SemaDecl.cpp revision 0f436560640a1cff5b6d96f80f540770f139453f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185
186DeclContext *Sema::getContainingDC(DeclContext *DC) {
187  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
188    // A C++ out-of-line method will return to the file declaration context.
189    if (MD->isOutOfLine())
190      return MD->getLexicalDeclContext();
191
192    // A C++ inline method is parsed *after* the topmost class it was declared
193    // in is fully parsed (it's "complete").
194    // The parsing of a C++ inline method happens at the declaration context of
195    // the topmost (non-nested) class it is lexically declared in.
196    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
197    DC = MD->getParent();
198    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
199      DC = RD;
200
201    // Return the declaration context of the topmost class the inline method is
202    // declared in.
203    return DC;
204  }
205
206  if (isa<ObjCMethodDecl>(DC))
207    return Context.getTranslationUnitDecl();
208
209  return DC->getLexicalParent();
210}
211
212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
213  assert(getContainingDC(DC) == CurContext &&
214      "The next DeclContext should be lexically contained in the current one.");
215  CurContext = DC;
216  S->setEntity(DC);
217}
218
219void Sema::PopDeclContext() {
220  assert(CurContext && "DeclContext imbalance!");
221
222  CurContext = getContainingDC(CurContext);
223}
224
225/// EnterDeclaratorContext - Used when we must lookup names in the context
226/// of a declarator's nested name specifier.
227void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
228  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
229  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
230  CurContext = DC;
231  assert(CurContext && "No context?");
232  S->setEntity(CurContext);
233}
234
235void Sema::ExitDeclaratorContext(Scope *S) {
236  S->setEntity(PreDeclaratorDC);
237  PreDeclaratorDC = 0;
238
239  // Reset CurContext to the nearest enclosing context.
240  while (!S->getEntity() && S->getParent())
241    S = S->getParent();
242  CurContext = static_cast<DeclContext*>(S->getEntity());
243  assert(CurContext && "No context?");
244}
245
246/// \brief Determine whether we allow overloading of the function
247/// PrevDecl with another declaration.
248///
249/// This routine determines whether overloading is possible, not
250/// whether some new function is actually an overload. It will return
251/// true in C++ (where we can always provide overloads) or, as an
252/// extension, in C when the previous function is already an
253/// overloaded function declaration or has the "overloadable"
254/// attribute.
255static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
256  if (Context.getLangOptions().CPlusPlus)
257    return true;
258
259  if (isa<OverloadedFunctionDecl>(PrevDecl))
260    return true;
261
262  return PrevDecl->getAttr<OverloadableAttr>() != 0;
263}
264
265/// Add this decl to the scope shadowed decl chains.
266void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
267  // Move up the scope chain until we find the nearest enclosing
268  // non-transparent context. The declaration will be introduced into this
269  // scope.
270  while (S->getEntity() &&
271         ((DeclContext *)S->getEntity())->isTransparentContext())
272    S = S->getParent();
273
274  S->AddDecl(DeclPtrTy::make(D));
275
276  // Add scoped declarations into their context, so that they can be
277  // found later. Declarations without a context won't be inserted
278  // into any context.
279  CurContext->addDecl(D);
280
281  // C++ [basic.scope]p4:
282  //   -- exactly one declaration shall declare a class name or
283  //   enumeration name that is not a typedef name and the other
284  //   declarations shall all refer to the same object or
285  //   enumerator, or all refer to functions and function templates;
286  //   in this case the class name or enumeration name is hidden.
287  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
288    // We are pushing the name of a tag (enum or class).
289    if (CurContext->getLookupContext()
290          == TD->getDeclContext()->getLookupContext()) {
291      // We're pushing the tag into the current context, which might
292      // require some reshuffling in the identifier resolver.
293      IdentifierResolver::iterator
294        I = IdResolver.begin(TD->getDeclName()),
295        IEnd = IdResolver.end();
296      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
297        NamedDecl *PrevDecl = *I;
298        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
299             PrevDecl = *I, ++I) {
300          if (TD->declarationReplaces(*I)) {
301            // This is a redeclaration. Remove it from the chain and
302            // break out, so that we'll add in the shadowed
303            // declaration.
304            S->RemoveDecl(DeclPtrTy::make(*I));
305            if (PrevDecl == *I) {
306              IdResolver.RemoveDecl(*I);
307              IdResolver.AddDecl(TD);
308              return;
309            } else {
310              IdResolver.RemoveDecl(*I);
311              break;
312            }
313          }
314        }
315
316        // There is already a declaration with the same name in the same
317        // scope, which is not a tag declaration. It must be found
318        // before we find the new declaration, so insert the new
319        // declaration at the end of the chain.
320        IdResolver.AddShadowedDecl(TD, PrevDecl);
321
322        return;
323      }
324    }
325  } else if ((isa<FunctionDecl>(D) &&
326              AllowOverloadingOfFunction(D, Context)) ||
327             isa<FunctionTemplateDecl>(D)) {
328    // We are pushing the name of a function or function template,
329    // which might be an overloaded name.
330    IdentifierResolver::iterator Redecl
331      = std::find_if(IdResolver.begin(D->getDeclName()),
332                     IdResolver.end(),
333                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
334                                  D));
335    if (Redecl != IdResolver.end() &&
336        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
337      // There is already a declaration of a function on our
338      // IdResolver chain. Replace it with this declaration.
339      S->RemoveDecl(DeclPtrTy::make(*Redecl));
340      IdResolver.RemoveDecl(*Redecl);
341    }
342  } else if (isa<ObjCInterfaceDecl>(D)) {
343    // We're pushing an Objective-C interface into the current
344    // context. If there is already an alias declaration, remove it first.
345    for (IdentifierResolver::iterator
346           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
347         I != IEnd; ++I) {
348      if (isa<ObjCCompatibleAliasDecl>(*I)) {
349        S->RemoveDecl(DeclPtrTy::make(*I));
350        IdResolver.RemoveDecl(*I);
351        break;
352      }
353    }
354  }
355
356  IdResolver.AddDecl(D);
357}
358
359void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
360  if (S->decl_empty()) return;
361  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
362	 "Scope shouldn't contain decls!");
363
364  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
365       I != E; ++I) {
366    Decl *TmpD = (*I).getAs<Decl>();
367    assert(TmpD && "This decl didn't get pushed??");
368
369    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
370    NamedDecl *D = cast<NamedDecl>(TmpD);
371
372    if (!D->getDeclName()) continue;
373
374    // Remove this name from our lexical scope.
375    IdResolver.RemoveDecl(D);
376  }
377}
378
379/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
380/// return 0 if one not found.
381ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
383  // creation from this context.
384  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
385
386  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
387}
388
389/// getNonFieldDeclScope - Retrieves the innermost scope, starting
390/// from S, where a non-field would be declared. This routine copes
391/// with the difference between C and C++ scoping rules in structs and
392/// unions. For example, the following code is well-formed in C but
393/// ill-formed in C++:
394/// @code
395/// struct S6 {
396///   enum { BAR } e;
397/// };
398///
399/// void test_S6() {
400///   struct S6 a;
401///   a.e = BAR;
402/// }
403/// @endcode
404/// For the declaration of BAR, this routine will return a different
405/// scope. The scope S will be the scope of the unnamed enumeration
406/// within S6. In C++, this routine will return the scope associated
407/// with S6, because the enumeration's scope is a transparent
408/// context but structures can contain non-field names. In C, this
409/// routine will return the translation unit scope, since the
410/// enumeration's scope is a transparent context and structures cannot
411/// contain non-field names.
412Scope *Sema::getNonFieldDeclScope(Scope *S) {
413  while (((S->getFlags() & Scope::DeclScope) == 0) ||
414         (S->getEntity() &&
415          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
416         (S->isClassScope() && !getLangOptions().CPlusPlus))
417    S = S->getParent();
418  return S;
419}
420
421void Sema::InitBuiltinVaListType() {
422  if (!Context.getBuiltinVaListType().isNull())
423    return;
424
425  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
426  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
427  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
428  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
429}
430
431/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
432/// file scope.  lazily create a decl for it. ForRedeclaration is true
433/// if we're creating this built-in in anticipation of redeclaring the
434/// built-in.
435NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
436                                     Scope *S, bool ForRedeclaration,
437                                     SourceLocation Loc) {
438  Builtin::ID BID = (Builtin::ID)bid;
439
440  if (Context.BuiltinInfo.hasVAListUse(BID))
441    InitBuiltinVaListType();
442
443  ASTContext::GetBuiltinTypeError Error;
444  QualType R = Context.GetBuiltinType(BID, Error);
445  switch (Error) {
446  case ASTContext::GE_None:
447    // Okay
448    break;
449
450  case ASTContext::GE_Missing_stdio:
451    if (ForRedeclaration)
452      Diag(Loc, diag::err_implicit_decl_requires_stdio)
453        << Context.BuiltinInfo.GetName(BID);
454    return 0;
455
456  case ASTContext::GE_Missing_setjmp:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461  }
462
463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
464    Diag(Loc, diag::ext_implicit_lib_function_decl)
465      << Context.BuiltinInfo.GetName(BID)
466      << R;
467    if (Context.BuiltinInfo.getHeaderName(BID) &&
468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
469          != Diagnostic::Ignored)
470      Diag(Loc, diag::note_please_include_header)
471        << Context.BuiltinInfo.getHeaderName(BID)
472        << Context.BuiltinInfo.GetName(BID);
473  }
474
475  FunctionDecl *New = FunctionDecl::Create(Context,
476                                           Context.getTranslationUnitDecl(),
477                                           Loc, II, R,
478                                           FunctionDecl::Extern, false,
479                                           /*hasPrototype=*/true);
480  New->setImplicit();
481
482  // Create Decl objects for each parameter, adding them to the
483  // FunctionDecl.
484  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
485    llvm::SmallVector<ParmVarDecl*, 16> Params;
486    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
487      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
488                                           FT->getArgType(i), VarDecl::None, 0));
489    New->setParams(Context, Params.data(), Params.size());
490  }
491
492  AddKnownFunctionAttributes(New);
493
494  // TUScope is the translation-unit scope to insert this function into.
495  // FIXME: This is hideous. We need to teach PushOnScopeChains to
496  // relate Scopes to DeclContexts, and probably eliminate CurContext
497  // entirely, but we're not there yet.
498  DeclContext *SavedContext = CurContext;
499  CurContext = Context.getTranslationUnitDecl();
500  PushOnScopeChains(New, TUScope);
501  CurContext = SavedContext;
502  return New;
503}
504
505/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
506/// everything from the standard library is defined.
507NamespaceDecl *Sema::GetStdNamespace() {
508  if (!StdNamespace) {
509    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
510    DeclContext *Global = Context.getTranslationUnitDecl();
511    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
512    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
513  }
514  return StdNamespace;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
538      // Install the built-in type for 'id', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
540      return;
541    case 5:
542      if (!TypeID->isStr("Class"))
543        break;
544      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'Class', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
547      return;
548    case 3:
549      if (!TypeID->isStr("SEL"))
550        break;
551      Context.setObjCSelType(Context.getTypeDeclType(New));
552      return;
553    case 8:
554      if (!TypeID->isStr("Protocol"))
555        break;
556      Context.setObjCProtoType(New->getUnderlyingType());
557      return;
558    }
559    // Fall through - the typedef name was not a builtin type.
560  }
561  // Verify the old decl was also a type.
562  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
563  if (!Old) {
564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
565      << New->getDeclName();
566    if (OldD->getLocation().isValid())
567      Diag(OldD->getLocation(), diag::note_previous_definition);
568    return New->setInvalidDecl();
569  }
570
571  // Determine the "old" type we'll use for checking and diagnostics.
572  QualType OldType;
573  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
574    OldType = OldTypedef->getUnderlyingType();
575  else
576    OldType = Context.getTypeDeclType(Old);
577
578  // If the typedef types are not identical, reject them in all languages and
579  // with any extensions enabled.
580
581  if (OldType != New->getUnderlyingType() &&
582      Context.getCanonicalType(OldType) !=
583      Context.getCanonicalType(New->getUnderlyingType())) {
584    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
585      << New->getUnderlyingType() << OldType;
586    if (Old->getLocation().isValid())
587      Diag(Old->getLocation(), diag::note_previous_definition);
588    return New->setInvalidDecl();
589  }
590
591  if (getLangOptions().Microsoft)
592    return;
593
594  // C++ [dcl.typedef]p2:
595  //   In a given non-class scope, a typedef specifier can be used to
596  //   redefine the name of any type declared in that scope to refer
597  //   to the type to which it already refers.
598  if (getLangOptions().CPlusPlus) {
599    if (!isa<CXXRecordDecl>(CurContext))
600      return;
601    Diag(New->getLocation(), diag::err_redefinition)
602      << New->getDeclName();
603    Diag(Old->getLocation(), diag::note_previous_definition);
604    return New->setInvalidDecl();
605  }
606
607  // If we have a redefinition of a typedef in C, emit a warning.  This warning
608  // is normally mapped to an error, but can be controlled with
609  // -Wtypedef-redefinition.  If either the original or the redefinition is
610  // in a system header, don't emit this for compatibility with GCC.
611  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
612      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
613       Context.getSourceManager().isInSystemHeader(New->getLocation())))
614    return;
615
616  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
617    << New->getDeclName();
618  Diag(Old->getLocation(), diag::note_previous_definition);
619  return;
620}
621
622/// DeclhasAttr - returns true if decl Declaration already has the target
623/// attribute.
624static bool
625DeclHasAttr(const Decl *decl, const Attr *target) {
626  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
627    if (attr->getKind() == target->getKind())
628      return true;
629
630  return false;
631}
632
633/// MergeAttributes - append attributes from the Old decl to the New one.
634static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
635  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
636    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
637      Attr *NewAttr = attr->clone(C);
638      NewAttr->setInherited(true);
639      New->addAttr(NewAttr);
640    }
641  }
642}
643
644/// Used in MergeFunctionDecl to keep track of function parameters in
645/// C.
646struct GNUCompatibleParamWarning {
647  ParmVarDecl *OldParm;
648  ParmVarDecl *NewParm;
649  QualType PromotedType;
650};
651
652/// MergeFunctionDecl - We just parsed a function 'New' from
653/// declarator D which has the same name and scope as a previous
654/// declaration 'Old'.  Figure out how to resolve this situation,
655/// merging decls or emitting diagnostics as appropriate.
656///
657/// In C++, New and Old must be declarations that are not
658/// overloaded. Use IsOverload to determine whether New and Old are
659/// overloaded, and to select the Old declaration that New should be
660/// merged with.
661///
662/// Returns true if there was an error, false otherwise.
663bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
664  assert(!isa<OverloadedFunctionDecl>(OldD) &&
665         "Cannot merge with an overloaded function declaration");
666
667  // Verify the old decl was also a function.
668  FunctionDecl *Old = 0;
669  if (FunctionTemplateDecl *OldFunctionTemplate
670        = dyn_cast<FunctionTemplateDecl>(OldD))
671    Old = OldFunctionTemplate->getTemplatedDecl();
672  else
673    Old = dyn_cast<FunctionDecl>(OldD);
674  if (!Old) {
675    Diag(New->getLocation(), diag::err_redefinition_different_kind)
676      << New->getDeclName();
677    Diag(OldD->getLocation(), diag::note_previous_definition);
678    return true;
679  }
680
681  // Determine whether the previous declaration was a definition,
682  // implicit declaration, or a declaration.
683  diag::kind PrevDiag;
684  if (Old->isThisDeclarationADefinition())
685    PrevDiag = diag::note_previous_definition;
686  else if (Old->isImplicit())
687    PrevDiag = diag::note_previous_implicit_declaration;
688  else
689    PrevDiag = diag::note_previous_declaration;
690
691  QualType OldQType = Context.getCanonicalType(Old->getType());
692  QualType NewQType = Context.getCanonicalType(New->getType());
693
694  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
695      New->getStorageClass() == FunctionDecl::Static &&
696      Old->getStorageClass() != FunctionDecl::Static) {
697    Diag(New->getLocation(), diag::err_static_non_static)
698      << New;
699    Diag(Old->getLocation(), PrevDiag);
700    return true;
701  }
702
703  if (getLangOptions().CPlusPlus) {
704    // (C++98 13.1p2):
705    //   Certain function declarations cannot be overloaded:
706    //     -- Function declarations that differ only in the return type
707    //        cannot be overloaded.
708    QualType OldReturnType
709      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
710    QualType NewReturnType
711      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
712    if (OldReturnType != NewReturnType) {
713      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
714      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
715      return true;
716    }
717
718    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
719    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
720    if (OldMethod && NewMethod &&
721        NewMethod->getLexicalDeclContext()->isRecord()) {
722      //    -- Member function declarations with the same name and the
723      //       same parameter types cannot be overloaded if any of them
724      //       is a static member function declaration.
725      if (OldMethod->isStatic() || NewMethod->isStatic()) {
726        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
728        return true;
729      }
730
731      // C++ [class.mem]p1:
732      //   [...] A member shall not be declared twice in the
733      //   member-specification, except that a nested class or member
734      //   class template can be declared and then later defined.
735      unsigned NewDiag;
736      if (isa<CXXConstructorDecl>(OldMethod))
737        NewDiag = diag::err_constructor_redeclared;
738      else if (isa<CXXDestructorDecl>(NewMethod))
739        NewDiag = diag::err_destructor_redeclared;
740      else if (isa<CXXConversionDecl>(NewMethod))
741        NewDiag = diag::err_conv_function_redeclared;
742      else
743        NewDiag = diag::err_member_redeclared;
744
745      Diag(New->getLocation(), NewDiag);
746      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747    }
748
749    // (C++98 8.3.5p3):
750    //   All declarations for a function shall agree exactly in both the
751    //   return type and the parameter-type-list.
752    if (OldQType == NewQType)
753      return MergeCompatibleFunctionDecls(New, Old);
754
755    // Fall through for conflicting redeclarations and redefinitions.
756  }
757
758  // C: Function types need to be compatible, not identical. This handles
759  // duplicate function decls like "void f(int); void f(enum X);" properly.
760  if (!getLangOptions().CPlusPlus &&
761      Context.typesAreCompatible(OldQType, NewQType)) {
762    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
763    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
764    const FunctionProtoType *OldProto = 0;
765    if (isa<FunctionNoProtoType>(NewFuncType) &&
766        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
767      // The old declaration provided a function prototype, but the
768      // new declaration does not. Merge in the prototype.
769      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
770      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
771                                                 OldProto->arg_type_end());
772      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
773                                         ParamTypes.data(), ParamTypes.size(),
774                                         OldProto->isVariadic(),
775                                         OldProto->getTypeQuals());
776      New->setType(NewQType);
777      New->setHasInheritedPrototype();
778
779      // Synthesize a parameter for each argument type.
780      llvm::SmallVector<ParmVarDecl*, 16> Params;
781      for (FunctionProtoType::arg_type_iterator
782             ParamType = OldProto->arg_type_begin(),
783             ParamEnd = OldProto->arg_type_end();
784           ParamType != ParamEnd; ++ParamType) {
785        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
786                                                 SourceLocation(), 0,
787                                                 *ParamType, VarDecl::None,
788                                                 0);
789        Param->setImplicit();
790        Params.push_back(Param);
791      }
792
793      New->setParams(Context, Params.data(), Params.size());
794    }
795
796    return MergeCompatibleFunctionDecls(New, Old);
797  }
798
799  // GNU C permits a K&R definition to follow a prototype declaration
800  // if the declared types of the parameters in the K&R definition
801  // match the types in the prototype declaration, even when the
802  // promoted types of the parameters from the K&R definition differ
803  // from the types in the prototype. GCC then keeps the types from
804  // the prototype.
805  //
806  // If a variadic prototype is followed by a non-variadic K&R definition,
807  // the K&R definition becomes variadic.  This is sort of an edge case, but
808  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
809  // C99 6.9.1p8.
810  if (!getLangOptions().CPlusPlus &&
811      Old->hasPrototype() && !New->hasPrototype() &&
812      New->getType()->getAsFunctionProtoType() &&
813      Old->getNumParams() == New->getNumParams()) {
814    llvm::SmallVector<QualType, 16> ArgTypes;
815    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
816    const FunctionProtoType *OldProto
817      = Old->getType()->getAsFunctionProtoType();
818    const FunctionProtoType *NewProto
819      = New->getType()->getAsFunctionProtoType();
820
821    // Determine whether this is the GNU C extension.
822    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
823                                               NewProto->getResultType());
824    bool LooseCompatible = !MergedReturn.isNull();
825    for (unsigned Idx = 0, End = Old->getNumParams();
826         LooseCompatible && Idx != End; ++Idx) {
827      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
828      ParmVarDecl *NewParm = New->getParamDecl(Idx);
829      if (Context.typesAreCompatible(OldParm->getType(),
830                                     NewProto->getArgType(Idx))) {
831        ArgTypes.push_back(NewParm->getType());
832      } else if (Context.typesAreCompatible(OldParm->getType(),
833                                            NewParm->getType())) {
834        GNUCompatibleParamWarning Warn
835          = { OldParm, NewParm, NewProto->getArgType(Idx) };
836        Warnings.push_back(Warn);
837        ArgTypes.push_back(NewParm->getType());
838      } else
839        LooseCompatible = false;
840    }
841
842    if (LooseCompatible) {
843      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
844        Diag(Warnings[Warn].NewParm->getLocation(),
845             diag::ext_param_promoted_not_compatible_with_prototype)
846          << Warnings[Warn].PromotedType
847          << Warnings[Warn].OldParm->getType();
848        Diag(Warnings[Warn].OldParm->getLocation(),
849             diag::note_previous_declaration);
850      }
851
852      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
853                                           ArgTypes.size(),
854                                           OldProto->isVariadic(), 0));
855      return MergeCompatibleFunctionDecls(New, Old);
856    }
857
858    // Fall through to diagnose conflicting types.
