SemaDecl.cpp revision 0db28c59266808b9bf4fb72c2db80ce9f2948b74
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false,
338                                           /*hasPrototype=*/true);
339  New->setImplicit();
340
341  // Create Decl objects for each parameter, adding them to the
342  // FunctionDecl.
343  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
344    llvm::SmallVector<ParmVarDecl*, 16> Params;
345    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
346      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
347                                           FT->getArgType(i), VarDecl::None, 0));
348    New->setParams(Context, &Params[0], Params.size());
349  }
350
351  AddKnownFunctionAttributes(New);
352
353  // TUScope is the translation-unit scope to insert this function into.
354  // FIXME: This is hideous. We need to teach PushOnScopeChains to
355  // relate Scopes to DeclContexts, and probably eliminate CurContext
356  // entirely, but we're not there yet.
357  DeclContext *SavedContext = CurContext;
358  CurContext = Context.getTranslationUnitDecl();
359  PushOnScopeChains(New, TUScope);
360  CurContext = SavedContext;
361  return New;
362}
363
364/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
365/// everything from the standard library is defined.
366NamespaceDecl *Sema::GetStdNamespace() {
367  if (!StdNamespace) {
368    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
369    DeclContext *Global = Context.getTranslationUnitDecl();
370    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
377/// same name and scope as a previous declaration 'Old'.  Figure out
378/// how to resolve this situation, merging decls or emitting
379/// diagnostics as appropriate. Returns true if there was an error,
380/// false otherwise.
381///
382bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
383  bool objc_types = false;
384  // Allow multiple definitions for ObjC built-in typedefs.
385  // FIXME: Verify the underlying types are equivalent!
386  if (getLangOptions().ObjC1) {
387    const IdentifierInfo *TypeID = New->getIdentifier();
388    switch (TypeID->getLength()) {
389    default: break;
390    case 2:
391      if (!TypeID->isStr("id"))
392        break;
393      Context.setObjCIdType(New);
394      objc_types = true;
395      break;
396    case 5:
397      if (!TypeID->isStr("Class"))
398        break;
399      Context.setObjCClassType(New);
400      objc_types = true;
401      return false;
402    case 3:
403      if (!TypeID->isStr("SEL"))
404        break;
405      Context.setObjCSelType(New);
406      objc_types = true;
407      return false;
408    case 8:
409      if (!TypeID->isStr("Protocol"))
410        break;
411      Context.setObjCProtoType(New->getUnderlyingType());
412      objc_types = true;
413      return false;
414    }
415    // Fall through - the typedef name was not a builtin type.
416  }
417  // Verify the old decl was also a type.
418  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
419  if (!Old) {
420    Diag(New->getLocation(), diag::err_redefinition_different_kind)
421      << New->getDeclName();
422    if (!objc_types)
423      Diag(OldD->getLocation(), diag::note_previous_definition);
424    return true;
425  }
426
427  // Determine the "old" type we'll use for checking and diagnostics.
428  QualType OldType;
429  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
430    OldType = OldTypedef->getUnderlyingType();
431  else
432    OldType = Context.getTypeDeclType(Old);
433
434  // If the typedef types are not identical, reject them in all languages and
435  // with any extensions enabled.
436
437  if (OldType != New->getUnderlyingType() &&
438      Context.getCanonicalType(OldType) !=
439      Context.getCanonicalType(New->getUnderlyingType())) {
440    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
441      << New->getUnderlyingType() << OldType;
442    if (!objc_types)
443      Diag(Old->getLocation(), diag::note_previous_definition);
444    return true;
445  }
446  if (objc_types) return false;
447  if (getLangOptions().Microsoft) return false;
448
449  // C++ [dcl.typedef]p2:
450  //   In a given non-class scope, a typedef specifier can be used to
451  //   redefine the name of any type declared in that scope to refer
452  //   to the type to which it already refers.
453  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
454    return false;
455
456  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
457  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
458  // *either* declaration is in a system header. The code below implements
459  // this adhoc compatibility rule. FIXME: The following code will not
460  // work properly when compiling ".i" files (containing preprocessed output).
461  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
462    SourceManager &SrcMgr = Context.getSourceManager();
463    if (SrcMgr.isInSystemHeader(Old->getLocation()))
464      return false;
465    if (SrcMgr.isInSystemHeader(New->getLocation()))
466      return false;
467  }
468
469  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
470  Diag(Old->getLocation(), diag::note_previous_definition);
471  return true;
472}
473
474/// DeclhasAttr - returns true if decl Declaration already has the target
475/// attribute.
476static bool DeclHasAttr(const Decl *decl, const Attr *target) {
477  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
478    if (attr->getKind() == target->getKind())
479      return true;
480
481  return false;
482}
483
484/// MergeAttributes - append attributes from the Old decl to the New one.
485static void MergeAttributes(Decl *New, Decl *Old) {
486  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
487
488  while (attr) {
489    tmp = attr;
490    attr = attr->getNext();
491
492    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
493      tmp->setInherited(true);
494      New->addAttr(tmp);
495    } else {
496      tmp->setNext(0);
497      delete(tmp);
498    }
499  }
500
501  Old->invalidateAttrs();
502}
503
504/// MergeFunctionDecl - We just parsed a function 'New' from
505/// declarator D which has the same name and scope as a previous
506/// declaration 'Old'.  Figure out how to resolve this situation,
507/// merging decls or emitting diagnostics as appropriate.
508///
509/// In C++, New and Old must be declarations that are not
510/// overloaded. Use IsOverload to determine whether New and Old are
511/// overloaded, and to select the Old declaration that New should be
512/// merged with.
513///
514/// Returns true if there was an error, false otherwise.
515bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
516  assert(!isa<OverloadedFunctionDecl>(OldD) &&
517         "Cannot merge with an overloaded function declaration");
518
519  // Verify the old decl was also a function.
520  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
521  if (!Old) {
522    Diag(New->getLocation(), diag::err_redefinition_different_kind)
523      << New->getDeclName();
524    Diag(OldD->getLocation(), diag::note_previous_definition);
525    return true;
526  }
527
528  // Determine whether the previous declaration was a definition,
529  // implicit declaration, or a declaration.
530  diag::kind PrevDiag;
531  if (Old->isThisDeclarationADefinition())
532    PrevDiag = diag::note_previous_definition;
533  else if (Old->isImplicit())
534    PrevDiag = diag::note_previous_implicit_declaration;
535  else
536    PrevDiag = diag::note_previous_declaration;
537
538  QualType OldQType = Context.getCanonicalType(Old->getType());
539  QualType NewQType = Context.getCanonicalType(New->getType());
540
541  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
542      New->getStorageClass() == FunctionDecl::Static &&
543      Old->getStorageClass() != FunctionDecl::Static) {
544    Diag(New->getLocation(), diag::err_static_non_static)
545      << New;
546    Diag(Old->getLocation(), PrevDiag);
547    return true;
548  }
549
550  if (getLangOptions().CPlusPlus) {
551    // (C++98 13.1p2):
552    //   Certain function declarations cannot be overloaded:
553    //     -- Function declarations that differ only in the return type
554    //        cannot be overloaded.
555    QualType OldReturnType
556      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
557    QualType NewReturnType
558      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
559    if (OldReturnType != NewReturnType) {
560      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
561      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
562      return true;
563    }
564
565    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
566    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
567    if (OldMethod && NewMethod) {
568      //    -- Member function declarations with the same name and the
569      //       same parameter types cannot be overloaded if any of them
570      //       is a static member function declaration.
571      if (OldMethod->isStatic() || NewMethod->isStatic()) {
572        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
573        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
574        return true;
575      }
576
577      // C++ [class.mem]p1:
578      //   [...] A member shall not be declared twice in the
579      //   member-specification, except that a nested class or member
580      //   class template can be declared and then later defined.
581      if (OldMethod->getLexicalDeclContext() ==
582            NewMethod->getLexicalDeclContext()) {
583        unsigned NewDiag;
584        if (isa<CXXConstructorDecl>(OldMethod))
585          NewDiag = diag::err_constructor_redeclared;
586        else if (isa<CXXDestructorDecl>(NewMethod))
587          NewDiag = diag::err_destructor_redeclared;
588        else if (isa<CXXConversionDecl>(NewMethod))
589          NewDiag = diag::err_conv_function_redeclared;
590        else
591          NewDiag = diag::err_member_redeclared;
592
593        Diag(New->getLocation(), NewDiag);
594        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
595      }
596    }
597
598    // (C++98 8.3.5p3):
599    //   All declarations for a function shall agree exactly in both the
600    //   return type and the parameter-type-list.
601    if (OldQType == NewQType)
602      return MergeCompatibleFunctionDecls(New, Old);
603
604    // Fall through for conflicting redeclarations and redefinitions.
605  }
606
607  // C: Function types need to be compatible, not identical. This handles
608  // duplicate function decls like "void f(int); void f(enum X);" properly.
609  if (!getLangOptions().CPlusPlus &&
610      Context.typesAreCompatible(OldQType, NewQType)) {
611    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
612    const FunctionProtoType *OldProto = 0;
613    if (isa<FunctionNoProtoType>(NewFuncType) &&
614        (OldProto = OldQType->getAsFunctionProtoType())) {
615      // The old declaration provided a function prototype, but the
616      // new declaration does not. Merge in the prototype.
617      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
618                                                 OldProto->arg_type_end());
619      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
620                                         &ParamTypes[0], ParamTypes.size(),
621                                         OldProto->isVariadic(),
622                                         OldProto->getTypeQuals());
623      New->setType(NewQType);
624      New->setInheritedPrototype();
625
626      // Synthesize a parameter for each argument type.
627      llvm::SmallVector<ParmVarDecl*, 16> Params;
628      for (FunctionProtoType::arg_type_iterator
629             ParamType = OldProto->arg_type_begin(),
630             ParamEnd = OldProto->arg_type_end();
631           ParamType != ParamEnd; ++ParamType) {
632        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
633                                                 SourceLocation(), 0,
634                                                 *ParamType, VarDecl::None,
635                                                 0);
636        Param->setImplicit();
637        Params.push_back(Param);
638      }
639
640      New->setParams(Context, &Params[0], Params.size());
641
642    }
643
644    return MergeCompatibleFunctionDecls(New, Old);
645  }
646
647  // A function that has already been declared has been redeclared or defined
648  // with a different type- show appropriate diagnostic
649  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
650    // The user has declared a builtin function with an incompatible
651    // signature.
652    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
653      // The function the user is redeclaring is a library-defined
654      // function like 'malloc' or 'printf'. Warn about the
655      // redeclaration, then ignore it.
656      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
657      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
658        << Old << Old->getType();
659      return true;
660    }
661
662    PrevDiag = diag::note_previous_builtin_declaration;
663  }
664
665  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
666  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667  return true;
668}
669
670/// \brief Completes the merge of two function declarations that are
671/// known to be compatible.
672///
673/// This routine handles the merging of attributes and other
674/// properties of function declarations form the old declaration to
675/// the new declaration, once we know that New is in fact a
676/// redeclaration of Old.
677///
678/// \returns false
679bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
680  // Merge the attributes
681  MergeAttributes(New, Old);
682
683  // Merge the storage class.
684  New->setStorageClass(Old->getStorageClass());
685
686  // FIXME: need to implement inline semantics
687
688  // Merge "pure" flag.
689  if (Old->isPure())
690    New->setPure();
691
692  // Merge the "deleted" flag.
693  if (Old->isDeleted())
694    New->setDeleted();
695
696  if (getLangOptions().CPlusPlus)
697    return MergeCXXFunctionDecl(New, Old);
698
699  return false;
700}
701
702/// Predicate for C "tentative" external object definitions (C99 6.9.2).
703static bool isTentativeDefinition(VarDecl *VD) {
704  if (VD->isFileVarDecl())
705    return (!VD->getInit() &&
706            (VD->getStorageClass() == VarDecl::None ||
707             VD->getStorageClass() == VarDecl::Static));
708  return false;
709}
710
711/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
712/// when dealing with C "tentative" external object definitions (C99 6.9.2).
713void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
714  bool VDIsTentative = isTentativeDefinition(VD);
715  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
716
717  // FIXME: I don't think this will actually see all of the
718  // redefinitions. Can't we check this property on-the-fly?
719  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
720                                    E = IdResolver.end();
721       I != E; ++I) {
722    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
723      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
724
725      // Handle the following case:
726      //   int a[10];
727      //   int a[];   - the code below makes sure we set the correct type.
728      //   int a[11]; - this is an error, size isn't 10.
729      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
730          OldDecl->getType()->isConstantArrayType())
731        VD->setType(OldDecl->getType());
732
733      // Check for "tentative" definitions. We can't accomplish this in
734      // MergeVarDecl since the initializer hasn't been attached.
735      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
736        continue;
737
738      // Handle __private_extern__ just like extern.
739      if (OldDecl->getStorageClass() != VarDecl::Extern &&
740          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
741          VD->getStorageClass() != VarDecl::Extern &&
742          VD->getStorageClass() != VarDecl::PrivateExtern) {
743        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
744        Diag(OldDecl->getLocation(), diag::note_previous_definition);
745        // One redefinition error is enough.
746        break;
747      }
748    }
749  }
750}
751
752/// MergeVarDecl - We just parsed a variable 'New' which has the same name
753/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
754/// situation, merging decls or emitting diagnostics as appropriate.
755///
756/// Tentative definition rules (C99 6.9.2p2) are checked by
757/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
758/// definitions here, since the initializer hasn't been attached.
759///
760bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
761  // Verify the old decl was also a variable.
