SemaDecl.cpp revision 16e46dd0c284296cea819dfbf67942ecef02894d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58namespace {
59
60class TypeNameValidatorCCC : public CorrectionCandidateCallback {
61 public:
62  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
63    WantExpressionKeywords = false;
64    WantCXXNamedCasts = false;
65    WantRemainingKeywords = false;
66  }
67
68  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
69    if (NamedDecl *ND = candidate.getCorrectionDecl())
70      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
71          (AllowInvalidDecl || !ND->isInvalidDecl());
72    else
73      return candidate.isKeyword();
74  }
75
76 private:
77  bool AllowInvalidDecl;
78};
79
80}
81
82/// \brief If the identifier refers to a type name within this scope,
83/// return the declaration of that type.
84///
85/// This routine performs ordinary name lookup of the identifier II
86/// within the given scope, with optional C++ scope specifier SS, to
87/// determine whether the name refers to a type. If so, returns an
88/// opaque pointer (actually a QualType) corresponding to that
89/// type. Otherwise, returns NULL.
90///
91/// If name lookup results in an ambiguity, this routine will complain
92/// and then return NULL.
93ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
94                             Scope *S, CXXScopeSpec *SS,
95                             bool isClassName, bool HasTrailingDot,
96                             ParsedType ObjectTypePtr,
97                             bool IsCtorOrDtorName,
98                             bool WantNontrivialTypeSourceInfo,
99                             IdentifierInfo **CorrectedII) {
100  // Determine where we will perform name lookup.
101  DeclContext *LookupCtx = 0;
102  if (ObjectTypePtr) {
103    QualType ObjectType = ObjectTypePtr.get();
104    if (ObjectType->isRecordType())
105      LookupCtx = computeDeclContext(ObjectType);
106  } else if (SS && SS->isNotEmpty()) {
107    LookupCtx = computeDeclContext(*SS, false);
108
109    if (!LookupCtx) {
110      if (isDependentScopeSpecifier(*SS)) {
111        // C++ [temp.res]p3:
112        //   A qualified-id that refers to a type and in which the
113        //   nested-name-specifier depends on a template-parameter (14.6.2)
114        //   shall be prefixed by the keyword typename to indicate that the
115        //   qualified-id denotes a type, forming an
116        //   elaborated-type-specifier (7.1.5.3).
117        //
118        // We therefore do not perform any name lookup if the result would
119        // refer to a member of an unknown specialization.
120        if (!isClassName)
121          return ParsedType();
122
123        // We know from the grammar that this name refers to a type,
124        // so build a dependent node to describe the type.
125        if (WantNontrivialTypeSourceInfo)
126          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
127
128        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
129        QualType T =
130          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
131                            II, NameLoc);
132
133          return ParsedType::make(T);
134      }
135
136      return ParsedType();
137    }
138
139    if (!LookupCtx->isDependentContext() &&
140        RequireCompleteDeclContext(*SS, LookupCtx))
141      return ParsedType();
142  }
143
144  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
145  // lookup for class-names.
146  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
147                                      LookupOrdinaryName;
148  LookupResult Result(*this, &II, NameLoc, Kind);
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Result, LookupCtx);
155
156    if (ObjectTypePtr && Result.empty()) {
157      // C++ [basic.lookup.classref]p3:
158      //   If the unqualified-id is ~type-name, the type-name is looked up
159      //   in the context of the entire postfix-expression. If the type T of
160      //   the object expression is of a class type C, the type-name is also
161      //   looked up in the scope of class C. At least one of the lookups shall
162      //   find a name that refers to (possibly cv-qualified) T.
163      LookupName(Result, S);
164    }
165  } else {
166    // Perform unqualified name lookup.
167    LookupName(Result, S);
168  }
169
170  NamedDecl *IIDecl = 0;
171  switch (Result.getResultKind()) {
172  case LookupResult::NotFound:
173  case LookupResult::NotFoundInCurrentInstantiation:
174    if (CorrectedII) {
175      TypeNameValidatorCCC Validator(true);
176      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
177                                              Kind, S, SS, Validator);
178      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
179      TemplateTy Template;
180      bool MemberOfUnknownSpecialization;
181      UnqualifiedId TemplateName;
182      TemplateName.setIdentifier(NewII, NameLoc);
183      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
184      CXXScopeSpec NewSS, *NewSSPtr = SS;
185      if (SS && NNS) {
186        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
187        NewSSPtr = &NewSS;
188      }
189      if (Correction && (NNS || NewII != &II) &&
190          // Ignore a correction to a template type as the to-be-corrected
191          // identifier is not a template (typo correction for template names
192          // is handled elsewhere).
193          !(getLangOptions().CPlusPlus && NewSSPtr &&
194            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
195                           false, Template, MemberOfUnknownSpecialization))) {
196        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
197                                    isClassName, HasTrailingDot, ObjectTypePtr,
198                                    IsCtorOrDtorName,
199                                    WantNontrivialTypeSourceInfo);
200        if (Ty) {
201          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
202          std::string CorrectedQuotedStr(
203              Correction.getQuoted(getLangOptions()));
204          Diag(NameLoc, diag::err_unknown_typename_suggest)
205              << Result.getLookupName() << CorrectedQuotedStr
206              << FixItHint::CreateReplacement(SourceRange(NameLoc),
207                                              CorrectedStr);
208          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
209            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
210              << CorrectedQuotedStr;
211
212          if (SS && NNS)
213            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
214          *CorrectedII = NewII;
215          return Ty;
216        }
217      }
218    }
219    // If typo correction failed or was not performed, fall through
220  case LookupResult::FoundOverloaded:
221  case LookupResult::FoundUnresolvedValue:
222    Result.suppressDiagnostics();
223    return ParsedType();
224
225  case LookupResult::Ambiguous:
226    // Recover from type-hiding ambiguities by hiding the type.  We'll
227    // do the lookup again when looking for an object, and we can
228    // diagnose the error then.  If we don't do this, then the error
229    // about hiding the type will be immediately followed by an error
230    // that only makes sense if the identifier was treated like a type.
231    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
232      Result.suppressDiagnostics();
233      return ParsedType();
234    }
235
236    // Look to see if we have a type anywhere in the list of results.
237    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
238         Res != ResEnd; ++Res) {
239      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
240        if (!IIDecl ||
241            (*Res)->getLocation().getRawEncoding() <
242              IIDecl->getLocation().getRawEncoding())
243          IIDecl = *Res;
244      }
245    }
246
247    if (!IIDecl) {
248      // None of the entities we found is a type, so there is no way
249      // to even assume that the result is a type. In this case, don't
250      // complain about the ambiguity. The parser will either try to
251      // perform this lookup again (e.g., as an object name), which
252      // will produce the ambiguity, or will complain that it expected
253      // a type name.
254      Result.suppressDiagnostics();
255      return ParsedType();
256    }
257
258    // We found a type within the ambiguous lookup; diagnose the
259    // ambiguity and then return that type. This might be the right
260    // answer, or it might not be, but it suppresses any attempt to
261    // perform the name lookup again.
262    break;
263
264  case LookupResult::Found:
265    IIDecl = Result.getFoundDecl();
266    break;
267  }
268
269  assert(IIDecl && "Didn't find decl");
270
271  QualType T;
272  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
273    DiagnoseUseOfDecl(IIDecl, NameLoc);
274
275    if (T.isNull())
276      T = Context.getTypeDeclType(TD);
277
278    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
279    // constructor or destructor name (in such a case, the scope specifier
280    // will be attached to the enclosing Expr or Decl node).
281    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
282      if (WantNontrivialTypeSourceInfo) {
283        // Construct a type with type-source information.
284        TypeLocBuilder Builder;
285        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
286
287        T = getElaboratedType(ETK_None, *SS, T);
288        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
289        ElabTL.setKeywordLoc(SourceLocation());
290        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
291        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
292      } else {
293        T = getElaboratedType(ETK_None, *SS, T);
294      }
295    }
296  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
297    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
298    if (!HasTrailingDot)
299      T = Context.getObjCInterfaceType(IDecl);
300  }
301
302  if (T.isNull()) {
303    // If it's not plausibly a type, suppress diagnostics.
304    Result.suppressDiagnostics();
305    return ParsedType();
306  }
307  return ParsedType::make(T);
308}
309
310/// isTagName() - This method is called *for error recovery purposes only*
311/// to determine if the specified name is a valid tag name ("struct foo").  If
312/// so, this returns the TST for the tag corresponding to it (TST_enum,
313/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
314/// where the user forgot to specify the tag.
315DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
316  // Do a tag name lookup in this scope.
317  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
318  LookupName(R, S, false);
319  R.suppressDiagnostics();
320  if (R.getResultKind() == LookupResult::Found)
321    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
322      switch (TD->getTagKind()) {
323      case TTK_Struct: return DeclSpec::TST_struct;
324      case TTK_Union:  return DeclSpec::TST_union;
325      case TTK_Class:  return DeclSpec::TST_class;
326      case TTK_Enum:   return DeclSpec::TST_enum;
327      }
328    }
329
330  return DeclSpec::TST_unspecified;
331}
332
333/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
334/// if a CXXScopeSpec's type is equal to the type of one of the base classes
335/// then downgrade the missing typename error to a warning.
336/// This is needed for MSVC compatibility; Example:
337/// @code
338/// template<class T> class A {
339/// public:
340///   typedef int TYPE;
341/// };
342/// template<class T> class B : public A<T> {
343/// public:
344///   A<T>::TYPE a; // no typename required because A<T> is a base class.
345/// };
346/// @endcode
347bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
348  if (CurContext->isRecord()) {
349    const Type *Ty = SS->getScopeRep()->getAsType();
350
351    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
352    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
353          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
354      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
355        return true;
356    return S->isFunctionPrototypeScope();
357  }
358  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
359}
360
361bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
362                                   SourceLocation IILoc,
363                                   Scope *S,
364                                   CXXScopeSpec *SS,
365                                   ParsedType &SuggestedType) {
366  // We don't have anything to suggest (yet).
367  SuggestedType = ParsedType();
368
369  // There may have been a typo in the name of the type. Look up typo
370  // results, in case we have something that we can suggest.
371  TypeNameValidatorCCC Validator(false);
372  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
373                                             LookupOrdinaryName, S, SS,
374                                             Validator)) {
375    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
376    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
377
378    if (Corrected.isKeyword()) {
379      // We corrected to a keyword.
380      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
381      Diag(IILoc, diag::err_unknown_typename_suggest)
382        << &II << CorrectedQuotedStr;
383    } else {
384      NamedDecl *Result = Corrected.getCorrectionDecl();
385      // We found a similarly-named type or interface; suggest that.
386      if (!SS || !SS->isSet())
387        Diag(IILoc, diag::err_unknown_typename_suggest)
388          << &II << CorrectedQuotedStr
389          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
390      else if (DeclContext *DC = computeDeclContext(*SS, false))
391        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
392          << &II << DC << CorrectedQuotedStr << SS->getRange()
393          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
394      else
395        llvm_unreachable("could not have corrected a typo here");
396
397      Diag(Result->getLocation(), diag::note_previous_decl)
398        << CorrectedQuotedStr;
399
400      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
401                                  false, false, ParsedType(),
402                                  /*IsCtorOrDtorName=*/false,
403                                  /*NonTrivialTypeSourceInfo=*/true);
404    }
405    return true;
406  }
407
408  if (getLangOptions().CPlusPlus) {
409    // See if II is a class template that the user forgot to pass arguments to.
410    UnqualifiedId Name;
411    Name.setIdentifier(&II, IILoc);
412    CXXScopeSpec EmptySS;
413    TemplateTy TemplateResult;
414    bool MemberOfUnknownSpecialization;
415    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
416                       Name, ParsedType(), true, TemplateResult,
417                       MemberOfUnknownSpecialization) == TNK_Type_template) {
418      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
419      Diag(IILoc, diag::err_template_missing_args) << TplName;
420      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
421        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
422          << TplDecl->getTemplateParameters()->getSourceRange();
423      }
424      return true;
425    }
426  }
427
428  // FIXME: Should we move the logic that tries to recover from a missing tag
429  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
430
431  if (!SS || (!SS->isSet() && !SS->isInvalid()))
432    Diag(IILoc, diag::err_unknown_typename) << &II;
433  else if (DeclContext *DC = computeDeclContext(*SS, false))
434    Diag(IILoc, diag::err_typename_nested_not_found)
435      << &II << DC << SS->getRange();
436  else if (isDependentScopeSpecifier(*SS)) {
437    unsigned DiagID = diag::err_typename_missing;
438    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
439      DiagID = diag::warn_typename_missing;
440
441    Diag(SS->getRange().getBegin(), DiagID)
442      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
443      << SourceRange(SS->getRange().getBegin(), IILoc)
444      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
445    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
446                                                                         .get();
447  } else {
448    assert(SS && SS->isInvalid() &&
449           "Invalid scope specifier has already been diagnosed");
450  }
451
452  return true;
453}
454
455/// \brief Determine whether the given result set contains either a type name
456/// or
457static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
458  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
459                       NextToken.is(tok::less);
460
461  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
462    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
463      return true;
464
465    if (CheckTemplate && isa<TemplateDecl>(*I))
466      return true;
467  }
468
469  return false;
470}
471
472Sema::NameClassification Sema::ClassifyName(Scope *S,
473                                            CXXScopeSpec &SS,
474                                            IdentifierInfo *&Name,
475                                            SourceLocation NameLoc,
476                                            const Token &NextToken) {
477  DeclarationNameInfo NameInfo(Name, NameLoc);
478  ObjCMethodDecl *CurMethod = getCurMethodDecl();
479
480  if (NextToken.is(tok::coloncolon)) {
481    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
482                                QualType(), false, SS, 0, false);
483
484  }
485
486  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
487  LookupParsedName(Result, S, &SS, !CurMethod);
488
489  // Perform lookup for Objective-C instance variables (including automatically
490  // synthesized instance variables), if we're in an Objective-C method.
491  // FIXME: This lookup really, really needs to be folded in to the normal
492  // unqualified lookup mechanism.
493  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
494    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
495    if (E.get() || E.isInvalid())
496      return E;
497  }
498
499  bool SecondTry = false;
500  bool IsFilteredTemplateName = false;
501
502Corrected:
503  switch (Result.getResultKind()) {
504  case LookupResult::NotFound:
505    // If an unqualified-id is followed by a '(', then we have a function
506    // call.
507    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
508      // In C++, this is an ADL-only call.
509      // FIXME: Reference?
510      if (getLangOptions().CPlusPlus)
511        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
512
513      // C90 6.3.2.2:
514      //   If the expression that precedes the parenthesized argument list in a
515      //   function call consists solely of an identifier, and if no
516      //   declaration is visible for this identifier, the identifier is
517      //   implicitly declared exactly as if, in the innermost block containing
518      //   the function call, the declaration
519      //
520      //     extern int identifier ();
521      //
522      //   appeared.
523      //
524      // We also allow this in C99 as an extension.
525      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
526        Result.addDecl(D);
527        Result.resolveKind();
528        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
529      }
530    }
531
532    // In C, we first see whether there is a tag type by the same name, in
533    // which case it's likely that the user just forget to write "enum",
534    // "struct", or "union".
535    if (!getLangOptions().CPlusPlus && !SecondTry) {
536      Result.clear(LookupTagName);
537      LookupParsedName(Result, S, &SS);
538      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
539        const char *TagName = 0;
540        const char *FixItTagName = 0;
541        switch (Tag->getTagKind()) {
542          case TTK_Class:
543            TagName = "class";
544            FixItTagName = "class ";
545            break;
546
547          case TTK_Enum:
548            TagName = "enum";
549            FixItTagName = "enum ";
550            break;
551
552          case TTK_Struct:
553            TagName = "struct";
554            FixItTagName = "struct ";
555            break;
556
557          case TTK_Union:
558            TagName = "union";
559            FixItTagName = "union ";
560            break;
561        }
562
563        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
564          << Name << TagName << getLangOptions().CPlusPlus
565          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
566        break;
567      }
568
569      Result.clear(LookupOrdinaryName);
570    }
571
572    // Perform typo correction to determine if there is another name that is
573    // close to this name.
574    if (!SecondTry) {
575      SecondTry = true;
576      CorrectionCandidateCallback DefaultValidator;
577      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
578                                                 Result.getLookupKind(), S,
579                                                 &SS, DefaultValidator)) {
580        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
581        unsigned QualifiedDiag = diag::err_no_member_suggest;
582        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
583        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
584
585        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
586        NamedDecl *UnderlyingFirstDecl
587          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
588        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
589            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
590          UnqualifiedDiag = diag::err_no_template_suggest;
591          QualifiedDiag = diag::err_no_member_template_suggest;
592        } else if (UnderlyingFirstDecl &&
593                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
594                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
596           UnqualifiedDiag = diag::err_unknown_typename_suggest;
597           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
598         }
599
600        if (SS.isEmpty())
601          Diag(NameLoc, UnqualifiedDiag)
602            << Name << CorrectedQuotedStr
603            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
604        else
605          Diag(NameLoc, QualifiedDiag)
606            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
607            << SS.getRange()
608            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
609
610        // Update the name, so that the caller has the new name.
611        Name = Corrected.getCorrectionAsIdentifierInfo();
612
613        // Typo correction corrected to a keyword.
614        if (Corrected.isKeyword())
615          return Corrected.getCorrectionAsIdentifierInfo();
616
617        // Also update the LookupResult...
618        // FIXME: This should probably go away at some point
619        Result.clear();
620        Result.setLookupName(Corrected.getCorrection());
621        if (FirstDecl) {
622          Result.addDecl(FirstDecl);
623          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
624            << CorrectedQuotedStr;
625        }
626
627        // If we found an Objective-C instance variable, let
628        // LookupInObjCMethod build the appropriate expression to
629        // reference the ivar.
630        // FIXME: This is a gross hack.
631        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
632          Result.clear();
633          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
634          return move(E);
635        }
636
637        goto Corrected;
638      }
639    }
640
641    // We failed to correct; just fall through and let the parser deal with it.
642    Result.suppressDiagnostics();
643    return NameClassification::Unknown();
644
645  case LookupResult::NotFoundInCurrentInstantiation: {
646    // We performed name lookup into the current instantiation, and there were
647    // dependent bases, so we treat this result the same way as any other
648    // dependent nested-name-specifier.
649
650    // C++ [temp.res]p2:
651    //   A name used in a template declaration or definition and that is
652    //   dependent on a template-parameter is assumed not to name a type
653    //   unless the applicable name lookup finds a type name or the name is
654    //   qualified by the keyword typename.
655    //
656    // FIXME: If the next token is '<', we might want to ask the parser to
657    // perform some heroics to see if we actually have a
658    // template-argument-list, which would indicate a missing 'template'
659    // keyword here.
660    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
661                                     NameInfo, /*TemplateArgs=*/0);
662  }
663
664  case LookupResult::Found:
665  case LookupResult::FoundOverloaded:
666  case LookupResult::FoundUnresolvedValue:
667    break;
668
669  case LookupResult::Ambiguous:
670    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
671        hasAnyAcceptableTemplateNames(Result)) {
672      // C++ [temp.local]p3:
673      //   A lookup that finds an injected-class-name (10.2) can result in an
674      //   ambiguity in certain cases (for example, if it is found in more than
675      //   one base class). If all of the injected-class-names that are found
676      //   refer to specializations of the same class template, and if the name
677      //   is followed by a template-argument-list, the reference refers to the
678      //   class template itself and not a specialization thereof, and is not
679      //   ambiguous.
680      //
681      // This filtering can make an ambiguous result into an unambiguous one,
682      // so try again after filtering out template names.
683      FilterAcceptableTemplateNames(Result);
684      if (!Result.isAmbiguous()) {
685        IsFilteredTemplateName = true;
686        break;
687      }
688    }
689
690    // Diagnose the ambiguity and return an error.
691    return NameClassification::Error();
692  }
693
694  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
695      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
696    // C++ [temp.names]p3:
697    //   After name lookup (3.4) finds that a name is a template-name or that
698    //   an operator-function-id or a literal- operator-id refers to a set of
699    //   overloaded functions any member of which is a function template if
700    //   this is followed by a <, the < is always taken as the delimiter of a
701    //   template-argument-list and never as the less-than operator.
702    if (!IsFilteredTemplateName)
703      FilterAcceptableTemplateNames(Result);
704
705    if (!Result.empty()) {
706      bool IsFunctionTemplate;
707      TemplateName Template;
708      if (Result.end() - Result.begin() > 1) {
709        IsFunctionTemplate = true;
710        Template = Context.getOverloadedTemplateName(Result.begin(),
711                                                     Result.end());
712      } else {
713        TemplateDecl *TD
714          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
715        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
716
717        if (SS.isSet() && !SS.isInvalid())
718          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
719                                                    /*TemplateKeyword=*/false,
720                                                      TD);
721        else
722          Template = TemplateName(TD);
723      }
724
725      if (IsFunctionTemplate) {
726        // Function templates always go through overload resolution, at which
727        // point we'll perform the various checks (e.g., accessibility) we need
728        // to based on which function we selected.
729        Result.suppressDiagnostics();
730
731        return NameClassification::FunctionTemplate(Template);
732      }
733
734      return NameClassification::TypeTemplate(Template);
735    }
736  }
737
738  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
739  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
740    DiagnoseUseOfDecl(Type, NameLoc);
741    QualType T = Context.getTypeDeclType(Type);
742    return ParsedType::make(T);
743  }
744
745  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
746  if (!Class) {
747    // FIXME: It's unfortunate that we don't have a Type node for handling this.
748    if (ObjCCompatibleAliasDecl *Alias
749                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
750      Class = Alias->getClassInterface();
751  }
752
753  if (Class) {
754    DiagnoseUseOfDecl(Class, NameLoc);
755
756    if (NextToken.is(tok::period)) {
757      // Interface. <something> is parsed as a property reference expression.
758      // Just return "unknown" as a fall-through for now.
759      Result.suppressDiagnostics();
760      return NameClassification::Unknown();
761    }
762
763    QualType T = Context.getObjCInterfaceType(Class);
764    return ParsedType::make(T);
765  }
766
767  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
768    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
769
770  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
771  return BuildDeclarationNameExpr(SS, Result, ADL);
772}
773
774// Determines the context to return to after temporarily entering a
775// context.  This depends in an unnecessarily complicated way on the
776// exact ordering of callbacks from the parser.
777DeclContext *Sema::getContainingDC(DeclContext *DC) {
778
779  // Functions defined inline within classes aren't parsed until we've
780  // finished parsing the top-level class, so the top-level class is
781  // the context we'll need to return to.
782  if (isa<FunctionDecl>(DC)) {
783    DC = DC->getLexicalParent();
784
785    // A function not defined within a class will always return to its
786    // lexical context.
787    if (!isa<CXXRecordDecl>(DC))
788      return DC;
789
790    // A C++ inline method/friend is parsed *after* the topmost class
791    // it was declared in is fully parsed ("complete");  the topmost
792    // class is the context we need to return to.
793    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
794      DC = RD;
795
796    // Return the declaration context of the topmost class the inline method is
797    // declared in.
798    return DC;
799  }
800
801  return DC->getLexicalParent();
802}
803
804void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
805  assert(getContainingDC(DC) == CurContext &&
806      "The next DeclContext should be lexically contained in the current one.");
807  CurContext = DC;
808  S->setEntity(DC);
809}
810
811void Sema::PopDeclContext() {
812  assert(CurContext && "DeclContext imbalance!");
813
814  CurContext = getContainingDC(CurContext);
815  assert(CurContext && "Popped translation unit!");
816}
817
818/// EnterDeclaratorContext - Used when we must lookup names in the context
819/// of a declarator's nested name specifier.
820///
821void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
822  // C++0x [basic.lookup.unqual]p13:
823  //   A name used in the definition of a static data member of class
824  //   X (after the qualified-id of the static member) is looked up as
825  //   if the name was used in a member function of X.
826  // C++0x [basic.lookup.unqual]p14:
827  //   If a variable member of a namespace is defined outside of the
828  //   scope of its namespace then any name used in the definition of
829  //   the variable member (after the declarator-id) is looked up as
830  //   if the definition of the variable member occurred in its
831  //   namespace.
832  // Both of these imply that we should push a scope whose context
833  // is the semantic context of the declaration.  We can't use
834  // PushDeclContext here because that context is not necessarily
835  // lexically contained in the current context.  Fortunately,
836  // the containing scope should have the appropriate information.
837
838  assert(!S->getEntity() && "scope already has entity");
839
840#ifndef NDEBUG
841  Scope *Ancestor = S->getParent();
842  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
843  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
844#endif
845
846  CurContext = DC;
847  S->setEntity(DC);
848}
849
850void Sema::ExitDeclaratorContext(Scope *S) {
851  assert(S->getEntity() == CurContext && "Context imbalance!");
852
853  // Switch back to the lexical context.  The safety of this is
854  // enforced by an assert in EnterDeclaratorContext.
855  Scope *Ancestor = S->getParent();
856  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
857  CurContext = (DeclContext*) Ancestor->getEntity();
858
859  // We don't need to do anything with the scope, which is going to
860  // disappear.
861}
862
863
864void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
865  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
866  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
867    // We assume that the caller has already called
868    // ActOnReenterTemplateScope
869    FD = TFD->getTemplatedDecl();
870  }
871  if (!FD)
872    return;
873
874  PushDeclContext(S, FD);
875  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
876    ParmVarDecl *Param = FD->getParamDecl(P);
877    // If the parameter has an identifier, then add it to the scope
878    if (Param->getIdentifier()) {
879      S->AddDecl(Param);
880      IdResolver.AddDecl(Param);
881    }
882  }
883}
884
885
886/// \brief Determine whether we allow overloading of the function
887/// PrevDecl with another declaration.
888///
889/// This routine determines whether overloading is possible, not
890/// whether some new function is actually an overload. It will return
891/// true in C++ (where we can always provide overloads) or, as an
892/// extension, in C when the previous function is already an
893/// overloaded function declaration or has the "overloadable"
894/// attribute.
895static bool AllowOverloadingOfFunction(LookupResult &Previous,
896                                       ASTContext &Context) {
897  if (Context.getLangOptions().CPlusPlus)
898    return true;
899
900  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
901    return true;
902
903  return (Previous.getResultKind() == LookupResult::Found
904          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
905}
906
907/// Add this decl to the scope shadowed decl chains.
908void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
909  // Move up the scope chain until we find the nearest enclosing
910  // non-transparent context. The declaration will be introduced into this
911  // scope.