859  }
860
861  // A function that has already been declared has been redeclared or defined
862  // with a different type- show appropriate diagnostic
863  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
864    // The user has declared a builtin function with an incompatible
865    // signature.
866    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
867      // The function the user is redeclaring is a library-defined
868      // function like 'malloc' or 'printf'. Warn about the
869      // redeclaration, then pretend that we don't know about this
870      // library built-in.
871      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
872      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
873        << Old << Old->getType();
874      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
875      Old->setInvalidDecl();
876      return false;
877    }
878
879    PrevDiag = diag::note_previous_builtin_declaration;
880  }
881
882  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
883  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
884  return true;
885}
886
887/// \brief Completes the merge of two function declarations that are
888/// known to be compatible.
889///
890/// This routine handles the merging of attributes and other
891/// properties of function declarations form the old declaration to
892/// the new declaration, once we know that New is in fact a
893/// redeclaration of Old.
894///
895/// \returns false
896bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
897  // Merge the attributes
898  MergeAttributes(New, Old, Context);
899
900  // Merge the storage class.
901  if (Old->getStorageClass() != FunctionDecl::Extern)
902    New->setStorageClass(Old->getStorageClass());
903
904  // Merge "inline"
905  if (Old->isInline())
906    New->setInline(true);
907
908  // If this function declaration by itself qualifies as a C99 inline
909  // definition (C99 6.7.4p6), but the previous definition did not,
910  // then the function is not a C99 inline definition.
911  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
912    New->setC99InlineDefinition(false);
913  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
914    // Mark all preceding definitions as not being C99 inline definitions.
915    for (const FunctionDecl *Prev = Old; Prev;
916         Prev = Prev->getPreviousDeclaration())
917      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
918  }
919
920  // Merge "pure" flag.
921  if (Old->isPure())
922    New->setPure();
923
924  // Merge the "deleted" flag.
925  if (Old->isDeleted())
926    New->setDeleted();
927
928  if (getLangOptions().CPlusPlus)
929    return MergeCXXFunctionDecl(New, Old);
930
931  return false;
932}
933
934/// MergeVarDecl - We just parsed a variable 'New' which has the same name
935/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
936/// situation, merging decls or emitting diagnostics as appropriate.
937///
938/// Tentative definition rules (C99 6.9.2p2) are checked by
939/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
940/// definitions here, since the initializer hasn't been attached.
941///
942void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
943  // If either decl is invalid, make sure the new one is marked invalid and
944  // don't do any other checking.
945  if (New->isInvalidDecl() || OldD->isInvalidDecl())
946    return New->setInvalidDecl();
947
948  // Verify the old decl was also a variable.
949  VarDecl *Old = dyn_cast<VarDecl>(OldD);
950  if (!Old) {
951    Diag(New->getLocation(), diag::err_redefinition_different_kind)
952      << New->getDeclName();
953    Diag(OldD->getLocation(), diag::note_previous_definition);
954    return New->setInvalidDecl();
955  }
956
957  MergeAttributes(New, Old, Context);
958
959  // Merge the types
960  QualType MergedT;
961  if (getLangOptions().CPlusPlus) {
962    if (Context.hasSameType(New->getType(), Old->getType()))
963      MergedT = New->getType();
964  } else {
965    MergedT = Context.mergeTypes(New->getType(), Old->getType());
966  }
967  if (MergedT.isNull()) {
968    Diag(New->getLocation(), diag::err_redefinition_different_type)
969      << New->getDeclName();
970    Diag(Old->getLocation(), diag::note_previous_definition);
971    return New->setInvalidDecl();
972  }
973  New->setType(MergedT);
974
975  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
976  if (New->getStorageClass() == VarDecl::Static &&
977      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
978    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
979    Diag(Old->getLocation(), diag::note_previous_definition);
980    return New->setInvalidDecl();
981  }
982  // C99 6.2.2p4:
983  //   For an identifier declared with the storage-class specifier
984  //   extern in a scope in which a prior declaration of that
985  //   identifier is visible,23) if the prior declaration specifies
986  //   internal or external linkage, the linkage of the identifier at
987  //   the later declaration is the same as the linkage specified at
988  //   the prior declaration. If no prior declaration is visible, or
989  //   if the prior declaration specifies no linkage, then the
990  //   identifier has external linkage.
991  if (New->hasExternalStorage() && Old->hasLinkage())
992    /* Okay */;
993  else if (New->getStorageClass() != VarDecl::Static &&
994           Old->getStorageClass() == VarDecl::Static) {
995    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
996    Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999
1000  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1001
1002  // FIXME: The test for external storage here seems wrong? We still
1003  // need to check for mismatches.
1004  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1005      // Don't complain about out-of-line definitions of static members.
1006      !(Old->getLexicalDeclContext()->isRecord() &&
1007        !New->getLexicalDeclContext()->isRecord())) {
1008    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1009    Diag(Old->getLocation(), diag::note_previous_definition);
1010    return New->setInvalidDecl();
1011  }
1012
1013  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1014    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1015    Diag(Old->getLocation(), diag::note_previous_definition);
1016  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1017    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1018    Diag(Old->getLocation(), diag::note_previous_definition);
1019  }
1020
1021  // Keep a chain of previous declarations.
1022  New->setPreviousDeclaration(Old);
1023}
1024
1025/// CheckFallThrough - Check that we don't fall off the end of a
1026/// Statement that should return a value.
1027///
1028/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1029/// MaybeFallThrough iff we might or might not fall off the end and
1030/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1031/// that functions not marked noreturn will return.
1032Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1033  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1034
1035  // FIXME: They should never return 0, fix that, delete this code.
1036  if (cfg == 0)
1037    return NeverFallThrough;
1038  // The CFG leaves in dead things, and we don't want to dead code paths to
1039  // confuse us, so we mark all live things first.
1040  std::queue<CFGBlock*> workq;
1041  llvm::BitVector live(cfg->getNumBlockIDs());
1042  // Prep work queue
1043  workq.push(&cfg->getEntry());
1044  // Solve
1045  while (!workq.empty()) {
1046    CFGBlock *item = workq.front();
1047    workq.pop();
1048    live.set(item->getBlockID());
1049    for (CFGBlock::succ_iterator I=item->succ_begin(),
1050           E=item->succ_end();
1051         I != E;
1052         ++I) {
1053      if ((*I) && !live[(*I)->getBlockID()]) {
1054        live.set((*I)->getBlockID());
1055        workq.push(*I);
1056      }
1057    }
1058  }
1059
1060  // Now we know what is live, we check the live precessors of the exit block
1061  // and look for fall through paths, being careful to ignore normal returns,
1062  // and exceptional paths.
1063  bool HasLiveReturn = false;
1064  bool HasFakeEdge = false;
1065  bool HasPlainEdge = false;
1066  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1067         E = cfg->getExit().pred_end();
1068       I != E;
1069       ++I) {
1070    CFGBlock& B = **I;
1071    if (!live[B.getBlockID()])
1072      continue;
1073    if (B.size() == 0) {
1074      // A labeled empty statement, or the entry block...
1075      HasPlainEdge = true;
1076      continue;
1077    }
1078    Stmt *S = B[B.size()-1];
1079    if (isa<ReturnStmt>(S)) {
1080      HasLiveReturn = true;
1081      continue;
1082    }
1083    if (isa<ObjCAtThrowStmt>(S)) {
1084      HasFakeEdge = true;
1085      continue;
1086    }
1087    if (isa<CXXThrowExpr>(S)) {
1088      HasFakeEdge = true;
1089      continue;
1090    }
1091    bool NoReturnEdge = false;
1092    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1093      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1094      if (CEE->getType().getNoReturnAttr()) {
1095        NoReturnEdge = true;
1096        HasFakeEdge = true;
1097      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1098        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1099          if (FD->hasAttr<NoReturnAttr>()) {
1100            NoReturnEdge = true;
1101            HasFakeEdge = true;
1102          }
1103        }
1104      }
1105    }
1106    // FIXME: Add noreturn message sends.
1107    if (NoReturnEdge == false)
1108      HasPlainEdge = true;
1109  }
1110  if (!HasPlainEdge)
1111    return NeverFallThrough;
1112  if (HasFakeEdge || HasLiveReturn)
1113    return MaybeFallThrough;
1114  // This says AlwaysFallThrough for calls to functions that are not marked
1115  // noreturn, that don't return.  If people would like this warning to be more
1116  // accurate, such functions should be marked as noreturn.
1117  return AlwaysFallThrough;
1118}
1119
1120/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1121/// function that should return a value.  Check that we don't fall off the end
1122/// of a noreturn function.  We assume that functions and blocks not marked
1123/// noreturn will return.
1124void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1125  // FIXME: Would be nice if we had a better way to control cascading errors,
1126  // but for now, avoid them.  The problem is that when Parse sees:
1127  //   int foo() { return a; }
1128  // The return is eaten and the Sema code sees just:
1129  //   int foo() { }
1130  // which this code would then warn about.
1131  if (getDiagnostics().hasErrorOccurred())
1132    return;
1133  bool ReturnsVoid = false;
1134  bool HasNoReturn = false;
1135  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1136    if (FD->getResultType()->isVoidType())
1137      ReturnsVoid = true;
1138    if (FD->hasAttr<NoReturnAttr>())
1139      HasNoReturn = true;
1140  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1141    if (MD->getResultType()->isVoidType())
1142      ReturnsVoid = true;
1143    if (MD->hasAttr<NoReturnAttr>())
1144      HasNoReturn = true;
1145  }
1146
1147  // Short circuit for compilation speed.
1148  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1149       == Diagnostic::Ignored || ReturnsVoid)
1150      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1151          == Diagnostic::Ignored || !HasNoReturn)
1152      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1153          == Diagnostic::Ignored || !ReturnsVoid))
1154    return;
1155  // FIXME: Funtion try block
1156  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1157    switch (CheckFallThrough(Body)) {
1158    case MaybeFallThrough:
1159      if (HasNoReturn)
1160        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1161      else if (!ReturnsVoid)
1162        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1163      break;
1164    case AlwaysFallThrough:
1165      if (HasNoReturn)
1166        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1167      else if (!ReturnsVoid)
1168        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1169      break;
1170    case NeverFallThrough:
1171      if (ReturnsVoid)
1172        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1173      break;
1174    }
1175  }
1176}
1177
1178/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1179/// that should return a value.  Check that we don't fall off the end of a
1180/// noreturn block.  We assume that functions and blocks not marked noreturn
1181/// will return.
1182void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1183  // FIXME: Would be nice if we had a better way to control cascading errors,
1184  // but for now, avoid them.  The problem is that when Parse sees:
1185  //   int foo() { return a; }
1186  // The return is eaten and the Sema code sees just:
1187  //   int foo() { }
1188  // which this code would then warn about.
1189  if (getDiagnostics().hasErrorOccurred())
1190    return;
1191  bool ReturnsVoid = false;
1192  bool HasNoReturn = false;
1193  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1194    if (FT->getResultType()->isVoidType())
1195      ReturnsVoid = true;
1196    if (FT->getNoReturnAttr())
1197      HasNoReturn = true;
1198  }
1199
1200  // Short circuit for compilation speed.
1201  if (ReturnsVoid
1202      && !HasNoReturn
1203      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1204          == Diagnostic::Ignored || !ReturnsVoid))
1205    return;
1206  // FIXME: Funtion try block
1207  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1208    switch (CheckFallThrough(Body)) {
1209    case MaybeFallThrough:
1210      if (HasNoReturn)
1211        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1212      else if (!ReturnsVoid)
1213        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1214      break;
1215    case AlwaysFallThrough:
1216      if (HasNoReturn)
1217        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1218      else if (!ReturnsVoid)
1219        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1220      break;
1221    case NeverFallThrough:
1222      if (ReturnsVoid)
1223        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1224      break;
1225    }
1226  }
1227}
1228
1229/// CheckParmsForFunctionDef - Check that the parameters of the given
1230/// function are appropriate for the definition of a function. This
1231/// takes care of any checks that cannot be performed on the
1232/// declaration itself, e.g., that the types of each of the function
1233/// parameters are complete.
1234bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1235  bool HasInvalidParm = false;
1236  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1237    ParmVarDecl *Param = FD->getParamDecl(p);
1238
1239    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1240    // function declarator that is part of a function definition of
1241    // that function shall not have incomplete type.
1242    //
1243    // This is also C++ [dcl.fct]p6.
1244    if (!Param->isInvalidDecl() &&
1245        RequireCompleteType(Param->getLocation(), Param->getType(),
1246                               diag::err_typecheck_decl_incomplete_type)) {
1247      Param->setInvalidDecl();
1248      HasInvalidParm = true;
1249    }
1250
1251    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1252    // declaration of each parameter shall include an identifier.
1253    if (Param->getIdentifier() == 0 &&
1254        !Param->isImplicit() &&
1255        !getLangOptions().CPlusPlus)
1256      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1257  }
1258
1259  return HasInvalidParm;
1260}
1261
1262/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1263/// no declarator (e.g. "struct foo;") is parsed.
1264Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1265  // FIXME: Error on auto/register at file scope
1266  // FIXME: Error on inline/virtual/explicit
1267  // FIXME: Error on invalid restrict
1268  // FIXME: Warn on useless __thread
1269  // FIXME: Warn on useless const/volatile
1270  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1271  // FIXME: Warn on useless attributes
1272  TagDecl *Tag = 0;
1273  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1274      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1275      DS.getTypeSpecType() == DeclSpec::TST_union ||
1276      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1277    if (!DS.getTypeRep()) // We probably had an error
1278      return DeclPtrTy();
1279
1280    // Note that the above type specs guarantee that the
1281    // type rep is a Decl, whereas in many of the others
1282    // it's a Type.
1283    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1284  }
1285
1286  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1287    if (!Record->getDeclName() && Record->isDefinition() &&
1288        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1289      if (getLangOptions().CPlusPlus ||
1290          Record->getDeclContext()->isRecord())
1291        return BuildAnonymousStructOrUnion(S, DS, Record);
1292
1293      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1294        << DS.getSourceRange();
1295    }
1296
1297    // Microsoft allows unnamed struct/union fields. Don't complain
1298    // about them.
1299    // FIXME: Should we support Microsoft's extensions in this area?
1300    if (Record->getDeclName() && getLangOptions().Microsoft)
1301      return DeclPtrTy::make(Tag);
1302  }
1303
1304  if (!DS.isMissingDeclaratorOk() &&
1305      DS.getTypeSpecType() != DeclSpec::TST_error) {
1306    // Warn about typedefs of enums without names, since this is an
1307    // extension in both Microsoft an GNU.
1308    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1309        Tag && isa<EnumDecl>(Tag)) {
1310      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1311        << DS.getSourceRange();
1312      return DeclPtrTy::make(Tag);
1313    }
1314
1315    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1316      << DS.getSourceRange();
1317    return DeclPtrTy();
1318  }
1319
1320  return DeclPtrTy::make(Tag);
1321}
1322
1323/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1324/// anonymous struct or union AnonRecord into the owning context Owner
1325/// and scope S. This routine will be invoked just after we realize
1326/// that an unnamed union or struct is actually an anonymous union or
1327/// struct, e.g.,
1328///
1329/// @code
1330/// union {
1331///   int i;
1332///   float f;
1333/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1334///    // f into the surrounding scope.x
1335/// @endcode
1336///
1337/// This routine is recursive, injecting the names of nested anonymous
1338/// structs/unions into the owning context and scope as well.
1339bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1340                                               RecordDecl *AnonRecord) {
1341  bool Invalid = false;
1342  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1343                               FEnd = AnonRecord->field_end();
1344       F != FEnd; ++F) {
1345    if ((*F)->getDeclName()) {
1346      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1347                                                LookupOrdinaryName, true);
1348      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1349        // C++ [class.union]p2:
1350        //   The names of the members of an anonymous union shall be
1351        //   distinct from the names of any other entity in the
1352        //   scope in which the anonymous union is declared.
1353        unsigned diagKind
1354          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1355                                 : diag::err_anonymous_struct_member_redecl;
1356        Diag((*F)->getLocation(), diagKind)
1357          << (*F)->getDeclName();
1358        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1359        Invalid = true;
1360      } else {
1361        // C++ [class.union]p2:
1362        //   For the purpose of name lookup, after the anonymous union
1363        //   definition, the members of the anonymous union are
1364        //   considered to have been defined in the scope in which the
1365        //   anonymous union is declared.
1366        Owner->makeDeclVisibleInContext(*F);
1367        S->AddDecl(DeclPtrTy::make(*F));
1368        IdResolver.AddDecl(*F);
1369      }
1370    } else if (const RecordType *InnerRecordType
1371                 = (*F)->getType()->getAs<RecordType>()) {
1372      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1373      if (InnerRecord->isAnonymousStructOrUnion())
1374        Invalid = Invalid ||
1375          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1376    }
1377  }
1378
1379  return Invalid;
1380}
1381
1382/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1383/// anonymous structure or union. Anonymous unions are a C++ feature
1384/// (C++ [class.union]) and a GNU C extension; anonymous structures
1385/// are a GNU C and GNU C++ extension.
1386Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1387                                                  RecordDecl *Record) {
1388  DeclContext *Owner = Record->getDeclContext();
1389
1390  // Diagnose whether this anonymous struct/union is an extension.
1391  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1392    Diag(Record->getLocation(), diag::ext_anonymous_union);
1393  else if (!Record->isUnion())
1394    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1395
1396  // C and C++ require different kinds of checks for anonymous
1397  // structs/unions.
1398  bool Invalid = false;
1399  if (getLangOptions().CPlusPlus) {
1400    const char* PrevSpec = 0;
1401    unsigned DiagID;
1402    // C++ [class.union]p3:
1403    //   Anonymous unions declared in a named namespace or in the
1404    //   global namespace shall be declared static.
1405    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1406        (isa<TranslationUnitDecl>(Owner) ||
1407         (isa<NamespaceDecl>(Owner) &&
1408          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1409      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1410      Invalid = true;
1411
1412      // Recover by adding 'static'.
1413      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1414                             PrevSpec, DiagID);
1415    }
1416    // C++ [class.union]p3:
1417    //   A storage class is not allowed in a declaration of an
1418    //   anonymous union in a class scope.
1419    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1420             isa<RecordDecl>(Owner)) {
1421      Diag(DS.getStorageClassSpecLoc(),
1422           diag::err_anonymous_union_with_storage_spec);
1423      Invalid = true;
1424
1425      // Recover by removing the storage specifier.
1426      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1427                             PrevSpec, DiagID);
1428    }
1429
1430    // C++ [class.union]p2:
1431    //   The member-specification of an anonymous union shall only
1432    //   define non-static data members. [Note: nested types and
1433    //   functions cannot be declared within an anonymous union. ]
1434    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1435                                 MemEnd = Record->decls_end();
1436         Mem != MemEnd; ++Mem) {
1437      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1438        // C++ [class.union]p3:
1439        //   An anonymous union shall not have private or protected
1440        //   members (clause 11).
1441        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1442          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1443            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1444          Invalid = true;
1445        }
1446      } else if ((*Mem)->isImplicit()) {
1447        // Any implicit members are fine.
1448      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1449        // This is a type that showed up in an
1450        // elaborated-type-specifier inside the anonymous struct or
1451        // union, but which actually declares a type outside of the
1452        // anonymous struct or union. It's okay.
1453      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1454        if (!MemRecord->isAnonymousStructOrUnion() &&
1455            MemRecord->getDeclName()) {
1456          // This is a nested type declaration.
1457          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1458            << (int)Record->isUnion();
1459          Invalid = true;
1460        }
1461      } else {
1462        // We have something that isn't a non-static data
1463        // member. Complain about it.
1464        unsigned DK = diag::err_anonymous_record_bad_member;
1465        if (isa<TypeDecl>(*Mem))
1466          DK = diag::err_anonymous_record_with_type;
1467        else if (isa<FunctionDecl>(*Mem))
1468          DK = diag::err_anonymous_record_with_function;
1469        else if (isa<VarDecl>(*Mem))
1470          DK = diag::err_anonymous_record_with_static;
1471        Diag((*Mem)->getLocation(), DK)
1472            << (int)Record->isUnion();
1473          Invalid = true;
1474      }
1475    }
1476  }
1477
1478  if (!Record->isUnion() && !Owner->isRecord()) {
1479    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1480      << (int)getLangOptions().CPlusPlus;
1481    Invalid = true;
1482  }
1483
1484  // Create a declaration for this anonymous struct/union.