762  VarDecl *Old = dyn_cast<VarDecl>(OldD);
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766    Diag(OldD->getLocation(), diag::note_previous_definition);
767    return true;
768  }
769
770  MergeAttributes(New, Old);
771
772  // Merge the types
773  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
774  if (MergedT.isNull()) {
775    Diag(New->getLocation(), diag::err_redefinition_different_type)
776      << New->getDeclName();
777    Diag(Old->getLocation(), diag::note_previous_definition);
778    return true;
779  }
780  New->setType(MergedT);
781  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
782  if (New->getStorageClass() == VarDecl::Static &&
783      (Old->getStorageClass() == VarDecl::None ||
784       Old->getStorageClass() == VarDecl::Extern)) {
785    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
790  if (New->getStorageClass() != VarDecl::Static &&
791      Old->getStorageClass() == VarDecl::Static) {
792    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
793    Diag(Old->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
797  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
798    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
799    Diag(Old->getLocation(), diag::note_previous_definition);
800    return true;
801  }
802  return false;
803}
804
805/// CheckParmsForFunctionDef - Check that the parameters of the given
806/// function are appropriate for the definition of a function. This
807/// takes care of any checks that cannot be performed on the
808/// declaration itself, e.g., that the types of each of the function
809/// parameters are complete.
810bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
811  bool HasInvalidParm = false;
812  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
813    ParmVarDecl *Param = FD->getParamDecl(p);
814
815    // C99 6.7.5.3p4: the parameters in a parameter type list in a
816    // function declarator that is part of a function definition of
817    // that function shall not have incomplete type.
818    if (!Param->isInvalidDecl() &&
819        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
820                               diag::err_typecheck_decl_incomplete_type)) {
821      Param->setInvalidDecl();
822      HasInvalidParm = true;
823    }
824
825    // C99 6.9.1p5: If the declarator includes a parameter type list, the
826    // declaration of each parameter shall include an identifier.
827    if (Param->getIdentifier() == 0 &&
828        !Param->isImplicit() &&
829        !getLangOptions().CPlusPlus)
830      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
831  }
832
833  return HasInvalidParm;
834}
835
836/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
837/// no declarator (e.g. "struct foo;") is parsed.
838Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
839  TagDecl *Tag = 0;
840  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
841      DS.getTypeSpecType() == DeclSpec::TST_struct ||
842      DS.getTypeSpecType() == DeclSpec::TST_union ||
843      DS.getTypeSpecType() == DeclSpec::TST_enum)
844    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
845
846  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
847    if (!Record->getDeclName() && Record->isDefinition() &&
848        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
849      return BuildAnonymousStructOrUnion(S, DS, Record);
850
851    // Microsoft allows unnamed struct/union fields. Don't complain
852    // about them.
853    // FIXME: Should we support Microsoft's extensions in this area?
854    if (Record->getDeclName() && getLangOptions().Microsoft)
855      return Tag;
856  }
857
858  if (!DS.isMissingDeclaratorOk() &&
859      DS.getTypeSpecType() != DeclSpec::TST_error) {
860    // Warn about typedefs of enums without names, since this is an
861    // extension in both Microsoft an GNU.
862    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
863        Tag && isa<EnumDecl>(Tag)) {
864      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
865        << DS.getSourceRange();
866      return Tag;
867    }
868
869    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
870      << DS.getSourceRange();
871    return 0;
872  }
873
874  return Tag;
875}
876
877/// InjectAnonymousStructOrUnionMembers - Inject the members of the
878/// anonymous struct or union AnonRecord into the owning context Owner
879/// and scope S. This routine will be invoked just after we realize
880/// that an unnamed union or struct is actually an anonymous union or
881/// struct, e.g.,
882///
883/// @code
884/// union {
885///   int i;
886///   float f;
887/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
888///    // f into the surrounding scope.x
889/// @endcode
890///
891/// This routine is recursive, injecting the names of nested anonymous
892/// structs/unions into the owning context and scope as well.
893bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
894                                               RecordDecl *AnonRecord) {
895  bool Invalid = false;
896  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
897                               FEnd = AnonRecord->field_end();
898       F != FEnd; ++F) {
899    if ((*F)->getDeclName()) {
900      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
901                                                LookupOrdinaryName, true);
902      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
903        // C++ [class.union]p2:
904        //   The names of the members of an anonymous union shall be
905        //   distinct from the names of any other entity in the
906        //   scope in which the anonymous union is declared.
907        unsigned diagKind
908          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
909                                 : diag::err_anonymous_struct_member_redecl;
910        Diag((*F)->getLocation(), diagKind)
911          << (*F)->getDeclName();
912        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
913        Invalid = true;
914      } else {
915        // C++ [class.union]p2:
916        //   For the purpose of name lookup, after the anonymous union
917        //   definition, the members of the anonymous union are
918        //   considered to have been defined in the scope in which the
919        //   anonymous union is declared.
920        Owner->makeDeclVisibleInContext(*F);
921        S->AddDecl(*F);
922        IdResolver.AddDecl(*F);
923      }
924    } else if (const RecordType *InnerRecordType
925                 = (*F)->getType()->getAsRecordType()) {
926      RecordDecl *InnerRecord = InnerRecordType->getDecl();
927      if (InnerRecord->isAnonymousStructOrUnion())
928        Invalid = Invalid ||
929          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
930    }
931  }
932
933  return Invalid;
934}
935
936/// ActOnAnonymousStructOrUnion - Handle the declaration of an
937/// anonymous structure or union. Anonymous unions are a C++ feature
938/// (C++ [class.union]) and a GNU C extension; anonymous structures
939/// are a GNU C and GNU C++ extension.
940Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
941                                                RecordDecl *Record) {
942  DeclContext *Owner = Record->getDeclContext();
943
944  // Diagnose whether this anonymous struct/union is an extension.
945  if (Record->isUnion() && !getLangOptions().CPlusPlus)
946    Diag(Record->getLocation(), diag::ext_anonymous_union);
947  else if (!Record->isUnion())
948    Diag(Record->getLocation(), diag::ext_anonymous_struct);
949
950  // C and C++ require different kinds of checks for anonymous
951  // structs/unions.
952  bool Invalid = false;
953  if (getLangOptions().CPlusPlus) {
954    const char* PrevSpec = 0;
955    // C++ [class.union]p3:
956    //   Anonymous unions declared in a named namespace or in the
957    //   global namespace shall be declared static.
958    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
959        (isa<TranslationUnitDecl>(Owner) ||
960         (isa<NamespaceDecl>(Owner) &&
961          cast<NamespaceDecl>(Owner)->getDeclName()))) {
962      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
963      Invalid = true;
964
965      // Recover by adding 'static'.
966      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
967    }
968    // C++ [class.union]p3:
969    //   A storage class is not allowed in a declaration of an
970    //   anonymous union in a class scope.
971    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
972             isa<RecordDecl>(Owner)) {
973      Diag(DS.getStorageClassSpecLoc(),
974           diag::err_anonymous_union_with_storage_spec);
975      Invalid = true;
976
977      // Recover by removing the storage specifier.
978      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
979                             PrevSpec);
980    }
981
982    // C++ [class.union]p2:
983    //   The member-specification of an anonymous union shall only
984    //   define non-static data members. [Note: nested types and
985    //   functions cannot be declared within an anonymous union. ]
986    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
987                                 MemEnd = Record->decls_end();
988         Mem != MemEnd; ++Mem) {
989      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
990        // C++ [class.union]p3:
991        //   An anonymous union shall not have private or protected
992        //   members (clause 11).
993        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
994          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
995            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
996          Invalid = true;
997        }
998      } else if ((*Mem)->isImplicit()) {
999        // Any implicit members are fine.
1000      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1001        // This is a type that showed up in an
1002        // elaborated-type-specifier inside the anonymous struct or
1003        // union, but which actually declares a type outside of the
1004        // anonymous struct or union. It's okay.
1005      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1006        if (!MemRecord->isAnonymousStructOrUnion() &&
1007            MemRecord->getDeclName()) {
1008          // This is a nested type declaration.
1009          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1010            << (int)Record->isUnion();
1011          Invalid = true;
1012        }
1013      } else {
1014        // We have something that isn't a non-static data
1015        // member. Complain about it.
1016        unsigned DK = diag::err_anonymous_record_bad_member;
1017        if (isa<TypeDecl>(*Mem))
1018          DK = diag::err_anonymous_record_with_type;
1019        else if (isa<FunctionDecl>(*Mem))
1020          DK = diag::err_anonymous_record_with_function;
1021        else if (isa<VarDecl>(*Mem))
1022          DK = diag::err_anonymous_record_with_static;
1023        Diag((*Mem)->getLocation(), DK)
1024            << (int)Record->isUnion();
1025          Invalid = true;
1026      }
1027    }
1028  } else {
1029    // FIXME: Check GNU C semantics
1030    if (Record->isUnion() && !Owner->isRecord()) {
1031      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1032        << (int)getLangOptions().CPlusPlus;
1033      Invalid = true;
1034    }
1035  }
1036
1037  if (!Record->isUnion() && !Owner->isRecord()) {
1038    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1039      << (int)getLangOptions().CPlusPlus;
1040    Invalid = true;
1041  }
1042
1043  // Create a declaration for this anonymous struct/union.
1044  NamedDecl *Anon = 0;
1045  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1046    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1047                             /*IdentifierInfo=*/0,
1048                             Context.getTypeDeclType(Record),
1049                             /*BitWidth=*/0, /*Mutable=*/false);
1050    Anon->setAccess(AS_public);
1051    if (getLangOptions().CPlusPlus)
1052      FieldCollector->Add(cast<FieldDecl>(Anon));
1053  } else {
1054    VarDecl::StorageClass SC;
1055    switch (DS.getStorageClassSpec()) {
1056    default: assert(0 && "Unknown storage class!");
1057    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1058    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1059    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1060    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1061    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1062    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1063    case DeclSpec::SCS_mutable:
1064      // mutable can only appear on non-static class members, so it's always
1065      // an error here
1066      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1067      Invalid = true;
1068      SC = VarDecl::None;
1069      break;
1070    }
1071
1072    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1073                           /*IdentifierInfo=*/0,
1074                           Context.getTypeDeclType(Record),
1075                           SC, DS.getSourceRange().getBegin());
1076  }
1077  Anon->setImplicit();
1078
1079  // Add the anonymous struct/union object to the current
1080  // context. We'll be referencing this object when we refer to one of
1081  // its members.
1082  Owner->addDecl(Anon);
1083
1084  // Inject the members of the anonymous struct/union into the owning
1085  // context and into the identifier resolver chain for name lookup
1086  // purposes.
1087  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1088    Invalid = true;
1089
1090  // Mark this as an anonymous struct/union type. Note that we do not
1091  // do this until after we have already checked and injected the
1092  // members of this anonymous struct/union type, because otherwise
1093  // the members could be injected twice: once by DeclContext when it
1094  // builds its lookup table, and once by
1095  // InjectAnonymousStructOrUnionMembers.
1096  Record->setAnonymousStructOrUnion(true);
1097
1098  if (Invalid)
1099    Anon->setInvalidDecl();
1100
1101  return Anon;
1102}
1103
1104
1105/// GetNameForDeclarator - Determine the full declaration name for the
1106/// given Declarator.
1107DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1108  switch (D.getKind()) {
1109  case Declarator::DK_Abstract:
1110    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1111    return DeclarationName();
1112
1113  case Declarator::DK_Normal:
1114    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1115    return DeclarationName(D.getIdentifier());
1116
1117  case Declarator::DK_Constructor: {
1118    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXConstructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Destructor: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXDestructorName(Ty);
1127  }
1128
1129  case Declarator::DK_Conversion: {
1130    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1131    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1132    Ty = Context.getCanonicalType(Ty);
1133    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1134  }
1135
1136  case Declarator::DK_Operator:
1137    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1138    return Context.DeclarationNames.getCXXOperatorName(
1139                                                D.getOverloadedOperator());
1140  }
1141
1142  assert(false && "Unknown name kind");
1143  return DeclarationName();
1144}
1145
1146/// isNearlyMatchingFunction - Determine whether the C++ functions
1147/// Declaration and Definition are "nearly" matching. This heuristic
1148/// is used to improve diagnostics in the case where an out-of-line
1149/// function definition doesn't match any declaration within
1150/// the class or namespace.
1151static bool isNearlyMatchingFunction(ASTContext &Context,
1152                                     FunctionDecl *Declaration,
1153                                     FunctionDecl *Definition) {
1154  if (Declaration->param_size() != Definition->param_size())
1155    return false;
1156  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1157    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1158    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1159
1160    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1161    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1162    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1163      return false;
1164  }
1165
1166  return true;
1167}
1168
1169Sema::DeclTy *
1170Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1171                      bool IsFunctionDefinition) {
1172  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1173  DeclarationName Name = GetNameForDeclarator(D);
1174
1175  // All of these full declarators require an identifier.  If it doesn't have
1176  // one, the ParsedFreeStandingDeclSpec action should be used.
1177  if (!Name) {
1178    if (!D.getInvalidType())  // Reject this if we think it is valid.
1179      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1180           diag::err_declarator_need_ident)
1181        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1182    return 0;
1183  }
1184
1185  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1186  // we find one that is.
1187  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1188         (S->getFlags() & Scope::TemplateParamScope) != 0)
1189    S = S->getParent();
1190
1191  DeclContext *DC;
1192  NamedDecl *PrevDecl;
1193  NamedDecl *New;
1194  bool InvalidDecl = false;
1195
1196  QualType R = GetTypeForDeclarator(D, S);
1197  if (R.isNull()) {
1198    InvalidDecl = true;
1199    R = Context.IntTy;
1200  }
1201
1202  // See if this is a redefinition of a variable in the same scope.