912  while (S->getEntity() &&
913         ((DeclContext *)S->getEntity())->isTransparentContext())
914    S = S->getParent();
915
916  // Add scoped declarations into their context, so that they can be
917  // found later. Declarations without a context won't be inserted
918  // into any context.
919  if (AddToContext)
920    CurContext->addDecl(D);
921
922  // Out-of-line definitions shouldn't be pushed into scope in C++.
923  // Out-of-line variable and function definitions shouldn't even in C.
924  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
925      D->isOutOfLine() &&
926      !D->getDeclContext()->getRedeclContext()->Equals(
927        D->getLexicalDeclContext()->getRedeclContext()))
928    return;
929
930  // Template instantiations should also not be pushed into scope.
931  if (isa<FunctionDecl>(D) &&
932      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
933    return;
934
935  // If this replaces anything in the current scope,
936  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
937                               IEnd = IdResolver.end();
938  for (; I != IEnd; ++I) {
939    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
940      S->RemoveDecl(*I);
941      IdResolver.RemoveDecl(*I);
942
943      // Should only need to replace one decl.
944      break;
945    }
946  }
947
948  S->AddDecl(D);
949
950  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
951    // Implicitly-generated labels may end up getting generated in an order that
952    // isn't strictly lexical, which breaks name lookup. Be careful to insert
953    // the label at the appropriate place in the identifier chain.
954    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
955      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
956      if (IDC == CurContext) {
957        if (!S->isDeclScope(*I))
958          continue;
959      } else if (IDC->Encloses(CurContext))
960        break;
961    }
962
963    IdResolver.InsertDeclAfter(I, D);
964  } else {
965    IdResolver.AddDecl(D);
966  }
967}
968
969void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
970  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
971    TUScope->AddDecl(D);
972}
973
974bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
975                         bool ExplicitInstantiationOrSpecialization) {
976  return IdResolver.isDeclInScope(D, Ctx, Context, S,
977                                  ExplicitInstantiationOrSpecialization);
978}
979
980Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
981  DeclContext *TargetDC = DC->getPrimaryContext();
982  do {
983    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
984      if (ScopeDC->getPrimaryContext() == TargetDC)
985        return S;
986  } while ((S = S->getParent()));
987
988  return 0;
989}
990
991static bool isOutOfScopePreviousDeclaration(NamedDecl *,
992                                            DeclContext*,
993                                            ASTContext&);
994
995/// Filters out lookup results that don't fall within the given scope
996/// as determined by isDeclInScope.
997void Sema::FilterLookupForScope(LookupResult &R,
998                                DeclContext *Ctx, Scope *S,
999                                bool ConsiderLinkage,
1000                                bool ExplicitInstantiationOrSpecialization) {
1001  LookupResult::Filter F = R.makeFilter();
1002  while (F.hasNext()) {
1003    NamedDecl *D = F.next();
1004
1005    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1006      continue;
1007
1008    if (ConsiderLinkage &&
1009        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1010      continue;
1011
1012    F.erase();
1013  }
1014
1015  F.done();
1016}
1017
1018static bool isUsingDecl(NamedDecl *D) {
1019  return isa<UsingShadowDecl>(D) ||
1020         isa<UnresolvedUsingTypenameDecl>(D) ||
1021         isa<UnresolvedUsingValueDecl>(D);
1022}
1023
1024/// Removes using shadow declarations from the lookup results.
1025static void RemoveUsingDecls(LookupResult &R) {
1026  LookupResult::Filter F = R.makeFilter();
1027  while (F.hasNext())
1028    if (isUsingDecl(F.next()))
1029      F.erase();
1030
1031  F.done();
1032}
1033
1034/// \brief Check for this common pattern:
1035/// @code
1036/// class S {
1037///   S(const S&); // DO NOT IMPLEMENT
1038///   void operator=(const S&); // DO NOT IMPLEMENT
1039/// };
1040/// @endcode
1041static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1042  // FIXME: Should check for private access too but access is set after we get
1043  // the decl here.
1044  if (D->doesThisDeclarationHaveABody())
1045    return false;
1046
1047  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1048    return CD->isCopyConstructor();
1049  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1050    return Method->isCopyAssignmentOperator();
1051  return false;
1052}
1053
1054bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1055  assert(D);
1056
1057  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1058    return false;
1059
1060  // Ignore class templates.
1061  if (D->getDeclContext()->isDependentContext() ||
1062      D->getLexicalDeclContext()->isDependentContext())
1063    return false;
1064
1065  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1066    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1067      return false;
1068
1069    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1070      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1071        return false;
1072    } else {
1073      // 'static inline' functions are used in headers; don't warn.
1074      if (FD->getStorageClass() == SC_Static &&
1075          FD->isInlineSpecified())
1076        return false;
1077    }
1078
1079    if (FD->doesThisDeclarationHaveABody() &&
1080        Context.DeclMustBeEmitted(FD))
1081      return false;
1082  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1083    if (!VD->isFileVarDecl() ||
1084        VD->getType().isConstant(Context) ||
1085        Context.DeclMustBeEmitted(VD))
1086      return false;
1087
1088    if (VD->isStaticDataMember() &&
1089        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1090      return false;
1091
1092  } else {
1093    return false;
1094  }
1095
1096  // Only warn for unused decls internal to the translation unit.
1097  if (D->getLinkage() == ExternalLinkage)
1098    return false;
1099
1100  return true;
1101}
1102
1103void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1104  if (!D)
1105    return;
1106
1107  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1108    const FunctionDecl *First = FD->getFirstDeclaration();
1109    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1110      return; // First should already be in the vector.
1111  }
1112
1113  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1114    const VarDecl *First = VD->getFirstDeclaration();
1115    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1116      return; // First should already be in the vector.
1117  }
1118
1119   if (ShouldWarnIfUnusedFileScopedDecl(D))
1120     UnusedFileScopedDecls.push_back(D);
1121 }
1122
1123static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1124  if (D->isInvalidDecl())
1125    return false;
1126
1127  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1128    return false;
1129
1130  if (isa<LabelDecl>(D))
1131    return true;
1132
1133  // White-list anything that isn't a local variable.
1134  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1135      !D->getDeclContext()->isFunctionOrMethod())
1136    return false;
1137
1138  // Types of valid local variables should be complete, so this should succeed.
1139  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1140
1141    // White-list anything with an __attribute__((unused)) type.
1142    QualType Ty = VD->getType();
1143
1144    // Only look at the outermost level of typedef.
1145    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1146      if (TT->getDecl()->hasAttr<UnusedAttr>())
1147        return false;
1148    }
1149
1150    // If we failed to complete the type for some reason, or if the type is
1151    // dependent, don't diagnose the variable.
1152    if (Ty->isIncompleteType() || Ty->isDependentType())
1153      return false;
1154
1155    if (const TagType *TT = Ty->getAs<TagType>()) {
1156      const TagDecl *Tag = TT->getDecl();
1157      if (Tag->hasAttr<UnusedAttr>())
1158        return false;
1159
1160      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1161        if (!RD->hasTrivialDestructor())
1162          return false;
1163
1164        if (const Expr *Init = VD->getInit()) {
1165          const CXXConstructExpr *Construct =
1166            dyn_cast<CXXConstructExpr>(Init);
1167          if (Construct && !Construct->isElidable()) {
1168            CXXConstructorDecl *CD = Construct->getConstructor();
1169            if (!CD->isTrivial())
1170              return false;
1171          }
1172        }
1173      }
1174    }
1175
1176    // TODO: __attribute__((unused)) templates?
1177  }
1178
1179  return true;
1180}
1181
1182static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1183                                     FixItHint &Hint) {
1184  if (isa<LabelDecl>(D)) {
1185    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1186                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1187    if (AfterColon.isInvalid())
1188      return;
1189    Hint = FixItHint::CreateRemoval(CharSourceRange::
1190                                    getCharRange(D->getLocStart(), AfterColon));
1191  }
1192  return;
1193}
1194
1195/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1196/// unless they are marked attr(unused).
1197void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1198  FixItHint Hint;
1199  if (!ShouldDiagnoseUnusedDecl(D))
1200    return;
1201
1202  GenerateFixForUnusedDecl(D, Context, Hint);
1203
1204  unsigned DiagID;
1205  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1206    DiagID = diag::warn_unused_exception_param;
1207  else if (isa<LabelDecl>(D))
1208    DiagID = diag::warn_unused_label;
1209  else
1210    DiagID = diag::warn_unused_variable;
1211
1212  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1213}
1214
1215static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1216  // Verify that we have no forward references left.  If so, there was a goto
1217  // or address of a label taken, but no definition of it.  Label fwd
1218  // definitions are indicated with a null substmt.
1219  if (L->getStmt() == 0)
1220    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1221}
1222
1223void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1224  if (S->decl_empty()) return;
1225  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1226         "Scope shouldn't contain decls!");
1227
1228  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1229       I != E; ++I) {
1230    Decl *TmpD = (*I);
1231    assert(TmpD && "This decl didn't get pushed??");
1232
1233    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1234    NamedDecl *D = cast<NamedDecl>(TmpD);
1235
1236    if (!D->getDeclName()) continue;
1237
1238    // Diagnose unused variables in this scope.
1239    if (!S->hasErrorOccurred())
1240      DiagnoseUnusedDecl(D);
1241
1242    // If this was a forward reference to a label, verify it was defined.
1243    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1244      CheckPoppedLabel(LD, *this);
1245
1246    // Remove this name from our lexical scope.
1247    IdResolver.RemoveDecl(D);
1248  }
1249}
1250
1251/// \brief Look for an Objective-C class in the translation unit.
1252///
1253/// \param Id The name of the Objective-C class we're looking for. If
1254/// typo-correction fixes this name, the Id will be updated
1255/// to the fixed name.
1256///
1257/// \param IdLoc The location of the name in the translation unit.
1258///
1259/// \param TypoCorrection If true, this routine will attempt typo correction
1260/// if there is no class with the given name.
1261///
1262/// \returns The declaration of the named Objective-C class, or NULL if the
1263/// class could not be found.
1264ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1265                                              SourceLocation IdLoc,
1266                                              bool DoTypoCorrection) {
1267  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1268  // creation from this context.
1269  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1270
1271  if (!IDecl && DoTypoCorrection) {
1272    // Perform typo correction at the given location, but only if we
1273    // find an Objective-C class name.
1274    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1275    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1276                                       LookupOrdinaryName, TUScope, NULL,
1277                                       Validator)) {
1278      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1279      Diag(IdLoc, diag::err_undef_interface_suggest)
1280        << Id << IDecl->getDeclName()
1281        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1282      Diag(IDecl->getLocation(), diag::note_previous_decl)
1283        << IDecl->getDeclName();
1284
1285      Id = IDecl->getIdentifier();
1286    }
1287  }
1288  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1289  // This routine must always return a class definition, if any.
1290  if (Def && Def->getDefinition())
1291      Def = Def->getDefinition();
1292  return Def;
1293}
1294
1295/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1296/// from S, where a non-field would be declared. This routine copes
1297/// with the difference between C and C++ scoping rules in structs and
1298/// unions. For example, the following code is well-formed in C but
1299/// ill-formed in C++:
1300/// @code
1301/// struct S6 {
1302///   enum { BAR } e;
1303/// };
1304///
1305/// void test_S6() {
1306///   struct S6 a;
1307///   a.e = BAR;
1308/// }
1309/// @endcode
1310/// For the declaration of BAR, this routine will return a different
1311/// scope. The scope S will be the scope of the unnamed enumeration
1312/// within S6. In C++, this routine will return the scope associated
1313/// with S6, because the enumeration's scope is a transparent
1314/// context but structures can contain non-field names. In C, this
1315/// routine will return the translation unit scope, since the
1316/// enumeration's scope is a transparent context and structures cannot
1317/// contain non-field names.
1318Scope *Sema::getNonFieldDeclScope(Scope *S) {
1319  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1320         (S->getEntity() &&
1321          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1322         (S->isClassScope() && !getLangOptions().CPlusPlus))
1323    S = S->getParent();
1324  return S;
1325}
1326
1327/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1328/// file scope.  lazily create a decl for it. ForRedeclaration is true
1329/// if we're creating this built-in in anticipation of redeclaring the
1330/// built-in.
1331NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1332                                     Scope *S, bool ForRedeclaration,
1333                                     SourceLocation Loc) {
1334  Builtin::ID BID = (Builtin::ID)bid;
1335
1336  ASTContext::GetBuiltinTypeError Error;
1337  QualType R = Context.GetBuiltinType(BID, Error);
1338  switch (Error) {
1339  case ASTContext::GE_None:
1340    // Okay
1341    break;
1342
1343  case ASTContext::GE_Missing_stdio:
1344    if (ForRedeclaration)
1345      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1346        << Context.BuiltinInfo.GetName(BID);
1347    return 0;
1348
1349  case ASTContext::GE_Missing_setjmp:
1350    if (ForRedeclaration)
1351      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1352        << Context.BuiltinInfo.GetName(BID);
1353    return 0;
1354
1355  case ASTContext::GE_Missing_ucontext:
1356    if (ForRedeclaration)
1357      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1358        << Context.BuiltinInfo.GetName(BID);
1359    return 0;
1360  }
1361
1362  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1363    Diag(Loc, diag::ext_implicit_lib_function_decl)
1364      << Context.BuiltinInfo.GetName(BID)
1365      << R;
1366    if (Context.BuiltinInfo.getHeaderName(BID) &&
1367        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1368          != DiagnosticsEngine::Ignored)
1369      Diag(Loc, diag::note_please_include_header)
1370        << Context.BuiltinInfo.getHeaderName(BID)
1371        << Context.BuiltinInfo.GetName(BID);
1372  }
1373
1374  FunctionDecl *New = FunctionDecl::Create(Context,
1375                                           Context.getTranslationUnitDecl(),
1376                                           Loc, Loc, II, R, /*TInfo=*/0,
1377                                           SC_Extern,
1378                                           SC_None, false,
1379                                           /*hasPrototype=*/true);
1380  New->setImplicit();
1381
1382  // Create Decl objects for each parameter, adding them to the
1383  // FunctionDecl.
1384  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1385    SmallVector<ParmVarDecl*, 16> Params;
1386    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1387      ParmVarDecl *parm =
1388        ParmVarDecl::Create(Context, New, SourceLocation(),
1389                            SourceLocation(), 0,
1390                            FT->getArgType(i), /*TInfo=*/0,
1391                            SC_None, SC_None, 0);
1392      parm->setScopeInfo(0, i);
1393      Params.push_back(parm);
1394    }
1395    New->setParams(Params);
1396  }
1397
1398  AddKnownFunctionAttributes(New);
1399
1400  // TUScope is the translation-unit scope to insert this function into.
1401  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1402  // relate Scopes to DeclContexts, and probably eliminate CurContext
1403  // entirely, but we're not there yet.
1404  DeclContext *SavedContext = CurContext;
1405  CurContext = Context.getTranslationUnitDecl();
1406  PushOnScopeChains(New, TUScope);
1407  CurContext = SavedContext;
1408  return New;
1409}
1410
1411bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1412  QualType OldType;
1413  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1414    OldType = OldTypedef->getUnderlyingType();
1415  else
1416    OldType = Context.getTypeDeclType(Old);
1417  QualType NewType = New->getUnderlyingType();
1418
1419  if (NewType->isVariablyModifiedType()) {
1420    // Must not redefine a typedef with a variably-modified type.
1421    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1422    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1423      << Kind << NewType;
1424    if (Old->getLocation().isValid())
1425      Diag(Old->getLocation(), diag::note_previous_definition);
1426    New->setInvalidDecl();
1427    return true;
1428  }
1429
1430  if (OldType != NewType &&
1431      !OldType->isDependentType() &&
1432      !NewType->isDependentType() &&
1433      !Context.hasSameType(OldType, NewType)) {
1434    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << NewType << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    New->setInvalidDecl();
1440    return true;
1441  }
1442  return false;
1443}
1444
1445/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1446/// same name and scope as a previous declaration 'Old'.  Figure out
1447/// how to resolve this situation, merging decls or emitting
1448/// diagnostics as appropriate. If there was an error, set New to be invalid.
1449///
1450void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1451  // If the new decl is known invalid already, don't bother doing any
1452  // merging checks.
1453  if (New->isInvalidDecl()) return;
1454
1455  // Allow multiple definitions for ObjC built-in typedefs.
1456  // FIXME: Verify the underlying types are equivalent!
1457  if (getLangOptions().ObjC1) {
1458    const IdentifierInfo *TypeID = New->getIdentifier();
1459    switch (TypeID->getLength()) {
1460    default: break;
1461    case 2:
1462      if (!TypeID->isStr("id"))
1463        break;
1464      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1465      // Install the built-in type for 'id', ignoring the current definition.
1466      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1467      return;
1468    case 5:
1469      if (!TypeID->isStr("Class"))
1470        break;
1471      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1472      // Install the built-in type for 'Class', ignoring the current definition.
1473      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1474      return;
1475    case 3:
1476      if (!TypeID->isStr("SEL"))
1477        break;
1478      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1479      // Install the built-in type for 'SEL', ignoring the current definition.
1480      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1481      return;
1482    }
1483    // Fall through - the typedef name was not a builtin type.
1484  }
1485
1486  // Verify the old decl was also a type.
1487  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1488  if (!Old) {
1489    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1490      << New->getDeclName();
1491
1492    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1493    if (OldD->getLocation().isValid())
1494      Diag(OldD->getLocation(), diag::note_previous_definition);
1495
1496    return New->setInvalidDecl();
1497  }
1498
1499  // If the old declaration is invalid, just give up here.
1500  if (Old->isInvalidDecl())
1501    return New->setInvalidDecl();
1502
1503  // If the typedef types are not identical, reject them in all languages and
1504  // with any extensions enabled.
1505  if (isIncompatibleTypedef(Old, New))
1506    return;
1507
1508  // The types match.  Link up the redeclaration chain if the old
1509  // declaration was a typedef.
1510  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1511    New->setPreviousDeclaration(Typedef);
1512
1513  if (getLangOptions().MicrosoftExt)
1514    return;
1515
1516  if (getLangOptions().CPlusPlus) {
1517    // C++ [dcl.typedef]p2:
1518    //   In a given non-class scope, a typedef specifier can be used to
1519    //   redefine the name of any type declared in that scope to refer
1520    //   to the type to which it already refers.
1521    if (!isa<CXXRecordDecl>(CurContext))
1522      return;
1523
1524    // C++0x [dcl.typedef]p4:
1525    //   In a given class scope, a typedef specifier can be used to redefine
1526    //   any class-name declared in that scope that is not also a typedef-name
1527    //   to refer to the type to which it already refers.
1528    //
1529    // This wording came in via DR424, which was a correction to the
1530    // wording in DR56, which accidentally banned code like:
1531    //
1532    //   struct S {
1533    //     typedef struct A { } A;
1534    //   };
1535    //
1536    // in the C++03 standard. We implement the C++0x semantics, which
1537    // allow the above but disallow
1538    //
1539    //   struct S {
1540    //     typedef int I;
1541    //     typedef int I;
1542    //   };
1543    //
1544    // since that was the intent of DR56.
1545    if (!isa<TypedefNameDecl>(Old))
1546      return;
1547
1548    Diag(New->getLocation(), diag::err_redefinition)
1549      << New->getDeclName();
1550    Diag(Old->getLocation(), diag::note_previous_definition);
1551    return New->setInvalidDecl();
1552  }
1553
1554  // Modules always permit redefinition of typedefs, as does C11.
1555  if (getLangOptions().Modules || getLangOptions().C11)
1556    return;
1557
1558  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1559  // is normally mapped to an error, but can be controlled with
1560  // -Wtypedef-redefinition.  If either the original or the redefinition is
1561  // in a system header, don't emit this for compatibility with GCC.
1562  if (getDiagnostics().getSuppressSystemWarnings() &&
1563      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1564       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1565    return;
1566
1567  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1568    << New->getDeclName();
1569  Diag(Old->getLocation(), diag::note_previous_definition);
1570  return;
1571}
1572
1573/// DeclhasAttr - returns true if decl Declaration already has the target
1574/// attribute.
1575static bool
1576DeclHasAttr(const Decl *D, const Attr *A) {
1577  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1578  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1579  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1580    if ((*i)->getKind() == A->getKind()) {
1581      if (Ann) {
1582        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1583          return true;
1584        continue;
1585      }
1586      // FIXME: Don't hardcode this check
1587      if (OA && isa<OwnershipAttr>(*i))
1588        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1589      return true;
1590    }
1591
1592  return false;
1593}
1594
1595/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1596void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1597                               bool MergeDeprecation) {
1598  if (!Old->hasAttrs())
1599    return;
1600
1601  bool foundAny = New->hasAttrs();
1602
1603  // Ensure that any moving of objects within the allocated map is done before
1604  // we process them.
1605  if (!foundAny) New->setAttrs(AttrVec());
1606
1607  for (specific_attr_iterator<InheritableAttr>
1608         i = Old->specific_attr_begin<InheritableAttr>(),
1609         e = Old->specific_attr_end<InheritableAttr>();
1610       i != e; ++i) {
1611    // Ignore deprecated/unavailable/availability attributes if requested.
1612    if (!MergeDeprecation &&
1613        (isa<DeprecatedAttr>(*i) ||
1614         isa<UnavailableAttr>(*i) ||
1615         isa<AvailabilityAttr>(*i)))
1616      continue;
1617
1618    if (!DeclHasAttr(New, *i)) {
1619      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1620      newAttr->setInherited(true);
1621      New->addAttr(newAttr);
1622      foundAny = true;
1623    }
1624  }
1625
1626  if (!foundAny) New->dropAttrs();
1627}
1628
1629/// mergeParamDeclAttributes - Copy attributes from the old parameter
1630/// to the new one.
1631static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1632                                     const ParmVarDecl *oldDecl,
1633                                     ASTContext &C) {
1634  if (!oldDecl->hasAttrs())
1635    return;
1636
1637  bool foundAny = newDecl->hasAttrs();
1638
1639  // Ensure that any moving of objects within the allocated map is
1640  // done before we process them.
1641  if (!foundAny) newDecl->setAttrs(AttrVec());
1642
1643  for (specific_attr_iterator<InheritableParamAttr>
1644       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1645       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1646    if (!DeclHasAttr(newDecl, *i)) {
1647      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1648      newAttr->setInherited(true);
1649      newDecl->addAttr(newAttr);
1650      foundAny = true;
1651    }
1652  }
1653
1654  if (!foundAny) newDecl->dropAttrs();
1655}
1656
1657namespace {
1658
1659/// Used in MergeFunctionDecl to keep track of function parameters in
1660/// C.
1661struct GNUCompatibleParamWarning {
1662  ParmVarDecl *OldParm;
1663  ParmVarDecl *NewParm;
1664  QualType PromotedType;
1665};
1666
1667}
1668
1669/// getSpecialMember - get the special member enum for a method.
1670Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1671  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1672    if (Ctor->isDefaultConstructor())
1673      return Sema::CXXDefaultConstructor;
1674
1675    if (Ctor->isCopyConstructor())
1676      return Sema::CXXCopyConstructor;
1677
1678    if (Ctor->isMoveConstructor())
1679      return Sema::CXXMoveConstructor;
1680  } else if (isa<CXXDestructorDecl>(MD)) {
1681    return Sema::CXXDestructor;
1682  } else if (MD->isCopyAssignmentOperator()) {
1683    return Sema::CXXCopyAssignment;
1684  } else if (MD->isMoveAssignmentOperator()) {
1685    return Sema::CXXMoveAssignment;
1686  }
1687
1688  return Sema::CXXInvalid;
1689}
1690
1691/// canRedefineFunction - checks if a function can be redefined. Currently,
1692/// only extern inline functions can be redefined, and even then only in
1693/// GNU89 mode.
1694static bool canRedefineFunction(const FunctionDecl *FD,
1695                                const LangOptions& LangOpts) {
1696  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1697          !LangOpts.CPlusPlus &&
1698          FD->isInlineSpecified() &&
1699          FD->getStorageClass() == SC_Extern);
1700}
1701
1702/// MergeFunctionDecl - We just parsed a function 'New' from
1703/// declarator D which has the same name and scope as a previous
1704/// declaration 'Old'.  Figure out how to resolve this situation,
1705/// merging decls or emitting diagnostics as appropriate.
1706///
1707/// In C++, New and Old must be declarations that are not
1708/// overloaded. Use IsOverload to determine whether New and Old are
1709/// overloaded, and to select the Old declaration that New should be
1710/// merged with.
1711///
1712/// Returns true if there was an error, false otherwise.
1713bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1714  // Verify the old decl was also a function.
1715  FunctionDecl *Old = 0;
1716  if (FunctionTemplateDecl *OldFunctionTemplate
1717        = dyn_cast<FunctionTemplateDecl>(OldD))
1718    Old = OldFunctionTemplate->getTemplatedDecl();
1719  else
1720    Old = dyn_cast<FunctionDecl>(OldD);
1721  if (!Old) {
1722    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1723      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1724      Diag(Shadow->getTargetDecl()->getLocation(),
1725           diag::note_using_decl_target);
1726      Diag(Shadow->getUsingDecl()->getLocation(),
1727           diag::note_using_decl) << 0;
1728      return true;
1729    }
1730
1731    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1732      << New->getDeclName();
1733    Diag(OldD->getLocation(), diag::note_previous_definition);
1734    return true;
1735  }
1736
1737  // Determine whether the previous declaration was a definition,
1738  // implicit declaration, or a declaration.
1739  diag::kind PrevDiag;
1740  if (Old->isThisDeclarationADefinition())
1741    PrevDiag = diag::note_previous_definition;
1742  else if (Old->isImplicit())
1743    PrevDiag = diag::note_previous_implicit_declaration;
1744  else
1745    PrevDiag = diag::note_previous_declaration;
1746
1747  QualType OldQType = Context.getCanonicalType(Old->getType());
1748  QualType NewQType = Context.getCanonicalType(New->getType());
1749
1750  // Don't complain about this if we're in GNU89 mode and the old function
1751  // is an extern inline function.
1752  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1753      New->getStorageClass() == SC_Static &&
1754      Old->getStorageClass() != SC_Static &&
1755      !canRedefineFunction(Old, getLangOptions())) {
1756    if (getLangOptions().MicrosoftExt) {
1757      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1758      Diag(Old->getLocation(), PrevDiag);
1759    } else {
1760      Diag(New->getLocation(), diag::err_static_non_static) << New;
1761      Diag(Old->getLocation(), PrevDiag);
1762      return true;
1763    }
1764  }
1765
1766  // If a function is first declared with a calling convention, but is
1767  // later declared or defined without one, the second decl assumes the
1768  // calling convention of the first.