1485  NamedDecl *Anon = 0;
1486  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1487    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1488                             /*IdentifierInfo=*/0,
1489                             Context.getTypeDeclType(Record),
1490                             /*BitWidth=*/0, /*Mutable=*/false,
1491                             DS.getSourceRange().getBegin());
1492    Anon->setAccess(AS_public);
1493    if (getLangOptions().CPlusPlus)
1494      FieldCollector->Add(cast<FieldDecl>(Anon));
1495  } else {
1496    VarDecl::StorageClass SC;
1497    switch (DS.getStorageClassSpec()) {
1498    default: assert(0 && "Unknown storage class!");
1499    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1500    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1501    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1502    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1503    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1504    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1505    case DeclSpec::SCS_mutable:
1506      // mutable can only appear on non-static class members, so it's always
1507      // an error here
1508      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1509      Invalid = true;
1510      SC = VarDecl::None;
1511      break;
1512    }
1513
1514    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1515                           /*IdentifierInfo=*/0,
1516                           Context.getTypeDeclType(Record),
1517                           SC, DS.getSourceRange().getBegin());
1518  }
1519  Anon->setImplicit();
1520
1521  // Add the anonymous struct/union object to the current
1522  // context. We'll be referencing this object when we refer to one of
1523  // its members.
1524  Owner->addDecl(Anon);
1525
1526  // Inject the members of the anonymous struct/union into the owning
1527  // context and into the identifier resolver chain for name lookup
1528  // purposes.
1529  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1530    Invalid = true;
1531
1532  // Mark this as an anonymous struct/union type. Note that we do not
1533  // do this until after we have already checked and injected the
1534  // members of this anonymous struct/union type, because otherwise
1535  // the members could be injected twice: once by DeclContext when it
1536  // builds its lookup table, and once by
1537  // InjectAnonymousStructOrUnionMembers.
1538  Record->setAnonymousStructOrUnion(true);
1539
1540  if (Invalid)
1541    Anon->setInvalidDecl();
1542
1543  return DeclPtrTy::make(Anon);
1544}
1545
1546
1547/// GetNameForDeclarator - Determine the full declaration name for the
1548/// given Declarator.
1549DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1550  switch (D.getKind()) {
1551  case Declarator::DK_Abstract:
1552    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1553    return DeclarationName();
1554
1555  case Declarator::DK_Normal:
1556    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1557    return DeclarationName(D.getIdentifier());
1558
1559  case Declarator::DK_Constructor: {
1560    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1561    return Context.DeclarationNames.getCXXConstructorName(
1562                                                Context.getCanonicalType(Ty));
1563  }
1564
1565  case Declarator::DK_Destructor: {
1566    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1567    return Context.DeclarationNames.getCXXDestructorName(
1568                                                Context.getCanonicalType(Ty));
1569  }
1570
1571  case Declarator::DK_Conversion: {
1572    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1573    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1574    return Context.DeclarationNames.getCXXConversionFunctionName(
1575                                                Context.getCanonicalType(Ty));
1576  }
1577
1578  case Declarator::DK_Operator:
1579    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1580    return Context.DeclarationNames.getCXXOperatorName(
1581                                                D.getOverloadedOperator());
1582  }
1583
1584  assert(false && "Unknown name kind");
1585  return DeclarationName();
1586}
1587
1588/// isNearlyMatchingFunction - Determine whether the C++ functions
1589/// Declaration and Definition are "nearly" matching. This heuristic
1590/// is used to improve diagnostics in the case where an out-of-line
1591/// function definition doesn't match any declaration within
1592/// the class or namespace.
1593static bool isNearlyMatchingFunction(ASTContext &Context,
1594                                     FunctionDecl *Declaration,
1595                                     FunctionDecl *Definition) {
1596  if (Declaration->param_size() != Definition->param_size())
1597    return false;
1598  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1599    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1600    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1601
1602    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1603    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1604    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1605      return false;
1606  }
1607
1608  return true;
1609}
1610
1611Sema::DeclPtrTy
1612Sema::HandleDeclarator(Scope *S, Declarator &D,
1613                       MultiTemplateParamsArg TemplateParamLists,
1614                       bool IsFunctionDefinition) {
1615  DeclarationName Name = GetNameForDeclarator(D);
1616
1617  // All of these full declarators require an identifier.  If it doesn't have
1618  // one, the ParsedFreeStandingDeclSpec action should be used.
1619  if (!Name) {
1620    if (!D.isInvalidType())  // Reject this if we think it is valid.
1621      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1622           diag::err_declarator_need_ident)
1623        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1624    return DeclPtrTy();
1625  }
1626
1627  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1628  // we find one that is.
1629  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1630         (S->getFlags() & Scope::TemplateParamScope) != 0)
1631    S = S->getParent();
1632
1633  // If this is an out-of-line definition of a member of a class template
1634  // or class template partial specialization, we may need to rebuild the
1635  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1636  // for more information.
1637  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1638  // handle expressions properly.
1639  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1640  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1641      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1642      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1643       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1644       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1645       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1646    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1647      QualType T = QualType::getFromOpaquePtr(DS.getTypeRep());
1648      EnterDeclaratorContext(S, DC);
1649      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1650      ExitDeclaratorContext(S);
1651      if (T.isNull())
1652        return DeclPtrTy();
1653      DS.UpdateTypeRep(T.getAsOpaquePtr());
1654    }
1655  }
1656
1657  DeclContext *DC;
1658  NamedDecl *PrevDecl;
1659  NamedDecl *New;
1660
1661  QualType R = GetTypeForDeclarator(D, S);
1662
1663  // See if this is a redefinition of a variable in the same scope.
1664  if (D.getCXXScopeSpec().isInvalid()) {
1665    DC = CurContext;
1666    PrevDecl = 0;
1667    D.setInvalidType();
1668  } else if (!D.getCXXScopeSpec().isSet()) {
1669    LookupNameKind NameKind = LookupOrdinaryName;
1670
1671    // If the declaration we're planning to build will be a function
1672    // or object with linkage, then look for another declaration with
1673    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1674    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1675      /* Do nothing*/;
1676    else if (R->isFunctionType()) {
1677      if (CurContext->isFunctionOrMethod() ||
1678          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1679        NameKind = LookupRedeclarationWithLinkage;
1680    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1681      NameKind = LookupRedeclarationWithLinkage;
1682    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1683             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1684      NameKind = LookupRedeclarationWithLinkage;
1685
1686    DC = CurContext;
1687    PrevDecl = LookupName(S, Name, NameKind, true,
1688                          NameKind == LookupRedeclarationWithLinkage,
1689                          D.getIdentifierLoc());
1690  } else { // Something like "int foo::x;"
1691    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1692    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1693    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1694
1695    // C++ 7.3.1.2p2:
1696    // Members (including explicit specializations of templates) of a named
1697    // namespace can also be defined outside that namespace by explicit
1698    // qualification of the name being defined, provided that the entity being
1699    // defined was already declared in the namespace and the definition appears
1700    // after the point of declaration in a namespace that encloses the
1701    // declarations namespace.
1702    //
1703    // Note that we only check the context at this point. We don't yet
1704    // have enough information to make sure that PrevDecl is actually
1705    // the declaration we want to match. For example, given:
1706    //
1707    //   class X {
1708    //     void f();
1709    //     void f(float);
1710    //   };
1711    //
1712    //   void X::f(int) { } // ill-formed
1713    //
1714    // In this case, PrevDecl will point to the overload set
1715    // containing the two f's declared in X, but neither of them
1716    // matches.
1717
1718    // First check whether we named the global scope.
1719    if (isa<TranslationUnitDecl>(DC)) {
1720      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1721        << Name << D.getCXXScopeSpec().getRange();
1722    } else if (!CurContext->Encloses(DC)) {
1723      // The qualifying scope doesn't enclose the original declaration.
1724      // Emit diagnostic based on current scope.
1725      SourceLocation L = D.getIdentifierLoc();
1726      SourceRange R = D.getCXXScopeSpec().getRange();
1727      if (isa<FunctionDecl>(CurContext))
1728        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1729      else
1730        Diag(L, diag::err_invalid_declarator_scope)
1731          << Name << cast<NamedDecl>(DC) << R;
1732      D.setInvalidType();
1733    }
1734  }
1735
1736  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1737    // Maybe we will complain about the shadowed template parameter.
1738    if (!D.isInvalidType())
1739      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1740        D.setInvalidType();
1741
1742    // Just pretend that we didn't see the previous declaration.
1743    PrevDecl = 0;
1744  }
1745
1746  // In C++, the previous declaration we find might be a tag type
1747  // (class or enum). In this case, the new declaration will hide the
1748  // tag type. Note that this does does not apply if we're declaring a
1749  // typedef (C++ [dcl.typedef]p4).
1750  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1751      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1752    PrevDecl = 0;
1753
1754  bool Redeclaration = false;
1755  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1756    if (TemplateParamLists.size()) {
1757      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1758      return DeclPtrTy();
1759    }
1760
1761    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1762  } else if (R->isFunctionType()) {
1763    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1764                                  move(TemplateParamLists),
1765                                  IsFunctionDefinition, Redeclaration);
1766  } else {
1767    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1768                                  move(TemplateParamLists),
1769                                  Redeclaration);
1770  }
1771
1772  if (New == 0)
1773    return DeclPtrTy();
1774
1775  // If this has an identifier and is not an invalid redeclaration,
1776  // add it to the scope stack.
1777  if (Name && !(Redeclaration && New->isInvalidDecl()))
1778    PushOnScopeChains(New, S);
1779
1780  return DeclPtrTy::make(New);
1781}
1782
1783/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1784/// types into constant array types in certain situations which would otherwise
1785/// be errors (for GCC compatibility).
1786static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1787                                                    ASTContext &Context,
1788                                                    bool &SizeIsNegative) {
1789  // This method tries to turn a variable array into a constant
1790  // array even when the size isn't an ICE.  This is necessary
1791  // for compatibility with code that depends on gcc's buggy
1792  // constant expression folding, like struct {char x[(int)(char*)2];}
1793  SizeIsNegative = false;
1794
1795  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1796    QualType Pointee = PTy->getPointeeType();
1797    QualType FixedType =
1798        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1799    if (FixedType.isNull()) return FixedType;
1800    FixedType = Context.getPointerType(FixedType);
1801    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1802    return FixedType;
1803  }
1804
1805  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1806  if (!VLATy)
1807    return QualType();
1808  // FIXME: We should probably handle this case
1809  if (VLATy->getElementType()->isVariablyModifiedType())
1810    return QualType();
1811
1812  Expr::EvalResult EvalResult;
1813  if (!VLATy->getSizeExpr() ||
1814      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1815      !EvalResult.Val.isInt())
1816    return QualType();
1817
1818  llvm::APSInt &Res = EvalResult.Val.getInt();
1819  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1820    Expr* ArySizeExpr = VLATy->getSizeExpr();
1821    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1822    // so as to transfer ownership to the ConstantArrayWithExpr.
1823    // Alternatively, we could "clone" it (how?).
1824    // Since we don't know how to do things above, we just use the
1825    // very same Expr*.
1826    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1827                                                Res, ArySizeExpr,
1828                                                ArrayType::Normal, 0,
1829                                                VLATy->getBracketsRange());
1830  }
1831
1832  SizeIsNegative = true;
1833  return QualType();
1834}
1835
1836/// \brief Register the given locally-scoped external C declaration so
1837/// that it can be found later for redeclarations
1838void
1839Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1840                                       Scope *S) {
1841  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1842         "Decl is not a locally-scoped decl!");
1843  // Note that we have a locally-scoped external with this name.
1844  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1845
1846  if (!PrevDecl)
1847    return;
1848
1849  // If there was a previous declaration of this variable, it may be
1850  // in our identifier chain. Update the identifier chain with the new
1851  // declaration.
1852  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1853    // The previous declaration was found on the identifer resolver
1854    // chain, so remove it from its scope.
1855    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1856      S = S->getParent();
1857
1858    if (S)
1859      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1860  }
1861}
1862
1863/// \brief Diagnose function specifiers on a declaration of an identifier that
1864/// does not identify a function.
1865void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1866  // FIXME: We should probably indicate the identifier in question to avoid
1867  // confusion for constructs like "inline int a(), b;"
1868  if (D.getDeclSpec().isInlineSpecified())
1869    Diag(D.getDeclSpec().getInlineSpecLoc(),
1870         diag::err_inline_non_function);
1871
1872  if (D.getDeclSpec().isVirtualSpecified())
1873    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1874         diag::err_virtual_non_function);
1875
1876  if (D.getDeclSpec().isExplicitSpecified())
1877    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1878         diag::err_explicit_non_function);
1879}
1880
1881NamedDecl*
1882Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1883                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1884  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1885  if (D.getCXXScopeSpec().isSet()) {
1886    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1887      << D.getCXXScopeSpec().getRange();
1888    D.setInvalidType();
1889    // Pretend we didn't see the scope specifier.
1890    DC = 0;
1891  }
1892
1893  if (getLangOptions().CPlusPlus) {
1894    // Check that there are no default arguments (C++ only).
1895    CheckExtraCXXDefaultArguments(D);
1896  }
1897
1898  DiagnoseFunctionSpecifiers(D);
1899
1900  if (D.getDeclSpec().isThreadSpecified())
1901    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1902
1903  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1904  if (!NewTD) return 0;
1905
1906  if (D.isInvalidType())
1907    NewTD->setInvalidDecl();
1908
1909  // Handle attributes prior to checking for duplicates in MergeVarDecl
1910  ProcessDeclAttributes(S, NewTD, D);
1911  // Merge the decl with the existing one if appropriate. If the decl is
1912  // in an outer scope, it isn't the same thing.
1913  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1914    Redeclaration = true;
1915    MergeTypeDefDecl(NewTD, PrevDecl);
1916  }
1917
1918  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1919  // then it shall have block scope.
1920  QualType T = NewTD->getUnderlyingType();
1921  if (T->isVariablyModifiedType()) {
1922    CurFunctionNeedsScopeChecking = true;
1923
1924    if (S->getFnParent() == 0) {
1925      bool SizeIsNegative;
1926      QualType FixedTy =
1927          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1928      if (!FixedTy.isNull()) {
1929        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1930        NewTD->setUnderlyingType(FixedTy);
1931      } else {
1932        if (SizeIsNegative)
1933          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1934        else if (T->isVariableArrayType())
1935          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1936        else
1937          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1938        NewTD->setInvalidDecl();
1939      }
1940    }
1941  }
1942
1943  // If this is the C FILE type, notify the AST context.
1944  if (IdentifierInfo *II = NewTD->getIdentifier())
1945    if (!NewTD->isInvalidDecl() &&
1946        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1947      if (II->isStr("FILE"))
1948        Context.setFILEDecl(NewTD);
1949      else if (II->isStr("jmp_buf"))
1950        Context.setjmp_bufDecl(NewTD);
1951      else if (II->isStr("sigjmp_buf"))
1952        Context.setsigjmp_bufDecl(NewTD);
1953    }
1954
1955  return NewTD;
1956}
1957
1958/// \brief Determines whether the given declaration is an out-of-scope
1959/// previous declaration.
1960///
1961/// This routine should be invoked when name lookup has found a
1962/// previous declaration (PrevDecl) that is not in the scope where a
1963/// new declaration by the same name is being introduced. If the new
1964/// declaration occurs in a local scope, previous declarations with
1965/// linkage may still be considered previous declarations (C99
1966/// 6.2.2p4-5, C++ [basic.link]p6).
1967///
1968/// \param PrevDecl the previous declaration found by name
1969/// lookup
1970///
1971/// \param DC the context in which the new declaration is being
1972/// declared.
1973///
1974/// \returns true if PrevDecl is an out-of-scope previous declaration
1975/// for a new delcaration with the same name.
1976static bool
1977isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1978                                ASTContext &Context) {
1979  if (!PrevDecl)
1980    return 0;
1981
1982  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1983  // case we need to check each of the overloaded functions.
1984  if (!PrevDecl->hasLinkage())
1985    return false;
1986
1987  if (Context.getLangOptions().CPlusPlus) {
1988    // C++ [basic.link]p6:
1989    //   If there is a visible declaration of an entity with linkage
1990    //   having the same name and type, ignoring entities declared
1991    //   outside the innermost enclosing namespace scope, the block
1992    //   scope declaration declares that same entity and receives the
1993    //   linkage of the previous declaration.
1994    DeclContext *OuterContext = DC->getLookupContext();
1995    if (!OuterContext->isFunctionOrMethod())
1996      // This rule only applies to block-scope declarations.
1997      return false;
1998    else {
1999      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2000      if (PrevOuterContext->isRecord())
2001        // We found a member function: ignore it.
2002        return false;
2003      else {
2004        // Find the innermost enclosing namespace for the new and
2005        // previous declarations.
2006        while (!OuterContext->isFileContext())
2007          OuterContext = OuterContext->getParent();
2008        while (!PrevOuterContext->isFileContext())
2009          PrevOuterContext = PrevOuterContext->getParent();
2010
2011        // The previous declaration is in a different namespace, so it
2012        // isn't the same function.
2013        if (OuterContext->getPrimaryContext() !=
2014            PrevOuterContext->getPrimaryContext())
2015          return false;
2016      }
2017    }
2018  }
2019
2020  return true;
2021}
2022
2023NamedDecl*
2024Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2025                              QualType R,NamedDecl* PrevDecl,
2026                              MultiTemplateParamsArg TemplateParamLists,
2027                              bool &Redeclaration) {
2028  DeclarationName Name = GetNameForDeclarator(D);
2029
2030  // Check that there are no default arguments (C++ only).
2031  if (getLangOptions().CPlusPlus)
2032    CheckExtraCXXDefaultArguments(D);
2033
2034  VarDecl *NewVD;
2035  VarDecl::StorageClass SC;
2036  switch (D.getDeclSpec().getStorageClassSpec()) {
2037  default: assert(0 && "Unknown storage class!");
2038  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2039  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2040  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2041  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2042  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2043  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2044  case DeclSpec::SCS_mutable:
2045    // mutable can only appear on non-static class members, so it's always
2046    // an error here
2047    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2048    D.setInvalidType();
2049    SC = VarDecl::None;
2050    break;
2051  }
2052
2053  IdentifierInfo *II = Name.getAsIdentifierInfo();
2054  if (!II) {
2055    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2056      << Name.getAsString();
2057    return 0;
2058  }
2059
2060  DiagnoseFunctionSpecifiers(D);
2061
2062  if (!DC->isRecord() && S->getFnParent() == 0) {
2063    // C99 6.9p2: The storage-class specifiers auto and register shall not
2064    // appear in the declaration specifiers in an external declaration.
2065    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2066
2067      // If this is a register variable with an asm label specified, then this
2068      // is a GNU extension.
2069      if (SC == VarDecl::Register && D.getAsmLabel())
2070        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2071      else
2072        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2073      D.setInvalidType();
2074    }
2075  }
2076  if (DC->isRecord() && !CurContext->isRecord()) {
2077    // This is an out-of-line definition of a static data member.
2078    if (SC == VarDecl::Static) {
2079      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2080           diag::err_static_out_of_line)
2081        << CodeModificationHint::CreateRemoval(
2082                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2083    } else if (SC == VarDecl::None)
2084      SC = VarDecl::Static;
2085  }
2086  if (SC == VarDecl::Static) {
2087    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2088      if (RD->isLocalClass())
2089        Diag(D.getIdentifierLoc(),
2090             diag::err_static_data_member_not_allowed_in_local_class)
2091          << Name << RD->getDeclName();
2092    }
2093  }
2094
2095  // Check that we can declare a template here.
2096  if (TemplateParamLists.size() &&
2097      CheckTemplateDeclScope(S, TemplateParamLists))
2098    return 0;
2099
2100  // Match up the template parameter lists with the scope specifier, then
2101  // determine whether we have a template or a template specialization.
2102  if (TemplateParameterList *TemplateParams
2103      = MatchTemplateParametersToScopeSpecifier(
2104                                  D.getDeclSpec().getSourceRange().getBegin(),
2105                                                D.getCXXScopeSpec(),
2106                        (TemplateParameterList**)TemplateParamLists.get(),
2107                                                 TemplateParamLists.size())) {
2108    if (TemplateParams->size() > 0) {
2109      // There is no such thing as a variable template.
2110      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2111        << II
2112        << SourceRange(TemplateParams->getTemplateLoc(),
2113                       TemplateParams->getRAngleLoc());
2114      return 0;
2115    } else {
2116      // There is an extraneous 'template<>' for this variable. Complain
2117      // about it, but allow the declaration of the variable.
2118      Diag(TemplateParams->getTemplateLoc(),
2119           diag::err_template_variable_noparams)
2120        << II
2121        << SourceRange(TemplateParams->getTemplateLoc(),
2122                       TemplateParams->getRAngleLoc());
2123    }
2124  }
2125
2126  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2127                          II, R, SC,
2128                          // FIXME: Move to DeclGroup...
2129                          D.getDeclSpec().getSourceRange().getBegin());
2130
2131  if (D.isInvalidType())
2132    NewVD->setInvalidDecl();
2133
2134  if (D.getDeclSpec().isThreadSpecified()) {
2135    if (NewVD->hasLocalStorage())
2136      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2137    else if (!Context.Target.isTLSSupported())
2138      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2139    else
2140      NewVD->setThreadSpecified(true);
2141  }
2142
2143  // Set the lexical context. If the declarator has a C++ scope specifier, the
2144  // lexical context will be different from the semantic context.
