1851  case DeclSpec::SCS_auto:           // Fall through.
1852  case DeclSpec::SCS_mutable:        // Fall through.
1853  case DeclSpec::SCS_register:       // Fall through.
1854  case DeclSpec::SCS_typedef:        return SC_None;
1855  }
1856  llvm_unreachable("unknown storage class specifier");
1857}
1858
1859/// BuildAnonymousStructOrUnion - Handle the declaration of an
1860/// anonymous structure or union. Anonymous unions are a C++ feature
1861/// (C++ [class.union]) and a GNU C extension; anonymous structures
1862/// are a GNU C and GNU C++ extension.
1863Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1864                                             AccessSpecifier AS,
1865                                             RecordDecl *Record) {
1866  DeclContext *Owner = Record->getDeclContext();
1867
1868  // Diagnose whether this anonymous struct/union is an extension.
1869  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1870    Diag(Record->getLocation(), diag::ext_anonymous_union);
1871  else if (!Record->isUnion())
1872    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1873
1874  // C and C++ require different kinds of checks for anonymous
1875  // structs/unions.
1876  bool Invalid = false;
1877  if (getLangOptions().CPlusPlus) {
1878    const char* PrevSpec = 0;
1879    unsigned DiagID;
1880    // C++ [class.union]p3:
1881    //   Anonymous unions declared in a named namespace or in the
1882    //   global namespace shall be declared static.
1883    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1884        (isa<TranslationUnitDecl>(Owner) ||
1885         (isa<NamespaceDecl>(Owner) &&
1886          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1887      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1888      Invalid = true;
1889
1890      // Recover by adding 'static'.
1891      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1892                             PrevSpec, DiagID);
1893    }
1894    // C++ [class.union]p3:
1895    //   A storage class is not allowed in a declaration of an
1896    //   anonymous union in a class scope.
1897    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1898             isa<RecordDecl>(Owner)) {
1899      Diag(DS.getStorageClassSpecLoc(),
1900           diag::err_anonymous_union_with_storage_spec);
1901      Invalid = true;
1902
1903      // Recover by removing the storage specifier.
1904      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1905                             PrevSpec, DiagID);
1906    }
1907
1908    // C++ [class.union]p2:
1909    //   The member-specification of an anonymous union shall only
1910    //   define non-static data members. [Note: nested types and
1911    //   functions cannot be declared within an anonymous union. ]
1912    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1913                                 MemEnd = Record->decls_end();
1914         Mem != MemEnd; ++Mem) {
1915      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1916        // C++ [class.union]p3:
1917        //   An anonymous union shall not have private or protected
1918        //   members (clause 11).
1919        assert(FD->getAccess() != AS_none);
1920        if (FD->getAccess() != AS_public) {
1921          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1922            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1923          Invalid = true;
1924        }
1925
1926        if (CheckNontrivialField(FD))
1927          Invalid = true;
1928      } else if ((*Mem)->isImplicit()) {
1929        // Any implicit members are fine.
1930      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1931        // This is a type that showed up in an
1932        // elaborated-type-specifier inside the anonymous struct or
1933        // union, but which actually declares a type outside of the
1934        // anonymous struct or union. It's okay.
1935      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1936        if (!MemRecord->isAnonymousStructOrUnion() &&
1937            MemRecord->getDeclName()) {
1938          // Visual C++ allows type definition in anonymous struct or union.
1939          if (getLangOptions().Microsoft)
1940            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1941              << (int)Record->isUnion();
1942          else {
1943            // This is a nested type declaration.
1944            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1945              << (int)Record->isUnion();
1946            Invalid = true;
1947          }
1948        }
1949      } else if (isa<AccessSpecDecl>(*Mem)) {
1950        // Any access specifier is fine.
1951      } else {
1952        // We have something that isn't a non-static data
1953        // member. Complain about it.
1954        unsigned DK = diag::err_anonymous_record_bad_member;
1955        if (isa<TypeDecl>(*Mem))
1956          DK = diag::err_anonymous_record_with_type;
1957        else if (isa<FunctionDecl>(*Mem))
1958          DK = diag::err_anonymous_record_with_function;
1959        else if (isa<VarDecl>(*Mem))
1960          DK = diag::err_anonymous_record_with_static;
1961
1962        // Visual C++ allows type definition in anonymous struct or union.
1963        if (getLangOptions().Microsoft &&
1964            DK == diag::err_anonymous_record_with_type)
1965          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1966            << (int)Record->isUnion();
1967        else {
1968          Diag((*Mem)->getLocation(), DK)
1969              << (int)Record->isUnion();
1970          Invalid = true;
1971        }
1972      }
1973    }
1974  }
1975
1976  if (!Record->isUnion() && !Owner->isRecord()) {
1977    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1978      << (int)getLangOptions().CPlusPlus;
1979    Invalid = true;
1980  }
1981
1982  // Mock up a declarator.
1983  Declarator Dc(DS, Declarator::TypeNameContext);
1984  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1985  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1986
1987  // Create a declaration for this anonymous struct/union.
1988  NamedDecl *Anon = 0;
1989  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1990    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1991                             /*IdentifierInfo=*/0,
1992                             Context.getTypeDeclType(Record),
1993                             TInfo,
1994                             /*BitWidth=*/0, /*Mutable=*/false);
1995    Anon->setAccess(AS);
1996    if (getLangOptions().CPlusPlus)
1997      FieldCollector->Add(cast<FieldDecl>(Anon));
1998  } else {
1999    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2000    assert(SCSpec != DeclSpec::SCS_typedef &&
2001           "Parser allowed 'typedef' as storage class VarDecl.");
2002    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2003    if (SCSpec == DeclSpec::SCS_mutable) {
2004      // mutable can only appear on non-static class members, so it's always
2005      // an error here
2006      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2007      Invalid = true;
2008      SC = SC_None;
2009    }
2010    SCSpec = DS.getStorageClassSpecAsWritten();
2011    VarDecl::StorageClass SCAsWritten
2012      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2013
2014    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2015                           /*IdentifierInfo=*/0,
2016                           Context.getTypeDeclType(Record),
2017                           TInfo, SC, SCAsWritten);
2018  }
2019  Anon->setImplicit();
2020
2021  // Add the anonymous struct/union object to the current
2022  // context. We'll be referencing this object when we refer to one of
2023  // its members.
2024  Owner->addDecl(Anon);
2025
2026  // Inject the members of the anonymous struct/union into the owning
2027  // context and into the identifier resolver chain for name lookup
2028  // purposes.
2029  llvm::SmallVector<NamedDecl*, 2> Chain;
2030  Chain.push_back(Anon);
2031
2032  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2033                                          Chain, false))
2034    Invalid = true;
2035
2036  // Mark this as an anonymous struct/union type. Note that we do not
2037  // do this until after we have already checked and injected the
2038  // members of this anonymous struct/union type, because otherwise
2039  // the members could be injected twice: once by DeclContext when it
2040  // builds its lookup table, and once by
2041  // InjectAnonymousStructOrUnionMembers.
2042  Record->setAnonymousStructOrUnion(true);
2043
2044  if (Invalid)
2045    Anon->setInvalidDecl();
2046
2047  return Anon;
2048}
2049
2050/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2051/// Microsoft C anonymous structure.
2052/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2053/// Example:
2054///
2055/// struct A { int a; };
2056/// struct B { struct A; int b; };
2057///
2058/// void foo() {
2059///   B var;
2060///   var.a = 3;
2061/// }
2062///
2063Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2064                                           RecordDecl *Record) {
2065
2066  // If there is no Record, get the record via the typedef.
2067  if (!Record)
2068    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2069
2070  // Mock up a declarator.
2071  Declarator Dc(DS, Declarator::TypeNameContext);
2072  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2073  assert(TInfo && "couldn't build declarator info for anonymous struct");
2074
2075  // Create a declaration for this anonymous struct.
2076  NamedDecl* Anon = FieldDecl::Create(Context,
2077                             cast<RecordDecl>(CurContext),
2078                             DS.getSourceRange().getBegin(),
2079                             /*IdentifierInfo=*/0,
2080                             Context.getTypeDeclType(Record),
2081                             TInfo,
2082                             /*BitWidth=*/0, /*Mutable=*/false);
2083  Anon->setImplicit();
2084
2085  // Add the anonymous struct object to the current context.
2086  CurContext->addDecl(Anon);
2087
2088  // Inject the members of the anonymous struct into the current
2089  // context and into the identifier resolver chain for name lookup
2090  // purposes.
2091  llvm::SmallVector<NamedDecl*, 2> Chain;
2092  Chain.push_back(Anon);
2093
2094  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2095                                          Record->getDefinition(),
2096                                          AS_none, Chain, true))
2097    Anon->setInvalidDecl();
2098
2099  return Anon;
2100}
2101
2102/// GetNameForDeclarator - Determine the full declaration name for the
2103/// given Declarator.
2104DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2105  return GetNameFromUnqualifiedId(D.getName());
2106}
2107
2108/// \brief Retrieves the declaration name from a parsed unqualified-id.
2109DeclarationNameInfo
2110Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2111  DeclarationNameInfo NameInfo;
2112  NameInfo.setLoc(Name.StartLocation);
2113
2114  switch (Name.getKind()) {
2115
2116  case UnqualifiedId::IK_Identifier:
2117    NameInfo.setName(Name.Identifier);
2118    NameInfo.setLoc(Name.StartLocation);
2119    return NameInfo;
2120
2121  case UnqualifiedId::IK_OperatorFunctionId:
2122    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2123                                           Name.OperatorFunctionId.Operator));
2124    NameInfo.setLoc(Name.StartLocation);
2125    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2126      = Name.OperatorFunctionId.SymbolLocations[0];
2127    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2128      = Name.EndLocation.getRawEncoding();
2129    return NameInfo;
2130
2131  case UnqualifiedId::IK_LiteralOperatorId:
2132    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2133                                                           Name.Identifier));
2134    NameInfo.setLoc(Name.StartLocation);
2135    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2136    return NameInfo;
2137
2138  case UnqualifiedId::IK_ConversionFunctionId: {
2139    TypeSourceInfo *TInfo;
2140    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2141    if (Ty.isNull())
2142      return DeclarationNameInfo();
2143    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2144                                               Context.getCanonicalType(Ty)));
2145    NameInfo.setLoc(Name.StartLocation);
2146    NameInfo.setNamedTypeInfo(TInfo);
2147    return NameInfo;
2148  }
2149
2150  case UnqualifiedId::IK_ConstructorName: {
2151    TypeSourceInfo *TInfo;
2152    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2153    if (Ty.isNull())
2154      return DeclarationNameInfo();
2155    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2156                                              Context.getCanonicalType(Ty)));
2157    NameInfo.setLoc(Name.StartLocation);
2158    NameInfo.setNamedTypeInfo(TInfo);
2159    return NameInfo;
2160  }
2161
2162  case UnqualifiedId::IK_ConstructorTemplateId: {
2163    // In well-formed code, we can only have a constructor
2164    // template-id that refers to the current context, so go there
2165    // to find the actual type being constructed.
2166    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2167    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2168      return DeclarationNameInfo();
2169
2170    // Determine the type of the class being constructed.
2171    QualType CurClassType = Context.getTypeDeclType(CurClass);
2172
2173    // FIXME: Check two things: that the template-id names the same type as
2174    // CurClassType, and that the template-id does not occur when the name
2175    // was qualified.
2176
2177    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2178                                    Context.getCanonicalType(CurClassType)));
2179    NameInfo.setLoc(Name.StartLocation);
2180    // FIXME: should we retrieve TypeSourceInfo?
2181    NameInfo.setNamedTypeInfo(0);
2182    return NameInfo;
2183  }
2184
2185  case UnqualifiedId::IK_DestructorName: {
2186    TypeSourceInfo *TInfo;
2187    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2188    if (Ty.isNull())
2189      return DeclarationNameInfo();
2190    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2191                                              Context.getCanonicalType(Ty)));
2192    NameInfo.setLoc(Name.StartLocation);
2193    NameInfo.setNamedTypeInfo(TInfo);
2194    return NameInfo;
2195  }
2196
2197  case UnqualifiedId::IK_TemplateId: {
2198    TemplateName TName = Name.TemplateId->Template.get();
2199    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2200    return Context.getNameForTemplate(TName, TNameLoc);
2201  }
2202
2203  } // switch (Name.getKind())
2204
2205  assert(false && "Unknown name kind");
2206  return DeclarationNameInfo();
2207}
2208
2209/// isNearlyMatchingFunction - Determine whether the C++ functions
2210/// Declaration and Definition are "nearly" matching. This heuristic
2211/// is used to improve diagnostics in the case where an out-of-line
2212/// function definition doesn't match any declaration within
2213/// the class or namespace.
2214static bool isNearlyMatchingFunction(ASTContext &Context,
2215                                     FunctionDecl *Declaration,
2216                                     FunctionDecl *Definition) {
2217  if (Declaration->param_size() != Definition->param_size())
2218    return false;
2219  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2220    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2221    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2222
2223    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2224                                        DefParamTy.getNonReferenceType()))
2225      return false;
2226  }
2227
2228  return true;
2229}
2230
2231/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2232/// declarator needs to be rebuilt in the current instantiation.
2233/// Any bits of declarator which appear before the name are valid for
2234/// consideration here.  That's specifically the type in the decl spec
2235/// and the base type in any member-pointer chunks.
2236static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2237                                                    DeclarationName Name) {
2238  // The types we specifically need to rebuild are:
2239  //   - typenames, typeofs, and decltypes
2240  //   - types which will become injected class names
2241  // Of course, we also need to rebuild any type referencing such a
2242  // type.  It's safest to just say "dependent", but we call out a
2243  // few cases here.
2244
2245  DeclSpec &DS = D.getMutableDeclSpec();
2246  switch (DS.getTypeSpecType()) {
2247  case DeclSpec::TST_typename:
2248  case DeclSpec::TST_typeofType:
2249  case DeclSpec::TST_decltype: {
2250    // Grab the type from the parser.
2251    TypeSourceInfo *TSI = 0;
2252    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2253    if (T.isNull() || !T->isDependentType()) break;
2254
2255    // Make sure there's a type source info.  This isn't really much
2256    // of a waste; most dependent types should have type source info
2257    // attached already.
2258    if (!TSI)
2259      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2260
2261    // Rebuild the type in the current instantiation.
2262    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2263    if (!TSI) return true;
2264
2265    // Store the new type back in the decl spec.
2266    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2267    DS.UpdateTypeRep(LocType);
2268    break;
2269  }
2270
2271  case DeclSpec::TST_typeofExpr: {
2272    Expr *E = DS.getRepAsExpr();
2273    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2274    if (Result.isInvalid()) return true;
2275    DS.UpdateExprRep(Result.get());
2276    break;
2277  }
2278
2279  default:
2280    // Nothing to do for these decl specs.
2281    break;
2282  }
2283
2284  // It doesn't matter what order we do this in.
2285  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2286    DeclaratorChunk &Chunk = D.getTypeObject(I);
2287
2288    // The only type information in the declarator which can come
2289    // before the declaration name is the base type of a member
2290    // pointer.
2291    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2292      continue;
2293
2294    // Rebuild the scope specifier in-place.
2295    CXXScopeSpec &SS = Chunk.Mem.Scope();
2296    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2297      return true;
2298  }
2299
2300  return false;
2301}
2302
2303Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2304  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2305}
2306
2307Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2308                             MultiTemplateParamsArg TemplateParamLists,
2309                             bool IsFunctionDefinition) {
2310  // TODO: consider using NameInfo for diagnostic.
2311  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2312  DeclarationName Name = NameInfo.getName();
2313
2314  // All of these full declarators require an identifier.  If it doesn't have
2315  // one, the ParsedFreeStandingDeclSpec action should be used.
2316  if (!Name) {
2317    if (!D.isInvalidType())  // Reject this if we think it is valid.
2318      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2319           diag::err_declarator_need_ident)
2320        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2321    return 0;
2322  }
2323
2324  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2325  // we find one that is.
2326  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2327         (S->getFlags() & Scope::TemplateParamScope) != 0)
2328    S = S->getParent();
2329
2330  DeclContext *DC = CurContext;
2331  if (D.getCXXScopeSpec().isInvalid())
2332    D.setInvalidType();
2333  else if (D.getCXXScopeSpec().isSet()) {
2334    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2335    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2336    if (!DC) {
2337      // If we could not compute the declaration context, it's because the
2338      // declaration context is dependent but does not refer to a class,
2339      // class template, or class template partial specialization. Complain
2340      // and return early, to avoid the coming semantic disaster.
2341      Diag(D.getIdentifierLoc(),
2342           diag::err_template_qualified_declarator_no_match)
2343        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2344        << D.getCXXScopeSpec().getRange();
2345      return 0;
2346    }
2347
2348    bool IsDependentContext = DC->isDependentContext();
2349
2350    if (!IsDependentContext &&
2351        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2352      return 0;
2353
2354    if (isa<CXXRecordDecl>(DC)) {
2355      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2356        Diag(D.getIdentifierLoc(),
2357             diag::err_member_def_undefined_record)
2358          << Name << DC << D.getCXXScopeSpec().getRange();
2359        D.setInvalidType();
2360      } else if (isa<CXXRecordDecl>(CurContext) &&
2361                 !D.getDeclSpec().isFriendSpecified()) {
2362        // The user provided a superfluous scope specifier inside a class
2363        // definition:
2364        //
2365        // class X {
2366        //   void X::f();
2367        // };
2368        if (CurContext->Equals(DC))
2369          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2370            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2371        else
2372          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2373            << Name << D.getCXXScopeSpec().getRange();
2374
2375        // Pretend that this qualifier was not here.
2376        D.getCXXScopeSpec().clear();
2377      }
2378    }
2379
2380    // Check whether we need to rebuild the type of the given
2381    // declaration in the current instantiation.
2382    if (EnteringContext && IsDependentContext &&
2383        TemplateParamLists.size() != 0) {
2384      ContextRAII SavedContext(*this, DC);
2385      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2386        D.setInvalidType();
2387    }
2388  }
2389
2390  // C++ [class.mem]p13:
2391  //   If T is the name of a class, then each of the following shall have a
2392  //   name different from T:
2393  //     - every static data member of class T;
2394  //     - every member function of class T
2395  //     - every member of class T that is itself a type;
2396  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2397    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2398      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2399        << Name;
2400
2401      // If this is a typedef, we'll end up spewing multiple diagnostics.
2402      // Just return early; it's safer.
2403      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2404        return 0;
2405    }
2406
2407  NamedDecl *New;
2408
2409  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2410  QualType R = TInfo->getType();
2411
2412  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2413                                      UPPC_DeclarationType))
2414    D.setInvalidType();
2415
2416  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2417                        ForRedeclaration);
2418
2419  // See if this is a redefinition of a variable in the same scope.
2420  if (!D.getCXXScopeSpec().isSet()) {
2421    bool IsLinkageLookup = false;
2422
2423    // If the declaration we're planning to build will be a function
2424    // or object with linkage, then look for another declaration with
2425    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2426    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2427      /* Do nothing*/;
2428    else if (R->isFunctionType()) {
2429      if (CurContext->isFunctionOrMethod() ||
2430          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2431        IsLinkageLookup = true;
2432    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2433      IsLinkageLookup = true;
2434    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2435             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2436      IsLinkageLookup = true;
2437
2438    if (IsLinkageLookup)
2439      Previous.clear(LookupRedeclarationWithLinkage);
2440
2441    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2442  } else { // Something like "int foo::x;"
2443    LookupQualifiedName(Previous, DC);
2444
2445    // Don't consider using declarations as previous declarations for
2446    // out-of-line members.
2447    RemoveUsingDecls(Previous);
2448
2449    // C++ 7.3.1.2p2:
2450    // Members (including explicit specializations of templates) of a named
2451    // namespace can also be defined outside that namespace by explicit
2452    // qualification of the name being defined, provided that the entity being
2453    // defined was already declared in the namespace and the definition appears
2454    // after the point of declaration in a namespace that encloses the
2455    // declarations namespace.
2456    //
2457    // Note that we only check the context at this point. We don't yet
2458    // have enough information to make sure that PrevDecl is actually
2459    // the declaration we want to match. For example, given:
2460    //
2461    //   class X {
2462    //     void f();
2463    //     void f(float);
2464    //   };
2465    //
2466    //   void X::f(int) { } // ill-formed
2467    //
2468    // In this case, PrevDecl will point to the overload set
2469    // containing the two f's declared in X, but neither of them
2470    // matches.
2471
2472    // First check whether we named the global scope.
2473    if (isa<TranslationUnitDecl>(DC)) {
2474      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2475        << Name << D.getCXXScopeSpec().getRange();
2476    } else {
2477      DeclContext *Cur = CurContext;
2478      while (isa<LinkageSpecDecl>(Cur))
2479        Cur = Cur->getParent();
2480      if (!Cur->Encloses(DC)) {
2481        // The qualifying scope doesn't enclose the original declaration.
2482        // Emit diagnostic based on current scope.
2483        SourceLocation L = D.getIdentifierLoc();
2484        SourceRange R = D.getCXXScopeSpec().getRange();
2485        if (isa<FunctionDecl>(Cur))
2486          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2487        else
2488          Diag(L, diag::err_invalid_declarator_scope)
2489            << Name << cast<NamedDecl>(DC) << R;
2490        D.setInvalidType();
2491      }
2492    }
2493  }
2494
2495  if (Previous.isSingleResult() &&
2496      Previous.getFoundDecl()->isTemplateParameter()) {
2497    // Maybe we will complain about the shadowed template parameter.
2498    if (!D.isInvalidType())
2499      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2500                                          Previous.getFoundDecl()))
2501        D.setInvalidType();
2502
2503    // Just pretend that we didn't see the previous declaration.
2504    Previous.clear();
2505  }
2506
2507  // In C++, the previous declaration we find might be a tag type
2508  // (class or enum). In this case, the new declaration will hide the
2509  // tag type. Note that this does does not apply if we're declaring a
2510  // typedef (C++ [dcl.typedef]p4).
2511  if (Previous.isSingleTagDecl() &&
2512      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2513    Previous.clear();
2514
2515  bool Redeclaration = false;
2516  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2517    if (TemplateParamLists.size()) {
2518      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2519      return 0;
2520    }
2521
2522    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2523  } else if (R->isFunctionType()) {
2524    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2525                                  move(TemplateParamLists),
2526                                  IsFunctionDefinition, Redeclaration);
2527  } else {
2528    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2529                                  move(TemplateParamLists),
2530                                  Redeclaration);
2531  }
2532
2533  if (New == 0)
2534    return 0;
2535
2536  // If this has an identifier and is not an invalid redeclaration or
2537  // function template specialization, add it to the scope stack.
2538  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2539    PushOnScopeChains(New, S);
2540
2541  return New;
2542}
2543
2544/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2545/// types into constant array types in certain situations which would otherwise
2546/// be errors (for GCC compatibility).
2547static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2548                                                    ASTContext &Context,
2549                                                    bool &SizeIsNegative,
2550                                                    llvm::APSInt &Oversized) {
2551  // This method tries to turn a variable array into a constant
2552  // array even when the size isn't an ICE.  This is necessary
2553  // for compatibility with code that depends on gcc's buggy
2554  // constant expression folding, like struct {char x[(int)(char*)2];}
2555  SizeIsNegative = false;
2556  Oversized = 0;
2557
2558  if (T->isDependentType())
2559    return QualType();
2560
2561  QualifierCollector Qs;
2562  const Type *Ty = Qs.strip(T);
2563
2564  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2565    QualType Pointee = PTy->getPointeeType();
2566    QualType FixedType =
2567        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2568                                            Oversized);
2569    if (FixedType.isNull()) return FixedType;
2570    FixedType = Context.getPointerType(FixedType);
2571    return Qs.apply(Context, FixedType);
2572  }
2573  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2574    QualType Inner = PTy->getInnerType();
2575    QualType FixedType =
2576        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2577                                            Oversized);
2578    if (FixedType.isNull()) return FixedType;
2579    FixedType = Context.getParenType(FixedType);
2580    return Qs.apply(Context, FixedType);
2581  }
2582
2583  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2584  if (!VLATy)
2585    return QualType();
2586  // FIXME: We should probably handle this case
2587  if (VLATy->getElementType()->isVariablyModifiedType())
2588    return QualType();
2589
2590  Expr::EvalResult EvalResult;
2591  if (!VLATy->getSizeExpr() ||
2592      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2593      !EvalResult.Val.isInt())
2594    return QualType();
2595
2596  // Check whether the array size is negative.