1769  //
1770  // For the new decl, we have to look at the NON-canonical type to tell the
1771  // difference between a function that really doesn't have a calling
1772  // convention and one that is declared cdecl. That's because in
1773  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1774  // because it is the default calling convention.
1775  //
1776  // Note also that we DO NOT return at this point, because we still have
1777  // other tests to run.
1778  const FunctionType *OldType = cast<FunctionType>(OldQType);
1779  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1780  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1781  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1782  bool RequiresAdjustment = false;
1783  if (OldTypeInfo.getCC() != CC_Default &&
1784      NewTypeInfo.getCC() == CC_Default) {
1785    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1786    RequiresAdjustment = true;
1787  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1788                                     NewTypeInfo.getCC())) {
1789    // Calling conventions really aren't compatible, so complain.
1790    Diag(New->getLocation(), diag::err_cconv_change)
1791      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1792      << (OldTypeInfo.getCC() == CC_Default)
1793      << (OldTypeInfo.getCC() == CC_Default ? "" :
1794          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1795    Diag(Old->getLocation(), diag::note_previous_declaration);
1796    return true;
1797  }
1798
1799  // FIXME: diagnose the other way around?
1800  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1801    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1802    RequiresAdjustment = true;
1803  }
1804
1805  // Merge regparm attribute.
1806  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1807      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1808    if (NewTypeInfo.getHasRegParm()) {
1809      Diag(New->getLocation(), diag::err_regparm_mismatch)
1810        << NewType->getRegParmType()
1811        << OldType->getRegParmType();
1812      Diag(Old->getLocation(), diag::note_previous_declaration);
1813      return true;
1814    }
1815
1816    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1817    RequiresAdjustment = true;
1818  }
1819
1820  // Merge ns_returns_retained attribute.
1821  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1822    if (NewTypeInfo.getProducesResult()) {
1823      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1824      Diag(Old->getLocation(), diag::note_previous_declaration);
1825      return true;
1826    }
1827
1828    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1829    RequiresAdjustment = true;
1830  }
1831
1832  if (RequiresAdjustment) {
1833    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1834    New->setType(QualType(NewType, 0));
1835    NewQType = Context.getCanonicalType(New->getType());
1836  }
1837
1838  if (getLangOptions().CPlusPlus) {
1839    // (C++98 13.1p2):
1840    //   Certain function declarations cannot be overloaded:
1841    //     -- Function declarations that differ only in the return type
1842    //        cannot be overloaded.
1843    QualType OldReturnType = OldType->getResultType();
1844    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1845    QualType ResQT;
1846    if (OldReturnType != NewReturnType) {
1847      if (NewReturnType->isObjCObjectPointerType()
1848          && OldReturnType->isObjCObjectPointerType())
1849        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1850      if (ResQT.isNull()) {
1851        if (New->isCXXClassMember() && New->isOutOfLine())
1852          Diag(New->getLocation(),
1853               diag::err_member_def_does_not_match_ret_type) << New;
1854        else
1855          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1856        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1857        return true;
1858      }
1859      else
1860        NewQType = ResQT;
1861    }
1862
1863    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1864    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1865    if (OldMethod && NewMethod) {
1866      // Preserve triviality.
1867      NewMethod->setTrivial(OldMethod->isTrivial());
1868
1869      // MSVC allows explicit template specialization at class scope:
1870      // 2 CXMethodDecls referring to the same function will be injected.
1871      // We don't want a redeclartion error.
1872      bool IsClassScopeExplicitSpecialization =
1873                              OldMethod->isFunctionTemplateSpecialization() &&
1874                              NewMethod->isFunctionTemplateSpecialization();
1875      bool isFriend = NewMethod->getFriendObjectKind();
1876
1877      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1878          !IsClassScopeExplicitSpecialization) {
1879        //    -- Member function declarations with the same name and the
1880        //       same parameter types cannot be overloaded if any of them
1881        //       is a static member function declaration.
1882        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1883          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1884          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1885          return true;
1886        }
1887
1888        // C++ [class.mem]p1:
1889        //   [...] A member shall not be declared twice in the
1890        //   member-specification, except that a nested class or member
1891        //   class template can be declared and then later defined.
1892        unsigned NewDiag;
1893        if (isa<CXXConstructorDecl>(OldMethod))
1894          NewDiag = diag::err_constructor_redeclared;
1895        else if (isa<CXXDestructorDecl>(NewMethod))
1896          NewDiag = diag::err_destructor_redeclared;
1897        else if (isa<CXXConversionDecl>(NewMethod))
1898          NewDiag = diag::err_conv_function_redeclared;
1899        else
1900          NewDiag = diag::err_member_redeclared;
1901
1902        Diag(New->getLocation(), NewDiag);
1903        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1904
1905      // Complain if this is an explicit declaration of a special
1906      // member that was initially declared implicitly.
1907      //
1908      // As an exception, it's okay to befriend such methods in order
1909      // to permit the implicit constructor/destructor/operator calls.
1910      } else if (OldMethod->isImplicit()) {
1911        if (isFriend) {
1912          NewMethod->setImplicit();
1913        } else {
1914          Diag(NewMethod->getLocation(),
1915               diag::err_definition_of_implicitly_declared_member)
1916            << New << getSpecialMember(OldMethod);
1917          return true;
1918        }
1919      } else if (OldMethod->isExplicitlyDefaulted()) {
1920        Diag(NewMethod->getLocation(),
1921             diag::err_definition_of_explicitly_defaulted_member)
1922          << getSpecialMember(OldMethod);
1923        return true;
1924      }
1925    }
1926
1927    // (C++98 8.3.5p3):
1928    //   All declarations for a function shall agree exactly in both the
1929    //   return type and the parameter-type-list.
1930    // We also want to respect all the extended bits except noreturn.
1931
1932    // noreturn should now match unless the old type info didn't have it.
1933    QualType OldQTypeForComparison = OldQType;
1934    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1935      assert(OldQType == QualType(OldType, 0));
1936      const FunctionType *OldTypeForComparison
1937        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1938      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1939      assert(OldQTypeForComparison.isCanonical());
1940    }
1941
1942    if (OldQTypeForComparison == NewQType)
1943      return MergeCompatibleFunctionDecls(New, Old);
1944
1945    // Fall through for conflicting redeclarations and redefinitions.
1946  }
1947
1948  // C: Function types need to be compatible, not identical. This handles
1949  // duplicate function decls like "void f(int); void f(enum X);" properly.
1950  if (!getLangOptions().CPlusPlus &&
1951      Context.typesAreCompatible(OldQType, NewQType)) {
1952    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1953    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1954    const FunctionProtoType *OldProto = 0;
1955    if (isa<FunctionNoProtoType>(NewFuncType) &&
1956        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1957      // The old declaration provided a function prototype, but the
1958      // new declaration does not. Merge in the prototype.
1959      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1960      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1961                                                 OldProto->arg_type_end());
1962      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1963                                         ParamTypes.data(), ParamTypes.size(),
1964                                         OldProto->getExtProtoInfo());
1965      New->setType(NewQType);
1966      New->setHasInheritedPrototype();
1967
1968      // Synthesize a parameter for each argument type.
1969      SmallVector<ParmVarDecl*, 16> Params;
1970      for (FunctionProtoType::arg_type_iterator
1971             ParamType = OldProto->arg_type_begin(),
1972             ParamEnd = OldProto->arg_type_end();
1973           ParamType != ParamEnd; ++ParamType) {
1974        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1975                                                 SourceLocation(),
1976                                                 SourceLocation(), 0,
1977                                                 *ParamType, /*TInfo=*/0,
1978                                                 SC_None, SC_None,
1979                                                 0);
1980        Param->setScopeInfo(0, Params.size());
1981        Param->setImplicit();
1982        Params.push_back(Param);
1983      }
1984
1985      New->setParams(Params);
1986    }
1987
1988    return MergeCompatibleFunctionDecls(New, Old);
1989  }
1990
1991  // GNU C permits a K&R definition to follow a prototype declaration
1992  // if the declared types of the parameters in the K&R definition
1993  // match the types in the prototype declaration, even when the
1994  // promoted types of the parameters from the K&R definition differ
1995  // from the types in the prototype. GCC then keeps the types from
1996  // the prototype.
1997  //
1998  // If a variadic prototype is followed by a non-variadic K&R definition,
1999  // the K&R definition becomes variadic.  This is sort of an edge case, but
2000  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2001  // C99 6.9.1p8.
2002  if (!getLangOptions().CPlusPlus &&
2003      Old->hasPrototype() && !New->hasPrototype() &&
2004      New->getType()->getAs<FunctionProtoType>() &&
2005      Old->getNumParams() == New->getNumParams()) {
2006    SmallVector<QualType, 16> ArgTypes;
2007    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2008    const FunctionProtoType *OldProto
2009      = Old->getType()->getAs<FunctionProtoType>();
2010    const FunctionProtoType *NewProto
2011      = New->getType()->getAs<FunctionProtoType>();
2012
2013    // Determine whether this is the GNU C extension.
2014    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2015                                               NewProto->getResultType());
2016    bool LooseCompatible = !MergedReturn.isNull();
2017    for (unsigned Idx = 0, End = Old->getNumParams();
2018         LooseCompatible && Idx != End; ++Idx) {
2019      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2020      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2021      if (Context.typesAreCompatible(OldParm->getType(),
2022                                     NewProto->getArgType(Idx))) {
2023        ArgTypes.push_back(NewParm->getType());
2024      } else if (Context.typesAreCompatible(OldParm->getType(),
2025                                            NewParm->getType(),
2026                                            /*CompareUnqualified=*/true)) {
2027        GNUCompatibleParamWarning Warn
2028          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2029        Warnings.push_back(Warn);
2030        ArgTypes.push_back(NewParm->getType());
2031      } else
2032        LooseCompatible = false;
2033    }
2034
2035    if (LooseCompatible) {
2036      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2037        Diag(Warnings[Warn].NewParm->getLocation(),
2038             diag::ext_param_promoted_not_compatible_with_prototype)
2039          << Warnings[Warn].PromotedType
2040          << Warnings[Warn].OldParm->getType();
2041        if (Warnings[Warn].OldParm->getLocation().isValid())
2042          Diag(Warnings[Warn].OldParm->getLocation(),
2043               diag::note_previous_declaration);
2044      }
2045
2046      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2047                                           ArgTypes.size(),
2048                                           OldProto->getExtProtoInfo()));
2049      return MergeCompatibleFunctionDecls(New, Old);
2050    }
2051
2052    // Fall through to diagnose conflicting types.
2053  }
2054
2055  // A function that has already been declared has been redeclared or defined
2056  // with a different type- show appropriate diagnostic
2057  if (unsigned BuiltinID = Old->getBuiltinID()) {
2058    // The user has declared a builtin function with an incompatible
2059    // signature.
2060    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2061      // The function the user is redeclaring is a library-defined
2062      // function like 'malloc' or 'printf'. Warn about the
2063      // redeclaration, then pretend that we don't know about this
2064      // library built-in.
2065      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2066      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2067        << Old << Old->getType();
2068      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2069      Old->setInvalidDecl();
2070      return false;
2071    }
2072
2073    PrevDiag = diag::note_previous_builtin_declaration;
2074  }
2075
2076  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2077  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2078  return true;
2079}
2080
2081/// \brief Completes the merge of two function declarations that are
2082/// known to be compatible.
2083///
2084/// This routine handles the merging of attributes and other
2085/// properties of function declarations form the old declaration to
2086/// the new declaration, once we know that New is in fact a
2087/// redeclaration of Old.
2088///
2089/// \returns false
2090bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2091  // Merge the attributes
2092  mergeDeclAttributes(New, Old);
2093
2094  // Merge the storage class.
2095  if (Old->getStorageClass() != SC_Extern &&
2096      Old->getStorageClass() != SC_None)
2097    New->setStorageClass(Old->getStorageClass());
2098
2099  // Merge "pure" flag.
2100  if (Old->isPure())
2101    New->setPure();
2102
2103  // Merge attributes from the parameters.  These can mismatch with K&R
2104  // declarations.
2105  if (New->getNumParams() == Old->getNumParams())
2106    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2107      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2108                               Context);
2109
2110  if (getLangOptions().CPlusPlus)
2111    return MergeCXXFunctionDecl(New, Old);
2112
2113  return false;
2114}
2115
2116
2117void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2118                                ObjCMethodDecl *oldMethod) {
2119  // We don't want to merge unavailable and deprecated attributes
2120  // except from interface to implementation.
2121  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2122
2123  // Merge the attributes.
2124  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2125
2126  // Merge attributes from the parameters.
2127  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2128  for (ObjCMethodDecl::param_iterator
2129         ni = newMethod->param_begin(), ne = newMethod->param_end();
2130       ni != ne; ++ni, ++oi)
2131    mergeParamDeclAttributes(*ni, *oi, Context);
2132
2133  CheckObjCMethodOverride(newMethod, oldMethod, true);
2134}
2135
2136/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2137/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2138/// emitting diagnostics as appropriate.
2139///
2140/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2141/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2142/// check them before the initializer is attached.
2143///
2144void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2145  if (New->isInvalidDecl() || Old->isInvalidDecl())
2146    return;
2147
2148  QualType MergedT;
2149  if (getLangOptions().CPlusPlus) {
2150    AutoType *AT = New->getType()->getContainedAutoType();
2151    if (AT && !AT->isDeduced()) {
2152      // We don't know what the new type is until the initializer is attached.
2153      return;
2154    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2155      // These could still be something that needs exception specs checked.
2156      return MergeVarDeclExceptionSpecs(New, Old);
2157    }
2158    // C++ [basic.link]p10:
2159    //   [...] the types specified by all declarations referring to a given
2160    //   object or function shall be identical, except that declarations for an
2161    //   array object can specify array types that differ by the presence or
2162    //   absence of a major array bound (8.3.4).
2163    else if (Old->getType()->isIncompleteArrayType() &&
2164             New->getType()->isArrayType()) {
2165      CanQual<ArrayType> OldArray
2166        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2167      CanQual<ArrayType> NewArray
2168        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2169      if (OldArray->getElementType() == NewArray->getElementType())
2170        MergedT = New->getType();
2171    } else if (Old->getType()->isArrayType() &&
2172             New->getType()->isIncompleteArrayType()) {
2173      CanQual<ArrayType> OldArray
2174        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2175      CanQual<ArrayType> NewArray
2176        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2177      if (OldArray->getElementType() == NewArray->getElementType())
2178        MergedT = Old->getType();
2179    } else if (New->getType()->isObjCObjectPointerType()
2180               && Old->getType()->isObjCObjectPointerType()) {
2181        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2182                                                        Old->getType());
2183    }
2184  } else {
2185    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2186  }
2187  if (MergedT.isNull()) {
2188    Diag(New->getLocation(), diag::err_redefinition_different_type)
2189      << New->getDeclName();
2190    Diag(Old->getLocation(), diag::note_previous_definition);
2191    return New->setInvalidDecl();
2192  }
2193  New->setType(MergedT);
2194}
2195
2196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2198/// situation, merging decls or emitting diagnostics as appropriate.
2199///
2200/// Tentative definition rules (C99 6.9.2p2) are checked by
2201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2202/// definitions here, since the initializer hasn't been attached.
2203///
2204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2205  // If the new decl is already invalid, don't do any other checking.
2206  if (New->isInvalidDecl())
2207    return;
2208
2209  // Verify the old decl was also a variable.
2210  VarDecl *Old = 0;
2211  if (!Previous.isSingleResult() ||
2212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2214      << New->getDeclName();
2215    Diag(Previous.getRepresentativeDecl()->getLocation(),
2216         diag::note_previous_definition);
2217    return New->setInvalidDecl();
2218  }
2219
2220  // C++ [class.mem]p1:
2221  //   A member shall not be declared twice in the member-specification [...]
2222  //
2223  // Here, we need only consider static data members.
2224  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2225    Diag(New->getLocation(), diag::err_duplicate_member)
2226      << New->getIdentifier();
2227    Diag(Old->getLocation(), diag::note_previous_declaration);
2228    New->setInvalidDecl();
2229  }
2230
2231  mergeDeclAttributes(New, Old);
2232  // Warn if an already-declared variable is made a weak_import in a subsequent
2233  // declaration
2234  if (New->getAttr<WeakImportAttr>() &&
2235      Old->getStorageClass() == SC_None &&
2236      !Old->getAttr<WeakImportAttr>()) {
2237    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2238    Diag(Old->getLocation(), diag::note_previous_definition);
2239    // Remove weak_import attribute on new declaration.
2240    New->dropAttr<WeakImportAttr>();
2241  }
2242
2243  // Merge the types.
2244  MergeVarDeclTypes(New, Old);
2245  if (New->isInvalidDecl())
2246    return;
2247
2248  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2249  if (New->getStorageClass() == SC_Static &&
2250      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2251    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253    return New->setInvalidDecl();
2254  }
2255  // C99 6.2.2p4:
2256  //   For an identifier declared with the storage-class specifier
2257  //   extern in a scope in which a prior declaration of that
2258  //   identifier is visible,23) if the prior declaration specifies
2259  //   internal or external linkage, the linkage of the identifier at
2260  //   the later declaration is the same as the linkage specified at
2261  //   the prior declaration. If no prior declaration is visible, or
2262  //   if the prior declaration specifies no linkage, then the
2263  //   identifier has external linkage.
2264  if (New->hasExternalStorage() && Old->hasLinkage())
2265    /* Okay */;
2266  else if (New->getStorageClass() != SC_Static &&
2267           Old->getStorageClass() == SC_Static) {
2268    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2269    Diag(Old->getLocation(), diag::note_previous_definition);
2270    return New->setInvalidDecl();
2271  }
2272
2273  // Check if extern is followed by non-extern and vice-versa.
2274  if (New->hasExternalStorage() &&
2275      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2276    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2277    Diag(Old->getLocation(), diag::note_previous_definition);
2278    return New->setInvalidDecl();
2279  }
2280  if (Old->hasExternalStorage() &&
2281      !New->hasLinkage() && New->isLocalVarDecl()) {
2282    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2283    Diag(Old->getLocation(), diag::note_previous_definition);
2284    return New->setInvalidDecl();
2285  }
2286
2287  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2288
2289  // FIXME: The test for external storage here seems wrong? We still
2290  // need to check for mismatches.
2291  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2292      // Don't complain about out-of-line definitions of static members.
2293      !(Old->getLexicalDeclContext()->isRecord() &&
2294        !New->getLexicalDeclContext()->isRecord())) {
2295    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2296    Diag(Old->getLocation(), diag::note_previous_definition);
2297    return New->setInvalidDecl();
2298  }
2299
2300  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2301    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2302    Diag(Old->getLocation(), diag::note_previous_definition);
2303  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2304    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2305    Diag(Old->getLocation(), diag::note_previous_definition);
2306  }
2307
2308  // C++ doesn't have tentative definitions, so go right ahead and check here.
2309  const VarDecl *Def;
2310  if (getLangOptions().CPlusPlus &&
2311      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2312      (Def = Old->getDefinition())) {
2313    Diag(New->getLocation(), diag::err_redefinition)
2314      << New->getDeclName();
2315    Diag(Def->getLocation(), diag::note_previous_definition);
2316    New->setInvalidDecl();
2317    return;
2318  }
2319  // c99 6.2.2 P4.
2320  // For an identifier declared with the storage-class specifier extern in a
2321  // scope in which a prior declaration of that identifier is visible, if
2322  // the prior declaration specifies internal or external linkage, the linkage
2323  // of the identifier at the later declaration is the same as the linkage
2324  // specified at the prior declaration.
2325  // FIXME. revisit this code.
2326  if (New->hasExternalStorage() &&
2327      Old->getLinkage() == InternalLinkage &&
2328      New->getDeclContext() == Old->getDeclContext())
2329    New->setStorageClass(Old->getStorageClass());
2330
2331  // Keep a chain of previous declarations.
2332  New->setPreviousDeclaration(Old);
2333
2334  // Inherit access appropriately.
2335  New->setAccess(Old->getAccess());
2336}
2337
2338/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2339/// no declarator (e.g. "struct foo;") is parsed.
2340Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2341                                       DeclSpec &DS) {
2342  return ParsedFreeStandingDeclSpec(S, AS, DS,
2343                                    MultiTemplateParamsArg(*this, 0, 0));
2344}
2345
2346/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2347/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2348/// parameters to cope with template friend declarations.
2349Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                       DeclSpec &DS,
2351                                       MultiTemplateParamsArg TemplateParams) {
2352  Decl *TagD = 0;
2353  TagDecl *Tag = 0;
2354  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2355      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2356      DS.getTypeSpecType() == DeclSpec::TST_union ||
2357      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2358    TagD = DS.getRepAsDecl();
2359
2360    if (!TagD) // We probably had an error
2361      return 0;
2362
2363    // Note that the above type specs guarantee that the
2364    // type rep is a Decl, whereas in many of the others
2365    // it's a Type.
2366    if (isa<TagDecl>(TagD))
2367      Tag = cast<TagDecl>(TagD);
2368    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2369      Tag = CTD->getTemplatedDecl();
2370  }
2371
2372  if (Tag)
2373    Tag->setFreeStanding();
2374
2375  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2376    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2377    // or incomplete types shall not be restrict-qualified."
2378    if (TypeQuals & DeclSpec::TQ_restrict)
2379      Diag(DS.getRestrictSpecLoc(),
2380           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2381           << DS.getSourceRange();
2382  }
2383
2384  if (DS.isConstexprSpecified()) {
2385    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2386    // and definitions of functions and variables.
2387    if (Tag)
2388      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2389        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2390            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2391            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2392    else
2393      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2394    // Don't emit warnings after this error.
2395    return TagD;
2396  }
2397
2398  if (DS.isFriendSpecified()) {
2399    // If we're dealing with a decl but not a TagDecl, assume that
2400    // whatever routines created it handled the friendship aspect.
2401    if (TagD && !Tag)
2402      return 0;
2403    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2404  }
2405
2406  // Track whether we warned about the fact that there aren't any
2407  // declarators.
2408  bool emittedWarning = false;
2409
2410  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2411    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2412        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2413      if (getLangOptions().CPlusPlus ||
2414          Record->getDeclContext()->isRecord())
2415        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2416
2417      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2418        << DS.getSourceRange();
2419      emittedWarning = true;
2420    }
2421  }
2422
2423  // Check for Microsoft C extension: anonymous struct.
2424  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2425      CurContext->isRecord() &&
2426      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2427    // Handle 2 kinds of anonymous struct:
2428    //   struct STRUCT;
2429    // and
2430    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2431    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2432    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2433        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2434         DS.getRepAsType().get()->isStructureType())) {
2435      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2436        << DS.getSourceRange();
2437      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2438    }
2439  }
2440
2441  if (getLangOptions().CPlusPlus &&
2442      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2443    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2444      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2445          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2446        Diag(Enum->getLocation(), diag::ext_no_declarators)
2447          << DS.getSourceRange();
2448        emittedWarning = true;
2449      }
2450
2451  // Skip all the checks below if we have a type error.
2452  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2453
2454  if (!DS.isMissingDeclaratorOk()) {
2455    // Warn about typedefs of enums without names, since this is an
2456    // extension in both Microsoft and GNU.
2457    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2458        Tag && isa<EnumDecl>(Tag)) {
2459      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2460        << DS.getSourceRange();
2461      return Tag;
2462    }
2463
2464    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2465      << DS.getSourceRange();
2466    emittedWarning = true;
2467  }
2468
2469  // We're going to complain about a bunch of spurious specifiers;
2470  // only do this if we're declaring a tag, because otherwise we
2471  // should be getting diag::ext_no_declarators.
2472  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2473    return TagD;
2474
2475  // Note that a linkage-specification sets a storage class, but
2476  // 'extern "C" struct foo;' is actually valid and not theoretically
2477  // useless.
2478  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2479    if (!DS.isExternInLinkageSpec())
2480      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2481        << DeclSpec::getSpecifierName(scs);
2482
2483  if (DS.isThreadSpecified())
2484    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2485  if (DS.getTypeQualifiers()) {
2486    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2487      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2488    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2489      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2490    // Restrict is covered above.
2491  }
2492  if (DS.isInlineSpecified())
2493    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2494  if (DS.isVirtualSpecified())
2495    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2496  if (DS.isExplicitSpecified())
2497    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2498
2499  if (DS.isModulePrivateSpecified() &&
2500      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2501    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2502      << Tag->getTagKind()
2503      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2504
2505  // Warn about ignored type attributes, for example:
2506  // __attribute__((aligned)) struct A;
2507  // Attributes should be placed after tag to apply to type declaration.
2508  if (!DS.getAttributes().empty()) {
2509    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2510    if (TypeSpecType == DeclSpec::TST_class ||
2511        TypeSpecType == DeclSpec::TST_struct ||
2512        TypeSpecType == DeclSpec::TST_union ||
2513        TypeSpecType == DeclSpec::TST_enum) {
2514      AttributeList* attrs = DS.getAttributes().getList();
2515      while (attrs) {
2516        Diag(attrs->getScopeLoc(),
2517             diag::warn_declspec_attribute_ignored)
2518        << attrs->getName()
2519        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2520            TypeSpecType == DeclSpec::TST_struct ? 1 :
2521            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2522        attrs = attrs->getNext();
2523      }
2524    }
2525  }
2526
2527  return TagD;
2528}
2529
2530/// We are trying to inject an anonymous member into the given scope;
2531/// check if there's an existing declaration that can't be overloaded.
2532///
2533/// \return true if this is a forbidden redeclaration
2534static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2535                                         Scope *S,
2536                                         DeclContext *Owner,
2537                                         DeclarationName Name,
2538                                         SourceLocation NameLoc,
2539                                         unsigned diagnostic) {
2540  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2541                 Sema::ForRedeclaration);
2542  if (!SemaRef.LookupName(R, S)) return false;
2543
2544  if (R.getAsSingle<TagDecl>())
2545    return false;
2546
2547  // Pick a representative declaration.
2548  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2549  assert(PrevDecl && "Expected a non-null Decl");
2550
2551  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2552    return false;
2553
2554  SemaRef.Diag(NameLoc, diagnostic) << Name;
2555  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2556
2557  return true;
2558}
2559
2560/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2561/// anonymous struct or union AnonRecord into the owning context Owner
2562/// and scope S. This routine will be invoked just after we realize
2563/// that an unnamed union or struct is actually an anonymous union or
2564/// struct, e.g.,
2565///
2566/// @code
2567/// union {
2568///   int i;
2569///   float f;
2570/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2571///    // f into the surrounding scope.x
2572/// @endcode
2573///
2574/// This routine is recursive, injecting the names of nested anonymous
2575/// structs/unions into the owning context and scope as well.
