SemaDecl.cpp revision 0f84a23cc542a76f97aee735cdf3ff948b149879
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S,
32                               const CXXScopeSpec *SS) {
33  DeclContext *DC = 0;
34  if (SS) {
35    if (SS->isInvalid())
36      return 0;
37    DC = static_cast<DeclContext*>(SS->getScopeRep());
38  }
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48std::string Sema::getTypeAsString(TypeTy *Type) {
49  QualType Ty = QualType::getFromOpaquePtr(Type);
50  return Ty.getAsString();
51}
52
53DeclContext *Sema::getContainingDC(DeclContext *DC) {
54  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
55    // A C++ out-of-line method will return to the file declaration context.
56    if (!MD->isInlineDefinition())
57      return LexicalFileContext;
58
59    // A C++ inline method is parsed *after* the topmost class it was declared in
60    // is fully parsed (it's "complete").
61    // The parsing of a C++ inline method happens at the declaration context of
62    // the topmost (non-nested) class it is declared in.
63    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
64    DC = MD->getParent();
65    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
66      DC = RD;
67
68    // Return the declaration context of the topmost class the inline method is
69    // declared in.
70    return DC;
71  }
72
73  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC))
74    return LexicalFileContext;
75
76  return DC->getParent();
77}
78
79void Sema::PushDeclContext(DeclContext *DC) {
80  assert(getContainingDC(DC) == CurContext &&
81       "The next DeclContext should be directly contained in the current one.");
82  CurContext = DC;
83  if (CurContext->isFileContext())
84    LexicalFileContext = CurContext;
85}
86
87void Sema::PopDeclContext() {
88  assert(CurContext && "DeclContext imbalance!");
89  CurContext = getContainingDC(CurContext);
90  if (CurContext->isFileContext())
91    LexicalFileContext = CurContext;
92}
93
94/// Add this decl to the scope shadowed decl chains.
95void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
96  S->AddDecl(D);
97
98  // C++ [basic.scope]p4:
99  //   -- exactly one declaration shall declare a class name or
100  //   enumeration name that is not a typedef name and the other
101  //   declarations shall all refer to the same object or
102  //   enumerator, or all refer to functions and function templates;
103  //   in this case the class name or enumeration name is hidden.
104  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
105    // We are pushing the name of a tag (enum or class).
106    IdentifierResolver::iterator
107        I = IdResolver.begin(TD->getIdentifier(),
108                             TD->getDeclContext(), false/*LookInParentCtx*/);
109    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
110      // There is already a declaration with the same name in the same
111      // scope. It must be found before we find the new declaration,
112      // so swap the order on the shadowed declaration chain.
113
114      IdResolver.AddShadowedDecl(TD, *I);
115      return;
116    }
117  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
118    FunctionDecl *FD = cast<FunctionDecl>(D);
119    // We are pushing the name of a function, which might be an
120    // overloaded name.
121    IdentifierResolver::iterator
122        I = IdResolver.begin(FD->getIdentifier(),
123                             FD->getDeclContext(), false/*LookInParentCtx*/);
124    if (I != IdResolver.end() &&
125        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
126        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
127      // There is already a declaration with the same name in the same
128      // scope. It must be a function or an overloaded function.
129      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
130      if (!Ovl) {
131        // We haven't yet overloaded this function. Take the existing
132        // FunctionDecl and put it into an OverloadedFunctionDecl.
133        Ovl = OverloadedFunctionDecl::Create(Context,
134                                             FD->getDeclContext(),
135                                             FD->getIdentifier());
136        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
137
138        // Remove the name binding to the existing FunctionDecl...
139        IdResolver.RemoveDecl(*I);
140
141        // ... and put the OverloadedFunctionDecl in its place.
142        IdResolver.AddDecl(Ovl);
143      }
144
145      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
146      // to its list of overloads.
147      Ovl->addOverload(FD);
148
149      return;
150    }
151  }
152
153  IdResolver.AddDecl(D);
154}
155
156void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
157  if (S->decl_empty()) return;
158  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
159
160  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
161       I != E; ++I) {
162    Decl *TmpD = static_cast<Decl*>(*I);
163    assert(TmpD && "This decl didn't get pushed??");
164
165    if (isa<CXXFieldDecl>(TmpD)) continue;
166
167    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
168    ScopedDecl *D = cast<ScopedDecl>(TmpD);
169
170    IdentifierInfo *II = D->getIdentifier();
171    if (!II) continue;
172
173    // We only want to remove the decls from the identifier decl chains for
174    // local scopes, when inside a function/method.
175    if (S->getFnParent() != 0)
176      IdResolver.RemoveDecl(D);
177
178    // Chain this decl to the containing DeclContext.
179    D->setNext(CurContext->getDeclChain());
180    CurContext->setDeclChain(D);
181  }
182}
183
184/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
185/// return 0 if one not found.
186ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
187  // The third "scope" argument is 0 since we aren't enabling lazy built-in
188  // creation from this context.
189  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
190
191  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
192}
193
194/// LookupDecl - Look up the inner-most declaration in the specified
195/// namespace.
196Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI, Scope *S,
197                       DeclContext *LookupCtx, bool enableLazyBuiltinCreation) {
198  if (II == 0) return 0;
199  unsigned NS = NSI;
200  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
201    NS |= Decl::IDNS_Tag;
202
203  IdentifierResolver::iterator
204    I = LookupCtx ? IdResolver.begin(II, LookupCtx, false/*LookInParentCtx*/) :
205                    IdResolver.begin(II, CurContext, true/*LookInParentCtx*/);
206  // Scan up the scope chain looking for a decl that matches this identifier
207  // that is in the appropriate namespace.  This search should not take long, as
208  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
209  for (; I != IdResolver.end(); ++I)
210    if ((*I)->getIdentifierNamespace() & NS)
211      return *I;
212
213  // If we didn't find a use of this identifier, and if the identifier
214  // corresponds to a compiler builtin, create the decl object for the builtin
215  // now, injecting it into translation unit scope, and return it.
216  if (NS & Decl::IDNS_Ordinary) {
217    if (enableLazyBuiltinCreation &&
218        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
219      // If this is a builtin on this (or all) targets, create the decl.
220      if (unsigned BuiltinID = II->getBuiltinID())
221        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
222    }
223    if (getLangOptions().ObjC1) {
224      // @interface and @compatibility_alias introduce typedef-like names.
225      // Unlike typedef's, they can only be introduced at file-scope (and are
226      // therefore not scoped decls). They can, however, be shadowed by
227      // other names in IDNS_Ordinary.
228      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
229      if (IDI != ObjCInterfaceDecls.end())
230        return IDI->second;
231      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
232      if (I != ObjCAliasDecls.end())
233        return I->second->getClassInterface();
234    }
235  }
236  return 0;
237}
238
239void Sema::InitBuiltinVaListType() {
240  if (!Context.getBuiltinVaListType().isNull())
241    return;
242
243  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
244  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
245  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
246  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
247}
248
249/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
250/// lazily create a decl for it.
251ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
252                                      Scope *S) {
253  Builtin::ID BID = (Builtin::ID)bid;
254
255  if (Context.BuiltinInfo.hasVAListUse(BID))
256    InitBuiltinVaListType();
257
258  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
259  FunctionDecl *New = FunctionDecl::Create(Context,
260                                           Context.getTranslationUnitDecl(),
261                                           SourceLocation(), II, R,
262                                           FunctionDecl::Extern, false, 0);
263
264  // Create Decl objects for each parameter, adding them to the
265  // FunctionDecl.
266  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
267    llvm::SmallVector<ParmVarDecl*, 16> Params;
268    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
269      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
270                                           FT->getArgType(i), VarDecl::None, 0,
271                                           0));
272    New->setParams(&Params[0], Params.size());
273  }
274
275
276
277  // TUScope is the translation-unit scope to insert this function into.
278  PushOnScopeChains(New, TUScope);
279  return New;
280}
281
282/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
283/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
284/// situation, merging decls or emitting diagnostics as appropriate.
285///
286TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
287  // Allow multiple definitions for ObjC built-in typedefs.
288  // FIXME: Verify the underlying types are equivalent!
289  if (getLangOptions().ObjC1) {
290    const IdentifierInfo *typeIdent = New->getIdentifier();
291    if (typeIdent == Ident_id) {
292      Context.setObjCIdType(New);
293      return New;
294    } else if (typeIdent == Ident_Class) {
295      Context.setObjCClassType(New);
296      return New;
297    } else if (typeIdent == Ident_SEL) {
298      Context.setObjCSelType(New);
299      return New;
300    } else if (typeIdent == Ident_Protocol) {
301      Context.setObjCProtoType(New->getUnderlyingType());
302      return New;
303    }
304    // Fall through - the typedef name was not a builtin type.
305  }
306  // Verify the old decl was also a typedef.
307  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
308  if (!Old) {
309    Diag(New->getLocation(), diag::err_redefinition_different_kind,
310         New->getName());
311    Diag(OldD->getLocation(), diag::err_previous_definition);
312    return New;
313  }
314
315  // If the typedef types are not identical, reject them in all languages and
316  // with any extensions enabled.
317  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
318      Context.getCanonicalType(Old->getUnderlyingType()) !=
319      Context.getCanonicalType(New->getUnderlyingType())) {
320    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
321         New->getUnderlyingType().getAsString(),
322         Old->getUnderlyingType().getAsString());
323    Diag(Old->getLocation(), diag::err_previous_definition);
324    return Old;
325  }
326
327  if (getLangOptions().Microsoft) return New;
328
329  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
330  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
331  // *either* declaration is in a system header. The code below implements
332  // this adhoc compatibility rule. FIXME: The following code will not
333  // work properly when compiling ".i" files (containing preprocessed output).
334  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
335    SourceManager &SrcMgr = Context.getSourceManager();
336    if (SrcMgr.isInSystemHeader(Old->getLocation()))
337      return New;
338    if (SrcMgr.isInSystemHeader(New->getLocation()))
339      return New;
340  }
341
342  Diag(New->getLocation(), diag::err_redefinition, New->getName());
343  Diag(Old->getLocation(), diag::err_previous_definition);
344  return New;
345}
346
347/// DeclhasAttr - returns true if decl Declaration already has the target
348/// attribute.
349static bool DeclHasAttr(const Decl *decl, const Attr *target) {
350  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
351    if (attr->getKind() == target->getKind())
352      return true;
353
354  return false;
355}
356
357/// MergeAttributes - append attributes from the Old decl to the New one.
358static void MergeAttributes(Decl *New, Decl *Old) {
359  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
360
361  while (attr) {
362     tmp = attr;
363     attr = attr->getNext();
364
365    if (!DeclHasAttr(New, tmp)) {
366       New->addAttr(tmp);
367    } else {
368       tmp->setNext(0);
369       delete(tmp);
370    }
371  }
372
373  Old->invalidateAttrs();
374}
375
376/// MergeFunctionDecl - We just parsed a function 'New' from
377/// declarator D which has the same name and scope as a previous
378/// declaration 'Old'.  Figure out how to resolve this situation,
379/// merging decls or emitting diagnostics as appropriate.
380/// Redeclaration will be set true if this New is a redeclaration OldD.
381///
382/// In C++, New and Old must be declarations that are not
383/// overloaded. Use IsOverload to determine whether New and Old are
384/// overloaded, and to select the Old declaration that New should be
385/// merged with.
386FunctionDecl *
387Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
388  assert(!isa<OverloadedFunctionDecl>(OldD) &&
389         "Cannot merge with an overloaded function declaration");
390
391  Redeclaration = false;
392  // Verify the old decl was also a function.
393  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
394  if (!Old) {
395    Diag(New->getLocation(), diag::err_redefinition_different_kind,
396         New->getName());
397    Diag(OldD->getLocation(), diag::err_previous_definition);
398    return New;
399  }
400
401  // Determine whether the previous declaration was a definition,
402  // implicit declaration, or a declaration.
403  diag::kind PrevDiag;
404  if (Old->isThisDeclarationADefinition())
405    PrevDiag = diag::err_previous_definition;
406  else if (Old->isImplicit())
407    PrevDiag = diag::err_previous_implicit_declaration;
408  else
409    PrevDiag = diag::err_previous_declaration;
410
411  QualType OldQType = Context.getCanonicalType(Old->getType());
412  QualType NewQType = Context.getCanonicalType(New->getType());
413
414  if (getLangOptions().CPlusPlus) {
415    // (C++98 13.1p2):
416    //   Certain function declarations cannot be overloaded:
417    //     -- Function declarations that differ only in the return type
418    //        cannot be overloaded.