2597  llvm::APSInt &Res = EvalResult.Val.getInt();
2598  if (Res.isSigned() && Res.isNegative()) {
2599    SizeIsNegative = true;
2600    return QualType();
2601  }
2602
2603  // Check whether the array is too large to be addressed.
2604  unsigned ActiveSizeBits
2605    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2606                                              Res);
2607  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2608    Oversized = Res;
2609    return QualType();
2610  }
2611
2612  return Context.getConstantArrayType(VLATy->getElementType(),
2613                                      Res, ArrayType::Normal, 0);
2614}
2615
2616/// \brief Register the given locally-scoped external C declaration so
2617/// that it can be found later for redeclarations
2618void
2619Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2620                                       const LookupResult &Previous,
2621                                       Scope *S) {
2622  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2623         "Decl is not a locally-scoped decl!");
2624  // Note that we have a locally-scoped external with this name.
2625  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2626
2627  if (!Previous.isSingleResult())
2628    return;
2629
2630  NamedDecl *PrevDecl = Previous.getFoundDecl();
2631
2632  // If there was a previous declaration of this variable, it may be
2633  // in our identifier chain. Update the identifier chain with the new
2634  // declaration.
2635  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2636    // The previous declaration was found on the identifer resolver
2637    // chain, so remove it from its scope.
2638    while (S && !S->isDeclScope(PrevDecl))
2639      S = S->getParent();
2640
2641    if (S)
2642      S->RemoveDecl(PrevDecl);
2643  }
2644}
2645
2646/// \brief Diagnose function specifiers on a declaration of an identifier that
2647/// does not identify a function.
2648void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2649  // FIXME: We should probably indicate the identifier in question to avoid
2650  // confusion for constructs like "inline int a(), b;"
2651  if (D.getDeclSpec().isInlineSpecified())
2652    Diag(D.getDeclSpec().getInlineSpecLoc(),
2653         diag::err_inline_non_function);
2654
2655  if (D.getDeclSpec().isVirtualSpecified())
2656    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2657         diag::err_virtual_non_function);
2658
2659  if (D.getDeclSpec().isExplicitSpecified())
2660    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2661         diag::err_explicit_non_function);
2662}
2663
2664NamedDecl*
2665Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2666                             QualType R,  TypeSourceInfo *TInfo,
2667                             LookupResult &Previous, bool &Redeclaration) {
2668  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2669  if (D.getCXXScopeSpec().isSet()) {
2670    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2671      << D.getCXXScopeSpec().getRange();
2672    D.setInvalidType();
2673    // Pretend we didn't see the scope specifier.
2674    DC = CurContext;
2675    Previous.clear();
2676  }
2677
2678  if (getLangOptions().CPlusPlus) {
2679    // Check that there are no default arguments (C++ only).
2680    CheckExtraCXXDefaultArguments(D);
2681  }
2682
2683  DiagnoseFunctionSpecifiers(D);
2684
2685  if (D.getDeclSpec().isThreadSpecified())
2686    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2687
2688  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2689    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2690      << D.getName().getSourceRange();
2691    return 0;
2692  }
2693
2694  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2695  if (!NewTD) return 0;
2696
2697  // Handle attributes prior to checking for duplicates in MergeVarDecl
2698  ProcessDeclAttributes(S, NewTD, D);
2699
2700  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2701  // then it shall have block scope.
2702  // Note that variably modified types must be fixed before merging the decl so
2703  // that redeclarations will match.
2704  QualType T = NewTD->getUnderlyingType();
2705  if (T->isVariablyModifiedType()) {
2706    getCurFunction()->setHasBranchProtectedScope();
2707
2708    if (S->getFnParent() == 0) {
2709      bool SizeIsNegative;
2710      llvm::APSInt Oversized;
2711      QualType FixedTy =
2712          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2713                                              Oversized);
2714      if (!FixedTy.isNull()) {
2715        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2716        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2717      } else {
2718        if (SizeIsNegative)
2719          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2720        else if (T->isVariableArrayType())
2721          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2722        else if (Oversized.getBoolValue())
2723          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2724            << Oversized.toString(10);
2725        else
2726          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2727        NewTD->setInvalidDecl();
2728      }
2729    }
2730  }
2731
2732  // Merge the decl with the existing one if appropriate. If the decl is
2733  // in an outer scope, it isn't the same thing.
2734  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2735  if (!Previous.empty()) {
2736    Redeclaration = true;
2737    MergeTypeDefDecl(NewTD, Previous);
2738  }
2739
2740  // If this is the C FILE type, notify the AST context.
2741  if (IdentifierInfo *II = NewTD->getIdentifier())
2742    if (!NewTD->isInvalidDecl() &&
2743        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2744      if (II->isStr("FILE"))
2745        Context.setFILEDecl(NewTD);
2746      else if (II->isStr("jmp_buf"))
2747        Context.setjmp_bufDecl(NewTD);
2748      else if (II->isStr("sigjmp_buf"))
2749        Context.setsigjmp_bufDecl(NewTD);
2750      else if (II->isStr("__builtin_va_list"))
2751        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2752    }
2753
2754  return NewTD;
2755}
2756
2757/// \brief Determines whether the given declaration is an out-of-scope
2758/// previous declaration.
2759///
2760/// This routine should be invoked when name lookup has found a
2761/// previous declaration (PrevDecl) that is not in the scope where a
2762/// new declaration by the same name is being introduced. If the new
2763/// declaration occurs in a local scope, previous declarations with
2764/// linkage may still be considered previous declarations (C99
2765/// 6.2.2p4-5, C++ [basic.link]p6).
2766///
2767/// \param PrevDecl the previous declaration found by name
2768/// lookup
2769///
2770/// \param DC the context in which the new declaration is being
2771/// declared.
2772///
2773/// \returns true if PrevDecl is an out-of-scope previous declaration
2774/// for a new delcaration with the same name.
2775static bool
2776isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2777                                ASTContext &Context) {
2778  if (!PrevDecl)
2779    return false;
2780
2781  if (!PrevDecl->hasLinkage())
2782    return false;
2783
2784  if (Context.getLangOptions().CPlusPlus) {
2785    // C++ [basic.link]p6:
2786    //   If there is a visible declaration of an entity with linkage
2787    //   having the same name and type, ignoring entities declared
2788    //   outside the innermost enclosing namespace scope, the block
2789    //   scope declaration declares that same entity and receives the
2790    //   linkage of the previous declaration.
2791    DeclContext *OuterContext = DC->getRedeclContext();
2792    if (!OuterContext->isFunctionOrMethod())
2793      // This rule only applies to block-scope declarations.
2794      return false;
2795
2796    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2797    if (PrevOuterContext->isRecord())
2798      // We found a member function: ignore it.
2799      return false;
2800
2801    // Find the innermost enclosing namespace for the new and
2802    // previous declarations.
2803    OuterContext = OuterContext->getEnclosingNamespaceContext();
2804    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2805
2806    // The previous declaration is in a different namespace, so it
2807    // isn't the same function.
2808    if (!OuterContext->Equals(PrevOuterContext))
2809      return false;
2810  }
2811
2812  return true;
2813}
2814
2815static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2816  CXXScopeSpec &SS = D.getCXXScopeSpec();
2817  if (!SS.isSet()) return;
2818  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2819                       SS.getRange());
2820}
2821
2822NamedDecl*
2823Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2824                              QualType R, TypeSourceInfo *TInfo,
2825                              LookupResult &Previous,
2826                              MultiTemplateParamsArg TemplateParamLists,
2827                              bool &Redeclaration) {
2828  DeclarationName Name = GetNameForDeclarator(D).getName();
2829
2830  // Check that there are no default arguments (C++ only).
2831  if (getLangOptions().CPlusPlus)
2832    CheckExtraCXXDefaultArguments(D);
2833
2834  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2835  assert(SCSpec != DeclSpec::SCS_typedef &&
2836         "Parser allowed 'typedef' as storage class VarDecl.");
2837  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2838  if (SCSpec == DeclSpec::SCS_mutable) {
2839    // mutable can only appear on non-static class members, so it's always
2840    // an error here
2841    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2842    D.setInvalidType();
2843    SC = SC_None;
2844  }
2845  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2846  VarDecl::StorageClass SCAsWritten
2847    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2848
2849  IdentifierInfo *II = Name.getAsIdentifierInfo();
2850  if (!II) {
2851    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2852      << Name.getAsString();
2853    return 0;
2854  }
2855
2856  DiagnoseFunctionSpecifiers(D);
2857
2858  if (!DC->isRecord() && S->getFnParent() == 0) {
2859    // C99 6.9p2: The storage-class specifiers auto and register shall not
2860    // appear in the declaration specifiers in an external declaration.
2861    if (SC == SC_Auto || SC == SC_Register) {
2862
2863      // If this is a register variable with an asm label specified, then this
2864      // is a GNU extension.
2865      if (SC == SC_Register && D.getAsmLabel())
2866        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2867      else
2868        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2869      D.setInvalidType();
2870    }
2871  }
2872
2873  bool isExplicitSpecialization;
2874  VarDecl *NewVD;
2875  if (!getLangOptions().CPlusPlus) {
2876      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2877                              II, R, TInfo, SC, SCAsWritten);
2878
2879    if (D.isInvalidType())
2880      NewVD->setInvalidDecl();
2881  } else {
2882    if (DC->isRecord() && !CurContext->isRecord()) {
2883      // This is an out-of-line definition of a static data member.
2884      if (SC == SC_Static) {
2885        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2886             diag::err_static_out_of_line)
2887          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2888      } else if (SC == SC_None)
2889        SC = SC_Static;
2890    }
2891    if (SC == SC_Static) {
2892      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2893        if (RD->isLocalClass())
2894          Diag(D.getIdentifierLoc(),
2895               diag::err_static_data_member_not_allowed_in_local_class)
2896            << Name << RD->getDeclName();
2897
2898        // C++ [class.union]p1: If a union contains a static data member,
2899        // the program is ill-formed.
2900        //
2901        // We also disallow static data members in anonymous structs.
2902        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2903          Diag(D.getIdentifierLoc(),
2904               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2905            << Name << RD->isUnion();
2906      }
2907    }
2908
2909    // Match up the template parameter lists with the scope specifier, then
2910    // determine whether we have a template or a template specialization.
2911    isExplicitSpecialization = false;
2912    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2913    bool Invalid = false;
2914    if (TemplateParameterList *TemplateParams
2915        = MatchTemplateParametersToScopeSpecifier(
2916                                                  D.getDeclSpec().getSourceRange().getBegin(),
2917                                                  D.getCXXScopeSpec(),
2918                                                  TemplateParamLists.get(),
2919                                                  TemplateParamLists.size(),
2920                                                  /*never a friend*/ false,
2921                                                  isExplicitSpecialization,
2922                                                  Invalid)) {
2923      // All but one template parameter lists have been matching.
2924      --NumMatchedTemplateParamLists;
2925
2926      if (TemplateParams->size() > 0) {
2927        // There is no such thing as a variable template.
2928        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2929          << II
2930          << SourceRange(TemplateParams->getTemplateLoc(),
2931                         TemplateParams->getRAngleLoc());
2932        return 0;
2933      } else {
2934        // There is an extraneous 'template<>' for this variable. Complain
2935        // about it, but allow the declaration of the variable.
2936        Diag(TemplateParams->getTemplateLoc(),
2937             diag::err_template_variable_noparams)
2938          << II
2939          << SourceRange(TemplateParams->getTemplateLoc(),
2940                         TemplateParams->getRAngleLoc());
2941
2942        isExplicitSpecialization = true;
2943      }
2944    }
2945
2946    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2947                            II, R, TInfo, SC, SCAsWritten);
2948
2949    if (D.isInvalidType() || Invalid)
2950      NewVD->setInvalidDecl();
2951
2952    SetNestedNameSpecifier(NewVD, D);
2953
2954    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2955      NewVD->setTemplateParameterListsInfo(Context,
2956                                           NumMatchedTemplateParamLists,
2957                                           TemplateParamLists.release());
2958    }
2959  }
2960
2961  if (D.getDeclSpec().isThreadSpecified()) {
2962    if (NewVD->hasLocalStorage())
2963      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2964    else if (!Context.Target.isTLSSupported())
2965      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2966    else
2967      NewVD->setThreadSpecified(true);
2968  }
2969
2970  // Set the lexical context. If the declarator has a C++ scope specifier, the
2971  // lexical context will be different from the semantic context.
2972  NewVD->setLexicalDeclContext(CurContext);
2973
2974  // Handle attributes prior to checking for duplicates in MergeVarDecl
2975  ProcessDeclAttributes(S, NewVD, D);
2976
2977  // Handle GNU asm-label extension (encoded as an attribute).
2978  if (Expr *E = (Expr*)D.getAsmLabel()) {
2979    // The parser guarantees this is a string.
2980    StringLiteral *SE = cast<StringLiteral>(E);
2981    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2982                                                Context, SE->getString()));
2983  }
2984
2985  // Diagnose shadowed variables before filtering for scope.
2986  if (!D.getCXXScopeSpec().isSet())
2987    CheckShadow(S, NewVD, Previous);
2988
2989  // Don't consider existing declarations that are in a different
2990  // scope and are out-of-semantic-context declarations (if the new
2991  // declaration has linkage).
2992  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2993
2994  if (!getLangOptions().CPlusPlus)
2995    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2996  else {
2997    // Merge the decl with the existing one if appropriate.
2998    if (!Previous.empty()) {
2999      if (Previous.isSingleResult() &&
3000          isa<FieldDecl>(Previous.getFoundDecl()) &&
3001          D.getCXXScopeSpec().isSet()) {
3002        // The user tried to define a non-static data member
3003        // out-of-line (C++ [dcl.meaning]p1).
3004        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3005          << D.getCXXScopeSpec().getRange();
3006        Previous.clear();
3007        NewVD->setInvalidDecl();
3008      }
3009    } else if (D.getCXXScopeSpec().isSet()) {
3010      // No previous declaration in the qualifying scope.
3011      Diag(D.getIdentifierLoc(), diag::err_no_member)
3012        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3013        << D.getCXXScopeSpec().getRange();
3014      NewVD->setInvalidDecl();
3015    }
3016
3017    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3018
3019    // This is an explicit specialization of a static data member. Check it.
3020    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3021        CheckMemberSpecialization(NewVD, Previous))
3022      NewVD->setInvalidDecl();
3023    // For variables declared as __block which require copy construction,
3024    // must capture copy initialization expression here.
3025    if (!NewVD->isInvalidDecl() && NewVD->hasAttr<BlocksAttr>()) {
3026      QualType T = NewVD->getType();
3027      if (!T->isDependentType() && !T->isReferenceType() &&
3028          T->getAs<RecordType>() && !T->isUnionType()) {
3029        Expr *E = new (Context) DeclRefExpr(NewVD, T,
3030                                            VK_LValue, SourceLocation());
3031        ExprResult Res = PerformCopyInitialization(
3032                InitializedEntity::InitializeBlock(NewVD->getLocation(),
3033                                                   T, false),
3034                SourceLocation(),
3035                Owned(E));
3036        if (!Res.isInvalid()) {
3037          Res = MaybeCreateExprWithCleanups(Res);
3038          Expr *Init = Res.takeAs<Expr>();
3039          Context.setBlockVarCopyInits(NewVD, Init);
3040        }
3041      }
3042    }
3043  }
3044
3045  // attributes declared post-definition are currently ignored
3046  // FIXME: This should be handled in attribute merging, not
3047  // here.
3048  if (Previous.isSingleResult()) {
3049    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3050    if (Def && (Def = Def->getDefinition()) &&
3051        Def != NewVD && D.hasAttributes()) {
3052      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3053      Diag(Def->getLocation(), diag::note_previous_definition);
3054    }
3055  }
3056
3057  // If this is a locally-scoped extern C variable, update the map of
3058  // such variables.
3059  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3060      !NewVD->isInvalidDecl())
3061    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3062
3063  // If there's a #pragma GCC visibility in scope, and this isn't a class
3064  // member, set the visibility of this variable.
3065  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3066    AddPushedVisibilityAttribute(NewVD);
3067
3068  MarkUnusedFileScopedDecl(NewVD);
3069
3070  return NewVD;
3071}
3072
3073/// \brief Diagnose variable or built-in function shadowing.  Implements
3074/// -Wshadow.
3075///
3076/// This method is called whenever a VarDecl is added to a "useful"
3077/// scope.
3078///
3079/// \param S the scope in which the shadowing name is being declared
3080/// \param R the lookup of the name
3081///
3082void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3083  // Return if warning is ignored.
3084  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3085        Diagnostic::Ignored)
3086    return;
3087
3088  // Don't diagnose declarations at file scope.  The scope might not
3089  // have a DeclContext if (e.g.) we're parsing a function prototype.
3090  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3091  if (NewDC && NewDC->isFileContext())
3092    return;
3093
3094  // Only diagnose if we're shadowing an unambiguous field or variable.
3095  if (R.getResultKind() != LookupResult::Found)
3096    return;
3097
3098  NamedDecl* ShadowedDecl = R.getFoundDecl();
3099  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3100    return;
3101
3102  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3103
3104  // Only warn about certain kinds of shadowing for class members.
3105  if (NewDC && NewDC->isRecord()) {
3106    // In particular, don't warn about shadowing non-class members.
3107    if (!OldDC->isRecord())
3108      return;
3109
3110    // TODO: should we warn about static data members shadowing
3111    // static data members from base classes?
3112
3113    // TODO: don't diagnose for inaccessible shadowed members.
3114    // This is hard to do perfectly because we might friend the
3115    // shadowing context, but that's just a false negative.
3116  }
3117
3118  // Determine what kind of declaration we're shadowing.
3119  unsigned Kind;
3120  if (isa<RecordDecl>(OldDC)) {
3121    if (isa<FieldDecl>(ShadowedDecl))
3122      Kind = 3; // field
3123    else
3124      Kind = 2; // static data member
3125  } else if (OldDC->isFileContext())
3126    Kind = 1; // global
3127  else
3128    Kind = 0; // local
3129
3130  DeclarationName Name = R.getLookupName();
3131
3132  // Emit warning and note.
3133  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3134  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3135}
3136
3137/// \brief Check -Wshadow without the advantage of a previous lookup.
3138void Sema::CheckShadow(Scope *S, VarDecl *D) {
3139  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3140        Diagnostic::Ignored)
3141    return;
3142
3143  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3144                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3145  LookupName(R, S);
3146  CheckShadow(S, D, R);
3147}
3148
3149/// \brief Perform semantic checking on a newly-created variable
3150/// declaration.
3151///
3152/// This routine performs all of the type-checking required for a
3153/// variable declaration once it has been built. It is used both to
3154/// check variables after they have been parsed and their declarators
3155/// have been translated into a declaration, and to check variables
3156/// that have been instantiated from a template.
3157///
3158/// Sets NewVD->isInvalidDecl() if an error was encountered.
3159void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3160                                    LookupResult &Previous,
3161                                    bool &Redeclaration) {
3162  // If the decl is already known invalid, don't check it.
3163  if (NewVD->isInvalidDecl())
3164    return;
3165
3166  QualType T = NewVD->getType();
3167
3168  if (T->isObjCObjectType()) {
3169    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3170    return NewVD->setInvalidDecl();
3171  }
3172
3173  // Emit an error if an address space was applied to decl with local storage.
3174  // This includes arrays of objects with address space qualifiers, but not
3175  // automatic variables that point to other address spaces.
3176  // ISO/IEC TR 18037 S5.1.2
3177  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3178    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3179    return NewVD->setInvalidDecl();
3180  }
3181
3182  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3183      && !NewVD->hasAttr<BlocksAttr>())
3184    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3185
3186  bool isVM = T->isVariablyModifiedType();
3187  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3188      NewVD->hasAttr<BlocksAttr>())
3189    getCurFunction()->setHasBranchProtectedScope();
3190
3191  if ((isVM && NewVD->hasLinkage()) ||
3192      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3193    bool SizeIsNegative;
3194    llvm::APSInt Oversized;
3195    QualType FixedTy =
3196        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3197                                            Oversized);
3198
3199    if (FixedTy.isNull() && T->isVariableArrayType()) {
3200      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3201      // FIXME: This won't give the correct result for
3202      // int a[10][n];
3203      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3204
3205      if (NewVD->isFileVarDecl())
3206        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3207        << SizeRange;
3208      else if (NewVD->getStorageClass() == SC_Static)
3209        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3210        << SizeRange;
3211      else
3212        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3213        << SizeRange;
3214      return NewVD->setInvalidDecl();
3215    }
3216
3217    if (FixedTy.isNull()) {
3218      if (NewVD->isFileVarDecl())
3219        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3220      else
3221        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3222      return NewVD->setInvalidDecl();
3223    }
3224
3225    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3226    NewVD->setType(FixedTy);
3227  }
3228
3229  if (Previous.empty() && NewVD->isExternC()) {
3230    // Since we did not find anything by this name and we're declaring
3231    // an extern "C" variable, look for a non-visible extern "C"
3232    // declaration with the same name.
3233    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3234      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3235    if (Pos != LocallyScopedExternalDecls.end())
3236      Previous.addDecl(Pos->second);
3237  }
3238
3239  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3240    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3241      << T;
3242    return NewVD->setInvalidDecl();
3243  }
3244
3245  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3246    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3247    return NewVD->setInvalidDecl();
3248  }
3249
3250  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3251    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3252    return NewVD->setInvalidDecl();
3253  }
3254
3255  // Function pointers and references cannot have qualified function type, only
3256  // function pointer-to-members can do that.
3257  QualType Pointee;
3258  unsigned PtrOrRef = 0;
3259  if (const PointerType *Ptr = T->getAs<PointerType>())
3260    Pointee = Ptr->getPointeeType();
3261  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3262    Pointee = Ref->getPointeeType();
3263    PtrOrRef = 1;
3264  }
3265  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3266      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3267    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3268        << PtrOrRef;
3269    return NewVD->setInvalidDecl();
3270  }
3271
3272  if (!Previous.empty()) {
3273    Redeclaration = true;
3274    MergeVarDecl(NewVD, Previous);
3275  }
3276}
3277
3278/// \brief Data used with FindOverriddenMethod
3279struct FindOverriddenMethodData {
3280  Sema *S;
3281  CXXMethodDecl *Method;
3282};
3283
3284/// \brief Member lookup function that determines whether a given C++
3285/// method overrides a method in a base class, to be used with
3286/// CXXRecordDecl::lookupInBases().
3287static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3288                                 CXXBasePath &Path,
3289                                 void *UserData) {
3290  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3291
3292  FindOverriddenMethodData *Data
3293    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3294
3295  DeclarationName Name = Data->Method->getDeclName();
3296
3297  // FIXME: Do we care about other names here too?
3298  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3299    // We really want to find the base class destructor here.
3300    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3301    CanQualType CT = Data->S->Context.getCanonicalType(T);
3302
3303    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3304  }
3305
3306  for (Path.Decls = BaseRecord->lookup(Name);
3307       Path.Decls.first != Path.Decls.second;
3308       ++Path.Decls.first) {
3309    NamedDecl *D = *Path.Decls.first;
3310    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3311      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3312        return true;
3313    }
3314  }
3315
3316  return false;
3317}
3318
3319/// AddOverriddenMethods - See if a method overrides any in the base classes,
3320/// and if so, check that it's a valid override and remember it.
3321bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3322  // Look for virtual methods in base classes that this method might override.
3323  CXXBasePaths Paths;
3324  FindOverriddenMethodData Data;
3325  Data.Method = MD;
3326  Data.S = this;
3327  bool AddedAny = false;
3328  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3329    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3330         E = Paths.found_decls_end(); I != E; ++I) {
3331      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3332        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3333            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3334            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3335          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3336          AddedAny = true;
3337        }
3338      }
3339    }
3340  }
3341
3342  return AddedAny;
3343}
3344
3345static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3346  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3347                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3348  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3349  assert(!Prev.isAmbiguous() &&
3350         "Cannot have an ambiguity in previous-declaration lookup");
3351  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3352       Func != FuncEnd; ++Func) {
3353    if (isa<FunctionDecl>(*Func) &&
3354        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3355      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3356  }
3357}
3358
3359/// CheckClassMemberNameAttributes - Check for class member name checking
3360/// attributes according to [dcl.attr.override]
3361static void
3362CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3363  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3364  if (!MD || !MD->isVirtual())
3365    return;
3366
3367  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3368  bool HasOverriddenMethods =
3369    MD->begin_overridden_methods() != MD->end_overridden_methods();
3370
3371  /// C++ [dcl.attr.override]p2:
3372  ///   If a virtual member function f is marked override and does not override
3373  ///   a member function of a base class the program is ill-formed.