2145  NewVD->setLexicalDeclContext(CurContext);
2146
2147  // Handle attributes prior to checking for duplicates in MergeVarDecl
2148  ProcessDeclAttributes(S, NewVD, D);
2149
2150  // Handle GNU asm-label extension (encoded as an attribute).
2151  if (Expr *E = (Expr*) D.getAsmLabel()) {
2152    // The parser guarantees this is a string.
2153    StringLiteral *SE = cast<StringLiteral>(E);
2154    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2155                                                        SE->getByteLength())));
2156  }
2157
2158  // If name lookup finds a previous declaration that is not in the
2159  // same scope as the new declaration, this may still be an
2160  // acceptable redeclaration.
2161  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2162      !(NewVD->hasLinkage() &&
2163        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2164    PrevDecl = 0;
2165
2166  // Merge the decl with the existing one if appropriate.
2167  if (PrevDecl) {
2168    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2169      // The user tried to define a non-static data member
2170      // out-of-line (C++ [dcl.meaning]p1).
2171      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2172        << D.getCXXScopeSpec().getRange();
2173      PrevDecl = 0;
2174      NewVD->setInvalidDecl();
2175    }
2176  } else if (D.getCXXScopeSpec().isSet()) {
2177    // No previous declaration in the qualifying scope.
2178    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2179      << Name << D.getCXXScopeSpec().getRange();
2180    NewVD->setInvalidDecl();
2181  }
2182
2183  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2184
2185  // attributes declared post-definition are currently ignored
2186  if (PrevDecl) {
2187    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2188    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2189      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2190      Diag(Def->getLocation(), diag::note_previous_definition);
2191    }
2192  }
2193
2194  // If this is a locally-scoped extern C variable, update the map of
2195  // such variables.
2196  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2197      !NewVD->isInvalidDecl())
2198    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2199
2200  return NewVD;
2201}
2202
2203/// \brief Perform semantic checking on a newly-created variable
2204/// declaration.
2205///
2206/// This routine performs all of the type-checking required for a
2207/// variable declaration once it has been built. It is used both to
2208/// check variables after they have been parsed and their declarators
2209/// have been translated into a declaration, and to check variables
2210/// that have been instantiated from a template.
2211///
2212/// Sets NewVD->isInvalidDecl() if an error was encountered.
2213void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2214                                    bool &Redeclaration) {
2215  // If the decl is already known invalid, don't check it.
2216  if (NewVD->isInvalidDecl())
2217    return;
2218
2219  QualType T = NewVD->getType();
2220
2221  if (T->isObjCInterfaceType()) {
2222    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2223    return NewVD->setInvalidDecl();
2224  }
2225
2226  // The variable can not have an abstract class type.
2227  if (RequireNonAbstractType(NewVD->getLocation(), T,
2228                             diag::err_abstract_type_in_decl,
2229                             AbstractVariableType))
2230    return NewVD->setInvalidDecl();
2231
2232  // Emit an error if an address space was applied to decl with local storage.
2233  // This includes arrays of objects with address space qualifiers, but not
2234  // automatic variables that point to other address spaces.
2235  // ISO/IEC TR 18037 S5.1.2
2236  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2237    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2238    return NewVD->setInvalidDecl();
2239  }
2240
2241  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2242      && !NewVD->hasAttr<BlocksAttr>())
2243    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2244
2245  bool isVM = T->isVariablyModifiedType();
2246  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2247      NewVD->hasAttr<BlocksAttr>())
2248    CurFunctionNeedsScopeChecking = true;
2249
2250  if ((isVM && NewVD->hasLinkage()) ||
2251      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2252    bool SizeIsNegative;
2253    QualType FixedTy =
2254        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2255
2256    if (FixedTy.isNull() && T->isVariableArrayType()) {
2257      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2258      // FIXME: This won't give the correct result for
2259      // int a[10][n];
2260      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2261
2262      if (NewVD->isFileVarDecl())
2263        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2264        << SizeRange;
2265      else if (NewVD->getStorageClass() == VarDecl::Static)
2266        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2267        << SizeRange;
2268      else
2269        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2270        << SizeRange;
2271      return NewVD->setInvalidDecl();
2272    }
2273
2274    if (FixedTy.isNull()) {
2275      if (NewVD->isFileVarDecl())
2276        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2277      else
2278        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2279      return NewVD->setInvalidDecl();
2280    }
2281
2282    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2283    NewVD->setType(FixedTy);
2284  }
2285
2286  if (!PrevDecl && NewVD->isExternC(Context)) {
2287    // Since we did not find anything by this name and we're declaring
2288    // an extern "C" variable, look for a non-visible extern "C"
2289    // declaration with the same name.
2290    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2291      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2292    if (Pos != LocallyScopedExternalDecls.end())
2293      PrevDecl = Pos->second;
2294  }
2295
2296  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2297    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2298      << T;
2299    return NewVD->setInvalidDecl();
2300  }
2301
2302  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2303    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2304    return NewVD->setInvalidDecl();
2305  }
2306
2307  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2308    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2309    return NewVD->setInvalidDecl();
2310  }
2311
2312  if (PrevDecl) {
2313    Redeclaration = true;
2314    MergeVarDecl(NewVD, PrevDecl);
2315  }
2316}
2317
2318NamedDecl*
2319Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2320                              QualType R, NamedDecl* PrevDecl,
2321                              MultiTemplateParamsArg TemplateParamLists,
2322                              bool IsFunctionDefinition, bool &Redeclaration) {
2323  assert(R.getTypePtr()->isFunctionType());
2324
2325  DeclarationName Name = GetNameForDeclarator(D);
2326  FunctionDecl::StorageClass SC = FunctionDecl::None;
2327  switch (D.getDeclSpec().getStorageClassSpec()) {
2328  default: assert(0 && "Unknown storage class!");
2329  case DeclSpec::SCS_auto:
2330  case DeclSpec::SCS_register:
2331  case DeclSpec::SCS_mutable:
2332    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2333         diag::err_typecheck_sclass_func);
2334    D.setInvalidType();
2335    break;
2336  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2337  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2338  case DeclSpec::SCS_static: {
2339    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2340      // C99 6.7.1p5:
2341      //   The declaration of an identifier for a function that has
2342      //   block scope shall have no explicit storage-class specifier
2343      //   other than extern
2344      // See also (C++ [dcl.stc]p4).
2345      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2346           diag::err_static_block_func);
2347      SC = FunctionDecl::None;
2348    } else
2349      SC = FunctionDecl::Static;
2350    break;
2351  }
2352  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2353  }
2354
2355  if (D.getDeclSpec().isThreadSpecified())
2356    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2357
2358  bool isFriend = D.getDeclSpec().isFriendSpecified();
2359  bool isInline = D.getDeclSpec().isInlineSpecified();
2360  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2361  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2362
2363  // Check that the return type is not an abstract class type.
2364  // For record types, this is done by the AbstractClassUsageDiagnoser once
2365  // the class has been completely parsed.
2366  if (!DC->isRecord() &&
2367      RequireNonAbstractType(D.getIdentifierLoc(),
2368                             R->getAsFunctionType()->getResultType(),
2369                             diag::err_abstract_type_in_decl,
2370                             AbstractReturnType))
2371    D.setInvalidType();
2372
2373  // Do not allow returning a objc interface by-value.
2374  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2375    Diag(D.getIdentifierLoc(),
2376         diag::err_object_cannot_be_passed_returned_by_value) << 0
2377      << R->getAsFunctionType()->getResultType();
2378    D.setInvalidType();
2379  }
2380
2381  // Check that we can declare a template here.
2382  if (TemplateParamLists.size() &&
2383      CheckTemplateDeclScope(S, TemplateParamLists))
2384    return 0;
2385
2386  bool isVirtualOkay = false;
2387  FunctionDecl *NewFD;
2388  if (isFriend) {
2389    // DC is the namespace in which the function is being declared.
2390    assert(DC->isFileContext() || PrevDecl);
2391
2392    // C++ [class.friend]p5
2393    //   A function can be defined in a friend declaration of a
2394    //   class . . . . Such a function is implicitly inline.
2395    isInline |= IsFunctionDefinition;
2396
2397    NewFD = FriendFunctionDecl::Create(Context, DC,
2398                                       D.getIdentifierLoc(), Name, R,
2399                                       isInline,
2400                                       D.getDeclSpec().getFriendSpecLoc());
2401  } else if (D.getKind() == Declarator::DK_Constructor) {
2402    // This is a C++ constructor declaration.
2403    assert(DC->isRecord() &&
2404           "Constructors can only be declared in a member context");
2405
2406    R = CheckConstructorDeclarator(D, R, SC);
2407
2408    // Create the new declaration
2409    NewFD = CXXConstructorDecl::Create(Context,
2410                                       cast<CXXRecordDecl>(DC),
2411                                       D.getIdentifierLoc(), Name, R,
2412                                       isExplicit, isInline,
2413                                       /*isImplicitlyDeclared=*/false);
2414  } else if (D.getKind() == Declarator::DK_Destructor) {
2415    // This is a C++ destructor declaration.
2416    if (DC->isRecord()) {
2417      R = CheckDestructorDeclarator(D, SC);
2418
2419      NewFD = CXXDestructorDecl::Create(Context,
2420                                        cast<CXXRecordDecl>(DC),
2421                                        D.getIdentifierLoc(), Name, R,
2422                                        isInline,
2423                                        /*isImplicitlyDeclared=*/false);
2424
2425      isVirtualOkay = true;
2426    } else {
2427      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2428
2429      // Create a FunctionDecl to satisfy the function definition parsing
2430      // code path.
2431      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2432                                   Name, R, SC, isInline,
2433                                   /*hasPrototype=*/true,
2434                                   // FIXME: Move to DeclGroup...
2435                                   D.getDeclSpec().getSourceRange().getBegin());
2436      D.setInvalidType();
2437    }
2438  } else if (D.getKind() == Declarator::DK_Conversion) {
2439    if (!DC->isRecord()) {
2440      Diag(D.getIdentifierLoc(),
2441           diag::err_conv_function_not_member);
2442      return 0;
2443    }
2444
2445    CheckConversionDeclarator(D, R, SC);
2446    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2447                                      D.getIdentifierLoc(), Name, R,
2448                                      isInline, isExplicit);
2449
2450    isVirtualOkay = true;
2451  } else if (DC->isRecord()) {
2452    // If the of the function is the same as the name of the record, then this
2453    // must be an invalid constructor that has a return type.
2454    // (The parser checks for a return type and makes the declarator a
2455    // constructor if it has no return type).
2456    // must have an invalid constructor that has a return type
2457    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2458      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2459        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2460        << SourceRange(D.getIdentifierLoc());
2461      return 0;
2462    }
2463
2464    // This is a C++ method declaration.
2465    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2466                                  D.getIdentifierLoc(), Name, R,
2467                                  (SC == FunctionDecl::Static), isInline);
2468
2469    isVirtualOkay = (SC != FunctionDecl::Static);
2470  } else {
2471    // Determine whether the function was written with a
2472    // prototype. This true when:
2473    //   - we're in C++ (where every function has a prototype),
2474    //   - there is a prototype in the declarator, or
2475    //   - the type R of the function is some kind of typedef or other reference
2476    //     to a type name (which eventually refers to a function type).
2477    bool HasPrototype =
2478       getLangOptions().CPlusPlus ||
2479       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2480       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2481
2482    NewFD = FunctionDecl::Create(Context, DC,
2483                                 D.getIdentifierLoc(),
2484                                 Name, R, SC, isInline, HasPrototype,
2485                                 // FIXME: Move to DeclGroup...
2486                                 D.getDeclSpec().getSourceRange().getBegin());
2487  }
2488
2489  if (D.isInvalidType())
2490    NewFD->setInvalidDecl();
2491
2492  // Set the lexical context. If the declarator has a C++
2493  // scope specifier, the lexical context will be different
2494  // from the semantic context.
2495  NewFD->setLexicalDeclContext(CurContext);
2496
2497  // Match up the template parameter lists with the scope specifier, then
2498  // determine whether we have a template or a template specialization.
2499  FunctionTemplateDecl *FunctionTemplate = 0;
2500  if (TemplateParameterList *TemplateParams
2501        = MatchTemplateParametersToScopeSpecifier(
2502                                  D.getDeclSpec().getSourceRange().getBegin(),
2503                                  D.getCXXScopeSpec(),
2504                           (TemplateParameterList**)TemplateParamLists.get(),
2505                                                  TemplateParamLists.size())) {
2506    if (TemplateParams->size() > 0) {
2507      // This is a function template
2508      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2509                                                      NewFD->getLocation(),
2510                                                      Name, TemplateParams,
2511                                                      NewFD);
2512      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2513    } else {
2514      // FIXME: Handle function template specializations
2515    }
2516
2517    // FIXME: Free this memory properly.
2518    TemplateParamLists.release();
2519  }
2520
2521  // C++ [dcl.fct.spec]p5:
2522  //   The virtual specifier shall only be used in declarations of
2523  //   nonstatic class member functions that appear within a
2524  //   member-specification of a class declaration; see 10.3.
2525  //
2526  if (isVirtual && !NewFD->isInvalidDecl()) {
2527    if (!isVirtualOkay) {
2528       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2529           diag::err_virtual_non_function);
2530    } else if (!CurContext->isRecord()) {
2531      // 'virtual' was specified outside of the class.
2532      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2533        << CodeModificationHint::CreateRemoval(
2534                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2535    } else {
2536      // Okay: Add virtual to the method.
2537      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2538      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2539      CurClass->setAggregate(false);
2540      CurClass->setPOD(false);
2541      CurClass->setEmpty(false);
2542      CurClass->setPolymorphic(true);
2543      CurClass->setHasTrivialConstructor(false);
2544      CurClass->setHasTrivialCopyConstructor(false);
2545      CurClass->setHasTrivialCopyAssignment(false);
2546    }
2547  }
2548
2549  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2550    // Look for virtual methods in base classes that this method might override.
2551
2552    BasePaths Paths;
2553    if (LookupInBases(cast<CXXRecordDecl>(DC),
2554                      MemberLookupCriteria(NewMD), Paths)) {
2555      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2556           E = Paths.found_decls_end(); I != E; ++I) {
2557        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2558          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2559              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2560            NewMD->addOverriddenMethod(OldMD);
2561        }
2562      }
2563    }
2564  }
2565
2566  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2567      !CurContext->isRecord()) {
2568    // C++ [class.static]p1:
2569    //   A data or function member of a class may be declared static
2570    //   in a class definition, in which case it is a static member of
2571    //   the class.
2572
2573    // Complain about the 'static' specifier if it's on an out-of-line
2574    // member function definition.
2575    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2576         diag::err_static_out_of_line)
2577      << CodeModificationHint::CreateRemoval(
2578                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2579  }
2580
2581  // Handle GNU asm-label extension (encoded as an attribute).
2582  if (Expr *E = (Expr*) D.getAsmLabel()) {
2583    // The parser guarantees this is a string.
2584    StringLiteral *SE = cast<StringLiteral>(E);
2585    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2586                                                        SE->getByteLength())));
2587  }
2588
2589  // Copy the parameter declarations from the declarator D to the function
2590  // declaration NewFD, if they are available.  First scavenge them into Params.
2591  llvm::SmallVector<ParmVarDecl*, 16> Params;
2592  if (D.getNumTypeObjects() > 0) {
2593    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2594
2595    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2596    // function that takes no arguments, not a function that takes a
2597    // single void argument.
2598    // We let through "const void" here because Sema::GetTypeForDeclarator
2599    // already checks for that case.
2600    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2601        FTI.ArgInfo[0].Param &&
2602        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2603      // Empty arg list, don't push any params.
2604      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2605
2606      // In C++, the empty parameter-type-list must be spelled "void"; a
2607      // typedef of void is not permitted.
2608      if (getLangOptions().CPlusPlus &&
2609          Param->getType().getUnqualifiedType() != Context.VoidTy)
2610        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2611      // FIXME: Leaks decl?
2612    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2613      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2614        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2615        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2616        Param->setDeclContext(NewFD);
2617        Params.push_back(Param);
2618      }
2619    }
2620
2621  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2622    // When we're declaring a function with a typedef, typeof, etc as in the
2623    // following example, we'll need to synthesize (unnamed)
2624    // parameters for use in the declaration.
2625    //
2626    // @code
2627    // typedef void fn(int);
2628    // fn f;
2629    // @endcode
2630
2631    // Synthesize a parameter for each argument type.
2632    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2633         AE = FT->arg_type_end(); AI != AE; ++AI) {
2634      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2635                                               SourceLocation(), 0,
2636                                               *AI, VarDecl::None, 0);
2637      Param->setImplicit();
2638      Params.push_back(Param);
2639    }
2640  } else {
2641    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2642           "Should not need args for typedef of non-prototype fn");
2643  }
2644  // Finally, we know we have the right number of parameters, install them.
2645  NewFD->setParams(Context, Params.data(), Params.size());
2646
2647  // If name lookup finds a previous declaration that is not in the
2648  // same scope as the new declaration, this may still be an
2649  // acceptable redeclaration.
2650  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2651      !(NewFD->hasLinkage() &&
2652        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2653    PrevDecl = 0;
2654
2655  // Perform semantic checking on the function declaration.
2656  bool OverloadableAttrRequired = false; // FIXME: HACK!
2657  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2658                           /*FIXME:*/OverloadableAttrRequired);
2659
2660  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2661    // An out-of-line member function declaration must also be a
2662    // definition (C++ [dcl.meaning]p1).
2663    if (!IsFunctionDefinition && !isFriend) {
2664      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2665        << D.getCXXScopeSpec().getRange();
2666      NewFD->setInvalidDecl();
2667    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2668      // The user tried to provide an out-of-line definition for a
2669      // function that is a member of a class or namespace, but there
2670      // was no such member function declared (C++ [class.mfct]p2,
2671      // C++ [namespace.memdef]p2). For example:
2672      //
2673      // class X {
2674      //   void f() const;
2675      // };
2676      //
2677      // void X::f() { } // ill-formed
2678      //
2679      // Complain about this problem, and attempt to suggest close
2680      // matches (e.g., those that differ only in cv-qualifiers and
2681      // whether the parameter types are references).
2682      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2683        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2684      NewFD->setInvalidDecl();
2685
2686      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2687                                              true);
2688      assert(!Prev.isAmbiguous() &&
2689             "Cannot have an ambiguity in previous-declaration lookup");
2690      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2691           Func != FuncEnd; ++Func) {
2692        if (isa<FunctionDecl>(*Func) &&
2693            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2694          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2695      }
2696
2697      PrevDecl = 0;
2698    }
2699  }
2700
2701  // Handle attributes. We need to have merged decls when handling attributes
2702  // (for example to check for conflicts, etc).
2703  // FIXME: This needs to happen before we merge declarations. Then,
2704  // let attribute merging cope with attribute conflicts.
2705  ProcessDeclAttributes(S, NewFD, D);
2706
2707  // attributes declared post-definition are currently ignored
2708  if (PrevDecl) {
2709    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2710    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2711      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2712      Diag(Def->getLocation(), diag::note_previous_definition);
2713    }
2714  }
2715
2716  AddKnownFunctionAttributes(NewFD);
2717
2718  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2719    // If a function name is overloadable in C, then every function
2720    // with that name must be marked "overloadable".
2721    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2722      << Redeclaration << NewFD;
2723    if (PrevDecl)
2724      Diag(PrevDecl->getLocation(),
2725           diag::note_attribute_overloadable_prev_overload);
2726    NewFD->addAttr(::new (Context) OverloadableAttr());
2727  }
2728
2729  // If this is a locally-scoped extern C function, update the
2730  // map of such names.
2731  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2732      && !NewFD->isInvalidDecl())
2733    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2734
2735  // Set this FunctionDecl's range up to the right paren.
2736  NewFD->setLocEnd(D.getSourceRange().getEnd());
2737
2738  if (FunctionTemplate && NewFD->isInvalidDecl())
2739    FunctionTemplate->setInvalidDecl();
2740
2741  if (FunctionTemplate)
2742    return FunctionTemplate;
2743
2744  return NewFD;
2745}
2746
2747/// \brief Perform semantic checking of a new function declaration.
2748///
2749/// Performs semantic analysis of the new function declaration
2750/// NewFD. This routine performs all semantic checking that does not
2751/// require the actual declarator involved in the declaration, and is
2752/// used both for the declaration of functions as they are parsed
2753/// (called via ActOnDeclarator) and for the declaration of functions
2754/// that have been instantiated via C++ template instantiation (called
2755/// via InstantiateDecl).
2756///
2757/// This sets NewFD->isInvalidDecl() to true if there was an error.
2758void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2759                                    bool &Redeclaration,
2760                                    bool &OverloadableAttrRequired) {
2761  // If NewFD is already known erroneous, don't do any of this checking.
2762  if (NewFD->isInvalidDecl())
2763    return;
2764
2765  if (NewFD->getResultType()->isVariablyModifiedType()) {
2766    // Functions returning a variably modified type violate C99 6.7.5.2p2
2767    // because all functions have linkage.