419    QualType OldReturnType
420      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
421    QualType NewReturnType
422      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
423    if (OldReturnType != NewReturnType) {
424      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
425      Diag(Old->getLocation(), PrevDiag);
426      return New;
427    }
428
429    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
430    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
431    if (OldMethod && NewMethod) {
432      //    -- Member function declarations with the same name and the
433      //       same parameter types cannot be overloaded if any of them
434      //       is a static member function declaration.
435      if (OldMethod->isStatic() || NewMethod->isStatic()) {
436        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
437        Diag(Old->getLocation(), PrevDiag);
438        return New;
439      }
440    }
441
442    // (C++98 8.3.5p3):
443    //   All declarations for a function shall agree exactly in both the
444    //   return type and the parameter-type-list.
445    if (OldQType == NewQType) {
446      // We have a redeclaration.
447      MergeAttributes(New, Old);
448      Redeclaration = true;
449      return MergeCXXFunctionDecl(New, Old);
450    }
451
452    // Fall through for conflicting redeclarations and redefinitions.
453  }
454
455  // C: Function types need to be compatible, not identical. This handles
456  // duplicate function decls like "void f(int); void f(enum X);" properly.
457  if (!getLangOptions().CPlusPlus &&
458      Context.typesAreCompatible(OldQType, NewQType)) {
459    MergeAttributes(New, Old);
460    Redeclaration = true;
461    return New;
462  }
463
464  // A function that has already been declared has been redeclared or defined
465  // with a different type- show appropriate diagnostic
466
467  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
468  // TODO: This is totally simplistic.  It should handle merging functions
469  // together etc, merging extern int X; int X; ...
470  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
471  Diag(Old->getLocation(), PrevDiag);
472  return New;
473}
474
475/// Predicate for C "tentative" external object definitions (C99 6.9.2).
476static bool isTentativeDefinition(VarDecl *VD) {
477  if (VD->isFileVarDecl())
478    return (!VD->getInit() &&
479            (VD->getStorageClass() == VarDecl::None ||
480             VD->getStorageClass() == VarDecl::Static));
481  return false;
482}
483
484/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
485/// when dealing with C "tentative" external object definitions (C99 6.9.2).
486void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
487  bool VDIsTentative = isTentativeDefinition(VD);
488  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
489
490  for (IdentifierResolver::iterator
491       I = IdResolver.begin(VD->getIdentifier(),
492                            VD->getDeclContext(), false/*LookInParentCtx*/),
493       E = IdResolver.end(); I != E; ++I) {
494    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
495      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
496
497      // Handle the following case:
498      //   int a[10];
499      //   int a[];   - the code below makes sure we set the correct type.
500      //   int a[11]; - this is an error, size isn't 10.
501      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
502          OldDecl->getType()->isConstantArrayType())
503        VD->setType(OldDecl->getType());
504
505      // Check for "tentative" definitions. We can't accomplish this in
506      // MergeVarDecl since the initializer hasn't been attached.
507      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
508        continue;
509
510      // Handle __private_extern__ just like extern.
511      if (OldDecl->getStorageClass() != VarDecl::Extern &&
512          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
513          VD->getStorageClass() != VarDecl::Extern &&
514          VD->getStorageClass() != VarDecl::PrivateExtern) {
515        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
516        Diag(OldDecl->getLocation(), diag::err_previous_definition);
517      }
518    }
519  }
520}
521
522/// MergeVarDecl - We just parsed a variable 'New' which has the same name
523/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
524/// situation, merging decls or emitting diagnostics as appropriate.
525///
526/// Tentative definition rules (C99 6.9.2p2) are checked by
527/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
528/// definitions here, since the initializer hasn't been attached.
529///
530VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
531  // Verify the old decl was also a variable.
532  VarDecl *Old = dyn_cast<VarDecl>(OldD);
533  if (!Old) {
534    Diag(New->getLocation(), diag::err_redefinition_different_kind,
535         New->getName());
536    Diag(OldD->getLocation(), diag::err_previous_definition);
537    return New;
538  }
539
540  MergeAttributes(New, Old);
541
542  // Verify the types match.
543  QualType OldCType = Context.getCanonicalType(Old->getType());
544  QualType NewCType = Context.getCanonicalType(New->getType());
545  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
546    Diag(New->getLocation(), diag::err_redefinition, New->getName());
547    Diag(Old->getLocation(), diag::err_previous_definition);
548    return New;
549  }
550  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
551  if (New->getStorageClass() == VarDecl::Static &&
552      (Old->getStorageClass() == VarDecl::None ||
553       Old->getStorageClass() == VarDecl::Extern)) {
554    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
555    Diag(Old->getLocation(), diag::err_previous_definition);
556    return New;
557  }
558  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
559  if (New->getStorageClass() != VarDecl::Static &&
560      Old->getStorageClass() == VarDecl::Static) {
561    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
562    Diag(Old->getLocation(), diag::err_previous_definition);
563    return New;
564  }
565  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
566  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
567    Diag(New->getLocation(), diag::err_redefinition, New->getName());
568    Diag(Old->getLocation(), diag::err_previous_definition);
569  }
570  return New;
571}
572
573/// CheckParmsForFunctionDef - Check that the parameters of the given
574/// function are appropriate for the definition of a function. This
575/// takes care of any checks that cannot be performed on the
576/// declaration itself, e.g., that the types of each of the function
577/// parameters are complete.
578bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
579  bool HasInvalidParm = false;
580  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
581    ParmVarDecl *Param = FD->getParamDecl(p);
582
583    // C99 6.7.5.3p4: the parameters in a parameter type list in a
584    // function declarator that is part of a function definition of
585    // that function shall not have incomplete type.
586    if (Param->getType()->isIncompleteType() &&
587        !Param->isInvalidDecl()) {
588      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
589           Param->getType().getAsString());
590      Param->setInvalidDecl();
591      HasInvalidParm = true;
592    }
593  }
594
595  return HasInvalidParm;
596}
597
598/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
599/// no declarator (e.g. "struct foo;") is parsed.
600Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
601  // TODO: emit error on 'int;' or 'const enum foo;'.
602  // TODO: emit error on 'typedef int;'
603  // if (!DS.isMissingDeclaratorOk()) Diag(...);
604
605  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
606}
607
608bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
609  // Get the type before calling CheckSingleAssignmentConstraints(), since
610  // it can promote the expression.
611  QualType InitType = Init->getType();
612
613  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
614  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
615                                  InitType, Init, "initializing");
616}
617
618bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
619  const ArrayType *AT = Context.getAsArrayType(DeclT);
620
621  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
622    // C99 6.7.8p14. We have an array of character type with unknown size
623    // being initialized to a string literal.
624    llvm::APSInt ConstVal(32);
625    ConstVal = strLiteral->getByteLength() + 1;
626    // Return a new array type (C99 6.7.8p22).
627    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
628                                         ArrayType::Normal, 0);
629  } else {
630    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
631    // C99 6.7.8p14. We have an array of character type with known size.
632    // FIXME: Avoid truncation for 64-bit length strings.
633    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
634      Diag(strLiteral->getSourceRange().getBegin(),
635           diag::warn_initializer_string_for_char_array_too_long,
636           strLiteral->getSourceRange());
637  }
638  // Set type from "char *" to "constant array of char".
639  strLiteral->setType(DeclT);
640  // For now, we always return false (meaning success).
641  return false;
642}
643
644StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
645  const ArrayType *AT = Context.getAsArrayType(DeclType);
646  if (AT && AT->getElementType()->isCharType()) {
647    return dyn_cast<StringLiteral>(Init);
648  }
649  return 0;
650}
651
652bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
653                                 SourceLocation InitLoc,
654                                 std::string InitEntity) {
655  // C++ [dcl.init.ref]p1:
656  //   A variable declared to be a T&, that is “reference to type T”
657  //   (8.3.2), shall be initialized by an object, or function, of
658  //   type T or by an object that can be converted into a T.
659  if (DeclType->isReferenceType())
660    return CheckReferenceInit(Init, DeclType);
661
662  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
663  // of unknown size ("[]") or an object type that is not a variable array type.
664  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
665    return Diag(InitLoc,
666                diag::err_variable_object_no_init,
667                VAT->getSizeExpr()->getSourceRange());
668
669  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
670  if (!InitList) {
671    // FIXME: Handle wide strings
672    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
673      return CheckStringLiteralInit(strLiteral, DeclType);
674
675    // C++ [dcl.init]p14:
676    //   -- If the destination type is a (possibly cv-qualified) class
677    //      type:
678    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
679      QualType DeclTypeC = Context.getCanonicalType(DeclType);
680      QualType InitTypeC = Context.getCanonicalType(Init->getType());
681
682      //   -- If the initialization is direct-initialization, or if it is
683      //      copy-initialization where the cv-unqualified version of the
684      //      source type is the same class as, or a derived class of, the
685      //      class of the destination, constructors are considered.
686      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
687          IsDerivedFrom(InitTypeC, DeclTypeC)) {
688        CXXConstructorDecl *Constructor
689          = PerformInitializationByConstructor(DeclType, &Init, 1,
690                                               InitLoc, Init->getSourceRange(),
691                                               InitEntity, IK_Copy);
692        return Constructor == 0;
693      }
694
695      //   -- Otherwise (i.e., for the remaining copy-initialization
696      //      cases), user-defined conversion sequences that can
697      //      convert from the source type to the destination type or
698      //      (when a conversion function is used) to a derived class
699      //      thereof are enumerated as described in 13.3.1.4, and the
700      //      best one is chosen through overload resolution
701      //      (13.3). If the conversion cannot be done or is
702      //      ambiguous, the initialization is ill-formed. The
703      //      function selected is called with the initializer
704      //      expression as its argument; if the function is a
705      //      constructor, the call initializes a temporary of the
706      //      destination type.
707      // FIXME: We're pretending to do copy elision here; return to
708      // this when we have ASTs for such things.
709      if (PerformImplicitConversion(Init, DeclType))
710        return Diag(InitLoc,
711                    diag::err_typecheck_convert_incompatible,
712                    DeclType.getAsString(), InitEntity,
713                    "initializing",
714                    Init->getSourceRange());
715      else
716        return false;
717    }
718
719    // C99 6.7.8p16.
720    if (DeclType->isArrayType())
721      return Diag(Init->getLocStart(),
722                  diag::err_array_init_list_required,
723                  Init->getSourceRange());
724
725    return CheckSingleInitializer(Init, DeclType);
726  } else if (getLangOptions().CPlusPlus) {
727    // C++ [dcl.init]p14:
728    //   [...] If the class is an aggregate (8.5.1), and the initializer
729    //   is a brace-enclosed list, see 8.5.1.
730    //
731    // Note: 8.5.1 is handled below; here, we diagnose the case where
732    // we have an initializer list and a destination type that is not
733    // an aggregate.
734    // FIXME: In C++0x, this is yet another form of initialization.
735    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
736      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
737      if (!ClassDecl->isAggregate())
738        return Diag(InitLoc,
739                    diag::err_init_non_aggr_init_list,
740                    DeclType.getAsString(),
741                    Init->getSourceRange());
742    }
743  }
744
745  InitListChecker CheckInitList(this, InitList, DeclType);
746  return CheckInitList.HadError();
747}
748
749Sema::DeclTy *
750Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
751  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
752  IdentifierInfo *II = D.getIdentifier();
753
754  // All of these full declarators require an identifier.  If it doesn't have
755  // one, the ParsedFreeStandingDeclSpec action should be used.
756  if (II == 0) {
757    Diag(D.getDeclSpec().getSourceRange().getBegin(),
758         diag::err_declarator_need_ident,
759         D.getDeclSpec().getSourceRange(), D.getSourceRange());
760    return 0;
761  }
762
763  // The scope passed in may not be a decl scope.  Zip up the scope tree until
764  // we find one that is.
765  while ((S->getFlags() & Scope::DeclScope) == 0)
766    S = S->getParent();
767
768  DeclContext *DC;
769  Decl *PrevDecl;
770  ScopedDecl *New;
771  bool InvalidDecl = false;
772
773  // See if this is a redefinition of a variable in the same scope.
774  if (!D.getCXXScopeSpec().isSet()) {
775    DC = CurContext;
776    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
777  } else { // Something like "int foo::x;"
778    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
779    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S, DC);
780
781    // C++ 7.3.1.2p2:
782    // Members (including explicit specializations of templates) of a named
783    // namespace can also be defined outside that namespace by explicit
784    // qualification of the name being defined, provided that the entity being
785    // defined was already declared in the namespace and the definition appears
786    // after the point of declaration in a namespace that encloses the
787    // declarations namespace.
788    //
789    if (PrevDecl == 0) {
790      // No previous declaration in the qualifying scope.
791      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
792           II->getName(), D.getCXXScopeSpec().getRange());
793    } else if (!CurContext->Encloses(DC)) {
794      // The qualifying scope doesn't enclose the original declaration.
795      // Emit diagnostic based on current scope.