3374  if (HasOverrideAttr && !HasOverriddenMethods) {
3375    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3376      << MD->getDeclName();
3377    return;
3378  }
3379
3380  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3381    return;
3382
3383  /// C++ [dcl.attr.override]p6:
3384  ///   In a class definition marked base_check, if a virtual member function
3385  ///    that is neither implicitly-declared nor a destructor overrides a
3386  ///    member function of a base class and it is not marked override, the
3387  ///    program is ill-formed.
3388  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3389      !isa<CXXDestructorDecl>(MD)) {
3390    llvm::SmallVector<const CXXMethodDecl*, 4>
3391      OverriddenMethods(MD->begin_overridden_methods(),
3392                        MD->end_overridden_methods());
3393
3394    SemaRef.Diag(MD->getLocation(),
3395                 diag::err_function_overriding_without_override)
3396      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3397
3398    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3399      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3400                   diag::note_overridden_virtual_function);
3401  }
3402}
3403
3404NamedDecl*
3405Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3406                              QualType R, TypeSourceInfo *TInfo,
3407                              LookupResult &Previous,
3408                              MultiTemplateParamsArg TemplateParamLists,
3409                              bool IsFunctionDefinition, bool &Redeclaration) {
3410  assert(R.getTypePtr()->isFunctionType());
3411
3412  // TODO: consider using NameInfo for diagnostic.
3413  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3414  DeclarationName Name = NameInfo.getName();
3415  FunctionDecl::StorageClass SC = SC_None;
3416  switch (D.getDeclSpec().getStorageClassSpec()) {
3417  default: assert(0 && "Unknown storage class!");
3418  case DeclSpec::SCS_auto:
3419  case DeclSpec::SCS_register:
3420  case DeclSpec::SCS_mutable:
3421    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3422         diag::err_typecheck_sclass_func);
3423    D.setInvalidType();
3424    break;
3425  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3426  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3427  case DeclSpec::SCS_static: {
3428    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3429      // C99 6.7.1p5:
3430      //   The declaration of an identifier for a function that has
3431      //   block scope shall have no explicit storage-class specifier
3432      //   other than extern
3433      // See also (C++ [dcl.stc]p4).
3434      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3435           diag::err_static_block_func);
3436      SC = SC_None;
3437    } else
3438      SC = SC_Static;
3439    break;
3440  }
3441  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3442  }
3443
3444  if (D.getDeclSpec().isThreadSpecified())
3445    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3446
3447  // Do not allow returning a objc interface by-value.
3448  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3449    Diag(D.getIdentifierLoc(),
3450         diag::err_object_cannot_be_passed_returned_by_value) << 0
3451    << R->getAs<FunctionType>()->getResultType();
3452    D.setInvalidType();
3453  }
3454
3455  FunctionDecl *NewFD;
3456  bool isInline = D.getDeclSpec().isInlineSpecified();
3457  bool isFriend = false;
3458  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3459  FunctionDecl::StorageClass SCAsWritten
3460    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3461  FunctionTemplateDecl *FunctionTemplate = 0;
3462  bool isExplicitSpecialization = false;
3463  bool isFunctionTemplateSpecialization = false;
3464  unsigned NumMatchedTemplateParamLists = 0;
3465
3466  if (!getLangOptions().CPlusPlus) {
3467    // Determine whether the function was written with a
3468    // prototype. This true when:
3469    //   - there is a prototype in the declarator, or
3470    //   - the type R of the function is some kind of typedef or other reference
3471    //     to a type name (which eventually refers to a function type).
3472    bool HasPrototype =
3473    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3474    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3475
3476    NewFD = FunctionDecl::Create(Context, DC,
3477                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3478                                 HasPrototype);
3479    if (D.isInvalidType())
3480      NewFD->setInvalidDecl();
3481
3482    // Set the lexical context.
3483    NewFD->setLexicalDeclContext(CurContext);
3484    // Filter out previous declarations that don't match the scope.
3485    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3486  } else {
3487    isFriend = D.getDeclSpec().isFriendSpecified();
3488    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3489    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3490    bool isVirtualOkay = false;
3491
3492    // Check that the return type is not an abstract class type.
3493    // For record types, this is done by the AbstractClassUsageDiagnoser once
3494    // the class has been completely parsed.
3495    if (!DC->isRecord() &&
3496      RequireNonAbstractType(D.getIdentifierLoc(),
3497                             R->getAs<FunctionType>()->getResultType(),
3498                             diag::err_abstract_type_in_decl,
3499                             AbstractReturnType))
3500      D.setInvalidType();
3501
3502
3503    if (isFriend) {
3504      // C++ [class.friend]p5
3505      //   A function can be defined in a friend declaration of a
3506      //   class . . . . Such a function is implicitly inline.
3507      isInline |= IsFunctionDefinition;
3508    }
3509
3510    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3511      // This is a C++ constructor declaration.
3512      assert(DC->isRecord() &&
3513             "Constructors can only be declared in a member context");
3514
3515      R = CheckConstructorDeclarator(D, R, SC);
3516
3517      // Create the new declaration
3518      NewFD = CXXConstructorDecl::Create(Context,
3519                                         cast<CXXRecordDecl>(DC),
3520                                         NameInfo, R, TInfo,
3521                                         isExplicit, isInline,
3522                                         /*isImplicitlyDeclared=*/false);
3523    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3524      // This is a C++ destructor declaration.
3525      if (DC->isRecord()) {
3526        R = CheckDestructorDeclarator(D, R, SC);
3527
3528        NewFD = CXXDestructorDecl::Create(Context,
3529                                          cast<CXXRecordDecl>(DC),
3530                                          NameInfo, R, TInfo,
3531                                          isInline,
3532                                          /*isImplicitlyDeclared=*/false);
3533        isVirtualOkay = true;
3534      } else {
3535        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3536
3537        // Create a FunctionDecl to satisfy the function definition parsing
3538        // code path.
3539        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3540                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3541                                     /*hasPrototype=*/true);
3542        D.setInvalidType();
3543      }
3544    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3545      if (!DC->isRecord()) {
3546        Diag(D.getIdentifierLoc(),
3547             diag::err_conv_function_not_member);
3548        return 0;
3549      }
3550
3551      CheckConversionDeclarator(D, R, SC);
3552      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3553                                        NameInfo, R, TInfo,
3554                                        isInline, isExplicit);
3555
3556      isVirtualOkay = true;
3557    } else if (DC->isRecord()) {
3558      // If the of the function is the same as the name of the record, then this
3559      // must be an invalid constructor that has a return type.
3560      // (The parser checks for a return type and makes the declarator a
3561      // constructor if it has no return type).
3562      // must have an invalid constructor that has a return type
3563      if (Name.getAsIdentifierInfo() &&
3564          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3565        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3566          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3567          << SourceRange(D.getIdentifierLoc());
3568        return 0;
3569      }
3570
3571      bool isStatic = SC == SC_Static;
3572
3573      // [class.free]p1:
3574      // Any allocation function for a class T is a static member
3575      // (even if not explicitly declared static).
3576      if (Name.getCXXOverloadedOperator() == OO_New ||
3577          Name.getCXXOverloadedOperator() == OO_Array_New)
3578        isStatic = true;
3579
3580      // [class.free]p6 Any deallocation function for a class X is a static member
3581      // (even if not explicitly declared static).
3582      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3583          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3584        isStatic = true;
3585
3586      // This is a C++ method declaration.
3587      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3588                                    NameInfo, R, TInfo,
3589                                    isStatic, SCAsWritten, isInline);
3590
3591      isVirtualOkay = !isStatic;
3592    } else {
3593      // Determine whether the function was written with a
3594      // prototype. This true when:
3595      //   - we're in C++ (where every function has a prototype),
3596      NewFD = FunctionDecl::Create(Context, DC,
3597                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3598                                   true/*HasPrototype*/);
3599    }
3600    SetNestedNameSpecifier(NewFD, D);
3601    isExplicitSpecialization = false;
3602    isFunctionTemplateSpecialization = false;
3603    NumMatchedTemplateParamLists = TemplateParamLists.size();
3604    if (D.isInvalidType())
3605      NewFD->setInvalidDecl();
3606
3607    // Set the lexical context. If the declarator has a C++
3608    // scope specifier, or is the object of a friend declaration, the
3609    // lexical context will be different from the semantic context.
3610    NewFD->setLexicalDeclContext(CurContext);
3611
3612    // Match up the template parameter lists with the scope specifier, then
3613    // determine whether we have a template or a template specialization.
3614    bool Invalid = false;
3615    if (TemplateParameterList *TemplateParams
3616        = MatchTemplateParametersToScopeSpecifier(
3617                                  D.getDeclSpec().getSourceRange().getBegin(),
3618                                  D.getCXXScopeSpec(),
3619                                  TemplateParamLists.get(),
3620                                  TemplateParamLists.size(),
3621                                  isFriend,
3622                                  isExplicitSpecialization,
3623                                  Invalid)) {
3624          // All but one template parameter lists have been matching.
3625          --NumMatchedTemplateParamLists;
3626
3627          if (TemplateParams->size() > 0) {
3628            // This is a function template
3629
3630            // Check that we can declare a template here.
3631            if (CheckTemplateDeclScope(S, TemplateParams))
3632              return 0;
3633
3634            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3635                                                      NewFD->getLocation(),
3636                                                      Name, TemplateParams,
3637                                                      NewFD);
3638            FunctionTemplate->setLexicalDeclContext(CurContext);
3639            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3640          } else {
3641            // This is a function template specialization.
3642            isFunctionTemplateSpecialization = true;
3643
3644            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3645            if (isFriend && isFunctionTemplateSpecialization) {
3646              // We want to remove the "template<>", found here.
3647              SourceRange RemoveRange = TemplateParams->getSourceRange();
3648
3649              // If we remove the template<> and the name is not a
3650              // template-id, we're actually silently creating a problem:
3651              // the friend declaration will refer to an untemplated decl,
3652              // and clearly the user wants a template specialization.  So
3653              // we need to insert '<>' after the name.
3654              SourceLocation InsertLoc;
3655              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3656                InsertLoc = D.getName().getSourceRange().getEnd();
3657                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3658              }
3659
3660              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3661              << Name << RemoveRange
3662              << FixItHint::CreateRemoval(RemoveRange)
3663              << FixItHint::CreateInsertion(InsertLoc, "<>");
3664            }
3665          }
3666        }
3667
3668    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3669      NewFD->setTemplateParameterListsInfo(Context,
3670                                           NumMatchedTemplateParamLists,
3671                                           TemplateParamLists.release());
3672    }
3673
3674    if (Invalid) {
3675      NewFD->setInvalidDecl();
3676      if (FunctionTemplate)
3677        FunctionTemplate->setInvalidDecl();
3678    }
3679
3680    // C++ [dcl.fct.spec]p5:
3681    //   The virtual specifier shall only be used in declarations of
3682    //   nonstatic class member functions that appear within a
3683    //   member-specification of a class declaration; see 10.3.
3684    //
3685    if (isVirtual && !NewFD->isInvalidDecl()) {
3686      if (!isVirtualOkay) {
3687        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3688             diag::err_virtual_non_function);
3689      } else if (!CurContext->isRecord()) {
3690        // 'virtual' was specified outside of the class.
3691        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3692          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3693      } else {
3694        // Okay: Add virtual to the method.
3695        NewFD->setVirtualAsWritten(true);
3696      }
3697    }
3698
3699    // C++ [dcl.fct.spec]p3:
3700    //  The inline specifier shall not appear on a block scope function declaration.
3701    if (isInline && !NewFD->isInvalidDecl()) {
3702      if (CurContext->isFunctionOrMethod()) {
3703        // 'inline' is not allowed on block scope function declaration.
3704        Diag(D.getDeclSpec().getInlineSpecLoc(),
3705             diag::err_inline_declaration_block_scope) << Name
3706          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3707      }
3708    }
3709
3710    // C++ [dcl.fct.spec]p6:
3711    //  The explicit specifier shall be used only in the declaration of a
3712    //  constructor or conversion function within its class definition; see 12.3.1
3713    //  and 12.3.2.
3714    if (isExplicit && !NewFD->isInvalidDecl()) {
3715      if (!CurContext->isRecord()) {
3716        // 'explicit' was specified outside of the class.
3717        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3718             diag::err_explicit_out_of_class)
3719          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3720      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3721                 !isa<CXXConversionDecl>(NewFD)) {
3722        // 'explicit' was specified on a function that wasn't a constructor
3723        // or conversion function.
3724        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3725             diag::err_explicit_non_ctor_or_conv_function)
3726          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3727      }
3728    }
3729
3730    // Filter out previous declarations that don't match the scope.
3731    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3732
3733    if (isFriend) {
3734      // For now, claim that the objects have no previous declaration.
3735      if (FunctionTemplate) {
3736        FunctionTemplate->setObjectOfFriendDecl(false);
3737        FunctionTemplate->setAccess(AS_public);
3738      }
3739      NewFD->setObjectOfFriendDecl(false);
3740      NewFD->setAccess(AS_public);
3741    }
3742
3743    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3744      // A method is implicitly inline if it's defined in its class
3745      // definition.
3746      NewFD->setImplicitlyInline();
3747    }
3748
3749    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3750        !CurContext->isRecord()) {
3751      // C++ [class.static]p1:
3752      //   A data or function member of a class may be declared static
3753      //   in a class definition, in which case it is a static member of
3754      //   the class.
3755
3756      // Complain about the 'static' specifier if it's on an out-of-line
3757      // member function definition.
3758      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3759           diag::err_static_out_of_line)
3760        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3761    }
3762  }
3763
3764  // Handle GNU asm-label extension (encoded as an attribute).
3765  if (Expr *E = (Expr*) D.getAsmLabel()) {
3766    // The parser guarantees this is a string.
3767    StringLiteral *SE = cast<StringLiteral>(E);
3768    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3769                                                SE->getString()));
3770  }
3771
3772  // Copy the parameter declarations from the declarator D to the function
3773  // declaration NewFD, if they are available.  First scavenge them into Params.
3774  llvm::SmallVector<ParmVarDecl*, 16> Params;
3775  if (D.isFunctionDeclarator()) {
3776    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3777
3778    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3779    // function that takes no arguments, not a function that takes a
3780    // single void argument.
3781    // We let through "const void" here because Sema::GetTypeForDeclarator
3782    // already checks for that case.
3783    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3784        FTI.ArgInfo[0].Param &&
3785        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3786      // Empty arg list, don't push any params.
3787      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3788
3789      // In C++, the empty parameter-type-list must be spelled "void"; a
3790      // typedef of void is not permitted.
3791      if (getLangOptions().CPlusPlus &&
3792          Param->getType().getUnqualifiedType() != Context.VoidTy)
3793        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3794    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3795      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3796        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3797        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3798        Param->setDeclContext(NewFD);
3799        Params.push_back(Param);
3800
3801        if (Param->isInvalidDecl())
3802          NewFD->setInvalidDecl();
3803      }
3804    }
3805
3806  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3807    // When we're declaring a function with a typedef, typeof, etc as in the
3808    // following example, we'll need to synthesize (unnamed)
3809    // parameters for use in the declaration.
3810    //
3811    // @code
3812    // typedef void fn(int);
3813    // fn f;
3814    // @endcode
3815
3816    // Synthesize a parameter for each argument type.
3817    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3818         AE = FT->arg_type_end(); AI != AE; ++AI) {
3819      ParmVarDecl *Param =
3820        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3821      Params.push_back(Param);
3822    }
3823  } else {
3824    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3825           "Should not need args for typedef of non-prototype fn");
3826  }
3827  // Finally, we know we have the right number of parameters, install them.
3828  NewFD->setParams(Params.data(), Params.size());
3829
3830  bool OverloadableAttrRequired=false; // FIXME: HACK!
3831  if (!getLangOptions().CPlusPlus) {
3832    // Perform semantic checking on the function declaration.
3833    bool isExplctSpecialization=false;
3834    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3835                             Redeclaration,
3836                             /*FIXME:*/OverloadableAttrRequired);
3837    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3838            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3839           "previous declaration set still overloaded");
3840  } else {
3841    // If the declarator is a template-id, translate the parser's template
3842    // argument list into our AST format.
3843    bool HasExplicitTemplateArgs = false;
3844    TemplateArgumentListInfo TemplateArgs;
3845    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3846      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3847      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3848      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3849      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3850                                         TemplateId->getTemplateArgs(),
3851                                         TemplateId->NumArgs);
3852      translateTemplateArguments(TemplateArgsPtr,
3853                                 TemplateArgs);
3854      TemplateArgsPtr.release();
3855
3856      HasExplicitTemplateArgs = true;
3857
3858      if (FunctionTemplate) {
3859        // FIXME: Diagnose function template with explicit template
3860        // arguments.
3861        HasExplicitTemplateArgs = false;
3862      } else if (!isFunctionTemplateSpecialization &&
3863                 !D.getDeclSpec().isFriendSpecified()) {
3864        // We have encountered something that the user meant to be a
3865        // specialization (because it has explicitly-specified template
3866        // arguments) but that was not introduced with a "template<>" (or had
3867        // too few of them).
3868        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3869          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3870          << FixItHint::CreateInsertion(
3871                                        D.getDeclSpec().getSourceRange().getBegin(),
3872                                                  "template<> ");
3873        isFunctionTemplateSpecialization = true;
3874      } else {
3875        // "friend void foo<>(int);" is an implicit specialization decl.
3876        isFunctionTemplateSpecialization = true;
3877      }
3878    } else if (isFriend && isFunctionTemplateSpecialization) {
3879      // This combination is only possible in a recovery case;  the user
3880      // wrote something like:
3881      //   template <> friend void foo(int);
3882      // which we're recovering from as if the user had written:
3883      //   friend void foo<>(int);
3884      // Go ahead and fake up a template id.
3885      HasExplicitTemplateArgs = true;
3886        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3887      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3888    }
3889
3890    // If it's a friend (and only if it's a friend), it's possible
3891    // that either the specialized function type or the specialized
3892    // template is dependent, and therefore matching will fail.  In
3893    // this case, don't check the specialization yet.
3894    if (isFunctionTemplateSpecialization && isFriend &&
3895        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3896      assert(HasExplicitTemplateArgs &&
3897             "friend function specialization without template args");
3898      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3899                                                       Previous))
3900        NewFD->setInvalidDecl();
3901    } else if (isFunctionTemplateSpecialization) {
3902      if (CheckFunctionTemplateSpecialization(NewFD,
3903                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3904                                              Previous))
3905        NewFD->setInvalidDecl();
3906    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3907      if (CheckMemberSpecialization(NewFD, Previous))
3908          NewFD->setInvalidDecl();
3909    }
3910
3911    // Perform semantic checking on the function declaration.
3912    bool flag_c_overloaded=false; // unused for c++
3913    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3914                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3915
3916    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3917            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3918           "previous declaration set still overloaded");
3919
3920    NamedDecl *PrincipalDecl = (FunctionTemplate
3921                                ? cast<NamedDecl>(FunctionTemplate)
3922                                : NewFD);
3923
3924    if (isFriend && Redeclaration) {
3925      AccessSpecifier Access = AS_public;
3926      if (!NewFD->isInvalidDecl())
3927        Access = NewFD->getPreviousDeclaration()->getAccess();
3928
3929      NewFD->setAccess(Access);
3930      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3931
3932      PrincipalDecl->setObjectOfFriendDecl(true);
3933    }
3934
3935    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3936        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3937      PrincipalDecl->setNonMemberOperator();
3938
3939    // If we have a function template, check the template parameter
3940    // list. This will check and merge default template arguments.
3941    if (FunctionTemplate) {
3942      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3943      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3944                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3945                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3946                                                  : TPC_FunctionTemplate);
3947    }
3948
3949    if (NewFD->isInvalidDecl()) {
3950      // Ignore all the rest of this.
3951    } else if (!Redeclaration) {
3952      // Fake up an access specifier if it's supposed to be a class member.
3953      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3954        NewFD->setAccess(AS_public);
3955
3956      // Qualified decls generally require a previous declaration.
3957      if (D.getCXXScopeSpec().isSet()) {
3958        // ...with the major exception of templated-scope or
3959        // dependent-scope friend declarations.
3960
3961        // TODO: we currently also suppress this check in dependent
3962        // contexts because (1) the parameter depth will be off when
3963        // matching friend templates and (2) we might actually be
3964        // selecting a friend based on a dependent factor.  But there
3965        // are situations where these conditions don't apply and we
3966        // can actually do this check immediately.
3967        if (isFriend &&
3968            (NumMatchedTemplateParamLists ||
3969             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3970             CurContext->isDependentContext())) {
3971              // ignore these
3972            } else {
3973              // The user tried to provide an out-of-line definition for a
3974              // function that is a member of a class or namespace, but there
3975              // was no such member function declared (C++ [class.mfct]p2,
3976              // C++ [namespace.memdef]p2). For example:
3977              //
3978              // class X {
3979              //   void f() const;
3980              // };
3981              //
3982              // void X::f() { } // ill-formed
3983              //
3984              // Complain about this problem, and attempt to suggest close
3985              // matches (e.g., those that differ only in cv-qualifiers and
3986              // whether the parameter types are references).
3987              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3988              << Name << DC << D.getCXXScopeSpec().getRange();
3989              NewFD->setInvalidDecl();
3990
3991              DiagnoseInvalidRedeclaration(*this, NewFD);
3992            }
3993
3994        // Unqualified local friend declarations are required to resolve
3995        // to something.
3996        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3997          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3998          NewFD->setInvalidDecl();
3999          DiagnoseInvalidRedeclaration(*this, NewFD);
4000        }
4001
4002    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4003               !isFriend && !isFunctionTemplateSpecialization &&
4004               !isExplicitSpecialization) {
4005      // An out-of-line member function declaration must also be a
4006      // definition (C++ [dcl.meaning]p1).
4007      // Note that this is not the case for explicit specializations of
4008      // function templates or member functions of class templates, per
4009      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4010      // for compatibility with old SWIG code which likes to generate them.
4011      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4012        << D.getCXXScopeSpec().getRange();
4013    }
4014  }
4015
4016
4017  // Handle attributes. We need to have merged decls when handling attributes
4018  // (for example to check for conflicts, etc).
4019  // FIXME: This needs to happen before we merge declarations. Then,
4020  // let attribute merging cope with attribute conflicts.
4021  ProcessDeclAttributes(S, NewFD, D);
4022
4023  // attributes declared post-definition are currently ignored
4024  // FIXME: This should happen during attribute merging
4025  if (Redeclaration && Previous.isSingleResult()) {
4026    const FunctionDecl *Def;
4027    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4028    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4029      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4030      Diag(Def->getLocation(), diag::note_previous_definition);
4031    }
4032  }
4033
4034  AddKnownFunctionAttributes(NewFD);
4035
4036  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4037    // If a function name is overloadable in C, then every function
4038    // with that name must be marked "overloadable".
4039    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4040      << Redeclaration << NewFD;
4041    if (!Previous.empty())
4042      Diag(Previous.getRepresentativeDecl()->getLocation(),
4043           diag::note_attribute_overloadable_prev_overload);
4044    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4045  }
4046
4047  if (NewFD->hasAttr<OverloadableAttr>() &&
4048      !NewFD->getType()->getAs<FunctionProtoType>()) {
4049    Diag(NewFD->getLocation(),
4050         diag::err_attribute_overloadable_no_prototype)
4051      << NewFD;
4052
4053    // Turn this into a variadic function with no parameters.
4054    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4055    FunctionProtoType::ExtProtoInfo EPI;
4056    EPI.Variadic = true;
4057    EPI.ExtInfo = FT->getExtInfo();
4058
4059    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4060    NewFD->setType(R);
4061  }
4062
4063  // If there's a #pragma GCC visibility in scope, and this isn't a class
4064  // member, set the visibility of this function.