1203  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1204    LookupNameKind NameKind = LookupOrdinaryName;
1205
1206    // If the declaration we're planning to build will be a function
1207    // or object with linkage, then look for another declaration with
1208    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1209    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1210      /* Do nothing*/;
1211    else if (R->isFunctionType()) {
1212      if (CurContext->isFunctionOrMethod())
1213        NameKind = LookupRedeclarationWithLinkage;
1214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1215      NameKind = LookupRedeclarationWithLinkage;
1216
1217    DC = CurContext;
1218    PrevDecl = LookupName(S, Name, NameKind, true,
1219                          D.getDeclSpec().getStorageClassSpec() !=
1220                            DeclSpec::SCS_static,
1221                          D.getIdentifierLoc());
1222  } else { // Something like "int foo::x;"
1223    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1224    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1225
1226    // C++ 7.3.1.2p2:
1227    // Members (including explicit specializations of templates) of a named
1228    // namespace can also be defined outside that namespace by explicit
1229    // qualification of the name being defined, provided that the entity being
1230    // defined was already declared in the namespace and the definition appears
1231    // after the point of declaration in a namespace that encloses the
1232    // declarations namespace.
1233    //
1234    // Note that we only check the context at this point. We don't yet
1235    // have enough information to make sure that PrevDecl is actually
1236    // the declaration we want to match. For example, given:
1237    //
1238    //   class X {
1239    //     void f();
1240    //     void f(float);
1241    //   };
1242    //
1243    //   void X::f(int) { } // ill-formed
1244    //
1245    // In this case, PrevDecl will point to the overload set
1246    // containing the two f's declared in X, but neither of them
1247    // matches.
1248
1249    // First check whether we named the global scope.
1250    if (isa<TranslationUnitDecl>(DC)) {
1251      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1252        << Name << D.getCXXScopeSpec().getRange();
1253    } else if (!CurContext->Encloses(DC)) {
1254      // The qualifying scope doesn't enclose the original declaration.
1255      // Emit diagnostic based on current scope.
1256      SourceLocation L = D.getIdentifierLoc();
1257      SourceRange R = D.getCXXScopeSpec().getRange();
1258      if (isa<FunctionDecl>(CurContext))
1259        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1260      else
1261        Diag(L, diag::err_invalid_declarator_scope)
1262          << Name << cast<NamedDecl>(DC) << R;
1263      InvalidDecl = true;
1264    }
1265  }
1266
1267  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1268    // Maybe we will complain about the shadowed template parameter.
1269    InvalidDecl = InvalidDecl
1270      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1271    // Just pretend that we didn't see the previous declaration.
1272    PrevDecl = 0;
1273  }
1274
1275  // In C++, the previous declaration we find might be a tag type
1276  // (class or enum). In this case, the new declaration will hide the
1277  // tag type. Note that this does does not apply if we're declaring a
1278  // typedef (C++ [dcl.typedef]p4).
1279  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1280      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1281    PrevDecl = 0;
1282
1283  bool Redeclaration = false;
1284  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1285    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1286                                 InvalidDecl, Redeclaration);
1287  } else if (R->isFunctionType()) {
1288    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1289                                  IsFunctionDefinition, InvalidDecl,
1290                                  Redeclaration);
1291  } else {
1292    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1293                                  InvalidDecl, Redeclaration);
1294  }
1295
1296  if (New == 0)
1297    return 0;
1298
1299  // Set the lexical context. If the declarator has a C++ scope specifier, the
1300  // lexical context will be different from the semantic context.
1301  New->setLexicalDeclContext(CurContext);
1302
1303  // If this has an identifier and is not an invalid redeclaration,
1304  // add it to the scope stack.
1305  if (Name && !(Redeclaration && InvalidDecl))
1306    PushOnScopeChains(New, S);
1307  // If any semantic error occurred, mark the decl as invalid.
1308  if (D.getInvalidType() || InvalidDecl)
1309    New->setInvalidDecl();
1310
1311  return New;
1312}
1313
1314/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1315/// types into constant array types in certain situations which would otherwise
1316/// be errors (for GCC compatibility).
1317static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1318                                                    ASTContext &Context,
1319                                                    bool &SizeIsNegative) {
1320  // This method tries to turn a variable array into a constant
1321  // array even when the size isn't an ICE.  This is necessary
1322  // for compatibility with code that depends on gcc's buggy
1323  // constant expression folding, like struct {char x[(int)(char*)2];}
1324  SizeIsNegative = false;
1325
1326  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1327    QualType Pointee = PTy->getPointeeType();
1328    QualType FixedType =
1329        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1330    if (FixedType.isNull()) return FixedType;
1331    FixedType = Context.getPointerType(FixedType);
1332    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1333    return FixedType;
1334  }
1335
1336  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1337  if (!VLATy)
1338    return QualType();
1339  // FIXME: We should probably handle this case
1340  if (VLATy->getElementType()->isVariablyModifiedType())
1341    return QualType();
1342
1343  Expr::EvalResult EvalResult;
1344  if (!VLATy->getSizeExpr() ||
1345      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1346      !EvalResult.Val.isInt())
1347    return QualType();
1348
1349  llvm::APSInt &Res = EvalResult.Val.getInt();
1350  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1351    return Context.getConstantArrayType(VLATy->getElementType(),
1352                                        Res, ArrayType::Normal, 0);
1353
1354  SizeIsNegative = true;
1355  return QualType();
1356}
1357
1358NamedDecl*
1359Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1360                             QualType R, Decl* LastDeclarator,
1361                             Decl* PrevDecl, bool& InvalidDecl,
1362                             bool &Redeclaration) {
1363  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1364  if (D.getCXXScopeSpec().isSet()) {
1365    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1366      << D.getCXXScopeSpec().getRange();
1367    InvalidDecl = true;
1368    // Pretend we didn't see the scope specifier.
1369    DC = 0;
1370  }
1371
1372  // Check that there are no default arguments (C++ only).
1373  if (getLangOptions().CPlusPlus)
1374    CheckExtraCXXDefaultArguments(D);
1375
1376  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1377  if (!NewTD) return 0;
1378
1379  // Handle attributes prior to checking for duplicates in MergeVarDecl
1380  ProcessDeclAttributes(NewTD, D);
1381  // Merge the decl with the existing one if appropriate. If the decl is
1382  // in an outer scope, it isn't the same thing.
1383  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1384    Redeclaration = true;
1385    if (MergeTypeDefDecl(NewTD, PrevDecl))
1386      InvalidDecl = true;
1387  }
1388
1389  if (S->getFnParent() == 0) {
1390    QualType T = NewTD->getUnderlyingType();
1391    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1392    // then it shall have block scope.
1393    if (T->isVariablyModifiedType()) {
1394      bool SizeIsNegative;
1395      QualType FixedTy =
1396          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1397      if (!FixedTy.isNull()) {
1398        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1399        NewTD->setUnderlyingType(FixedTy);
1400      } else {
1401        if (SizeIsNegative)
1402          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1403        else if (T->isVariableArrayType())
1404          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1405        else
1406          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1407        InvalidDecl = true;
1408      }
1409    }
1410  }
1411  return NewTD;
1412}
1413
1414/// \brief Determines whether the given declaration is an out-of-scope
1415/// previous declaration.
1416///
1417/// This routine should be invoked when name lookup has found a
1418/// previous declaration (PrevDecl) that is not in the scope where a
1419/// new declaration by the same name is being introduced. If the new
1420/// declaration occurs in a local scope, previous declarations with
1421/// linkage may still be considered previous declarations (C99
1422/// 6.2.2p4-5, C++ [basic.link]p6).
1423///
1424/// \param PrevDecl the previous declaration found by name
1425/// lookup
1426///
1427/// \param DC the context in which the new declaration is being
1428/// declared.
1429///
1430/// \returns true if PrevDecl is an out-of-scope previous declaration
1431/// for a new delcaration with the same name.
1432static bool
1433isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1434                                ASTContext &Context) {
1435  if (!PrevDecl)
1436    return 0;
1437
1438  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1439  // case we need to check each of the overloaded functions.
1440  if (!PrevDecl->hasLinkage())
1441    return false;
1442
1443  if (Context.getLangOptions().CPlusPlus) {
1444    // C++ [basic.link]p6:
1445    //   If there is a visible declaration of an entity with linkage
1446    //   having the same name and type, ignoring entities declared
1447    //   outside the innermost enclosing namespace scope, the block
1448    //   scope declaration declares that same entity and receives the
1449    //   linkage of the previous declaration.
1450    DeclContext *OuterContext = DC->getLookupContext();
1451    if (!OuterContext->isFunctionOrMethod())
1452      // This rule only applies to block-scope declarations.
1453      return false;
1454    else {
1455      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1456      if (PrevOuterContext->isRecord())
1457        // We found a member function: ignore it.
1458        return false;
1459      else {
1460        // Find the innermost enclosing namespace for the new and
1461        // previous declarations.
1462        while (!OuterContext->isFileContext())
1463          OuterContext = OuterContext->getParent();
1464        while (!PrevOuterContext->isFileContext())
1465          PrevOuterContext = PrevOuterContext->getParent();
1466
1467        // The previous declaration is in a different namespace, so it
1468        // isn't the same function.
1469        if (OuterContext->getPrimaryContext() !=
1470            PrevOuterContext->getPrimaryContext())
1471          return false;
1472      }
1473    }
1474  }
1475
1476  return true;
1477}
1478
1479/// \brief Inject a locally-scoped declaration with external linkage
1480/// into the appropriate namespace scope.
1481///
1482/// Given a declaration of an entity with linkage that occurs within a
1483/// local scope, this routine inject that declaration into top-level
1484/// scope so that it will be visible for later uses and declarations
1485/// of the same entity.
1486void Sema::InjectLocallyScopedExternalDeclaration(ValueDecl *VD) {
1487  // FIXME: We don't do this in C++ because, although we would like
1488  // to get the extra checking that this operation implies,
1489  // the declaration itself is not visible according to C++'s rules.
1490  assert(!getLangOptions().CPlusPlus &&
1491         "Can't inject locally-scoped declarations in C++");
1492  IdentifierResolver::iterator I = IdResolver.begin(VD->getDeclName()),
1493                            IEnd = IdResolver.end();
1494  NamedDecl *PrevDecl = 0;
1495  while (I != IEnd && !isa<TranslationUnitDecl>((*I)->getDeclContext())) {
1496    PrevDecl = *I;
1497    ++I;
1498  }
1499
1500  if (I == IEnd) {
1501    // No name with this identifier has been declared at translation
1502    // unit scope. Add this name into the appropriate scope.
1503    if (PrevDecl)
1504      IdResolver.AddShadowedDecl(VD, PrevDecl);
1505    else
1506      IdResolver.AddDecl(VD);
1507    TUScope->AddDecl(VD);
1508    return;
1509  }
1510
1511  if (isa<TagDecl>(*I)) {
1512    // The first thing we found was a tag declaration, so insert
1513    // this function so that it will be found before the tag
1514    // declaration.
1515    if (PrevDecl)
1516      IdResolver.AddShadowedDecl(VD, PrevDecl);
1517    else
1518      IdResolver.AddDecl(VD);
1519    TUScope->AddDecl(VD);
1520    return;
1521  }
1522
1523  if (VD->declarationReplaces(*I)) {
1524    // We found a previous declaration of the same entity. Replace
1525    // that declaration with this one.
1526    TUScope->RemoveDecl(*I);
1527    TUScope->AddDecl(VD);
1528    IdResolver.RemoveDecl(*I);
1529    if (PrevDecl)
1530      IdResolver.AddShadowedDecl(VD, PrevDecl);
1531    else
1532      IdResolver.AddDecl(VD);
1533  }
1534}
1535
1536NamedDecl*
1537Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1538                              QualType R, Decl* LastDeclarator,
1539                              NamedDecl* PrevDecl, bool& InvalidDecl,
1540                              bool &Redeclaration) {
1541  DeclarationName Name = GetNameForDeclarator(D);
1542
1543  // Check that there are no default arguments (C++ only).
1544  if (getLangOptions().CPlusPlus)
1545    CheckExtraCXXDefaultArguments(D);
1546
1547  if (R.getTypePtr()->isObjCInterfaceType()) {
1548    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1549    InvalidDecl = true;
1550  }
1551
1552  VarDecl *NewVD;
1553  VarDecl::StorageClass SC;
1554  switch (D.getDeclSpec().getStorageClassSpec()) {
1555  default: assert(0 && "Unknown storage class!");
1556  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1557  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1558  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1559  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1560  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1561  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1562  case DeclSpec::SCS_mutable:
1563    // mutable can only appear on non-static class members, so it's always
1564    // an error here
1565    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1566    InvalidDecl = true;
1567    SC = VarDecl::None;
1568    break;
1569  }
1570
1571  IdentifierInfo *II = Name.getAsIdentifierInfo();
1572  if (!II) {
1573    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1574      << Name.getAsString();
1575    return 0;
1576  }
1577
1578  if (DC->isRecord()) {
1579    // This is a static data member for a C++ class.
1580    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1581                                    D.getIdentifierLoc(), II,
1582                                    R);
1583  } else {
1584    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1585    if (S->getFnParent() == 0) {
1586      // C99 6.9p2: The storage-class specifiers auto and register shall not
1587      // appear in the declaration specifiers in an external declaration.
1588      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1589        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1590        InvalidDecl = true;
1591      }
1592    }
1593    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1594                            II, R, SC,
1595                            // FIXME: Move to DeclGroup...
1596                            D.getDeclSpec().getSourceRange().getBegin());
1597    NewVD->setThreadSpecified(ThreadSpecified);
1598  }
1599  NewVD->setNextDeclarator(LastDeclarator);
1600
1601  // Handle attributes prior to checking for duplicates in MergeVarDecl
1602  ProcessDeclAttributes(NewVD, D);
1603
1604  // Handle GNU asm-label extension (encoded as an attribute).
1605  if (Expr *E = (Expr*) D.getAsmLabel()) {
1606    // The parser guarantees this is a string.
1607    StringLiteral *SE = cast<StringLiteral>(E);
1608    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1609                                                SE->getByteLength())));
1610  }
1611
1612  // Emit an error if an address space was applied to decl with local storage.
1613  // This includes arrays of objects with address space qualifiers, but not
1614  // automatic variables that point to other address spaces.