2768    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2769    return NewFD->setInvalidDecl();
2770  }
2771
2772  if (NewFD->isMain(Context)) CheckMain(NewFD);
2773
2774  // Semantic checking for this function declaration (in isolation).
2775  if (getLangOptions().CPlusPlus) {
2776    // C++-specific checks.
2777    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2778      CheckConstructor(Constructor);
2779    } else if (isa<CXXDestructorDecl>(NewFD)) {
2780      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2781      QualType ClassType = Context.getTypeDeclType(Record);
2782      if (!ClassType->isDependentType()) {
2783        DeclarationName Name
2784          = Context.DeclarationNames.getCXXDestructorName(
2785                                        Context.getCanonicalType(ClassType));
2786        if (NewFD->getDeclName() != Name) {
2787          Diag(NewFD->getLocation(), diag::err_destructor_name);
2788          return NewFD->setInvalidDecl();
2789        }
2790      }
2791      Record->setUserDeclaredDestructor(true);
2792      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2793      // user-defined destructor.
2794      Record->setPOD(false);
2795
2796      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2797      // declared destructor.
2798      // FIXME: C++0x: don't do this for "= default" destructors
2799      Record->setHasTrivialDestructor(false);
2800    } else if (CXXConversionDecl *Conversion
2801               = dyn_cast<CXXConversionDecl>(NewFD))
2802      ActOnConversionDeclarator(Conversion);
2803
2804    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2805    if (NewFD->isOverloadedOperator() &&
2806        CheckOverloadedOperatorDeclaration(NewFD))
2807      return NewFD->setInvalidDecl();
2808  }
2809
2810  // C99 6.7.4p6:
2811  //   [... ] For a function with external linkage, the following
2812  //   restrictions apply: [...] If all of the file scope declarations
2813  //   for a function in a translation unit include the inline
2814  //   function specifier without extern, then the definition in that
2815  //   translation unit is an inline definition. An inline definition
2816  //   does not provide an external definition for the function, and
2817  //   does not forbid an external definition in another translation
2818  //   unit.
2819  //
2820  // Here we determine whether this function, in isolation, would be a
2821  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2822  // previous declarations.
2823  if (NewFD->isInline() && getLangOptions().C99 &&
2824      NewFD->getStorageClass() == FunctionDecl::None &&
2825      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2826    NewFD->setC99InlineDefinition(true);
2827
2828  // Check for a previous declaration of this name.
2829  if (!PrevDecl && NewFD->isExternC(Context)) {
2830    // Since we did not find anything by this name and we're declaring
2831    // an extern "C" function, look for a non-visible extern "C"
2832    // declaration with the same name.
2833    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2834      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2835    if (Pos != LocallyScopedExternalDecls.end())
2836      PrevDecl = Pos->second;
2837  }
2838
2839  // Merge or overload the declaration with an existing declaration of
2840  // the same name, if appropriate.
2841  if (PrevDecl) {
2842    // Determine whether NewFD is an overload of PrevDecl or
2843    // a declaration that requires merging. If it's an overload,
2844    // there's no more work to do here; we'll just add the new
2845    // function to the scope.
2846    OverloadedFunctionDecl::function_iterator MatchedDecl;
2847
2848    if (!getLangOptions().CPlusPlus &&
2849        AllowOverloadingOfFunction(PrevDecl, Context)) {
2850      OverloadableAttrRequired = true;
2851
2852      // Functions marked "overloadable" must have a prototype (that
2853      // we can't get through declaration merging).
2854      if (!NewFD->getType()->getAsFunctionProtoType()) {
2855        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2856          << NewFD;
2857        Redeclaration = true;
2858
2859        // Turn this into a variadic function with no parameters.
2860        QualType R = Context.getFunctionType(
2861                       NewFD->getType()->getAsFunctionType()->getResultType(),
2862                       0, 0, true, 0);
2863        NewFD->setType(R);
2864        return NewFD->setInvalidDecl();
2865      }
2866    }
2867
2868    if (PrevDecl &&
2869        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2870         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2871        !isa<UsingDecl>(PrevDecl)) {
2872      Redeclaration = true;
2873      Decl *OldDecl = PrevDecl;
2874
2875      // If PrevDecl was an overloaded function, extract the
2876      // FunctionDecl that matched.
2877      if (isa<OverloadedFunctionDecl>(PrevDecl))
2878        OldDecl = *MatchedDecl;
2879
2880      // NewFD and OldDecl represent declarations that need to be
2881      // merged.
2882      if (MergeFunctionDecl(NewFD, OldDecl))
2883        return NewFD->setInvalidDecl();
2884
2885      if (FunctionTemplateDecl *OldTemplateDecl
2886            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2887        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2888      else {
2889        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2890          NewFD->setAccess(OldDecl->getAccess());
2891        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2892      }
2893    }
2894  }
2895
2896  // In C++, check default arguments now that we have merged decls. Unless
2897  // the lexical context is the class, because in this case this is done
2898  // during delayed parsing anyway.
2899  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2900    CheckCXXDefaultArguments(NewFD);
2901}
2902
2903void Sema::CheckMain(FunctionDecl* FD) {
2904  // C++ [basic.start.main]p3:  A program that declares main to be inline
2905  //   or static is ill-formed.
2906  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2907  //   shall not appear in a declaration of main.
2908  // static main is not an error under C99, but we should warn about it.
2909  bool isInline = FD->isInline();
2910  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2911  if (isInline || isStatic) {
2912    unsigned diagID = diag::warn_unusual_main_decl;
2913    if (isInline || getLangOptions().CPlusPlus)
2914      diagID = diag::err_unusual_main_decl;
2915
2916    int which = isStatic + (isInline << 1) - 1;
2917    Diag(FD->getLocation(), diagID) << which;
2918  }
2919
2920  QualType T = FD->getType();
2921  assert(T->isFunctionType() && "function decl is not of function type");
2922  const FunctionType* FT = T->getAsFunctionType();
2923
2924  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2925    // TODO: add a replacement fixit to turn the return type into 'int'.
2926    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2927    FD->setInvalidDecl(true);
2928  }
2929
2930  // Treat protoless main() as nullary.
2931  if (isa<FunctionNoProtoType>(FT)) return;
2932
2933  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2934  unsigned nparams = FTP->getNumArgs();
2935  assert(FD->getNumParams() == nparams);
2936
2937  if (nparams > 3) {
2938    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2939    FD->setInvalidDecl(true);
2940    nparams = 3;
2941  }
2942
2943  // FIXME: a lot of the following diagnostics would be improved
2944  // if we had some location information about types.
2945
2946  QualType CharPP =
2947    Context.getPointerType(Context.getPointerType(Context.CharTy));
2948  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2949
2950  for (unsigned i = 0; i < nparams; ++i) {
2951    QualType AT = FTP->getArgType(i);
2952
2953    bool mismatch = true;
2954
2955    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2956      mismatch = false;
2957    else if (Expected[i] == CharPP) {
2958      // As an extension, the following forms are okay:
2959      //   char const **
2960      //   char const * const *
2961      //   char * const *
2962
2963      QualifierSet qs;
2964      const PointerType* PT;
2965      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2966          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2967          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2968        qs.removeConst();
2969        mismatch = !qs.empty();
2970      }
2971    }
2972
2973    if (mismatch) {
2974      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2975      // TODO: suggest replacing given type with expected type
2976      FD->setInvalidDecl(true);
2977    }
2978  }
2979
2980  if (nparams == 1 && !FD->isInvalidDecl()) {
2981    Diag(FD->getLocation(), diag::warn_main_one_arg);
2982  }
2983}
2984
2985bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2986  // FIXME: Need strict checking.  In C89, we need to check for
2987  // any assignment, increment, decrement, function-calls, or
2988  // commas outside of a sizeof.  In C99, it's the same list,
2989  // except that the aforementioned are allowed in unevaluated
2990  // expressions.  Everything else falls under the
2991  // "may accept other forms of constant expressions" exception.
2992  // (We never end up here for C++, so the constant expression
2993  // rules there don't matter.)
2994  if (Init->isConstantInitializer(Context))
2995    return false;
2996  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2997    << Init->getSourceRange();
2998  return true;
2999}
3000
3001void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3002  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3003}
3004
3005/// AddInitializerToDecl - Adds the initializer Init to the
3006/// declaration dcl. If DirectInit is true, this is C++ direct
3007/// initialization rather than copy initialization.
3008void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3009  Decl *RealDecl = dcl.getAs<Decl>();
3010  // If there is no declaration, there was an error parsing it.  Just ignore
3011  // the initializer.
3012  if (RealDecl == 0)
3013    return;
3014
3015  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3016    // With declarators parsed the way they are, the parser cannot
3017    // distinguish between a normal initializer and a pure-specifier.
3018    // Thus this grotesque test.
3019    IntegerLiteral *IL;
3020    Expr *Init = static_cast<Expr *>(init.get());
3021    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3022        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3023      if (Method->isVirtualAsWritten()) {
3024        Method->setPure();
3025
3026        // A class is abstract if at least one function is pure virtual.
3027        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3028      } else if (!Method->isInvalidDecl()) {
3029        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3030          << Method->getDeclName() << Init->getSourceRange();
3031        Method->setInvalidDecl();
3032      }
3033    } else {
3034      Diag(Method->getLocation(), diag::err_member_function_initialization)
3035        << Method->getDeclName() << Init->getSourceRange();
3036      Method->setInvalidDecl();
3037    }
3038    return;
3039  }
3040
3041  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3042  if (!VDecl) {
3043    if (getLangOptions().CPlusPlus &&
3044        RealDecl->getLexicalDeclContext()->isRecord() &&
3045        isa<NamedDecl>(RealDecl))
3046      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3047        << cast<NamedDecl>(RealDecl)->getDeclName();
3048    else
3049      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3050    RealDecl->setInvalidDecl();
3051    return;
3052  }
3053
3054  if (!VDecl->getType()->isArrayType() &&
3055      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3056                          diag::err_typecheck_decl_incomplete_type)) {
3057    RealDecl->setInvalidDecl();
3058    return;
3059  }
3060
3061  const VarDecl *Def = 0;
3062  if (VDecl->getDefinition(Def)) {
3063    Diag(VDecl->getLocation(), diag::err_redefinition)
3064      << VDecl->getDeclName();
3065    Diag(Def->getLocation(), diag::note_previous_definition);
3066    VDecl->setInvalidDecl();
3067    return;
3068  }
3069
3070  // Take ownership of the expression, now that we're sure we have somewhere
3071  // to put it.
3072  Expr *Init = init.takeAs<Expr>();
3073  assert(Init && "missing initializer");
3074
3075  // Get the decls type and save a reference for later, since
3076  // CheckInitializerTypes may change it.
3077  QualType DclT = VDecl->getType(), SavT = DclT;
3078  if (VDecl->isBlockVarDecl()) {
3079    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3080      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3081      VDecl->setInvalidDecl();
3082    } else if (!VDecl->isInvalidDecl()) {
3083      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3084                                VDecl->getDeclName(), DirectInit))
3085        VDecl->setInvalidDecl();
3086
3087      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3088      // Don't check invalid declarations to avoid emitting useless diagnostics.
3089      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3090        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3091          CheckForConstantInitializer(Init, DclT);
3092      }
3093    }
3094  } else if (VDecl->isStaticDataMember() &&
3095             VDecl->getLexicalDeclContext()->isRecord()) {
3096    // This is an in-class initialization for a static data member, e.g.,
3097    //
3098    // struct S {
3099    //   static const int value = 17;
3100    // };
3101
3102    // Attach the initializer
3103    VDecl->setInit(Context, Init);
3104
3105    // C++ [class.mem]p4:
3106    //   A member-declarator can contain a constant-initializer only
3107    //   if it declares a static member (9.4) of const integral or
3108    //   const enumeration type, see 9.4.2.
3109    QualType T = VDecl->getType();
3110    if (!T->isDependentType() &&
3111        (!Context.getCanonicalType(T).isConstQualified() ||
3112         !T->isIntegralType())) {
3113      Diag(VDecl->getLocation(), diag::err_member_initialization)
3114        << VDecl->getDeclName() << Init->getSourceRange();
3115      VDecl->setInvalidDecl();
3116    } else {
3117      // C++ [class.static.data]p4:
3118      //   If a static data member is of const integral or const
3119      //   enumeration type, its declaration in the class definition
3120      //   can specify a constant-initializer which shall be an
3121      //   integral constant expression (5.19).
3122      if (!Init->isTypeDependent() &&
3123          !Init->getType()->isIntegralType()) {
3124        // We have a non-dependent, non-integral or enumeration type.
3125        Diag(Init->getSourceRange().getBegin(),
3126             diag::err_in_class_initializer_non_integral_type)
3127          << Init->getType() << Init->getSourceRange();
3128        VDecl->setInvalidDecl();
3129      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3130        // Check whether the expression is a constant expression.
3131        llvm::APSInt Value;
3132        SourceLocation Loc;
3133        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3134          Diag(Loc, diag::err_in_class_initializer_non_constant)
3135            << Init->getSourceRange();
3136          VDecl->setInvalidDecl();
3137        } else if (!VDecl->getType()->isDependentType())
3138          ImpCastExprToType(Init, VDecl->getType());
3139      }
3140    }
3141  } else if (VDecl->isFileVarDecl()) {
3142    if (VDecl->getStorageClass() == VarDecl::Extern)
3143      Diag(VDecl->getLocation(), diag::warn_extern_init);
3144    if (!VDecl->isInvalidDecl())
3145      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3146                                VDecl->getDeclName(), DirectInit))
3147        VDecl->setInvalidDecl();
3148
3149    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3150    // Don't check invalid declarations to avoid emitting useless diagnostics.
3151    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3152      // C99 6.7.8p4. All file scoped initializers need to be constant.
3153      CheckForConstantInitializer(Init, DclT);
3154    }
3155  }
3156  // If the type changed, it means we had an incomplete type that was
3157  // completed by the initializer. For example:
3158  //   int ary[] = { 1, 3, 5 };
3159  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3160  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3161    VDecl->setType(DclT);
3162    Init->setType(DclT);
3163  }
3164
3165  Init = MaybeCreateCXXExprWithTemporaries(Init,
3166                                           /*ShouldDestroyTemporaries=*/true);
3167  // Attach the initializer to the decl.
3168  VDecl->setInit(Context, Init);
3169
3170  // If the previous declaration of VDecl was a tentative definition,
3171  // remove it from the set of tentative definitions.
3172  if (VDecl->getPreviousDeclaration() &&
3173      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3174    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3175      = TentativeDefinitions.find(VDecl->getDeclName());
3176    assert(Pos != TentativeDefinitions.end() &&
3177           "Unrecorded tentative definition?");
3178    TentativeDefinitions.erase(Pos);
3179  }
3180
3181  return;
3182}
3183
3184void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3185                                  bool TypeContainsUndeducedAuto) {
3186  Decl *RealDecl = dcl.getAs<Decl>();
3187
3188  // If there is no declaration, there was an error parsing it. Just ignore it.
3189  if (RealDecl == 0)
3190    return;
3191
3192  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3193    QualType Type = Var->getType();
3194
3195    // Record tentative definitions.
3196    if (Var->isTentativeDefinition(Context))
3197      TentativeDefinitions[Var->getDeclName()] = Var;
3198
3199    // C++ [dcl.init.ref]p3:
3200    //   The initializer can be omitted for a reference only in a
3201    //   parameter declaration (8.3.5), in the declaration of a
3202    //   function return type, in the declaration of a class member
3203    //   within its class declaration (9.2), and where the extern
3204    //   specifier is explicitly used.
3205    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3206      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3207        << Var->getDeclName()
3208        << SourceRange(Var->getLocation(), Var->getLocation());
3209      Var->setInvalidDecl();
3210      return;
3211    }
3212
3213    // C++0x [dcl.spec.auto]p3
3214    if (TypeContainsUndeducedAuto) {
3215      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3216        << Var->getDeclName() << Type;
3217      Var->setInvalidDecl();
3218      return;
3219    }
3220
3221    // C++ [dcl.init]p9:
3222    //
3223    //   If no initializer is specified for an object, and the object
3224    //   is of (possibly cv-qualified) non-POD class type (or array
3225    //   thereof), the object shall be default-initialized; if the
3226    //   object is of const-qualified type, the underlying class type
3227    //   shall have a user-declared default constructor.
3228    if (getLangOptions().CPlusPlus) {
3229      QualType InitType = Type;
3230      if (const ArrayType *Array = Context.getAsArrayType(Type))
3231        InitType = Array->getElementType();
3232      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3233          InitType->isRecordType() && !InitType->isDependentType()) {
3234        CXXRecordDecl *RD =
3235          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3236        CXXConstructorDecl *Constructor = 0;
3237        if (!RequireCompleteType(Var->getLocation(), InitType,
3238                                    diag::err_invalid_incomplete_type_use))
3239          Constructor
3240            = PerformInitializationByConstructor(InitType, 0, 0,
3241                                                 Var->getLocation(),
3242                                               SourceRange(Var->getLocation(),
3243                                                           Var->getLocation()),
3244                                                 Var->getDeclName(),
3245                                                 IK_Default);
3246        if (!Constructor)
3247          Var->setInvalidDecl();
3248        else {
3249          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
3250            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3251          FinalizeVarWithDestructor(Var, InitType);
3252        }
3253      }
3254    }
3255
3256#if 0
3257    // FIXME: Temporarily disabled because we are not properly parsing
3258    // linkage specifications on declarations, e.g.,
3259    //
3260    //   extern "C" const CGPoint CGPointerZero;
3261    //
3262    // C++ [dcl.init]p9:
3263    //
3264    //     If no initializer is specified for an object, and the
3265    //     object is of (possibly cv-qualified) non-POD class type (or
3266    //     array thereof), the object shall be default-initialized; if
3267    //     the object is of const-qualified type, the underlying class
3268    //     type shall have a user-declared default
3269    //     constructor. Otherwise, if no initializer is specified for
3270    //     an object, the object and its subobjects, if any, have an
3271    //     indeterminate initial value; if the object or any of its
3272    //     subobjects are of const-qualified type, the program is
3273    //     ill-formed.
3274    //
3275    // This isn't technically an error in C, so we don't diagnose it.
3276    //
3277    // FIXME: Actually perform the POD/user-defined default
3278    // constructor check.
3279    if (getLangOptions().CPlusPlus &&
3280        Context.getCanonicalType(Type).isConstQualified() &&
3281        !Var->hasExternalStorage())
3282      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3283        << Var->getName()
3284        << SourceRange(Var->getLocation(), Var->getLocation());
3285#endif
3286  }
3287}
3288
3289Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3290                                                   DeclPtrTy *Group,
3291                                                   unsigned NumDecls) {
3292  llvm::SmallVector<Decl*, 8> Decls;
3293
3294  if (DS.isTypeSpecOwned())
3295    Decls.push_back((Decl*)DS.getTypeRep());
3296
3297  for (unsigned i = 0; i != NumDecls; ++i)
3298    if (Decl *D = Group[i].getAs<Decl>())
3299      Decls.push_back(D);
3300
3301  // Perform semantic analysis that depends on having fully processed both
3302  // the declarator and initializer.
3303  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3304    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3305    if (!IDecl)
3306      continue;
3307    QualType T = IDecl->getType();
3308
3309    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3310    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3311    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3312      if (!IDecl->isInvalidDecl() &&
3313          RequireCompleteType(IDecl->getLocation(), T,
3314                              diag::err_typecheck_decl_incomplete_type))
3315        IDecl->setInvalidDecl();
3316    }
3317    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3318    // object that has file scope without an initializer, and without a
3319    // storage-class specifier or with the storage-class specifier "static",
3320    // constitutes a tentative definition. Note: A tentative definition with
3321    // external linkage is valid (C99 6.2.2p5).
3322    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3323      if (const IncompleteArrayType *ArrayT
3324          = Context.getAsIncompleteArrayType(T)) {
3325        if (RequireCompleteType(IDecl->getLocation(),
3326                                ArrayT->getElementType(),
3327                                diag::err_illegal_decl_array_incomplete_type))
3328          IDecl->setInvalidDecl();
3329      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3330        // C99 6.9.2p3: If the declaration of an identifier for an object is
3331        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3332        // declared type shall not be an incomplete type.
3333        // NOTE: code such as the following
3334        //     static struct s;
3335        //     struct s { int a; };
3336        // is accepted by gcc. Hence here we issue a warning instead of
3337        // an error and we do not invalidate the static declaration.
3338        // NOTE: to avoid multiple warnings, only check the first declaration.
3339        if (IDecl->getPreviousDeclaration() == 0)
3340          RequireCompleteType(IDecl->getLocation(), T,
3341                              diag::ext_typecheck_decl_incomplete_type);
3342      }
3343    }
3344  }
3345  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3346                                                   Decls.data(), Decls.size()));
3347}
3348
3349
3350/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3351/// to introduce parameters into function prototype scope.
3352Sema::DeclPtrTy
3353Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3354  const DeclSpec &DS = D.getDeclSpec();
3355
3356  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3357  VarDecl::StorageClass StorageClass = VarDecl::None;
3358  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3359    StorageClass = VarDecl::Register;
3360  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3361    Diag(DS.getStorageClassSpecLoc(),
3362         diag::err_invalid_storage_class_in_func_decl);
3363    D.getMutableDeclSpec().ClearStorageClassSpecs();
3364  }
3365
3366  if (D.getDeclSpec().isThreadSpecified())
3367    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3368
3369  DiagnoseFunctionSpecifiers(D);
3370
3371  // Check that there are no default arguments inside the type of this
3372  // parameter (C++ only).