4065  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4066    AddPushedVisibilityAttribute(NewFD);
4067
4068  // If this is a locally-scoped extern C function, update the
4069  // map of such names.
4070  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4071      && !NewFD->isInvalidDecl())
4072    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4073
4074  // Set this FunctionDecl's range up to the right paren.
4075  NewFD->setLocEnd(D.getSourceRange().getEnd());
4076
4077  if (getLangOptions().CPlusPlus) {
4078    if (FunctionTemplate) {
4079      if (NewFD->isInvalidDecl())
4080        FunctionTemplate->setInvalidDecl();
4081      return FunctionTemplate;
4082    }
4083    CheckClassMemberNameAttributes(*this, NewFD);
4084  }
4085
4086  MarkUnusedFileScopedDecl(NewFD);
4087  return NewFD;
4088}
4089
4090/// \brief Perform semantic checking of a new function declaration.
4091///
4092/// Performs semantic analysis of the new function declaration
4093/// NewFD. This routine performs all semantic checking that does not
4094/// require the actual declarator involved in the declaration, and is
4095/// used both for the declaration of functions as they are parsed
4096/// (called via ActOnDeclarator) and for the declaration of functions
4097/// that have been instantiated via C++ template instantiation (called
4098/// via InstantiateDecl).
4099///
4100/// \param IsExplicitSpecialiation whether this new function declaration is
4101/// an explicit specialization of the previous declaration.
4102///
4103/// This sets NewFD->isInvalidDecl() to true if there was an error.
4104void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4105                                    LookupResult &Previous,
4106                                    bool IsExplicitSpecialization,
4107                                    bool &Redeclaration,
4108                                    bool &OverloadableAttrRequired) {
4109  // If NewFD is already known erroneous, don't do any of this checking.
4110  if (NewFD->isInvalidDecl()) {
4111    // If this is a class member, mark the class invalid immediately.
4112    // This avoids some consistency errors later.
4113    if (isa<CXXMethodDecl>(NewFD))
4114      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4115
4116    return;
4117  }
4118
4119  if (NewFD->getResultType()->isVariablyModifiedType()) {
4120    // Functions returning a variably modified type violate C99 6.7.5.2p2
4121    // because all functions have linkage.
4122    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4123    return NewFD->setInvalidDecl();
4124  }
4125
4126  if (NewFD->isMain())
4127    CheckMain(NewFD);
4128
4129  // Check for a previous declaration of this name.
4130  if (Previous.empty() && NewFD->isExternC()) {
4131    // Since we did not find anything by this name and we're declaring
4132    // an extern "C" function, look for a non-visible extern "C"
4133    // declaration with the same name.
4134    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4135      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4136    if (Pos != LocallyScopedExternalDecls.end())
4137      Previous.addDecl(Pos->second);
4138  }
4139
4140  // Merge or overload the declaration with an existing declaration of
4141  // the same name, if appropriate.
4142  if (!Previous.empty()) {
4143    // Determine whether NewFD is an overload of PrevDecl or
4144    // a declaration that requires merging. If it's an overload,
4145    // there's no more work to do here; we'll just add the new
4146    // function to the scope.
4147
4148    NamedDecl *OldDecl = 0;
4149    if (!AllowOverloadingOfFunction(Previous, Context)) {
4150      Redeclaration = true;
4151      OldDecl = Previous.getFoundDecl();
4152    } else {
4153      if (!getLangOptions().CPlusPlus)
4154        OverloadableAttrRequired = true;
4155
4156      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4157                            /*NewIsUsingDecl*/ false)) {
4158      case Ovl_Match:
4159        Redeclaration = true;
4160        break;
4161
4162      case Ovl_NonFunction:
4163        Redeclaration = true;
4164        break;
4165
4166      case Ovl_Overload:
4167        Redeclaration = false;
4168        break;
4169      }
4170    }
4171
4172    if (Redeclaration) {
4173      // NewFD and OldDecl represent declarations that need to be
4174      // merged.
4175      if (MergeFunctionDecl(NewFD, OldDecl))
4176        return NewFD->setInvalidDecl();
4177
4178      Previous.clear();
4179      Previous.addDecl(OldDecl);
4180
4181      if (FunctionTemplateDecl *OldTemplateDecl
4182                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4183        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4184        FunctionTemplateDecl *NewTemplateDecl
4185          = NewFD->getDescribedFunctionTemplate();
4186        assert(NewTemplateDecl && "Template/non-template mismatch");
4187        if (CXXMethodDecl *Method
4188              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4189          Method->setAccess(OldTemplateDecl->getAccess());
4190          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4191        }
4192
4193        // If this is an explicit specialization of a member that is a function
4194        // template, mark it as a member specialization.
4195        if (IsExplicitSpecialization &&
4196            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4197          NewTemplateDecl->setMemberSpecialization();
4198          assert(OldTemplateDecl->isMemberSpecialization());
4199        }
4200      } else {
4201        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4202          NewFD->setAccess(OldDecl->getAccess());
4203        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4204      }
4205    }
4206  }
4207
4208  // Semantic checking for this function declaration (in isolation).
4209  if (getLangOptions().CPlusPlus) {
4210    // C++-specific checks.
4211    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4212      CheckConstructor(Constructor);
4213    } else if (CXXDestructorDecl *Destructor =
4214                dyn_cast<CXXDestructorDecl>(NewFD)) {
4215      CXXRecordDecl *Record = Destructor->getParent();
4216      QualType ClassType = Context.getTypeDeclType(Record);
4217
4218      // FIXME: Shouldn't we be able to perform this check even when the class
4219      // type is dependent? Both gcc and edg can handle that.
4220      if (!ClassType->isDependentType()) {
4221        DeclarationName Name
4222          = Context.DeclarationNames.getCXXDestructorName(
4223                                        Context.getCanonicalType(ClassType));
4224        if (NewFD->getDeclName() != Name) {
4225          Diag(NewFD->getLocation(), diag::err_destructor_name);
4226          return NewFD->setInvalidDecl();
4227        }
4228      }
4229    } else if (CXXConversionDecl *Conversion
4230               = dyn_cast<CXXConversionDecl>(NewFD)) {
4231      ActOnConversionDeclarator(Conversion);
4232    }
4233
4234    // Find any virtual functions that this function overrides.
4235    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4236      if (!Method->isFunctionTemplateSpecialization() &&
4237          !Method->getDescribedFunctionTemplate()) {
4238        if (AddOverriddenMethods(Method->getParent(), Method)) {
4239          // If the function was marked as "static", we have a problem.
4240          if (NewFD->getStorageClass() == SC_Static) {
4241            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4242              << NewFD->getDeclName();
4243            for (CXXMethodDecl::method_iterator
4244                      Overridden = Method->begin_overridden_methods(),
4245                   OverriddenEnd = Method->end_overridden_methods();
4246                 Overridden != OverriddenEnd;
4247                 ++Overridden) {
4248              Diag((*Overridden)->getLocation(),
4249                   diag::note_overridden_virtual_function);
4250            }
4251          }
4252        }
4253      }
4254    }
4255
4256    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4257    if (NewFD->isOverloadedOperator() &&
4258        CheckOverloadedOperatorDeclaration(NewFD))
4259      return NewFD->setInvalidDecl();
4260
4261    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4262    if (NewFD->getLiteralIdentifier() &&
4263        CheckLiteralOperatorDeclaration(NewFD))
4264      return NewFD->setInvalidDecl();
4265
4266    // In C++, check default arguments now that we have merged decls. Unless
4267    // the lexical context is the class, because in this case this is done
4268    // during delayed parsing anyway.
4269    if (!CurContext->isRecord())
4270      CheckCXXDefaultArguments(NewFD);
4271  }
4272}
4273
4274void Sema::CheckMain(FunctionDecl* FD) {
4275  // C++ [basic.start.main]p3:  A program that declares main to be inline
4276  //   or static is ill-formed.
4277  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4278  //   shall not appear in a declaration of main.
4279  // static main is not an error under C99, but we should warn about it.
4280  bool isInline = FD->isInlineSpecified();
4281  bool isStatic = FD->getStorageClass() == SC_Static;
4282  if (isInline || isStatic) {
4283    unsigned diagID = diag::warn_unusual_main_decl;
4284    if (isInline || getLangOptions().CPlusPlus)
4285      diagID = diag::err_unusual_main_decl;
4286
4287    int which = isStatic + (isInline << 1) - 1;
4288    Diag(FD->getLocation(), diagID) << which;
4289  }
4290
4291  QualType T = FD->getType();
4292  assert(T->isFunctionType() && "function decl is not of function type");
4293  const FunctionType* FT = T->getAs<FunctionType>();
4294
4295  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4296    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4297    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4298    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4299                                          diag::err_main_returns_nonint);
4300    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4301      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4302                                        "int");
4303    }
4304    FD->setInvalidDecl(true);
4305  }
4306
4307  // Treat protoless main() as nullary.
4308  if (isa<FunctionNoProtoType>(FT)) return;
4309
4310  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4311  unsigned nparams = FTP->getNumArgs();
4312  assert(FD->getNumParams() == nparams);
4313
4314  bool HasExtraParameters = (nparams > 3);
4315
4316  // Darwin passes an undocumented fourth argument of type char**.  If
4317  // other platforms start sprouting these, the logic below will start
4318  // getting shifty.
4319  if (nparams == 4 &&
4320      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4321    HasExtraParameters = false;
4322
4323  if (HasExtraParameters) {
4324    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4325    FD->setInvalidDecl(true);
4326    nparams = 3;
4327  }
4328
4329  // FIXME: a lot of the following diagnostics would be improved
4330  // if we had some location information about types.
4331
4332  QualType CharPP =
4333    Context.getPointerType(Context.getPointerType(Context.CharTy));
4334  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4335
4336  for (unsigned i = 0; i < nparams; ++i) {
4337    QualType AT = FTP->getArgType(i);
4338
4339    bool mismatch = true;
4340
4341    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4342      mismatch = false;
4343    else if (Expected[i] == CharPP) {
4344      // As an extension, the following forms are okay:
4345      //   char const **
4346      //   char const * const *
4347      //   char * const *
4348
4349      QualifierCollector qs;
4350      const PointerType* PT;
4351      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4352          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4353          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4354        qs.removeConst();
4355        mismatch = !qs.empty();
4356      }
4357    }
4358
4359    if (mismatch) {
4360      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4361      // TODO: suggest replacing given type with expected type
4362      FD->setInvalidDecl(true);
4363    }
4364  }
4365
4366  if (nparams == 1 && !FD->isInvalidDecl()) {
4367    Diag(FD->getLocation(), diag::warn_main_one_arg);
4368  }
4369
4370  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4371    Diag(FD->getLocation(), diag::err_main_template_decl);
4372    FD->setInvalidDecl();
4373  }
4374}
4375
4376bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4377  // FIXME: Need strict checking.  In C89, we need to check for
4378  // any assignment, increment, decrement, function-calls, or
4379  // commas outside of a sizeof.  In C99, it's the same list,
4380  // except that the aforementioned are allowed in unevaluated
4381  // expressions.  Everything else falls under the
4382  // "may accept other forms of constant expressions" exception.
4383  // (We never end up here for C++, so the constant expression
4384  // rules there don't matter.)
4385  if (Init->isConstantInitializer(Context, false))
4386    return false;
4387  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4388    << Init->getSourceRange();
4389  return true;
4390}
4391
4392void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4393  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4394}
4395
4396/// AddInitializerToDecl - Adds the initializer Init to the
4397/// declaration dcl. If DirectInit is true, this is C++ direct
4398/// initialization rather than copy initialization.
4399void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4400  // If there is no declaration, there was an error parsing it.  Just ignore
4401  // the initializer.
4402  if (RealDecl == 0)
4403    return;
4404
4405  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4406    // With declarators parsed the way they are, the parser cannot
4407    // distinguish between a normal initializer and a pure-specifier.
4408    // Thus this grotesque test.
4409    IntegerLiteral *IL;
4410    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4411        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4412      CheckPureMethod(Method, Init->getSourceRange());
4413    else {
4414      Diag(Method->getLocation(), diag::err_member_function_initialization)
4415        << Method->getDeclName() << Init->getSourceRange();
4416      Method->setInvalidDecl();
4417    }
4418    return;
4419  }
4420
4421  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4422  if (!VDecl) {
4423    if (getLangOptions().CPlusPlus &&
4424        RealDecl->getLexicalDeclContext()->isRecord() &&
4425        isa<NamedDecl>(RealDecl))
4426      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4427    else
4428      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4429    RealDecl->setInvalidDecl();
4430    return;
4431  }
4432
4433
4434
4435  // A definition must end up with a complete type, which means it must be
4436  // complete with the restriction that an array type might be completed by the
4437  // initializer; note that later code assumes this restriction.
4438  QualType BaseDeclType = VDecl->getType();
4439  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4440    BaseDeclType = Array->getElementType();
4441  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4442                          diag::err_typecheck_decl_incomplete_type)) {
4443    RealDecl->setInvalidDecl();
4444    return;
4445  }
4446
4447  // The variable can not have an abstract class type.
4448  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4449                             diag::err_abstract_type_in_decl,
4450                             AbstractVariableType))
4451    VDecl->setInvalidDecl();
4452
4453  const VarDecl *Def;
4454  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4455    Diag(VDecl->getLocation(), diag::err_redefinition)
4456      << VDecl->getDeclName();
4457    Diag(Def->getLocation(), diag::note_previous_definition);
4458    VDecl->setInvalidDecl();
4459    return;
4460  }
4461
4462  // C++ [class.static.data]p4
4463  //   If a static data member is of const integral or const
4464  //   enumeration type, its declaration in the class definition can
4465  //   specify a constant-initializer which shall be an integral
4466  //   constant expression (5.19). In that case, the member can appear
4467  //   in integral constant expressions. The member shall still be
4468  //   defined in a namespace scope if it is used in the program and the
4469  //   namespace scope definition shall not contain an initializer.
4470  //
4471  // We already performed a redefinition check above, but for static
4472  // data members we also need to check whether there was an in-class
4473  // declaration with an initializer.
4474  const VarDecl* PrevInit = 0;
4475  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4476    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4477    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4478    return;
4479  }
4480
4481  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4482    getCurFunction()->setHasBranchProtectedScope();
4483
4484  // Capture the variable that is being initialized and the style of
4485  // initialization.
4486  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4487
4488  // FIXME: Poor source location information.
4489  InitializationKind Kind
4490    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4491                                                   Init->getLocStart(),
4492                                                   Init->getLocEnd())
4493                : InitializationKind::CreateCopy(VDecl->getLocation(),
4494                                                 Init->getLocStart());
4495
4496  // Get the decls type and save a reference for later, since
4497  // CheckInitializerTypes may change it.
4498  QualType DclT = VDecl->getType(), SavT = DclT;
4499  if (VDecl->isLocalVarDecl()) {
4500    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4501      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4502      VDecl->setInvalidDecl();
4503    } else if (!VDecl->isInvalidDecl()) {
4504      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4505      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4506                                                MultiExprArg(*this, &Init, 1),
4507                                                &DclT);
4508      if (Result.isInvalid()) {
4509        VDecl->setInvalidDecl();
4510        return;
4511      }
4512
4513      Init = Result.takeAs<Expr>();
4514
4515      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4516      // Don't check invalid declarations to avoid emitting useless diagnostics.
4517      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4518        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4519          CheckForConstantInitializer(Init, DclT);
4520      }
4521    }
4522  } else if (VDecl->isStaticDataMember() &&
4523             VDecl->getLexicalDeclContext()->isRecord()) {
4524    // This is an in-class initialization for a static data member, e.g.,
4525    //
4526    // struct S {
4527    //   static const int value = 17;
4528    // };
4529
4530    // Try to perform the initialization regardless.
4531    if (!VDecl->isInvalidDecl()) {
4532      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4533      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4534                                          MultiExprArg(*this, &Init, 1),
4535                                          &DclT);
4536      if (Result.isInvalid()) {
4537        VDecl->setInvalidDecl();
4538        return;
4539      }
4540
4541      Init = Result.takeAs<Expr>();
4542    }
4543
4544    // C++ [class.mem]p4:
4545    //   A member-declarator can contain a constant-initializer only
4546    //   if it declares a static member (9.4) of const integral or
4547    //   const enumeration type, see 9.4.2.
4548    QualType T = VDecl->getType();
4549
4550    // Do nothing on dependent types.
4551    if (T->isDependentType()) {
4552
4553    // Require constness.
4554    } else if (!T.isConstQualified()) {
4555      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4556        << Init->getSourceRange();
4557      VDecl->setInvalidDecl();
4558
4559    // We allow integer constant expressions in all cases.
4560    } else if (T->isIntegralOrEnumerationType()) {
4561      if (!Init->isValueDependent()) {
4562        // Check whether the expression is a constant expression.
4563        llvm::APSInt Value;
4564        SourceLocation Loc;
4565        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4566          Diag(Loc, diag::err_in_class_initializer_non_constant)
4567            << Init->getSourceRange();
4568          VDecl->setInvalidDecl();
4569        }
4570      }
4571
4572    // We allow floating-point constants as an extension in C++03, and
4573    // C++0x has far more complicated rules that we don't really
4574    // implement fully.
4575    } else {
4576      bool Allowed = false;
4577      if (getLangOptions().CPlusPlus0x) {
4578        Allowed = T->isLiteralType();
4579      } else if (T->isFloatingType()) { // also permits complex, which is ok
4580        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4581          << T << Init->getSourceRange();
4582        Allowed = true;
4583      }
4584
4585      if (!Allowed) {
4586        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4587          << T << Init->getSourceRange();
4588        VDecl->setInvalidDecl();
4589
4590      // TODO: there are probably expressions that pass here that shouldn't.
4591      } else if (!Init->isValueDependent() &&
4592                 !Init->isConstantInitializer(Context, false)) {
4593        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4594          << Init->getSourceRange();
4595        VDecl->setInvalidDecl();
4596      }
4597    }
4598  } else if (VDecl->isFileVarDecl()) {
4599    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4600        (!getLangOptions().CPlusPlus ||
4601         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4602      Diag(VDecl->getLocation(), diag::warn_extern_init);
4603    if (!VDecl->isInvalidDecl()) {
4604      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4605      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4606                                                MultiExprArg(*this, &Init, 1),
4607                                                &DclT);
4608      if (Result.isInvalid()) {
4609        VDecl->setInvalidDecl();
4610        return;
4611      }
4612
4613      Init = Result.takeAs<Expr>();
4614    }
4615
4616    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4617    // Don't check invalid declarations to avoid emitting useless diagnostics.
4618    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4619      // C99 6.7.8p4. All file scoped initializers need to be constant.
4620      CheckForConstantInitializer(Init, DclT);
4621    }
4622  }
4623  // If the type changed, it means we had an incomplete type that was
4624  // completed by the initializer. For example:
4625  //   int ary[] = { 1, 3, 5 };
4626  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4627  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4628    VDecl->setType(DclT);
4629    Init->setType(DclT);
4630  }
4631
4632
4633  // If this variable is a local declaration with record type, make sure it
4634  // doesn't have a flexible member initialization.  We only support this as a
4635  // global/static definition.
4636  if (VDecl->hasLocalStorage())
4637    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4638      if (RT->getDecl()->hasFlexibleArrayMember()) {
4639        // Check whether the initializer tries to initialize the flexible
4640        // array member itself to anything other than an empty initializer list.
4641        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4642          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4643                                         RT->getDecl()->field_end()) - 1;
4644          if (Index < ILE->getNumInits() &&
4645              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4646                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4647            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4648            VDecl->setInvalidDecl();
4649          }
4650        }
4651      }
4652
4653  // Check any implicit conversions within the expression.
4654  CheckImplicitConversions(Init, VDecl->getLocation());
4655
4656  Init = MaybeCreateExprWithCleanups(Init);
4657  // Attach the initializer to the decl.
4658  VDecl->setInit(Init);
4659
4660  if (getLangOptions().CPlusPlus) {
4661    if (!VDecl->isInvalidDecl() &&
4662        !VDecl->getDeclContext()->isDependentContext() &&
4663        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4664        !Init->isConstantInitializer(Context,
4665                                     VDecl->getType()->isReferenceType()))
4666      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4667        << Init->getSourceRange();
4668
4669    // Make sure we mark the destructor as used if necessary.
4670    QualType InitType = VDecl->getType();
4671    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4672      InitType = Context.getBaseElementType(Array);
4673    if (const RecordType *Record = InitType->getAs<RecordType>())
4674      FinalizeVarWithDestructor(VDecl, Record);
4675  }
4676
4677  return;
4678}
4679
4680/// ActOnInitializerError - Given that there was an error parsing an
4681/// initializer for the given declaration, try to return to some form
4682/// of sanity.
4683void Sema::ActOnInitializerError(Decl *D) {
4684  // Our main concern here is re-establishing invariants like "a
4685  // variable's type is either dependent or complete".
4686  if (!D || D->isInvalidDecl()) return;
4687
4688  VarDecl *VD = dyn_cast<VarDecl>(D);
4689  if (!VD) return;
4690
4691  QualType Ty = VD->getType();
4692  if (Ty->isDependentType()) return;
4693
4694  // Require a complete type.
4695  if (RequireCompleteType(VD->getLocation(),
4696                          Context.getBaseElementType(Ty),
4697                          diag::err_typecheck_decl_incomplete_type)) {
4698    VD->setInvalidDecl();
4699    return;
4700  }
4701
4702  // Require an abstract type.
4703  if (RequireNonAbstractType(VD->getLocation(), Ty,
4704                             diag::err_abstract_type_in_decl,
4705                             AbstractVariableType)) {
4706    VD->setInvalidDecl();
4707    return;
4708  }
4709
4710  // Don't bother complaining about constructors or destructors,
4711  // though.
4712}
4713
4714void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4715                                  bool TypeContainsUndeducedAuto) {
4716  // If there is no declaration, there was an error parsing it. Just ignore it.
4717  if (RealDecl == 0)
4718    return;
4719
4720  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4721    QualType Type = Var->getType();
4722
4723    // C++0x [dcl.spec.auto]p3
4724    if (TypeContainsUndeducedAuto) {
4725      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4726        << Var->getDeclName() << Type;
4727      Var->setInvalidDecl();
4728      return;
4729    }
4730
4731    switch (Var->isThisDeclarationADefinition()) {
4732    case VarDecl::Definition:
4733      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4734        break;
4735
4736      // We have an out-of-line definition of a static data member
4737      // that has an in-class initializer, so we type-check this like
4738      // a declaration.
4739      //
4740      // Fall through
4741
4742    case VarDecl::DeclarationOnly:
4743      // It's only a declaration.
4744
4745      // Block scope. C99 6.7p7: If an identifier for an object is
4746      // declared with no linkage (C99 6.2.2p6), the type for the
4747      // object shall be complete.
4748      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4749          !Var->getLinkage() && !Var->isInvalidDecl() &&
4750          RequireCompleteType(Var->getLocation(), Type,
4751                              diag::err_typecheck_decl_incomplete_type))
4752        Var->setInvalidDecl();
4753
4754      // Make sure that the type is not abstract.
4755      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4756          RequireNonAbstractType(Var->getLocation(), Type,
4757                                 diag::err_abstract_type_in_decl,
4758                                 AbstractVariableType))
4759        Var->setInvalidDecl();
4760      return;
4761
4762    case VarDecl::TentativeDefinition:
4763      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4764      // object that has file scope without an initializer, and without a
4765      // storage-class specifier or with the storage-class specifier "static",
4766      // constitutes a tentative definition. Note: A tentative definition with
4767      // external linkage is valid (C99 6.2.2p5).
4768      if (!Var->isInvalidDecl()) {
4769        if (const IncompleteArrayType *ArrayT
4770                                    = Context.getAsIncompleteArrayType(Type)) {
4771          if (RequireCompleteType(Var->getLocation(),
4772                                  ArrayT->getElementType(),
4773                                  diag::err_illegal_decl_array_incomplete_type))
4774            Var->setInvalidDecl();
4775        } else if (Var->getStorageClass() == SC_Static) {
4776          // C99 6.9.2p3: If the declaration of an identifier for an object is
4777          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4778          // declared type shall not be an incomplete type.