1615  // ISO/IEC TR 18037 S5.1.2
1616  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1617    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1618    InvalidDecl = true;
1619  }
1620
1621  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1622    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1623  }
1624
1625  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1626  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1627  if (isIllegalVLA || isIllegalVM) {
1628    bool SizeIsNegative;
1629    QualType FixedTy =
1630        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1631    if (!FixedTy.isNull()) {
1632      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1633      NewVD->setType(FixedTy);
1634    } else if (R->isVariableArrayType()) {
1635      NewVD->setInvalidDecl();
1636
1637      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1638      // FIXME: This won't give the correct result for
1639      // int a[10][n];
1640      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1641
1642      if (NewVD->isFileVarDecl())
1643        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1644          << SizeRange;
1645      else if (NewVD->getStorageClass() == VarDecl::Static)
1646        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1647          << SizeRange;
1648      else
1649        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1650            << SizeRange;
1651    } else {
1652      InvalidDecl = true;
1653
1654      if (NewVD->isFileVarDecl())
1655        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1656      else
1657        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1658    }
1659  }
1660
1661  // If name lookup finds a previous declaration that is not in the
1662  // same scope as the new declaration, this may still be an
1663  // acceptable redeclaration.
1664  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1665      !(NewVD->hasLinkage() &&
1666        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1667    PrevDecl = 0;
1668
1669  // Merge the decl with the existing one if appropriate.
1670  if (PrevDecl) {
1671    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1672      // The user tried to define a non-static data member
1673      // out-of-line (C++ [dcl.meaning]p1).
1674      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1675        << D.getCXXScopeSpec().getRange();
1676      NewVD->Destroy(Context);
1677      return 0;
1678    }
1679
1680    Redeclaration = true;
1681    if (MergeVarDecl(NewVD, PrevDecl))
1682      InvalidDecl = true;
1683
1684    if (D.getCXXScopeSpec().isSet()) {
1685      // No previous declaration in the qualifying scope.
1686      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1687        << Name << D.getCXXScopeSpec().getRange();
1688      InvalidDecl = true;
1689    }
1690  }
1691
1692  // If this is a locally-scoped extern variable in C, inject a
1693  // declaration into translation unit scope so that all external
1694  // declarations are visible.
1695  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod() &&
1696      NewVD->hasLinkage())
1697    InjectLocallyScopedExternalDeclaration(NewVD);
1698
1699  return NewVD;
1700}
1701
1702NamedDecl*
1703Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1704                              QualType R, Decl *LastDeclarator,
1705                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1706                              bool& InvalidDecl, bool &Redeclaration) {
1707  assert(R.getTypePtr()->isFunctionType());
1708
1709  DeclarationName Name = GetNameForDeclarator(D);
1710  FunctionDecl::StorageClass SC = FunctionDecl::None;
1711  switch (D.getDeclSpec().getStorageClassSpec()) {
1712  default: assert(0 && "Unknown storage class!");
1713  case DeclSpec::SCS_auto:
1714  case DeclSpec::SCS_register:
1715  case DeclSpec::SCS_mutable:
1716    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1717         diag::err_typecheck_sclass_func);
1718    InvalidDecl = true;
1719    break;
1720  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1721  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1722  case DeclSpec::SCS_static: {
1723    if (DC->getLookupContext()->isFunctionOrMethod()) {
1724      // C99 6.7.1p5:
1725      //   The declaration of an identifier for a function that has
1726      //   block scope shall have no explicit storage-class specifier
1727      //   other than extern
1728      // See also (C++ [dcl.stc]p4).
1729      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1730           diag::err_static_block_func);
1731      SC = FunctionDecl::None;
1732    } else
1733      SC = FunctionDecl::Static;
1734    break;
1735  }
1736  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1737  }
1738
1739  bool isInline = D.getDeclSpec().isInlineSpecified();
1740  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1741  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1742
1743  FunctionDecl *NewFD;
1744  if (D.getKind() == Declarator::DK_Constructor) {
1745    // This is a C++ constructor declaration.
1746    assert(DC->isRecord() &&
1747           "Constructors can only be declared in a member context");
1748
1749    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1750
1751    // Create the new declaration
1752    NewFD = CXXConstructorDecl::Create(Context,
1753                                       cast<CXXRecordDecl>(DC),
1754                                       D.getIdentifierLoc(), Name, R,
1755                                       isExplicit, isInline,
1756                                       /*isImplicitlyDeclared=*/false);
1757
1758    if (InvalidDecl)
1759      NewFD->setInvalidDecl();
1760  } else if (D.getKind() == Declarator::DK_Destructor) {
1761    // This is a C++ destructor declaration.
1762    if (DC->isRecord()) {
1763      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1764
1765      NewFD = CXXDestructorDecl::Create(Context,
1766                                        cast<CXXRecordDecl>(DC),
1767                                        D.getIdentifierLoc(), Name, R,
1768                                        isInline,
1769                                        /*isImplicitlyDeclared=*/false);
1770
1771      if (InvalidDecl)
1772        NewFD->setInvalidDecl();
1773    } else {
1774      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1775
1776      // Create a FunctionDecl to satisfy the function definition parsing
1777      // code path.
1778      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1779                                   Name, R, SC, isInline,
1780                                   /*hasPrototype=*/true,
1781                                   // FIXME: Move to DeclGroup...
1782                                   D.getDeclSpec().getSourceRange().getBegin());
1783      InvalidDecl = true;
1784      NewFD->setInvalidDecl();
1785    }
1786  } else if (D.getKind() == Declarator::DK_Conversion) {
1787    if (!DC->isRecord()) {
1788      Diag(D.getIdentifierLoc(),
1789           diag::err_conv_function_not_member);
1790      return 0;
1791    } else {
1792      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1793
1794      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1795                                        D.getIdentifierLoc(), Name, R,
1796                                        isInline, isExplicit);
1797
1798      if (InvalidDecl)
1799        NewFD->setInvalidDecl();
1800    }
1801  } else if (DC->isRecord()) {
1802    // This is a C++ method declaration.
1803    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1804                                  D.getIdentifierLoc(), Name, R,
1805                                  (SC == FunctionDecl::Static), isInline);
1806  } else {
1807    NewFD = FunctionDecl::Create(Context, DC,
1808                                 D.getIdentifierLoc(),
1809                                 Name, R, SC, isInline,
1810                                 /*hasPrototype=*/
1811                                   (getLangOptions().CPlusPlus ||
1812                                    (D.getNumTypeObjects() &&
1813                                     D.getTypeObject(0).Fun.hasPrototype)),
1814                                 // FIXME: Move to DeclGroup...
1815                                 D.getDeclSpec().getSourceRange().getBegin());
1816  }
1817  NewFD->setNextDeclarator(LastDeclarator);
1818
1819  // Set the lexical context. If the declarator has a C++
1820  // scope specifier, the lexical context will be different
1821  // from the semantic context.
1822  NewFD->setLexicalDeclContext(CurContext);
1823
1824  // Handle GNU asm-label extension (encoded as an attribute).
1825  if (Expr *E = (Expr*) D.getAsmLabel()) {
1826    // The parser guarantees this is a string.
1827    StringLiteral *SE = cast<StringLiteral>(E);
1828    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1829                                                SE->getByteLength())));
1830  }
1831
1832  // Copy the parameter declarations from the declarator D to
1833  // the function declaration NewFD, if they are available.
1834  if (D.getNumTypeObjects() > 0) {
1835    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1836
1837    // Create Decl objects for each parameter, adding them to the
1838    // FunctionDecl.
1839    llvm::SmallVector<ParmVarDecl*, 16> Params;
1840
1841    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1842    // function that takes no arguments, not a function that takes a
1843    // single void argument.
1844    // We let through "const void" here because Sema::GetTypeForDeclarator
1845    // already checks for that case.
1846    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1847        FTI.ArgInfo[0].Param &&
1848        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1849      // empty arg list, don't push any params.
1850      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1851
1852      // In C++, the empty parameter-type-list must be spelled "void"; a
1853      // typedef of void is not permitted.
1854      if (getLangOptions().CPlusPlus &&
1855          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1856        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1857      }
1858    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1859      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1860        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1861    }
1862
1863    NewFD->setParams(Context, &Params[0], Params.size());
1864  } else if (R->getAsTypedefType()) {
1865    // When we're declaring a function with a typedef, as in the
1866    // following example, we'll need to synthesize (unnamed)
1867    // parameters for use in the declaration.
1868    //
1869    // @code
1870    // typedef void fn(int);
1871    // fn f;
1872    // @endcode
1873    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1874    if (!FT) {
1875      // This is a typedef of a function with no prototype, so we
1876      // don't need to do anything.
1877    } else if ((FT->getNumArgs() == 0) ||
1878               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1879                FT->getArgType(0)->isVoidType())) {
1880      // This is a zero-argument function. We don't need to do anything.
1881    } else {
1882      // Synthesize a parameter for each argument type.
1883      llvm::SmallVector<ParmVarDecl*, 16> Params;
1884      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1885           ArgType != FT->arg_type_end(); ++ArgType) {
1886        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1887                                                 SourceLocation(), 0,
1888                                                 *ArgType, VarDecl::None,
1889                                                 0);
1890        Param->setImplicit();
1891        Params.push_back(Param);
1892      }
1893
1894      NewFD->setParams(Context, &Params[0], Params.size());
1895    }
1896  }
1897
1898  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1899    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1900  else if (isa<CXXDestructorDecl>(NewFD)) {
1901    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1902    Record->setUserDeclaredDestructor(true);
1903    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1904    // user-defined destructor.
1905    Record->setPOD(false);
1906  } else if (CXXConversionDecl *Conversion =
1907             dyn_cast<CXXConversionDecl>(NewFD))
1908    ActOnConversionDeclarator(Conversion);
1909
1910  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1911  if (NewFD->isOverloadedOperator() &&
1912      CheckOverloadedOperatorDeclaration(NewFD))
1913    NewFD->setInvalidDecl();
1914
1915  // If name lookup finds a previous declaration that is not in the
1916  // same scope as the new declaration, this may still be an
1917  // acceptable redeclaration.
1918  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1919      !(NewFD->hasLinkage() &&
1920        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1921    PrevDecl = 0;
1922
1923  // Merge or overload the declaration with an existing declaration of
1924  // the same name, if appropriate.
1925  bool OverloadableAttrRequired = false;
1926  if (PrevDecl) {
1927    // Determine whether NewFD is an overload of PrevDecl or
1928    // a declaration that requires merging. If it's an overload,
1929    // there's no more work to do here; we'll just add the new
1930    // function to the scope.
1931    OverloadedFunctionDecl::function_iterator MatchedDecl;
1932
1933    if (!getLangOptions().CPlusPlus &&
1934        AllowOverloadingOfFunction(PrevDecl, Context)) {
1935      OverloadableAttrRequired = true;
1936
1937      // Functions marked "overloadable" must have a prototype (that
1938      // we can't get through declaration merging).
1939      if (!R->getAsFunctionProtoType()) {
1940        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1941          << NewFD;
1942        InvalidDecl = true;
1943        Redeclaration = true;
1944
1945        // Turn this into a variadic function with no parameters.
1946        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1947                                    0, 0, true, 0);
1948        NewFD->setType(R);
1949      }
1950    }
1951
1952    if (PrevDecl &&
1953        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1954         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1955      Redeclaration = true;
1956      Decl *OldDecl = PrevDecl;
1957
1958      // If PrevDecl was an overloaded function, extract the
1959      // FunctionDecl that matched.
1960      if (isa<OverloadedFunctionDecl>(PrevDecl))
1961        OldDecl = *MatchedDecl;
1962
1963      // NewFD and PrevDecl represent declarations that need to be
1964      // merged.
1965      if (MergeFunctionDecl(NewFD, OldDecl))
1966        InvalidDecl = true;
1967
1968      if (!InvalidDecl) {
1969        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1970
1971        // An out-of-line member function declaration must also be a
1972        // definition (C++ [dcl.meaning]p1).
1973        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1974            !InvalidDecl) {
1975          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1976            << D.getCXXScopeSpec().getRange();
1977          NewFD->setInvalidDecl();
1978        }
1979      }
1980    }
1981  }
1982
1983  if (D.getCXXScopeSpec().isSet() &&
1984      (!PrevDecl || !Redeclaration)) {
1985    // The user tried to provide an out-of-line definition for a
1986    // function that is a member of a class or namespace, but there
1987    // was no such member function declared (C++ [class.mfct]p2,
1988    // C++ [namespace.memdef]p2). For example:
1989    //
1990    // class X {
1991    //   void f() const;
1992    // };
1993    //
1994    // void X::f() { } // ill-formed
1995    //
1996    // Complain about this problem, and attempt to suggest close
1997    // matches (e.g., those that differ only in cv-qualifiers and
1998    // whether the parameter types are references).
1999    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2000      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2001    InvalidDecl = true;
2002
2003    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2004                                            true);
2005    assert(!Prev.isAmbiguous() &&
2006           "Cannot have an ambiguity in previous-declaration lookup");
2007    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2008         Func != FuncEnd; ++Func) {
2009      if (isa<FunctionDecl>(*Func) &&
2010          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2011        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2012    }
2013
2014    PrevDecl = 0;
2015  }
2016
2017  // Handle attributes. We need to have merged decls when handling attributes
2018  // (for example to check for conflicts, etc).
2019  ProcessDeclAttributes(NewFD, D);
2020  AddKnownFunctionAttributes(NewFD);
2021
2022  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2023    // If a function name is overloadable in C, then every function
2024    // with that name must be marked "overloadable".
2025    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2026      << Redeclaration << NewFD;
2027    if (PrevDecl)
2028      Diag(PrevDecl->getLocation(),
2029           diag::note_attribute_overloadable_prev_overload);
2030    NewFD->addAttr(new OverloadableAttr);
2031  }
2032
2033  if (getLangOptions().CPlusPlus) {
2034    // In C++, check default arguments now that we have merged decls. Unless
2035    // the lexical context is the class, because in this case this is done
2036    // during delayed parsing anyway.