2576static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2577                                                DeclContext *Owner,
2578                                                RecordDecl *AnonRecord,
2579                                                AccessSpecifier AS,
2580                              SmallVector<NamedDecl*, 2> &Chaining,
2581                                                      bool MSAnonStruct) {
2582  unsigned diagKind
2583    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2584                            : diag::err_anonymous_struct_member_redecl;
2585
2586  bool Invalid = false;
2587
2588  // Look every FieldDecl and IndirectFieldDecl with a name.
2589  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2590                               DEnd = AnonRecord->decls_end();
2591       D != DEnd; ++D) {
2592    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2593        cast<NamedDecl>(*D)->getDeclName()) {
2594      ValueDecl *VD = cast<ValueDecl>(*D);
2595      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2596                                       VD->getLocation(), diagKind)) {
2597        // C++ [class.union]p2:
2598        //   The names of the members of an anonymous union shall be
2599        //   distinct from the names of any other entity in the
2600        //   scope in which the anonymous union is declared.
2601        Invalid = true;
2602      } else {
2603        // C++ [class.union]p2:
2604        //   For the purpose of name lookup, after the anonymous union
2605        //   definition, the members of the anonymous union are
2606        //   considered to have been defined in the scope in which the
2607        //   anonymous union is declared.
2608        unsigned OldChainingSize = Chaining.size();
2609        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2610          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2611               PE = IF->chain_end(); PI != PE; ++PI)
2612            Chaining.push_back(*PI);
2613        else
2614          Chaining.push_back(VD);
2615
2616        assert(Chaining.size() >= 2);
2617        NamedDecl **NamedChain =
2618          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2619        for (unsigned i = 0; i < Chaining.size(); i++)
2620          NamedChain[i] = Chaining[i];
2621
2622        IndirectFieldDecl* IndirectField =
2623          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2624                                    VD->getIdentifier(), VD->getType(),
2625                                    NamedChain, Chaining.size());
2626
2627        IndirectField->setAccess(AS);
2628        IndirectField->setImplicit();
2629        SemaRef.PushOnScopeChains(IndirectField, S);
2630
2631        // That includes picking up the appropriate access specifier.
2632        if (AS != AS_none) IndirectField->setAccess(AS);
2633
2634        Chaining.resize(OldChainingSize);
2635      }
2636    }
2637  }
2638
2639  return Invalid;
2640}
2641
2642/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2643/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2644/// illegal input values are mapped to SC_None.
2645static StorageClass
2646StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2647  switch (StorageClassSpec) {
2648  case DeclSpec::SCS_unspecified:    return SC_None;
2649  case DeclSpec::SCS_extern:         return SC_Extern;
2650  case DeclSpec::SCS_static:         return SC_Static;
2651  case DeclSpec::SCS_auto:           return SC_Auto;
2652  case DeclSpec::SCS_register:       return SC_Register;
2653  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2654    // Illegal SCSs map to None: error reporting is up to the caller.
2655  case DeclSpec::SCS_mutable:        // Fall through.
2656  case DeclSpec::SCS_typedef:        return SC_None;
2657  }
2658  llvm_unreachable("unknown storage class specifier");
2659}
2660
2661/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2662/// a StorageClass. Any error reporting is up to the caller:
2663/// illegal input values are mapped to SC_None.
2664static StorageClass
2665StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2666  switch (StorageClassSpec) {
2667  case DeclSpec::SCS_unspecified:    return SC_None;
2668  case DeclSpec::SCS_extern:         return SC_Extern;
2669  case DeclSpec::SCS_static:         return SC_Static;
2670  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2671    // Illegal SCSs map to None: error reporting is up to the caller.
2672  case DeclSpec::SCS_auto:           // Fall through.
2673  case DeclSpec::SCS_mutable:        // Fall through.
2674  case DeclSpec::SCS_register:       // Fall through.
2675  case DeclSpec::SCS_typedef:        return SC_None;
2676  }
2677  llvm_unreachable("unknown storage class specifier");
2678}
2679
2680/// BuildAnonymousStructOrUnion - Handle the declaration of an
2681/// anonymous structure or union. Anonymous unions are a C++ feature
2682/// (C++ [class.union]) and a GNU C extension; anonymous structures
2683/// are a GNU C and GNU C++ extension.
2684Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2685                                             AccessSpecifier AS,
2686                                             RecordDecl *Record) {
2687  DeclContext *Owner = Record->getDeclContext();
2688
2689  // Diagnose whether this anonymous struct/union is an extension.
2690  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2691    Diag(Record->getLocation(), diag::ext_anonymous_union);
2692  else if (!Record->isUnion())
2693    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2694
2695  // C and C++ require different kinds of checks for anonymous
2696  // structs/unions.
2697  bool Invalid = false;
2698  if (getLangOptions().CPlusPlus) {
2699    const char* PrevSpec = 0;
2700    unsigned DiagID;
2701    if (Record->isUnion()) {
2702      // C++ [class.union]p6:
2703      //   Anonymous unions declared in a named namespace or in the
2704      //   global namespace shall be declared static.
2705      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2706          (isa<TranslationUnitDecl>(Owner) ||
2707           (isa<NamespaceDecl>(Owner) &&
2708            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2709        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2710          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2711
2712        // Recover by adding 'static'.
2713        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2714                               PrevSpec, DiagID);
2715      }
2716      // C++ [class.union]p6:
2717      //   A storage class is not allowed in a declaration of an
2718      //   anonymous union in a class scope.
2719      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2720               isa<RecordDecl>(Owner)) {
2721        Diag(DS.getStorageClassSpecLoc(),
2722             diag::err_anonymous_union_with_storage_spec)
2723          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2724
2725        // Recover by removing the storage specifier.
2726        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2727                               SourceLocation(),
2728                               PrevSpec, DiagID);
2729      }
2730    }
2731
2732    // Ignore const/volatile/restrict qualifiers.
2733    if (DS.getTypeQualifiers()) {
2734      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2735        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2736          << Record->isUnion() << 0
2737          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2738      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2739        Diag(DS.getVolatileSpecLoc(),
2740             diag::ext_anonymous_struct_union_qualified)
2741          << Record->isUnion() << 1
2742          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2743      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2744        Diag(DS.getRestrictSpecLoc(),
2745             diag::ext_anonymous_struct_union_qualified)
2746          << Record->isUnion() << 2
2747          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2748
2749      DS.ClearTypeQualifiers();
2750    }
2751
2752    // C++ [class.union]p2:
2753    //   The member-specification of an anonymous union shall only
2754    //   define non-static data members. [Note: nested types and
2755    //   functions cannot be declared within an anonymous union. ]
2756    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2757                                 MemEnd = Record->decls_end();
2758         Mem != MemEnd; ++Mem) {
2759      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2760        // C++ [class.union]p3:
2761        //   An anonymous union shall not have private or protected
2762        //   members (clause 11).
2763        assert(FD->getAccess() != AS_none);
2764        if (FD->getAccess() != AS_public) {
2765          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2766            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2767          Invalid = true;
2768        }
2769
2770        // C++ [class.union]p1
2771        //   An object of a class with a non-trivial constructor, a non-trivial
2772        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2773        //   assignment operator cannot be a member of a union, nor can an
2774        //   array of such objects.
2775        if (CheckNontrivialField(FD))
2776          Invalid = true;
2777      } else if ((*Mem)->isImplicit()) {
2778        // Any implicit members are fine.
2779      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2780        // This is a type that showed up in an
2781        // elaborated-type-specifier inside the anonymous struct or
2782        // union, but which actually declares a type outside of the
2783        // anonymous struct or union. It's okay.
2784      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2785        if (!MemRecord->isAnonymousStructOrUnion() &&
2786            MemRecord->getDeclName()) {
2787          // Visual C++ allows type definition in anonymous struct or union.
2788          if (getLangOptions().MicrosoftExt)
2789            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2790              << (int)Record->isUnion();
2791          else {
2792            // This is a nested type declaration.
2793            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2794              << (int)Record->isUnion();
2795            Invalid = true;
2796          }
2797        }
2798      } else if (isa<AccessSpecDecl>(*Mem)) {
2799        // Any access specifier is fine.
2800      } else {
2801        // We have something that isn't a non-static data
2802        // member. Complain about it.
2803        unsigned DK = diag::err_anonymous_record_bad_member;
2804        if (isa<TypeDecl>(*Mem))
2805          DK = diag::err_anonymous_record_with_type;
2806        else if (isa<FunctionDecl>(*Mem))
2807          DK = diag::err_anonymous_record_with_function;
2808        else if (isa<VarDecl>(*Mem))
2809          DK = diag::err_anonymous_record_with_static;
2810
2811        // Visual C++ allows type definition in anonymous struct or union.
2812        if (getLangOptions().MicrosoftExt &&
2813            DK == diag::err_anonymous_record_with_type)
2814          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2815            << (int)Record->isUnion();
2816        else {
2817          Diag((*Mem)->getLocation(), DK)
2818              << (int)Record->isUnion();
2819          Invalid = true;
2820        }
2821      }
2822    }
2823  }
2824
2825  if (!Record->isUnion() && !Owner->isRecord()) {
2826    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2827      << (int)getLangOptions().CPlusPlus;
2828    Invalid = true;
2829  }
2830
2831  // Mock up a declarator.
2832  Declarator Dc(DS, Declarator::MemberContext);
2833  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2834  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2835
2836  // Create a declaration for this anonymous struct/union.
2837  NamedDecl *Anon = 0;
2838  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2839    Anon = FieldDecl::Create(Context, OwningClass,
2840                             DS.getSourceRange().getBegin(),
2841                             Record->getLocation(),
2842                             /*IdentifierInfo=*/0,
2843                             Context.getTypeDeclType(Record),
2844                             TInfo,
2845                             /*BitWidth=*/0, /*Mutable=*/false,
2846                             /*HasInit=*/false);
2847    Anon->setAccess(AS);
2848    if (getLangOptions().CPlusPlus)
2849      FieldCollector->Add(cast<FieldDecl>(Anon));
2850  } else {
2851    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2852    assert(SCSpec != DeclSpec::SCS_typedef &&
2853           "Parser allowed 'typedef' as storage class VarDecl.");
2854    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2855    if (SCSpec == DeclSpec::SCS_mutable) {
2856      // mutable can only appear on non-static class members, so it's always
2857      // an error here
2858      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2859      Invalid = true;
2860      SC = SC_None;
2861    }
2862    SCSpec = DS.getStorageClassSpecAsWritten();
2863    VarDecl::StorageClass SCAsWritten
2864      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2865
2866    Anon = VarDecl::Create(Context, Owner,
2867                           DS.getSourceRange().getBegin(),
2868                           Record->getLocation(), /*IdentifierInfo=*/0,
2869                           Context.getTypeDeclType(Record),
2870                           TInfo, SC, SCAsWritten);
2871
2872    // Default-initialize the implicit variable. This initialization will be
2873    // trivial in almost all cases, except if a union member has an in-class
2874    // initializer:
2875    //   union { int n = 0; };
2876    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2877  }
2878  Anon->setImplicit();
2879
2880  // Add the anonymous struct/union object to the current
2881  // context. We'll be referencing this object when we refer to one of
2882  // its members.
2883  Owner->addDecl(Anon);
2884
2885  // Inject the members of the anonymous struct/union into the owning
2886  // context and into the identifier resolver chain for name lookup
2887  // purposes.
2888  SmallVector<NamedDecl*, 2> Chain;
2889  Chain.push_back(Anon);
2890
2891  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2892                                          Chain, false))
2893    Invalid = true;
2894
2895  // Mark this as an anonymous struct/union type. Note that we do not
2896  // do this until after we have already checked and injected the
2897  // members of this anonymous struct/union type, because otherwise
2898  // the members could be injected twice: once by DeclContext when it
2899  // builds its lookup table, and once by
2900  // InjectAnonymousStructOrUnionMembers.
2901  Record->setAnonymousStructOrUnion(true);
2902
2903  if (Invalid)
2904    Anon->setInvalidDecl();
2905
2906  return Anon;
2907}
2908
2909/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2910/// Microsoft C anonymous structure.
2911/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2912/// Example:
2913///
2914/// struct A { int a; };
2915/// struct B { struct A; int b; };
2916///
2917/// void foo() {
2918///   B var;
2919///   var.a = 3;
2920/// }
2921///
2922Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2923                                           RecordDecl *Record) {
2924
2925  // If there is no Record, get the record via the typedef.
2926  if (!Record)
2927    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2928
2929  // Mock up a declarator.
2930  Declarator Dc(DS, Declarator::TypeNameContext);
2931  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2932  assert(TInfo && "couldn't build declarator info for anonymous struct");
2933
2934  // Create a declaration for this anonymous struct.
2935  NamedDecl* Anon = FieldDecl::Create(Context,
2936                             cast<RecordDecl>(CurContext),
2937                             DS.getSourceRange().getBegin(),
2938                             DS.getSourceRange().getBegin(),
2939                             /*IdentifierInfo=*/0,
2940                             Context.getTypeDeclType(Record),
2941                             TInfo,
2942                             /*BitWidth=*/0, /*Mutable=*/false,
2943                             /*HasInit=*/false);
2944  Anon->setImplicit();
2945
2946  // Add the anonymous struct object to the current context.
2947  CurContext->addDecl(Anon);
2948
2949  // Inject the members of the anonymous struct into the current
2950  // context and into the identifier resolver chain for name lookup
2951  // purposes.
2952  SmallVector<NamedDecl*, 2> Chain;
2953  Chain.push_back(Anon);
2954
2955  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2956                                          Record->getDefinition(),
2957                                          AS_none, Chain, true))
2958    Anon->setInvalidDecl();
2959
2960  return Anon;
2961}
2962
2963/// GetNameForDeclarator - Determine the full declaration name for the
2964/// given Declarator.
2965DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2966  return GetNameFromUnqualifiedId(D.getName());
2967}
2968
2969/// \brief Retrieves the declaration name from a parsed unqualified-id.
2970DeclarationNameInfo
2971Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2972  DeclarationNameInfo NameInfo;
2973  NameInfo.setLoc(Name.StartLocation);
2974
2975  switch (Name.getKind()) {
2976
2977  case UnqualifiedId::IK_ImplicitSelfParam:
2978  case UnqualifiedId::IK_Identifier:
2979    NameInfo.setName(Name.Identifier);
2980    NameInfo.setLoc(Name.StartLocation);
2981    return NameInfo;
2982
2983  case UnqualifiedId::IK_OperatorFunctionId:
2984    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2985                                           Name.OperatorFunctionId.Operator));
2986    NameInfo.setLoc(Name.StartLocation);
2987    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2988      = Name.OperatorFunctionId.SymbolLocations[0];
2989    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2990      = Name.EndLocation.getRawEncoding();
2991    return NameInfo;
2992
2993  case UnqualifiedId::IK_LiteralOperatorId:
2994    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2995                                                           Name.Identifier));
2996    NameInfo.setLoc(Name.StartLocation);
2997    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2998    return NameInfo;
2999
3000  case UnqualifiedId::IK_ConversionFunctionId: {
3001    TypeSourceInfo *TInfo;
3002    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3003    if (Ty.isNull())
3004      return DeclarationNameInfo();
3005    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3006                                               Context.getCanonicalType(Ty)));
3007    NameInfo.setLoc(Name.StartLocation);
3008    NameInfo.setNamedTypeInfo(TInfo);
3009    return NameInfo;
3010  }
3011
3012  case UnqualifiedId::IK_ConstructorName: {
3013    TypeSourceInfo *TInfo;
3014    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3015    if (Ty.isNull())
3016      return DeclarationNameInfo();
3017    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3018                                              Context.getCanonicalType(Ty)));
3019    NameInfo.setLoc(Name.StartLocation);
3020    NameInfo.setNamedTypeInfo(TInfo);
3021    return NameInfo;
3022  }
3023
3024  case UnqualifiedId::IK_ConstructorTemplateId: {
3025    // In well-formed code, we can only have a constructor
3026    // template-id that refers to the current context, so go there
3027    // to find the actual type being constructed.
3028    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3029    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3030      return DeclarationNameInfo();
3031
3032    // Determine the type of the class being constructed.
3033    QualType CurClassType = Context.getTypeDeclType(CurClass);
3034
3035    // FIXME: Check two things: that the template-id names the same type as
3036    // CurClassType, and that the template-id does not occur when the name
3037    // was qualified.
3038
3039    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3040                                    Context.getCanonicalType(CurClassType)));
3041    NameInfo.setLoc(Name.StartLocation);
3042    // FIXME: should we retrieve TypeSourceInfo?
3043    NameInfo.setNamedTypeInfo(0);
3044    return NameInfo;
3045  }
3046
3047  case UnqualifiedId::IK_DestructorName: {
3048    TypeSourceInfo *TInfo;
3049    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3050    if (Ty.isNull())
3051      return DeclarationNameInfo();
3052    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3053                                              Context.getCanonicalType(Ty)));
3054    NameInfo.setLoc(Name.StartLocation);
3055    NameInfo.setNamedTypeInfo(TInfo);
3056    return NameInfo;
3057  }
3058
3059  case UnqualifiedId::IK_TemplateId: {
3060    TemplateName TName = Name.TemplateId->Template.get();
3061    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3062    return Context.getNameForTemplate(TName, TNameLoc);
3063  }
3064
3065  } // switch (Name.getKind())
3066
3067  llvm_unreachable("Unknown name kind");
3068}
3069
3070static QualType getCoreType(QualType Ty) {
3071  do {
3072    if (Ty->isPointerType() || Ty->isReferenceType())
3073      Ty = Ty->getPointeeType();
3074    else if (Ty->isArrayType())
3075      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3076    else
3077      return Ty.withoutLocalFastQualifiers();
3078  } while (true);
3079}
3080
3081/// hasSimilarParameters - Determine whether the C++ functions Declaration
3082/// and Definition have "nearly" matching parameters. This heuristic is
3083/// used to improve diagnostics in the case where an out-of-line function
3084/// definition doesn't match any declaration within the class or namespace.
3085/// Also sets Params to the list of indices to the parameters that differ
3086/// between the declaration and the definition. If hasSimilarParameters
3087/// returns true and Params is empty, then all of the parameters match.
3088static bool hasSimilarParameters(ASTContext &Context,
3089                                     FunctionDecl *Declaration,
3090                                     FunctionDecl *Definition,
3091                                     llvm::SmallVectorImpl<unsigned> &Params) {
3092  Params.clear();
3093  if (Declaration->param_size() != Definition->param_size())
3094    return false;
3095  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3096    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3097    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3098
3099    // The parameter types are identical
3100    if (Context.hasSameType(DefParamTy, DeclParamTy))
3101      continue;
3102
3103    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3104    QualType DefParamBaseTy = getCoreType(DefParamTy);
3105    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3106    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3107
3108    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3109        (DeclTyName && DeclTyName == DefTyName))
3110      Params.push_back(Idx);
3111    else  // The two parameters aren't even close
3112      return false;
3113  }
3114
3115  return true;
3116}
3117
3118/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3119/// declarator needs to be rebuilt in the current instantiation.
3120/// Any bits of declarator which appear before the name are valid for
3121/// consideration here.  That's specifically the type in the decl spec
3122/// and the base type in any member-pointer chunks.
3123static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3124                                                    DeclarationName Name) {
3125  // The types we specifically need to rebuild are:
3126  //   - typenames, typeofs, and decltypes
3127  //   - types which will become injected class names
3128  // Of course, we also need to rebuild any type referencing such a
3129  // type.  It's safest to just say "dependent", but we call out a
3130  // few cases here.
3131
3132  DeclSpec &DS = D.getMutableDeclSpec();
3133  switch (DS.getTypeSpecType()) {
3134  case DeclSpec::TST_typename:
3135  case DeclSpec::TST_typeofType:
3136  case DeclSpec::TST_decltype:
3137  case DeclSpec::TST_underlyingType:
3138  case DeclSpec::TST_atomic: {
3139    // Grab the type from the parser.
3140    TypeSourceInfo *TSI = 0;
3141    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3142    if (T.isNull() || !T->isDependentType()) break;
3143
3144    // Make sure there's a type source info.  This isn't really much
3145    // of a waste; most dependent types should have type source info
3146    // attached already.
3147    if (!TSI)
3148      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3149
3150    // Rebuild the type in the current instantiation.
3151    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3152    if (!TSI) return true;
3153
3154    // Store the new type back in the decl spec.
3155    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3156    DS.UpdateTypeRep(LocType);
3157    break;
3158  }
3159
3160  case DeclSpec::TST_typeofExpr: {
3161    Expr *E = DS.getRepAsExpr();
3162    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3163    if (Result.isInvalid()) return true;
3164    DS.UpdateExprRep(Result.get());
3165    break;
3166  }
3167
3168  default:
3169    // Nothing to do for these decl specs.
3170    break;
3171  }
3172
3173  // It doesn't matter what order we do this in.
3174  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3175    DeclaratorChunk &Chunk = D.getTypeObject(I);
3176
3177    // The only type information in the declarator which can come
3178    // before the declaration name is the base type of a member
3179    // pointer.
3180    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3181      continue;
3182
3183    // Rebuild the scope specifier in-place.
3184    CXXScopeSpec &SS = Chunk.Mem.Scope();
3185    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3186      return true;
3187  }
3188
3189  return false;
3190}
3191
3192Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3193  D.setFunctionDefinitionKind(FDK_Declaration);
3194  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3195
3196  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3197      Dcl->getDeclContext()->isFileContext())
3198    Dcl->setTopLevelDeclInObjCContainer();
3199
3200  return Dcl;
3201}
3202
3203/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3204///   If T is the name of a class, then each of the following shall have a
3205///   name different from T:
3206///     - every static data member of class T;
3207///     - every member function of class T
3208///     - every member of class T that is itself a type;
3209/// \returns true if the declaration name violates these rules.
3210bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3211                                   DeclarationNameInfo NameInfo) {
3212  DeclarationName Name = NameInfo.getName();
3213
3214  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3215    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3216      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3217      return true;
3218    }
3219
3220  return false;
3221}
3222
3223Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3224                             MultiTemplateParamsArg TemplateParamLists) {
3225  // TODO: consider using NameInfo for diagnostic.
3226  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3227  DeclarationName Name = NameInfo.getName();
3228
3229  // All of these full declarators require an identifier.  If it doesn't have
3230  // one, the ParsedFreeStandingDeclSpec action should be used.
3231  if (!Name) {
3232    if (!D.isInvalidType())  // Reject this if we think it is valid.
3233      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3234           diag::err_declarator_need_ident)
3235        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3236    return 0;
3237  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3238    return 0;
3239
3240  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3241  // we find one that is.
3242  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3243         (S->getFlags() & Scope::TemplateParamScope) != 0)
3244    S = S->getParent();
3245
3246  DeclContext *DC = CurContext;
3247  if (D.getCXXScopeSpec().isInvalid())
3248    D.setInvalidType();
3249  else if (D.getCXXScopeSpec().isSet()) {
3250    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3251                                        UPPC_DeclarationQualifier))
3252      return 0;
3253
3254    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3255    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3256    if (!DC) {
3257      // If we could not compute the declaration context, it's because the
3258      // declaration context is dependent but does not refer to a class,
3259      // class template, or class template partial specialization. Complain
3260      // and return early, to avoid the coming semantic disaster.
3261      Diag(D.getIdentifierLoc(),
3262           diag::err_template_qualified_declarator_no_match)
3263        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3264        << D.getCXXScopeSpec().getRange();
3265      return 0;
3266    }
3267    bool IsDependentContext = DC->isDependentContext();
3268
3269    if (!IsDependentContext &&
3270        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3271      return 0;
3272
3273    if (isa<CXXRecordDecl>(DC)) {
3274      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3275        Diag(D.getIdentifierLoc(),
3276             diag::err_member_def_undefined_record)
3277          << Name << DC << D.getCXXScopeSpec().getRange();
3278        D.setInvalidType();
3279      } else if (isa<CXXRecordDecl>(CurContext) &&
3280                 !D.getDeclSpec().isFriendSpecified()) {
3281        // The user provided a superfluous scope specifier inside a class
3282        // definition:
3283        //
3284        // class X {
3285        //   void X::f();
3286        // };
3287        if (CurContext->Equals(DC)) {
3288          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3289            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3290        } else {
3291          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3292            << Name << D.getCXXScopeSpec().getRange();
3293
3294          // C++ constructors and destructors with incorrect scopes can break
3295          // our AST invariants by having the wrong underlying types. If
3296          // that's the case, then drop this declaration entirely.
3297          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3298               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3299              !Context.hasSameType(Name.getCXXNameType(),
3300                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3301            return 0;
3302        }
3303
3304        // Pretend that this qualifier was not here.
3305        D.getCXXScopeSpec().clear();
3306      }
3307    }
3308
3309    // Check whether we need to rebuild the type of the given
3310    // declaration in the current instantiation.
3311    if (EnteringContext && IsDependentContext &&
3312        TemplateParamLists.size() != 0) {
3313      ContextRAII SavedContext(*this, DC);
3314      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3315        D.setInvalidType();
3316    }
3317  }
3318
3319  if (DiagnoseClassNameShadow(DC, NameInfo))
3320    // If this is a typedef, we'll end up spewing multiple diagnostics.
3321    // Just return early; it's safer.
3322    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3323      return 0;
3324
3325  NamedDecl *New;
3326
3327  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3328  QualType R = TInfo->getType();
3329
3330  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3331                                      UPPC_DeclarationType))
3332    D.setInvalidType();
3333
3334  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3335                        ForRedeclaration);
3336
3337  // See if this is a redefinition of a variable in the same scope.
3338  if (!D.getCXXScopeSpec().isSet()) {
3339    bool IsLinkageLookup = false;
3340
3341    // If the declaration we're planning to build will be a function
3342    // or object with linkage, then look for another declaration with
3343    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3344    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3345      /* Do nothing*/;
3346    else if (R->isFunctionType()) {
3347      if (CurContext->isFunctionOrMethod() ||
3348          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3349        IsLinkageLookup = true;
3350    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3351      IsLinkageLookup = true;
3352    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3353             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3354      IsLinkageLookup = true;
3355
3356    if (IsLinkageLookup)
3357      Previous.clear(LookupRedeclarationWithLinkage);
3358
3359    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3360  } else { // Something like "int foo::x;"
3361    LookupQualifiedName(Previous, DC);
3362
3363    // Don't consider using declarations as previous declarations for
3364    // out-of-line members.