4779          // NOTE: code such as the following
4780          //     static struct s;
4781          //     struct s { int a; };
4782          // is accepted by gcc. Hence here we issue a warning instead of
4783          // an error and we do not invalidate the static declaration.
4784          // NOTE: to avoid multiple warnings, only check the first declaration.
4785          if (Var->getPreviousDeclaration() == 0)
4786            RequireCompleteType(Var->getLocation(), Type,
4787                                diag::ext_typecheck_decl_incomplete_type);
4788        }
4789      }
4790
4791      // Record the tentative definition; we're done.
4792      if (!Var->isInvalidDecl())
4793        TentativeDefinitions.push_back(Var);
4794      return;
4795    }
4796
4797    // Provide a specific diagnostic for uninitialized variable
4798    // definitions with incomplete array type.
4799    if (Type->isIncompleteArrayType()) {
4800      Diag(Var->getLocation(),
4801           diag::err_typecheck_incomplete_array_needs_initializer);
4802      Var->setInvalidDecl();
4803      return;
4804    }
4805
4806    // Provide a specific diagnostic for uninitialized variable
4807    // definitions with reference type.
4808    if (Type->isReferenceType()) {
4809      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4810        << Var->getDeclName()
4811        << SourceRange(Var->getLocation(), Var->getLocation());
4812      Var->setInvalidDecl();
4813      return;
4814    }
4815
4816    // Do not attempt to type-check the default initializer for a
4817    // variable with dependent type.
4818    if (Type->isDependentType())
4819      return;
4820
4821    if (Var->isInvalidDecl())
4822      return;
4823
4824    if (RequireCompleteType(Var->getLocation(),
4825                            Context.getBaseElementType(Type),
4826                            diag::err_typecheck_decl_incomplete_type)) {
4827      Var->setInvalidDecl();
4828      return;
4829    }
4830
4831    // The variable can not have an abstract class type.
4832    if (RequireNonAbstractType(Var->getLocation(), Type,
4833                               diag::err_abstract_type_in_decl,
4834                               AbstractVariableType)) {
4835      Var->setInvalidDecl();
4836      return;
4837    }
4838
4839    const RecordType *Record
4840      = Context.getBaseElementType(Type)->getAs<RecordType>();
4841    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4842        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4843      // C++03 [dcl.init]p9:
4844      //   If no initializer is specified for an object, and the
4845      //   object is of (possibly cv-qualified) non-POD class type (or
4846      //   array thereof), the object shall be default-initialized; if
4847      //   the object is of const-qualified type, the underlying class
4848      //   type shall have a user-declared default
4849      //   constructor. Otherwise, if no initializer is specified for
4850      //   a non- static object, the object and its subobjects, if
4851      //   any, have an indeterminate initial value); if the object
4852      //   or any of its subobjects are of const-qualified type, the
4853      //   program is ill-formed.
4854      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4855    } else {
4856      // Check for jumps past the implicit initializer.  C++0x
4857      // clarifies that this applies to a "variable with automatic
4858      // storage duration", not a "local variable".
4859      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4860        getCurFunction()->setHasBranchProtectedScope();
4861
4862      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4863      InitializationKind Kind
4864        = InitializationKind::CreateDefault(Var->getLocation());
4865
4866      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4867      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4868                                        MultiExprArg(*this, 0, 0));
4869      if (Init.isInvalid())
4870        Var->setInvalidDecl();
4871      else if (Init.get()) {
4872        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4873
4874        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4875            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4876            !Var->getDeclContext()->isDependentContext() &&
4877            !Var->getInit()->isConstantInitializer(Context, false))
4878          Diag(Var->getLocation(), diag::warn_global_constructor);
4879      }
4880    }
4881
4882    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4883      FinalizeVarWithDestructor(Var, Record);
4884  }
4885}
4886
4887Sema::DeclGroupPtrTy
4888Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4889                              Decl **Group, unsigned NumDecls) {
4890  llvm::SmallVector<Decl*, 8> Decls;
4891
4892  if (DS.isTypeSpecOwned())
4893    Decls.push_back(DS.getRepAsDecl());
4894
4895  for (unsigned i = 0; i != NumDecls; ++i)
4896    if (Decl *D = Group[i])
4897      Decls.push_back(D);
4898
4899  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4900                                                   Decls.data(), Decls.size()));
4901}
4902
4903
4904/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4905/// to introduce parameters into function prototype scope.
4906Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4907  const DeclSpec &DS = D.getDeclSpec();
4908
4909  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4910  VarDecl::StorageClass StorageClass = SC_None;
4911  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4912  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4913    StorageClass = SC_Register;
4914    StorageClassAsWritten = SC_Register;
4915  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4916    Diag(DS.getStorageClassSpecLoc(),
4917         diag::err_invalid_storage_class_in_func_decl);
4918    D.getMutableDeclSpec().ClearStorageClassSpecs();
4919  }
4920
4921  if (D.getDeclSpec().isThreadSpecified())
4922    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4923
4924  DiagnoseFunctionSpecifiers(D);
4925
4926  // Check that there are no default arguments inside the type of this
4927  // parameter (C++ only).
4928  if (getLangOptions().CPlusPlus)
4929    CheckExtraCXXDefaultArguments(D);
4930
4931  TagDecl *OwnedDecl = 0;
4932  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4933  QualType parmDeclType = TInfo->getType();
4934
4935  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4936    // C++ [dcl.fct]p6:
4937    //   Types shall not be defined in return or parameter types.
4938    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4939      << Context.getTypeDeclType(OwnedDecl);
4940  }
4941
4942  // Ensure we have a valid name
4943  IdentifierInfo *II = 0;
4944  if (D.hasName()) {
4945    II = D.getIdentifier();
4946    if (!II) {
4947      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4948        << GetNameForDeclarator(D).getName().getAsString();
4949      D.setInvalidType(true);
4950    }
4951  }
4952
4953  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4954  if (II) {
4955    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4956                   ForRedeclaration);
4957    LookupName(R, S);
4958    if (R.isSingleResult()) {
4959      NamedDecl *PrevDecl = R.getFoundDecl();
4960      if (PrevDecl->isTemplateParameter()) {
4961        // Maybe we will complain about the shadowed template parameter.
4962        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4963        // Just pretend that we didn't see the previous declaration.
4964        PrevDecl = 0;
4965      } else if (S->isDeclScope(PrevDecl)) {
4966        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4967        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4968
4969        // Recover by removing the name
4970        II = 0;
4971        D.SetIdentifier(0, D.getIdentifierLoc());
4972        D.setInvalidType(true);
4973      }
4974    }
4975  }
4976
4977  // Temporarily put parameter variables in the translation unit, not
4978  // the enclosing context.  This prevents them from accidentally
4979  // looking like class members in C++.
4980  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4981                                    TInfo, parmDeclType, II,
4982                                    D.getIdentifierLoc(),
4983                                    StorageClass, StorageClassAsWritten);
4984
4985  if (D.isInvalidType())
4986    New->setInvalidDecl();
4987
4988  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4989  if (D.getCXXScopeSpec().isSet()) {
4990    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4991      << D.getCXXScopeSpec().getRange();
4992    New->setInvalidDecl();
4993  }
4994
4995  // Add the parameter declaration into this scope.
4996  S->AddDecl(New);
4997  if (II)
4998    IdResolver.AddDecl(New);
4999
5000  ProcessDeclAttributes(S, New, D);
5001
5002  if (New->hasAttr<BlocksAttr>()) {
5003    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5004  }
5005  return New;
5006}
5007
5008/// \brief Synthesizes a variable for a parameter arising from a
5009/// typedef.
5010ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5011                                              SourceLocation Loc,
5012                                              QualType T) {
5013  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5014                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5015                                           SC_None, SC_None, 0);
5016  Param->setImplicit();
5017  return Param;
5018}
5019
5020void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5021                                    ParmVarDecl * const *ParamEnd) {
5022  // Don't diagnose unused-parameter errors in template instantiations; we
5023  // will already have done so in the template itself.
5024  if (!ActiveTemplateInstantiations.empty())
5025    return;
5026
5027  for (; Param != ParamEnd; ++Param) {
5028    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5029        !(*Param)->hasAttr<UnusedAttr>()) {
5030      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5031        << (*Param)->getDeclName();
5032    }
5033  }
5034}
5035
5036void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5037                                                  ParmVarDecl * const *ParamEnd,
5038                                                  QualType ReturnTy,
5039                                                  NamedDecl *D) {
5040  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5041    return;
5042
5043  // Warn if the return value is pass-by-value and larger than the specified
5044  // threshold.
5045  if (ReturnTy->isPODType()) {
5046    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5047    if (Size > LangOpts.NumLargeByValueCopy)
5048      Diag(D->getLocation(), diag::warn_return_value_size)
5049          << D->getDeclName() << Size;
5050  }
5051
5052  // Warn if any parameter is pass-by-value and larger than the specified
5053  // threshold.
5054  for (; Param != ParamEnd; ++Param) {
5055    QualType T = (*Param)->getType();
5056    if (!T->isPODType())
5057      continue;
5058    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5059    if (Size > LangOpts.NumLargeByValueCopy)
5060      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5061          << (*Param)->getDeclName() << Size;
5062  }
5063}
5064
5065ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5066                                  TypeSourceInfo *TSInfo, QualType T,
5067                                  IdentifierInfo *Name,
5068                                  SourceLocation NameLoc,
5069                                  VarDecl::StorageClass StorageClass,
5070                                  VarDecl::StorageClass StorageClassAsWritten) {
5071  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5072                                         adjustParameterType(T), TSInfo,
5073                                         StorageClass, StorageClassAsWritten,
5074                                         0);
5075
5076  // Parameters can not be abstract class types.
5077  // For record types, this is done by the AbstractClassUsageDiagnoser once
5078  // the class has been completely parsed.
5079  if (!CurContext->isRecord() &&
5080      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5081                             AbstractParamType))
5082    New->setInvalidDecl();
5083
5084  // Parameter declarators cannot be interface types. All ObjC objects are
5085  // passed by reference.
5086  if (T->isObjCObjectType()) {
5087    Diag(NameLoc,
5088         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5089    New->setInvalidDecl();
5090  }
5091
5092  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5093  // duration shall not be qualified by an address-space qualifier."
5094  // Since all parameters have automatic store duration, they can not have
5095  // an address space.
5096  if (T.getAddressSpace() != 0) {
5097    Diag(NameLoc, diag::err_arg_with_address_space);
5098    New->setInvalidDecl();
5099  }
5100
5101  return New;
5102}
5103
5104void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5105                                           SourceLocation LocAfterDecls) {
5106  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5107
5108  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5109  // for a K&R function.
5110  if (!FTI.hasPrototype) {
5111    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5112      --i;
5113      if (FTI.ArgInfo[i].Param == 0) {
5114        llvm::SmallString<256> Code;
5115        llvm::raw_svector_ostream(Code) << "  int "
5116                                        << FTI.ArgInfo[i].Ident->getName()
5117                                        << ";\n";
5118        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5119          << FTI.ArgInfo[i].Ident
5120          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5121
5122        // Implicitly declare the argument as type 'int' for lack of a better
5123        // type.
5124        DeclSpec DS;
5125        const char* PrevSpec; // unused
5126        unsigned DiagID; // unused
5127        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5128                           PrevSpec, DiagID);
5129        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5130        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5131        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5132      }
5133    }
5134  }
5135}
5136
5137Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5138                                         Declarator &D) {
5139  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5140  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5141  Scope *ParentScope = FnBodyScope->getParent();
5142
5143  Decl *DP = HandleDeclarator(ParentScope, D,
5144                              MultiTemplateParamsArg(*this),
5145                              /*IsFunctionDefinition=*/true);
5146  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5147}
5148
5149static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5150  // Don't warn about invalid declarations.
5151  if (FD->isInvalidDecl())
5152    return false;
5153
5154  // Or declarations that aren't global.
5155  if (!FD->isGlobal())
5156    return false;
5157
5158  // Don't warn about C++ member functions.
5159  if (isa<CXXMethodDecl>(FD))
5160    return false;
5161
5162  // Don't warn about 'main'.
5163  if (FD->isMain())
5164    return false;
5165
5166  // Don't warn about inline functions.
5167  if (FD->isInlineSpecified())
5168    return false;
5169
5170  // Don't warn about function templates.
5171  if (FD->getDescribedFunctionTemplate())
5172    return false;
5173
5174  // Don't warn about function template specializations.
5175  if (FD->isFunctionTemplateSpecialization())
5176    return false;
5177
5178  bool MissingPrototype = true;
5179  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5180       Prev; Prev = Prev->getPreviousDeclaration()) {
5181    // Ignore any declarations that occur in function or method
5182    // scope, because they aren't visible from the header.
5183    if (Prev->getDeclContext()->isFunctionOrMethod())
5184      continue;
5185
5186    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5187    break;
5188  }
5189
5190  return MissingPrototype;
5191}
5192
5193Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5194  // Clear the last template instantiation error context.
5195  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5196
5197  if (!D)
5198    return D;
5199  FunctionDecl *FD = 0;
5200
5201  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5202    FD = FunTmpl->getTemplatedDecl();
5203  else
5204    FD = cast<FunctionDecl>(D);
5205
5206  // Enter a new function scope
5207  PushFunctionScope();
5208
5209  // See if this is a redefinition.
5210  // But don't complain if we're in GNU89 mode and the previous definition
5211  // was an extern inline function.
5212  const FunctionDecl *Definition;
5213  if (FD->hasBody(Definition) &&
5214      !canRedefineFunction(Definition, getLangOptions())) {
5215    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5216        Definition->getStorageClass() == SC_Extern)
5217      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5218        << FD->getDeclName() << getLangOptions().CPlusPlus;
5219    else
5220      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5221    Diag(Definition->getLocation(), diag::note_previous_definition);
5222  }
5223
5224  // Builtin functions cannot be defined.
5225  if (unsigned BuiltinID = FD->getBuiltinID()) {
5226    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5227      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5228      FD->setInvalidDecl();
5229    }
5230  }
5231
5232  // The return type of a function definition must be complete
5233  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5234  QualType ResultType = FD->getResultType();
5235  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5236      !FD->isInvalidDecl() &&
5237      RequireCompleteType(FD->getLocation(), ResultType,
5238                          diag::err_func_def_incomplete_result))
5239    FD->setInvalidDecl();
5240
5241  // GNU warning -Wmissing-prototypes:
5242  //   Warn if a global function is defined without a previous
5243  //   prototype declaration. This warning is issued even if the
5244  //   definition itself provides a prototype. The aim is to detect
5245  //   global functions that fail to be declared in header files.
5246  if (ShouldWarnAboutMissingPrototype(FD))
5247    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5248
5249  if (FnBodyScope)
5250    PushDeclContext(FnBodyScope, FD);
5251
5252  // Check the validity of our function parameters
5253  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5254                           /*CheckParameterNames=*/true);
5255
5256  // Introduce our parameters into the function scope
5257  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5258    ParmVarDecl *Param = FD->getParamDecl(p);
5259    Param->setOwningFunction(FD);
5260
5261    // If this has an identifier, add it to the scope stack.
5262    if (Param->getIdentifier() && FnBodyScope) {
5263      CheckShadow(FnBodyScope, Param);
5264
5265      PushOnScopeChains(Param, FnBodyScope);
5266    }
5267  }
5268
5269  // Checking attributes of current function definition
5270  // dllimport attribute.
5271  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5272  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5273    // dllimport attribute cannot be directly applied to definition.
5274    if (!DA->isInherited()) {
5275      Diag(FD->getLocation(),
5276           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5277        << "dllimport";
5278      FD->setInvalidDecl();
5279      return FD;
5280    }
5281
5282    // Visual C++ appears to not think this is an issue, so only issue
5283    // a warning when Microsoft extensions are disabled.
5284    if (!LangOpts.Microsoft) {
5285      // If a symbol previously declared dllimport is later defined, the
5286      // attribute is ignored in subsequent references, and a warning is
5287      // emitted.
5288      Diag(FD->getLocation(),
5289           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5290        << FD->getName() << "dllimport";
5291    }
5292  }
5293  return FD;
5294}
5295
5296/// \brief Given the set of return statements within a function body,
5297/// compute the variables that are subject to the named return value
5298/// optimization.
5299///
5300/// Each of the variables that is subject to the named return value
5301/// optimization will be marked as NRVO variables in the AST, and any
5302/// return statement that has a marked NRVO variable as its NRVO candidate can
5303/// use the named return value optimization.
5304///
5305/// This function applies a very simplistic algorithm for NRVO: if every return
5306/// statement in the function has the same NRVO candidate, that candidate is
5307/// the NRVO variable.
5308///
5309/// FIXME: Employ a smarter algorithm that accounts for multiple return
5310/// statements and the lifetimes of the NRVO candidates. We should be able to
5311/// find a maximal set of NRVO variables.
5312static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5313  ReturnStmt **Returns = Scope->Returns.data();
5314
5315  const VarDecl *NRVOCandidate = 0;
5316  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5317    if (!Returns[I]->getNRVOCandidate())
5318      return;
5319
5320    if (!NRVOCandidate)
5321      NRVOCandidate = Returns[I]->getNRVOCandidate();
5322    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5323      return;
5324  }
5325
5326  if (NRVOCandidate)
5327    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5328}
5329
5330Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5331  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5332}
5333
5334Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5335                                    bool IsInstantiation) {
5336  FunctionDecl *FD = 0;
5337  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5338  if (FunTmpl)
5339    FD = FunTmpl->getTemplatedDecl();
5340  else
5341    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5342
5343  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5344
5345  if (FD) {
5346    FD->setBody(Body);
5347    if (FD->isMain()) {
5348      // C and C++ allow for main to automagically return 0.
5349      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5350      FD->setHasImplicitReturnZero(true);
5351      WP.disableCheckFallThrough();
5352    }
5353
5354    if (!FD->isInvalidDecl()) {
5355      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5356      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5357                                             FD->getResultType(), FD);
5358
5359      // If this is a constructor, we need a vtable.
5360      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5361        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5362
5363      ComputeNRVO(Body, getCurFunction());
5364    }
5365
5366    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5367  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5368    assert(MD == getCurMethodDecl() && "Method parsing confused");
5369    MD->setBody(Body);
5370    MD->setEndLoc(Body->getLocEnd());
5371    if (!MD->isInvalidDecl()) {
5372      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5373      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5374                                             MD->getResultType(), MD);
5375    }
5376  } else {
5377    return 0;
5378  }
5379
5380  // Verify and clean out per-function state.
5381
5382  // Check goto/label use.
5383  FunctionScopeInfo *CurFn = getCurFunction();
5384  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5385         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5386    LabelStmt *L = I->second;
5387
5388    // Verify that we have no forward references left.  If so, there was a goto
5389    // or address of a label taken, but no definition of it.  Label fwd
5390    // definitions are indicated with a null substmt.
5391    if (L->getSubStmt() != 0) {
5392      if (!L->isUsed())
5393        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5394      continue;
5395    }
5396
5397    // Emit error.
5398    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5399
5400    // At this point, we have gotos that use the bogus label.  Stitch it into
5401    // the function body so that they aren't leaked and that the AST is well
5402    // formed.
5403    if (Body == 0) {
5404      // The whole function wasn't parsed correctly.
5405      continue;
5406    }
5407
5408    // Otherwise, the body is valid: we want to stitch the label decl into the
5409    // function somewhere so that it is properly owned and so that the goto
5410    // has a valid target.  Do this by creating a new compound stmt with the
5411    // label in it.
5412
5413    // Give the label a sub-statement.
5414    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5415
5416    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5417                               cast<CXXTryStmt>(Body)->getTryBlock() :
5418                               cast<CompoundStmt>(Body);
5419    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5420                                          Compound->body_end());
5421    Elements.push_back(L);
5422    Compound->setStmts(Context, Elements.data(), Elements.size());
5423  }
5424
5425  if (Body) {
5426    // C++ constructors that have function-try-blocks can't have return
5427    // statements in the handlers of that block. (C++ [except.handle]p14)
5428    // Verify this.
5429    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5430      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5431
5432    // Verify that that gotos and switch cases don't jump into scopes illegally.
5433    // Verify that that gotos and switch cases don't jump into scopes illegally.
5434    if (getCurFunction()->NeedsScopeChecking() &&
5435        !dcl->isInvalidDecl() &&
5436        !hasAnyErrorsInThisFunction())
5437      DiagnoseInvalidJumps(Body);
5438
5439    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5440      if (!Destructor->getParent()->isDependentType())
5441        CheckDestructor(Destructor);
5442
5443      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5444                                             Destructor->getParent());
5445    }
5446
5447    // If any errors have occurred, clear out any temporaries that may have
5448    // been leftover. This ensures that these temporaries won't be picked up for
5449    // deletion in some later function.
5450    if (PP.getDiagnostics().hasErrorOccurred())
5451      ExprTemporaries.clear();
5452    else if (!isa<FunctionTemplateDecl>(dcl)) {
5453      // Since the body is valid, issue any analysis-based warnings that are
5454      // enabled.
5455      QualType ResultType;
5456      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5457        AnalysisWarnings.IssueWarnings(WP, FD);
5458      } else {
5459        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5460        AnalysisWarnings.IssueWarnings(WP, MD);
5461      }
5462    }
5463
5464    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5465  }
5466
5467  if (!IsInstantiation)
5468    PopDeclContext();
5469
5470  PopFunctionOrBlockScope();
5471
5472  // If any errors have occurred, clear out any temporaries that may have
5473  // been leftover. This ensures that these temporaries won't be picked up for
5474  // deletion in some later function.
5475  if (getDiagnostics().hasErrorOccurred())
5476    ExprTemporaries.clear();
5477
5478  return dcl;
5479}
5480
5481/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5482/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5483NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5484                                          IdentifierInfo &II, Scope *S) {
5485  // Before we produce a declaration for an implicitly defined
5486  // function, see whether there was a locally-scoped declaration of
5487  // this name as a function or variable. If so, use that
5488  // (non-visible) declaration, and complain about it.
5489  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5490    = LocallyScopedExternalDecls.find(&II);
5491  if (Pos != LocallyScopedExternalDecls.end()) {
5492    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5493    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5494    return Pos->second;
5495  }
5496
5497  // Extension in C99.  Legal in C90, but warn about it.
5498  if (II.getName().startswith("__builtin_"))
5499    Diag(Loc, diag::warn_builtin_unknown) << &II;
5500  else if (getLangOptions().C99)
5501    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5502  else
5503    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5504
5505  // Set a Declarator for the implicit definition: int foo();
5506  const char *Dummy;
5507  DeclSpec DS;
5508  unsigned DiagID;
5509  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5510  Error = Error; // Silence warning.
5511  assert(!Error && "Error setting up implicit decl!");
5512  Declarator D(DS, Declarator::BlockContext);
5513  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5514                                             0, 0, false, SourceLocation(),
5515                                             false, 0,0,0, Loc, Loc, D),
5516                SourceLocation());
5517  D.SetIdentifier(&II, Loc);
5518
5519  // Insert this function into translation-unit scope.
5520
5521  DeclContext *PrevDC = CurContext;
5522  CurContext = Context.getTranslationUnitDecl();
5523
5524  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5525  FD->setImplicit();
5526
5527  CurContext = PrevDC;
5528
5529  AddKnownFunctionAttributes(FD);
5530
5531  return FD;
5532}
5533
5534/// \brief Adds any function attributes that we know a priori based on
5535/// the declaration of this function.
5536///
5537/// These attributes can apply both to implicitly-declared builtins
5538/// (like __builtin___printf_chk) or to library-declared functions
5539/// like NSLog or printf.
5540void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5541  if (FD->isInvalidDecl())
5542    return;
5543
5544  // If this is a built-in function, map its builtin attributes to
5545  // actual attributes.
5546  if (unsigned BuiltinID = FD->getBuiltinID()) {
5547    // Handle printf-formatting attributes.
5548    unsigned FormatIdx;
5549    bool HasVAListArg;
5550    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5551      if (!FD->getAttr<FormatAttr>())
5552        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5553                                                "printf", FormatIdx+1,
5554                                               HasVAListArg ? 0 : FormatIdx+2));
5555    }
5556    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5557                                             HasVAListArg)) {
5558     if (!FD->getAttr<FormatAttr>())
5559       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5560                                              "scanf", FormatIdx+1,
5561                                              HasVAListArg ? 0 : FormatIdx+2));
5562    }
5563
5564    // Mark const if we don't care about errno and that is the only
5565    // thing preventing the function from being const. This allows
5566    // IRgen to use LLVM intrinsics for such functions.