2037    if (!CurContext->isRecord())
2038      CheckCXXDefaultArguments(NewFD);
2039
2040    // An out-of-line member function declaration must also be a
2041    // definition (C++ [dcl.meaning]p1).
2042    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2043      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2044        << D.getCXXScopeSpec().getRange();
2045      InvalidDecl = true;
2046    }
2047  }
2048
2049  // If this is a locally-scoped function in C, inject a declaration
2050  // into translation unit scope so that all external declarations are
2051  // visible.
2052  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod())
2053    InjectLocallyScopedExternalDeclaration(NewFD);
2054
2055  return NewFD;
2056}
2057
2058bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2059  // FIXME: Need strict checking.  In C89, we need to check for
2060  // any assignment, increment, decrement, function-calls, or
2061  // commas outside of a sizeof.  In C99, it's the same list,
2062  // except that the aforementioned are allowed in unevaluated
2063  // expressions.  Everything else falls under the
2064  // "may accept other forms of constant expressions" exception.
2065  // (We never end up here for C++, so the constant expression
2066  // rules there don't matter.)
2067  if (Init->isConstantInitializer(Context))
2068    return false;
2069  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2070    << Init->getSourceRange();
2071  return true;
2072}
2073
2074void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2075  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2076}
2077
2078/// AddInitializerToDecl - Adds the initializer Init to the
2079/// declaration dcl. If DirectInit is true, this is C++ direct
2080/// initialization rather than copy initialization.
2081void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2082  Decl *RealDecl = static_cast<Decl *>(dcl);
2083  // If there is no declaration, there was an error parsing it.  Just ignore
2084  // the initializer.
2085  if (RealDecl == 0)
2086    return;
2087
2088  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2089  if (!VDecl) {
2090    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2091    RealDecl->setInvalidDecl();
2092    return;
2093  }
2094
2095  // Take ownership of the expression, now that we're sure we have somewhere
2096  // to put it.
2097  Expr *Init = static_cast<Expr *>(init.release());
2098  assert(Init && "missing initializer");
2099
2100  // Get the decls type and save a reference for later, since
2101  // CheckInitializerTypes may change it.
2102  QualType DclT = VDecl->getType(), SavT = DclT;
2103  if (VDecl->isBlockVarDecl()) {
2104    VarDecl::StorageClass SC = VDecl->getStorageClass();
2105    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2106      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2107      VDecl->setInvalidDecl();
2108    } else if (!VDecl->isInvalidDecl()) {
2109      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2110                                VDecl->getDeclName(), DirectInit))
2111        VDecl->setInvalidDecl();
2112
2113      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2114      // Don't check invalid declarations to avoid emitting useless diagnostics.
2115      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2116        if (SC == VarDecl::Static) // C99 6.7.8p4.
2117          CheckForConstantInitializer(Init, DclT);
2118      }
2119    }
2120  } else if (VDecl->isFileVarDecl()) {
2121    if (VDecl->getStorageClass() == VarDecl::Extern)
2122      Diag(VDecl->getLocation(), diag::warn_extern_init);
2123    if (!VDecl->isInvalidDecl())
2124      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2125                                VDecl->getDeclName(), DirectInit))
2126        VDecl->setInvalidDecl();
2127
2128    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2129    // Don't check invalid declarations to avoid emitting useless diagnostics.
2130    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2131      // C99 6.7.8p4. All file scoped initializers need to be constant.
2132      CheckForConstantInitializer(Init, DclT);
2133    }
2134  }
2135  // If the type changed, it means we had an incomplete type that was
2136  // completed by the initializer. For example:
2137  //   int ary[] = { 1, 3, 5 };
2138  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2139  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2140    VDecl->setType(DclT);
2141    Init->setType(DclT);
2142  }
2143
2144  // Attach the initializer to the decl.
2145  VDecl->setInit(Init);
2146  return;
2147}
2148
2149void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2150  Decl *RealDecl = static_cast<Decl *>(dcl);
2151
2152  // If there is no declaration, there was an error parsing it. Just ignore it.
2153  if (RealDecl == 0)
2154    return;
2155
2156  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2157    QualType Type = Var->getType();
2158    // C++ [dcl.init.ref]p3:
2159    //   The initializer can be omitted for a reference only in a
2160    //   parameter declaration (8.3.5), in the declaration of a
2161    //   function return type, in the declaration of a class member
2162    //   within its class declaration (9.2), and where the extern
2163    //   specifier is explicitly used.
2164    if (Type->isReferenceType() &&
2165        Var->getStorageClass() != VarDecl::Extern &&
2166        Var->getStorageClass() != VarDecl::PrivateExtern) {
2167      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2168        << Var->getDeclName()
2169        << SourceRange(Var->getLocation(), Var->getLocation());
2170      Var->setInvalidDecl();
2171      return;
2172    }
2173
2174    // C++ [dcl.init]p9:
2175    //
2176    //   If no initializer is specified for an object, and the object
2177    //   is of (possibly cv-qualified) non-POD class type (or array
2178    //   thereof), the object shall be default-initialized; if the
2179    //   object is of const-qualified type, the underlying class type
2180    //   shall have a user-declared default constructor.
2181    if (getLangOptions().CPlusPlus) {
2182      QualType InitType = Type;
2183      if (const ArrayType *Array = Context.getAsArrayType(Type))
2184        InitType = Array->getElementType();
2185      if (Var->getStorageClass() != VarDecl::Extern &&
2186          Var->getStorageClass() != VarDecl::PrivateExtern &&
2187          InitType->isRecordType()) {
2188        const CXXConstructorDecl *Constructor
2189          = PerformInitializationByConstructor(InitType, 0, 0,
2190                                               Var->getLocation(),
2191                                               SourceRange(Var->getLocation(),
2192                                                           Var->getLocation()),
2193                                               Var->getDeclName(),
2194                                               IK_Default);
2195        if (!Constructor)
2196          Var->setInvalidDecl();
2197      }
2198    }
2199
2200#if 0
2201    // FIXME: Temporarily disabled because we are not properly parsing
2202    // linkage specifications on declarations, e.g.,
2203    //
2204    //   extern "C" const CGPoint CGPointerZero;
2205    //
2206    // C++ [dcl.init]p9:
2207    //
2208    //     If no initializer is specified for an object, and the
2209    //     object is of (possibly cv-qualified) non-POD class type (or
2210    //     array thereof), the object shall be default-initialized; if
2211    //     the object is of const-qualified type, the underlying class
2212    //     type shall have a user-declared default
2213    //     constructor. Otherwise, if no initializer is specified for
2214    //     an object, the object and its subobjects, if any, have an
2215    //     indeterminate initial value; if the object or any of its
2216    //     subobjects are of const-qualified type, the program is
2217    //     ill-formed.
2218    //
2219    // This isn't technically an error in C, so we don't diagnose it.
2220    //
2221    // FIXME: Actually perform the POD/user-defined default
2222    // constructor check.
2223    if (getLangOptions().CPlusPlus &&
2224        Context.getCanonicalType(Type).isConstQualified() &&
2225        Var->getStorageClass() != VarDecl::Extern)
2226      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2227        << Var->getName()
2228        << SourceRange(Var->getLocation(), Var->getLocation());
2229#endif
2230  }
2231}
2232
2233/// The declarators are chained together backwards, reverse the list.
2234Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2235  // Often we have single declarators, handle them quickly.
2236  Decl *Group = static_cast<Decl*>(group);
2237  if (Group == 0)
2238    return 0;
2239
2240  Decl *NewGroup = 0;
2241  if (Group->getNextDeclarator() == 0)
2242    NewGroup = Group;
2243  else { // reverse the list.
2244    while (Group) {
2245      Decl *Next = Group->getNextDeclarator();
2246      Group->setNextDeclarator(NewGroup);
2247      NewGroup = Group;
2248      Group = Next;
2249    }
2250  }
2251  // Perform semantic analysis that depends on having fully processed both
2252  // the declarator and initializer.
2253  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2254    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2255    if (!IDecl)
2256      continue;
2257    QualType T = IDecl->getType();
2258
2259    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2260    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2261    if (IDecl->isBlockVarDecl() &&
2262        IDecl->getStorageClass() != VarDecl::Extern) {
2263      if (!IDecl->isInvalidDecl() &&
2264          DiagnoseIncompleteType(IDecl->getLocation(), T,
2265                                 diag::err_typecheck_decl_incomplete_type))
2266        IDecl->setInvalidDecl();
2267    }
2268    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2269    // object that has file scope without an initializer, and without a
2270    // storage-class specifier or with the storage-class specifier "static",
2271    // constitutes a tentative definition. Note: A tentative definition with
2272    // external linkage is valid (C99 6.2.2p5).
2273    if (isTentativeDefinition(IDecl)) {
2274      if (T->isIncompleteArrayType()) {
2275        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2276        // array to be completed. Don't issue a diagnostic.
2277      } else if (!IDecl->isInvalidDecl() &&
2278                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2279                                        diag::err_typecheck_decl_incomplete_type))
2280        // C99 6.9.2p3: If the declaration of an identifier for an object is
2281        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2282        // declared type shall not be an incomplete type.
2283        IDecl->setInvalidDecl();
2284    }
2285    if (IDecl->isFileVarDecl())
2286      CheckForFileScopedRedefinitions(S, IDecl);
2287  }
2288  return NewGroup;
2289}
2290
2291/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2292/// to introduce parameters into function prototype scope.
2293Sema::DeclTy *
2294Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2295  const DeclSpec &DS = D.getDeclSpec();
2296
2297  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2298  VarDecl::StorageClass StorageClass = VarDecl::None;
2299  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2300    StorageClass = VarDecl::Register;
2301  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2302    Diag(DS.getStorageClassSpecLoc(),
2303         diag::err_invalid_storage_class_in_func_decl);
2304    D.getMutableDeclSpec().ClearStorageClassSpecs();
2305  }
2306  if (DS.isThreadSpecified()) {
2307    Diag(DS.getThreadSpecLoc(),
2308         diag::err_invalid_storage_class_in_func_decl);
2309    D.getMutableDeclSpec().ClearStorageClassSpecs();
2310  }
2311
2312  // Check that there are no default arguments inside the type of this
2313  // parameter (C++ only).
2314  if (getLangOptions().CPlusPlus)
2315    CheckExtraCXXDefaultArguments(D);
2316
2317  // In this context, we *do not* check D.getInvalidType(). If the declarator
2318  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2319  // though it will not reflect the user specified type.
2320  QualType parmDeclType = GetTypeForDeclarator(D, S);
2321
2322  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2323
2324  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2325  // Can this happen for params?  We already checked that they don't conflict
2326  // among each other.  Here they can only shadow globals, which is ok.
2327  IdentifierInfo *II = D.getIdentifier();
2328  if (II) {
2329    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2330      if (PrevDecl->isTemplateParameter()) {
2331        // Maybe we will complain about the shadowed template parameter.
2332        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2333        // Just pretend that we didn't see the previous declaration.
2334        PrevDecl = 0;
2335      } else if (S->isDeclScope(PrevDecl)) {
2336        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2337
2338        // Recover by removing the name
2339        II = 0;
2340        D.SetIdentifier(0, D.getIdentifierLoc());
2341      }
2342    }
2343  }
2344
2345  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2346  // Doing the promotion here has a win and a loss. The win is the type for
2347  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2348  // code generator). The loss is the orginal type isn't preserved. For example:
2349  //
2350  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2351  //    int blockvardecl[5];
2352  //    sizeof(parmvardecl);  // size == 4
2353  //    sizeof(blockvardecl); // size == 20
2354  // }
2355  //
2356  // For expressions, all implicit conversions are captured using the
2357  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2358  //
2359  // FIXME: If a source translation tool needs to see the original type, then
2360  // we need to consider storing both types (in ParmVarDecl)...
2361  //
2362  if (parmDeclType->isArrayType()) {
2363    // int x[restrict 4] ->  int *restrict
2364    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2365  } else if (parmDeclType->isFunctionType())
2366    parmDeclType = Context.getPointerType(parmDeclType);
2367
2368  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2369                                         D.getIdentifierLoc(), II,
2370                                         parmDeclType, StorageClass,
2371                                         0);
2372
2373  if (D.getInvalidType())
2374    New->setInvalidDecl();
2375
2376  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2377  if (D.getCXXScopeSpec().isSet()) {
2378    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2379      << D.getCXXScopeSpec().getRange();
2380    New->setInvalidDecl();
2381  }
2382  // Parameter declarators cannot be interface types. All ObjC objects are
2383  // passed by reference.
2384  if (parmDeclType->isObjCInterfaceType()) {
2385    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2386         << "passed";
2387    New->setInvalidDecl();
2388  }
2389
2390  // Add the parameter declaration into this scope.
2391  S->AddDecl(New);
2392  if (II)
2393    IdResolver.AddDecl(New);
2394
2395  ProcessDeclAttributes(New, D);
2396  return New;
2397
2398}
2399
2400void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2401  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2402         "Not a function declarator!");
2403  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2404
2405  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2406  // for a K&R function.
2407  if (!FTI.hasPrototype) {
2408    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2409      if (FTI.ArgInfo[i].Param == 0) {
2410        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2411          << FTI.ArgInfo[i].Ident;
2412        // Implicitly declare the argument as type 'int' for lack of a better
2413        // type.
2414        DeclSpec DS;
2415        const char* PrevSpec; // unused
2416        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2417                           PrevSpec);
2418        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2419        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2420        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2421      }
2422    }
2423  }
2424}
2425
2426Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2427  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2428  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2429         "Not a function declarator!");
2430  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2431
2432  if (FTI.hasPrototype) {
2433    // FIXME: Diagnose arguments without names in C.