3373  if (getLangOptions().CPlusPlus)
3374    CheckExtraCXXDefaultArguments(D);
3375
3376  TagDecl *OwnedDecl = 0;
3377  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3378
3379  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3380    // C++ [dcl.fct]p6:
3381    //   Types shall not be defined in return or parameter types.
3382    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3383      << Context.getTypeDeclType(OwnedDecl);
3384  }
3385
3386  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3387  // Can this happen for params?  We already checked that they don't conflict
3388  // among each other.  Here they can only shadow globals, which is ok.
3389  IdentifierInfo *II = D.getIdentifier();
3390  if (II) {
3391    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3392      if (PrevDecl->isTemplateParameter()) {
3393        // Maybe we will complain about the shadowed template parameter.
3394        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3395        // Just pretend that we didn't see the previous declaration.
3396        PrevDecl = 0;
3397      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3398        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3399
3400        // Recover by removing the name
3401        II = 0;
3402        D.SetIdentifier(0, D.getIdentifierLoc());
3403      }
3404    }
3405  }
3406
3407  // Parameters can not be abstract class types.
3408  // For record types, this is done by the AbstractClassUsageDiagnoser once
3409  // the class has been completely parsed.
3410  if (!CurContext->isRecord() &&
3411      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3412                             diag::err_abstract_type_in_decl,
3413                             AbstractParamType))
3414    D.setInvalidType(true);
3415
3416  QualType T = adjustParameterType(parmDeclType);
3417
3418  ParmVarDecl *New;
3419  if (T == parmDeclType) // parameter type did not need adjustment
3420    New = ParmVarDecl::Create(Context, CurContext,
3421                              D.getIdentifierLoc(), II,
3422                              parmDeclType, StorageClass,
3423                              0);
3424  else // keep track of both the adjusted and unadjusted types
3425    New = OriginalParmVarDecl::Create(Context, CurContext,
3426                                      D.getIdentifierLoc(), II, T,
3427                                      parmDeclType, StorageClass, 0);
3428
3429  if (D.isInvalidType())
3430    New->setInvalidDecl();
3431
3432  // Parameter declarators cannot be interface types. All ObjC objects are
3433  // passed by reference.
3434  if (T->isObjCInterfaceType()) {
3435    Diag(D.getIdentifierLoc(),
3436         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3437    New->setInvalidDecl();
3438  }
3439
3440  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3441  if (D.getCXXScopeSpec().isSet()) {
3442    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3443      << D.getCXXScopeSpec().getRange();
3444    New->setInvalidDecl();
3445  }
3446
3447  // Add the parameter declaration into this scope.
3448  S->AddDecl(DeclPtrTy::make(New));
3449  if (II)
3450    IdResolver.AddDecl(New);
3451
3452  ProcessDeclAttributes(S, New, D);
3453
3454  if (New->hasAttr<BlocksAttr>()) {
3455    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3456  }
3457  return DeclPtrTy::make(New);
3458}
3459
3460void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3461                                           SourceLocation LocAfterDecls) {
3462  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3463         "Not a function declarator!");
3464  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3465
3466  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3467  // for a K&R function.
3468  if (!FTI.hasPrototype) {
3469    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3470      --i;
3471      if (FTI.ArgInfo[i].Param == 0) {
3472        std::string Code = "  int ";
3473        Code += FTI.ArgInfo[i].Ident->getName();
3474        Code += ";\n";
3475        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3476          << FTI.ArgInfo[i].Ident
3477          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3478
3479        // Implicitly declare the argument as type 'int' for lack of a better
3480        // type.
3481        DeclSpec DS;
3482        const char* PrevSpec; // unused
3483        unsigned DiagID; // unused
3484        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3485                           PrevSpec, DiagID);
3486        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3487        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3488        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3489      }
3490    }
3491  }
3492}
3493
3494Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3495                                              Declarator &D) {
3496  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3497  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3498         "Not a function declarator!");
3499  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3500
3501  if (FTI.hasPrototype) {
3502    // FIXME: Diagnose arguments without names in C.
3503  }
3504
3505  Scope *ParentScope = FnBodyScope->getParent();
3506
3507  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3508                                  MultiTemplateParamsArg(*this),
3509                                  /*IsFunctionDefinition=*/true);
3510  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3511}
3512
3513Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3514  if (!D)
3515    return D;
3516  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3517
3518  CurFunctionNeedsScopeChecking = false;
3519
3520  // See if this is a redefinition.
3521  const FunctionDecl *Definition;
3522  if (FD->getBody(Definition)) {
3523    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3524    Diag(Definition->getLocation(), diag::note_previous_definition);
3525  }
3526
3527  // Builtin functions cannot be defined.
3528  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3529    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3530      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3531      FD->setInvalidDecl();
3532    }
3533  }
3534
3535  // The return type of a function definition must be complete
3536  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3537  QualType ResultType = FD->getResultType();
3538  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3539      !FD->isInvalidDecl() &&
3540      RequireCompleteType(FD->getLocation(), ResultType,
3541                          diag::err_func_def_incomplete_result))
3542    FD->setInvalidDecl();
3543
3544  // GNU warning -Wmissing-prototypes:
3545  //   Warn if a global function is defined without a previous
3546  //   prototype declaration. This warning is issued even if the
3547  //   definition itself provides a prototype. The aim is to detect
3548  //   global functions that fail to be declared in header files.
3549  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3550      !FD->isMain(Context)) {
3551    bool MissingPrototype = true;
3552    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3553         Prev; Prev = Prev->getPreviousDeclaration()) {
3554      // Ignore any declarations that occur in function or method
3555      // scope, because they aren't visible from the header.
3556      if (Prev->getDeclContext()->isFunctionOrMethod())
3557        continue;
3558
3559      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3560      break;
3561    }
3562
3563    if (MissingPrototype)
3564      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3565  }
3566
3567  if (FnBodyScope)
3568    PushDeclContext(FnBodyScope, FD);
3569
3570  // Check the validity of our function parameters
3571  CheckParmsForFunctionDef(FD);
3572
3573  // Introduce our parameters into the function scope
3574  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3575    ParmVarDecl *Param = FD->getParamDecl(p);
3576    Param->setOwningFunction(FD);
3577
3578    // If this has an identifier, add it to the scope stack.
3579    if (Param->getIdentifier() && FnBodyScope)
3580      PushOnScopeChains(Param, FnBodyScope);
3581  }
3582
3583  // Checking attributes of current function definition
3584  // dllimport attribute.
3585  if (FD->getAttr<DLLImportAttr>() &&
3586      (!FD->getAttr<DLLExportAttr>())) {
3587    // dllimport attribute cannot be applied to definition.
3588    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3589      Diag(FD->getLocation(),
3590           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3591        << "dllimport";
3592      FD->setInvalidDecl();
3593      return DeclPtrTy::make(FD);
3594    } else {
3595      // If a symbol previously declared dllimport is later defined, the
3596      // attribute is ignored in subsequent references, and a warning is
3597      // emitted.
3598      Diag(FD->getLocation(),
3599           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3600        << FD->getNameAsCString() << "dllimport";
3601    }
3602  }
3603  return DeclPtrTy::make(FD);
3604}
3605
3606Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3607  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3608}
3609
3610Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3611                                              bool IsInstantiation) {
3612  Decl *dcl = D.getAs<Decl>();
3613  Stmt *Body = BodyArg.takeAs<Stmt>();
3614  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3615    FD->setBody(Body);
3616    if (FD->isMain(Context))
3617      // C and C++ allow for main to automagically return 0.
3618      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3619      FD->setHasImplicitReturnZero(true);
3620    else
3621      CheckFallThroughForFunctionDef(FD, Body);
3622
3623    if (!FD->isInvalidDecl())
3624      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3625
3626    // C++ [basic.def.odr]p2:
3627    //   [...] A virtual member function is used if it is not pure. [...]
3628    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3629      if (Method->isVirtual() && !Method->isPure())
3630        MarkDeclarationReferenced(Method->getLocation(), Method);
3631
3632    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3633  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3634    assert(MD == getCurMethodDecl() && "Method parsing confused");
3635    MD->setBody(Body);
3636    CheckFallThroughForFunctionDef(MD, Body);
3637    MD->setEndLoc(Body->getLocEnd());
3638
3639    if (!MD->isInvalidDecl())
3640      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3641  } else {
3642    Body->Destroy(Context);
3643    return DeclPtrTy();
3644  }
3645  if (!IsInstantiation)
3646    PopDeclContext();
3647
3648  // Verify and clean out per-function state.
3649
3650  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3651
3652  // Check goto/label use.
3653  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3654       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3655    LabelStmt *L = I->second;
3656
3657    // Verify that we have no forward references left.  If so, there was a goto
3658    // or address of a label taken, but no definition of it.  Label fwd
3659    // definitions are indicated with a null substmt.
3660    if (L->getSubStmt() != 0)
3661      continue;
3662
3663    // Emit error.
3664    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3665
3666    // At this point, we have gotos that use the bogus label.  Stitch it into
3667    // the function body so that they aren't leaked and that the AST is well
3668    // formed.
3669    if (Body == 0) {
3670      // The whole function wasn't parsed correctly, just delete this.
3671      L->Destroy(Context);
3672      continue;
3673    }
3674
3675    // Otherwise, the body is valid: we want to stitch the label decl into the
3676    // function somewhere so that it is properly owned and so that the goto
3677    // has a valid target.  Do this by creating a new compound stmt with the
3678    // label in it.
3679
3680    // Give the label a sub-statement.
3681    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3682
3683    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3684                               cast<CXXTryStmt>(Body)->getTryBlock() :
3685                               cast<CompoundStmt>(Body);
3686    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3687    Elements.push_back(L);
3688    Compound->setStmts(Context, &Elements[0], Elements.size());
3689  }
3690  FunctionLabelMap.clear();
3691
3692  if (!Body) return D;
3693
3694  // Verify that that gotos and switch cases don't jump into scopes illegally.
3695  if (CurFunctionNeedsScopeChecking)
3696    DiagnoseInvalidJumps(Body);
3697
3698  // C++ constructors that have function-try-blocks can't have return
3699  // statements in the handlers of that block. (C++ [except.handle]p14)
3700  // Verify this.
3701  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3702    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3703
3704  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3705    Destructor->computeBaseOrMembersToDestroy(Context);
3706  return D;
3707}
3708
3709/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3710/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3711NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3712                                          IdentifierInfo &II, Scope *S) {
3713  // Before we produce a declaration for an implicitly defined
3714  // function, see whether there was a locally-scoped declaration of
3715  // this name as a function or variable. If so, use that
3716  // (non-visible) declaration, and complain about it.
3717  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3718    = LocallyScopedExternalDecls.find(&II);
3719  if (Pos != LocallyScopedExternalDecls.end()) {
3720    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3721    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3722    return Pos->second;
3723  }
3724
3725  // Extension in C99.  Legal in C90, but warn about it.
3726  if (getLangOptions().C99)
3727    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3728  else
3729    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3730
3731  // FIXME: handle stuff like:
3732  // void foo() { extern float X(); }
3733  // void bar() { X(); }  <-- implicit decl for X in another scope.
3734
3735  // Set a Declarator for the implicit definition: int foo();
3736  const char *Dummy;
3737  DeclSpec DS;
3738  unsigned DiagID;
3739  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3740  Error = Error; // Silence warning.
3741  assert(!Error && "Error setting up implicit decl!");
3742  Declarator D(DS, Declarator::BlockContext);
3743  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3744                                             0, 0, false, SourceLocation(),
3745                                             false, 0,0,0, Loc, D),
3746                SourceLocation());
3747  D.SetIdentifier(&II, Loc);
3748
3749  // Insert this function into translation-unit scope.
3750
3751  DeclContext *PrevDC = CurContext;
3752  CurContext = Context.getTranslationUnitDecl();
3753
3754  FunctionDecl *FD =
3755 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3756  FD->setImplicit();
3757
3758  CurContext = PrevDC;
3759
3760  AddKnownFunctionAttributes(FD);
3761
3762  return FD;
3763}
3764
3765/// \brief Adds any function attributes that we know a priori based on
3766/// the declaration of this function.
3767///
3768/// These attributes can apply both to implicitly-declared builtins
3769/// (like __builtin___printf_chk) or to library-declared functions
3770/// like NSLog or printf.
3771void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3772  if (FD->isInvalidDecl())
3773    return;
3774
3775  // If this is a built-in function, map its builtin attributes to
3776  // actual attributes.
3777  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3778    // Handle printf-formatting attributes.
3779    unsigned FormatIdx;
3780    bool HasVAListArg;
3781    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3782      if (!FD->getAttr<FormatAttr>())
3783        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3784                                             HasVAListArg ? 0 : FormatIdx + 2));
3785    }
3786
3787    // Mark const if we don't care about errno and that is the only
3788    // thing preventing the function from being const. This allows
3789    // IRgen to use LLVM intrinsics for such functions.
3790    if (!getLangOptions().MathErrno &&
3791        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3792      if (!FD->getAttr<ConstAttr>())
3793        FD->addAttr(::new (Context) ConstAttr());
3794    }
3795
3796    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3797      FD->addAttr(::new (Context) NoReturnAttr());
3798  }
3799
3800  IdentifierInfo *Name = FD->getIdentifier();
3801  if (!Name)
3802    return;
3803  if ((!getLangOptions().CPlusPlus &&
3804       FD->getDeclContext()->isTranslationUnit()) ||
3805      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3806       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3807       LinkageSpecDecl::lang_c)) {
3808    // Okay: this could be a libc/libm/Objective-C function we know
3809    // about.
3810  } else
3811    return;
3812
3813  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3814    // FIXME: NSLog and NSLogv should be target specific
3815    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3816      // FIXME: We known better than our headers.
3817      const_cast<FormatAttr *>(Format)->setType("printf");
3818    } else
3819      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3820                                             Name->isStr("NSLogv") ? 0 : 2));
3821  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3822    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3823    // target-specific builtins, perhaps?
3824    if (!FD->getAttr<FormatAttr>())
3825      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3826                                             Name->isStr("vasprintf") ? 0 : 3));
3827  }
3828}
3829
3830TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3831  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3832  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3833
3834  // Scope manipulation handled by caller.
3835  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3836                                           D.getIdentifierLoc(),
3837                                           D.getIdentifier(),
3838                                           T);
3839
3840  if (TagType *TT = dyn_cast<TagType>(T)) {
3841    TagDecl *TD = TT->getDecl();
3842
3843    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3844    // keep track of the TypedefDecl.
3845    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3846      TD->setTypedefForAnonDecl(NewTD);
3847  }
3848
3849  if (D.isInvalidType())
3850    NewTD->setInvalidDecl();
3851  return NewTD;
3852}
3853
3854
3855/// \brief Determine whether a tag with a given kind is acceptable
3856/// as a redeclaration of the given tag declaration.
3857///
3858/// \returns true if the new tag kind is acceptable, false otherwise.
3859bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3860                                        TagDecl::TagKind NewTag,
3861                                        SourceLocation NewTagLoc,
3862                                        const IdentifierInfo &Name) {
3863  // C++ [dcl.type.elab]p3:
3864  //   The class-key or enum keyword present in the
3865  //   elaborated-type-specifier shall agree in kind with the
3866  //   declaration to which the name in theelaborated-type-specifier
3867  //   refers. This rule also applies to the form of
3868  //   elaborated-type-specifier that declares a class-name or
3869  //   friend class since it can be construed as referring to the
3870  //   definition of the class. Thus, in any
3871  //   elaborated-type-specifier, the enum keyword shall be used to
3872  //   refer to an enumeration (7.2), the union class-keyshall be
3873  //   used to refer to a union (clause 9), and either the class or
3874  //   struct class-key shall be used to refer to a class (clause 9)
3875  //   declared using the class or struct class-key.
3876  TagDecl::TagKind OldTag = Previous->getTagKind();
3877  if (OldTag == NewTag)
3878    return true;
3879
3880  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3881      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3882    // Warn about the struct/class tag mismatch.
3883    bool isTemplate = false;
3884    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3885      isTemplate = Record->getDescribedClassTemplate();
3886
3887    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3888      << (NewTag == TagDecl::TK_class)
3889      << isTemplate << &Name
3890      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3891                              OldTag == TagDecl::TK_class? "class" : "struct");
3892    Diag(Previous->getLocation(), diag::note_previous_use);
3893    return true;
3894  }
3895  return false;
3896}
3897
3898/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3899/// former case, Name will be non-null.  In the later case, Name will be null.
3900/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3901/// reference/declaration/definition of a tag.
3902Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3903                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3904                               IdentifierInfo *Name, SourceLocation NameLoc,
3905                               AttributeList *Attr, AccessSpecifier AS,
3906                               MultiTemplateParamsArg TemplateParameterLists,
3907                               bool &OwnedDecl) {
3908  // If this is not a definition, it must have a name.
3909  assert((Name != 0 || TUK == TUK_Definition) &&
3910         "Nameless record must be a definition!");
3911
3912  OwnedDecl = false;
3913  TagDecl::TagKind Kind;
3914  switch (TagSpec) {
3915  default: assert(0 && "Unknown tag type!");
3916  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3917  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3918  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3919  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3920  }
3921
3922  if (TUK != TUK_Reference) {
3923    if (TemplateParameterList *TemplateParams
3924          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3925                        (TemplateParameterList**)TemplateParameterLists.get(),
3926                                              TemplateParameterLists.size())) {
3927      if (TemplateParams->size() > 0) {
3928        // This is a declaration or definition of a class template (which may
3929        // be a member of another template).
3930        OwnedDecl = false;
3931        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3932                                               SS, Name, NameLoc, Attr,
3933                                               move(TemplateParameterLists),
3934                                               AS);
3935        return Result.get();
3936      } else {
3937        // FIXME: diagnose the extraneous 'template<>', once we recover
3938        // slightly better in ParseTemplate.cpp from bogus template
3939        // parameters.
3940      }
3941    }
3942  }
3943
3944  DeclContext *SearchDC = CurContext;
3945  DeclContext *DC = CurContext;
3946  NamedDecl *PrevDecl = 0;
3947
3948  bool Invalid = false;
3949
3950  if (Name && SS.isNotEmpty()) {
3951    // We have a nested-name tag ('struct foo::bar').
3952
3953    // Check for invalid 'foo::'.
3954    if (SS.isInvalid()) {
3955      Name = 0;
3956      goto CreateNewDecl;
3957    }
3958
3959    if (RequireCompleteDeclContext(SS))
3960      return DeclPtrTy::make((Decl *)0);
3961
3962    DC = computeDeclContext(SS, true);
3963    SearchDC = DC;
3964    // Look-up name inside 'foo::'.
3965    PrevDecl
3966      = dyn_cast_or_null<TagDecl>(
3967               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3968
3969    // A tag 'foo::bar' must already exist.
3970    if (PrevDecl == 0) {
3971      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3972      Name = 0;
3973      Invalid = true;
3974      goto CreateNewDecl;
3975    }
3976  } else if (Name) {
3977    // If this is a named struct, check to see if there was a previous forward
3978    // declaration or definition.
3979    // FIXME: We're looking into outer scopes here, even when we
3980    // shouldn't be. Doing so can result in ambiguities that we
3981    // shouldn't be diagnosing.
3982    LookupResult R = LookupName(S, Name, LookupTagName,
3983                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3984    if (R.isAmbiguous()) {
3985      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3986      // FIXME: This is not best way to recover from case like:
3987      //
3988      // struct S s;
3989      //
3990      // causes needless "incomplete type" error later.
3991      Name = 0;
3992      PrevDecl = 0;
3993      Invalid = true;
3994    } else
3995      PrevDecl = R;
3996
3997    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
3998      // FIXME: This makes sure that we ignore the contexts associated
3999      // with C structs, unions, and enums when looking for a matching
4000      // tag declaration or definition. See the similar lookup tweak
4001      // in Sema::LookupName; is there a better way to deal with this?
4002      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4003        SearchDC = SearchDC->getParent();
4004    }
4005  }
4006
4007  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4008    // Maybe we will complain about the shadowed template parameter.
4009    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4010    // Just pretend that we didn't see the previous declaration.
4011    PrevDecl = 0;
4012  }
4013
4014  if (PrevDecl) {
4015    // Check whether the previous declaration is usable.
4016    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4017
4018    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4019      // If this is a use of a previous tag, or if the tag is already declared
4020      // in the same scope (so that the definition/declaration completes or
4021      // rementions the tag), reuse the decl.
4022      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4023          isDeclInScope(PrevDecl, SearchDC, S)) {
4024        // Make sure that this wasn't declared as an enum and now used as a
4025        // struct or something similar.
4026        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4027          bool SafeToContinue
4028            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4029               Kind != TagDecl::TK_enum);
4030          if (SafeToContinue)
4031            Diag(KWLoc, diag::err_use_with_wrong_tag)
4032              << Name
4033              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4034                                                  PrevTagDecl->getKindName());
4035          else
4036            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4037          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4038
4039          if (SafeToContinue)
4040            Kind = PrevTagDecl->getTagKind();
4041          else {
4042            // Recover by making this an anonymous redefinition.