3365    RemoveUsingDecls(Previous);
3366
3367    // C++ 7.3.1.2p2:
3368    // Members (including explicit specializations of templates) of a named
3369    // namespace can also be defined outside that namespace by explicit
3370    // qualification of the name being defined, provided that the entity being
3371    // defined was already declared in the namespace and the definition appears
3372    // after the point of declaration in a namespace that encloses the
3373    // declarations namespace.
3374    //
3375    // Note that we only check the context at this point. We don't yet
3376    // have enough information to make sure that PrevDecl is actually
3377    // the declaration we want to match. For example, given:
3378    //
3379    //   class X {
3380    //     void f();
3381    //     void f(float);
3382    //   };
3383    //
3384    //   void X::f(int) { } // ill-formed
3385    //
3386    // In this case, PrevDecl will point to the overload set
3387    // containing the two f's declared in X, but neither of them
3388    // matches.
3389
3390    // First check whether we named the global scope.
3391    if (isa<TranslationUnitDecl>(DC)) {
3392      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3393        << Name << D.getCXXScopeSpec().getRange();
3394    } else {
3395      DeclContext *Cur = CurContext;
3396      while (isa<LinkageSpecDecl>(Cur))
3397        Cur = Cur->getParent();
3398      if (!Cur->Encloses(DC)) {
3399        // The qualifying scope doesn't enclose the original declaration.
3400        // Emit diagnostic based on current scope.
3401        SourceLocation L = D.getIdentifierLoc();
3402        SourceRange R = D.getCXXScopeSpec().getRange();
3403        if (isa<FunctionDecl>(Cur))
3404          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3405        else
3406          Diag(L, diag::err_invalid_declarator_scope)
3407            << Name << cast<NamedDecl>(DC) << R;
3408        D.setInvalidType();
3409      }
3410
3411      // C++11 8.3p1:
3412      // ... "The nested-name-specifier of the qualified declarator-id shall
3413      // not begin with a decltype-specifer"
3414      NestedNameSpecifierLoc SpecLoc =
3415            D.getCXXScopeSpec().getWithLocInContext(Context);
3416      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3417                        "NestedNameSpecifierLoc");
3418      while (SpecLoc.getPrefix())
3419        SpecLoc = SpecLoc.getPrefix();
3420      if (dyn_cast_or_null<DecltypeType>(
3421            SpecLoc.getNestedNameSpecifier()->getAsType()))
3422        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3423          << SpecLoc.getTypeLoc().getSourceRange();
3424    }
3425  }
3426
3427  if (Previous.isSingleResult() &&
3428      Previous.getFoundDecl()->isTemplateParameter()) {
3429    // Maybe we will complain about the shadowed template parameter.
3430    if (!D.isInvalidType())
3431      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3432                                      Previous.getFoundDecl());
3433
3434    // Just pretend that we didn't see the previous declaration.
3435    Previous.clear();
3436  }
3437
3438  // In C++, the previous declaration we find might be a tag type
3439  // (class or enum). In this case, the new declaration will hide the
3440  // tag type. Note that this does does not apply if we're declaring a
3441  // typedef (C++ [dcl.typedef]p4).
3442  if (Previous.isSingleTagDecl() &&
3443      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3444    Previous.clear();
3445
3446  bool AddToScope = true;
3447  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3448    if (TemplateParamLists.size()) {
3449      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3450      return 0;
3451    }
3452
3453    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3454  } else if (R->isFunctionType()) {
3455    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3456                                  move(TemplateParamLists),
3457                                  AddToScope);
3458  } else {
3459    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3460                                  move(TemplateParamLists));
3461  }
3462
3463  if (New == 0)
3464    return 0;
3465
3466  // If this has an identifier and is not an invalid redeclaration or
3467  // function template specialization, add it to the scope stack.
3468  if (New->getDeclName() && AddToScope &&
3469       !(D.isRedeclaration() && New->isInvalidDecl()))
3470    PushOnScopeChains(New, S);
3471
3472  return New;
3473}
3474
3475/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3476/// types into constant array types in certain situations which would otherwise
3477/// be errors (for GCC compatibility).
3478static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3479                                                    ASTContext &Context,
3480                                                    bool &SizeIsNegative,
3481                                                    llvm::APSInt &Oversized) {
3482  // This method tries to turn a variable array into a constant
3483  // array even when the size isn't an ICE.  This is necessary
3484  // for compatibility with code that depends on gcc's buggy
3485  // constant expression folding, like struct {char x[(int)(char*)2];}
3486  SizeIsNegative = false;
3487  Oversized = 0;
3488
3489  if (T->isDependentType())
3490    return QualType();
3491
3492  QualifierCollector Qs;
3493  const Type *Ty = Qs.strip(T);
3494
3495  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3496    QualType Pointee = PTy->getPointeeType();
3497    QualType FixedType =
3498        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3499                                            Oversized);
3500    if (FixedType.isNull()) return FixedType;
3501    FixedType = Context.getPointerType(FixedType);
3502    return Qs.apply(Context, FixedType);
3503  }
3504  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3505    QualType Inner = PTy->getInnerType();
3506    QualType FixedType =
3507        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3508                                            Oversized);
3509    if (FixedType.isNull()) return FixedType;
3510    FixedType = Context.getParenType(FixedType);
3511    return Qs.apply(Context, FixedType);
3512  }
3513
3514  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3515  if (!VLATy)
3516    return QualType();
3517  // FIXME: We should probably handle this case
3518  if (VLATy->getElementType()->isVariablyModifiedType())
3519    return QualType();
3520
3521  llvm::APSInt Res;
3522  if (!VLATy->getSizeExpr() ||
3523      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3524    return QualType();
3525
3526  // Check whether the array size is negative.
3527  if (Res.isSigned() && Res.isNegative()) {
3528    SizeIsNegative = true;
3529    return QualType();
3530  }
3531
3532  // Check whether the array is too large to be addressed.
3533  unsigned ActiveSizeBits
3534    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3535                                              Res);
3536  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3537    Oversized = Res;
3538    return QualType();
3539  }
3540
3541  return Context.getConstantArrayType(VLATy->getElementType(),
3542                                      Res, ArrayType::Normal, 0);
3543}
3544
3545/// \brief Register the given locally-scoped external C declaration so
3546/// that it can be found later for redeclarations
3547void
3548Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3549                                       const LookupResult &Previous,
3550                                       Scope *S) {
3551  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3552         "Decl is not a locally-scoped decl!");
3553  // Note that we have a locally-scoped external with this name.
3554  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3555
3556  if (!Previous.isSingleResult())
3557    return;
3558
3559  NamedDecl *PrevDecl = Previous.getFoundDecl();
3560
3561  // If there was a previous declaration of this variable, it may be
3562  // in our identifier chain. Update the identifier chain with the new
3563  // declaration.
3564  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3565    // The previous declaration was found on the identifer resolver
3566    // chain, so remove it from its scope.
3567
3568    if (S->isDeclScope(PrevDecl)) {
3569      // Special case for redeclarations in the SAME scope.
3570      // Because this declaration is going to be added to the identifier chain
3571      // later, we should temporarily take it OFF the chain.
3572      IdResolver.RemoveDecl(ND);
3573
3574    } else {
3575      // Find the scope for the original declaration.
3576      while (S && !S->isDeclScope(PrevDecl))
3577        S = S->getParent();
3578    }
3579
3580    if (S)
3581      S->RemoveDecl(PrevDecl);
3582  }
3583}
3584
3585llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3586Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3587  if (ExternalSource) {
3588    // Load locally-scoped external decls from the external source.
3589    SmallVector<NamedDecl *, 4> Decls;
3590    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3591    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3592      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3593        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3594      if (Pos == LocallyScopedExternalDecls.end())
3595        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3596    }
3597  }
3598
3599  return LocallyScopedExternalDecls.find(Name);
3600}
3601
3602/// \brief Diagnose function specifiers on a declaration of an identifier that
3603/// does not identify a function.
3604void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3605  // FIXME: We should probably indicate the identifier in question to avoid
3606  // confusion for constructs like "inline int a(), b;"
3607  if (D.getDeclSpec().isInlineSpecified())
3608    Diag(D.getDeclSpec().getInlineSpecLoc(),
3609         diag::err_inline_non_function);
3610
3611  if (D.getDeclSpec().isVirtualSpecified())
3612    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3613         diag::err_virtual_non_function);
3614
3615  if (D.getDeclSpec().isExplicitSpecified())
3616    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3617         diag::err_explicit_non_function);
3618}
3619
3620NamedDecl*
3621Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3622                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3623  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3624  if (D.getCXXScopeSpec().isSet()) {
3625    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3626      << D.getCXXScopeSpec().getRange();
3627    D.setInvalidType();
3628    // Pretend we didn't see the scope specifier.
3629    DC = CurContext;
3630    Previous.clear();
3631  }
3632
3633  if (getLangOptions().CPlusPlus) {
3634    // Check that there are no default arguments (C++ only).
3635    CheckExtraCXXDefaultArguments(D);
3636  }
3637
3638  DiagnoseFunctionSpecifiers(D);
3639
3640  if (D.getDeclSpec().isThreadSpecified())
3641    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3642  if (D.getDeclSpec().isConstexprSpecified())
3643    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3644      << 1;
3645
3646  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3647    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3648      << D.getName().getSourceRange();
3649    return 0;
3650  }
3651
3652  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3653  if (!NewTD) return 0;
3654
3655  // Handle attributes prior to checking for duplicates in MergeVarDecl
3656  ProcessDeclAttributes(S, NewTD, D);
3657
3658  CheckTypedefForVariablyModifiedType(S, NewTD);
3659
3660  bool Redeclaration = D.isRedeclaration();
3661  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3662  D.setRedeclaration(Redeclaration);
3663  return ND;
3664}
3665
3666void
3667Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3668  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3669  // then it shall have block scope.
3670  // Note that variably modified types must be fixed before merging the decl so
3671  // that redeclarations will match.
3672  QualType T = NewTD->getUnderlyingType();
3673  if (T->isVariablyModifiedType()) {
3674    getCurFunction()->setHasBranchProtectedScope();
3675
3676    if (S->getFnParent() == 0) {
3677      bool SizeIsNegative;
3678      llvm::APSInt Oversized;
3679      QualType FixedTy =
3680          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3681                                              Oversized);
3682      if (!FixedTy.isNull()) {
3683        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3684        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3685      } else {
3686        if (SizeIsNegative)
3687          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3688        else if (T->isVariableArrayType())
3689          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3690        else if (Oversized.getBoolValue())
3691          Diag(NewTD->getLocation(), diag::err_array_too_large)
3692            << Oversized.toString(10);
3693        else
3694          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3695        NewTD->setInvalidDecl();
3696      }
3697    }
3698  }
3699}
3700
3701
3702/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3703/// declares a typedef-name, either using the 'typedef' type specifier or via
3704/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3705NamedDecl*
3706Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3707                           LookupResult &Previous, bool &Redeclaration) {
3708  // Merge the decl with the existing one if appropriate. If the decl is
3709  // in an outer scope, it isn't the same thing.
3710  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3711                       /*ExplicitInstantiationOrSpecialization=*/false);
3712  if (!Previous.empty()) {
3713    Redeclaration = true;
3714    MergeTypedefNameDecl(NewTD, Previous);
3715  }
3716
3717  // If this is the C FILE type, notify the AST context.
3718  if (IdentifierInfo *II = NewTD->getIdentifier())
3719    if (!NewTD->isInvalidDecl() &&
3720        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3721      if (II->isStr("FILE"))
3722        Context.setFILEDecl(NewTD);
3723      else if (II->isStr("jmp_buf"))
3724        Context.setjmp_bufDecl(NewTD);
3725      else if (II->isStr("sigjmp_buf"))
3726        Context.setsigjmp_bufDecl(NewTD);
3727      else if (II->isStr("ucontext_t"))
3728        Context.setucontext_tDecl(NewTD);
3729      else if (II->isStr("__builtin_va_list"))
3730        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3731    }
3732
3733  return NewTD;
3734}
3735
3736/// \brief Determines whether the given declaration is an out-of-scope
3737/// previous declaration.
3738///
3739/// This routine should be invoked when name lookup has found a
3740/// previous declaration (PrevDecl) that is not in the scope where a
3741/// new declaration by the same name is being introduced. If the new
3742/// declaration occurs in a local scope, previous declarations with
3743/// linkage may still be considered previous declarations (C99
3744/// 6.2.2p4-5, C++ [basic.link]p6).
3745///
3746/// \param PrevDecl the previous declaration found by name
3747/// lookup
3748///
3749/// \param DC the context in which the new declaration is being
3750/// declared.
3751///
3752/// \returns true if PrevDecl is an out-of-scope previous declaration
3753/// for a new delcaration with the same name.
3754static bool
3755isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3756                                ASTContext &Context) {
3757  if (!PrevDecl)
3758    return false;
3759
3760  if (!PrevDecl->hasLinkage())
3761    return false;
3762
3763  if (Context.getLangOptions().CPlusPlus) {
3764    // C++ [basic.link]p6:
3765    //   If there is a visible declaration of an entity with linkage
3766    //   having the same name and type, ignoring entities declared
3767    //   outside the innermost enclosing namespace scope, the block
3768    //   scope declaration declares that same entity and receives the
3769    //   linkage of the previous declaration.
3770    DeclContext *OuterContext = DC->getRedeclContext();
3771    if (!OuterContext->isFunctionOrMethod())
3772      // This rule only applies to block-scope declarations.
3773      return false;
3774
3775    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3776    if (PrevOuterContext->isRecord())
3777      // We found a member function: ignore it.
3778      return false;
3779
3780    // Find the innermost enclosing namespace for the new and
3781    // previous declarations.
3782    OuterContext = OuterContext->getEnclosingNamespaceContext();
3783    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3784
3785    // The previous declaration is in a different namespace, so it
3786    // isn't the same function.
3787    if (!OuterContext->Equals(PrevOuterContext))
3788      return false;
3789  }
3790
3791  return true;
3792}
3793
3794static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3795  CXXScopeSpec &SS = D.getCXXScopeSpec();
3796  if (!SS.isSet()) return;
3797  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3798}
3799
3800bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3801  QualType type = decl->getType();
3802  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3803  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3804    // Various kinds of declaration aren't allowed to be __autoreleasing.
3805    unsigned kind = -1U;
3806    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3807      if (var->hasAttr<BlocksAttr>())
3808        kind = 0; // __block
3809      else if (!var->hasLocalStorage())
3810        kind = 1; // global
3811    } else if (isa<ObjCIvarDecl>(decl)) {
3812      kind = 3; // ivar
3813    } else if (isa<FieldDecl>(decl)) {
3814      kind = 2; // field
3815    }
3816
3817    if (kind != -1U) {
3818      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3819        << kind;
3820    }
3821  } else if (lifetime == Qualifiers::OCL_None) {
3822    // Try to infer lifetime.
3823    if (!type->isObjCLifetimeType())
3824      return false;
3825
3826    lifetime = type->getObjCARCImplicitLifetime();
3827    type = Context.getLifetimeQualifiedType(type, lifetime);
3828    decl->setType(type);
3829  }
3830
3831  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3832    // Thread-local variables cannot have lifetime.
3833    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3834        var->isThreadSpecified()) {
3835      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3836        << var->getType();
3837      return true;
3838    }
3839  }
3840
3841  return false;
3842}
3843
3844NamedDecl*
3845Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3846                              TypeSourceInfo *TInfo, LookupResult &Previous,
3847                              MultiTemplateParamsArg TemplateParamLists) {
3848  QualType R = TInfo->getType();
3849  DeclarationName Name = GetNameForDeclarator(D).getName();
3850
3851  // Check that there are no default arguments (C++ only).
3852  if (getLangOptions().CPlusPlus)
3853    CheckExtraCXXDefaultArguments(D);
3854
3855  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3856  assert(SCSpec != DeclSpec::SCS_typedef &&
3857         "Parser allowed 'typedef' as storage class VarDecl.");
3858  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3859  if (SCSpec == DeclSpec::SCS_mutable) {
3860    // mutable can only appear on non-static class members, so it's always
3861    // an error here
3862    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3863    D.setInvalidType();
3864    SC = SC_None;
3865  }
3866  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3867  VarDecl::StorageClass SCAsWritten
3868    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3869
3870  IdentifierInfo *II = Name.getAsIdentifierInfo();
3871  if (!II) {
3872    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3873      << Name;
3874    return 0;
3875  }
3876
3877  DiagnoseFunctionSpecifiers(D);
3878
3879  if (!DC->isRecord() && S->getFnParent() == 0) {
3880    // C99 6.9p2: The storage-class specifiers auto and register shall not
3881    // appear in the declaration specifiers in an external declaration.
3882    if (SC == SC_Auto || SC == SC_Register) {
3883
3884      // If this is a register variable with an asm label specified, then this
3885      // is a GNU extension.
3886      if (SC == SC_Register && D.getAsmLabel())
3887        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3888      else
3889        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3890      D.setInvalidType();
3891    }
3892  }
3893
3894  if (getLangOptions().OpenCL) {
3895    // Set up the special work-group-local storage class for variables in the
3896    // OpenCL __local address space.
3897    if (R.getAddressSpace() == LangAS::opencl_local)
3898      SC = SC_OpenCLWorkGroupLocal;
3899  }
3900
3901  bool isExplicitSpecialization = false;
3902  VarDecl *NewVD;
3903  if (!getLangOptions().CPlusPlus) {
3904    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3905                            D.getIdentifierLoc(), II,
3906                            R, TInfo, SC, SCAsWritten);
3907
3908    if (D.isInvalidType())
3909      NewVD->setInvalidDecl();
3910  } else {
3911    if (DC->isRecord() && !CurContext->isRecord()) {
3912      // This is an out-of-line definition of a static data member.
3913      if (SC == SC_Static) {
3914        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3915             diag::err_static_out_of_line)
3916          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3917      } else if (SC == SC_None)
3918        SC = SC_Static;
3919    }
3920    if (SC == SC_Static) {
3921      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3922        if (RD->isLocalClass())
3923          Diag(D.getIdentifierLoc(),
3924               diag::err_static_data_member_not_allowed_in_local_class)
3925            << Name << RD->getDeclName();
3926
3927        // C++ [class.union]p1: If a union contains a static data member,
3928        // the program is ill-formed.
3929        //
3930        // We also disallow static data members in anonymous structs.
3931        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3932          Diag(D.getIdentifierLoc(),
3933               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3934            << Name << RD->isUnion();
3935      }
3936    }
3937
3938    // Match up the template parameter lists with the scope specifier, then
3939    // determine whether we have a template or a template specialization.
3940    isExplicitSpecialization = false;
3941    bool Invalid = false;
3942    if (TemplateParameterList *TemplateParams
3943        = MatchTemplateParametersToScopeSpecifier(
3944                                  D.getDeclSpec().getSourceRange().getBegin(),
3945                                                  D.getIdentifierLoc(),
3946                                                  D.getCXXScopeSpec(),
3947                                                  TemplateParamLists.get(),
3948                                                  TemplateParamLists.size(),
3949                                                  /*never a friend*/ false,
3950                                                  isExplicitSpecialization,
3951                                                  Invalid)) {
3952      if (TemplateParams->size() > 0) {
3953        // There is no such thing as a variable template.
3954        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3955          << II
3956          << SourceRange(TemplateParams->getTemplateLoc(),
3957                         TemplateParams->getRAngleLoc());
3958        return 0;
3959      } else {
3960        // There is an extraneous 'template<>' for this variable. Complain
3961        // about it, but allow the declaration of the variable.
3962        Diag(TemplateParams->getTemplateLoc(),
3963             diag::err_template_variable_noparams)
3964          << II
3965          << SourceRange(TemplateParams->getTemplateLoc(),
3966                         TemplateParams->getRAngleLoc());
3967      }
3968    }
3969
3970    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3971                            D.getIdentifierLoc(), II,
3972                            R, TInfo, SC, SCAsWritten);
3973
3974    // If this decl has an auto type in need of deduction, make a note of the
3975    // Decl so we can diagnose uses of it in its own initializer.
3976    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3977        R->getContainedAutoType())
3978      ParsingInitForAutoVars.insert(NewVD);
3979
3980    if (D.isInvalidType() || Invalid)
3981      NewVD->setInvalidDecl();
3982
3983    SetNestedNameSpecifier(NewVD, D);
3984
3985    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3986      NewVD->setTemplateParameterListsInfo(Context,
3987                                           TemplateParamLists.size(),
3988                                           TemplateParamLists.release());
3989    }
3990
3991    if (D.getDeclSpec().isConstexprSpecified())
3992      NewVD->setConstexpr(true);
3993  }
3994
3995  // Set the lexical context. If the declarator has a C++ scope specifier, the
3996  // lexical context will be different from the semantic context.
3997  NewVD->setLexicalDeclContext(CurContext);
3998
3999  if (D.getDeclSpec().isThreadSpecified()) {
4000    if (NewVD->hasLocalStorage())
4001      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4002    else if (!Context.getTargetInfo().isTLSSupported())
4003      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4004    else
4005      NewVD->setThreadSpecified(true);
4006  }
4007
4008  if (D.getDeclSpec().isModulePrivateSpecified()) {
4009    if (isExplicitSpecialization)
4010      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4011        << 2
4012        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4013    else if (NewVD->hasLocalStorage())
4014      Diag(NewVD->getLocation(), diag::err_module_private_local)
4015        << 0 << NewVD->getDeclName()
4016        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4017        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4018    else
4019      NewVD->setModulePrivate();
4020  }
4021
4022  // Handle attributes prior to checking for duplicates in MergeVarDecl
4023  ProcessDeclAttributes(S, NewVD, D);
4024
4025  // In auto-retain/release, infer strong retension for variables of
4026  // retainable type.
4027  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4028    NewVD->setInvalidDecl();
4029
4030  // Handle GNU asm-label extension (encoded as an attribute).
4031  if (Expr *E = (Expr*)D.getAsmLabel()) {
4032    // The parser guarantees this is a string.
4033    StringLiteral *SE = cast<StringLiteral>(E);
4034    StringRef Label = SE->getString();
4035    if (S->getFnParent() != 0) {
4036      switch (SC) {
4037      case SC_None:
4038      case SC_Auto:
4039        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4040        break;
4041      case SC_Register:
4042        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4043          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4044        break;
4045      case SC_Static:
4046      case SC_Extern:
4047      case SC_PrivateExtern:
4048      case SC_OpenCLWorkGroupLocal:
4049        break;
4050      }
4051    }
4052
4053    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4054                                                Context, Label));
4055  }
4056
4057  // Diagnose shadowed variables before filtering for scope.
4058  if (!D.getCXXScopeSpec().isSet())
4059    CheckShadow(S, NewVD, Previous);
4060
4061  // Don't consider existing declarations that are in a different
4062  // scope and are out-of-semantic-context declarations (if the new
4063  // declaration has linkage).
4064  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4065                       isExplicitSpecialization);
4066
4067  if (!getLangOptions().CPlusPlus) {
4068    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4069  } else {
4070    // Merge the decl with the existing one if appropriate.
4071    if (!Previous.empty()) {
4072      if (Previous.isSingleResult() &&
4073          isa<FieldDecl>(Previous.getFoundDecl()) &&
4074          D.getCXXScopeSpec().isSet()) {
4075        // The user tried to define a non-static data member
4076        // out-of-line (C++ [dcl.meaning]p1).
4077        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4078          << D.getCXXScopeSpec().getRange();
4079        Previous.clear();
4080        NewVD->setInvalidDecl();
4081      }
4082    } else if (D.getCXXScopeSpec().isSet()) {
4083      // No previous declaration in the qualifying scope.
4084      Diag(D.getIdentifierLoc(), diag::err_no_member)
4085        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4086        << D.getCXXScopeSpec().getRange();
4087      NewVD->setInvalidDecl();
4088    }
4089
4090    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4091
4092    // This is an explicit specialization of a static data member. Check it.
4093    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4094        CheckMemberSpecialization(NewVD, Previous))
4095      NewVD->setInvalidDecl();
4096  }
4097
4098  // attributes declared post-definition are currently ignored
4099  // FIXME: This should be handled in attribute merging, not
4100  // here.
4101  if (Previous.isSingleResult()) {
4102    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4103    if (Def && (Def = Def->getDefinition()) &&
4104        Def != NewVD && D.hasAttributes()) {
4105      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4106      Diag(Def->getLocation(), diag::note_previous_definition);
4107    }
4108  }
4109
4110  // If this is a locally-scoped extern C variable, update the map of
4111  // such variables.
4112  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4113      !NewVD->isInvalidDecl())
4114    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4115
4116  // If there's a #pragma GCC visibility in scope, and this isn't a class
4117  // member, set the visibility of this variable.
4118  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4119    AddPushedVisibilityAttribute(NewVD);
4120
4121  MarkUnusedFileScopedDecl(NewVD);
4122
4123  return NewVD;
4124}
4125
4126/// \brief Diagnose variable or built-in function shadowing.  Implements
4127/// -Wshadow.
4128///
4129/// This method is called whenever a VarDecl is added to a "useful"
4130/// scope.
4131///
4132/// \param S the scope in which the shadowing name is being declared
4133/// \param R the lookup of the name
4134///
4135void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4136  // Return if warning is ignored.
4137  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4138        DiagnosticsEngine::Ignored)
4139    return;
4140
4141  // Don't diagnose declarations at file scope.
4142  if (D->hasGlobalStorage())
4143    return;
4144
4145  DeclContext *NewDC = D->getDeclContext();
4146
4147  // Only diagnose if we're shadowing an unambiguous field or variable.
4148  if (R.getResultKind() != LookupResult::Found)
4149    return;
4150
4151  NamedDecl* ShadowedDecl = R.getFoundDecl();
4152  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4153    return;
4154
4155  // Fields are not shadowed by variables in C++ static methods.
4156  if (isa<FieldDecl>(ShadowedDecl))
4157    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4158      if (MD->isStatic())
4159        return;
4160
4161  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4162    if (shadowedVar->isExternC()) {
4163      // For shadowing external vars, make sure that we point to the global
4164      // declaration, not a locally scoped extern declaration.
4165      for (VarDecl::redecl_iterator
4166             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4167           I != E; ++I)
4168        if (I->isFileVarDecl()) {
4169          ShadowedDecl = *I;
4170          break;
4171        }
4172    }
4173
4174  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4175
4176  // Only warn about certain kinds of shadowing for class members.