2434  }
2435
2436  Scope *ParentScope = FnBodyScope->getParent();
2437
2438  return ActOnStartOfFunctionDef(FnBodyScope,
2439                                 ActOnDeclarator(ParentScope, D, 0,
2440                                                 /*IsFunctionDefinition=*/true));
2441}
2442
2443Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2444  Decl *decl = static_cast<Decl*>(D);
2445  FunctionDecl *FD = cast<FunctionDecl>(decl);
2446
2447  ActiveScope = FnBodyScope;
2448
2449  // See if this is a redefinition.
2450  const FunctionDecl *Definition;
2451  if (FD->getBody(Definition)) {
2452    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2453    Diag(Definition->getLocation(), diag::note_previous_definition);
2454  }
2455
2456  // Builtin functions cannot be defined.
2457  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2458    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2459      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2460      FD->setInvalidDecl();
2461    }
2462  }
2463
2464  PushDeclContext(FnBodyScope, FD);
2465
2466  // Check the validity of our function parameters
2467  CheckParmsForFunctionDef(FD);
2468
2469  // Introduce our parameters into the function scope
2470  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2471    ParmVarDecl *Param = FD->getParamDecl(p);
2472    Param->setOwningFunction(FD);
2473
2474    // If this has an identifier, add it to the scope stack.
2475    if (Param->getIdentifier())
2476      PushOnScopeChains(Param, FnBodyScope);
2477  }
2478
2479  // Checking attributes of current function definition
2480  // dllimport attribute.
2481  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2482    // dllimport attribute cannot be applied to definition.
2483    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2484      Diag(FD->getLocation(),
2485           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2486        << "dllimport";
2487      FD->setInvalidDecl();
2488      return FD;
2489    } else {
2490      // If a symbol previously declared dllimport is later defined, the
2491      // attribute is ignored in subsequent references, and a warning is
2492      // emitted.
2493      Diag(FD->getLocation(),
2494           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2495        << FD->getNameAsCString() << "dllimport";
2496    }
2497  }
2498  return FD;
2499}
2500
2501static bool StatementCreatesScope(Stmt* S) {
2502  bool result = false;
2503  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2504    for (DeclStmt::decl_iterator i = DS->decl_begin();
2505         i != DS->decl_end(); ++i) {
2506      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2507        result |= D->getType()->isVariablyModifiedType();
2508        result |= !!D->getAttr<CleanupAttr>();
2509      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2510        result |= D->getUnderlyingType()->isVariablyModifiedType();
2511      }
2512    }
2513  }
2514
2515  return result;
2516}
2517
2518void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2519                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2520                                    std::vector<void*>& ScopeStack,
2521                                    Stmt* CurStmt,
2522                                    Stmt* ParentCompoundStmt) {
2523  for (Stmt::child_iterator i = CurStmt->child_begin();
2524       i != CurStmt->child_end(); ++i) {
2525    if (!*i) continue;
2526    if (StatementCreatesScope(*i))  {
2527      ScopeStack.push_back(*i);
2528      PopScopeMap[*i] = ParentCompoundStmt;
2529    } else if (isa<LabelStmt>(CurStmt)) {
2530      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2531    }
2532    if (isa<DeclStmt>(*i)) continue;
2533    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2534    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2535                             *i, CurCompound);
2536  }
2537
2538  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2539    ScopeStack.pop_back();
2540  }
2541}
2542
2543void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2544                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2545                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2546                                   std::vector<void*>& ScopeStack,
2547                                   Stmt* CurStmt) {
2548  for (Stmt::child_iterator i = CurStmt->child_begin();
2549       i != CurStmt->child_end(); ++i) {
2550    if (!*i) continue;
2551    if (StatementCreatesScope(*i))  {
2552      ScopeStack.push_back(*i);
2553    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2554      void* LScope = LabelScopeMap[GS->getLabel()];
2555      if (LScope) {
2556        bool foundScopeInStack = false;
2557        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2558          if (LScope == ScopeStack[i-1]) {
2559            foundScopeInStack = true;
2560            break;
2561          }
2562        }
2563        if (!foundScopeInStack) {
2564          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2565        }
2566      }
2567    }
2568    if (isa<DeclStmt>(*i)) continue;
2569    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, *i);
2570  }
2571
2572  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2573    ScopeStack.pop_back();
2574  }
2575}
2576
2577Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2578  Decl *dcl = static_cast<Decl *>(D);
2579  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2580  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2581    FD->setBody(Body);
2582    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2583  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2584    assert(MD == getCurMethodDecl() && "Method parsing confused");
2585    MD->setBody((Stmt*)Body);
2586  } else {
2587    Body->Destroy(Context);
2588    return 0;
2589  }
2590  PopDeclContext();
2591
2592  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2593  // class C2 {
2594  //   void f() {
2595  //     class LC1 {
2596  //       int m() { return 1; }
2597  //     };
2598  //   }
2599  // };
2600  if (ActiveScope == 0)
2601    return D;
2602
2603  // Verify and clean out per-function state.
2604
2605  bool HaveLabels = !ActiveScope->LabelMap.empty();
2606  // Check goto/label use.
2607  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2608       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2609    // Verify that we have no forward references left.  If so, there was a goto
2610    // or address of a label taken, but no definition of it.  Label fwd
2611    // definitions are indicated with a null substmt.
2612    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2613    if (L->getSubStmt() == 0) {
2614      // Emit error.
2615      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2616
2617      // At this point, we have gotos that use the bogus label.  Stitch it into
2618      // the function body so that they aren't leaked and that the AST is well
2619      // formed.
2620      if (Body) {
2621#if 0
2622        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2623        // and the AST is malformed anyway.  We should just blow away 'L'.
2624        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2625        cast<CompoundStmt>(Body)->push_back(L);
2626#else
2627        L->Destroy(Context);
2628#endif
2629      } else {
2630        // The whole function wasn't parsed correctly, just delete this.
2631        L->Destroy(Context);
2632      }
2633    }
2634  }
2635  // This reset is for both functions and methods.
2636  ActiveScope = 0;
2637
2638  if (!Body) return D;
2639
2640  if (HaveLabels) {
2641    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2642    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2643    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2644    std::vector<void*> ScopeStack;
2645    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2646    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2647  }
2648
2649  return D;
2650}
2651
2652/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2653/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2654NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2655                                          IdentifierInfo &II, Scope *S) {
2656  // Extension in C99.  Legal in C90, but warn about it.
2657  if (getLangOptions().C99)
2658    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2659  else
2660    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2661
2662  // FIXME: handle stuff like:
2663  // void foo() { extern float X(); }
2664  // void bar() { X(); }  <-- implicit decl for X in another scope.
2665
2666  // Set a Declarator for the implicit definition: int foo();
2667  const char *Dummy;
2668  DeclSpec DS;
2669  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2670  Error = Error; // Silence warning.
2671  assert(!Error && "Error setting up implicit decl!");
2672  Declarator D(DS, Declarator::BlockContext);
2673  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2674                                             0, 0, 0, Loc, D),
2675                SourceLocation());
2676  D.SetIdentifier(&II, Loc);
2677
2678  // Insert this function into translation-unit scope.
2679
2680  DeclContext *PrevDC = CurContext;
2681  CurContext = Context.getTranslationUnitDecl();
2682
2683  FunctionDecl *FD =
2684    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2685  FD->setImplicit();
2686
2687  CurContext = PrevDC;
2688
2689  AddKnownFunctionAttributes(FD);
2690
2691  return FD;
2692}
2693
2694/// \brief Adds any function attributes that we know a priori based on
2695/// the declaration of this function.
2696///
2697/// These attributes can apply both to implicitly-declared builtins
2698/// (like __builtin___printf_chk) or to library-declared functions
2699/// like NSLog or printf.
2700void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2701  if (FD->isInvalidDecl())
2702    return;
2703
2704  // If this is a built-in function, map its builtin attributes to
2705  // actual attributes.
2706  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2707    // Handle printf-formatting attributes.
2708    unsigned FormatIdx;
2709    bool HasVAListArg;
2710    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2711      if (!FD->getAttr<FormatAttr>())
2712        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2713    }
2714
2715    // Mark const if we don't care about errno and that is the only
2716    // thing preventing the function from being const. This allows
2717    // IRgen to use LLVM intrinsics for such functions.
2718    if (!getLangOptions().MathErrno &&
2719        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2720      if (!FD->getAttr<ConstAttr>())
2721        FD->addAttr(new ConstAttr());
2722    }
2723  }
2724
2725  IdentifierInfo *Name = FD->getIdentifier();
2726  if (!Name)
2727    return;
2728  if ((!getLangOptions().CPlusPlus &&
2729       FD->getDeclContext()->isTranslationUnit()) ||
2730      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2731       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2732       LinkageSpecDecl::lang_c)) {
2733    // Okay: this could be a libc/libm/Objective-C function we know
2734    // about.
2735  } else
2736    return;
2737
2738  unsigned KnownID;
2739  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2740    if (KnownFunctionIDs[KnownID] == Name)
2741      break;
2742
2743  switch (KnownID) {
2744  case id_NSLog:
2745  case id_NSLogv:
2746    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2747      // FIXME: We known better than our headers.
2748      const_cast<FormatAttr *>(Format)->setType("printf");
2749    } else
2750      FD->addAttr(new FormatAttr("printf", 1, 2));
2751    break;
2752
2753  case id_asprintf:
2754  case id_vasprintf:
2755    if (!FD->getAttr<FormatAttr>())
2756      FD->addAttr(new FormatAttr("printf", 2, 3));
2757    break;
2758
2759  default:
2760    // Unknown function or known function without any attributes to
2761    // add. Do nothing.
2762    break;
2763  }
2764}
2765
2766TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2767                                    Decl *LastDeclarator) {
2768  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2769  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2770
2771  // Scope manipulation handled by caller.
2772  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2773                                           D.getIdentifierLoc(),
2774                                           D.getIdentifier(),
2775                                           T);
2776  NewTD->setNextDeclarator(LastDeclarator);
2777  if (D.getInvalidType())
2778    NewTD->setInvalidDecl();
2779  return NewTD;
2780}
2781
2782/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2783/// former case, Name will be non-null.  In the later case, Name will be null.
2784/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2785/// reference/declaration/definition of a tag.
2786Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2787                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2788                             IdentifierInfo *Name, SourceLocation NameLoc,
2789                             AttributeList *Attr) {
2790  // If this is not a definition, it must have a name.
2791  assert((Name != 0 || TK == TK_Definition) &&
2792         "Nameless record must be a definition!");
2793
2794  TagDecl::TagKind Kind;
2795  switch (TagSpec) {
2796  default: assert(0 && "Unknown tag type!");
2797  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2798  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2799  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2800  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2801  }
2802
2803  DeclContext *SearchDC = CurContext;
2804  DeclContext *DC = CurContext;
2805  NamedDecl *PrevDecl = 0;
2806
2807  bool Invalid = false;
2808
2809  if (Name && SS.isNotEmpty()) {
2810    // We have a nested-name tag ('struct foo::bar').
2811
2812    // Check for invalid 'foo::'.
2813    if (SS.isInvalid()) {
2814      Name = 0;
2815      goto CreateNewDecl;
2816    }
2817
2818    DC = static_cast<DeclContext*>(SS.getScopeRep());
2819    SearchDC = DC;
2820    // Look-up name inside 'foo::'.
2821    PrevDecl = dyn_cast_or_null<TagDecl>(
2822                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2823
2824    // A tag 'foo::bar' must already exist.
2825    if (PrevDecl == 0) {
2826      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2827      Name = 0;
2828      goto CreateNewDecl;
2829    }
2830  } else if (Name) {
2831    // If this is a named struct, check to see if there was a previous forward
2832    // declaration or definition.
2833    // FIXME: We're looking into outer scopes here, even when we
2834    // shouldn't be. Doing so can result in ambiguities that we
2835    // shouldn't be diagnosing.
2836    LookupResult R = LookupName(S, Name, LookupTagName,
2837                                /*RedeclarationOnly=*/(TK != TK_Reference));
2838    if (R.isAmbiguous()) {
2839      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2840      // FIXME: This is not best way to recover from case like:
2841      //
2842      // struct S s;
2843      //
2844      // causes needless err_ovl_no_viable_function_in_init latter.
2845      Name = 0;
2846      PrevDecl = 0;
2847      Invalid = true;
2848    }
2849    else
2850      PrevDecl = R;
2851
2852    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2853      // FIXME: This makes sure that we ignore the contexts associated
2854      // with C structs, unions, and enums when looking for a matching
2855      // tag declaration or definition. See the similar lookup tweak
2856      // in Sema::LookupName; is there a better way to deal with this?
2857      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2858        SearchDC = SearchDC->getParent();
2859    }
2860  }
2861
2862  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2863    // Maybe we will complain about the shadowed template parameter.
2864    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2865    // Just pretend that we didn't see the previous declaration.
2866    PrevDecl = 0;
2867  }
2868
2869  if (PrevDecl) {
2870    // Check whether the previous declaration is usable.
2871    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2872
2873    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2874      // If this is a use of a previous tag, or if the tag is already declared
2875      // in the same scope (so that the definition/declaration completes or
2876      // rementions the tag), reuse the decl.
2877      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2878        // Make sure that this wasn't declared as an enum and now used as a
2879        // struct or something similar.
2880        if (PrevTagDecl->getTagKind() != Kind) {
2881          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2882          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2883          // Recover by making this an anonymous redefinition.
2884          Name = 0;
2885          PrevDecl = 0;
2886          Invalid = true;
2887        } else {
2888          // If this is a use, just return the declaration we found.
2889
2890          // FIXME: In the future, return a variant or some other clue
2891          // for the consumer of this Decl to know it doesn't own it.
2892          // For our current ASTs this shouldn't be a problem, but will
2893          // need to be changed with DeclGroups.