5567    if (!getLangOptions().MathErrno &&
5568        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5569      if (!FD->getAttr<ConstAttr>())
5570        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5571    }
5572
5573    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5574      FD->setType(Context.getNoReturnType(FD->getType()));
5575    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5576      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5577    if (Context.BuiltinInfo.isConst(BuiltinID))
5578      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5579  }
5580
5581  IdentifierInfo *Name = FD->getIdentifier();
5582  if (!Name)
5583    return;
5584  if ((!getLangOptions().CPlusPlus &&
5585       FD->getDeclContext()->isTranslationUnit()) ||
5586      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5587       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5588       LinkageSpecDecl::lang_c)) {
5589    // Okay: this could be a libc/libm/Objective-C function we know
5590    // about.
5591  } else
5592    return;
5593
5594  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5595    // FIXME: NSLog and NSLogv should be target specific
5596    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5597      // FIXME: We known better than our headers.
5598      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5599    } else
5600      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5601                                             "printf", 1,
5602                                             Name->isStr("NSLogv") ? 0 : 2));
5603  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5604    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5605    // target-specific builtins, perhaps?
5606    if (!FD->getAttr<FormatAttr>())
5607      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5608                                             "printf", 2,
5609                                             Name->isStr("vasprintf") ? 0 : 3));
5610  }
5611}
5612
5613TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5614                                    TypeSourceInfo *TInfo) {
5615  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5616  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5617
5618  if (!TInfo) {
5619    assert(D.isInvalidType() && "no declarator info for valid type");
5620    TInfo = Context.getTrivialTypeSourceInfo(T);
5621  }
5622
5623  // Scope manipulation handled by caller.
5624  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5625                                           D.getIdentifierLoc(),
5626                                           D.getIdentifier(),
5627                                           TInfo);
5628
5629  if (const TagType *TT = T->getAs<TagType>()) {
5630    TagDecl *TD = TT->getDecl();
5631
5632    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5633    // keep track of the TypedefDecl.
5634    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5635      TD->setTypedefForAnonDecl(NewTD);
5636  }
5637
5638  if (D.isInvalidType())
5639    NewTD->setInvalidDecl();
5640  return NewTD;
5641}
5642
5643
5644/// \brief Determine whether a tag with a given kind is acceptable
5645/// as a redeclaration of the given tag declaration.
5646///
5647/// \returns true if the new tag kind is acceptable, false otherwise.
5648bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5649                                        TagTypeKind NewTag,
5650                                        SourceLocation NewTagLoc,
5651                                        const IdentifierInfo &Name) {
5652  // C++ [dcl.type.elab]p3:
5653  //   The class-key or enum keyword present in the
5654  //   elaborated-type-specifier shall agree in kind with the
5655  //   declaration to which the name in the elaborated-type-specifier
5656  //   refers. This rule also applies to the form of
5657  //   elaborated-type-specifier that declares a class-name or
5658  //   friend class since it can be construed as referring to the
5659  //   definition of the class. Thus, in any
5660  //   elaborated-type-specifier, the enum keyword shall be used to
5661  //   refer to an enumeration (7.2), the union class-key shall be
5662  //   used to refer to a union (clause 9), and either the class or
5663  //   struct class-key shall be used to refer to a class (clause 9)
5664  //   declared using the class or struct class-key.
5665  TagTypeKind OldTag = Previous->getTagKind();
5666  if (OldTag == NewTag)
5667    return true;
5668
5669  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5670      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5671    // Warn about the struct/class tag mismatch.
5672    bool isTemplate = false;
5673    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5674      isTemplate = Record->getDescribedClassTemplate();
5675
5676    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5677      << (NewTag == TTK_Class)
5678      << isTemplate << &Name
5679      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5680                              OldTag == TTK_Class? "class" : "struct");
5681    Diag(Previous->getLocation(), diag::note_previous_use);
5682    return true;
5683  }
5684  return false;
5685}
5686
5687/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5688/// former case, Name will be non-null.  In the later case, Name will be null.
5689/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5690/// reference/declaration/definition of a tag.
5691Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5692                     SourceLocation KWLoc, CXXScopeSpec &SS,
5693                     IdentifierInfo *Name, SourceLocation NameLoc,
5694                     AttributeList *Attr, AccessSpecifier AS,
5695                     MultiTemplateParamsArg TemplateParameterLists,
5696                     bool &OwnedDecl, bool &IsDependent,
5697                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5698                     TypeResult UnderlyingType) {
5699  // If this is not a definition, it must have a name.
5700  assert((Name != 0 || TUK == TUK_Definition) &&
5701         "Nameless record must be a definition!");
5702  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5703
5704  OwnedDecl = false;
5705  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5706
5707  // FIXME: Check explicit specializations more carefully.
5708  bool isExplicitSpecialization = false;
5709  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5710  bool Invalid = false;
5711
5712  // We only need to do this matching if we have template parameters
5713  // or a scope specifier, which also conveniently avoids this work
5714  // for non-C++ cases.
5715  if (NumMatchedTemplateParamLists ||
5716      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5717    if (TemplateParameterList *TemplateParams
5718          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5719                                                TemplateParameterLists.get(),
5720                                               TemplateParameterLists.size(),
5721                                                    TUK == TUK_Friend,
5722                                                    isExplicitSpecialization,
5723                                                    Invalid)) {
5724      // All but one template parameter lists have been matching.
5725      --NumMatchedTemplateParamLists;
5726
5727      if (TemplateParams->size() > 0) {
5728        // This is a declaration or definition of a class template (which may
5729        // be a member of another template).
5730        if (Invalid)
5731          return 0;
5732
5733        OwnedDecl = false;
5734        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5735                                               SS, Name, NameLoc, Attr,
5736                                               TemplateParams,
5737                                               AS);
5738        TemplateParameterLists.release();
5739        return Result.get();
5740      } else {
5741        // The "template<>" header is extraneous.
5742        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5743          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5744        isExplicitSpecialization = true;
5745      }
5746    }
5747  }
5748
5749  // Figure out the underlying type if this a enum declaration. We need to do
5750  // this early, because it's needed to detect if this is an incompatible
5751  // redeclaration.
5752  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5753
5754  if (Kind == TTK_Enum) {
5755    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5756      // No underlying type explicitly specified, or we failed to parse the
5757      // type, default to int.
5758      EnumUnderlying = Context.IntTy.getTypePtr();
5759    else if (UnderlyingType.get()) {
5760      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5761      // integral type; any cv-qualification is ignored.
5762      TypeSourceInfo *TI = 0;
5763      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5764      EnumUnderlying = TI;
5765
5766      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5767
5768      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5769        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5770          << T;
5771        // Recover by falling back to int.
5772        EnumUnderlying = Context.IntTy.getTypePtr();
5773      }
5774    } else if (getLangOptions().Microsoft)
5775      // Microsoft enums are always of int type.
5776      EnumUnderlying = Context.IntTy.getTypePtr();
5777  }
5778
5779  DeclContext *SearchDC = CurContext;
5780  DeclContext *DC = CurContext;
5781  bool isStdBadAlloc = false;
5782
5783  RedeclarationKind Redecl = ForRedeclaration;
5784  if (TUK == TUK_Friend || TUK == TUK_Reference)
5785    Redecl = NotForRedeclaration;
5786
5787  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5788
5789  if (Name && SS.isNotEmpty()) {
5790    // We have a nested-name tag ('struct foo::bar').
5791
5792    // Check for invalid 'foo::'.
5793    if (SS.isInvalid()) {
5794      Name = 0;
5795      goto CreateNewDecl;
5796    }
5797
5798    // If this is a friend or a reference to a class in a dependent
5799    // context, don't try to make a decl for it.
5800    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5801      DC = computeDeclContext(SS, false);
5802      if (!DC) {
5803        IsDependent = true;
5804        return 0;
5805      }
5806    } else {
5807      DC = computeDeclContext(SS, true);
5808      if (!DC) {
5809        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5810          << SS.getRange();
5811        return 0;
5812      }
5813    }
5814
5815    if (RequireCompleteDeclContext(SS, DC))
5816      return 0;
5817
5818    SearchDC = DC;
5819    // Look-up name inside 'foo::'.
5820    LookupQualifiedName(Previous, DC);
5821
5822    if (Previous.isAmbiguous())
5823      return 0;
5824
5825    if (Previous.empty()) {
5826      // Name lookup did not find anything. However, if the
5827      // nested-name-specifier refers to the current instantiation,
5828      // and that current instantiation has any dependent base
5829      // classes, we might find something at instantiation time: treat
5830      // this as a dependent elaborated-type-specifier.
5831      // But this only makes any sense for reference-like lookups.
5832      if (Previous.wasNotFoundInCurrentInstantiation() &&
5833          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5834        IsDependent = true;
5835        return 0;
5836      }
5837
5838      // A tag 'foo::bar' must already exist.
5839      Diag(NameLoc, diag::err_not_tag_in_scope)
5840        << Kind << Name << DC << SS.getRange();
5841      Name = 0;
5842      Invalid = true;
5843      goto CreateNewDecl;
5844    }
5845  } else if (Name) {
5846    // If this is a named struct, check to see if there was a previous forward
5847    // declaration or definition.
5848    // FIXME: We're looking into outer scopes here, even when we
5849    // shouldn't be. Doing so can result in ambiguities that we
5850    // shouldn't be diagnosing.
5851    LookupName(Previous, S);
5852
5853    // Note:  there used to be some attempt at recovery here.
5854    if (Previous.isAmbiguous())
5855      return 0;
5856
5857    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5858      // FIXME: This makes sure that we ignore the contexts associated
5859      // with C structs, unions, and enums when looking for a matching
5860      // tag declaration or definition. See the similar lookup tweak
5861      // in Sema::LookupName; is there a better way to deal with this?
5862      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5863        SearchDC = SearchDC->getParent();
5864    }
5865  } else if (S->isFunctionPrototypeScope()) {
5866    // If this is an enum declaration in function prototype scope, set its
5867    // initial context to the translation unit.
5868    SearchDC = Context.getTranslationUnitDecl();
5869  }
5870
5871  if (Previous.isSingleResult() &&
5872      Previous.getFoundDecl()->isTemplateParameter()) {
5873    // Maybe we will complain about the shadowed template parameter.
5874    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5875    // Just pretend that we didn't see the previous declaration.
5876    Previous.clear();
5877  }
5878
5879  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5880      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5881    // This is a declaration of or a reference to "std::bad_alloc".
5882    isStdBadAlloc = true;
5883
5884    if (Previous.empty() && StdBadAlloc) {
5885      // std::bad_alloc has been implicitly declared (but made invisible to
5886      // name lookup). Fill in this implicit declaration as the previous
5887      // declaration, so that the declarations get chained appropriately.
5888      Previous.addDecl(getStdBadAlloc());
5889    }
5890  }
5891
5892  // If we didn't find a previous declaration, and this is a reference
5893  // (or friend reference), move to the correct scope.  In C++, we
5894  // also need to do a redeclaration lookup there, just in case
5895  // there's a shadow friend decl.
5896  if (Name && Previous.empty() &&
5897      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5898    if (Invalid) goto CreateNewDecl;
5899    assert(SS.isEmpty());
5900
5901    if (TUK == TUK_Reference) {
5902      // C++ [basic.scope.pdecl]p5:
5903      //   -- for an elaborated-type-specifier of the form
5904      //
5905      //          class-key identifier
5906      //
5907      //      if the elaborated-type-specifier is used in the
5908      //      decl-specifier-seq or parameter-declaration-clause of a
5909      //      function defined in namespace scope, the identifier is
5910      //      declared as a class-name in the namespace that contains
5911      //      the declaration; otherwise, except as a friend
5912      //      declaration, the identifier is declared in the smallest
5913      //      non-class, non-function-prototype scope that contains the
5914      //      declaration.
5915      //
5916      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5917      // C structs and unions.
5918      //
5919      // It is an error in C++ to declare (rather than define) an enum
5920      // type, including via an elaborated type specifier.  We'll
5921      // diagnose that later; for now, declare the enum in the same
5922      // scope as we would have picked for any other tag type.
5923      //
5924      // GNU C also supports this behavior as part of its incomplete
5925      // enum types extension, while GNU C++ does not.
5926      //
5927      // Find the context where we'll be declaring the tag.
5928      // FIXME: We would like to maintain the current DeclContext as the
5929      // lexical context,
5930      while (SearchDC->isRecord())
5931        SearchDC = SearchDC->getParent();
5932
5933      // Find the scope where we'll be declaring the tag.
5934      while (S->isClassScope() ||
5935             (getLangOptions().CPlusPlus &&
5936              S->isFunctionPrototypeScope()) ||
5937             ((S->getFlags() & Scope::DeclScope) == 0) ||
5938             (S->getEntity() &&
5939              ((DeclContext *)S->getEntity())->isTransparentContext()))
5940        S = S->getParent();
5941    } else {
5942      assert(TUK == TUK_Friend);
5943      // C++ [namespace.memdef]p3:
5944      //   If a friend declaration in a non-local class first declares a
5945      //   class or function, the friend class or function is a member of
5946      //   the innermost enclosing namespace.
5947      SearchDC = SearchDC->getEnclosingNamespaceContext();
5948    }
5949
5950    // In C++, we need to do a redeclaration lookup to properly
5951    // diagnose some problems.
5952    if (getLangOptions().CPlusPlus) {
5953      Previous.setRedeclarationKind(ForRedeclaration);
5954      LookupQualifiedName(Previous, SearchDC);
5955    }
5956  }
5957
5958  if (!Previous.empty()) {
5959    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5960
5961    // It's okay to have a tag decl in the same scope as a typedef
5962    // which hides a tag decl in the same scope.  Finding this
5963    // insanity with a redeclaration lookup can only actually happen
5964    // in C++.
5965    //
5966    // This is also okay for elaborated-type-specifiers, which is
5967    // technically forbidden by the current standard but which is
5968    // okay according to the likely resolution of an open issue;
5969    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5970    if (getLangOptions().CPlusPlus) {
5971      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5972        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5973          TagDecl *Tag = TT->getDecl();
5974          if (Tag->getDeclName() == Name &&
5975              Tag->getDeclContext()->getRedeclContext()
5976                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5977            PrevDecl = Tag;
5978            Previous.clear();
5979            Previous.addDecl(Tag);
5980            Previous.resolveKind();
5981          }
5982        }
5983      }
5984    }
5985
5986    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5987      // If this is a use of a previous tag, or if the tag is already declared
5988      // in the same scope (so that the definition/declaration completes or
5989      // rementions the tag), reuse the decl.
5990      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5991          isDeclInScope(PrevDecl, SearchDC, S)) {
5992        // Make sure that this wasn't declared as an enum and now used as a
5993        // struct or something similar.
5994        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5995          bool SafeToContinue
5996            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5997               Kind != TTK_Enum);
5998          if (SafeToContinue)
5999            Diag(KWLoc, diag::err_use_with_wrong_tag)
6000              << Name
6001              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6002                                              PrevTagDecl->getKindName());
6003          else
6004            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6005          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6006
6007          if (SafeToContinue)
6008            Kind = PrevTagDecl->getTagKind();
6009          else {
6010            // Recover by making this an anonymous redefinition.
6011            Name = 0;
6012            Previous.clear();
6013            Invalid = true;
6014          }
6015        }
6016
6017        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6018          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6019
6020          // All conflicts with previous declarations are recovered by
6021          // returning the previous declaration.
6022          if (ScopedEnum != PrevEnum->isScoped()) {
6023            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6024              << PrevEnum->isScoped();
6025            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6026            return PrevTagDecl;
6027          }
6028          else if (EnumUnderlying && PrevEnum->isFixed()) {
6029            QualType T;
6030            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6031                T = TI->getType();
6032            else
6033                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6034
6035            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6036              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6037                   diag::err_enum_redeclare_type_mismatch)
6038                << T
6039                << PrevEnum->getIntegerType();
6040              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6041              return PrevTagDecl;
6042            }
6043          }
6044          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6045            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6046              << PrevEnum->isFixed();
6047            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6048            return PrevTagDecl;
6049          }
6050        }
6051
6052        if (!Invalid) {
6053          // If this is a use, just return the declaration we found.
6054
6055          // FIXME: In the future, return a variant or some other clue
6056          // for the consumer of this Decl to know it doesn't own it.
6057          // For our current ASTs this shouldn't be a problem, but will
6058          // need to be changed with DeclGroups.
6059          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6060              TUK == TUK_Friend)
6061            return PrevTagDecl;
6062
6063          // Diagnose attempts to redefine a tag.
6064          if (TUK == TUK_Definition) {
6065            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6066              // If we're defining a specialization and the previous definition
6067              // is from an implicit instantiation, don't emit an error
6068              // here; we'll catch this in the general case below.
6069              if (!isExplicitSpecialization ||
6070                  !isa<CXXRecordDecl>(Def) ||
6071                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6072                                               == TSK_ExplicitSpecialization) {
6073                Diag(NameLoc, diag::err_redefinition) << Name;
6074                Diag(Def->getLocation(), diag::note_previous_definition);
6075                // If this is a redefinition, recover by making this
6076                // struct be anonymous, which will make any later
6077                // references get the previous definition.
6078                Name = 0;
6079                Previous.clear();
6080                Invalid = true;
6081              }
6082            } else {
6083              // If the type is currently being defined, complain
6084              // about a nested redefinition.
6085              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6086              if (Tag->isBeingDefined()) {
6087                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6088                Diag(PrevTagDecl->getLocation(),
6089                     diag::note_previous_definition);
6090                Name = 0;
6091                Previous.clear();
6092                Invalid = true;
6093              }
6094            }
6095
6096            // Okay, this is definition of a previously declared or referenced
6097            // tag PrevDecl. We're going to create a new Decl for it.
6098          }
6099        }
6100        // If we get here we have (another) forward declaration or we
6101        // have a definition.  Just create a new decl.
6102
6103      } else {
6104        // If we get here, this is a definition of a new tag type in a nested
6105        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6106        // new decl/type.  We set PrevDecl to NULL so that the entities
6107        // have distinct types.
6108        Previous.clear();
6109      }
6110      // If we get here, we're going to create a new Decl. If PrevDecl
6111      // is non-NULL, it's a definition of the tag declared by
6112      // PrevDecl. If it's NULL, we have a new definition.
6113
6114
6115    // Otherwise, PrevDecl is not a tag, but was found with tag
6116    // lookup.  This is only actually possible in C++, where a few
6117    // things like templates still live in the tag namespace.
6118    } else {
6119      assert(getLangOptions().CPlusPlus);
6120
6121      // Use a better diagnostic if an elaborated-type-specifier
6122      // found the wrong kind of type on the first
6123      // (non-redeclaration) lookup.
6124      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6125          !Previous.isForRedeclaration()) {
6126        unsigned Kind = 0;
6127        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6128        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6129        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6130        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6131        Invalid = true;
6132
6133      // Otherwise, only diagnose if the declaration is in scope.
6134      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6135        // do nothing
6136
6137      // Diagnose implicit declarations introduced by elaborated types.
6138      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6139        unsigned Kind = 0;
6140        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6141        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6142        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6143        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6144        Invalid = true;
6145
6146      // Otherwise it's a declaration.  Call out a particularly common
6147      // case here.
6148      } else if (isa<TypedefDecl>(PrevDecl)) {
6149        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6150          << Name
6151          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6152        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6153        Invalid = true;
6154
6155      // Otherwise, diagnose.
6156      } else {
6157        // The tag name clashes with something else in the target scope,
6158        // issue an error and recover by making this tag be anonymous.
6159        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6160        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6161        Name = 0;
6162        Invalid = true;
6163      }
6164
6165      // The existing declaration isn't relevant to us; we're in a
6166      // new scope, so clear out the previous declaration.
6167      Previous.clear();
6168    }
6169  }
6170
6171CreateNewDecl:
6172
6173  TagDecl *PrevDecl = 0;
6174  if (Previous.isSingleResult())
6175    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6176
6177  // If there is an identifier, use the location of the identifier as the
6178  // location of the decl, otherwise use the location of the struct/union
6179  // keyword.
6180  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6181
6182  // Otherwise, create a new declaration. If there is a previous
6183  // declaration of the same entity, the two will be linked via
6184  // PrevDecl.
6185  TagDecl *New;
6186
6187  bool IsForwardReference = false;
6188  if (Kind == TTK_Enum) {
6189    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6190    // enum X { A, B, C } D;    D should chain to X.
6191    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6192                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6193                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6194    // If this is an undefined enum, warn.
6195    if (TUK != TUK_Definition && !Invalid) {
6196      TagDecl *Def;
6197      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6198        // C++0x: 7.2p2: opaque-enum-declaration.
6199        // Conflicts are diagnosed above. Do nothing.
6200      }
6201      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6202        Diag(Loc, diag::ext_forward_ref_enum_def)
6203          << New;
6204        Diag(Def->getLocation(), diag::note_previous_definition);
6205      } else {
6206        unsigned DiagID = diag::ext_forward_ref_enum;
6207        if (getLangOptions().Microsoft)
6208          DiagID = diag::ext_ms_forward_ref_enum;
6209        else if (getLangOptions().CPlusPlus)
6210          DiagID = diag::err_forward_ref_enum;
6211        Diag(Loc, DiagID);
6212
6213        // If this is a forward-declared reference to an enumeration, make a
6214        // note of it; we won't actually be introducing the declaration into
6215        // the declaration context.
6216        if (TUK == TUK_Reference)
6217          IsForwardReference = true;
6218      }
6219    }
6220
6221    if (EnumUnderlying) {
6222      EnumDecl *ED = cast<EnumDecl>(New);
6223      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6224        ED->setIntegerTypeSourceInfo(TI);
6225      else
6226        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6227      ED->setPromotionType(ED->getIntegerType());
6228    }
6229
6230  } else {
6231    // struct/union/class
6232
6233    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6234    // struct X { int A; } D;    D should chain to X.
6235    if (getLangOptions().CPlusPlus) {
6236      // FIXME: Look for a way to use RecordDecl for simple structs.
6237      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6238                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6239
6240      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6241        StdBadAlloc = cast<CXXRecordDecl>(New);
6242    } else
6243      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6244                               cast_or_null<RecordDecl>(PrevDecl));
6245  }
6246
6247  // Maybe add qualifier info.
6248  if (SS.isNotEmpty()) {
6249    if (SS.isSet()) {
6250      NestedNameSpecifier *NNS
6251        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6252      New->setQualifierInfo(NNS, SS.getRange());
6253      if (NumMatchedTemplateParamLists > 0) {
6254        New->setTemplateParameterListsInfo(Context,
6255                                           NumMatchedTemplateParamLists,
6256                    (TemplateParameterList**) TemplateParameterLists.release());
6257      }
6258    }
6259    else
6260      Invalid = true;
6261  }
6262
6263  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6264    // Add alignment attributes if necessary; these attributes are checked when
6265    // the ASTContext lays out the structure.
6266    //
6267    // It is important for implementing the correct semantics that this
6268    // happen here (in act on tag decl). The #pragma pack stack is
6269    // maintained as a result of parser callbacks which can occur at
6270    // many points during the parsing of a struct declaration (because
6271    // the #pragma tokens are effectively skipped over during the
6272    // parsing of the struct).
6273    AddAlignmentAttributesForRecord(RD);
6274  }
6275
6276  // If this is a specialization of a member class (of a class template),
6277  // check the specialization.
6278  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6279    Invalid = true;
6280
6281  if (Invalid)
6282    New->setInvalidDecl();
6283
6284  if (Attr)
6285    ProcessDeclAttributeList(S, New, Attr);
6286
6287  // If we're declaring or defining a tag in function prototype scope
6288  // in C, note that this type can only be used within the function.
6289  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6290    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6291
6292  // Set the lexical context. If the tag has a C++ scope specifier, the
6293  // lexical context will be different from the semantic context.
6294  New->setLexicalDeclContext(CurContext);
6295
6296  // Mark this as a friend decl if applicable.
6297  if (TUK == TUK_Friend)
6298    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6299
6300  // Set the access specifier.
6301  if (!Invalid && SearchDC->isRecord())
6302    SetMemberAccessSpecifier(New, PrevDecl, AS);
6303
6304  if (TUK == TUK_Definition)
6305    New->startDefinition();
6306
6307  // If this has an identifier, add it to the scope stack.