796      SourceLocation L = D.getIdentifierLoc();
797      SourceRange R = D.getCXXScopeSpec().getRange();
798      if (isa<FunctionDecl>(CurContext)) {
799        Diag(L, diag::err_invalid_declarator_in_function, II->getName(), R);
800      } else {
801      Diag(L, diag::err_invalid_declarator_scope, II->getName(),
802           cast<NamedDecl>(DC)->getName(), R);
803      }
804    }
805  }
806
807  // In C++, the previous declaration we find might be a tag type
808  // (class or enum). In this case, the new declaration will hide the
809  // tag type.
810  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
811    PrevDecl = 0;
812
813  QualType R = GetTypeForDeclarator(D, S);
814  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
815
816  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
817    // Check that there are no default arguments (C++ only).
818    if (getLangOptions().CPlusPlus)
819      CheckExtraCXXDefaultArguments(D);
820
821    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
822    if (!NewTD) return 0;
823
824    // Handle attributes prior to checking for duplicates in MergeVarDecl
825    ProcessDeclAttributes(NewTD, D);
826    // Merge the decl with the existing one if appropriate. If the decl is
827    // in an outer scope, it isn't the same thing.
828    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
829      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
830      if (NewTD == 0) return 0;
831    }
832    New = NewTD;
833    if (S->getFnParent() == 0) {
834      // C99 6.7.7p2: If a typedef name specifies a variably modified type
835      // then it shall have block scope.
836      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
837        // FIXME: Diagnostic needs to be fixed.
838        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
839        InvalidDecl = true;
840      }
841    }
842  } else if (R.getTypePtr()->isFunctionType()) {
843    FunctionDecl::StorageClass SC = FunctionDecl::None;
844    switch (D.getDeclSpec().getStorageClassSpec()) {
845      default: assert(0 && "Unknown storage class!");
846      case DeclSpec::SCS_auto:
847      case DeclSpec::SCS_register:
848        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
849             R.getAsString());
850        InvalidDecl = true;
851        break;
852      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
853      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
854      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
855      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
856    }
857
858    bool isInline = D.getDeclSpec().isInlineSpecified();
859    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
860    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
861
862    FunctionDecl *NewFD;
863    if (D.getKind() == Declarator::DK_Constructor) {
864      // This is a C++ constructor declaration.
865      assert(DC->isCXXRecord() &&
866             "Constructors can only be declared in a member context");
867
868      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
869
870      // Create the new declaration
871      NewFD = CXXConstructorDecl::Create(Context,
872                                         cast<CXXRecordDecl>(DC),
873                                         D.getIdentifierLoc(), II, R,
874                                         isExplicit, isInline,
875                                         /*isImplicitlyDeclared=*/false);
876
877      if (isInvalidDecl)
878        NewFD->setInvalidDecl();
879    } else if (D.getKind() == Declarator::DK_Destructor) {
880      // This is a C++ destructor declaration.
881      if (DC->isCXXRecord()) {
882        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
883
884        NewFD = CXXDestructorDecl::Create(Context,
885                                          cast<CXXRecordDecl>(DC),
886                                          D.getIdentifierLoc(), II, R,
887                                          isInline,
888                                          /*isImplicitlyDeclared=*/false);
889
890        if (isInvalidDecl)
891          NewFD->setInvalidDecl();
892      } else {
893        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
894        // Create a FunctionDecl to satisfy the function definition parsing
895        // code path.
896        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
897                                     II, R, SC, isInline, LastDeclarator,
898                                     // FIXME: Move to DeclGroup...
899                                   D.getDeclSpec().getSourceRange().getBegin());
900        NewFD->setInvalidDecl();
901      }
902    } else if (D.getKind() == Declarator::DK_Conversion) {
903      if (!DC->isCXXRecord()) {
904        Diag(D.getIdentifierLoc(),
905             diag::err_conv_function_not_member);
906        return 0;
907      } else {
908        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
909
910        NewFD = CXXConversionDecl::Create(Context,
911                                          cast<CXXRecordDecl>(DC),
912                                          D.getIdentifierLoc(), II, R,
913                                          isInline, isExplicit);
914
915        if (isInvalidDecl)
916          NewFD->setInvalidDecl();
917      }
918    } else if (DC->isCXXRecord()) {
919      // This is a C++ method declaration.
920      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
921                                    D.getIdentifierLoc(), II, R,
922                                    (SC == FunctionDecl::Static), isInline,
923                                    LastDeclarator);
924    } else {
925      NewFD = FunctionDecl::Create(Context, DC,
926                                   D.getIdentifierLoc(),
927                                   II, R, SC, isInline, LastDeclarator,
928                                   // FIXME: Move to DeclGroup...
929                                   D.getDeclSpec().getSourceRange().getBegin());
930    }
931    // Handle attributes.
932    ProcessDeclAttributes(NewFD, D);
933
934    // Handle GNU asm-label extension (encoded as an attribute).
935    if (Expr *E = (Expr*) D.getAsmLabel()) {
936      // The parser guarantees this is a string.
937      StringLiteral *SE = cast<StringLiteral>(E);
938      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
939                                                  SE->getByteLength())));
940    }
941
942    // Copy the parameter declarations from the declarator D to
943    // the function declaration NewFD, if they are available.
944    if (D.getNumTypeObjects() > 0) {
945      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
946
947      // Create Decl objects for each parameter, adding them to the
948      // FunctionDecl.
949      llvm::SmallVector<ParmVarDecl*, 16> Params;
950
951      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
952      // function that takes no arguments, not a function that takes a
953      // single void argument.
954      // We let through "const void" here because Sema::GetTypeForDeclarator
955      // already checks for that case.
956      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
957          FTI.ArgInfo[0].Param &&
958          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
959        // empty arg list, don't push any params.
960        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
961
962        // In C++, the empty parameter-type-list must be spelled "void"; a
963        // typedef of void is not permitted.
964        if (getLangOptions().CPlusPlus &&
965            Param->getType().getUnqualifiedType() != Context.VoidTy) {
966          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
967        }
968      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
969        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
970          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
971      }
972
973      NewFD->setParams(&Params[0], Params.size());
974    } else if (R->getAsTypedefType()) {
975      // When we're declaring a function with a typedef, as in the
976      // following example, we'll need to synthesize (unnamed)
977      // parameters for use in the declaration.
978      //
979      // @code
980      // typedef void fn(int);
981      // fn f;
982      // @endcode
983      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
984      if (!FT) {
985        // This is a typedef of a function with no prototype, so we
986        // don't need to do anything.
987      } else if ((FT->getNumArgs() == 0) ||
988          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
989           FT->getArgType(0)->isVoidType())) {
990        // This is a zero-argument function. We don't need to do anything.
991      } else {
992        // Synthesize a parameter for each argument type.
993        llvm::SmallVector<ParmVarDecl*, 16> Params;
994        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
995             ArgType != FT->arg_type_end(); ++ArgType) {
996          Params.push_back(ParmVarDecl::Create(Context, DC,
997                                               SourceLocation(), 0,
998                                               *ArgType, VarDecl::None,
999                                               0, 0));
1000        }
1001
1002        NewFD->setParams(&Params[0], Params.size());
1003      }
1004    }
1005
1006    // C++ constructors and destructors are handled by separate
1007    // routines, since they don't require any declaration merging (C++
1008    // [class.mfct]p2) and they aren't ever pushed into scope, because
1009    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1010    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1011      return ActOnConstructorDeclarator(Constructor);
1012    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1013      return ActOnDestructorDeclarator(Destructor);
1014    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1015      return ActOnConversionDeclarator(Conversion);
1016
1017    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1018    if (NewFD->isOverloadedOperator() &&
1019        CheckOverloadedOperatorDeclaration(NewFD))
1020      NewFD->setInvalidDecl();
1021
1022    // Merge the decl with the existing one if appropriate. Since C functions
1023    // are in a flat namespace, make sure we consider decls in outer scopes.
1024    if (PrevDecl &&
1025        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1026      bool Redeclaration = false;
1027
1028      // If C++, determine whether NewFD is an overload of PrevDecl or
1029      // a declaration that requires merging. If it's an overload,
1030      // there's no more work to do here; we'll just add the new
1031      // function to the scope.
1032      OverloadedFunctionDecl::function_iterator MatchedDecl;
1033      if (!getLangOptions().CPlusPlus ||
1034          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1035        Decl *OldDecl = PrevDecl;
1036
1037        // If PrevDecl was an overloaded function, extract the
1038        // FunctionDecl that matched.
1039        if (isa<OverloadedFunctionDecl>(PrevDecl))
1040          OldDecl = *MatchedDecl;
1041
1042        // NewFD and PrevDecl represent declarations that need to be
1043        // merged.
1044        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1045
1046        if (NewFD == 0) return 0;
1047        if (Redeclaration) {
1048          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1049
1050          if (OldDecl == PrevDecl) {
1051            // Remove the name binding for the previous
1052            // declaration. We'll add the binding back later, but then
1053            // it will refer to the new declaration (which will
1054            // contain more information).
1055            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1056          } else {
1057            // We need to update the OverloadedFunctionDecl with the
1058            // latest declaration of this function, so that name
1059            // lookup will always refer to the latest declaration of
1060            // this function.
1061            *MatchedDecl = NewFD;
1062
1063            // Add the redeclaration to the current scope, since we'll
1064            // be skipping PushOnScopeChains.
1065            S->AddDecl(NewFD);
1066
1067            return NewFD;
1068          }
1069        }
1070      }
1071    }
1072    New = NewFD;
1073
1074    // In C++, check default arguments now that we have merged decls.
1075    if (getLangOptions().CPlusPlus)
1076      CheckCXXDefaultArguments(NewFD);
1077  } else {
1078    // Check that there are no default arguments (C++ only).
1079    if (getLangOptions().CPlusPlus)
1080      CheckExtraCXXDefaultArguments(D);
1081
1082    if (R.getTypePtr()->isObjCInterfaceType()) {
1083      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1084           D.getIdentifier()->getName());
1085      InvalidDecl = true;
1086    }
1087
1088    VarDecl *NewVD;
1089    VarDecl::StorageClass SC;
1090    switch (D.getDeclSpec().getStorageClassSpec()) {
1091    default: assert(0 && "Unknown storage class!");
1092    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1093    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1094    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1095    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1096    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1097    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1098    }
1099    if (DC->isCXXRecord()) {
1100      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1101      // This is a static data member for a C++ class.
1102      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1103                                      D.getIdentifierLoc(), II,
1104                                      R, LastDeclarator);
1105    } else {
1106      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1107      if (S->getFnParent() == 0) {
1108        // C99 6.9p2: The storage-class specifiers auto and register shall not
1109        // appear in the declaration specifiers in an external declaration.
1110        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1111          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1112               R.getAsString());
1113          InvalidDecl = true;
1114        }
1115      }
1116        NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1117                                II, R, SC, LastDeclarator,
1118                                // FIXME: Move to DeclGroup...
1119                                D.getDeclSpec().getSourceRange().getBegin());
1120        NewVD->setThreadSpecified(ThreadSpecified);
1121    }
1122    // Handle attributes prior to checking for duplicates in MergeVarDecl
1123    ProcessDeclAttributes(NewVD, D);
1124
1125    // Handle GNU asm-label extension (encoded as an attribute).
1126    if (Expr *E = (Expr*) D.getAsmLabel()) {
1127      // The parser guarantees this is a string.
1128      StringLiteral *SE = cast<StringLiteral>(E);
1129      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1130                                                  SE->getByteLength())));
1131    }
1132
1133    // Emit an error if an address space was applied to decl with local storage.
1134    // This includes arrays of objects with address space qualifiers, but not
1135    // automatic variables that point to other address spaces.
1136    // ISO/IEC TR 18037 S5.1.2
1137    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1138      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1139      InvalidDecl = true;
1140    }
1141    // Merge the decl with the existing one if appropriate. If the decl is
1142    // in an outer scope, it isn't the same thing.
1143    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1144      NewVD = MergeVarDecl(NewVD, PrevDecl);
1145      if (NewVD == 0) return 0;
1146    }
1147    New = NewVD;
1148  }
1149
1150  // If this has an identifier, add it to the scope stack.
1151  if (II)
1152    PushOnScopeChains(New, S);
1153  // If any semantic error occurred, mark the decl as invalid.