4177  if (NewDC && NewDC->isRecord()) {
4178    // In particular, don't warn about shadowing non-class members.
4179    if (!OldDC->isRecord())
4180      return;
4181
4182    // TODO: should we warn about static data members shadowing
4183    // static data members from base classes?
4184
4185    // TODO: don't diagnose for inaccessible shadowed members.
4186    // This is hard to do perfectly because we might friend the
4187    // shadowing context, but that's just a false negative.
4188  }
4189
4190  // Determine what kind of declaration we're shadowing.
4191  unsigned Kind;
4192  if (isa<RecordDecl>(OldDC)) {
4193    if (isa<FieldDecl>(ShadowedDecl))
4194      Kind = 3; // field
4195    else
4196      Kind = 2; // static data member
4197  } else if (OldDC->isFileContext())
4198    Kind = 1; // global
4199  else
4200    Kind = 0; // local
4201
4202  DeclarationName Name = R.getLookupName();
4203
4204  // Emit warning and note.
4205  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4206  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4207}
4208
4209/// \brief Check -Wshadow without the advantage of a previous lookup.
4210void Sema::CheckShadow(Scope *S, VarDecl *D) {
4211  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4212        DiagnosticsEngine::Ignored)
4213    return;
4214
4215  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4216                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4217  LookupName(R, S);
4218  CheckShadow(S, D, R);
4219}
4220
4221/// \brief Perform semantic checking on a newly-created variable
4222/// declaration.
4223///
4224/// This routine performs all of the type-checking required for a
4225/// variable declaration once it has been built. It is used both to
4226/// check variables after they have been parsed and their declarators
4227/// have been translated into a declaration, and to check variables
4228/// that have been instantiated from a template.
4229///
4230/// Sets NewVD->isInvalidDecl() if an error was encountered.
4231///
4232/// Returns true if the variable declaration is a redeclaration.
4233bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4234                                    LookupResult &Previous) {
4235  // If the decl is already known invalid, don't check it.
4236  if (NewVD->isInvalidDecl())
4237    return false;
4238
4239  QualType T = NewVD->getType();
4240
4241  if (T->isObjCObjectType()) {
4242    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4243      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4244    T = Context.getObjCObjectPointerType(T);
4245    NewVD->setType(T);
4246  }
4247
4248  // Emit an error if an address space was applied to decl with local storage.
4249  // This includes arrays of objects with address space qualifiers, but not
4250  // automatic variables that point to other address spaces.
4251  // ISO/IEC TR 18037 S5.1.2
4252  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4253    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4254    NewVD->setInvalidDecl();
4255    return false;
4256  }
4257
4258  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4259      && !NewVD->hasAttr<BlocksAttr>()) {
4260    if (getLangOptions().getGC() != LangOptions::NonGC)
4261      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4262    else
4263      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4264  }
4265
4266  bool isVM = T->isVariablyModifiedType();
4267  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4268      NewVD->hasAttr<BlocksAttr>())
4269    getCurFunction()->setHasBranchProtectedScope();
4270
4271  if ((isVM && NewVD->hasLinkage()) ||
4272      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4273    bool SizeIsNegative;
4274    llvm::APSInt Oversized;
4275    QualType FixedTy =
4276        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4277                                            Oversized);
4278
4279    if (FixedTy.isNull() && T->isVariableArrayType()) {
4280      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4281      // FIXME: This won't give the correct result for
4282      // int a[10][n];
4283      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4284
4285      if (NewVD->isFileVarDecl())
4286        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4287        << SizeRange;
4288      else if (NewVD->getStorageClass() == SC_Static)
4289        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4290        << SizeRange;
4291      else
4292        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4293        << SizeRange;
4294      NewVD->setInvalidDecl();
4295      return false;
4296    }
4297
4298    if (FixedTy.isNull()) {
4299      if (NewVD->isFileVarDecl())
4300        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4301      else
4302        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4303      NewVD->setInvalidDecl();
4304      return false;
4305    }
4306
4307    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4308    NewVD->setType(FixedTy);
4309  }
4310
4311  if (Previous.empty() && NewVD->isExternC()) {
4312    // Since we did not find anything by this name and we're declaring
4313    // an extern "C" variable, look for a non-visible extern "C"
4314    // declaration with the same name.
4315    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4316      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4317    if (Pos != LocallyScopedExternalDecls.end())
4318      Previous.addDecl(Pos->second);
4319  }
4320
4321  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4322    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4323      << T;
4324    NewVD->setInvalidDecl();
4325    return false;
4326  }
4327
4328  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4329    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4330    NewVD->setInvalidDecl();
4331    return false;
4332  }
4333
4334  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4335    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4336    NewVD->setInvalidDecl();
4337    return false;
4338  }
4339
4340  // Function pointers and references cannot have qualified function type, only
4341  // function pointer-to-members can do that.
4342  QualType Pointee;
4343  unsigned PtrOrRef = 0;
4344  if (const PointerType *Ptr = T->getAs<PointerType>())
4345    Pointee = Ptr->getPointeeType();
4346  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4347    Pointee = Ref->getPointeeType();
4348    PtrOrRef = 1;
4349  }
4350  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4351      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4352    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4353        << PtrOrRef;
4354    NewVD->setInvalidDecl();
4355    return false;
4356  }
4357
4358  if (!Previous.empty()) {
4359    MergeVarDecl(NewVD, Previous);
4360    return true;
4361  }
4362  return false;
4363}
4364
4365/// \brief Data used with FindOverriddenMethod
4366struct FindOverriddenMethodData {
4367  Sema *S;
4368  CXXMethodDecl *Method;
4369};
4370
4371/// \brief Member lookup function that determines whether a given C++
4372/// method overrides a method in a base class, to be used with
4373/// CXXRecordDecl::lookupInBases().
4374static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4375                                 CXXBasePath &Path,
4376                                 void *UserData) {
4377  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4378
4379  FindOverriddenMethodData *Data
4380    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4381
4382  DeclarationName Name = Data->Method->getDeclName();
4383
4384  // FIXME: Do we care about other names here too?
4385  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4386    // We really want to find the base class destructor here.
4387    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4388    CanQualType CT = Data->S->Context.getCanonicalType(T);
4389
4390    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4391  }
4392
4393  for (Path.Decls = BaseRecord->lookup(Name);
4394       Path.Decls.first != Path.Decls.second;
4395       ++Path.Decls.first) {
4396    NamedDecl *D = *Path.Decls.first;
4397    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4398      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4399        return true;
4400    }
4401  }
4402
4403  return false;
4404}
4405
4406/// AddOverriddenMethods - See if a method overrides any in the base classes,
4407/// and if so, check that it's a valid override and remember it.
4408bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4409  // Look for virtual methods in base classes that this method might override.
4410  CXXBasePaths Paths;
4411  FindOverriddenMethodData Data;
4412  Data.Method = MD;
4413  Data.S = this;
4414  bool AddedAny = false;
4415  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4416    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4417         E = Paths.found_decls_end(); I != E; ++I) {
4418      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4419        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4420        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4421            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4422            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4423          AddedAny = true;
4424        }
4425      }
4426    }
4427  }
4428
4429  return AddedAny;
4430}
4431
4432namespace {
4433  // Struct for holding all of the extra arguments needed by
4434  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4435  struct ActOnFDArgs {
4436    Scope *S;
4437    Declarator &D;
4438    MultiTemplateParamsArg TemplateParamLists;
4439    bool AddToScope;
4440  };
4441}
4442
4443namespace {
4444
4445// Callback to only accept typo corrections that have a non-zero edit distance.
4446class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4447 public:
4448  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4449    return candidate.getEditDistance() > 0;
4450  }
4451};
4452
4453}
4454
4455/// \brief Generate diagnostics for an invalid function redeclaration.
4456///
4457/// This routine handles generating the diagnostic messages for an invalid
4458/// function redeclaration, including finding possible similar declarations
4459/// or performing typo correction if there are no previous declarations with
4460/// the same name.
4461///
4462/// Returns a NamedDecl iff typo correction was performed and substituting in
4463/// the new declaration name does not cause new errors.
4464static NamedDecl* DiagnoseInvalidRedeclaration(
4465    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4466    ActOnFDArgs &ExtraArgs) {
4467  NamedDecl *Result = NULL;
4468  DeclarationName Name = NewFD->getDeclName();
4469  DeclContext *NewDC = NewFD->getDeclContext();
4470  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4471                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4472  llvm::SmallVector<unsigned, 1> MismatchedParams;
4473  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4474  TypoCorrection Correction;
4475  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4476                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4477  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4478                                  : diag::err_member_def_does_not_match;
4479
4480  NewFD->setInvalidDecl();
4481  SemaRef.LookupQualifiedName(Prev, NewDC);
4482  assert(!Prev.isAmbiguous() &&
4483         "Cannot have an ambiguity in previous-declaration lookup");
4484  DifferentNameValidatorCCC Validator;
4485  if (!Prev.empty()) {
4486    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4487         Func != FuncEnd; ++Func) {
4488      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4489      if (FD &&
4490          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4491        // Add 1 to the index so that 0 can mean the mismatch didn't
4492        // involve a parameter
4493        unsigned ParamNum =
4494            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4495        NearMatches.push_back(std::make_pair(FD, ParamNum));
4496      }
4497    }
4498  // If the qualified name lookup yielded nothing, try typo correction
4499  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4500                                         Prev.getLookupKind(), 0, 0,
4501                                         Validator, NewDC))) {
4502    // Trap errors.
4503    Sema::SFINAETrap Trap(SemaRef);
4504
4505    // Set up everything for the call to ActOnFunctionDeclarator
4506    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4507                              ExtraArgs.D.getIdentifierLoc());
4508    Previous.clear();
4509    Previous.setLookupName(Correction.getCorrection());
4510    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4511                                    CDeclEnd = Correction.end();
4512         CDecl != CDeclEnd; ++CDecl) {
4513      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4514      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4515                                     MismatchedParams)) {
4516        Previous.addDecl(FD);
4517      }
4518    }
4519    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4520    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4521    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4522    // eliminate the need for the parameter pack ExtraArgs.
4523    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4524                                             NewFD->getDeclContext(),
4525                                             NewFD->getTypeSourceInfo(),
4526                                             Previous,
4527                                             ExtraArgs.TemplateParamLists,
4528                                             ExtraArgs.AddToScope);
4529    if (Trap.hasErrorOccurred()) {
4530      // Pretend the typo correction never occurred
4531      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4532                                ExtraArgs.D.getIdentifierLoc());
4533      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4534      Previous.clear();
4535      Previous.setLookupName(Name);
4536      Result = NULL;
4537    } else {
4538      for (LookupResult::iterator Func = Previous.begin(),
4539                               FuncEnd = Previous.end();
4540           Func != FuncEnd; ++Func) {
4541        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4542          NearMatches.push_back(std::make_pair(FD, 0));
4543      }
4544    }
4545    if (NearMatches.empty()) {
4546      // Ignore the correction if it didn't yield any close FunctionDecl matches
4547      Correction = TypoCorrection();
4548    } else {
4549      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4550                             : diag::err_member_def_does_not_match_suggest;
4551    }
4552  }
4553
4554  if (Correction)
4555    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4556        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4557        << FixItHint::CreateReplacement(
4558            NewFD->getLocation(),
4559            Correction.getAsString(SemaRef.getLangOptions()));
4560  else
4561    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4562        << Name << NewDC << NewFD->getLocation();
4563
4564  bool NewFDisConst = false;
4565  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4566    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4567
4568  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4569       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4570       NearMatch != NearMatchEnd; ++NearMatch) {
4571    FunctionDecl *FD = NearMatch->first;
4572    bool FDisConst = false;
4573    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4574      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4575
4576    if (unsigned Idx = NearMatch->second) {
4577      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4578      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4579             diag::note_member_def_close_param_match)
4580          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4581    } else if (Correction) {
4582      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4583          << Correction.getQuoted(SemaRef.getLangOptions());
4584    } else if (FDisConst != NewFDisConst) {
4585      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4586          << NewFDisConst << FD->getSourceRange().getEnd();
4587    } else
4588      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4589  }
4590  return Result;
4591}
4592
4593static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4594                                                          Declarator &D) {
4595  switch (D.getDeclSpec().getStorageClassSpec()) {
4596  default: llvm_unreachable("Unknown storage class!");
4597  case DeclSpec::SCS_auto:
4598  case DeclSpec::SCS_register:
4599  case DeclSpec::SCS_mutable:
4600    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4601                 diag::err_typecheck_sclass_func);
4602    D.setInvalidType();
4603    break;
4604  case DeclSpec::SCS_unspecified: break;
4605  case DeclSpec::SCS_extern: return SC_Extern;
4606  case DeclSpec::SCS_static: {
4607    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4608      // C99 6.7.1p5:
4609      //   The declaration of an identifier for a function that has
4610      //   block scope shall have no explicit storage-class specifier
4611      //   other than extern
4612      // See also (C++ [dcl.stc]p4).
4613      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4614                   diag::err_static_block_func);
4615      break;
4616    } else
4617      return SC_Static;
4618  }
4619  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4620  }
4621
4622  // No explicit storage class has already been returned
4623  return SC_None;
4624}
4625
4626static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4627                                           DeclContext *DC, QualType &R,
4628                                           TypeSourceInfo *TInfo,
4629                                           FunctionDecl::StorageClass SC,
4630                                           bool &IsVirtualOkay) {
4631  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4632  DeclarationName Name = NameInfo.getName();
4633
4634  FunctionDecl *NewFD = 0;
4635  bool isInline = D.getDeclSpec().isInlineSpecified();
4636  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4637  FunctionDecl::StorageClass SCAsWritten
4638    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4639
4640  if (!SemaRef.getLangOptions().CPlusPlus) {
4641    // Determine whether the function was written with a
4642    // prototype. This true when:
4643    //   - there is a prototype in the declarator, or
4644    //   - the type R of the function is some kind of typedef or other reference
4645    //     to a type name (which eventually refers to a function type).
4646    bool HasPrototype =
4647      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4648      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4649
4650    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4651                                 D.getSourceRange().getBegin(), NameInfo, R,
4652                                 TInfo, SC, SCAsWritten, isInline,
4653                                 HasPrototype);
4654    if (D.isInvalidType())
4655      NewFD->setInvalidDecl();
4656
4657    // Set the lexical context.
4658    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4659
4660    return NewFD;
4661  }
4662
4663  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4664  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4665
4666  // Check that the return type is not an abstract class type.
4667  // For record types, this is done by the AbstractClassUsageDiagnoser once
4668  // the class has been completely parsed.
4669  if (!DC->isRecord() &&
4670      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4671                                     R->getAs<FunctionType>()->getResultType(),
4672                                     diag::err_abstract_type_in_decl,
4673                                     SemaRef.AbstractReturnType))
4674    D.setInvalidType();
4675
4676  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4677    // This is a C++ constructor declaration.
4678    assert(DC->isRecord() &&
4679           "Constructors can only be declared in a member context");
4680
4681    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4682    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4683                                      D.getSourceRange().getBegin(), NameInfo,
4684                                      R, TInfo, isExplicit, isInline,
4685                                      /*isImplicitlyDeclared=*/false,
4686                                      isConstexpr);
4687
4688  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4689    // This is a C++ destructor declaration.
4690    if (DC->isRecord()) {
4691      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4692      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4693      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4694                                        SemaRef.Context, Record,
4695                                        D.getSourceRange().getBegin(),
4696                                        NameInfo, R, TInfo, isInline,
4697                                        /*isImplicitlyDeclared=*/false);
4698
4699      // If the class is complete, then we now create the implicit exception
4700      // specification. If the class is incomplete or dependent, we can't do
4701      // it yet.
4702      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4703          Record->getDefinition() && !Record->isBeingDefined() &&
4704          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4705        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4706      }
4707
4708      IsVirtualOkay = true;
4709      return NewDD;
4710
4711    } else {
4712      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4713      D.setInvalidType();
4714
4715      // Create a FunctionDecl to satisfy the function definition parsing
4716      // code path.
4717      return FunctionDecl::Create(SemaRef.Context, DC,
4718                                  D.getSourceRange().getBegin(),
4719                                  D.getIdentifierLoc(), Name, R, TInfo,
4720                                  SC, SCAsWritten, isInline,
4721                                  /*hasPrototype=*/true, isConstexpr);
4722    }
4723
4724  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4725    if (!DC->isRecord()) {
4726      SemaRef.Diag(D.getIdentifierLoc(),
4727           diag::err_conv_function_not_member);
4728      return 0;
4729    }
4730
4731    SemaRef.CheckConversionDeclarator(D, R, SC);
4732    IsVirtualOkay = true;
4733    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4734                                     D.getSourceRange().getBegin(), NameInfo,
4735                                     R, TInfo, isInline, isExplicit,
4736                                     isConstexpr, SourceLocation());
4737
4738  } else if (DC->isRecord()) {
4739    // If the name of the function is the same as the name of the record,
4740    // then this must be an invalid constructor that has a return type.
4741    // (The parser checks for a return type and makes the declarator a
4742    // constructor if it has no return type).
4743    if (Name.getAsIdentifierInfo() &&
4744        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4745      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4746        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4747        << SourceRange(D.getIdentifierLoc());
4748      return 0;
4749    }
4750
4751    bool isStatic = SC == SC_Static;
4752
4753    // [class.free]p1:
4754    // Any allocation function for a class T is a static member
4755    // (even if not explicitly declared static).
4756    if (Name.getCXXOverloadedOperator() == OO_New ||
4757        Name.getCXXOverloadedOperator() == OO_Array_New)
4758      isStatic = true;
4759
4760    // [class.free]p6 Any deallocation function for a class X is a static member
4761    // (even if not explicitly declared static).
4762    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4763        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4764      isStatic = true;
4765
4766    IsVirtualOkay = !isStatic;
4767
4768    // This is a C++ method declaration.
4769    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4770                                 D.getSourceRange().getBegin(), NameInfo, R,
4771                                 TInfo, isStatic, SCAsWritten, isInline,
4772                                 isConstexpr, SourceLocation());
4773
4774  } else {
4775    // Determine whether the function was written with a
4776    // prototype. This true when:
4777    //   - we're in C++ (where every function has a prototype),
4778    return FunctionDecl::Create(SemaRef.Context, DC,
4779                                D.getSourceRange().getBegin(),
4780                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4781                                true/*HasPrototype*/, isConstexpr);
4782  }
4783}
4784
4785NamedDecl*
4786Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4787                              TypeSourceInfo *TInfo, LookupResult &Previous,
4788                              MultiTemplateParamsArg TemplateParamLists,
4789                              bool &AddToScope) {
4790  QualType R = TInfo->getType();
4791
4792  assert(R.getTypePtr()->isFunctionType());
4793
4794  // TODO: consider using NameInfo for diagnostic.
4795  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4796  DeclarationName Name = NameInfo.getName();
4797  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4798
4799  if (D.getDeclSpec().isThreadSpecified())
4800    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4801
4802  // Do not allow returning a objc interface by-value.
4803  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4804    Diag(D.getIdentifierLoc(),
4805         diag::err_object_cannot_be_passed_returned_by_value) << 0
4806    << R->getAs<FunctionType>()->getResultType()
4807    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4808
4809    QualType T = R->getAs<FunctionType>()->getResultType();
4810    T = Context.getObjCObjectPointerType(T);
4811    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4812      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4813      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4814                                  FPT->getNumArgs(), EPI);
4815    }
4816    else if (isa<FunctionNoProtoType>(R))
4817      R = Context.getFunctionNoProtoType(T);
4818  }
4819
4820  bool isFriend = false;
4821  FunctionTemplateDecl *FunctionTemplate = 0;
4822  bool isExplicitSpecialization = false;
4823  bool isFunctionTemplateSpecialization = false;
4824  bool isDependentClassScopeExplicitSpecialization = false;
4825  bool isVirtualOkay = false;
4826
4827  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4828                                              isVirtualOkay);
4829  if (!NewFD) return 0;
4830
4831  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4832    NewFD->setTopLevelDeclInObjCContainer();
4833
4834  if (getLangOptions().CPlusPlus) {
4835    bool isInline = D.getDeclSpec().isInlineSpecified();
4836    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4837    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4838    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4839    isFriend = D.getDeclSpec().isFriendSpecified();
4840    if (isFriend && !isInline && D.isFunctionDefinition()) {
4841      // C++ [class.friend]p5
4842      //   A function can be defined in a friend declaration of a
4843      //   class . . . . Such a function is implicitly inline.
4844      NewFD->setImplicitlyInline();
4845    }
4846
4847    SetNestedNameSpecifier(NewFD, D);
4848    isExplicitSpecialization = false;
4849    isFunctionTemplateSpecialization = false;
4850    if (D.isInvalidType())
4851      NewFD->setInvalidDecl();
4852
4853    // Set the lexical context. If the declarator has a C++
4854    // scope specifier, or is the object of a friend declaration, the
4855    // lexical context will be different from the semantic context.
4856    NewFD->setLexicalDeclContext(CurContext);
4857
4858    // Match up the template parameter lists with the scope specifier, then
4859    // determine whether we have a template or a template specialization.
4860    bool Invalid = false;
4861    if (TemplateParameterList *TemplateParams
4862          = MatchTemplateParametersToScopeSpecifier(
4863                                  D.getDeclSpec().getSourceRange().getBegin(),
4864                                  D.getIdentifierLoc(),
4865                                  D.getCXXScopeSpec(),
4866                                  TemplateParamLists.get(),
4867                                  TemplateParamLists.size(),
4868                                  isFriend,
4869                                  isExplicitSpecialization,
4870                                  Invalid)) {
4871      if (TemplateParams->size() > 0) {
4872        // This is a function template
4873
4874        // Check that we can declare a template here.
4875        if (CheckTemplateDeclScope(S, TemplateParams))
4876          return 0;
4877
4878        // A destructor cannot be a template.
4879        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4880          Diag(NewFD->getLocation(), diag::err_destructor_template);
4881          return 0;
4882        }
4883
4884        // If we're adding a template to a dependent context, we may need to
4885        // rebuilding some of the types used within the template parameter list,
4886        // now that we know what the current instantiation is.
4887        if (DC->isDependentContext()) {
4888          ContextRAII SavedContext(*this, DC);
4889          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4890            Invalid = true;
4891        }
4892
4893
4894        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4895                                                        NewFD->getLocation(),
4896                                                        Name, TemplateParams,
4897                                                        NewFD);
4898        FunctionTemplate->setLexicalDeclContext(CurContext);
4899        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4900
4901        // For source fidelity, store the other template param lists.
4902        if (TemplateParamLists.size() > 1) {
4903          NewFD->setTemplateParameterListsInfo(Context,
4904                                               TemplateParamLists.size() - 1,
4905                                               TemplateParamLists.release());
4906        }
4907      } else {
4908        // This is a function template specialization.
4909        isFunctionTemplateSpecialization = true;
4910        // For source fidelity, store all the template param lists.
4911        NewFD->setTemplateParameterListsInfo(Context,
4912                                             TemplateParamLists.size(),
4913                                             TemplateParamLists.release());
4914
4915        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4916        if (isFriend) {
4917          // We want to remove the "template<>", found here.
4918          SourceRange RemoveRange = TemplateParams->getSourceRange();
4919
4920          // If we remove the template<> and the name is not a
4921          // template-id, we're actually silently creating a problem:
4922          // the friend declaration will refer to an untemplated decl,
4923          // and clearly the user wants a template specialization.  So
4924          // we need to insert '<>' after the name.
4925          SourceLocation InsertLoc;
4926          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4927            InsertLoc = D.getName().getSourceRange().getEnd();
4928            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4929          }
4930
4931          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4932            << Name << RemoveRange
4933            << FixItHint::CreateRemoval(RemoveRange)
4934            << FixItHint::CreateInsertion(InsertLoc, "<>");
4935        }
4936      }
4937    }
4938    else {
4939      // All template param lists were matched against the scope specifier:
4940      // this is NOT (an explicit specialization of) a template.
4941      if (TemplateParamLists.size() > 0)
4942        // For source fidelity, store all the template param lists.
4943        NewFD->setTemplateParameterListsInfo(Context,
4944                                             TemplateParamLists.size(),
4945                                             TemplateParamLists.release());
4946    }
4947
4948    if (Invalid) {
4949      NewFD->setInvalidDecl();
4950      if (FunctionTemplate)
4951        FunctionTemplate->setInvalidDecl();
4952    }
4953
4954    // If we see "T var();" at block scope, where T is a class type, it is
4955    // probably an attempt to initialize a variable, not a function declaration.
4956    // We don't catch this case earlier, since there is no ambiguity here.
4957    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4958        CurContext->isFunctionOrMethod() &&
4959        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4960        D.getDeclSpec().getStorageClassSpecAsWritten()
4961          == DeclSpec::SCS_unspecified) {
4962      QualType T = R->getAs<FunctionType>()->getResultType();
4963      DeclaratorChunk &C = D.getTypeObject(0);
4964      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4965          !C.Fun.TrailingReturnType &&
4966          C.Fun.getExceptionSpecType() == EST_None) {
4967        SourceRange ParenRange(C.Loc, C.EndLoc);
4968        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4969
4970        // If the declaration looks like:
4971        //   T var1,
4972        //   f();
4973        // and name lookup finds a function named 'f', then the ',' was
4974        // probably intended to be a ';'.
4975        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4976          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4977          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4978          if (Comma.getFileID() != Name.getFileID() ||
4979              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4980            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4981                                LookupOrdinaryName);
4982            if (LookupName(Result, S))
4983              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4984                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4985          }
4986        }
4987        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4988        // Empty parens mean value-initialization, and no parens mean default
4989        // initialization. These are equivalent if the default constructor is
4990        // user-provided, or if zero-initialization is a no-op.
4991        if (RD && RD->hasDefinition() &&
4992            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4993          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4994            << FixItHint::CreateRemoval(ParenRange);
4995        else if (const char *Init = getFixItZeroInitializerForType(T))
4996          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4997            << FixItHint::CreateReplacement(ParenRange, Init);
4998        else if (LangOpts.CPlusPlus0x)
4999          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5000            << FixItHint::CreateReplacement(ParenRange, "{}");
5001      }
5002    }
5003
5004    // C++ [dcl.fct.spec]p5:
5005    //   The virtual specifier shall only be used in declarations of
5006    //   nonstatic class member functions that appear within a
5007    //   member-specification of a class declaration; see 10.3.