2894          if (TK == TK_Reference)
2895            return PrevDecl;
2896
2897          // Diagnose attempts to redefine a tag.
2898          if (TK == TK_Definition) {
2899            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2900              Diag(NameLoc, diag::err_redefinition) << Name;
2901              Diag(Def->getLocation(), diag::note_previous_definition);
2902              // If this is a redefinition, recover by making this
2903              // struct be anonymous, which will make any later
2904              // references get the previous definition.
2905              Name = 0;
2906              PrevDecl = 0;
2907              Invalid = true;
2908            } else {
2909              // If the type is currently being defined, complain
2910              // about a nested redefinition.
2911              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2912              if (Tag->isBeingDefined()) {
2913                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2914                Diag(PrevTagDecl->getLocation(),
2915                     diag::note_previous_definition);
2916                Name = 0;
2917                PrevDecl = 0;
2918                Invalid = true;
2919              }
2920            }
2921
2922            // Okay, this is definition of a previously declared or referenced
2923            // tag PrevDecl. We're going to create a new Decl for it.
2924          }
2925        }
2926        // If we get here we have (another) forward declaration or we
2927        // have a definition.  Just create a new decl.
2928      } else {
2929        // If we get here, this is a definition of a new tag type in a nested
2930        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2931        // new decl/type.  We set PrevDecl to NULL so that the entities
2932        // have distinct types.
2933        PrevDecl = 0;
2934      }
2935      // If we get here, we're going to create a new Decl. If PrevDecl
2936      // is non-NULL, it's a definition of the tag declared by
2937      // PrevDecl. If it's NULL, we have a new definition.
2938    } else {
2939      // PrevDecl is a namespace, template, or anything else
2940      // that lives in the IDNS_Tag identifier namespace.
2941      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2942        // The tag name clashes with a namespace name, issue an error and
2943        // recover by making this tag be anonymous.
2944        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2945        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2946        Name = 0;
2947        PrevDecl = 0;
2948        Invalid = true;
2949      } else {
2950        // The existing declaration isn't relevant to us; we're in a
2951        // new scope, so clear out the previous declaration.
2952        PrevDecl = 0;
2953      }
2954    }
2955  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2956             (Kind != TagDecl::TK_enum))  {
2957    // C++ [basic.scope.pdecl]p5:
2958    //   -- for an elaborated-type-specifier of the form
2959    //
2960    //          class-key identifier
2961    //
2962    //      if the elaborated-type-specifier is used in the
2963    //      decl-specifier-seq or parameter-declaration-clause of a
2964    //      function defined in namespace scope, the identifier is
2965    //      declared as a class-name in the namespace that contains
2966    //      the declaration; otherwise, except as a friend
2967    //      declaration, the identifier is declared in the smallest
2968    //      non-class, non-function-prototype scope that contains the
2969    //      declaration.
2970    //
2971    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2972    // C structs and unions.
2973
2974    // Find the context where we'll be declaring the tag.
2975    // FIXME: We would like to maintain the current DeclContext as the
2976    // lexical context,
2977    while (SearchDC->isRecord())
2978      SearchDC = SearchDC->getParent();
2979
2980    // Find the scope where we'll be declaring the tag.
2981    while (S->isClassScope() ||
2982           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2983           ((S->getFlags() & Scope::DeclScope) == 0) ||
2984           (S->getEntity() &&
2985            ((DeclContext *)S->getEntity())->isTransparentContext()))
2986      S = S->getParent();
2987  }
2988
2989CreateNewDecl:
2990
2991  // If there is an identifier, use the location of the identifier as the
2992  // location of the decl, otherwise use the location of the struct/union
2993  // keyword.
2994  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2995
2996  // Otherwise, create a new declaration. If there is a previous
2997  // declaration of the same entity, the two will be linked via
2998  // PrevDecl.
2999  TagDecl *New;
3000
3001  if (Kind == TagDecl::TK_enum) {
3002    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3003    // enum X { A, B, C } D;    D should chain to X.
3004    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3005                           cast_or_null<EnumDecl>(PrevDecl));
3006    // If this is an undefined enum, warn.
3007    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3008  } else {
3009    // struct/union/class
3010
3011    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3012    // struct X { int A; } D;    D should chain to X.
3013    if (getLangOptions().CPlusPlus)
3014      // FIXME: Look for a way to use RecordDecl for simple structs.
3015      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3016                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3017    else
3018      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3019                               cast_or_null<RecordDecl>(PrevDecl));
3020  }
3021
3022  if (Kind != TagDecl::TK_enum) {
3023    // Handle #pragma pack: if the #pragma pack stack has non-default
3024    // alignment, make up a packed attribute for this decl. These
3025    // attributes are checked when the ASTContext lays out the
3026    // structure.
3027    //
3028    // It is important for implementing the correct semantics that this
3029    // happen here (in act on tag decl). The #pragma pack stack is
3030    // maintained as a result of parser callbacks which can occur at
3031    // many points during the parsing of a struct declaration (because
3032    // the #pragma tokens are effectively skipped over during the
3033    // parsing of the struct).
3034    if (unsigned Alignment = getPragmaPackAlignment())
3035      New->addAttr(new PackedAttr(Alignment * 8));
3036  }
3037
3038  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3039    // C++ [dcl.typedef]p3:
3040    //   [...] Similarly, in a given scope, a class or enumeration
3041    //   shall not be declared with the same name as a typedef-name
3042    //   that is declared in that scope and refers to a type other
3043    //   than the class or enumeration itself.
3044    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3045    TypedefDecl *PrevTypedef = 0;
3046    if (Lookup.getKind() == LookupResult::Found)
3047      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3048
3049    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3050        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3051          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3052      Diag(Loc, diag::err_tag_definition_of_typedef)
3053        << Context.getTypeDeclType(New)
3054        << PrevTypedef->getUnderlyingType();
3055      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3056      Invalid = true;
3057    }
3058  }
3059
3060  if (Invalid)
3061    New->setInvalidDecl();
3062
3063  if (Attr)
3064    ProcessDeclAttributeList(New, Attr);
3065
3066  // If we're declaring or defining a tag in function prototype scope
3067  // in C, note that this type can only be used within the function.
3068  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3069    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3070
3071  // Set the lexical context. If the tag has a C++ scope specifier, the
3072  // lexical context will be different from the semantic context.
3073  New->setLexicalDeclContext(CurContext);
3074
3075  if (TK == TK_Definition)
3076    New->startDefinition();
3077
3078  // If this has an identifier, add it to the scope stack.
3079  if (Name) {
3080    S = getNonFieldDeclScope(S);
3081    PushOnScopeChains(New, S);
3082  } else {
3083    CurContext->addDecl(New);
3084  }
3085
3086  return New;
3087}
3088
3089void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3090  AdjustDeclIfTemplate(TagD);
3091  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3092
3093  // Enter the tag context.
3094  PushDeclContext(S, Tag);
3095
3096  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3097    FieldCollector->StartClass();
3098
3099    if (Record->getIdentifier()) {
3100      // C++ [class]p2:
3101      //   [...] The class-name is also inserted into the scope of the
3102      //   class itself; this is known as the injected-class-name. For
3103      //   purposes of access checking, the injected-class-name is treated
3104      //   as if it were a public member name.
3105      RecordDecl *InjectedClassName
3106        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3107                                CurContext, Record->getLocation(),
3108                                Record->getIdentifier(), Record);
3109      InjectedClassName->setImplicit();
3110      PushOnScopeChains(InjectedClassName, S);
3111    }
3112  }
3113}
3114
3115void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3116  AdjustDeclIfTemplate(TagD);
3117  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3118
3119  if (isa<CXXRecordDecl>(Tag))
3120    FieldCollector->FinishClass();
3121
3122  // Exit this scope of this tag's definition.
3123  PopDeclContext();
3124
3125  // Notify the consumer that we've defined a tag.
3126  Consumer.HandleTagDeclDefinition(Tag);
3127}
3128
3129bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3130                          QualType FieldTy, const Expr *BitWidth) {
3131  // FIXME: 6.7.2.1p4 - verify the field type.
3132
3133  llvm::APSInt Value;
3134  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3135    return true;
3136
3137  // Zero-width bitfield is ok for anonymous field.
3138  if (Value == 0 && FieldName)
3139    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3140
3141  if (Value.isNegative())
3142    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3143
3144  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3145  // FIXME: We won't need the 0 size once we check that the field type is valid.
3146  if (TypeSize && Value.getZExtValue() > TypeSize)
3147    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3148       << FieldName << (unsigned)TypeSize;
3149
3150  return false;
3151}
3152
3153/// ActOnField - Each field of a struct/union/class is passed into this in order
3154/// to create a FieldDecl object for it.
3155Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3156                               SourceLocation DeclStart,
3157                               Declarator &D, ExprTy *BitfieldWidth) {
3158  IdentifierInfo *II = D.getIdentifier();
3159  Expr *BitWidth = (Expr*)BitfieldWidth;
3160  SourceLocation Loc = DeclStart;
3161  RecordDecl *Record = (RecordDecl *)TagD;
3162  if (II) Loc = D.getIdentifierLoc();
3163
3164  // FIXME: Unnamed fields can be handled in various different ways, for
3165  // example, unnamed unions inject all members into the struct namespace!
3166
3167  QualType T = GetTypeForDeclarator(D, S);
3168  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3169  bool InvalidDecl = false;
3170
3171  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3172  // than a variably modified type.
3173  if (T->isVariablyModifiedType()) {
3174    bool SizeIsNegative;
3175    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3176                                                           SizeIsNegative);
3177    if (!FixedTy.isNull()) {
3178      Diag(Loc, diag::warn_illegal_constant_array_size);
3179      T = FixedTy;
3180    } else {
3181      if (SizeIsNegative)
3182        Diag(Loc, diag::err_typecheck_negative_array_size);
3183      else
3184        Diag(Loc, diag::err_typecheck_field_variable_size);
3185      T = Context.IntTy;
3186      InvalidDecl = true;
3187    }
3188  }
3189
3190  if (BitWidth) {
3191    if (VerifyBitField(Loc, II, T, BitWidth))
3192      InvalidDecl = true;
3193  } else {
3194    // Not a bitfield.
3195
3196    // validate II.
3197
3198  }
3199
3200  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3201                                       Loc, II, T, BitWidth,
3202                                       D.getDeclSpec().getStorageClassSpec() ==
3203                                       DeclSpec::SCS_mutable);
3204
3205  if (II) {
3206    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3207    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3208        && !isa<TagDecl>(PrevDecl)) {
3209      Diag(Loc, diag::err_duplicate_member) << II;
3210      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3211      NewFD->setInvalidDecl();
3212      Record->setInvalidDecl();
3213    }
3214  }
3215
3216  if (getLangOptions().CPlusPlus) {
3217    CheckExtraCXXDefaultArguments(D);
3218    if (!T->isPODType())
3219      cast<CXXRecordDecl>(Record)->setPOD(false);
3220  }
3221
3222  ProcessDeclAttributes(NewFD, D);
3223  if (T.isObjCGCWeak())
3224    Diag(Loc, diag::warn_attribute_weak_on_field);
3225
3226  if (D.getInvalidType() || InvalidDecl)
3227    NewFD->setInvalidDecl();
3228
3229  if (II) {
3230    PushOnScopeChains(NewFD, S);
3231  } else
3232    Record->addDecl(NewFD);
3233
3234  return NewFD;
3235}
3236
3237/// TranslateIvarVisibility - Translate visibility from a token ID to an
3238///  AST enum value.
3239static ObjCIvarDecl::AccessControl
3240TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3241  switch (ivarVisibility) {
3242  default: assert(0 && "Unknown visitibility kind");
3243  case tok::objc_private: return ObjCIvarDecl::Private;
3244  case tok::objc_public: return ObjCIvarDecl::Public;
3245  case tok::objc_protected: return ObjCIvarDecl::Protected;
3246  case tok::objc_package: return ObjCIvarDecl::Package;
3247  }
3248}
3249
3250/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3251/// in order to create an IvarDecl object for it.
3252Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3253                              SourceLocation DeclStart,
3254                              Declarator &D, ExprTy *BitfieldWidth,
3255                              tok::ObjCKeywordKind Visibility) {
3256
3257  IdentifierInfo *II = D.getIdentifier();
3258  Expr *BitWidth = (Expr*)BitfieldWidth;
3259  SourceLocation Loc = DeclStart;
3260  if (II) Loc = D.getIdentifierLoc();
3261
3262  // FIXME: Unnamed fields can be handled in various different ways, for
3263  // example, unnamed unions inject all members into the struct namespace!
3264
3265  QualType T = GetTypeForDeclarator(D, S);
3266  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3267  bool InvalidDecl = false;
3268
3269  if (BitWidth) {
3270    // 6.7.2.1p3, 6.7.2.1p4
3271    if (VerifyBitField(Loc, II, T, BitWidth))
3272      InvalidDecl = true;
3273  } else {
3274    // Not a bitfield.
3275
3276    // validate II.
3277
3278  }
3279
3280  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3281  // than a variably modified type.
3282  if (T->isVariablyModifiedType()) {
3283    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3284    InvalidDecl = true;
3285  }
3286
3287  // Get the visibility (access control) for this ivar.
3288  ObjCIvarDecl::AccessControl ac =
3289    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3290                                        : ObjCIvarDecl::None;
3291
3292  // Construct the decl.
3293  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3294                                             (Expr *)BitfieldWidth);
3295
3296  if (II) {
3297    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3298    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3299        && !isa<TagDecl>(PrevDecl)) {
3300      Diag(Loc, diag::err_duplicate_member) << II;
3301      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3302      NewID->setInvalidDecl();
3303    }
3304  }
3305
3306  // Process attributes attached to the ivar.
3307  ProcessDeclAttributes(NewID, D);
3308
3309  if (D.getInvalidType() || InvalidDecl)
3310    NewID->setInvalidDecl();
3311
3312  if (II) {
3313    // FIXME: When interfaces are DeclContexts, we'll need to add
3314    // these to the interface.