1154  if (D.getInvalidType() || InvalidDecl)
1155    New->setInvalidDecl();
1156
1157  return New;
1158}
1159
1160void Sema::InitializerElementNotConstant(const Expr *Init) {
1161  Diag(Init->getExprLoc(),
1162       diag::err_init_element_not_constant, Init->getSourceRange());
1163}
1164
1165bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1166  switch (Init->getStmtClass()) {
1167  default:
1168    InitializerElementNotConstant(Init);
1169    return true;
1170  case Expr::ParenExprClass: {
1171    const ParenExpr* PE = cast<ParenExpr>(Init);
1172    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1173  }
1174  case Expr::CompoundLiteralExprClass:
1175    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1176  case Expr::DeclRefExprClass: {
1177    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1178    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1179      if (VD->hasGlobalStorage())
1180        return false;
1181      InitializerElementNotConstant(Init);
1182      return true;
1183    }
1184    if (isa<FunctionDecl>(D))
1185      return false;
1186    InitializerElementNotConstant(Init);
1187    return true;
1188  }
1189  case Expr::MemberExprClass: {
1190    const MemberExpr *M = cast<MemberExpr>(Init);
1191    if (M->isArrow())
1192      return CheckAddressConstantExpression(M->getBase());
1193    return CheckAddressConstantExpressionLValue(M->getBase());
1194  }
1195  case Expr::ArraySubscriptExprClass: {
1196    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1197    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1198    return CheckAddressConstantExpression(ASE->getBase()) ||
1199           CheckArithmeticConstantExpression(ASE->getIdx());
1200  }
1201  case Expr::StringLiteralClass:
1202  case Expr::PredefinedExprClass:
1203    return false;
1204  case Expr::UnaryOperatorClass: {
1205    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1206
1207    // C99 6.6p9
1208    if (Exp->getOpcode() == UnaryOperator::Deref)
1209      return CheckAddressConstantExpression(Exp->getSubExpr());
1210
1211    InitializerElementNotConstant(Init);
1212    return true;
1213  }
1214  }
1215}
1216
1217bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1218  switch (Init->getStmtClass()) {
1219  default:
1220    InitializerElementNotConstant(Init);
1221    return true;
1222  case Expr::ParenExprClass:
1223    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1224  case Expr::StringLiteralClass:
1225  case Expr::ObjCStringLiteralClass:
1226    return false;
1227  case Expr::CallExprClass:
1228    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1229    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1230           Builtin::BI__builtin___CFStringMakeConstantString)
1231      return false;
1232
1233    InitializerElementNotConstant(Init);
1234    return true;
1235
1236  case Expr::UnaryOperatorClass: {
1237    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1238
1239    // C99 6.6p9
1240    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1241      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1242
1243    if (Exp->getOpcode() == UnaryOperator::Extension)
1244      return CheckAddressConstantExpression(Exp->getSubExpr());
1245
1246    InitializerElementNotConstant(Init);
1247    return true;
1248  }
1249  case Expr::BinaryOperatorClass: {
1250    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1251    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1252
1253    Expr *PExp = Exp->getLHS();
1254    Expr *IExp = Exp->getRHS();
1255    if (IExp->getType()->isPointerType())
1256      std::swap(PExp, IExp);
1257
1258    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1259    return CheckAddressConstantExpression(PExp) ||
1260           CheckArithmeticConstantExpression(IExp);
1261  }
1262  case Expr::ImplicitCastExprClass:
1263  case Expr::CStyleCastExprClass: {
1264    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1265    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1266      // Check for implicit promotion
1267      if (SubExpr->getType()->isFunctionType() ||
1268          SubExpr->getType()->isArrayType())
1269        return CheckAddressConstantExpressionLValue(SubExpr);
1270    }
1271
1272    // Check for pointer->pointer cast
1273    if (SubExpr->getType()->isPointerType())
1274      return CheckAddressConstantExpression(SubExpr);
1275
1276    if (SubExpr->getType()->isIntegralType()) {
1277      // Check for the special-case of a pointer->int->pointer cast;
1278      // this isn't standard, but some code requires it. See
1279      // PR2720 for an example.
1280      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1281        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1282          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1283          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1284          if (IntWidth >= PointerWidth) {
1285            return CheckAddressConstantExpression(SubCast->getSubExpr());
1286          }
1287        }
1288      }
1289    }
1290    if (SubExpr->getType()->isArithmeticType()) {
1291      return CheckArithmeticConstantExpression(SubExpr);
1292    }
1293
1294    InitializerElementNotConstant(Init);
1295    return true;
1296  }
1297  case Expr::ConditionalOperatorClass: {
1298    // FIXME: Should we pedwarn here?
1299    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1300    if (!Exp->getCond()->getType()->isArithmeticType()) {
1301      InitializerElementNotConstant(Init);
1302      return true;
1303    }
1304    if (CheckArithmeticConstantExpression(Exp->getCond()))
1305      return true;
1306    if (Exp->getLHS() &&
1307        CheckAddressConstantExpression(Exp->getLHS()))
1308      return true;
1309    return CheckAddressConstantExpression(Exp->getRHS());
1310  }
1311  case Expr::AddrLabelExprClass:
1312    return false;
1313  }
1314}
1315
1316static const Expr* FindExpressionBaseAddress(const Expr* E);
1317
1318static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1319  switch (E->getStmtClass()) {
1320  default:
1321    return E;
1322  case Expr::ParenExprClass: {
1323    const ParenExpr* PE = cast<ParenExpr>(E);
1324    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1325  }
1326  case Expr::MemberExprClass: {
1327    const MemberExpr *M = cast<MemberExpr>(E);
1328    if (M->isArrow())
1329      return FindExpressionBaseAddress(M->getBase());
1330    return FindExpressionBaseAddressLValue(M->getBase());
1331  }
1332  case Expr::ArraySubscriptExprClass: {
1333    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1334    return FindExpressionBaseAddress(ASE->getBase());
1335  }
1336  case Expr::UnaryOperatorClass: {
1337    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1338
1339    if (Exp->getOpcode() == UnaryOperator::Deref)
1340      return FindExpressionBaseAddress(Exp->getSubExpr());
1341
1342    return E;
1343  }
1344  }
1345}
1346
1347static const Expr* FindExpressionBaseAddress(const Expr* E) {
1348  switch (E->getStmtClass()) {
1349  default:
1350    return E;
1351  case Expr::ParenExprClass: {
1352    const ParenExpr* PE = cast<ParenExpr>(E);
1353    return FindExpressionBaseAddress(PE->getSubExpr());
1354  }
1355  case Expr::UnaryOperatorClass: {
1356    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1357
1358    // C99 6.6p9
1359    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1360      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1361
1362    if (Exp->getOpcode() == UnaryOperator::Extension)
1363      return FindExpressionBaseAddress(Exp->getSubExpr());
1364
1365    return E;
1366  }
1367  case Expr::BinaryOperatorClass: {
1368    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1369
1370    Expr *PExp = Exp->getLHS();
1371    Expr *IExp = Exp->getRHS();
1372    if (IExp->getType()->isPointerType())
1373      std::swap(PExp, IExp);
1374
1375    return FindExpressionBaseAddress(PExp);
1376  }
1377  case Expr::ImplicitCastExprClass: {
1378    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1379
1380    // Check for implicit promotion
1381    if (SubExpr->getType()->isFunctionType() ||
1382        SubExpr->getType()->isArrayType())
1383      return FindExpressionBaseAddressLValue(SubExpr);
1384
1385    // Check for pointer->pointer cast
1386    if (SubExpr->getType()->isPointerType())
1387      return FindExpressionBaseAddress(SubExpr);
1388
1389    // We assume that we have an arithmetic expression here;
1390    // if we don't, we'll figure it out later
1391    return 0;
1392  }
1393  case Expr::CStyleCastExprClass: {
1394    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1395
1396    // Check for pointer->pointer cast
1397    if (SubExpr->getType()->isPointerType())
1398      return FindExpressionBaseAddress(SubExpr);
1399
1400    // We assume that we have an arithmetic expression here;
1401    // if we don't, we'll figure it out later
1402    return 0;
1403  }
1404  }
1405}
1406
1407bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1408  switch (Init->getStmtClass()) {
1409  default:
1410    InitializerElementNotConstant(Init);
1411    return true;
1412  case Expr::ParenExprClass: {
1413    const ParenExpr* PE = cast<ParenExpr>(Init);
1414    return CheckArithmeticConstantExpression(PE->getSubExpr());
1415  }
1416  case Expr::FloatingLiteralClass:
1417  case Expr::IntegerLiteralClass:
1418  case Expr::CharacterLiteralClass:
1419  case Expr::ImaginaryLiteralClass:
1420  case Expr::TypesCompatibleExprClass:
1421  case Expr::CXXBoolLiteralExprClass:
1422    return false;
1423  case Expr::CallExprClass: {
1424    const CallExpr *CE = cast<CallExpr>(Init);
1425
1426    // Allow any constant foldable calls to builtins.
1427    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1428      return false;
1429
1430    InitializerElementNotConstant(Init);
1431    return true;
1432  }
1433  case Expr::DeclRefExprClass: {
1434    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1435    if (isa<EnumConstantDecl>(D))
1436      return false;
1437    InitializerElementNotConstant(Init);
1438    return true;
1439  }
1440  case Expr::CompoundLiteralExprClass:
1441    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1442    // but vectors are allowed to be magic.
1443    if (Init->getType()->isVectorType())
1444      return false;
1445    InitializerElementNotConstant(Init);
1446    return true;
1447  case Expr::UnaryOperatorClass: {
1448    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1449
1450    switch (Exp->getOpcode()) {
1451    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1452    // See C99 6.6p3.
1453    default:
1454      InitializerElementNotConstant(Init);
1455      return true;
1456    case UnaryOperator::SizeOf:
1457    case UnaryOperator::AlignOf:
1458    case UnaryOperator::OffsetOf:
1459      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1460      // See C99 6.5.3.4p2 and 6.6p3.
1461      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1462        return false;
1463      InitializerElementNotConstant(Init);
1464      return true;
1465    case UnaryOperator::Extension:
1466    case UnaryOperator::LNot:
1467    case UnaryOperator::Plus:
1468    case UnaryOperator::Minus:
1469    case UnaryOperator::Not:
1470      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1471    }
1472  }
1473  case Expr::SizeOfAlignOfTypeExprClass: {
1474    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1475    // Special check for void types, which are allowed as an extension
1476    if (Exp->getArgumentType()->isVoidType())
1477      return false;
1478    // alignof always evaluates to a constant.
1479    // FIXME: is sizeof(int[3.0]) a constant expression?
1480    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1481      InitializerElementNotConstant(Init);
1482      return true;
1483    }
1484    return false;
1485  }
1486  case Expr::BinaryOperatorClass: {
1487    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1488
1489    if (Exp->getLHS()->getType()->isArithmeticType() &&
1490        Exp->getRHS()->getType()->isArithmeticType()) {
1491      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1492             CheckArithmeticConstantExpression(Exp->getRHS());
1493    }
1494
1495    if (Exp->getLHS()->getType()->isPointerType() &&
1496        Exp->getRHS()->getType()->isPointerType()) {
1497      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1498      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1499
1500      // Only allow a null (constant integer) base; we could
1501      // allow some additional cases if necessary, but this
1502      // is sufficient to cover offsetof-like constructs.
1503      if (!LHSBase && !RHSBase) {
1504        return CheckAddressConstantExpression(Exp->getLHS()) ||
1505               CheckAddressConstantExpression(Exp->getRHS());
1506      }
1507    }
1508
1509    InitializerElementNotConstant(Init);
1510    return true;
1511  }
1512  case Expr::ImplicitCastExprClass:
1513  case Expr::CStyleCastExprClass: {
1514    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1515    if (SubExpr->getType()->isArithmeticType())
1516      return CheckArithmeticConstantExpression(SubExpr);
1517
1518    if (SubExpr->getType()->isPointerType()) {
1519      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1520      // If the pointer has a null base, this is an offsetof-like construct
1521      if (!Base)
1522        return CheckAddressConstantExpression(SubExpr);
1523    }
1524
1525    InitializerElementNotConstant(Init);
1526    return true;
1527  }
1528  case Expr::ConditionalOperatorClass: {
1529    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1530
1531    // If GNU extensions are disabled, we require all operands to be arithmetic
1532    // constant expressions.
1533    if (getLangOptions().NoExtensions) {
1534      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1535          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1536             CheckArithmeticConstantExpression(Exp->getRHS());
1537    }
1538
1539    // Otherwise, we have to emulate some of the behavior of fold here.
1540    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1541    // because it can constant fold things away.  To retain compatibility with
1542    // GCC code, we see if we can fold the condition to a constant (which we
1543    // should always be able to do in theory).  If so, we only require the
1544    // specified arm of the conditional to be a constant.  This is a horrible
1545    // hack, but is require by real world code that uses __builtin_constant_p.
1546    APValue Val;
1547    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1548      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1549      // won't be able to either.  Use it to emit the diagnostic though.
1550      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1551      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1552      return Res;
1553    }
1554
1555    // Verify that the side following the condition is also a constant.