5008    //
5009    if (isVirtual && !NewFD->isInvalidDecl()) {
5010      if (!isVirtualOkay) {
5011        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5012             diag::err_virtual_non_function);
5013      } else if (!CurContext->isRecord()) {
5014        // 'virtual' was specified outside of the class.
5015        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5016             diag::err_virtual_out_of_class)
5017          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5018      } else if (NewFD->getDescribedFunctionTemplate()) {
5019        // C++ [temp.mem]p3:
5020        //  A member function template shall not be virtual.
5021        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5022             diag::err_virtual_member_function_template)
5023          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5024      } else {
5025        // Okay: Add virtual to the method.
5026        NewFD->setVirtualAsWritten(true);
5027      }
5028    }
5029
5030    // C++ [dcl.fct.spec]p3:
5031    //  The inline specifier shall not appear on a block scope function
5032    //  declaration.
5033    if (isInline && !NewFD->isInvalidDecl()) {
5034      if (CurContext->isFunctionOrMethod()) {
5035        // 'inline' is not allowed on block scope function declaration.
5036        Diag(D.getDeclSpec().getInlineSpecLoc(),
5037             diag::err_inline_declaration_block_scope) << Name
5038          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5039      }
5040    }
5041
5042    // C++ [dcl.fct.spec]p6:
5043    //  The explicit specifier shall be used only in the declaration of a
5044    //  constructor or conversion function within its class definition;
5045    //  see 12.3.1 and 12.3.2.
5046    if (isExplicit && !NewFD->isInvalidDecl()) {
5047      if (!CurContext->isRecord()) {
5048        // 'explicit' was specified outside of the class.
5049        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5050             diag::err_explicit_out_of_class)
5051          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5052      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5053                 !isa<CXXConversionDecl>(NewFD)) {
5054        // 'explicit' was specified on a function that wasn't a constructor
5055        // or conversion function.
5056        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5057             diag::err_explicit_non_ctor_or_conv_function)
5058          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5059      }
5060    }
5061
5062    if (isConstexpr) {
5063      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5064      // are implicitly inline.
5065      NewFD->setImplicitlyInline();
5066
5067      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5068      // be either constructors or to return a literal type. Therefore,
5069      // destructors cannot be declared constexpr.
5070      if (isa<CXXDestructorDecl>(NewFD))
5071        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5072    }
5073
5074    // If __module_private__ was specified, mark the function accordingly.
5075    if (D.getDeclSpec().isModulePrivateSpecified()) {
5076      if (isFunctionTemplateSpecialization) {
5077        SourceLocation ModulePrivateLoc
5078          = D.getDeclSpec().getModulePrivateSpecLoc();
5079        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5080          << 0
5081          << FixItHint::CreateRemoval(ModulePrivateLoc);
5082      } else {
5083        NewFD->setModulePrivate();
5084        if (FunctionTemplate)
5085          FunctionTemplate->setModulePrivate();
5086      }
5087    }
5088
5089    if (isFriend) {
5090      // For now, claim that the objects have no previous declaration.
5091      if (FunctionTemplate) {
5092        FunctionTemplate->setObjectOfFriendDecl(false);
5093        FunctionTemplate->setAccess(AS_public);
5094      }
5095      NewFD->setObjectOfFriendDecl(false);
5096      NewFD->setAccess(AS_public);
5097    }
5098
5099    // If a function is defined as defaulted or deleted, mark it as such now.
5100    switch (D.getFunctionDefinitionKind()) {
5101      case FDK_Declaration:
5102      case FDK_Definition:
5103        break;
5104
5105      case FDK_Defaulted:
5106        NewFD->setDefaulted();
5107        break;
5108
5109      case FDK_Deleted:
5110        NewFD->setDeletedAsWritten();
5111        break;
5112    }
5113
5114    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5115        D.isFunctionDefinition()) {
5116      // C++ [class.mfct]p2:
5117      //   A member function may be defined (8.4) in its class definition, in
5118      //   which case it is an inline member function (7.1.2)
5119      NewFD->setImplicitlyInline();
5120    }
5121
5122    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5123        !CurContext->isRecord()) {
5124      // C++ [class.static]p1:
5125      //   A data or function member of a class may be declared static
5126      //   in a class definition, in which case it is a static member of
5127      //   the class.
5128
5129      // Complain about the 'static' specifier if it's on an out-of-line
5130      // member function definition.
5131      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5132           diag::err_static_out_of_line)
5133        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5134    }
5135  }
5136
5137  // Filter out previous declarations that don't match the scope.
5138  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5139                       isExplicitSpecialization ||
5140                       isFunctionTemplateSpecialization);
5141
5142  // Handle GNU asm-label extension (encoded as an attribute).
5143  if (Expr *E = (Expr*) D.getAsmLabel()) {
5144    // The parser guarantees this is a string.
5145    StringLiteral *SE = cast<StringLiteral>(E);
5146    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5147                                                SE->getString()));
5148  }
5149
5150  // Copy the parameter declarations from the declarator D to the function
5151  // declaration NewFD, if they are available.  First scavenge them into Params.
5152  SmallVector<ParmVarDecl*, 16> Params;
5153  if (D.isFunctionDeclarator()) {
5154    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5155
5156    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5157    // function that takes no arguments, not a function that takes a
5158    // single void argument.
5159    // We let through "const void" here because Sema::GetTypeForDeclarator
5160    // already checks for that case.
5161    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5162        FTI.ArgInfo[0].Param &&
5163        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5164      // Empty arg list, don't push any params.
5165      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5166
5167      // In C++, the empty parameter-type-list must be spelled "void"; a
5168      // typedef of void is not permitted.
5169      if (getLangOptions().CPlusPlus &&
5170          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5171        bool IsTypeAlias = false;
5172        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5173          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5174        else if (const TemplateSpecializationType *TST =
5175                   Param->getType()->getAs<TemplateSpecializationType>())
5176          IsTypeAlias = TST->isTypeAlias();
5177        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5178          << IsTypeAlias;
5179      }
5180    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5181      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5182        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5183        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5184        Param->setDeclContext(NewFD);
5185        Params.push_back(Param);
5186
5187        if (Param->isInvalidDecl())
5188          NewFD->setInvalidDecl();
5189      }
5190    }
5191
5192  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5193    // When we're declaring a function with a typedef, typeof, etc as in the
5194    // following example, we'll need to synthesize (unnamed)
5195    // parameters for use in the declaration.
5196    //
5197    // @code
5198    // typedef void fn(int);
5199    // fn f;
5200    // @endcode
5201
5202    // Synthesize a parameter for each argument type.
5203    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5204         AE = FT->arg_type_end(); AI != AE; ++AI) {
5205      ParmVarDecl *Param =
5206        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5207      Param->setScopeInfo(0, Params.size());
5208      Params.push_back(Param);
5209    }
5210  } else {
5211    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5212           "Should not need args for typedef of non-prototype fn");
5213  }
5214
5215  // Finally, we know we have the right number of parameters, install them.
5216  NewFD->setParams(Params);
5217
5218  // Process the non-inheritable attributes on this declaration.
5219  ProcessDeclAttributes(S, NewFD, D,
5220                        /*NonInheritable=*/true, /*Inheritable=*/false);
5221
5222  if (!getLangOptions().CPlusPlus) {
5223    // Perform semantic checking on the function declaration.
5224    bool isExplicitSpecialization=false;
5225    if (!NewFD->isInvalidDecl()) {
5226      if (NewFD->getResultType()->isVariablyModifiedType()) {
5227        // Functions returning a variably modified type violate C99 6.7.5.2p2
5228        // because all functions have linkage.
5229        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5230        NewFD->setInvalidDecl();
5231      } else {
5232        if (NewFD->isMain())
5233          CheckMain(NewFD, D.getDeclSpec());
5234        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5235                                                    isExplicitSpecialization));
5236      }
5237    }
5238    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5239            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5240           "previous declaration set still overloaded");
5241  } else {
5242    // If the declarator is a template-id, translate the parser's template
5243    // argument list into our AST format.
5244    bool HasExplicitTemplateArgs = false;
5245    TemplateArgumentListInfo TemplateArgs;
5246    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5247      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5248      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5249      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5250      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5251                                         TemplateId->getTemplateArgs(),
5252                                         TemplateId->NumArgs);
5253      translateTemplateArguments(TemplateArgsPtr,
5254                                 TemplateArgs);
5255      TemplateArgsPtr.release();
5256
5257      HasExplicitTemplateArgs = true;
5258
5259      if (NewFD->isInvalidDecl()) {
5260        HasExplicitTemplateArgs = false;
5261      } else if (FunctionTemplate) {
5262        // Function template with explicit template arguments.
5263        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5264          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5265
5266        HasExplicitTemplateArgs = false;
5267      } else if (!isFunctionTemplateSpecialization &&
5268                 !D.getDeclSpec().isFriendSpecified()) {
5269        // We have encountered something that the user meant to be a
5270        // specialization (because it has explicitly-specified template
5271        // arguments) but that was not introduced with a "template<>" (or had
5272        // too few of them).
5273        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5274          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5275          << FixItHint::CreateInsertion(
5276                                    D.getDeclSpec().getSourceRange().getBegin(),
5277                                        "template<> ");
5278        isFunctionTemplateSpecialization = true;
5279      } else {
5280        // "friend void foo<>(int);" is an implicit specialization decl.
5281        isFunctionTemplateSpecialization = true;
5282      }
5283    } else if (isFriend && isFunctionTemplateSpecialization) {
5284      // This combination is only possible in a recovery case;  the user
5285      // wrote something like:
5286      //   template <> friend void foo(int);
5287      // which we're recovering from as if the user had written:
5288      //   friend void foo<>(int);
5289      // Go ahead and fake up a template id.
5290      HasExplicitTemplateArgs = true;
5291        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5292      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5293    }
5294
5295    // If it's a friend (and only if it's a friend), it's possible
5296    // that either the specialized function type or the specialized
5297    // template is dependent, and therefore matching will fail.  In
5298    // this case, don't check the specialization yet.
5299    bool InstantiationDependent = false;
5300    if (isFunctionTemplateSpecialization && isFriend &&
5301        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5302         TemplateSpecializationType::anyDependentTemplateArguments(
5303            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5304            InstantiationDependent))) {
5305      assert(HasExplicitTemplateArgs &&
5306             "friend function specialization without template args");
5307      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5308                                                       Previous))
5309        NewFD->setInvalidDecl();
5310    } else if (isFunctionTemplateSpecialization) {
5311      if (CurContext->isDependentContext() && CurContext->isRecord()
5312          && !isFriend) {
5313        isDependentClassScopeExplicitSpecialization = true;
5314        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5315          diag::ext_function_specialization_in_class :
5316          diag::err_function_specialization_in_class)
5317          << NewFD->getDeclName();
5318      } else if (CheckFunctionTemplateSpecialization(NewFD,
5319                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5320                                                     Previous))
5321        NewFD->setInvalidDecl();
5322
5323      // C++ [dcl.stc]p1:
5324      //   A storage-class-specifier shall not be specified in an explicit
5325      //   specialization (14.7.3)
5326      if (SC != SC_None) {
5327        if (SC != NewFD->getStorageClass())
5328          Diag(NewFD->getLocation(),
5329               diag::err_explicit_specialization_inconsistent_storage_class)
5330            << SC
5331            << FixItHint::CreateRemoval(
5332                                      D.getDeclSpec().getStorageClassSpecLoc());
5333
5334        else
5335          Diag(NewFD->getLocation(),
5336               diag::ext_explicit_specialization_storage_class)
5337            << FixItHint::CreateRemoval(
5338                                      D.getDeclSpec().getStorageClassSpecLoc());
5339      }
5340
5341    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5342      if (CheckMemberSpecialization(NewFD, Previous))
5343          NewFD->setInvalidDecl();
5344    }
5345
5346    // Perform semantic checking on the function declaration.
5347    if (!isDependentClassScopeExplicitSpecialization) {
5348      if (NewFD->isInvalidDecl()) {
5349        // If this is a class member, mark the class invalid immediately.
5350        // This avoids some consistency errors later.
5351        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5352          methodDecl->getParent()->setInvalidDecl();
5353      } else {
5354        if (NewFD->isMain())
5355          CheckMain(NewFD, D.getDeclSpec());
5356        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5357                                                    isExplicitSpecialization));
5358      }
5359    }
5360
5361    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5362            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5363           "previous declaration set still overloaded");
5364
5365    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5366        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5367      NewFD->setInvalidDecl();
5368
5369    NamedDecl *PrincipalDecl = (FunctionTemplate
5370                                ? cast<NamedDecl>(FunctionTemplate)
5371                                : NewFD);
5372
5373    if (isFriend && D.isRedeclaration()) {
5374      AccessSpecifier Access = AS_public;
5375      if (!NewFD->isInvalidDecl())
5376        Access = NewFD->getPreviousDecl()->getAccess();
5377
5378      NewFD->setAccess(Access);
5379      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5380
5381      PrincipalDecl->setObjectOfFriendDecl(true);
5382    }
5383
5384    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5385        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5386      PrincipalDecl->setNonMemberOperator();
5387
5388    // If we have a function template, check the template parameter
5389    // list. This will check and merge default template arguments.
5390    if (FunctionTemplate) {
5391      FunctionTemplateDecl *PrevTemplate =
5392                                     FunctionTemplate->getPreviousDecl();
5393      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5394                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5395                            D.getDeclSpec().isFriendSpecified()
5396                              ? (D.isFunctionDefinition()
5397                                   ? TPC_FriendFunctionTemplateDefinition
5398                                   : TPC_FriendFunctionTemplate)
5399                              : (D.getCXXScopeSpec().isSet() &&
5400                                 DC && DC->isRecord() &&
5401                                 DC->isDependentContext())
5402                                  ? TPC_ClassTemplateMember
5403                                  : TPC_FunctionTemplate);
5404    }
5405
5406    if (NewFD->isInvalidDecl()) {
5407      // Ignore all the rest of this.
5408    } else if (!D.isRedeclaration()) {
5409      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5410                                       AddToScope };
5411      // Fake up an access specifier if it's supposed to be a class member.
5412      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5413        NewFD->setAccess(AS_public);
5414
5415      // Qualified decls generally require a previous declaration.
5416      if (D.getCXXScopeSpec().isSet()) {
5417        // ...with the major exception of templated-scope or
5418        // dependent-scope friend declarations.
5419
5420        // TODO: we currently also suppress this check in dependent
5421        // contexts because (1) the parameter depth will be off when
5422        // matching friend templates and (2) we might actually be
5423        // selecting a friend based on a dependent factor.  But there
5424        // are situations where these conditions don't apply and we
5425        // can actually do this check immediately.
5426        if (isFriend &&
5427            (TemplateParamLists.size() ||
5428             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5429             CurContext->isDependentContext())) {
5430          // ignore these
5431        } else {
5432          // The user tried to provide an out-of-line definition for a
5433          // function that is a member of a class or namespace, but there
5434          // was no such member function declared (C++ [class.mfct]p2,
5435          // C++ [namespace.memdef]p2). For example:
5436          //
5437          // class X {
5438          //   void f() const;
5439          // };
5440          //
5441          // void X::f() { } // ill-formed
5442          //
5443          // Complain about this problem, and attempt to suggest close
5444          // matches (e.g., those that differ only in cv-qualifiers and
5445          // whether the parameter types are references).
5446
5447          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5448                                                               NewFD,
5449                                                               ExtraArgs)) {
5450            AddToScope = ExtraArgs.AddToScope;
5451            return Result;
5452          }
5453        }
5454
5455        // Unqualified local friend declarations are required to resolve
5456        // to something.
5457      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5458        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5459                                                             NewFD,
5460                                                             ExtraArgs)) {
5461          AddToScope = ExtraArgs.AddToScope;
5462          return Result;
5463        }
5464      }
5465
5466    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5467               !isFriend && !isFunctionTemplateSpecialization &&
5468               !isExplicitSpecialization) {
5469      // An out-of-line member function declaration must also be a
5470      // definition (C++ [dcl.meaning]p1).
5471      // Note that this is not the case for explicit specializations of
5472      // function templates or member functions of class templates, per
5473      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5474      // extension for compatibility with old SWIG code which likes to
5475      // generate them.
5476      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5477        << D.getCXXScopeSpec().getRange();
5478    }
5479  }
5480
5481
5482  // Handle attributes. We need to have merged decls when handling attributes
5483  // (for example to check for conflicts, etc).
5484  // FIXME: This needs to happen before we merge declarations. Then,
5485  // let attribute merging cope with attribute conflicts.
5486  ProcessDeclAttributes(S, NewFD, D,
5487                        /*NonInheritable=*/false, /*Inheritable=*/true);
5488
5489  // attributes declared post-definition are currently ignored
5490  // FIXME: This should happen during attribute merging
5491  if (D.isRedeclaration() && Previous.isSingleResult()) {
5492    const FunctionDecl *Def;
5493    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5494    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5495      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5496      Diag(Def->getLocation(), diag::note_previous_definition);
5497    }
5498  }
5499
5500  AddKnownFunctionAttributes(NewFD);
5501
5502  if (NewFD->hasAttr<OverloadableAttr>() &&
5503      !NewFD->getType()->getAs<FunctionProtoType>()) {
5504    Diag(NewFD->getLocation(),
5505         diag::err_attribute_overloadable_no_prototype)
5506      << NewFD;
5507
5508    // Turn this into a variadic function with no parameters.
5509    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5510    FunctionProtoType::ExtProtoInfo EPI;
5511    EPI.Variadic = true;
5512    EPI.ExtInfo = FT->getExtInfo();
5513
5514    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5515    NewFD->setType(R);
5516  }
5517
5518  // If there's a #pragma GCC visibility in scope, and this isn't a class
5519  // member, set the visibility of this function.
5520  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5521    AddPushedVisibilityAttribute(NewFD);
5522
5523  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5524  // marking the function.
5525  AddCFAuditedAttribute(NewFD);
5526
5527  // If this is a locally-scoped extern C function, update the
5528  // map of such names.
5529  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5530      && !NewFD->isInvalidDecl())
5531    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5532
5533  // Set this FunctionDecl's range up to the right paren.
5534  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5535
5536  if (getLangOptions().CPlusPlus) {
5537    if (FunctionTemplate) {
5538      if (NewFD->isInvalidDecl())
5539        FunctionTemplate->setInvalidDecl();
5540      return FunctionTemplate;
5541    }
5542  }
5543
5544  MarkUnusedFileScopedDecl(NewFD);
5545
5546  if (getLangOptions().CUDA)
5547    if (IdentifierInfo *II = NewFD->getIdentifier())
5548      if (!NewFD->isInvalidDecl() &&
5549          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5550        if (II->isStr("cudaConfigureCall")) {
5551          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5552            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5553
5554          Context.setcudaConfigureCallDecl(NewFD);
5555        }
5556      }
5557
5558  // Here we have an function template explicit specialization at class scope.
5559  // The actually specialization will be postponed to template instatiation
5560  // time via the ClassScopeFunctionSpecializationDecl node.
5561  if (isDependentClassScopeExplicitSpecialization) {
5562    ClassScopeFunctionSpecializationDecl *NewSpec =
5563                         ClassScopeFunctionSpecializationDecl::Create(
5564                                Context, CurContext,  SourceLocation(),
5565                                cast<CXXMethodDecl>(NewFD));
5566    CurContext->addDecl(NewSpec);
5567    AddToScope = false;
5568  }
5569
5570  return NewFD;
5571}
5572
5573/// \brief Perform semantic checking of a new function declaration.
5574///
5575/// Performs semantic analysis of the new function declaration
5576/// NewFD. This routine performs all semantic checking that does not
5577/// require the actual declarator involved in the declaration, and is
5578/// used both for the declaration of functions as they are parsed
5579/// (called via ActOnDeclarator) and for the declaration of functions
5580/// that have been instantiated via C++ template instantiation (called
5581/// via InstantiateDecl).
5582///
5583/// \param IsExplicitSpecialiation whether this new function declaration is
5584/// an explicit specialization of the previous declaration.
5585///
5586/// This sets NewFD->isInvalidDecl() to true if there was an error.
5587///
5588/// Returns true if the function declaration is a redeclaration.
5589bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5590                                    LookupResult &Previous,
5591                                    bool IsExplicitSpecialization) {
5592  assert(!NewFD->getResultType()->isVariablyModifiedType()
5593         && "Variably modified return types are not handled here");
5594
5595  // Check for a previous declaration of this name.
5596  if (Previous.empty() && NewFD->isExternC()) {
5597    // Since we did not find anything by this name and we're declaring
5598    // an extern "C" function, look for a non-visible extern "C"
5599    // declaration with the same name.
5600    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5601      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5602    if (Pos != LocallyScopedExternalDecls.end())
5603      Previous.addDecl(Pos->second);
5604  }
5605
5606  bool Redeclaration = false;
5607
5608  // Merge or overload the declaration with an existing declaration of
5609  // the same name, if appropriate.
5610  if (!Previous.empty()) {
5611    // Determine whether NewFD is an overload of PrevDecl or
5612    // a declaration that requires merging. If it's an overload,
5613    // there's no more work to do here; we'll just add the new
5614    // function to the scope.
5615
5616    NamedDecl *OldDecl = 0;
5617    if (!AllowOverloadingOfFunction(Previous, Context)) {
5618      Redeclaration = true;
5619      OldDecl = Previous.getFoundDecl();
5620    } else {
5621      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5622                            /*NewIsUsingDecl*/ false)) {
5623      case Ovl_Match:
5624        Redeclaration = true;
5625        break;
5626
5627      case Ovl_NonFunction:
5628        Redeclaration = true;
5629        break;
5630
5631      case Ovl_Overload:
5632        Redeclaration = false;
5633        break;
5634      }
5635
5636      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5637        // If a function name is overloadable in C, then every function
5638        // with that name must be marked "overloadable".
5639        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5640          << Redeclaration << NewFD;
5641        NamedDecl *OverloadedDecl = 0;
5642        if (Redeclaration)
5643          OverloadedDecl = OldDecl;
5644        else if (!Previous.empty())
5645          OverloadedDecl = Previous.getRepresentativeDecl();
5646        if (OverloadedDecl)
5647          Diag(OverloadedDecl->getLocation(),
5648               diag::note_attribute_overloadable_prev_overload);
5649        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5650                                                        Context));
5651      }
5652    }
5653
5654    if (Redeclaration) {
5655      // NewFD and OldDecl represent declarations that need to be
5656      // merged.
5657      if (MergeFunctionDecl(NewFD, OldDecl)) {
5658        NewFD->setInvalidDecl();
5659        return Redeclaration;
5660      }
5661
5662      Previous.clear();
5663      Previous.addDecl(OldDecl);
5664
5665      if (FunctionTemplateDecl *OldTemplateDecl
5666                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5667        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5668        FunctionTemplateDecl *NewTemplateDecl
5669          = NewFD->getDescribedFunctionTemplate();
5670        assert(NewTemplateDecl && "Template/non-template mismatch");
5671        if (CXXMethodDecl *Method
5672              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5673          Method->setAccess(OldTemplateDecl->getAccess());
5674          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5675        }
5676
5677        // If this is an explicit specialization of a member that is a function
5678        // template, mark it as a member specialization.
5679        if (IsExplicitSpecialization &&
5680            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5681          NewTemplateDecl->setMemberSpecialization();
5682          assert(OldTemplateDecl->isMemberSpecialization());
5683        }
5684
5685      } else {
5686        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5687          NewFD->setAccess(OldDecl->getAccess());
5688        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5689      }
5690    }
5691  }
5692
5693  // Semantic checking for this function declaration (in isolation).
5694  if (getLangOptions().CPlusPlus) {
5695    // C++-specific checks.
5696    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5697      CheckConstructor(Constructor);
5698    } else if (CXXDestructorDecl *Destructor =
5699                dyn_cast<CXXDestructorDecl>(NewFD)) {
5700      CXXRecordDecl *Record = Destructor->getParent();
5701      QualType ClassType = Context.getTypeDeclType(Record);
5702
5703      // FIXME: Shouldn't we be able to perform this check even when the class
5704      // type is dependent? Both gcc and edg can handle that.
5705      if (!ClassType->isDependentType()) {
5706        DeclarationName Name
5707          = Context.DeclarationNames.getCXXDestructorName(
5708                                        Context.getCanonicalType(ClassType));
5709        if (NewFD->getDeclName() != Name) {
5710          Diag(NewFD->getLocation(), diag::err_destructor_name);
5711          NewFD->setInvalidDecl();
5712          return Redeclaration;
5713        }
5714      }
5715    } else if (CXXConversionDecl *Conversion
5716               = dyn_cast<CXXConversionDecl>(NewFD)) {
5717      ActOnConversionDeclarator(Conversion);
5718    }
5719
5720    // Find any virtual functions that this function overrides.
5721    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5722      if (!Method->isFunctionTemplateSpecialization() &&
5723          !Method->getDescribedFunctionTemplate()) {
5724        if (AddOverriddenMethods(Method->getParent(), Method)) {
5725          // If the function was marked as "static", we have a problem.
5726          if (NewFD->getStorageClass() == SC_Static) {
5727            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5728              << NewFD->getDeclName();
5729            for (CXXMethodDecl::method_iterator
5730                      Overridden = Method->begin_overridden_methods(),
5731                   OverriddenEnd = Method->end_overridden_methods();
5732                 Overridden != OverriddenEnd;
5733                 ++Overridden) {
5734              Diag((*Overridden)->getLocation(),
5735                   diag::note_overridden_virtual_function);
5736            }
5737          }
5738        }
5739      }
5740    }
5741
5742    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5743    if (NewFD->isOverloadedOperator() &&
5744        CheckOverloadedOperatorDeclaration(NewFD)) {
5745      NewFD->setInvalidDecl();
5746      return Redeclaration;
5747    }
5748
5749    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5750    if (NewFD->getLiteralIdentifier() &&
5751        CheckLiteralOperatorDeclaration(NewFD)) {
5752      NewFD->setInvalidDecl();
5753      return Redeclaration;
5754    }
5755
5756    // In C++, check default arguments now that we have merged decls. Unless
5757    // the lexical context is the class, because in this case this is done
5758    // during delayed parsing anyway.
5759    if (!CurContext->isRecord())
5760      CheckCXXDefaultArguments(NewFD);
5761
5762    // If this function declares a builtin function, check the type of this
5763    // declaration against the expected type for the builtin.
5764    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5765      ASTContext::GetBuiltinTypeError Error;
5766      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5767      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5768        // The type of this function differs from the type of the builtin,
5769        // so forget about the builtin entirely.