6308  if (TUK == TUK_Friend) {
6309    // We might be replacing an existing declaration in the lookup tables;
6310    // if so, borrow its access specifier.
6311    if (PrevDecl)
6312      New->setAccess(PrevDecl->getAccess());
6313
6314    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6315    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6316    if (Name) // can be null along some error paths
6317      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6318        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6319  } else if (Name) {
6320    S = getNonFieldDeclScope(S);
6321    PushOnScopeChains(New, S, !IsForwardReference);
6322    if (IsForwardReference)
6323      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6324
6325  } else {
6326    CurContext->addDecl(New);
6327  }
6328
6329  // If this is the C FILE type, notify the AST context.
6330  if (IdentifierInfo *II = New->getIdentifier())
6331    if (!New->isInvalidDecl() &&
6332        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6333        II->isStr("FILE"))
6334      Context.setFILEDecl(New);
6335
6336  OwnedDecl = true;
6337  return New;
6338}
6339
6340void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6341  AdjustDeclIfTemplate(TagD);
6342  TagDecl *Tag = cast<TagDecl>(TagD);
6343
6344  // Enter the tag context.
6345  PushDeclContext(S, Tag);
6346}
6347
6348void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6349                                           SourceLocation LBraceLoc) {
6350  AdjustDeclIfTemplate(TagD);
6351  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6352
6353  FieldCollector->StartClass();
6354
6355  if (!Record->getIdentifier())
6356    return;
6357
6358  // C++ [class]p2:
6359  //   [...] The class-name is also inserted into the scope of the
6360  //   class itself; this is known as the injected-class-name. For
6361  //   purposes of access checking, the injected-class-name is treated
6362  //   as if it were a public member name.
6363  CXXRecordDecl *InjectedClassName
6364    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6365                            CurContext, Record->getLocation(),
6366                            Record->getIdentifier(),
6367                            Record->getTagKeywordLoc(),
6368                            /*PrevDecl=*/0,
6369                            /*DelayTypeCreation=*/true);
6370  Context.getTypeDeclType(InjectedClassName, Record);
6371  InjectedClassName->setImplicit();
6372  InjectedClassName->setAccess(AS_public);
6373  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6374      InjectedClassName->setDescribedClassTemplate(Template);
6375  PushOnScopeChains(InjectedClassName, S);
6376  assert(InjectedClassName->isInjectedClassName() &&
6377         "Broken injected-class-name");
6378}
6379
6380void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6381                                    SourceLocation RBraceLoc) {
6382  AdjustDeclIfTemplate(TagD);
6383  TagDecl *Tag = cast<TagDecl>(TagD);
6384  Tag->setRBraceLoc(RBraceLoc);
6385
6386  if (isa<CXXRecordDecl>(Tag))
6387    FieldCollector->FinishClass();
6388
6389  // Exit this scope of this tag's definition.
6390  PopDeclContext();
6391
6392  // Notify the consumer that we've defined a tag.
6393  Consumer.HandleTagDeclDefinition(Tag);
6394}
6395
6396void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6397  AdjustDeclIfTemplate(TagD);
6398  TagDecl *Tag = cast<TagDecl>(TagD);
6399  Tag->setInvalidDecl();
6400
6401  // We're undoing ActOnTagStartDefinition here, not
6402  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6403  // the FieldCollector.
6404
6405  PopDeclContext();
6406}
6407
6408// Note that FieldName may be null for anonymous bitfields.
6409bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6410                          QualType FieldTy, const Expr *BitWidth,
6411                          bool *ZeroWidth) {
6412  // Default to true; that shouldn't confuse checks for emptiness
6413  if (ZeroWidth)
6414    *ZeroWidth = true;
6415
6416  // C99 6.7.2.1p4 - verify the field type.
6417  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6418  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6419    // Handle incomplete types with specific error.
6420    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6421      return true;
6422    if (FieldName)
6423      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6424        << FieldName << FieldTy << BitWidth->getSourceRange();
6425    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6426      << FieldTy << BitWidth->getSourceRange();
6427  }
6428
6429  // If the bit-width is type- or value-dependent, don't try to check
6430  // it now.
6431  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6432    return false;
6433
6434  llvm::APSInt Value;
6435  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6436    return true;
6437
6438  if (Value != 0 && ZeroWidth)
6439    *ZeroWidth = false;
6440
6441  // Zero-width bitfield is ok for anonymous field.
6442  if (Value == 0 && FieldName)
6443    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6444
6445  if (Value.isSigned() && Value.isNegative()) {
6446    if (FieldName)
6447      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6448               << FieldName << Value.toString(10);
6449    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6450      << Value.toString(10);
6451  }
6452
6453  if (!FieldTy->isDependentType()) {
6454    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6455    if (Value.getZExtValue() > TypeSize) {
6456      if (!getLangOptions().CPlusPlus) {
6457        if (FieldName)
6458          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6459            << FieldName << (unsigned)Value.getZExtValue()
6460            << (unsigned)TypeSize;
6461
6462        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6463          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6464      }
6465
6466      if (FieldName)
6467        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6468          << FieldName << (unsigned)Value.getZExtValue()
6469          << (unsigned)TypeSize;
6470      else
6471        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6472          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6473    }
6474  }
6475
6476  return false;
6477}
6478
6479/// ActOnField - Each field of a struct/union/class is passed into this in order
6480/// to create a FieldDecl object for it.
6481Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6482                                 SourceLocation DeclStart,
6483                                 Declarator &D, ExprTy *BitfieldWidth) {
6484  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6485                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6486                               AS_public);
6487  return Res;
6488}
6489
6490/// HandleField - Analyze a field of a C struct or a C++ data member.
6491///
6492FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6493                             SourceLocation DeclStart,
6494                             Declarator &D, Expr *BitWidth,
6495                             AccessSpecifier AS) {
6496  IdentifierInfo *II = D.getIdentifier();
6497  SourceLocation Loc = DeclStart;
6498  if (II) Loc = D.getIdentifierLoc();
6499
6500  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6501  QualType T = TInfo->getType();
6502  if (getLangOptions().CPlusPlus)
6503    CheckExtraCXXDefaultArguments(D);
6504
6505  DiagnoseFunctionSpecifiers(D);
6506
6507  if (D.getDeclSpec().isThreadSpecified())
6508    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6509
6510  // Check to see if this name was declared as a member previously
6511  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6512  LookupName(Previous, S);
6513  assert((Previous.empty() || Previous.isOverloadedResult() ||
6514          Previous.isSingleResult())
6515    && "Lookup of member name should be either overloaded, single or null");
6516
6517  // If the name is overloaded then get any declaration else get the single result
6518  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6519    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6520
6521  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6522    // Maybe we will complain about the shadowed template parameter.
6523    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6524    // Just pretend that we didn't see the previous declaration.
6525    PrevDecl = 0;
6526  }
6527
6528  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6529    PrevDecl = 0;
6530
6531  bool Mutable
6532    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6533  SourceLocation TSSL = D.getSourceRange().getBegin();
6534  FieldDecl *NewFD
6535    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6536                     AS, PrevDecl, &D);
6537
6538  if (NewFD->isInvalidDecl())
6539    Record->setInvalidDecl();
6540
6541  if (NewFD->isInvalidDecl() && PrevDecl) {
6542    // Don't introduce NewFD into scope; there's already something
6543    // with the same name in the same scope.
6544  } else if (II) {
6545    PushOnScopeChains(NewFD, S);
6546  } else
6547    Record->addDecl(NewFD);
6548
6549  return NewFD;
6550}
6551
6552/// \brief Build a new FieldDecl and check its well-formedness.
6553///
6554/// This routine builds a new FieldDecl given the fields name, type,
6555/// record, etc. \p PrevDecl should refer to any previous declaration
6556/// with the same name and in the same scope as the field to be
6557/// created.
6558///
6559/// \returns a new FieldDecl.
6560///
6561/// \todo The Declarator argument is a hack. It will be removed once
6562FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6563                                TypeSourceInfo *TInfo,
6564                                RecordDecl *Record, SourceLocation Loc,
6565                                bool Mutable, Expr *BitWidth,
6566                                SourceLocation TSSL,
6567                                AccessSpecifier AS, NamedDecl *PrevDecl,
6568                                Declarator *D) {
6569  IdentifierInfo *II = Name.getAsIdentifierInfo();
6570  bool InvalidDecl = false;
6571  if (D) InvalidDecl = D->isInvalidType();
6572
6573  // If we receive a broken type, recover by assuming 'int' and
6574  // marking this declaration as invalid.
6575  if (T.isNull()) {
6576    InvalidDecl = true;
6577    T = Context.IntTy;
6578  }
6579
6580  QualType EltTy = Context.getBaseElementType(T);
6581  if (!EltTy->isDependentType() &&
6582      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6583    // Fields of incomplete type force their record to be invalid.
6584    Record->setInvalidDecl();
6585    InvalidDecl = true;
6586  }
6587
6588  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6589  // than a variably modified type.
6590  if (!InvalidDecl && T->isVariablyModifiedType()) {
6591    bool SizeIsNegative;
6592    llvm::APSInt Oversized;
6593    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6594                                                           SizeIsNegative,
6595                                                           Oversized);
6596    if (!FixedTy.isNull()) {
6597      Diag(Loc, diag::warn_illegal_constant_array_size);
6598      T = FixedTy;
6599    } else {
6600      if (SizeIsNegative)
6601        Diag(Loc, diag::err_typecheck_negative_array_size);
6602      else if (Oversized.getBoolValue())
6603        Diag(Loc, diag::err_array_too_large)
6604          << Oversized.toString(10);
6605      else
6606        Diag(Loc, diag::err_typecheck_field_variable_size);
6607      InvalidDecl = true;
6608    }
6609  }
6610
6611  // Fields can not have abstract class types
6612  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6613                                             diag::err_abstract_type_in_decl,
6614                                             AbstractFieldType))
6615    InvalidDecl = true;
6616
6617  bool ZeroWidth = false;
6618  // If this is declared as a bit-field, check the bit-field.
6619  if (!InvalidDecl && BitWidth &&
6620      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6621    InvalidDecl = true;
6622    BitWidth = 0;
6623    ZeroWidth = false;
6624  }
6625
6626  // Check that 'mutable' is consistent with the type of the declaration.
6627  if (!InvalidDecl && Mutable) {
6628    unsigned DiagID = 0;
6629    if (T->isReferenceType())
6630      DiagID = diag::err_mutable_reference;
6631    else if (T.isConstQualified())
6632      DiagID = diag::err_mutable_const;
6633
6634    if (DiagID) {
6635      SourceLocation ErrLoc = Loc;
6636      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6637        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6638      Diag(ErrLoc, DiagID);
6639      Mutable = false;
6640      InvalidDecl = true;
6641    }
6642  }
6643
6644  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6645                                       BitWidth, Mutable);
6646  if (InvalidDecl)
6647    NewFD->setInvalidDecl();
6648
6649  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6650    Diag(Loc, diag::err_duplicate_member) << II;
6651    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6652    NewFD->setInvalidDecl();
6653  }
6654
6655  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6656    if (Record->isUnion()) {
6657      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6658        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6659        if (RDecl->getDefinition()) {
6660          // C++ [class.union]p1: An object of a class with a non-trivial
6661          // constructor, a non-trivial copy constructor, a non-trivial
6662          // destructor, or a non-trivial copy assignment operator
6663          // cannot be a member of a union, nor can an array of such
6664          // objects.
6665          // TODO: C++0x alters this restriction significantly.
6666          if (CheckNontrivialField(NewFD))
6667            NewFD->setInvalidDecl();
6668        }
6669      }
6670
6671      // C++ [class.union]p1: If a union contains a member of reference type,
6672      // the program is ill-formed.
6673      if (EltTy->isReferenceType()) {
6674        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6675          << NewFD->getDeclName() << EltTy;
6676        NewFD->setInvalidDecl();
6677      }
6678    }
6679  }
6680
6681  // FIXME: We need to pass in the attributes given an AST
6682  // representation, not a parser representation.
6683  if (D)
6684    // FIXME: What to pass instead of TUScope?
6685    ProcessDeclAttributes(TUScope, NewFD, *D);
6686
6687  if (T.isObjCGCWeak())
6688    Diag(Loc, diag::warn_attribute_weak_on_field);
6689
6690  NewFD->setAccess(AS);
6691  return NewFD;
6692}
6693
6694bool Sema::CheckNontrivialField(FieldDecl *FD) {
6695  assert(FD);
6696  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6697
6698  if (FD->isInvalidDecl())
6699    return true;
6700
6701  QualType EltTy = Context.getBaseElementType(FD->getType());
6702  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6703    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6704    if (RDecl->getDefinition()) {
6705      // We check for copy constructors before constructors
6706      // because otherwise we'll never get complaints about
6707      // copy constructors.
6708
6709      CXXSpecialMember member = CXXInvalid;
6710      if (!RDecl->hasTrivialCopyConstructor())
6711        member = CXXCopyConstructor;
6712      else if (!RDecl->hasTrivialConstructor())
6713        member = CXXConstructor;
6714      else if (!RDecl->hasTrivialCopyAssignment())
6715        member = CXXCopyAssignment;
6716      else if (!RDecl->hasTrivialDestructor())
6717        member = CXXDestructor;
6718
6719      if (member != CXXInvalid) {
6720        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6721              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6722        DiagnoseNontrivial(RT, member);
6723        return true;
6724      }
6725    }
6726  }
6727
6728  return false;
6729}
6730
6731/// DiagnoseNontrivial - Given that a class has a non-trivial
6732/// special member, figure out why.
6733void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6734  QualType QT(T, 0U);
6735  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6736
6737  // Check whether the member was user-declared.
6738  switch (member) {
6739  case CXXInvalid:
6740    break;
6741
6742  case CXXConstructor:
6743    if (RD->hasUserDeclaredConstructor()) {
6744      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6745      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6746        const FunctionDecl *body = 0;
6747        ci->hasBody(body);
6748        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6749          SourceLocation CtorLoc = ci->getLocation();
6750          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6751          return;
6752        }
6753      }
6754
6755      assert(0 && "found no user-declared constructors");
6756      return;
6757    }
6758    break;
6759
6760  case CXXCopyConstructor:
6761    if (RD->hasUserDeclaredCopyConstructor()) {
6762      SourceLocation CtorLoc =
6763        RD->getCopyConstructor(Context, 0)->getLocation();
6764      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6765      return;
6766    }
6767    break;
6768
6769  case CXXCopyAssignment:
6770    if (RD->hasUserDeclaredCopyAssignment()) {
6771      // FIXME: this should use the location of the copy
6772      // assignment, not the type.
6773      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6774      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6775      return;
6776    }
6777    break;
6778
6779  case CXXDestructor:
6780    if (RD->hasUserDeclaredDestructor()) {
6781      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6782      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6783      return;
6784    }
6785    break;
6786  }
6787
6788  typedef CXXRecordDecl::base_class_iterator base_iter;
6789
6790  // Virtual bases and members inhibit trivial copying/construction,
6791  // but not trivial destruction.
6792  if (member != CXXDestructor) {
6793    // Check for virtual bases.  vbases includes indirect virtual bases,
6794    // so we just iterate through the direct bases.
6795    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6796      if (bi->isVirtual()) {
6797        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6798        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6799        return;
6800      }
6801
6802    // Check for virtual methods.
6803    typedef CXXRecordDecl::method_iterator meth_iter;
6804    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6805         ++mi) {
6806      if (mi->isVirtual()) {
6807        SourceLocation MLoc = mi->getSourceRange().getBegin();
6808        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6809        return;
6810      }
6811    }
6812  }
6813
6814  bool (CXXRecordDecl::*hasTrivial)() const;
6815  switch (member) {
6816  case CXXConstructor:
6817    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6818  case CXXCopyConstructor:
6819    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6820  case CXXCopyAssignment:
6821    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6822  case CXXDestructor:
6823    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6824  default:
6825    assert(0 && "unexpected special member"); return;
6826  }
6827
6828  // Check for nontrivial bases (and recurse).
6829  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6830    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6831    assert(BaseRT && "Don't know how to handle dependent bases");
6832    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6833    if (!(BaseRecTy->*hasTrivial)()) {
6834      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6835      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6836      DiagnoseNontrivial(BaseRT, member);
6837      return;
6838    }
6839  }
6840
6841  // Check for nontrivial members (and recurse).
6842  typedef RecordDecl::field_iterator field_iter;
6843  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6844       ++fi) {
6845    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6846    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6847      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6848
6849      if (!(EltRD->*hasTrivial)()) {
6850        SourceLocation FLoc = (*fi)->getLocation();
6851        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6852        DiagnoseNontrivial(EltRT, member);
6853        return;
6854      }
6855    }
6856  }
6857
6858  assert(0 && "found no explanation for non-trivial member");
6859}
6860
6861/// TranslateIvarVisibility - Translate visibility from a token ID to an
6862///  AST enum value.
6863static ObjCIvarDecl::AccessControl
6864TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6865  switch (ivarVisibility) {
6866  default: assert(0 && "Unknown visitibility kind");
6867  case tok::objc_private: return ObjCIvarDecl::Private;
6868  case tok::objc_public: return ObjCIvarDecl::Public;
6869  case tok::objc_protected: return ObjCIvarDecl::Protected;
6870  case tok::objc_package: return ObjCIvarDecl::Package;
6871  }
6872}
6873
6874/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6875/// in order to create an IvarDecl object for it.
6876Decl *Sema::ActOnIvar(Scope *S,
6877                                SourceLocation DeclStart,
6878                                Decl *IntfDecl,
6879                                Declarator &D, ExprTy *BitfieldWidth,
6880                                tok::ObjCKeywordKind Visibility) {
6881
6882  IdentifierInfo *II = D.getIdentifier();
6883  Expr *BitWidth = (Expr*)BitfieldWidth;
6884  SourceLocation Loc = DeclStart;
6885  if (II) Loc = D.getIdentifierLoc();
6886
6887  // FIXME: Unnamed fields can be handled in various different ways, for
6888  // example, unnamed unions inject all members into the struct namespace!
6889
6890  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6891  QualType T = TInfo->getType();
6892
6893  if (BitWidth) {
6894    // 6.7.2.1p3, 6.7.2.1p4
6895    if (VerifyBitField(Loc, II, T, BitWidth)) {
6896      D.setInvalidType();
6897      BitWidth = 0;
6898    }
6899  } else {
6900    // Not a bitfield.
6901
6902    // validate II.
6903
6904  }
6905  if (T->isReferenceType()) {
6906    Diag(Loc, diag::err_ivar_reference_type);
6907    D.setInvalidType();
6908  }
6909  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6910  // than a variably modified type.
6911  else if (T->isVariablyModifiedType()) {
6912    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6913    D.setInvalidType();
6914  }
6915
6916  // Get the visibility (access control) for this ivar.
6917  ObjCIvarDecl::AccessControl ac =
6918    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6919                                        : ObjCIvarDecl::None;
6920  // Must set ivar's DeclContext to its enclosing interface.
6921  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6922  ObjCContainerDecl *EnclosingContext;
6923  if (ObjCImplementationDecl *IMPDecl =
6924      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6925    if (!LangOpts.ObjCNonFragileABI2) {
6926    // Case of ivar declared in an implementation. Context is that of its class.
6927      EnclosingContext = IMPDecl->getClassInterface();
6928      assert(EnclosingContext && "Implementation has no class interface!");
6929    }
6930    else
6931      EnclosingContext = EnclosingDecl;
6932  } else {
6933    if (ObjCCategoryDecl *CDecl =
6934        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6935      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6936        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6937        return 0;
6938      }
6939    }
6940    EnclosingContext = EnclosingDecl;
6941  }
6942
6943  // Construct the decl.
6944  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6945                                             EnclosingContext, Loc, II, T,
6946                                             TInfo, ac, (Expr *)BitfieldWidth);
6947
6948  if (II) {
6949    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6950                                           ForRedeclaration);
6951    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6952        && !isa<TagDecl>(PrevDecl)) {
6953      Diag(Loc, diag::err_duplicate_member) << II;
6954      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6955      NewID->setInvalidDecl();
6956    }
6957  }
6958
6959  // Process attributes attached to the ivar.
6960  ProcessDeclAttributes(S, NewID, D);
6961
6962  if (D.isInvalidType())
6963    NewID->setInvalidDecl();
6964
6965  if (II) {
6966    // FIXME: When interfaces are DeclContexts, we'll need to add
6967    // these to the interface.
6968    S->AddDecl(NewID);
6969    IdResolver.AddDecl(NewID);
6970  }
6971
6972  return NewID;
6973}
6974
6975/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6976/// class and class extensions. For every class @interface and class
6977/// extension @interface, if the last ivar is a bitfield of any type,
6978/// then add an implicit `char :0` ivar to the end of that interface.
6979void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6980                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6981  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6982    return;
6983
6984  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6985  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6986
6987  if (!Ivar->isBitField())
6988    return;
6989  uint64_t BitFieldSize =
6990    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6991  if (BitFieldSize == 0)
6992    return;
6993  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6994  if (!ID) {
6995    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6996      if (!CD->IsClassExtension())
6997        return;
6998    }
6999    // No need to add this to end of @implementation.
7000    else
7001      return;
7002  }
7003  // All conditions are met. Add a new bitfield to the tail end of ivars.
7004  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7005  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7006
7007  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7008                              DeclLoc, 0,
7009                              Context.CharTy,
7010                              Context.CreateTypeSourceInfo(Context.CharTy),
7011                              ObjCIvarDecl::Private, BW,
7012                              true);
7013  AllIvarDecls.push_back(Ivar);
7014}
7015
7016void Sema::ActOnFields(Scope* S,
7017                       SourceLocation RecLoc, Decl *EnclosingDecl,
7018                       Decl **Fields, unsigned NumFields,
7019                       SourceLocation LBrac, SourceLocation RBrac,
7020                       AttributeList *Attr) {
7021  assert(EnclosingDecl && "missing record or interface decl");
7022
7023  // If the decl this is being inserted into is invalid, then it may be a
7024  // redeclaration or some other bogus case.  Don't try to add fields to it.
7025  if (EnclosingDecl->isInvalidDecl()) {
7026    // FIXME: Deallocate fields?
7027    return;
7028  }
7029
7030
7031  // Verify that all the fields are okay.
7032  unsigned NumNamedMembers = 0;
7033  llvm::SmallVector<FieldDecl*, 32> RecFields;
7034
7035  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7036  for (unsigned i = 0; i != NumFields; ++i) {
7037    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7038
7039    // Get the type for the field.
7040    Type *FDTy = FD->getType().getTypePtr();
7041
7042    if (!FD->isAnonymousStructOrUnion()) {
7043      // Remember all fields written by the user.
7044      RecFields.push_back(FD);
7045    }
7046
7047    // If the field is already invalid for some reason, don't emit more
7048    // diagnostics about it.
7049    if (FD->isInvalidDecl()) {
7050      EnclosingDecl->setInvalidDecl();
7051      continue;
7052    }
7053
7054    // C99 6.7.2.1p2:
7055    //   A structure or union shall not contain a member with
7056    //   incomplete or function type (hence, a structure shall not
7057    //   contain an instance of itself, but may contain a pointer to
7058    //   an instance of itself), except that the last member of a
7059    //   structure with more than one named member may have incomplete
7060    //   array type; such a structure (and any union containing,
7061    //   possibly recursively, a member that is such a structure)
7062    //   shall not be a member of a structure or an element of an
7063    //   array.
7064    if (FDTy->isFunctionType()) {
7065      // Field declared as a function.
7066      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7067        << FD->getDeclName();
7068      FD->setInvalidDecl();
7069      EnclosingDecl->setInvalidDecl();
7070      continue;
7071    } else if (FDTy->isIncompleteArrayType() && Record &&
7072               ((i == NumFields - 1 && !Record->isUnion()) ||
7073                (getLangOptions().Microsoft &&
7074                 (i == NumFields - 1 || Record->isUnion())))) {
7075      // Flexible array member.
7076      // Microsoft is more permissive regarding flexible array.
7077      // It will accept flexible array in union and also
7078      // as the sole element of a struct/class.