1556    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1557    if (Val.getInt() == 0)
1558      std::swap(TrueSide, FalseSide);
1559
1560    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1561      return true;
1562
1563    // Okay, the evaluated side evaluates to a constant, so we accept this.
1564    // Check to see if the other side is obviously not a constant.  If so,
1565    // emit a warning that this is a GNU extension.
1566    if (FalseSide && !FalseSide->isEvaluatable(Context))
1567      Diag(Init->getExprLoc(),
1568           diag::ext_typecheck_expression_not_constant_but_accepted,
1569           FalseSide->getSourceRange());
1570    return false;
1571  }
1572  }
1573}
1574
1575bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1576  Init = Init->IgnoreParens();
1577
1578  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1579  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1580    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1581
1582  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1583    return CheckForConstantInitializer(e->getInitializer(), DclT);
1584
1585  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1586    unsigned numInits = Exp->getNumInits();
1587    for (unsigned i = 0; i < numInits; i++) {
1588      // FIXME: Need to get the type of the declaration for C++,
1589      // because it could be a reference?
1590      if (CheckForConstantInitializer(Exp->getInit(i),
1591                                      Exp->getInit(i)->getType()))
1592        return true;
1593    }
1594    return false;
1595  }
1596
1597  if (Init->isNullPointerConstant(Context))
1598    return false;
1599  if (Init->getType()->isArithmeticType()) {
1600    QualType InitTy = Context.getCanonicalType(Init->getType())
1601                             .getUnqualifiedType();
1602    if (InitTy == Context.BoolTy) {
1603      // Special handling for pointers implicitly cast to bool;
1604      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1605      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1606        Expr* SubE = ICE->getSubExpr();
1607        if (SubE->getType()->isPointerType() ||
1608            SubE->getType()->isArrayType() ||
1609            SubE->getType()->isFunctionType()) {
1610          return CheckAddressConstantExpression(Init);
1611        }
1612      }
1613    } else if (InitTy->isIntegralType()) {
1614      Expr* SubE = 0;
1615      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1616        SubE = CE->getSubExpr();
1617      // Special check for pointer cast to int; we allow as an extension
1618      // an address constant cast to an integer if the integer
1619      // is of an appropriate width (this sort of code is apparently used
1620      // in some places).
1621      // FIXME: Add pedwarn?
1622      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1623      if (SubE && (SubE->getType()->isPointerType() ||
1624                   SubE->getType()->isArrayType() ||
1625                   SubE->getType()->isFunctionType())) {
1626        unsigned IntWidth = Context.getTypeSize(Init->getType());
1627        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1628        if (IntWidth >= PointerWidth)
1629          return CheckAddressConstantExpression(Init);
1630      }
1631    }
1632
1633    return CheckArithmeticConstantExpression(Init);
1634  }
1635
1636  if (Init->getType()->isPointerType())
1637    return CheckAddressConstantExpression(Init);
1638
1639  // An array type at the top level that isn't an init-list must
1640  // be a string literal
1641  if (Init->getType()->isArrayType())
1642    return false;
1643
1644  if (Init->getType()->isFunctionType())
1645    return false;
1646
1647  // Allow block exprs at top level.
1648  if (Init->getType()->isBlockPointerType())
1649    return false;
1650
1651  InitializerElementNotConstant(Init);
1652  return true;
1653}
1654
1655void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1656  Decl *RealDecl = static_cast<Decl *>(dcl);
1657  Expr *Init = static_cast<Expr *>(init);
1658  assert(Init && "missing initializer");
1659
1660  // If there is no declaration, there was an error parsing it.  Just ignore
1661  // the initializer.
1662  if (RealDecl == 0) {
1663    delete Init;
1664    return;
1665  }
1666
1667  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1668  if (!VDecl) {
1669    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1670         diag::err_illegal_initializer);
1671    RealDecl->setInvalidDecl();
1672    return;
1673  }
1674  // Get the decls type and save a reference for later, since
1675  // CheckInitializerTypes may change it.
1676  QualType DclT = VDecl->getType(), SavT = DclT;
1677  if (VDecl->isBlockVarDecl()) {
1678    VarDecl::StorageClass SC = VDecl->getStorageClass();
1679    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1680      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1681      VDecl->setInvalidDecl();
1682    } else if (!VDecl->isInvalidDecl()) {
1683      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1684                                VDecl->getName()))
1685        VDecl->setInvalidDecl();
1686
1687      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1688      if (!getLangOptions().CPlusPlus) {
1689        if (SC == VarDecl::Static) // C99 6.7.8p4.
1690          CheckForConstantInitializer(Init, DclT);
1691      }
1692    }
1693  } else if (VDecl->isFileVarDecl()) {
1694    if (VDecl->getStorageClass() == VarDecl::Extern)
1695      Diag(VDecl->getLocation(), diag::warn_extern_init);
1696    if (!VDecl->isInvalidDecl())
1697      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1698                                VDecl->getName()))
1699        VDecl->setInvalidDecl();
1700
1701    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1702    if (!getLangOptions().CPlusPlus) {
1703      // C99 6.7.8p4. All file scoped initializers need to be constant.
1704      CheckForConstantInitializer(Init, DclT);
1705    }
1706  }
1707  // If the type changed, it means we had an incomplete type that was
1708  // completed by the initializer. For example:
1709  //   int ary[] = { 1, 3, 5 };
1710  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1711  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1712    VDecl->setType(DclT);
1713    Init->setType(DclT);
1714  }
1715
1716  // Attach the initializer to the decl.
1717  VDecl->setInit(Init);
1718  return;
1719}
1720
1721void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1722  Decl *RealDecl = static_cast<Decl *>(dcl);
1723
1724  // If there is no declaration, there was an error parsing it. Just ignore it.
1725  if (RealDecl == 0)
1726    return;
1727
1728  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1729    QualType Type = Var->getType();
1730    // C++ [dcl.init.ref]p3:
1731    //   The initializer can be omitted for a reference only in a
1732    //   parameter declaration (8.3.5), in the declaration of a
1733    //   function return type, in the declaration of a class member
1734    //   within its class declaration (9.2), and where the extern
1735    //   specifier is explicitly used.
1736    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1737      Diag(Var->getLocation(),
1738           diag::err_reference_var_requires_init,
1739           Var->getName(),
1740           SourceRange(Var->getLocation(), Var->getLocation()));
1741      Var->setInvalidDecl();
1742      return;
1743    }
1744
1745    // C++ [dcl.init]p9:
1746    //
1747    //   If no initializer is specified for an object, and the object
1748    //   is of (possibly cv-qualified) non-POD class type (or array
1749    //   thereof), the object shall be default-initialized; if the
1750    //   object is of const-qualified type, the underlying class type
1751    //   shall have a user-declared default constructor.
1752    if (getLangOptions().CPlusPlus) {
1753      QualType InitType = Type;
1754      if (const ArrayType *Array = Context.getAsArrayType(Type))
1755        InitType = Array->getElementType();
1756      if (InitType->isRecordType()) {
1757        const CXXConstructorDecl *Constructor
1758          = PerformInitializationByConstructor(InitType, 0, 0,
1759                                               Var->getLocation(),
1760                                               SourceRange(Var->getLocation(),
1761                                                           Var->getLocation()),
1762                                               Var->getName(),
1763                                               IK_Default);
1764        if (!Constructor)
1765          Var->setInvalidDecl();
1766      }
1767    }
1768
1769#if 0
1770    // FIXME: Temporarily disabled because we are not properly parsing
1771    // linkage specifications on declarations, e.g.,
1772    //
1773    //   extern "C" const CGPoint CGPointerZero;
1774    //
1775    // C++ [dcl.init]p9:
1776    //
1777    //     If no initializer is specified for an object, and the
1778    //     object is of (possibly cv-qualified) non-POD class type (or
1779    //     array thereof), the object shall be default-initialized; if
1780    //     the object is of const-qualified type, the underlying class
1781    //     type shall have a user-declared default
1782    //     constructor. Otherwise, if no initializer is specified for
1783    //     an object, the object and its subobjects, if any, have an
1784    //     indeterminate initial value; if the object or any of its
1785    //     subobjects are of const-qualified type, the program is
1786    //     ill-formed.
1787    //
1788    // This isn't technically an error in C, so we don't diagnose it.
1789    //
1790    // FIXME: Actually perform the POD/user-defined default
1791    // constructor check.
1792    if (getLangOptions().CPlusPlus &&
1793        Context.getCanonicalType(Type).isConstQualified() &&
1794        Var->getStorageClass() != VarDecl::Extern)
1795      Diag(Var->getLocation(),
1796           diag::err_const_var_requires_init,
1797           Var->getName(),
1798           SourceRange(Var->getLocation(), Var->getLocation()));
1799#endif
1800  }
1801}
1802
1803/// The declarators are chained together backwards, reverse the list.
1804Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1805  // Often we have single declarators, handle them quickly.
1806  Decl *GroupDecl = static_cast<Decl*>(group);
1807  if (GroupDecl == 0)
1808    return 0;
1809
1810  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1811  ScopedDecl *NewGroup = 0;
1812  if (Group->getNextDeclarator() == 0)
1813    NewGroup = Group;
1814  else { // reverse the list.
1815    while (Group) {
1816      ScopedDecl *Next = Group->getNextDeclarator();
1817      Group->setNextDeclarator(NewGroup);
1818      NewGroup = Group;
1819      Group = Next;
1820    }
1821  }
1822  // Perform semantic analysis that depends on having fully processed both
1823  // the declarator and initializer.
1824  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1825    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1826    if (!IDecl)
1827      continue;
1828    QualType T = IDecl->getType();
1829
1830    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1831    // static storage duration, it shall not have a variable length array.
1832    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1833        IDecl->getStorageClass() == VarDecl::Static) {
1834      if (T->isVariableArrayType()) {
1835        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1836        IDecl->setInvalidDecl();
1837      }
1838    }
1839    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1840    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1841    if (IDecl->isBlockVarDecl() &&
1842        IDecl->getStorageClass() != VarDecl::Extern) {
1843      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1844        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1845             T.getAsString());
1846        IDecl->setInvalidDecl();
1847      }
1848    }
1849    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1850    // object that has file scope without an initializer, and without a
1851    // storage-class specifier or with the storage-class specifier "static",
1852    // constitutes a tentative definition. Note: A tentative definition with
1853    // external linkage is valid (C99 6.2.2p5).
1854    if (isTentativeDefinition(IDecl)) {
1855      if (T->isIncompleteArrayType()) {
1856        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1857        // array to be completed. Don't issue a diagnostic.
1858      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1859        // C99 6.9.2p3: If the declaration of an identifier for an object is
1860        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1861        // declared type shall not be an incomplete type.
1862        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1863             T.getAsString());
1864        IDecl->setInvalidDecl();
1865      }
1866    }
1867    if (IDecl->isFileVarDecl())
1868      CheckForFileScopedRedefinitions(S, IDecl);
1869  }
1870  return NewGroup;
1871}
1872
1873/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1874/// to introduce parameters into function prototype scope.
1875Sema::DeclTy *
1876Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1877  // FIXME: disallow CXXScopeSpec for param declarators.
1878  const DeclSpec &DS = D.getDeclSpec();
1879
1880  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1881  VarDecl::StorageClass StorageClass = VarDecl::None;
1882  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1883    StorageClass = VarDecl::Register;
1884  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1885    Diag(DS.getStorageClassSpecLoc(),
1886         diag::err_invalid_storage_class_in_func_decl);
1887    D.getMutableDeclSpec().ClearStorageClassSpecs();
1888  }
1889  if (DS.isThreadSpecified()) {
1890    Diag(DS.getThreadSpecLoc(),
1891         diag::err_invalid_storage_class_in_func_decl);
1892    D.getMutableDeclSpec().ClearStorageClassSpecs();
1893  }
1894
1895  // Check that there are no default arguments inside the type of this
1896  // parameter (C++ only).
1897  if (getLangOptions().CPlusPlus)
1898    CheckExtraCXXDefaultArguments(D);
1899
1900  // In this context, we *do not* check D.getInvalidType(). If the declarator
1901  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1902  // though it will not reflect the user specified type.
1903  QualType parmDeclType = GetTypeForDeclarator(D, S);
1904
1905  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1906
1907  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1908  // Can this happen for params?  We already checked that they don't conflict
1909  // among each other.  Here they can only shadow globals, which is ok.