3315    S->AddDecl(NewID);
3316    IdResolver.AddDecl(NewID);
3317  }
3318
3319  return NewID;
3320}
3321
3322void Sema::ActOnFields(Scope* S,
3323                       SourceLocation RecLoc, DeclTy *RecDecl,
3324                       DeclTy **Fields, unsigned NumFields,
3325                       SourceLocation LBrac, SourceLocation RBrac,
3326                       AttributeList *Attr) {
3327  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3328  assert(EnclosingDecl && "missing record or interface decl");
3329
3330  // If the decl this is being inserted into is invalid, then it may be a
3331  // redeclaration or some other bogus case.  Don't try to add fields to it.
3332  if (EnclosingDecl->isInvalidDecl()) {
3333    // FIXME: Deallocate fields?
3334    return;
3335  }
3336
3337
3338  // Verify that all the fields are okay.
3339  unsigned NumNamedMembers = 0;
3340  llvm::SmallVector<FieldDecl*, 32> RecFields;
3341
3342  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3343  for (unsigned i = 0; i != NumFields; ++i) {
3344    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3345    assert(FD && "missing field decl");
3346
3347    // Get the type for the field.
3348    Type *FDTy = FD->getType().getTypePtr();
3349
3350    if (!FD->isAnonymousStructOrUnion()) {
3351      // Remember all fields written by the user.
3352      RecFields.push_back(FD);
3353    }
3354
3355    // C99 6.7.2.1p2 - A field may not be a function type.
3356    if (FDTy->isFunctionType()) {
3357      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3358        << FD->getDeclName();
3359      FD->setInvalidDecl();
3360      EnclosingDecl->setInvalidDecl();
3361      continue;
3362    }
3363    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3364    if (FDTy->isIncompleteType()) {
3365      if (!Record) {  // Incomplete ivar type is always an error.
3366        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3367                               diag::err_field_incomplete);
3368        FD->setInvalidDecl();
3369        EnclosingDecl->setInvalidDecl();
3370        continue;
3371      }
3372      if (i != NumFields-1 ||                   // ... that the last member ...
3373          !Record->isStruct() ||  // ... of a structure ...
3374          !FDTy->isArrayType()) {         //... may have incomplete array type.
3375        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3376                               diag::err_field_incomplete);
3377        FD->setInvalidDecl();
3378        EnclosingDecl->setInvalidDecl();
3379        continue;
3380      }
3381      if (NumNamedMembers < 1) {  //... must have more than named member ...
3382        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3383          << FD->getDeclName();
3384        FD->setInvalidDecl();
3385        EnclosingDecl->setInvalidDecl();
3386        continue;
3387      }
3388      // Okay, we have a legal flexible array member at the end of the struct.
3389      if (Record)
3390        Record->setHasFlexibleArrayMember(true);
3391    }
3392    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3393    /// field of another structure or the element of an array.
3394    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3395      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3396        // If this is a member of a union, then entire union becomes "flexible".
3397        if (Record && Record->isUnion()) {
3398          Record->setHasFlexibleArrayMember(true);
3399        } else {
3400          // If this is a struct/class and this is not the last element, reject
3401          // it.  Note that GCC supports variable sized arrays in the middle of
3402          // structures.
3403          if (i != NumFields-1) {
3404            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3405              << FD->getDeclName();
3406            FD->setInvalidDecl();
3407            EnclosingDecl->setInvalidDecl();
3408            continue;
3409          }
3410          // We support flexible arrays at the end of structs in other structs
3411          // as an extension.
3412          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3413            << FD->getDeclName();
3414          if (Record)
3415            Record->setHasFlexibleArrayMember(true);
3416        }
3417      }
3418    }
3419    /// A field cannot be an Objective-c object
3420    if (FDTy->isObjCInterfaceType()) {
3421      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3422      FD->setInvalidDecl();
3423      EnclosingDecl->setInvalidDecl();
3424      continue;
3425    }
3426    // Keep track of the number of named members.
3427    if (FD->getIdentifier())
3428      ++NumNamedMembers;
3429  }
3430
3431  // Okay, we successfully defined 'Record'.
3432  if (Record) {
3433    Record->completeDefinition(Context);
3434  } else {
3435    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3436    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3437      ID->setIVarList(ClsFields, RecFields.size(), Context);
3438      ID->setLocEnd(RBrac);
3439
3440      // Must enforce the rule that ivars in the base classes may not be
3441      // duplicates.
3442      if (ID->getSuperClass()) {
3443        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3444             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3445          ObjCIvarDecl* Ivar = (*IVI);
3446          IdentifierInfo *II = Ivar->getIdentifier();
3447          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3448          if (prevIvar) {
3449            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3450            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3451          }
3452        }
3453      }
3454    } else if (ObjCImplementationDecl *IMPDecl =
3455                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3456      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3457      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3458      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3459    }
3460  }
3461
3462  if (Attr)
3463    ProcessDeclAttributeList(Record, Attr);
3464}
3465
3466Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3467                                      DeclTy *lastEnumConst,
3468                                      SourceLocation IdLoc, IdentifierInfo *Id,
3469                                      SourceLocation EqualLoc, ExprTy *val) {
3470  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3471  EnumConstantDecl *LastEnumConst =
3472    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3473  Expr *Val = static_cast<Expr*>(val);
3474
3475  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3476  // we find one that is.
3477  S = getNonFieldDeclScope(S);
3478
3479  // Verify that there isn't already something declared with this name in this
3480  // scope.
3481  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3482  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3483    // Maybe we will complain about the shadowed template parameter.
3484    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3485    // Just pretend that we didn't see the previous declaration.
3486    PrevDecl = 0;
3487  }
3488
3489  if (PrevDecl) {
3490    // When in C++, we may get a TagDecl with the same name; in this case the
3491    // enum constant will 'hide' the tag.
3492    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3493           "Received TagDecl when not in C++!");
3494    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3495      if (isa<EnumConstantDecl>(PrevDecl))
3496        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3497      else
3498        Diag(IdLoc, diag::err_redefinition) << Id;
3499      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3500      if (Val) Val->Destroy(Context);
3501      return 0;
3502    }
3503  }
3504
3505  llvm::APSInt EnumVal(32);
3506  QualType EltTy;
3507  if (Val) {
3508    // Make sure to promote the operand type to int.
3509    UsualUnaryConversions(Val);
3510
3511    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3512    SourceLocation ExpLoc;
3513    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3514      Val->Destroy(Context);
3515      Val = 0;  // Just forget about it.
3516    } else {
3517      EltTy = Val->getType();
3518    }
3519  }
3520
3521  if (!Val) {
3522    if (LastEnumConst) {
3523      // Assign the last value + 1.
3524      EnumVal = LastEnumConst->getInitVal();
3525      ++EnumVal;
3526
3527      // Check for overflow on increment.
3528      if (EnumVal < LastEnumConst->getInitVal())
3529        Diag(IdLoc, diag::warn_enum_value_overflow);
3530
3531      EltTy = LastEnumConst->getType();
3532    } else {
3533      // First value, set to zero.
3534      EltTy = Context.IntTy;
3535      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3536    }
3537  }
3538
3539  EnumConstantDecl *New =
3540    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3541                             Val, EnumVal);
3542
3543  // Register this decl in the current scope stack.
3544  PushOnScopeChains(New, S);
3545
3546  return New;
3547}
3548
3549// FIXME: For consistency with ActOnFields(), we should have the parser
3550// pass in the source location for the left/right braces.
3551void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3552                         DeclTy **Elements, unsigned NumElements) {
3553  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3554  QualType EnumType = Context.getTypeDeclType(Enum);
3555
3556  // TODO: If the result value doesn't fit in an int, it must be a long or long
3557  // long value.  ISO C does not support this, but GCC does as an extension,
3558  // emit a warning.
3559  unsigned IntWidth = Context.Target.getIntWidth();
3560
3561  // Verify that all the values are okay, compute the size of the values, and
3562  // reverse the list.
3563  unsigned NumNegativeBits = 0;
3564  unsigned NumPositiveBits = 0;
3565
3566  // Keep track of whether all elements have type int.
3567  bool AllElementsInt = true;
3568
3569  for (unsigned i = 0; i != NumElements; ++i) {
3570    EnumConstantDecl *ECD =
3571      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3572    if (!ECD) continue;  // Already issued a diagnostic.
3573
3574    // If the enum value doesn't fit in an int, emit an extension warning.
3575    const llvm::APSInt &InitVal = ECD->getInitVal();
3576    assert(InitVal.getBitWidth() >= IntWidth &&
3577           "Should have promoted value to int");
3578    if (InitVal.getBitWidth() > IntWidth) {
3579      llvm::APSInt V(InitVal);
3580      V.trunc(IntWidth);
3581      V.extend(InitVal.getBitWidth());
3582      if (V != InitVal)
3583        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3584          << InitVal.toString(10);
3585    }
3586
3587    // Keep track of the size of positive and negative values.
3588    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3589      NumPositiveBits = std::max(NumPositiveBits,
3590                                 (unsigned)InitVal.getActiveBits());
3591    else
3592      NumNegativeBits = std::max(NumNegativeBits,
3593                                 (unsigned)InitVal.getMinSignedBits());
3594
3595    // Keep track of whether every enum element has type int (very commmon).
3596    if (AllElementsInt)
3597      AllElementsInt = ECD->getType() == Context.IntTy;
3598  }
3599
3600  // Figure out the type that should be used for this enum.
3601  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3602  QualType BestType;
3603  unsigned BestWidth;
3604
3605  if (NumNegativeBits) {
3606    // If there is a negative value, figure out the smallest integer type (of
3607    // int/long/longlong) that fits.
3608    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3609      BestType = Context.IntTy;
3610      BestWidth = IntWidth;
3611    } else {
3612      BestWidth = Context.Target.getLongWidth();
3613
3614      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3615        BestType = Context.LongTy;
3616      else {
3617        BestWidth = Context.Target.getLongLongWidth();
3618
3619        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3620          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3621        BestType = Context.LongLongTy;
3622      }
3623    }
3624  } else {
3625    // If there is no negative value, figure out which of uint, ulong, ulonglong
3626    // fits.
3627    if (NumPositiveBits <= IntWidth) {
3628      BestType = Context.UnsignedIntTy;
3629      BestWidth = IntWidth;
3630    } else if (NumPositiveBits <=
3631               (BestWidth = Context.Target.getLongWidth())) {
3632      BestType = Context.UnsignedLongTy;
3633    } else {
3634      BestWidth = Context.Target.getLongLongWidth();
3635      assert(NumPositiveBits <= BestWidth &&
3636             "How could an initializer get larger than ULL?");
3637      BestType = Context.UnsignedLongLongTy;
3638    }
3639  }
3640
3641  // Loop over all of the enumerator constants, changing their types to match
3642  // the type of the enum if needed.
3643  for (unsigned i = 0; i != NumElements; ++i) {
3644    EnumConstantDecl *ECD =
3645      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3646    if (!ECD) continue;  // Already issued a diagnostic.
3647
3648    // Standard C says the enumerators have int type, but we allow, as an
3649    // extension, the enumerators to be larger than int size.  If each
3650    // enumerator value fits in an int, type it as an int, otherwise type it the
3651    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3652    // that X has type 'int', not 'unsigned'.
3653    if (ECD->getType() == Context.IntTy) {
3654      // Make sure the init value is signed.
3655      llvm::APSInt IV = ECD->getInitVal();
3656      IV.setIsSigned(true);
3657      ECD->setInitVal(IV);
3658
3659      if (getLangOptions().CPlusPlus)
3660        // C++ [dcl.enum]p4: Following the closing brace of an
3661        // enum-specifier, each enumerator has the type of its
3662        // enumeration.
3663        ECD->setType(EnumType);
3664      continue;  // Already int type.
3665    }
3666
3667    // Determine whether the value fits into an int.
3668    llvm::APSInt InitVal = ECD->getInitVal();
3669    bool FitsInInt;
3670    if (InitVal.isUnsigned() || !InitVal.isNegative())
3671      FitsInInt = InitVal.getActiveBits() < IntWidth;
3672    else
3673      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3674
3675    // If it fits into an integer type, force it.  Otherwise force it to match
3676    // the enum decl type.
3677    QualType NewTy;
3678    unsigned NewWidth;
3679    bool NewSign;
3680    if (FitsInInt) {
3681      NewTy = Context.IntTy;
3682      NewWidth = IntWidth;
3683      NewSign = true;
3684    } else if (ECD->getType() == BestType) {
3685      // Already the right type!
3686      if (getLangOptions().CPlusPlus)
3687        // C++ [dcl.enum]p4: Following the closing brace of an
3688        // enum-specifier, each enumerator has the type of its
3689        // enumeration.
3690        ECD->setType(EnumType);
3691      continue;
3692    } else {
3693      NewTy = BestType;
3694      NewWidth = BestWidth;
3695      NewSign = BestType->isSignedIntegerType();
3696    }
3697
3698    // Adjust the APSInt value.
3699    InitVal.extOrTrunc(NewWidth);
3700    InitVal.setIsSigned(NewSign);
3701    ECD->setInitVal(InitVal);
3702
3703    // Adjust the Expr initializer and type.
3704    if (ECD->getInitExpr())
3705      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3706                                                      /*isLvalue=*/false));
3707    if (getLangOptions().CPlusPlus)
3708      // C++ [dcl.enum]p4: Following the closing brace of an
3709      // enum-specifier, each enumerator has the type of its
3710      // enumeration.
3711      ECD->setType(EnumType);
3712    else
3713      ECD->setType(NewTy);
3714  }
3715
3716  Enum->completeDefinition(Context, BestType);
3717}
3718
3719Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3720                                          ExprArg expr) {
3721  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3722
3723  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3724}
3725
3726