4043            Name = 0;
4044            PrevDecl = 0;
4045            Invalid = true;
4046          }
4047        }
4048
4049        if (!Invalid) {
4050          // If this is a use, just return the declaration we found.
4051
4052          // FIXME: In the future, return a variant or some other clue
4053          // for the consumer of this Decl to know it doesn't own it.
4054          // For our current ASTs this shouldn't be a problem, but will
4055          // need to be changed with DeclGroups.
4056          if (TUK == TUK_Reference)
4057            return DeclPtrTy::make(PrevDecl);
4058
4059          // If this is a friend, make sure we create the new
4060          // declaration in the appropriate semantic context.
4061          if (TUK == TUK_Friend)
4062            SearchDC = PrevDecl->getDeclContext();
4063
4064          // Diagnose attempts to redefine a tag.
4065          if (TUK == TUK_Definition) {
4066            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4067              Diag(NameLoc, diag::err_redefinition) << Name;
4068              Diag(Def->getLocation(), diag::note_previous_definition);
4069              // If this is a redefinition, recover by making this
4070              // struct be anonymous, which will make any later
4071              // references get the previous definition.
4072              Name = 0;
4073              PrevDecl = 0;
4074              Invalid = true;
4075            } else {
4076              // If the type is currently being defined, complain
4077              // about a nested redefinition.
4078              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4079              if (Tag->isBeingDefined()) {
4080                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4081                Diag(PrevTagDecl->getLocation(),
4082                     diag::note_previous_definition);
4083                Name = 0;
4084                PrevDecl = 0;
4085                Invalid = true;
4086              }
4087            }
4088
4089            // Okay, this is definition of a previously declared or referenced
4090            // tag PrevDecl. We're going to create a new Decl for it.
4091          }
4092        }
4093        // If we get here we have (another) forward declaration or we
4094        // have a definition.  Just create a new decl.
4095
4096      } else {
4097        // If we get here, this is a definition of a new tag type in a nested
4098        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4099        // new decl/type.  We set PrevDecl to NULL so that the entities
4100        // have distinct types.
4101        PrevDecl = 0;
4102      }
4103      // If we get here, we're going to create a new Decl. If PrevDecl
4104      // is non-NULL, it's a definition of the tag declared by
4105      // PrevDecl. If it's NULL, we have a new definition.
4106    } else {
4107      // PrevDecl is a namespace, template, or anything else
4108      // that lives in the IDNS_Tag identifier namespace.
4109      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4110        // The tag name clashes with a namespace name, issue an error and
4111        // recover by making this tag be anonymous.
4112        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4113        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4114        Name = 0;
4115        PrevDecl = 0;
4116        Invalid = true;
4117      } else {
4118        // The existing declaration isn't relevant to us; we're in a
4119        // new scope, so clear out the previous declaration.
4120        PrevDecl = 0;
4121      }
4122    }
4123  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4124             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4125    // C++ [basic.scope.pdecl]p5:
4126    //   -- for an elaborated-type-specifier of the form
4127    //
4128    //          class-key identifier
4129    //
4130    //      if the elaborated-type-specifier is used in the
4131    //      decl-specifier-seq or parameter-declaration-clause of a
4132    //      function defined in namespace scope, the identifier is
4133    //      declared as a class-name in the namespace that contains
4134    //      the declaration; otherwise, except as a friend
4135    //      declaration, the identifier is declared in the smallest
4136    //      non-class, non-function-prototype scope that contains the
4137    //      declaration.
4138    //
4139    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4140    // C structs and unions.
4141    //
4142    // GNU C also supports this behavior as part of its incomplete
4143    // enum types extension, while GNU C++ does not.
4144    //
4145    // Find the context where we'll be declaring the tag.
4146    // FIXME: We would like to maintain the current DeclContext as the
4147    // lexical context,
4148    while (SearchDC->isRecord())
4149      SearchDC = SearchDC->getParent();
4150
4151    // Find the scope where we'll be declaring the tag.
4152    while (S->isClassScope() ||
4153           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4154           ((S->getFlags() & Scope::DeclScope) == 0) ||
4155           (S->getEntity() &&
4156            ((DeclContext *)S->getEntity())->isTransparentContext()))
4157      S = S->getParent();
4158
4159  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4160    // C++ [namespace.memdef]p3:
4161    //   If a friend declaration in a non-local class first declares a
4162    //   class or function, the friend class or function is a member of
4163    //   the innermost enclosing namespace.
4164    while (!SearchDC->isFileContext())
4165      SearchDC = SearchDC->getParent();
4166
4167    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4168    while (S->getEntity() != SearchDC)
4169      S = S->getParent();
4170  }
4171
4172CreateNewDecl:
4173
4174  // If there is an identifier, use the location of the identifier as the
4175  // location of the decl, otherwise use the location of the struct/union
4176  // keyword.
4177  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4178
4179  // Otherwise, create a new declaration. If there is a previous
4180  // declaration of the same entity, the two will be linked via
4181  // PrevDecl.
4182  TagDecl *New;
4183
4184  if (Kind == TagDecl::TK_enum) {
4185    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4186    // enum X { A, B, C } D;    D should chain to X.
4187    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4188                           cast_or_null<EnumDecl>(PrevDecl));
4189    // If this is an undefined enum, warn.
4190    if (TUK != TUK_Definition && !Invalid)  {
4191      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4192                                              : diag::ext_forward_ref_enum;
4193      Diag(Loc, DK);
4194    }
4195  } else {
4196    // struct/union/class
4197
4198    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4199    // struct X { int A; } D;    D should chain to X.
4200    if (getLangOptions().CPlusPlus)
4201      // FIXME: Look for a way to use RecordDecl for simple structs.
4202      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4203                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4204    else
4205      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4206                               cast_or_null<RecordDecl>(PrevDecl));
4207  }
4208
4209  if (Kind != TagDecl::TK_enum) {
4210    // Handle #pragma pack: if the #pragma pack stack has non-default
4211    // alignment, make up a packed attribute for this decl. These
4212    // attributes are checked when the ASTContext lays out the
4213    // structure.
4214    //
4215    // It is important for implementing the correct semantics that this
4216    // happen here (in act on tag decl). The #pragma pack stack is
4217    // maintained as a result of parser callbacks which can occur at
4218    // many points during the parsing of a struct declaration (because
4219    // the #pragma tokens are effectively skipped over during the
4220    // parsing of the struct).
4221    if (unsigned Alignment = getPragmaPackAlignment())
4222      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4223  }
4224
4225  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4226    // C++ [dcl.typedef]p3:
4227    //   [...] Similarly, in a given scope, a class or enumeration
4228    //   shall not be declared with the same name as a typedef-name
4229    //   that is declared in that scope and refers to a type other
4230    //   than the class or enumeration itself.
4231    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4232    TypedefDecl *PrevTypedef = 0;
4233    if (Lookup.getKind() == LookupResult::Found)
4234      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4235
4236    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4237        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4238          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4239      Diag(Loc, diag::err_tag_definition_of_typedef)
4240        << Context.getTypeDeclType(New)
4241        << PrevTypedef->getUnderlyingType();
4242      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4243      Invalid = true;
4244    }
4245  }
4246
4247  if (Invalid)
4248    New->setInvalidDecl();
4249
4250  if (Attr)
4251    ProcessDeclAttributeList(S, New, Attr);
4252
4253  // If we're declaring or defining a tag in function prototype scope
4254  // in C, note that this type can only be used within the function.
4255  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4256    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4257
4258  // Set the lexical context. If the tag has a C++ scope specifier, the
4259  // lexical context will be different from the semantic context.
4260  New->setLexicalDeclContext(CurContext);
4261
4262  // Set the access specifier.
4263  if (!Invalid && TUK != TUK_Friend)
4264    SetMemberAccessSpecifier(New, PrevDecl, AS);
4265
4266  if (TUK == TUK_Definition)
4267    New->startDefinition();
4268
4269  // If this has an identifier, add it to the scope stack.
4270  if (Name && TUK != TUK_Friend) {
4271    S = getNonFieldDeclScope(S);
4272    PushOnScopeChains(New, S);
4273  } else {
4274    CurContext->addDecl(New);
4275  }
4276
4277  // If this is the C FILE type, notify the AST context.
4278  if (IdentifierInfo *II = New->getIdentifier())
4279    if (!New->isInvalidDecl() &&
4280        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4281        II->isStr("FILE"))
4282      Context.setFILEDecl(New);
4283
4284  OwnedDecl = true;
4285  return DeclPtrTy::make(New);
4286}
4287
4288void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4289  AdjustDeclIfTemplate(TagD);
4290  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4291
4292  // Enter the tag context.
4293  PushDeclContext(S, Tag);
4294
4295  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4296    FieldCollector->StartClass();
4297
4298    if (Record->getIdentifier()) {
4299      // C++ [class]p2:
4300      //   [...] The class-name is also inserted into the scope of the
4301      //   class itself; this is known as the injected-class-name. For
4302      //   purposes of access checking, the injected-class-name is treated
4303      //   as if it were a public member name.
4304      CXXRecordDecl *InjectedClassName
4305        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4306                                CurContext, Record->getLocation(),
4307                                Record->getIdentifier(),
4308                                Record->getTagKeywordLoc(),
4309                                Record);
4310      InjectedClassName->setImplicit();
4311      InjectedClassName->setAccess(AS_public);
4312      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4313        InjectedClassName->setDescribedClassTemplate(Template);
4314      PushOnScopeChains(InjectedClassName, S);
4315      assert(InjectedClassName->isInjectedClassName() &&
4316             "Broken injected-class-name");
4317    }
4318  }
4319}
4320
4321void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4322                                    SourceLocation RBraceLoc) {
4323  AdjustDeclIfTemplate(TagD);
4324  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4325  Tag->setRBraceLoc(RBraceLoc);
4326
4327  if (isa<CXXRecordDecl>(Tag))
4328    FieldCollector->FinishClass();
4329
4330  // Exit this scope of this tag's definition.
4331  PopDeclContext();
4332
4333  // Notify the consumer that we've defined a tag.
4334  Consumer.HandleTagDeclDefinition(Tag);
4335}
4336
4337// Note that FieldName may be null for anonymous bitfields.
4338bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4339                          QualType FieldTy, const Expr *BitWidth,
4340                          bool *ZeroWidth) {
4341  // Default to true; that shouldn't confuse checks for emptiness
4342  if (ZeroWidth)
4343    *ZeroWidth = true;
4344
4345  // C99 6.7.2.1p4 - verify the field type.
4346  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4347  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4348    // Handle incomplete types with specific error.
4349    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4350      return true;
4351    if (FieldName)
4352      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4353        << FieldName << FieldTy << BitWidth->getSourceRange();
4354    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4355      << FieldTy << BitWidth->getSourceRange();
4356  }
4357
4358  // If the bit-width is type- or value-dependent, don't try to check
4359  // it now.
4360  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4361    return false;
4362
4363  llvm::APSInt Value;
4364  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4365    return true;
4366
4367  if (Value != 0 && ZeroWidth)
4368    *ZeroWidth = false;
4369
4370  // Zero-width bitfield is ok for anonymous field.
4371  if (Value == 0 && FieldName)
4372    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4373
4374  if (Value.isSigned() && Value.isNegative()) {
4375    if (FieldName)
4376      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4377               << FieldName << Value.toString(10);
4378    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4379      << Value.toString(10);
4380  }
4381
4382  if (!FieldTy->isDependentType()) {
4383    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4384    if (Value.getZExtValue() > TypeSize) {
4385      if (FieldName)
4386        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4387          << FieldName << (unsigned)TypeSize;
4388      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4389        << (unsigned)TypeSize;
4390    }
4391  }
4392
4393  return false;
4394}
4395
4396/// ActOnField - Each field of a struct/union/class is passed into this in order
4397/// to create a FieldDecl object for it.
4398Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4399                                 SourceLocation DeclStart,
4400                                 Declarator &D, ExprTy *BitfieldWidth) {
4401  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4402                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4403                               AS_public);
4404  return DeclPtrTy::make(Res);
4405}
4406
4407/// HandleField - Analyze a field of a C struct or a C++ data member.
4408///
4409FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4410                             SourceLocation DeclStart,
4411                             Declarator &D, Expr *BitWidth,
4412                             AccessSpecifier AS) {
4413  IdentifierInfo *II = D.getIdentifier();
4414  SourceLocation Loc = DeclStart;
4415  if (II) Loc = D.getIdentifierLoc();
4416
4417  QualType T = GetTypeForDeclarator(D, S);
4418  if (getLangOptions().CPlusPlus)
4419    CheckExtraCXXDefaultArguments(D);
4420
4421  DiagnoseFunctionSpecifiers(D);
4422
4423  if (D.getDeclSpec().isThreadSpecified())
4424    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4425
4426  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4427
4428  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4429    // Maybe we will complain about the shadowed template parameter.
4430    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4431    // Just pretend that we didn't see the previous declaration.
4432    PrevDecl = 0;
4433  }
4434
4435  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4436    PrevDecl = 0;
4437
4438  bool Mutable
4439    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4440  SourceLocation TSSL = D.getSourceRange().getBegin();
4441  FieldDecl *NewFD
4442    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4443                     AS, PrevDecl, &D);
4444  if (NewFD->isInvalidDecl() && PrevDecl) {
4445    // Don't introduce NewFD into scope; there's already something
4446    // with the same name in the same scope.
4447  } else if (II) {
4448    PushOnScopeChains(NewFD, S);
4449  } else
4450    Record->addDecl(NewFD);
4451
4452  return NewFD;
4453}
4454
4455/// \brief Build a new FieldDecl and check its well-formedness.
4456///
4457/// This routine builds a new FieldDecl given the fields name, type,
4458/// record, etc. \p PrevDecl should refer to any previous declaration
4459/// with the same name and in the same scope as the field to be
4460/// created.
4461///
4462/// \returns a new FieldDecl.
4463///
4464/// \todo The Declarator argument is a hack. It will be removed once
4465FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4466                                RecordDecl *Record, SourceLocation Loc,
4467                                bool Mutable, Expr *BitWidth,
4468                                SourceLocation TSSL,
4469                                AccessSpecifier AS, NamedDecl *PrevDecl,
4470                                Declarator *D) {
4471  IdentifierInfo *II = Name.getAsIdentifierInfo();
4472  bool InvalidDecl = false;
4473  if (D) InvalidDecl = D->isInvalidType();
4474
4475  // If we receive a broken type, recover by assuming 'int' and
4476  // marking this declaration as invalid.
4477  if (T.isNull()) {
4478    InvalidDecl = true;
4479    T = Context.IntTy;
4480  }
4481
4482  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4483  // than a variably modified type.
4484  if (T->isVariablyModifiedType()) {
4485    bool SizeIsNegative;
4486    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4487                                                           SizeIsNegative);
4488    if (!FixedTy.isNull()) {
4489      Diag(Loc, diag::warn_illegal_constant_array_size);
4490      T = FixedTy;
4491    } else {
4492      if (SizeIsNegative)
4493        Diag(Loc, diag::err_typecheck_negative_array_size);
4494      else
4495        Diag(Loc, diag::err_typecheck_field_variable_size);
4496      InvalidDecl = true;
4497    }
4498  }
4499
4500  // Fields can not have abstract class types
4501  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4502                             AbstractFieldType))
4503    InvalidDecl = true;
4504
4505  bool ZeroWidth = false;
4506  // If this is declared as a bit-field, check the bit-field.
4507  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4508    InvalidDecl = true;
4509    DeleteExpr(BitWidth);
4510    BitWidth = 0;
4511    ZeroWidth = false;
4512  }
4513
4514  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4515                                       Mutable, TSSL);
4516  if (InvalidDecl)
4517    NewFD->setInvalidDecl();
4518
4519  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4520    Diag(Loc, diag::err_duplicate_member) << II;
4521    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4522    NewFD->setInvalidDecl();
4523  }
4524
4525  if (getLangOptions().CPlusPlus) {
4526    QualType EltTy = Context.getBaseElementType(T);
4527
4528    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4529
4530    if (!T->isPODType())
4531      CXXRecord->setPOD(false);
4532    if (!ZeroWidth)
4533      CXXRecord->setEmpty(false);
4534
4535    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4536      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4537
4538      if (!RDecl->hasTrivialConstructor())
4539        CXXRecord->setHasTrivialConstructor(false);
4540      if (!RDecl->hasTrivialCopyConstructor())
4541        CXXRecord->setHasTrivialCopyConstructor(false);
4542      if (!RDecl->hasTrivialCopyAssignment())
4543        CXXRecord->setHasTrivialCopyAssignment(false);
4544      if (!RDecl->hasTrivialDestructor())
4545        CXXRecord->setHasTrivialDestructor(false);
4546
4547      // C++ 9.5p1: An object of a class with a non-trivial
4548      // constructor, a non-trivial copy constructor, a non-trivial
4549      // destructor, or a non-trivial copy assignment operator
4550      // cannot be a member of a union, nor can an array of such
4551      // objects.
4552      // TODO: C++0x alters this restriction significantly.
4553      if (Record->isUnion()) {
4554        // We check for copy constructors before constructors
4555        // because otherwise we'll never get complaints about
4556        // copy constructors.
4557
4558        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4559
4560        CXXSpecialMember member;
4561        if (!RDecl->hasTrivialCopyConstructor())
4562          member = CXXCopyConstructor;
4563        else if (!RDecl->hasTrivialConstructor())
4564          member = CXXDefaultConstructor;
4565        else if (!RDecl->hasTrivialCopyAssignment())
4566          member = CXXCopyAssignment;
4567        else if (!RDecl->hasTrivialDestructor())
4568          member = CXXDestructor;
4569        else
4570          member = invalid;
4571
4572        if (member != invalid) {
4573          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4574          DiagnoseNontrivial(RT, member);
4575          NewFD->setInvalidDecl();
4576        }
4577      }
4578    }
4579  }
4580
4581  // FIXME: We need to pass in the attributes given an AST
4582  // representation, not a parser representation.
4583  if (D)
4584    // FIXME: What to pass instead of TUScope?
4585    ProcessDeclAttributes(TUScope, NewFD, *D);
4586
4587  if (T.isObjCGCWeak())
4588    Diag(Loc, diag::warn_attribute_weak_on_field);
4589
4590  NewFD->setAccess(AS);
4591
4592  // C++ [dcl.init.aggr]p1:
4593  //   An aggregate is an array or a class (clause 9) with [...] no
4594  //   private or protected non-static data members (clause 11).
4595  // A POD must be an aggregate.
4596  if (getLangOptions().CPlusPlus &&
4597      (AS == AS_private || AS == AS_protected)) {
4598    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4599    CXXRecord->setAggregate(false);
4600    CXXRecord->setPOD(false);
4601  }
4602
4603  return NewFD;
4604}
4605
4606/// DiagnoseNontrivial - Given that a class has a non-trivial
4607/// special member, figure out why.
4608void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4609  QualType QT(T, 0U);
4610  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4611
4612  // Check whether the member was user-declared.
4613  switch (member) {
4614  case CXXDefaultConstructor:
4615    if (RD->hasUserDeclaredConstructor()) {
4616      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4617      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4618        if (!ci->isImplicitlyDefined(Context)) {
4619          SourceLocation CtorLoc = ci->getLocation();
4620          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4621          return;
4622        }
4623
4624      assert(0 && "found no user-declared constructors");
4625      return;
4626    }
4627    break;
4628
4629  case CXXCopyConstructor:
4630    if (RD->hasUserDeclaredCopyConstructor()) {
4631      SourceLocation CtorLoc =
4632        RD->getCopyConstructor(Context, 0)->getLocation();
4633      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4634      return;
4635    }
4636    break;
4637
4638  case CXXCopyAssignment:
4639    if (RD->hasUserDeclaredCopyAssignment()) {
4640      // FIXME: this should use the location of the copy
4641      // assignment, not the type.
4642      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4643      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4644      return;
4645    }
4646    break;
4647
4648  case CXXDestructor:
4649    if (RD->hasUserDeclaredDestructor()) {
4650      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4651      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4652      return;
4653    }
4654    break;
4655  }
4656
4657  typedef CXXRecordDecl::base_class_iterator base_iter;
4658
4659  // Virtual bases and members inhibit trivial copying/construction,
4660  // but not trivial destruction.
4661  if (member != CXXDestructor) {
4662    // Check for virtual bases.  vbases includes indirect virtual bases,
4663    // so we just iterate through the direct bases.
4664    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4665      if (bi->isVirtual()) {
4666        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4667        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4668        return;
4669      }
4670
4671    // Check for virtual methods.
4672    typedef CXXRecordDecl::method_iterator meth_iter;
4673    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4674         ++mi) {
4675      if (mi->isVirtual()) {
4676        SourceLocation MLoc = mi->getSourceRange().getBegin();
4677        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4678        return;
4679      }
4680    }
4681  }
4682
4683  bool (CXXRecordDecl::*hasTrivial)() const;
4684  switch (member) {
4685  case CXXDefaultConstructor:
4686    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4687  case CXXCopyConstructor:
4688    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4689  case CXXCopyAssignment:
4690    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4691  case CXXDestructor:
4692    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4693  default:
4694    assert(0 && "unexpected special member"); return;
4695  }
4696
4697  // Check for nontrivial bases (and recurse).