1910  IdentifierInfo *II = D.getIdentifier();
1911  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1912    if (S->isDeclScope(PrevDecl)) {
1913      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1914           dyn_cast<NamedDecl>(PrevDecl)->getName());
1915
1916      // Recover by removing the name
1917      II = 0;
1918      D.SetIdentifier(0, D.getIdentifierLoc());
1919    }
1920  }
1921
1922  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1923  // Doing the promotion here has a win and a loss. The win is the type for
1924  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1925  // code generator). The loss is the orginal type isn't preserved. For example:
1926  //
1927  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1928  //    int blockvardecl[5];
1929  //    sizeof(parmvardecl);  // size == 4
1930  //    sizeof(blockvardecl); // size == 20
1931  // }
1932  //
1933  // For expressions, all implicit conversions are captured using the
1934  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1935  //
1936  // FIXME: If a source translation tool needs to see the original type, then
1937  // we need to consider storing both types (in ParmVarDecl)...
1938  //
1939  if (parmDeclType->isArrayType()) {
1940    // int x[restrict 4] ->  int *restrict
1941    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1942  } else if (parmDeclType->isFunctionType())
1943    parmDeclType = Context.getPointerType(parmDeclType);
1944
1945  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1946                                         D.getIdentifierLoc(), II,
1947                                         parmDeclType, StorageClass,
1948                                         0, 0);
1949
1950  if (D.getInvalidType())
1951    New->setInvalidDecl();
1952
1953  if (II)
1954    PushOnScopeChains(New, S);
1955
1956  ProcessDeclAttributes(New, D);
1957  return New;
1958
1959}
1960
1961Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1962  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1963  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1964         "Not a function declarator!");
1965  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1966
1967  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1968  // for a K&R function.
1969  if (!FTI.hasPrototype) {
1970    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1971      if (FTI.ArgInfo[i].Param == 0) {
1972        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1973             FTI.ArgInfo[i].Ident->getName());
1974        // Implicitly declare the argument as type 'int' for lack of a better
1975        // type.
1976        DeclSpec DS;
1977        const char* PrevSpec; // unused
1978        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1979                           PrevSpec);
1980        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1981        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1982        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1983      }
1984    }
1985  } else {
1986    // FIXME: Diagnose arguments without names in C.
1987  }
1988
1989  Scope *GlobalScope = FnBodyScope->getParent();
1990
1991  return ActOnStartOfFunctionDef(FnBodyScope,
1992                                 ActOnDeclarator(GlobalScope, D, 0));
1993}
1994
1995Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1996  Decl *decl = static_cast<Decl*>(D);
1997  FunctionDecl *FD = cast<FunctionDecl>(decl);
1998
1999  // See if this is a redefinition.
2000  const FunctionDecl *Definition;
2001  if (FD->getBody(Definition)) {
2002    Diag(FD->getLocation(), diag::err_redefinition,
2003         FD->getName());
2004    Diag(Definition->getLocation(), diag::err_previous_definition);
2005  }
2006
2007  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
2008    if (isa<CXXRecordDecl>(CurContext))
2009      MD->setInlineDefinition(true);
2010
2011  PushDeclContext(FD);
2012
2013  // Check the validity of our function parameters
2014  CheckParmsForFunctionDef(FD);
2015
2016  // Introduce our parameters into the function scope
2017  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2018    ParmVarDecl *Param = FD->getParamDecl(p);
2019    // If this has an identifier, add it to the scope stack.
2020    if (Param->getIdentifier())
2021      PushOnScopeChains(Param, FnBodyScope);
2022  }
2023
2024  return FD;
2025}
2026
2027Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2028  Decl *dcl = static_cast<Decl *>(D);
2029  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2030    FD->setBody((Stmt*)Body);
2031    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2032  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2033    MD->setBody((Stmt*)Body);
2034  } else
2035    return 0;
2036  PopDeclContext();
2037  // Verify and clean out per-function state.
2038
2039  // Check goto/label use.
2040  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2041       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2042    // Verify that we have no forward references left.  If so, there was a goto
2043    // or address of a label taken, but no definition of it.  Label fwd
2044    // definitions are indicated with a null substmt.
2045    if (I->second->getSubStmt() == 0) {
2046      LabelStmt *L = I->second;
2047      // Emit error.
2048      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2049
2050      // At this point, we have gotos that use the bogus label.  Stitch it into
2051      // the function body so that they aren't leaked and that the AST is well
2052      // formed.
2053      if (Body) {
2054        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2055        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2056      } else {
2057        // The whole function wasn't parsed correctly, just delete this.
2058        delete L;
2059      }
2060    }
2061  }
2062  LabelMap.clear();
2063
2064  return D;
2065}
2066
2067/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2068/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2069ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2070                                           IdentifierInfo &II, Scope *S) {
2071  // Extension in C99.  Legal in C90, but warn about it.
2072  if (getLangOptions().C99)
2073    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
2074  else
2075    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
2076
2077  // FIXME: handle stuff like:
2078  // void foo() { extern float X(); }
2079  // void bar() { X(); }  <-- implicit decl for X in another scope.
2080
2081  // Set a Declarator for the implicit definition: int foo();
2082  const char *Dummy;
2083  DeclSpec DS;
2084  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2085  Error = Error; // Silence warning.
2086  assert(!Error && "Error setting up implicit decl!");
2087  Declarator D(DS, Declarator::BlockContext);
2088  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2089  D.SetIdentifier(&II, Loc);
2090
2091  // Insert this function into translation-unit scope.
2092
2093  DeclContext *PrevDC = CurContext;
2094  CurContext = Context.getTranslationUnitDecl();
2095
2096  FunctionDecl *FD =
2097    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2098  FD->setImplicit();
2099
2100  CurContext = PrevDC;
2101
2102  return FD;
2103}
2104
2105
2106TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2107                                    ScopedDecl *LastDeclarator) {
2108  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2109  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2110
2111  // Scope manipulation handled by caller.
2112  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2113                                           D.getIdentifierLoc(),
2114                                           D.getIdentifier(),
2115                                           T, LastDeclarator);
2116  if (D.getInvalidType())
2117    NewTD->setInvalidDecl();
2118  return NewTD;
2119}
2120
2121/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2122/// former case, Name will be non-null.  In the later case, Name will be null.
2123/// TagType indicates what kind of tag this is. TK indicates whether this is a
2124/// reference/declaration/definition of a tag.
2125Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2126                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2127                             IdentifierInfo *Name, SourceLocation NameLoc,
2128                             AttributeList *Attr) {
2129  // If this is a use of an existing tag, it must have a name.
2130  assert((Name != 0 || TK == TK_Definition) &&
2131         "Nameless record must be a definition!");
2132
2133  TagDecl::TagKind Kind;
2134  switch (TagType) {
2135  default: assert(0 && "Unknown tag type!");
2136  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2137  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2138  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2139  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2140  }
2141
2142  // Two code paths: a new one for structs/unions/classes where we create
2143  //   separate decls for forward declarations, and an old (eventually to
2144  //   be removed) code path for enums.
2145  if (Kind != TagDecl::TK_enum)
2146    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2147
2148  DeclContext *DC = CurContext;
2149  ScopedDecl *PrevDecl = 0;
2150
2151  if (Name && SS.isNotEmpty()) {
2152    // We have a nested-name tag ('struct foo::bar').
2153
2154    // Check for invalid 'foo::'.
2155    if (SS.isInvalid()) {
2156      Name = 0;
2157      goto CreateNewDecl;
2158    }
2159
2160    DC = static_cast<DeclContext*>(SS.getScopeRep());
2161    // Look-up name inside 'foo::'.
2162    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2163
2164    // A tag 'foo::bar' must already exist.
2165    if (PrevDecl == 0) {
2166      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2167           SS.getRange());
2168      Name = 0;
2169      goto CreateNewDecl;
2170    }
2171  } else {
2172    // If this is a named struct, check to see if there was a previous forward
2173    // declaration or definition.
2174    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2175    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2176  }
2177
2178  if (PrevDecl) {
2179    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2180            "unexpected Decl type");
2181    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2182      // If this is a use of a previous tag, or if the tag is already declared
2183      // in the same scope (so that the definition/declaration completes or
2184      // rementions the tag), reuse the decl.
2185      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2186        // Make sure that this wasn't declared as an enum and now used as a
2187        // struct or something similar.
2188        if (PrevTagDecl->getTagKind() != Kind) {
2189          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2190          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2191          // Recover by making this an anonymous redefinition.
2192          Name = 0;
2193          PrevDecl = 0;
2194        } else {
2195          // If this is a use or a forward declaration, we're good.
2196          if (TK != TK_Definition)
2197            return PrevDecl;
2198
2199          // Diagnose attempts to redefine a tag.
2200          if (PrevTagDecl->isDefinition()) {
2201            Diag(NameLoc, diag::err_redefinition, Name->getName());
2202            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2203            // If this is a redefinition, recover by making this struct be
2204            // anonymous, which will make any later references get the previous
2205            // definition.
2206            Name = 0;
2207          } else {
2208            // Okay, this is definition of a previously declared or referenced
2209            // tag. Move the location of the decl to be the definition site.
2210            PrevDecl->setLocation(NameLoc);
2211            return PrevDecl;
2212          }
2213        }
2214      }
2215      // If we get here, this is a definition of a new struct type in a nested
2216      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2217      // type.
2218    } else {
2219      // PrevDecl is a namespace.
2220      if (isDeclInScope(PrevDecl, DC, S)) {
2221        // The tag name clashes with a namespace name, issue an error and
2222        // recover by making this tag be anonymous.
2223        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2224        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2225        Name = 0;
2226      }
2227    }
2228  }
2229
2230  CreateNewDecl:
2231
2232  // If there is an identifier, use the location of the identifier as the
2233  // location of the decl, otherwise use the location of the struct/union
2234  // keyword.
2235  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2236
2237  // Otherwise, if this is the first time we've seen this tag, create the decl.
2238  TagDecl *New;
2239  if (Kind == TagDecl::TK_enum) {
2240    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2241    // enum X { A, B, C } D;    D should chain to X.
2242    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2243    // If this is an undefined enum, warn.
2244    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2245  } else {
2246    // struct/union/class
2247
2248    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2249    // struct X { int A; } D;    D should chain to X.
2250    if (getLangOptions().CPlusPlus)
2251      // FIXME: Look for a way to use RecordDecl for simple structs.
2252      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2253    else
2254      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2255  }
2256
2257  // If this has an identifier, add it to the scope stack.
2258  if (Name) {
2259    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2260    // we find one that is.
2261    while ((S->getFlags() & Scope::DeclScope) == 0)
2262      S = S->getParent();
2263
2264    // Add it to the decl chain.
2265    PushOnScopeChains(New, S);
2266  }
2267
2268  if (Attr)
2269    ProcessDeclAttributeList(New, Attr);
2270  return New;
2271}
2272
2273/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2274///  the logic for enums, we create separate decls for forward declarations.
2275///  This is called by ActOnTag, but eventually will replace its logic.
2276Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2277                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2278                             IdentifierInfo *Name, SourceLocation NameLoc,
2279                             AttributeList *Attr) {
2280  DeclContext *DC = CurContext;
2281  ScopedDecl *PrevDecl = 0;
2282
2283  if (Name && SS.isNotEmpty()) {
2284    // We have a nested-name tag ('struct foo::bar').
2285
2286    // Check for invalid 'foo::'.
2287    if (SS.isInvalid()) {
2288      Name = 0;
2289      goto CreateNewDecl;
2290    }
2291
2292    DC = static_cast<DeclContext*>(SS.getScopeRep());
2293    // Look-up name inside 'foo::'.
2294    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2295
2296    // A tag 'foo::bar' must already exist.
2297    if (PrevDecl == 0) {
2298      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2299           SS.getRange());
2300      Name = 0;
2301      goto CreateNewDecl;
2302    }
2303  } else {
2304    // If this is a named struct, check to see if there was a previous forward
2305    // declaration or definition.
2306    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2307    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2308  }
2309
2310  if (PrevDecl) {
2311    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2312           "unexpected Decl type");
2313
2314    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2315      // If this is a use of a previous tag, or if the tag is already declared
2316      // in the same scope (so that the definition/declaration completes or
2317      // rementions the tag), reuse the decl.
2318      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2319        // Make sure that this wasn't declared as an enum and now used as a
2320        // struct or something similar.
2321        if (PrevTagDecl->getTagKind() != Kind) {
2322          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2323          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2324          // Recover by making this an anonymous redefinition.
2325          Name = 0;
2326          PrevDecl = 0;
2327        } else {
2328          // If this is a use, return the original decl.
2329
2330          // FIXME: In the future, return a variant or some other clue
2331          //  for the consumer of this Decl to know it doesn't own it.
2332          //  For our current ASTs this shouldn't be a problem, but will
2333          //  need to be changed with DeclGroups.
2334          if (TK == TK_Reference)
2335            return PrevDecl;
2336
2337          // The new decl is a definition?
2338          if (TK == TK_Definition) {
2339            // Diagnose attempts to redefine a tag.