7079      if (getLangOptions().Microsoft) {
7080        if (Record->isUnion())
7081          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7082            << FD->getDeclName();
7083        else if (NumFields == 1)
7084          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7085            << FD->getDeclName() << Record->getTagKind();
7086      } else  if (NumNamedMembers < 1) {
7087        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7088          << FD->getDeclName();
7089        FD->setInvalidDecl();
7090        EnclosingDecl->setInvalidDecl();
7091        continue;
7092      }
7093      if (!FD->getType()->isDependentType() &&
7094          !Context.getBaseElementType(FD->getType())->isPODType()) {
7095        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7096          << FD->getDeclName() << FD->getType();
7097        FD->setInvalidDecl();
7098        EnclosingDecl->setInvalidDecl();
7099        continue;
7100      }
7101      // Okay, we have a legal flexible array member at the end of the struct.
7102      if (Record)
7103        Record->setHasFlexibleArrayMember(true);
7104    } else if (!FDTy->isDependentType() &&
7105               RequireCompleteType(FD->getLocation(), FD->getType(),
7106                                   diag::err_field_incomplete)) {
7107      // Incomplete type
7108      FD->setInvalidDecl();
7109      EnclosingDecl->setInvalidDecl();
7110      continue;
7111    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7112      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7113        // If this is a member of a union, then entire union becomes "flexible".
7114        if (Record && Record->isUnion()) {
7115          Record->setHasFlexibleArrayMember(true);
7116        } else {
7117          // If this is a struct/class and this is not the last element, reject
7118          // it.  Note that GCC supports variable sized arrays in the middle of
7119          // structures.
7120          if (i != NumFields-1)
7121            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7122              << FD->getDeclName() << FD->getType();
7123          else {
7124            // We support flexible arrays at the end of structs in
7125            // other structs as an extension.
7126            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7127              << FD->getDeclName();
7128            if (Record)
7129              Record->setHasFlexibleArrayMember(true);
7130          }
7131        }
7132      }
7133      if (Record && FDTTy->getDecl()->hasObjectMember())
7134        Record->setHasObjectMember(true);
7135    } else if (FDTy->isObjCObjectType()) {
7136      /// A field cannot be an Objective-c object
7137      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7138      FD->setInvalidDecl();
7139      EnclosingDecl->setInvalidDecl();
7140      continue;
7141    } else if (getLangOptions().ObjC1 &&
7142               getLangOptions().getGCMode() != LangOptions::NonGC &&
7143               Record &&
7144               (FD->getType()->isObjCObjectPointerType() ||
7145                FD->getType().isObjCGCStrong()))
7146      Record->setHasObjectMember(true);
7147    else if (Context.getAsArrayType(FD->getType())) {
7148      QualType BaseType = Context.getBaseElementType(FD->getType());
7149      if (Record && BaseType->isRecordType() &&
7150          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7151        Record->setHasObjectMember(true);
7152    }
7153    // Keep track of the number of named members.
7154    if (FD->getIdentifier())
7155      ++NumNamedMembers;
7156  }
7157
7158  // Okay, we successfully defined 'Record'.
7159  if (Record) {
7160    bool Completed = false;
7161    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7162      if (!CXXRecord->isInvalidDecl()) {
7163        // Set access bits correctly on the directly-declared conversions.
7164        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7165        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7166             I != E; ++I)
7167          Convs->setAccess(I, (*I)->getAccess());
7168
7169        if (!CXXRecord->isDependentType()) {
7170          // Add any implicitly-declared members to this class.
7171          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7172
7173          // If we have virtual base classes, we may end up finding multiple
7174          // final overriders for a given virtual function. Check for this
7175          // problem now.
7176          if (CXXRecord->getNumVBases()) {
7177            CXXFinalOverriderMap FinalOverriders;
7178            CXXRecord->getFinalOverriders(FinalOverriders);
7179
7180            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7181                                             MEnd = FinalOverriders.end();
7182                 M != MEnd; ++M) {
7183              for (OverridingMethods::iterator SO = M->second.begin(),
7184                                            SOEnd = M->second.end();
7185                   SO != SOEnd; ++SO) {
7186                assert(SO->second.size() > 0 &&
7187                       "Virtual function without overridding functions?");
7188                if (SO->second.size() == 1)
7189                  continue;
7190
7191                // C++ [class.virtual]p2:
7192                //   In a derived class, if a virtual member function of a base
7193                //   class subobject has more than one final overrider the
7194                //   program is ill-formed.
7195                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7196                  << (NamedDecl *)M->first << Record;
7197                Diag(M->first->getLocation(),
7198                     diag::note_overridden_virtual_function);
7199                for (OverridingMethods::overriding_iterator
7200                          OM = SO->second.begin(),
7201                       OMEnd = SO->second.end();
7202                     OM != OMEnd; ++OM)
7203                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7204                    << (NamedDecl *)M->first << OM->Method->getParent();
7205
7206                Record->setInvalidDecl();
7207              }
7208            }
7209            CXXRecord->completeDefinition(&FinalOverriders);
7210            Completed = true;
7211          }
7212        }
7213      }
7214    }
7215
7216    if (!Completed)
7217      Record->completeDefinition();
7218  } else {
7219    ObjCIvarDecl **ClsFields =
7220      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7221    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7222      ID->setLocEnd(RBrac);
7223      // Add ivar's to class's DeclContext.
7224      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7225        ClsFields[i]->setLexicalDeclContext(ID);
7226        ID->addDecl(ClsFields[i]);
7227      }
7228      // Must enforce the rule that ivars in the base classes may not be
7229      // duplicates.
7230      if (ID->getSuperClass())
7231        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7232    } else if (ObjCImplementationDecl *IMPDecl =
7233                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7234      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7235      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7236        // Ivar declared in @implementation never belongs to the implementation.
7237        // Only it is in implementation's lexical context.
7238        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7239      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7240    } else if (ObjCCategoryDecl *CDecl =
7241                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7242      // case of ivars in class extension; all other cases have been
7243      // reported as errors elsewhere.
7244      // FIXME. Class extension does not have a LocEnd field.
7245      // CDecl->setLocEnd(RBrac);
7246      // Add ivar's to class extension's DeclContext.
7247      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7248        ClsFields[i]->setLexicalDeclContext(CDecl);
7249        CDecl->addDecl(ClsFields[i]);
7250      }
7251    }
7252  }
7253
7254  if (Attr)
7255    ProcessDeclAttributeList(S, Record, Attr);
7256
7257  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7258  // set the visibility of this record.
7259  if (Record && !Record->getDeclContext()->isRecord())
7260    AddPushedVisibilityAttribute(Record);
7261}
7262
7263/// \brief Determine whether the given integral value is representable within
7264/// the given type T.
7265static bool isRepresentableIntegerValue(ASTContext &Context,
7266                                        llvm::APSInt &Value,
7267                                        QualType T) {
7268  assert(T->isIntegralType(Context) && "Integral type required!");
7269  unsigned BitWidth = Context.getIntWidth(T);
7270
7271  if (Value.isUnsigned() || Value.isNonNegative()) {
7272    if (T->isSignedIntegerType())
7273      --BitWidth;
7274    return Value.getActiveBits() <= BitWidth;
7275  }
7276  return Value.getMinSignedBits() <= BitWidth;
7277}
7278
7279// \brief Given an integral type, return the next larger integral type
7280// (or a NULL type of no such type exists).
7281static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7282  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7283  // enum checking below.
7284  assert(T->isIntegralType(Context) && "Integral type required!");
7285  const unsigned NumTypes = 4;
7286  QualType SignedIntegralTypes[NumTypes] = {
7287    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7288  };
7289  QualType UnsignedIntegralTypes[NumTypes] = {
7290    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7291    Context.UnsignedLongLongTy
7292  };
7293
7294  unsigned BitWidth = Context.getTypeSize(T);
7295  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7296                                            : UnsignedIntegralTypes;
7297  for (unsigned I = 0; I != NumTypes; ++I)
7298    if (Context.getTypeSize(Types[I]) > BitWidth)
7299      return Types[I];
7300
7301  return QualType();
7302}
7303
7304EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7305                                          EnumConstantDecl *LastEnumConst,
7306                                          SourceLocation IdLoc,
7307                                          IdentifierInfo *Id,
7308                                          Expr *Val) {
7309  unsigned IntWidth = Context.Target.getIntWidth();
7310  llvm::APSInt EnumVal(IntWidth);
7311  QualType EltTy;
7312  if (Val) {
7313    if (Enum->isDependentType() || Val->isTypeDependent())
7314      EltTy = Context.DependentTy;
7315    else {
7316      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7317      SourceLocation ExpLoc;
7318      if (!Val->isValueDependent() &&
7319          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7320        Val = 0;
7321      } else {
7322        if (!getLangOptions().CPlusPlus) {
7323          // C99 6.7.2.2p2:
7324          //   The expression that defines the value of an enumeration constant
7325          //   shall be an integer constant expression that has a value
7326          //   representable as an int.
7327
7328          // Complain if the value is not representable in an int.
7329          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7330            Diag(IdLoc, diag::ext_enum_value_not_int)
7331              << EnumVal.toString(10) << Val->getSourceRange()
7332              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7333          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7334            // Force the type of the expression to 'int'.
7335            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7336          }
7337        }
7338
7339        if (Enum->isFixed()) {
7340          EltTy = Enum->getIntegerType();
7341
7342          // C++0x [dcl.enum]p5:
7343          //   ... if the initializing value of an enumerator cannot be
7344          //   represented by the underlying type, the program is ill-formed.
7345          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7346            if (getLangOptions().Microsoft) {
7347              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7348              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7349            } else
7350              Diag(IdLoc, diag::err_enumerator_too_large)
7351                << EltTy;
7352          } else
7353            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7354        }
7355        else {
7356          // C++0x [dcl.enum]p5:
7357          //   If the underlying type is not fixed, the type of each enumerator
7358          //   is the type of its initializing value:
7359          //     - If an initializer is specified for an enumerator, the
7360          //       initializing value has the same type as the expression.
7361          EltTy = Val->getType();
7362        }
7363      }
7364    }
7365  }
7366
7367  if (!Val) {
7368    if (Enum->isDependentType())
7369      EltTy = Context.DependentTy;
7370    else if (!LastEnumConst) {
7371      // C++0x [dcl.enum]p5:
7372      //   If the underlying type is not fixed, the type of each enumerator
7373      //   is the type of its initializing value:
7374      //     - If no initializer is specified for the first enumerator, the
7375      //       initializing value has an unspecified integral type.
7376      //
7377      // GCC uses 'int' for its unspecified integral type, as does
7378      // C99 6.7.2.2p3.
7379      if (Enum->isFixed()) {
7380        EltTy = Enum->getIntegerType();
7381      }
7382      else {
7383        EltTy = Context.IntTy;
7384      }
7385    } else {
7386      // Assign the last value + 1.
7387      EnumVal = LastEnumConst->getInitVal();
7388      ++EnumVal;
7389      EltTy = LastEnumConst->getType();
7390
7391      // Check for overflow on increment.
7392      if (EnumVal < LastEnumConst->getInitVal()) {
7393        // C++0x [dcl.enum]p5:
7394        //   If the underlying type is not fixed, the type of each enumerator
7395        //   is the type of its initializing value:
7396        //
7397        //     - Otherwise the type of the initializing value is the same as
7398        //       the type of the initializing value of the preceding enumerator
7399        //       unless the incremented value is not representable in that type,
7400        //       in which case the type is an unspecified integral type
7401        //       sufficient to contain the incremented value. If no such type
7402        //       exists, the program is ill-formed.
7403        QualType T = getNextLargerIntegralType(Context, EltTy);
7404        if (T.isNull() || Enum->isFixed()) {
7405          // There is no integral type larger enough to represent this
7406          // value. Complain, then allow the value to wrap around.
7407          EnumVal = LastEnumConst->getInitVal();
7408          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7409          ++EnumVal;
7410          if (Enum->isFixed())
7411            // When the underlying type is fixed, this is ill-formed.
7412            Diag(IdLoc, diag::err_enumerator_wrapped)
7413              << EnumVal.toString(10)
7414              << EltTy;
7415          else
7416            Diag(IdLoc, diag::warn_enumerator_too_large)
7417              << EnumVal.toString(10);
7418        } else {
7419          EltTy = T;
7420        }
7421
7422        // Retrieve the last enumerator's value, extent that type to the
7423        // type that is supposed to be large enough to represent the incremented
7424        // value, then increment.
7425        EnumVal = LastEnumConst->getInitVal();
7426        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7427        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7428        ++EnumVal;
7429
7430        // If we're not in C++, diagnose the overflow of enumerator values,
7431        // which in C99 means that the enumerator value is not representable in
7432        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7433        // permits enumerator values that are representable in some larger
7434        // integral type.
7435        if (!getLangOptions().CPlusPlus && !T.isNull())
7436          Diag(IdLoc, diag::warn_enum_value_overflow);
7437      } else if (!getLangOptions().CPlusPlus &&
7438                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7439        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7440        Diag(IdLoc, diag::ext_enum_value_not_int)
7441          << EnumVal.toString(10) << 1;
7442      }
7443    }
7444  }
7445
7446  if (!EltTy->isDependentType()) {
7447    // Make the enumerator value match the signedness and size of the
7448    // enumerator's type.
7449    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7450    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7451  }
7452
7453  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7454                                  Val, EnumVal);
7455}
7456
7457
7458Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7459                              SourceLocation IdLoc, IdentifierInfo *Id,
7460                              AttributeList *Attr,
7461                              SourceLocation EqualLoc, ExprTy *val) {
7462  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7463  EnumConstantDecl *LastEnumConst =
7464    cast_or_null<EnumConstantDecl>(lastEnumConst);
7465  Expr *Val = static_cast<Expr*>(val);
7466
7467  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7468  // we find one that is.
7469  S = getNonFieldDeclScope(S);
7470
7471  // Verify that there isn't already something declared with this name in this
7472  // scope.
7473  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7474                                         ForRedeclaration);
7475  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7476    // Maybe we will complain about the shadowed template parameter.
7477    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7478    // Just pretend that we didn't see the previous declaration.
7479    PrevDecl = 0;
7480  }
7481
7482  if (PrevDecl) {
7483    // When in C++, we may get a TagDecl with the same name; in this case the
7484    // enum constant will 'hide' the tag.
7485    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7486           "Received TagDecl when not in C++!");
7487    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7488      if (isa<EnumConstantDecl>(PrevDecl))
7489        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7490      else
7491        Diag(IdLoc, diag::err_redefinition) << Id;
7492      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7493      return 0;
7494    }
7495  }
7496
7497  // C++ [class.mem]p13:
7498  //   If T is the name of a class, then each of the following shall have a
7499  //   name different from T:
7500  //     - every enumerator of every member of class T that is an enumerated
7501  //       type
7502  if (CXXRecordDecl *Record
7503                      = dyn_cast<CXXRecordDecl>(
7504                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7505    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7506      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7507
7508  EnumConstantDecl *New =
7509    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7510
7511  if (New) {
7512    // Process attributes.
7513    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7514
7515    // Register this decl in the current scope stack.
7516    New->setAccess(TheEnumDecl->getAccess());
7517    PushOnScopeChains(New, S);
7518  }
7519
7520  return New;
7521}
7522
7523void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7524                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7525                         Decl **Elements, unsigned NumElements,
7526                         Scope *S, AttributeList *Attr) {
7527  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7528  QualType EnumType = Context.getTypeDeclType(Enum);
7529
7530  if (Attr)
7531    ProcessDeclAttributeList(S, Enum, Attr);
7532
7533  if (Enum->isDependentType()) {
7534    for (unsigned i = 0; i != NumElements; ++i) {
7535      EnumConstantDecl *ECD =
7536        cast_or_null<EnumConstantDecl>(Elements[i]);
7537      if (!ECD) continue;
7538
7539      ECD->setType(EnumType);
7540    }
7541
7542    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7543    return;
7544  }
7545
7546  // TODO: If the result value doesn't fit in an int, it must be a long or long
7547  // long value.  ISO C does not support this, but GCC does as an extension,
7548  // emit a warning.
7549  unsigned IntWidth = Context.Target.getIntWidth();
7550  unsigned CharWidth = Context.Target.getCharWidth();
7551  unsigned ShortWidth = Context.Target.getShortWidth();
7552
7553  // Verify that all the values are okay, compute the size of the values, and
7554  // reverse the list.
7555  unsigned NumNegativeBits = 0;
7556  unsigned NumPositiveBits = 0;
7557
7558  // Keep track of whether all elements have type int.
7559  bool AllElementsInt = true;
7560
7561  for (unsigned i = 0; i != NumElements; ++i) {
7562    EnumConstantDecl *ECD =
7563      cast_or_null<EnumConstantDecl>(Elements[i]);
7564    if (!ECD) continue;  // Already issued a diagnostic.
7565
7566    const llvm::APSInt &InitVal = ECD->getInitVal();
7567
7568    // Keep track of the size of positive and negative values.
7569    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7570      NumPositiveBits = std::max(NumPositiveBits,
7571                                 (unsigned)InitVal.getActiveBits());
7572    else
7573      NumNegativeBits = std::max(NumNegativeBits,
7574                                 (unsigned)InitVal.getMinSignedBits());
7575
7576    // Keep track of whether every enum element has type int (very commmon).
7577    if (AllElementsInt)
7578      AllElementsInt = ECD->getType() == Context.IntTy;
7579  }
7580
7581  // Figure out the type that should be used for this enum.
7582  QualType BestType;
7583  unsigned BestWidth;
7584
7585  // C++0x N3000 [conv.prom]p3:
7586  //   An rvalue of an unscoped enumeration type whose underlying
7587  //   type is not fixed can be converted to an rvalue of the first
7588  //   of the following types that can represent all the values of
7589  //   the enumeration: int, unsigned int, long int, unsigned long
7590  //   int, long long int, or unsigned long long int.
7591  // C99 6.4.4.3p2:
7592  //   An identifier declared as an enumeration constant has type int.
7593  // The C99 rule is modified by a gcc extension
7594  QualType BestPromotionType;
7595
7596  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7597  // -fshort-enums is the equivalent to specifying the packed attribute on all
7598  // enum definitions.
7599  if (LangOpts.ShortEnums)
7600    Packed = true;
7601
7602  if (Enum->isFixed()) {
7603    BestType = BestPromotionType = Enum->getIntegerType();
7604    // We don't need to set BestWidth, because BestType is going to be the type
7605    // of the enumerators, but we do anyway because otherwise some compilers
7606    // warn that it might be used uninitialized.
7607    BestWidth = CharWidth;
7608  }
7609  else if (NumNegativeBits) {
7610    // If there is a negative value, figure out the smallest integer type (of
7611    // int/long/longlong) that fits.
7612    // If it's packed, check also if it fits a char or a short.
7613    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7614      BestType = Context.SignedCharTy;
7615      BestWidth = CharWidth;
7616    } else if (Packed && NumNegativeBits <= ShortWidth &&
7617               NumPositiveBits < ShortWidth) {
7618      BestType = Context.ShortTy;
7619      BestWidth = ShortWidth;
7620    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7621      BestType = Context.IntTy;
7622      BestWidth = IntWidth;
7623    } else {
7624      BestWidth = Context.Target.getLongWidth();
7625
7626      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7627        BestType = Context.LongTy;
7628      } else {
7629        BestWidth = Context.Target.getLongLongWidth();
7630
7631        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7632          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7633        BestType = Context.LongLongTy;
7634      }
7635    }
7636    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7637  } else {
7638    // If there is no negative value, figure out the smallest type that fits
7639    // all of the enumerator values.
7640    // If it's packed, check also if it fits a char or a short.
7641    if (Packed && NumPositiveBits <= CharWidth) {
7642      BestType = Context.UnsignedCharTy;
7643      BestPromotionType = Context.IntTy;
7644      BestWidth = CharWidth;
7645    } else if (Packed && NumPositiveBits <= ShortWidth) {
7646      BestType = Context.UnsignedShortTy;
7647      BestPromotionType = Context.IntTy;
7648      BestWidth = ShortWidth;
7649    } else if (NumPositiveBits <= IntWidth) {
7650      BestType = Context.UnsignedIntTy;
7651      BestWidth = IntWidth;
7652      BestPromotionType
7653        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7654                           ? Context.UnsignedIntTy : Context.IntTy;
7655    } else if (NumPositiveBits <=
7656               (BestWidth = Context.Target.getLongWidth())) {
7657      BestType = Context.UnsignedLongTy;
7658      BestPromotionType
7659        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7660                           ? Context.UnsignedLongTy : Context.LongTy;
7661    } else {
7662      BestWidth = Context.Target.getLongLongWidth();
7663      assert(NumPositiveBits <= BestWidth &&
7664             "How could an initializer get larger than ULL?");
7665      BestType = Context.UnsignedLongLongTy;
7666      BestPromotionType
7667        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7668                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7669    }
7670  }
7671
7672  // Loop over all of the enumerator constants, changing their types to match
7673  // the type of the enum if needed.
7674  for (unsigned i = 0; i != NumElements; ++i) {
7675    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7676    if (!ECD) continue;  // Already issued a diagnostic.
7677
7678    // Standard C says the enumerators have int type, but we allow, as an
7679    // extension, the enumerators to be larger than int size.  If each
7680    // enumerator value fits in an int, type it as an int, otherwise type it the
7681    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7682    // that X has type 'int', not 'unsigned'.
7683
7684    // Determine whether the value fits into an int.
7685    llvm::APSInt InitVal = ECD->getInitVal();
7686
7687    // If it fits into an integer type, force it.  Otherwise force it to match
7688    // the enum decl type.
7689    QualType NewTy;
7690    unsigned NewWidth;
7691    bool NewSign;
7692    if (!getLangOptions().CPlusPlus &&
7693        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7694      NewTy = Context.IntTy;
7695      NewWidth = IntWidth;
7696      NewSign = true;
7697    } else if (ECD->getType() == BestType) {
7698      // Already the right type!
7699      if (getLangOptions().CPlusPlus)
7700        // C++ [dcl.enum]p4: Following the closing brace of an
7701        // enum-specifier, each enumerator has the type of its
7702        // enumeration.
7703        ECD->setType(EnumType);
7704      continue;
7705    } else {
7706      NewTy = BestType;
7707      NewWidth = BestWidth;
7708      NewSign = BestType->isSignedIntegerType();
7709    }
7710
7711    // Adjust the APSInt value.
7712    InitVal = InitVal.extOrTrunc(NewWidth);
7713    InitVal.setIsSigned(NewSign);
7714    ECD->setInitVal(InitVal);
7715
7716    // Adjust the Expr initializer and type.
7717    if (ECD->getInitExpr())
7718      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7719                                                CK_IntegralCast,
7720                                                ECD->getInitExpr(),
7721                                                /*base paths*/ 0,
7722                                                VK_RValue));
7723    if (getLangOptions().CPlusPlus)
7724      // C++ [dcl.enum]p4: Following the closing brace of an
7725      // enum-specifier, each enumerator has the type of its
7726      // enumeration.
7727      ECD->setType(EnumType);
7728    else
7729      ECD->setType(NewTy);
7730  }
7731
7732  Enum->completeDefinition(BestType, BestPromotionType,
7733                           NumPositiveBits, NumNegativeBits);
7734}
7735
7736Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7737  StringLiteral *AsmString = cast<StringLiteral>(expr);
7738
7739  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7740                                                   Loc, AsmString);
7741  CurContext->addDecl(New);
7742  return New;
7743}
7744
7745void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7746                             SourceLocation PragmaLoc,
7747                             SourceLocation NameLoc) {
7748  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7749
7750  if (PrevDecl) {
7751    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7752  } else {
7753    (void)WeakUndeclaredIdentifiers.insert(
7754      std::pair<IdentifierInfo*,WeakInfo>
7755        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7756  }
7757}
7758
7759void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7760                                IdentifierInfo* AliasName,
7761                                SourceLocation PragmaLoc,
7762                                SourceLocation NameLoc,
7763                                SourceLocation AliasNameLoc) {
7764  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7765                                    LookupOrdinaryName);
7766  WeakInfo W = WeakInfo(Name, NameLoc);
7767
7768  if (PrevDecl) {
7769    if (!PrevDecl->hasAttr<AliasAttr>())
7770      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7771        DeclApplyPragmaWeak(TUScope, ND, W);
7772  } else {
7773    (void)WeakUndeclaredIdentifiers.insert(
7774      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7775  }
7776}
7777