4698  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4699    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4700    assert(BaseRT);
4701    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4702    if (!(BaseRecTy->*hasTrivial)()) {
4703      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4704      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4705      DiagnoseNontrivial(BaseRT, member);
4706      return;
4707    }
4708  }
4709
4710  // Check for nontrivial members (and recurse).
4711  typedef RecordDecl::field_iterator field_iter;
4712  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4713       ++fi) {
4714    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4715    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4716      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4717
4718      if (!(EltRD->*hasTrivial)()) {
4719        SourceLocation FLoc = (*fi)->getLocation();
4720        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4721        DiagnoseNontrivial(EltRT, member);
4722        return;
4723      }
4724    }
4725  }
4726
4727  assert(0 && "found no explanation for non-trivial member");
4728}
4729
4730/// TranslateIvarVisibility - Translate visibility from a token ID to an
4731///  AST enum value.
4732static ObjCIvarDecl::AccessControl
4733TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4734  switch (ivarVisibility) {
4735  default: assert(0 && "Unknown visitibility kind");
4736  case tok::objc_private: return ObjCIvarDecl::Private;
4737  case tok::objc_public: return ObjCIvarDecl::Public;
4738  case tok::objc_protected: return ObjCIvarDecl::Protected;
4739  case tok::objc_package: return ObjCIvarDecl::Package;
4740  }
4741}
4742
4743/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4744/// in order to create an IvarDecl object for it.
4745Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4746                                SourceLocation DeclStart,
4747                                DeclPtrTy IntfDecl,
4748                                Declarator &D, ExprTy *BitfieldWidth,
4749                                tok::ObjCKeywordKind Visibility) {
4750
4751  IdentifierInfo *II = D.getIdentifier();
4752  Expr *BitWidth = (Expr*)BitfieldWidth;
4753  SourceLocation Loc = DeclStart;
4754  if (II) Loc = D.getIdentifierLoc();
4755
4756  // FIXME: Unnamed fields can be handled in various different ways, for
4757  // example, unnamed unions inject all members into the struct namespace!
4758
4759  QualType T = GetTypeForDeclarator(D, S);
4760
4761  if (BitWidth) {
4762    // 6.7.2.1p3, 6.7.2.1p4
4763    if (VerifyBitField(Loc, II, T, BitWidth)) {
4764      D.setInvalidType();
4765      DeleteExpr(BitWidth);
4766      BitWidth = 0;
4767    }
4768  } else {
4769    // Not a bitfield.
4770
4771    // validate II.
4772
4773  }
4774
4775  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4776  // than a variably modified type.
4777  if (T->isVariablyModifiedType()) {
4778    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4779    D.setInvalidType();
4780  }
4781
4782  // Get the visibility (access control) for this ivar.
4783  ObjCIvarDecl::AccessControl ac =
4784    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4785                                        : ObjCIvarDecl::None;
4786  // Must set ivar's DeclContext to its enclosing interface.
4787  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4788  DeclContext *EnclosingContext;
4789  if (ObjCImplementationDecl *IMPDecl =
4790      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4791    // Case of ivar declared in an implementation. Context is that of its class.
4792    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4793    assert(IDecl && "No class- ActOnIvar");
4794    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4795  } else
4796    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4797  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4798
4799  // Construct the decl.
4800  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4801                                             EnclosingContext, Loc, II, T,ac,
4802                                             (Expr *)BitfieldWidth);
4803
4804  if (II) {
4805    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4806    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4807        && !isa<TagDecl>(PrevDecl)) {
4808      Diag(Loc, diag::err_duplicate_member) << II;
4809      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4810      NewID->setInvalidDecl();
4811    }
4812  }
4813
4814  // Process attributes attached to the ivar.
4815  ProcessDeclAttributes(S, NewID, D);
4816
4817  if (D.isInvalidType())
4818    NewID->setInvalidDecl();
4819
4820  if (II) {
4821    // FIXME: When interfaces are DeclContexts, we'll need to add
4822    // these to the interface.
4823    S->AddDecl(DeclPtrTy::make(NewID));
4824    IdResolver.AddDecl(NewID);
4825  }
4826
4827  return DeclPtrTy::make(NewID);
4828}
4829
4830void Sema::ActOnFields(Scope* S,
4831                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4832                       DeclPtrTy *Fields, unsigned NumFields,
4833                       SourceLocation LBrac, SourceLocation RBrac,
4834                       AttributeList *Attr) {
4835  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4836  assert(EnclosingDecl && "missing record or interface decl");
4837
4838  // If the decl this is being inserted into is invalid, then it may be a
4839  // redeclaration or some other bogus case.  Don't try to add fields to it.
4840  if (EnclosingDecl->isInvalidDecl()) {
4841    // FIXME: Deallocate fields?
4842    return;
4843  }
4844
4845
4846  // Verify that all the fields are okay.
4847  unsigned NumNamedMembers = 0;
4848  llvm::SmallVector<FieldDecl*, 32> RecFields;
4849
4850  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4851  for (unsigned i = 0; i != NumFields; ++i) {
4852    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4853
4854    // Get the type for the field.
4855    Type *FDTy = FD->getType().getTypePtr();
4856
4857    if (!FD->isAnonymousStructOrUnion()) {
4858      // Remember all fields written by the user.
4859      RecFields.push_back(FD);
4860    }
4861
4862    // If the field is already invalid for some reason, don't emit more
4863    // diagnostics about it.
4864    if (FD->isInvalidDecl())
4865      continue;
4866
4867    // C99 6.7.2.1p2:
4868    //   A structure or union shall not contain a member with
4869    //   incomplete or function type (hence, a structure shall not
4870    //   contain an instance of itself, but may contain a pointer to
4871    //   an instance of itself), except that the last member of a
4872    //   structure with more than one named member may have incomplete
4873    //   array type; such a structure (and any union containing,
4874    //   possibly recursively, a member that is such a structure)
4875    //   shall not be a member of a structure or an element of an
4876    //   array.
4877    if (FDTy->isFunctionType()) {
4878      // Field declared as a function.
4879      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4880        << FD->getDeclName();
4881      FD->setInvalidDecl();
4882      EnclosingDecl->setInvalidDecl();
4883      continue;
4884    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4885               Record && Record->isStruct()) {
4886      // Flexible array member.
4887      if (NumNamedMembers < 1) {
4888        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4889          << FD->getDeclName();
4890        FD->setInvalidDecl();
4891        EnclosingDecl->setInvalidDecl();
4892        continue;
4893      }
4894      // Okay, we have a legal flexible array member at the end of the struct.
4895      if (Record)
4896        Record->setHasFlexibleArrayMember(true);
4897    } else if (!FDTy->isDependentType() &&
4898               RequireCompleteType(FD->getLocation(), FD->getType(),
4899                                   diag::err_field_incomplete)) {
4900      // Incomplete type
4901      FD->setInvalidDecl();
4902      EnclosingDecl->setInvalidDecl();
4903      continue;
4904    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4905      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4906        // If this is a member of a union, then entire union becomes "flexible".
4907        if (Record && Record->isUnion()) {
4908          Record->setHasFlexibleArrayMember(true);
4909        } else {
4910          // If this is a struct/class and this is not the last element, reject
4911          // it.  Note that GCC supports variable sized arrays in the middle of
4912          // structures.
4913          if (i != NumFields-1)
4914            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4915              << FD->getDeclName() << FD->getType();
4916          else {
4917            // We support flexible arrays at the end of structs in
4918            // other structs as an extension.
4919            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4920              << FD->getDeclName();
4921            if (Record)
4922              Record->setHasFlexibleArrayMember(true);
4923          }
4924        }
4925      }
4926      if (Record && FDTTy->getDecl()->hasObjectMember())
4927        Record->setHasObjectMember(true);
4928    } else if (FDTy->isObjCInterfaceType()) {
4929      /// A field cannot be an Objective-c object
4930      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4931      FD->setInvalidDecl();
4932      EnclosingDecl->setInvalidDecl();
4933      continue;
4934    } else if (getLangOptions().ObjC1 &&
4935               getLangOptions().getGCMode() != LangOptions::NonGC &&
4936               Record &&
4937               (FD->getType()->isObjCObjectPointerType() ||
4938                FD->getType().isObjCGCStrong()))
4939      Record->setHasObjectMember(true);
4940    // Keep track of the number of named members.
4941    if (FD->getIdentifier())
4942      ++NumNamedMembers;
4943  }
4944
4945  // Okay, we successfully defined 'Record'.
4946  if (Record) {
4947    Record->completeDefinition(Context);
4948  } else {
4949    ObjCIvarDecl **ClsFields =
4950      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4951    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4952      ID->setIVarList(ClsFields, RecFields.size(), Context);
4953      ID->setLocEnd(RBrac);
4954      // Add ivar's to class's DeclContext.
4955      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4956        ClsFields[i]->setLexicalDeclContext(ID);
4957        ID->addDecl(ClsFields[i]);
4958      }
4959      // Must enforce the rule that ivars in the base classes may not be
4960      // duplicates.
4961      if (ID->getSuperClass()) {
4962        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4963             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4964          ObjCIvarDecl* Ivar = (*IVI);
4965
4966          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4967            ObjCIvarDecl* prevIvar =
4968              ID->getSuperClass()->lookupInstanceVariable(II);
4969            if (prevIvar) {
4970              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4971              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4972            }
4973          }
4974        }
4975      }
4976    } else if (ObjCImplementationDecl *IMPDecl =
4977                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4978      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4979      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4980        // Ivar declared in @implementation never belongs to the implementation.
4981        // Only it is in implementation's lexical context.
4982        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4983      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4984    }
4985  }
4986
4987  if (Attr)
4988    ProcessDeclAttributeList(S, Record, Attr);
4989}
4990
4991EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4992                                          EnumConstantDecl *LastEnumConst,
4993                                          SourceLocation IdLoc,
4994                                          IdentifierInfo *Id,
4995                                          ExprArg val) {
4996  Expr *Val = (Expr *)val.get();
4997
4998  llvm::APSInt EnumVal(32);
4999  QualType EltTy;
5000  if (Val && !Val->isTypeDependent()) {
5001    // Make sure to promote the operand type to int.
5002    UsualUnaryConversions(Val);
5003    if (Val != val.get()) {
5004      val.release();
5005      val = Val;
5006    }
5007
5008    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5009    SourceLocation ExpLoc;
5010    if (!Val->isValueDependent() &&
5011        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5012      Val = 0;
5013    } else {
5014      EltTy = Val->getType();
5015    }
5016  }
5017
5018  if (!Val) {
5019    if (LastEnumConst) {
5020      // Assign the last value + 1.
5021      EnumVal = LastEnumConst->getInitVal();
5022      ++EnumVal;
5023
5024      // Check for overflow on increment.
5025      if (EnumVal < LastEnumConst->getInitVal())
5026        Diag(IdLoc, diag::warn_enum_value_overflow);
5027
5028      EltTy = LastEnumConst->getType();
5029    } else {
5030      // First value, set to zero.
5031      EltTy = Context.IntTy;
5032      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5033    }
5034  }
5035
5036  val.release();
5037  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5038                                  Val, EnumVal);
5039}
5040
5041
5042Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5043                                        DeclPtrTy lastEnumConst,
5044                                        SourceLocation IdLoc,
5045                                        IdentifierInfo *Id,
5046                                        SourceLocation EqualLoc, ExprTy *val) {
5047  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5048  EnumConstantDecl *LastEnumConst =
5049    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5050  Expr *Val = static_cast<Expr*>(val);
5051
5052  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5053  // we find one that is.
5054  S = getNonFieldDeclScope(S);
5055
5056  // Verify that there isn't already something declared with this name in this
5057  // scope.
5058  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5059  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5060    // Maybe we will complain about the shadowed template parameter.
5061    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5062    // Just pretend that we didn't see the previous declaration.
5063    PrevDecl = 0;
5064  }
5065
5066  if (PrevDecl) {
5067    // When in C++, we may get a TagDecl with the same name; in this case the
5068    // enum constant will 'hide' the tag.
5069    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5070           "Received TagDecl when not in C++!");
5071    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5072      if (isa<EnumConstantDecl>(PrevDecl))
5073        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5074      else
5075        Diag(IdLoc, diag::err_redefinition) << Id;
5076      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5077      if (Val) Val->Destroy(Context);
5078      return DeclPtrTy();
5079    }
5080  }
5081
5082  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5083                                            IdLoc, Id, Owned(Val));
5084
5085  // Register this decl in the current scope stack.
5086  if (New)
5087    PushOnScopeChains(New, S);
5088
5089  return DeclPtrTy::make(New);
5090}
5091
5092void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5093                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5094                         DeclPtrTy *Elements, unsigned NumElements,
5095                         Scope *S, AttributeList *Attr) {
5096  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5097  QualType EnumType = Context.getTypeDeclType(Enum);
5098
5099  if (Attr)
5100    ProcessDeclAttributeList(S, Enum, Attr);
5101
5102  // TODO: If the result value doesn't fit in an int, it must be a long or long
5103  // long value.  ISO C does not support this, but GCC does as an extension,
5104  // emit a warning.
5105  unsigned IntWidth = Context.Target.getIntWidth();
5106  unsigned CharWidth = Context.Target.getCharWidth();
5107  unsigned ShortWidth = Context.Target.getShortWidth();
5108
5109  // Verify that all the values are okay, compute the size of the values, and
5110  // reverse the list.
5111  unsigned NumNegativeBits = 0;
5112  unsigned NumPositiveBits = 0;
5113
5114  // Keep track of whether all elements have type int.
5115  bool AllElementsInt = true;
5116
5117  for (unsigned i = 0; i != NumElements; ++i) {
5118    EnumConstantDecl *ECD =
5119      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5120    if (!ECD) continue;  // Already issued a diagnostic.
5121
5122    // If the enum value doesn't fit in an int, emit an extension warning.
5123    const llvm::APSInt &InitVal = ECD->getInitVal();
5124    assert(InitVal.getBitWidth() >= IntWidth &&
5125           "Should have promoted value to int");
5126    if (InitVal.getBitWidth() > IntWidth) {
5127      llvm::APSInt V(InitVal);
5128      V.trunc(IntWidth);
5129      V.extend(InitVal.getBitWidth());
5130      if (V != InitVal)
5131        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5132          << InitVal.toString(10);
5133    }
5134
5135    // Keep track of the size of positive and negative values.
5136    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5137      NumPositiveBits = std::max(NumPositiveBits,
5138                                 (unsigned)InitVal.getActiveBits());
5139    else
5140      NumNegativeBits = std::max(NumNegativeBits,
5141                                 (unsigned)InitVal.getMinSignedBits());
5142
5143    // Keep track of whether every enum element has type int (very commmon).
5144    if (AllElementsInt)
5145      AllElementsInt = ECD->getType() == Context.IntTy;
5146  }
5147
5148  // Figure out the type that should be used for this enum.
5149  // FIXME: Support -fshort-enums.
5150  QualType BestType;
5151  unsigned BestWidth;
5152
5153  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5154
5155  if (NumNegativeBits) {
5156    // If there is a negative value, figure out the smallest integer type (of
5157    // int/long/longlong) that fits.
5158    // If it's packed, check also if it fits a char or a short.
5159    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5160        BestType = Context.SignedCharTy;
5161        BestWidth = CharWidth;
5162    } else if (Packed && NumNegativeBits <= ShortWidth &&
5163               NumPositiveBits < ShortWidth) {
5164        BestType = Context.ShortTy;
5165        BestWidth = ShortWidth;
5166    }
5167    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5168      BestType = Context.IntTy;
5169      BestWidth = IntWidth;
5170    } else {
5171      BestWidth = Context.Target.getLongWidth();
5172
5173      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5174        BestType = Context.LongTy;
5175      else {
5176        BestWidth = Context.Target.getLongLongWidth();
5177
5178        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5179          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5180        BestType = Context.LongLongTy;
5181      }
5182    }
5183  } else {
5184    // If there is no negative value, figure out which of uint, ulong, ulonglong
5185    // fits.
5186    // If it's packed, check also if it fits a char or a short.
5187    if (Packed && NumPositiveBits <= CharWidth) {
5188        BestType = Context.UnsignedCharTy;
5189        BestWidth = CharWidth;
5190    } else if (Packed && NumPositiveBits <= ShortWidth) {
5191        BestType = Context.UnsignedShortTy;
5192        BestWidth = ShortWidth;
5193    }
5194    else if (NumPositiveBits <= IntWidth) {
5195      BestType = Context.UnsignedIntTy;
5196      BestWidth = IntWidth;
5197    } else if (NumPositiveBits <=
5198               (BestWidth = Context.Target.getLongWidth())) {
5199      BestType = Context.UnsignedLongTy;
5200    } else {
5201      BestWidth = Context.Target.getLongLongWidth();
5202      assert(NumPositiveBits <= BestWidth &&
5203             "How could an initializer get larger than ULL?");
5204      BestType = Context.UnsignedLongLongTy;
5205    }
5206  }
5207
5208  // Loop over all of the enumerator constants, changing their types to match
5209  // the type of the enum if needed.
5210  for (unsigned i = 0; i != NumElements; ++i) {
5211    EnumConstantDecl *ECD =
5212      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5213    if (!ECD) continue;  // Already issued a diagnostic.
5214
5215    // Standard C says the enumerators have int type, but we allow, as an
5216    // extension, the enumerators to be larger than int size.  If each
5217    // enumerator value fits in an int, type it as an int, otherwise type it the
5218    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5219    // that X has type 'int', not 'unsigned'.
5220    if (ECD->getType() == Context.IntTy) {
5221      // Make sure the init value is signed.
5222      llvm::APSInt IV = ECD->getInitVal();
5223      IV.setIsSigned(true);
5224      ECD->setInitVal(IV);
5225
5226      if (getLangOptions().CPlusPlus)
5227        // C++ [dcl.enum]p4: Following the closing brace of an
5228        // enum-specifier, each enumerator has the type of its
5229        // enumeration.
5230        ECD->setType(EnumType);
5231      continue;  // Already int type.
5232    }
5233
5234    // Determine whether the value fits into an int.
5235    llvm::APSInt InitVal = ECD->getInitVal();
5236    bool FitsInInt;
5237    if (InitVal.isUnsigned() || !InitVal.isNegative())
5238      FitsInInt = InitVal.getActiveBits() < IntWidth;
5239    else
5240      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5241
5242    // If it fits into an integer type, force it.  Otherwise force it to match
5243    // the enum decl type.
5244    QualType NewTy;
5245    unsigned NewWidth;
5246    bool NewSign;
5247    if (FitsInInt) {
5248      NewTy = Context.IntTy;
5249      NewWidth = IntWidth;
5250      NewSign = true;
5251    } else if (ECD->getType() == BestType) {
5252      // Already the right type!
5253      if (getLangOptions().CPlusPlus)
5254        // C++ [dcl.enum]p4: Following the closing brace of an
5255        // enum-specifier, each enumerator has the type of its
5256        // enumeration.
5257        ECD->setType(EnumType);
5258      continue;
5259    } else {
5260      NewTy = BestType;
5261      NewWidth = BestWidth;
5262      NewSign = BestType->isSignedIntegerType();
5263    }
5264
5265    // Adjust the APSInt value.
5266    InitVal.extOrTrunc(NewWidth);
5267    InitVal.setIsSigned(NewSign);
5268    ECD->setInitVal(InitVal);
5269
5270    // Adjust the Expr initializer and type.
5271    if (ECD->getInitExpr())
5272      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5273                                                      CastExpr::CK_Unknown,
5274                                                      ECD->getInitExpr(),
5275                                                      /*isLvalue=*/false));
5276    if (getLangOptions().CPlusPlus)
5277      // C++ [dcl.enum]p4: Following the closing brace of an
5278      // enum-specifier, each enumerator has the type of its
5279      // enumeration.
5280      ECD->setType(EnumType);
5281    else
5282      ECD->setType(NewTy);
5283  }
5284
5285  Enum->completeDefinition(Context, BestType);
5286}
5287
5288Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5289                                            ExprArg expr) {
5290  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5291
5292  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5293                                                   Loc, AsmString);
5294  CurContext->addDecl(New);
5295  return DeclPtrTy::make(New);
5296}
5297
5298void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5299                             SourceLocation PragmaLoc,
5300                             SourceLocation NameLoc) {
5301  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5302
5303  if (PrevDecl) {
5304    PrevDecl->addAttr(::new (Context) WeakAttr());
5305  } else {
5306    (void)WeakUndeclaredIdentifiers.insert(
5307      std::pair<IdentifierInfo*,WeakInfo>
5308        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5309  }
5310}
5311
5312void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5313                                IdentifierInfo* AliasName,
5314                                SourceLocation PragmaLoc,
5315                                SourceLocation NameLoc,
5316                                SourceLocation AliasNameLoc) {
5317  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5318  WeakInfo W = WeakInfo(Name, NameLoc);
5319
5320  if (PrevDecl) {
5321    if (!PrevDecl->hasAttr<AliasAttr>())
5322      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5323        DeclApplyPragmaWeak(TUScope, ND, W);
5324  } else {
5325    (void)WeakUndeclaredIdentifiers.insert(
5326      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5327  }
5328}
5329