2340            if (RecordDecl* DefRecord =
2341                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2342              Diag(NameLoc, diag::err_redefinition, Name->getName());
2343              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2344              // If this is a redefinition, recover by making this struct be
2345              // anonymous, which will make any later references get the previous
2346              // definition.
2347              Name = 0;
2348              PrevDecl = 0;
2349            }
2350            // Okay, this is definition of a previously declared or referenced
2351            // tag.  We're going to create a new Decl.
2352          }
2353        }
2354        // If we get here we have (another) forward declaration.  Just create
2355        // a new decl.
2356      }
2357      else {
2358        // If we get here, this is a definition of a new struct type in a nested
2359        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2360        // new decl/type.  We set PrevDecl to NULL so that the Records
2361        // have distinct types.
2362        PrevDecl = 0;
2363      }
2364    } else {
2365      // PrevDecl is a namespace.
2366      if (isDeclInScope(PrevDecl, DC, S)) {
2367        // The tag name clashes with a namespace name, issue an error and
2368        // recover by making this tag be anonymous.
2369        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2370        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2371        Name = 0;
2372      }
2373    }
2374  }
2375
2376  CreateNewDecl:
2377
2378  // If there is an identifier, use the location of the identifier as the
2379  // location of the decl, otherwise use the location of the struct/union
2380  // keyword.
2381  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2382
2383  // Otherwise, if this is the first time we've seen this tag, create the decl.
2384  TagDecl *New;
2385
2386  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2387  // struct X { int A; } D;    D should chain to X.
2388  if (getLangOptions().CPlusPlus)
2389    // FIXME: Look for a way to use RecordDecl for simple structs.
2390    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2391                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2392  else
2393    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2394                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2395
2396  // If this has an identifier, add it to the scope stack.
2397  if ((TK == TK_Definition || !PrevDecl) && Name) {
2398    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2399    // we find one that is.
2400    while ((S->getFlags() & Scope::DeclScope) == 0)
2401      S = S->getParent();
2402
2403    // Add it to the decl chain.
2404    PushOnScopeChains(New, S);
2405  }
2406
2407  // Handle #pragma pack: if the #pragma pack stack has non-default
2408  // alignment, make up a packed attribute for this decl. These
2409  // attributes are checked when the ASTContext lays out the
2410  // structure.
2411  //
2412  // It is important for implementing the correct semantics that this
2413  // happen here (in act on tag decl). The #pragma pack stack is
2414  // maintained as a result of parser callbacks which can occur at
2415  // many points during the parsing of a struct declaration (because
2416  // the #pragma tokens are effectively skipped over during the
2417  // parsing of the struct).
2418  if (unsigned Alignment = PackContext.getAlignment())
2419    New->addAttr(new PackedAttr(Alignment * 8));
2420
2421  if (Attr)
2422    ProcessDeclAttributeList(New, Attr);
2423
2424  return New;
2425}
2426
2427
2428/// Collect the instance variables declared in an Objective-C object.  Used in
2429/// the creation of structures from objects using the @defs directive.
2430static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2431                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2432  if (Class->getSuperClass())
2433    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2434
2435  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2436  for (ObjCInterfaceDecl::ivar_iterator
2437        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2438
2439    ObjCIvarDecl* ID = *I;
2440    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2441                                                ID->getIdentifier(),
2442                                                ID->getType(),
2443                                                ID->getBitWidth()));
2444  }
2445}
2446
2447/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2448/// instance variables of ClassName into Decls.
2449void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2450                     IdentifierInfo *ClassName,
2451                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2452  // Check that ClassName is a valid class
2453  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2454  if (!Class) {
2455    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2456    return;
2457  }
2458  // Collect the instance variables
2459  CollectIvars(Class, Context, Decls);
2460}
2461
2462QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2463  // This method tries to turn a variable array into a constant
2464  // array even when the size isn't an ICE.  This is necessary
2465  // for compatibility with code that depends on gcc's buggy
2466  // constant expression folding, like struct {char x[(int)(char*)2];}
2467  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2468    APValue Result;
2469    if (VLATy->getSizeExpr() &&
2470        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2471      llvm::APSInt &Res = Result.getInt();
2472      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2473        return Context.getConstantArrayType(VLATy->getElementType(),
2474                                            Res, ArrayType::Normal, 0);
2475    }
2476  }
2477  return QualType();
2478}
2479
2480/// ActOnField - Each field of a struct/union/class is passed into this in order
2481/// to create a FieldDecl object for it.
2482Sema::DeclTy *Sema::ActOnField(Scope *S,
2483                               SourceLocation DeclStart,
2484                               Declarator &D, ExprTy *BitfieldWidth) {
2485  IdentifierInfo *II = D.getIdentifier();
2486  Expr *BitWidth = (Expr*)BitfieldWidth;
2487  SourceLocation Loc = DeclStart;
2488  if (II) Loc = D.getIdentifierLoc();
2489
2490  // FIXME: Unnamed fields can be handled in various different ways, for
2491  // example, unnamed unions inject all members into the struct namespace!
2492
2493  if (BitWidth) {
2494    // TODO: Validate.
2495    //printf("WARNING: BITFIELDS IGNORED!\n");
2496
2497    // 6.7.2.1p3
2498    // 6.7.2.1p4
2499
2500  } else {
2501    // Not a bitfield.
2502
2503    // validate II.
2504
2505  }
2506
2507  QualType T = GetTypeForDeclarator(D, S);
2508  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2509  bool InvalidDecl = false;
2510
2511  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2512  // than a variably modified type.
2513  if (T->isVariablyModifiedType()) {
2514    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2515    if (!FixedTy.isNull()) {
2516      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2517      T = FixedTy;
2518    } else {
2519      // FIXME: This diagnostic needs work
2520      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2521      InvalidDecl = true;
2522    }
2523  }
2524  // FIXME: Chain fielddecls together.
2525  FieldDecl *NewFD;
2526
2527  if (getLangOptions().CPlusPlus) {
2528    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2529    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2530                                 Loc, II, T, BitWidth);
2531    if (II)
2532      PushOnScopeChains(NewFD, S);
2533  }
2534  else
2535    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2536
2537  ProcessDeclAttributes(NewFD, D);
2538
2539  if (D.getInvalidType() || InvalidDecl)
2540    NewFD->setInvalidDecl();
2541  return NewFD;
2542}
2543
2544/// TranslateIvarVisibility - Translate visibility from a token ID to an
2545///  AST enum value.
2546static ObjCIvarDecl::AccessControl
2547TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2548  switch (ivarVisibility) {
2549  default: assert(0 && "Unknown visitibility kind");
2550  case tok::objc_private: return ObjCIvarDecl::Private;
2551  case tok::objc_public: return ObjCIvarDecl::Public;
2552  case tok::objc_protected: return ObjCIvarDecl::Protected;
2553  case tok::objc_package: return ObjCIvarDecl::Package;
2554  }
2555}
2556
2557/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2558/// in order to create an IvarDecl object for it.
2559Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2560                              SourceLocation DeclStart,
2561                              Declarator &D, ExprTy *BitfieldWidth,
2562                              tok::ObjCKeywordKind Visibility) {
2563  IdentifierInfo *II = D.getIdentifier();
2564  Expr *BitWidth = (Expr*)BitfieldWidth;
2565  SourceLocation Loc = DeclStart;
2566  if (II) Loc = D.getIdentifierLoc();
2567
2568  // FIXME: Unnamed fields can be handled in various different ways, for
2569  // example, unnamed unions inject all members into the struct namespace!
2570
2571
2572  if (BitWidth) {
2573    // TODO: Validate.
2574    //printf("WARNING: BITFIELDS IGNORED!\n");
2575
2576    // 6.7.2.1p3
2577    // 6.7.2.1p4
2578
2579  } else {
2580    // Not a bitfield.
2581
2582    // validate II.
2583
2584  }
2585
2586  QualType T = GetTypeForDeclarator(D, S);
2587  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2588  bool InvalidDecl = false;
2589
2590  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2591  // than a variably modified type.
2592  if (T->isVariablyModifiedType()) {
2593    // FIXME: This diagnostic needs work
2594    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2595    InvalidDecl = true;
2596  }
2597
2598  // Get the visibility (access control) for this ivar.
2599  ObjCIvarDecl::AccessControl ac =
2600    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2601                                        : ObjCIvarDecl::None;
2602
2603  // Construct the decl.
2604  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2605                                             (Expr *)BitfieldWidth);
2606
2607  // Process attributes attached to the ivar.
2608  ProcessDeclAttributes(NewID, D);
2609
2610  if (D.getInvalidType() || InvalidDecl)
2611    NewID->setInvalidDecl();
2612
2613  return NewID;
2614}
2615
2616void Sema::ActOnFields(Scope* S,
2617                       SourceLocation RecLoc, DeclTy *RecDecl,
2618                       DeclTy **Fields, unsigned NumFields,
2619                       SourceLocation LBrac, SourceLocation RBrac,
2620                       AttributeList *Attr) {
2621  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2622  assert(EnclosingDecl && "missing record or interface decl");
2623  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2624
2625  if (Record)
2626    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2627      // Diagnose code like:
2628      //     struct S { struct S {} X; };
2629      // We discover this when we complete the outer S.  Reject and ignore the
2630      // outer S.
2631      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2632           DefRecord->getKindName());
2633      Diag(RecLoc, diag::err_previous_definition);
2634      Record->setInvalidDecl();
2635      return;
2636    }
2637
2638  // Verify that all the fields are okay.
2639  unsigned NumNamedMembers = 0;
2640  llvm::SmallVector<FieldDecl*, 32> RecFields;
2641  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2642
2643  for (unsigned i = 0; i != NumFields; ++i) {
2644
2645    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2646    assert(FD && "missing field decl");
2647
2648    // Remember all fields.
2649    RecFields.push_back(FD);
2650
2651    // Get the type for the field.
2652    Type *FDTy = FD->getType().getTypePtr();
2653
2654    // C99 6.7.2.1p2 - A field may not be a function type.
2655    if (FDTy->isFunctionType()) {
2656      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2657           FD->getName());
2658      FD->setInvalidDecl();
2659      EnclosingDecl->setInvalidDecl();
2660      continue;
2661    }
2662    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2663    if (FDTy->isIncompleteType()) {
2664      if (!Record) {  // Incomplete ivar type is always an error.
2665        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2666        FD->setInvalidDecl();
2667        EnclosingDecl->setInvalidDecl();
2668        continue;
2669      }
2670      if (i != NumFields-1 ||                   // ... that the last member ...
2671          !Record->isStruct() ||  // ... of a structure ...
2672          !FDTy->isArrayType()) {         //... may have incomplete array type.
2673        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2674        FD->setInvalidDecl();
2675        EnclosingDecl->setInvalidDecl();
2676        continue;
2677      }
2678      if (NumNamedMembers < 1) {  //... must have more than named member ...
2679        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2680             FD->getName());
2681        FD->setInvalidDecl();
2682        EnclosingDecl->setInvalidDecl();
2683        continue;
2684      }
2685      // Okay, we have a legal flexible array member at the end of the struct.
2686      if (Record)
2687        Record->setHasFlexibleArrayMember(true);
2688    }
2689    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2690    /// field of another structure or the element of an array.
2691    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2692      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2693        // If this is a member of a union, then entire union becomes "flexible".
2694        if (Record && Record->isUnion()) {
2695          Record->setHasFlexibleArrayMember(true);
2696        } else {
2697          // If this is a struct/class and this is not the last element, reject
2698          // it.  Note that GCC supports variable sized arrays in the middle of
2699          // structures.
2700          if (i != NumFields-1) {
2701            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2702                 FD->getName());
2703            FD->setInvalidDecl();
2704            EnclosingDecl->setInvalidDecl();
2705            continue;
2706          }
2707          // We support flexible arrays at the end of structs in other structs
2708          // as an extension.
2709          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2710               FD->getName());
2711          if (Record)
2712            Record->setHasFlexibleArrayMember(true);
2713        }
2714      }
2715    }
2716    /// A field cannot be an Objective-c object
2717    if (FDTy->isObjCInterfaceType()) {
2718      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2719           FD->getName());
2720      FD->setInvalidDecl();
2721      EnclosingDecl->setInvalidDecl();
2722      continue;
2723    }
2724    // Keep track of the number of named members.
2725    if (IdentifierInfo *II = FD->getIdentifier()) {
2726      // Detect duplicate member names.
2727      if (!FieldIDs.insert(II)) {
2728        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2729        // Find the previous decl.
2730        SourceLocation PrevLoc;
2731        for (unsigned i = 0; ; ++i) {
2732          assert(i != RecFields.size() && "Didn't find previous def!");
2733          if (RecFields[i]->getIdentifier() == II) {
2734            PrevLoc = RecFields[i]->getLocation();
2735            break;
2736          }
2737        }
2738        Diag(PrevLoc, diag::err_previous_definition);
2739        FD->setInvalidDecl();
2740        EnclosingDecl->setInvalidDecl();
2741        continue;
2742      }
2743      ++NumNamedMembers;
2744    }
2745  }
2746
2747  // Okay, we successfully defined 'Record'.
2748  if (Record) {
2749    Record->defineBody(Context, &RecFields[0], RecFields.size());
2750    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2751    // Sema::ActOnFinishCXXClassDef.
2752    if (!isa<CXXRecordDecl>(Record))
2753      Consumer.HandleTagDeclDefinition(Record);
2754  } else {
2755    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2756    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2757      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2758    else if (ObjCImplementationDecl *IMPDecl =
2759               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2760      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2761      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2762      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2763    }
2764  }
2765
2766  if (Attr)
2767    ProcessDeclAttributeList(Record, Attr);
2768}
2769
2770Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2771                                      DeclTy *lastEnumConst,
2772                                      SourceLocation IdLoc, IdentifierInfo *Id,
2773                                      SourceLocation EqualLoc, ExprTy *val) {
2774  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2775  EnumConstantDecl *LastEnumConst =
2776    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2777  Expr *Val = static_cast<Expr*>(val);
2778
2779  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2780  // we find one that is.
2781  while ((S->getFlags() & Scope::DeclScope) == 0)
2782    S = S->getParent();
2783
2784  // Verify that there isn't already something declared with this name in this
2785  // scope.
2786  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2787    // When in C++, we may get a TagDecl with the same name; in this case the
2788    // enum constant will 'hide' the tag.
2789    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2790           "Received TagDecl when not in C++!");
2791    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2792      if (isa<EnumConstantDecl>(PrevDecl))
2793        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2794      else
2795        Diag(IdLoc, diag::err_redefinition, Id->getName());
2796      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2797      delete Val;
2798      return 0;
2799    }
2800  }
2801
2802  llvm::APSInt EnumVal(32);
2803  QualType EltTy;
2804  if (Val) {
2805    // Make sure to promote the operand type to int.
2806    UsualUnaryConversions(Val);
2807
2808    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2809    SourceLocation ExpLoc;
2810    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2811      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2812           Id->getName());
2813      delete Val;
2814      Val = 0;  // Just forget about it.
2815    } else {
2816      EltTy = Val->getType();
2817    }
2818  }
2819
2820  if (!Val) {
2821    if (LastEnumConst) {
2822      // Assign the last value + 1.
2823      EnumVal = LastEnumConst->getInitVal();
2824      ++EnumVal;
2825
2826      // Check for overflow on increment.
2827      if (EnumVal < LastEnumConst->getInitVal())
2828        Diag(IdLoc, diag::warn_enum_value_overflow);
2829
2830      EltTy = LastEnumConst->getType();
2831    } else {
2832      // First value, set to zero.
2833      EltTy = Context.IntTy;
2834      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2835    }
2836  }
2837
2838  EnumConstantDecl *New =
2839    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2840                             Val, EnumVal,
2841                             LastEnumConst);
2842
2843  // Register this decl in the current scope stack.
2844  PushOnScopeChains(New, S);
2845  return New;
2846}
2847
2848// FIXME: For consistency with ActOnFields(), we should have the parser
2849// pass in the source location for the left/right braces.
2850void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2851                         DeclTy **Elements, unsigned NumElements) {
2852  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2853
2854  if (Enum && Enum->isDefinition()) {
2855    // Diagnose code like:
2856    //   enum e0 {
2857    //     E0 = sizeof(enum e0 { E1 })
2858    //   };
2859    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2860         Enum->getName());
2861    Diag(EnumLoc, diag::err_previous_definition);
2862    Enum->setInvalidDecl();
2863    return;
2864  }
2865  // TODO: If the result value doesn't fit in an int, it must be a long or long
2866  // long value.  ISO C does not support this, but GCC does as an extension,
2867  // emit a warning.
2868  unsigned IntWidth = Context.Target.getIntWidth();
2869
2870  // Verify that all the values are okay, compute the size of the values, and
2871  // reverse the list.
2872  unsigned NumNegativeBits = 0;
2873  unsigned NumPositiveBits = 0;
2874
2875  // Keep track of whether all elements have type int.
2876  bool AllElementsInt = true;
2877
2878  EnumConstantDecl *EltList = 0;
2879  for (unsigned i = 0; i != NumElements; ++i) {
2880    EnumConstantDecl *ECD =
2881      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2882    if (!ECD) continue;  // Already issued a diagnostic.
2883
2884    // If the enum value doesn't fit in an int, emit an extension warning.
2885    const llvm::APSInt &InitVal = ECD->getInitVal();
2886    assert(InitVal.getBitWidth() >= IntWidth &&
2887           "Should have promoted value to int");
2888    if (InitVal.getBitWidth() > IntWidth) {
2889      llvm::APSInt V(InitVal);
2890      V.trunc(IntWidth);
2891      V.extend(InitVal.getBitWidth());
2892      if (V != InitVal)
2893        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2894             InitVal.toString(10));
2895    }
2896
2897    // Keep track of the size of positive and negative values.
2898    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2899      NumPositiveBits = std::max(NumPositiveBits,
2900                                 (unsigned)InitVal.getActiveBits());
2901    else
2902      NumNegativeBits = std::max(NumNegativeBits,
2903                                 (unsigned)InitVal.getMinSignedBits());
2904
2905    // Keep track of whether every enum element has type int (very commmon).
2906    if (AllElementsInt)
2907      AllElementsInt = ECD->getType() == Context.IntTy;
2908
2909    ECD->setNextDeclarator(EltList);
2910    EltList = ECD;
2911  }
2912
2913  // Figure out the type that should be used for this enum.
2914  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2915  QualType BestType;
2916  unsigned BestWidth;
2917
2918  if (NumNegativeBits) {
2919    // If there is a negative value, figure out the smallest integer type (of
2920    // int/long/longlong) that fits.
2921    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2922      BestType = Context.IntTy;
2923      BestWidth = IntWidth;
2924    } else {
2925      BestWidth = Context.Target.getLongWidth();
2926
2927      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2928        BestType = Context.LongTy;
2929      else {
2930        BestWidth = Context.Target.getLongLongWidth();
2931
2932        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2933          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2934        BestType = Context.LongLongTy;
2935      }
2936    }
2937  } else {
2938    // If there is no negative value, figure out which of uint, ulong, ulonglong
2939    // fits.
2940    if (NumPositiveBits <= IntWidth) {
2941      BestType = Context.UnsignedIntTy;
2942      BestWidth = IntWidth;
2943    } else if (NumPositiveBits <=
2944               (BestWidth = Context.Target.getLongWidth())) {
2945      BestType = Context.UnsignedLongTy;
2946    } else {
2947      BestWidth = Context.Target.getLongLongWidth();
2948      assert(NumPositiveBits <= BestWidth &&
2949             "How could an initializer get larger than ULL?");
2950      BestType = Context.UnsignedLongLongTy;
2951    }
2952  }
2953
2954  // Loop over all of the enumerator constants, changing their types to match
2955  // the type of the enum if needed.
2956  for (unsigned i = 0; i != NumElements; ++i) {
2957    EnumConstantDecl *ECD =
2958      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2959    if (!ECD) continue;  // Already issued a diagnostic.
2960
2961    // Standard C says the enumerators have int type, but we allow, as an
2962    // extension, the enumerators to be larger than int size.  If each
2963    // enumerator value fits in an int, type it as an int, otherwise type it the
2964    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2965    // that X has type 'int', not 'unsigned'.
2966    if (ECD->getType() == Context.IntTy) {
2967      // Make sure the init value is signed.
2968      llvm::APSInt IV = ECD->getInitVal();
2969      IV.setIsSigned(true);
2970      ECD->setInitVal(IV);
2971      continue;  // Already int type.
2972    }
2973
2974    // Determine whether the value fits into an int.
2975    llvm::APSInt InitVal = ECD->getInitVal();
2976    bool FitsInInt;
2977    if (InitVal.isUnsigned() || !InitVal.isNegative())
2978      FitsInInt = InitVal.getActiveBits() < IntWidth;
2979    else
2980      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2981
2982    // If it fits into an integer type, force it.  Otherwise force it to match
2983    // the enum decl type.
2984    QualType NewTy;
2985    unsigned NewWidth;
2986    bool NewSign;
2987    if (FitsInInt) {
2988      NewTy = Context.IntTy;
2989      NewWidth = IntWidth;
2990      NewSign = true;
2991    } else if (ECD->getType() == BestType) {
2992      // Already the right type!
2993      continue;
2994    } else {
2995      NewTy = BestType;
2996      NewWidth = BestWidth;
2997      NewSign = BestType->isSignedIntegerType();
2998    }
2999
3000    // Adjust the APSInt value.
3001    InitVal.extOrTrunc(NewWidth);
3002    InitVal.setIsSigned(NewSign);
3003    ECD->setInitVal(InitVal);
3004
3005    // Adjust the Expr initializer and type.
3006    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
3007    ECD->setType(NewTy);
3008  }
3009
3010  Enum->defineElements(EltList, BestType);
3011  Consumer.HandleTagDeclDefinition(Enum);
3012}
3013
3014Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3015                                          ExprTy *expr) {
3016  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3017
3018  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3019}
3020
3021Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3022                                     SourceLocation LBrace,
3023                                     SourceLocation RBrace,
3024                                     const char *Lang,
3025                                     unsigned StrSize,
3026                                     DeclTy *D) {
3027  LinkageSpecDecl::LanguageIDs Language;
3028  Decl *dcl = static_cast<Decl *>(D);
3029  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3030    Language = LinkageSpecDecl::lang_c;
3031  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3032    Language = LinkageSpecDecl::lang_cxx;
3033  else {
3034    Diag(Loc, diag::err_bad_language);
3035    return 0;
3036  }
3037
3038  // FIXME: Add all the various semantics of linkage specifications
3039  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3040}
3041
3042void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3043                           ExprTy *alignment, SourceLocation PragmaLoc,
3044                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3045  Expr *Alignment = static_cast<Expr *>(alignment);
3046
3047  // If specified then alignment must be a "small" power of two.
3048  unsigned AlignmentVal = 0;
3049  if (Alignment) {
3050    llvm::APSInt Val;
3051    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3052        !Val.isPowerOf2() ||
3053        Val.getZExtValue() > 16) {
3054      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3055      delete Alignment;
3056      return; // Ignore
3057    }
3058
3059    AlignmentVal = (unsigned) Val.getZExtValue();
3060  }
3061
3062  switch (Kind) {
3063  case Action::PPK_Default: // pack([n])
3064    PackContext.setAlignment(AlignmentVal);
3065    break;
3066
3067  case Action::PPK_Show: // pack(show)
3068    // Show the current alignment, making sure to show the right value
3069    // for the default.
3070    AlignmentVal = PackContext.getAlignment();
3071    // FIXME: This should come from the target.
3072    if (AlignmentVal == 0)
3073      AlignmentVal = 8;
3074    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
3075    break;
3076
3077  case Action::PPK_Push: // pack(push [, id] [, [n])
3078    PackContext.push(Name);
3079    // Set the new alignment if specified.
3080    if (Alignment)
3081      PackContext.setAlignment(AlignmentVal);
3082    break;
3083
3084  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3085    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3086    // "#pragma pack(pop, identifier, n) is undefined"
3087    if (Alignment && Name)
3088      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3089
3090    // Do the pop.
3091    if (!PackContext.pop(Name)) {
3092      // If a name was specified then failure indicates the name
3093      // wasn't found. Otherwise failure indicates the stack was
3094      // empty.
3095      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3096           Name ? "no record matching name" : "stack empty");
3097
3098      // FIXME: Warn about popping named records as MSVC does.
3099    } else {
3100      // Pop succeeded, set the new alignment if specified.
3101      if (Alignment)
3102        PackContext.setAlignment(AlignmentVal);
3103    }
3104    break;
3105
3106  default:
3107    assert(0 && "Invalid #pragma pack kind.");
3108  }
3109}
3110
3111bool PragmaPackStack::pop(IdentifierInfo *Name) {
3112  if (Stack.empty())
3113    return false;
3114
3115  // If name is empty just pop top.
3116  if (!Name) {
3117    Alignment = Stack.back().first;
3118    Stack.pop_back();
3119    return true;
3120  }
3121
3122  // Otherwise, find the named record.
3123  for (unsigned i = Stack.size(); i != 0; ) {
3124    --i;
3125    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
3126      // Found it, pop up to and including this record.
3127      Alignment = Stack[i].first;
3128      Stack.erase(Stack.begin() + i, Stack.end());
3129      return true;
3130    }
3131  }
3132
3133  return false;
3134}
3135