5770        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5771      }
5772    }
5773  }
5774  return Redeclaration;
5775}
5776
5777void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5778  // C++ [basic.start.main]p3:  A program that declares main to be inline
5779  //   or static is ill-formed.
5780  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5781  //   shall not appear in a declaration of main.
5782  // static main is not an error under C99, but we should warn about it.
5783  if (FD->getStorageClass() == SC_Static)
5784    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5785         ? diag::err_static_main : diag::warn_static_main)
5786      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5787  if (FD->isInlineSpecified())
5788    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5789      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5790
5791  QualType T = FD->getType();
5792  assert(T->isFunctionType() && "function decl is not of function type");
5793  const FunctionType* FT = T->getAs<FunctionType>();
5794
5795  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5796    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5797    FD->setInvalidDecl(true);
5798  }
5799
5800  // Treat protoless main() as nullary.
5801  if (isa<FunctionNoProtoType>(FT)) return;
5802
5803  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5804  unsigned nparams = FTP->getNumArgs();
5805  assert(FD->getNumParams() == nparams);
5806
5807  bool HasExtraParameters = (nparams > 3);
5808
5809  // Darwin passes an undocumented fourth argument of type char**.  If
5810  // other platforms start sprouting these, the logic below will start
5811  // getting shifty.
5812  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5813    HasExtraParameters = false;
5814
5815  if (HasExtraParameters) {
5816    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5817    FD->setInvalidDecl(true);
5818    nparams = 3;
5819  }
5820
5821  // FIXME: a lot of the following diagnostics would be improved
5822  // if we had some location information about types.
5823
5824  QualType CharPP =
5825    Context.getPointerType(Context.getPointerType(Context.CharTy));
5826  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5827
5828  for (unsigned i = 0; i < nparams; ++i) {
5829    QualType AT = FTP->getArgType(i);
5830
5831    bool mismatch = true;
5832
5833    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5834      mismatch = false;
5835    else if (Expected[i] == CharPP) {
5836      // As an extension, the following forms are okay:
5837      //   char const **
5838      //   char const * const *
5839      //   char * const *
5840
5841      QualifierCollector qs;
5842      const PointerType* PT;
5843      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5844          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5845          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5846        qs.removeConst();
5847        mismatch = !qs.empty();
5848      }
5849    }
5850
5851    if (mismatch) {
5852      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5853      // TODO: suggest replacing given type with expected type
5854      FD->setInvalidDecl(true);
5855    }
5856  }
5857
5858  if (nparams == 1 && !FD->isInvalidDecl()) {
5859    Diag(FD->getLocation(), diag::warn_main_one_arg);
5860  }
5861
5862  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5863    Diag(FD->getLocation(), diag::err_main_template_decl);
5864    FD->setInvalidDecl();
5865  }
5866}
5867
5868bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5869  // FIXME: Need strict checking.  In C89, we need to check for
5870  // any assignment, increment, decrement, function-calls, or
5871  // commas outside of a sizeof.  In C99, it's the same list,
5872  // except that the aforementioned are allowed in unevaluated
5873  // expressions.  Everything else falls under the
5874  // "may accept other forms of constant expressions" exception.
5875  // (We never end up here for C++, so the constant expression
5876  // rules there don't matter.)
5877  if (Init->isConstantInitializer(Context, false))
5878    return false;
5879  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5880    << Init->getSourceRange();
5881  return true;
5882}
5883
5884namespace {
5885  // Visits an initialization expression to see if OrigDecl is evaluated in
5886  // its own initialization and throws a warning if it does.
5887  class SelfReferenceChecker
5888      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5889    Sema &S;
5890    Decl *OrigDecl;
5891    bool isRecordType;
5892    bool isPODType;
5893
5894  public:
5895    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5896
5897    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5898                                                    S(S), OrigDecl(OrigDecl) {
5899      isPODType = false;
5900      isRecordType = false;
5901      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5902        isPODType = VD->getType().isPODType(S.Context);
5903        isRecordType = VD->getType()->isRecordType();
5904      }
5905    }
5906
5907    void VisitExpr(Expr *E) {
5908      if (isa<ObjCMessageExpr>(*E)) return;
5909      if (isRecordType) {
5910        Expr *expr = E;
5911        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5912          ValueDecl *VD = ME->getMemberDecl();
5913          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5914          expr = ME->getBase();
5915        }
5916        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5917          HandleDeclRefExpr(DRE);
5918          return;
5919        }
5920      }
5921      Inherited::VisitExpr(E);
5922    }
5923
5924    void VisitMemberExpr(MemberExpr *E) {
5925      if (E->getType()->canDecayToPointerType()) return;
5926      if (isa<FieldDecl>(E->getMemberDecl()))
5927        if (DeclRefExpr *DRE
5928              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5929          HandleDeclRefExpr(DRE);
5930          return;
5931        }
5932      Inherited::VisitMemberExpr(E);
5933    }
5934
5935    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5936      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5937          (isRecordType && E->getCastKind() == CK_NoOp)) {
5938        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5939        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5940          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5941        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5942          HandleDeclRefExpr(DRE);
5943          return;
5944        }
5945      }
5946      Inherited::VisitImplicitCastExpr(E);
5947    }
5948
5949    void VisitUnaryOperator(UnaryOperator *E) {
5950      // For POD record types, addresses of its own members are well-defined.
5951      if (isRecordType && isPODType) return;
5952      Inherited::VisitUnaryOperator(E);
5953    }
5954
5955    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5956      Decl* ReferenceDecl = DRE->getDecl();
5957      if (OrigDecl != ReferenceDecl) return;
5958      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5959                          Sema::NotForRedeclaration);
5960      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5961                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5962                              << Result.getLookupName()
5963                              << OrigDecl->getLocation()
5964                              << DRE->getSourceRange());
5965    }
5966  };
5967}
5968
5969/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5970void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5971  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5972}
5973
5974/// AddInitializerToDecl - Adds the initializer Init to the
5975/// declaration dcl. If DirectInit is true, this is C++ direct
5976/// initialization rather than copy initialization.
5977void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5978                                bool DirectInit, bool TypeMayContainAuto) {
5979  // If there is no declaration, there was an error parsing it.  Just ignore
5980  // the initializer.
5981  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5982    return;
5983
5984  // Check for self-references within variable initializers.
5985  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5986    // Variables declared within a function/method body are handled
5987    // by a dataflow analysis.
5988    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5989      CheckSelfReference(RealDecl, Init);
5990  }
5991  else {
5992    CheckSelfReference(RealDecl, Init);
5993  }
5994
5995  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5996    // With declarators parsed the way they are, the parser cannot
5997    // distinguish between a normal initializer and a pure-specifier.
5998    // Thus this grotesque test.
5999    IntegerLiteral *IL;
6000    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6001        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6002      CheckPureMethod(Method, Init->getSourceRange());
6003    else {
6004      Diag(Method->getLocation(), diag::err_member_function_initialization)
6005        << Method->getDeclName() << Init->getSourceRange();
6006      Method->setInvalidDecl();
6007    }
6008    return;
6009  }
6010
6011  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6012  if (!VDecl) {
6013    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6014    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6015    RealDecl->setInvalidDecl();
6016    return;
6017  }
6018
6019  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6020  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6021    TypeSourceInfo *DeducedType = 0;
6022    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
6023            DAR_Failed)
6024      DiagnoseAutoDeductionFailure(VDecl, Init);
6025    if (!DeducedType) {
6026      RealDecl->setInvalidDecl();
6027      return;
6028    }
6029    VDecl->setTypeSourceInfo(DeducedType);
6030    VDecl->setType(DeducedType->getType());
6031
6032    // In ARC, infer lifetime.
6033    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6034      VDecl->setInvalidDecl();
6035
6036    // If this is a redeclaration, check that the type we just deduced matches
6037    // the previously declared type.
6038    if (VarDecl *Old = VDecl->getPreviousDecl())
6039      MergeVarDeclTypes(VDecl, Old);
6040  }
6041
6042  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6043    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6044    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6045    VDecl->setInvalidDecl();
6046    return;
6047  }
6048
6049
6050  // A definition must end up with a complete type, which means it must be
6051  // complete with the restriction that an array type might be completed by the
6052  // initializer; note that later code assumes this restriction.
6053  QualType BaseDeclType = VDecl->getType();
6054  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6055    BaseDeclType = Array->getElementType();
6056  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6057                          diag::err_typecheck_decl_incomplete_type)) {
6058    RealDecl->setInvalidDecl();
6059    return;
6060  }
6061
6062  // The variable can not have an abstract class type.
6063  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6064                             diag::err_abstract_type_in_decl,
6065                             AbstractVariableType))
6066    VDecl->setInvalidDecl();
6067
6068  const VarDecl *Def;
6069  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6070    Diag(VDecl->getLocation(), diag::err_redefinition)
6071      << VDecl->getDeclName();
6072    Diag(Def->getLocation(), diag::note_previous_definition);
6073    VDecl->setInvalidDecl();
6074    return;
6075  }
6076
6077  const VarDecl* PrevInit = 0;
6078  if (getLangOptions().CPlusPlus) {
6079    // C++ [class.static.data]p4
6080    //   If a static data member is of const integral or const
6081    //   enumeration type, its declaration in the class definition can
6082    //   specify a constant-initializer which shall be an integral
6083    //   constant expression (5.19). In that case, the member can appear
6084    //   in integral constant expressions. The member shall still be
6085    //   defined in a namespace scope if it is used in the program and the
6086    //   namespace scope definition shall not contain an initializer.
6087    //
6088    // We already performed a redefinition check above, but for static
6089    // data members we also need to check whether there was an in-class
6090    // declaration with an initializer.
6091    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6092      Diag(VDecl->getLocation(), diag::err_redefinition)
6093        << VDecl->getDeclName();
6094      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6095      return;
6096    }
6097
6098    if (VDecl->hasLocalStorage())
6099      getCurFunction()->setHasBranchProtectedScope();
6100
6101    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6102      VDecl->setInvalidDecl();
6103      return;
6104    }
6105  }
6106
6107  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6108  // a kernel function cannot be initialized."
6109  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6110    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6111    VDecl->setInvalidDecl();
6112    return;
6113  }
6114
6115  // Get the decls type and save a reference for later, since
6116  // CheckInitializerTypes may change it.
6117  QualType DclT = VDecl->getType(), SavT = DclT;
6118
6119  // Perform the initialization.
6120  if (!VDecl->isInvalidDecl()) {
6121    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6122    InitializationKind Kind
6123      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6124                                                      Init->getLocStart(),
6125                                                      Init->getLocEnd())
6126                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6127                                                    Init->getLocStart());
6128
6129    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6130    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6131                                              MultiExprArg(*this, &Init, 1),
6132                                              &DclT);
6133    if (Result.isInvalid()) {
6134      VDecl->setInvalidDecl();
6135      return;
6136    }
6137
6138    Init = Result.takeAs<Expr>();
6139  }
6140
6141  // If the type changed, it means we had an incomplete type that was
6142  // completed by the initializer. For example:
6143  //   int ary[] = { 1, 3, 5 };
6144  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6145  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6146    VDecl->setType(DclT);
6147    Init->setType(DclT.getNonReferenceType());
6148  }
6149
6150  // Check any implicit conversions within the expression.
6151  CheckImplicitConversions(Init, VDecl->getLocation());
6152
6153  if (!VDecl->isInvalidDecl())
6154    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6155
6156  Init = MaybeCreateExprWithCleanups(Init);
6157  // Attach the initializer to the decl.
6158  VDecl->setInit(Init);
6159
6160  if (VDecl->isLocalVarDecl()) {
6161    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6162    // static storage duration shall be constant expressions or string literals.
6163    // C++ does not have this restriction.
6164    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6165        VDecl->getStorageClass() == SC_Static)
6166      CheckForConstantInitializer(Init, DclT);
6167  } else if (VDecl->isStaticDataMember() &&
6168             VDecl->getLexicalDeclContext()->isRecord()) {
6169    // This is an in-class initialization for a static data member, e.g.,
6170    //
6171    // struct S {
6172    //   static const int value = 17;
6173    // };
6174
6175    // C++ [class.mem]p4:
6176    //   A member-declarator can contain a constant-initializer only
6177    //   if it declares a static member (9.4) of const integral or
6178    //   const enumeration type, see 9.4.2.
6179    //
6180    // C++11 [class.static.data]p3:
6181    //   If a non-volatile const static data member is of integral or
6182    //   enumeration type, its declaration in the class definition can
6183    //   specify a brace-or-equal-initializer in which every initalizer-clause
6184    //   that is an assignment-expression is a constant expression. A static
6185    //   data member of literal type can be declared in the class definition
6186    //   with the constexpr specifier; if so, its declaration shall specify a
6187    //   brace-or-equal-initializer in which every initializer-clause that is
6188    //   an assignment-expression is a constant expression.
6189
6190    // Do nothing on dependent types.
6191    if (DclT->isDependentType()) {
6192
6193    // Allow any 'static constexpr' members, whether or not they are of literal
6194    // type. We separately check that the initializer is a constant expression,
6195    // which implicitly requires the member to be of literal type.
6196    } else if (VDecl->isConstexpr()) {
6197
6198    // Require constness.
6199    } else if (!DclT.isConstQualified()) {
6200      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6201        << Init->getSourceRange();
6202      VDecl->setInvalidDecl();
6203
6204    // We allow integer constant expressions in all cases.
6205    } else if (DclT->isIntegralOrEnumerationType()) {
6206      // Check whether the expression is a constant expression.
6207      SourceLocation Loc;
6208      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6209        // In C++11, a non-constexpr const static data member with an
6210        // in-class initializer cannot be volatile.
6211        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6212      else if (Init->isValueDependent())
6213        ; // Nothing to check.
6214      else if (Init->isIntegerConstantExpr(Context, &Loc))
6215        ; // Ok, it's an ICE!
6216      else if (Init->isEvaluatable(Context)) {
6217        // If we can constant fold the initializer through heroics, accept it,
6218        // but report this as a use of an extension for -pedantic.
6219        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6220          << Init->getSourceRange();
6221      } else {
6222        // Otherwise, this is some crazy unknown case.  Report the issue at the
6223        // location provided by the isIntegerConstantExpr failed check.
6224        Diag(Loc, diag::err_in_class_initializer_non_constant)
6225          << Init->getSourceRange();
6226        VDecl->setInvalidDecl();
6227      }
6228
6229    // We allow foldable floating-point constants as an extension.
6230    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6231      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6232        << DclT << Init->getSourceRange();
6233      if (getLangOptions().CPlusPlus0x)
6234        Diag(VDecl->getLocation(),
6235             diag::note_in_class_initializer_float_type_constexpr)
6236          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6237
6238      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6239        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6240          << Init->getSourceRange();
6241        VDecl->setInvalidDecl();
6242      }
6243
6244    // Suggest adding 'constexpr' in C++11 for literal types.
6245    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6246      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6247        << DclT << Init->getSourceRange()
6248        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6249      VDecl->setConstexpr(true);
6250
6251    } else {
6252      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6253        << DclT << Init->getSourceRange();
6254      VDecl->setInvalidDecl();
6255    }
6256  } else if (VDecl->isFileVarDecl()) {
6257    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6258        (!getLangOptions().CPlusPlus ||
6259         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6260      Diag(VDecl->getLocation(), diag::warn_extern_init);
6261
6262    // C99 6.7.8p4. All file scoped initializers need to be constant.
6263    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6264      CheckForConstantInitializer(Init, DclT);
6265  }
6266
6267  CheckCompleteVariableDeclaration(VDecl);
6268}
6269
6270/// ActOnInitializerError - Given that there was an error parsing an
6271/// initializer for the given declaration, try to return to some form
6272/// of sanity.
6273void Sema::ActOnInitializerError(Decl *D) {
6274  // Our main concern here is re-establishing invariants like "a
6275  // variable's type is either dependent or complete".
6276  if (!D || D->isInvalidDecl()) return;
6277
6278  VarDecl *VD = dyn_cast<VarDecl>(D);
6279  if (!VD) return;
6280
6281  // Auto types are meaningless if we can't make sense of the initializer.
6282  if (ParsingInitForAutoVars.count(D)) {
6283    D->setInvalidDecl();
6284    return;
6285  }
6286
6287  QualType Ty = VD->getType();
6288  if (Ty->isDependentType()) return;
6289
6290  // Require a complete type.
6291  if (RequireCompleteType(VD->getLocation(),
6292                          Context.getBaseElementType(Ty),
6293                          diag::err_typecheck_decl_incomplete_type)) {
6294    VD->setInvalidDecl();
6295    return;
6296  }
6297
6298  // Require an abstract type.
6299  if (RequireNonAbstractType(VD->getLocation(), Ty,
6300                             diag::err_abstract_type_in_decl,
6301                             AbstractVariableType)) {
6302    VD->setInvalidDecl();
6303    return;
6304  }
6305
6306  // Don't bother complaining about constructors or destructors,
6307  // though.
6308}
6309
6310void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6311                                  bool TypeMayContainAuto) {
6312  // If there is no declaration, there was an error parsing it. Just ignore it.
6313  if (RealDecl == 0)
6314    return;
6315
6316  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6317    QualType Type = Var->getType();
6318
6319    // C++11 [dcl.spec.auto]p3
6320    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6321      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6322        << Var->getDeclName() << Type;
6323      Var->setInvalidDecl();
6324      return;
6325    }
6326
6327    // C++11 [class.static.data]p3: A static data member can be declared with
6328    // the constexpr specifier; if so, its declaration shall specify
6329    // a brace-or-equal-initializer.
6330    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6331    // the definition of a variable [...] or the declaration of a static data
6332    // member.
6333    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6334      if (Var->isStaticDataMember())
6335        Diag(Var->getLocation(),
6336             diag::err_constexpr_static_mem_var_requires_init)
6337          << Var->getDeclName();
6338      else
6339        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6340      Var->setInvalidDecl();
6341      return;
6342    }
6343
6344    switch (Var->isThisDeclarationADefinition()) {
6345    case VarDecl::Definition:
6346      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6347        break;
6348
6349      // We have an out-of-line definition of a static data member
6350      // that has an in-class initializer, so we type-check this like
6351      // a declaration.
6352      //
6353      // Fall through
6354
6355    case VarDecl::DeclarationOnly:
6356      // It's only a declaration.
6357
6358      // Block scope. C99 6.7p7: If an identifier for an object is
6359      // declared with no linkage (C99 6.2.2p6), the type for the
6360      // object shall be complete.
6361      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6362          !Var->getLinkage() && !Var->isInvalidDecl() &&
6363          RequireCompleteType(Var->getLocation(), Type,
6364                              diag::err_typecheck_decl_incomplete_type))
6365        Var->setInvalidDecl();
6366
6367      // Make sure that the type is not abstract.
6368      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6369          RequireNonAbstractType(Var->getLocation(), Type,
6370                                 diag::err_abstract_type_in_decl,
6371                                 AbstractVariableType))
6372        Var->setInvalidDecl();
6373      return;
6374
6375    case VarDecl::TentativeDefinition:
6376      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6377      // object that has file scope without an initializer, and without a
6378      // storage-class specifier or with the storage-class specifier "static",
6379      // constitutes a tentative definition. Note: A tentative definition with
6380      // external linkage is valid (C99 6.2.2p5).
6381      if (!Var->isInvalidDecl()) {
6382        if (const IncompleteArrayType *ArrayT
6383                                    = Context.getAsIncompleteArrayType(Type)) {
6384          if (RequireCompleteType(Var->getLocation(),
6385                                  ArrayT->getElementType(),
6386                                  diag::err_illegal_decl_array_incomplete_type))
6387            Var->setInvalidDecl();
6388        } else if (Var->getStorageClass() == SC_Static) {
6389          // C99 6.9.2p3: If the declaration of an identifier for an object is
6390          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6391          // declared type shall not be an incomplete type.
6392          // NOTE: code such as the following
6393          //     static struct s;
6394          //     struct s { int a; };
6395          // is accepted by gcc. Hence here we issue a warning instead of
6396          // an error and we do not invalidate the static declaration.
6397          // NOTE: to avoid multiple warnings, only check the first declaration.
6398          if (Var->getPreviousDecl() == 0)
6399            RequireCompleteType(Var->getLocation(), Type,
6400                                diag::ext_typecheck_decl_incomplete_type);
6401        }
6402      }
6403
6404      // Record the tentative definition; we're done.
6405      if (!Var->isInvalidDecl())
6406        TentativeDefinitions.push_back(Var);
6407      return;
6408    }
6409
6410    // Provide a specific diagnostic for uninitialized variable
6411    // definitions with incomplete array type.
6412    if (Type->isIncompleteArrayType()) {
6413      Diag(Var->getLocation(),
6414           diag::err_typecheck_incomplete_array_needs_initializer);
6415      Var->setInvalidDecl();
6416      return;
6417    }
6418
6419    // Provide a specific diagnostic for uninitialized variable
6420    // definitions with reference type.
6421    if (Type->isReferenceType()) {
6422      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6423        << Var->getDeclName()
6424        << SourceRange(Var->getLocation(), Var->getLocation());
6425      Var->setInvalidDecl();
6426      return;
6427    }
6428
6429    // Do not attempt to type-check the default initializer for a
6430    // variable with dependent type.
6431    if (Type->isDependentType())
6432      return;
6433
6434    if (Var->isInvalidDecl())
6435      return;
6436
6437    if (RequireCompleteType(Var->getLocation(),
6438                            Context.getBaseElementType(Type),
6439                            diag::err_typecheck_decl_incomplete_type)) {
6440      Var->setInvalidDecl();
6441      return;
6442    }
6443
6444    // The variable can not have an abstract class type.
6445    if (RequireNonAbstractType(Var->getLocation(), Type,
6446                               diag::err_abstract_type_in_decl,
6447                               AbstractVariableType)) {
6448      Var->setInvalidDecl();
6449      return;
6450    }
6451
6452    // Check for jumps past the implicit initializer.  C++0x
6453    // clarifies that this applies to a "variable with automatic
6454    // storage duration", not a "local variable".
6455    // C++11 [stmt.dcl]p3
6456    //   A program that jumps from a point where a variable with automatic
6457    //   storage duration is not in scope to a point where it is in scope is
6458    //   ill-formed unless the variable has scalar type, class type with a
6459    //   trivial default constructor and a trivial destructor, a cv-qualified
6460    //   version of one of these types, or an array of one of the preceding
6461    //   types and is declared without an initializer.
6462    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6463      if (const RecordType *Record
6464            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6465        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6466        // Mark the function for further checking even if the looser rules of
6467        // C++11 do not require such checks, so that we can diagnose
6468        // incompatibilities with C++98.
6469        if (!CXXRecord->isPOD())
6470          getCurFunction()->setHasBranchProtectedScope();
6471      }
6472    }
6473
6474    // C++03 [dcl.init]p9:
6475    //   If no initializer is specified for an object, and the
6476    //   object is of (possibly cv-qualified) non-POD class type (or
6477    //   array thereof), the object shall be default-initialized; if
6478    //   the object is of const-qualified type, the underlying class
6479    //   type shall have a user-declared default
6480    //   constructor. Otherwise, if no initializer is specified for
6481    //   a non- static object, the object and its subobjects, if
6482    //   any, have an indeterminate initial value); if the object
6483    //   or any of its subobjects are of const-qualified type, the
6484    //   program is ill-formed.
6485    // C++0x [dcl.init]p11:
6486    //   If no initializer is specified for an object, the object is
6487    //   default-initialized; [...].
6488    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6489    InitializationKind Kind
6490      = InitializationKind::CreateDefault(Var->getLocation());
6491
6492    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6493    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6494                                      MultiExprArg(*this, 0, 0));
6495    if (Init.isInvalid())
6496      Var->setInvalidDecl();
6497    else if (Init.get())
6498      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6499
6500    CheckCompleteVariableDeclaration(Var);
6501  }
6502}
6503
6504void Sema::ActOnCXXForRangeDecl(Decl *D) {
6505  VarDecl *VD = dyn_cast<VarDecl>(D);
6506  if (!VD) {
6507    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6508    D->setInvalidDecl();
6509    return;
6510  }
6511
6512  VD->setCXXForRangeDecl(true);
6513
6514  // for-range-declaration cannot be given a storage class specifier.
6515  int Error = -1;
6516  switch (VD->getStorageClassAsWritten()) {
6517  case SC_None:
6518    break;
6519  case SC_Extern:
6520    Error = 0;
6521    break;
6522  case SC_Static:
6523    Error = 1;
6524    break;
6525  case SC_PrivateExtern:
6526    Error = 2;
6527    break;
6528  case SC_Auto:
6529    Error = 3;
6530    break;
6531  case SC_Register:
6532    Error = 4;
6533    break;
6534  case SC_OpenCLWorkGroupLocal:
6535    llvm_unreachable("Unexpected storage class");
6536  }
6537  if (VD->isConstexpr())
6538    Error = 5;
6539  if (Error != -1) {
6540    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6541      << VD->getDeclName() << Error;
6542    D->setInvalidDecl();
6543  }
6544}
6545
6546void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6547  if (var->isInvalidDecl()) return;
6548
6549  // In ARC, don't allow jumps past the implicit initialization of a
6550  // local retaining variable.
6551  if (getLangOptions().ObjCAutoRefCount &&
6552      var->hasLocalStorage()) {
6553    switch (var->getType().getObjCLifetime()) {
6554    case Qualifiers::OCL_None:
6555    case Qualifiers::OCL_ExplicitNone:
6556    case Qualifiers::OCL_Autoreleasing:
6557      break;
6558
6559    case Qualifiers::OCL_Weak:
6560    case Qualifiers::OCL_Strong:
6561      getCurFunction()->setHasBranchProtectedScope();
6562      break;
6563    }
6564  }
6565
6566  // All the following checks are C++ only.
6567  if (!getLangOptions().CPlusPlus) return;
6568
6569  QualType baseType = Context.getBaseElementType(var->getType());
6570  if (baseType->isDependentType()) return;
6571
6572  // __block variables might require us to capture a copy-initializer.
6573  if (var->hasAttr<BlocksAttr>()) {
6574    // It's currently invalid to ever have a __block variable with an
6575    // array type; should we diagnose that here?
6576
6577    // Regardless, we don't want to ignore array nesting when
6578    // constructing this copy.
6579    QualType type = var->getType();
6580
6581    if (type->isStructureOrClassType()) {
6582      SourceLocation poi = var->getLocation();
6583      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6584      ExprResult result =
6585        PerformCopyInitialization(
6586                        InitializedEntity::InitializeBlock(poi, type, false),
6587                                  poi, Owned(varRef));
6588      if (!result.isInvalid()) {
6589        result = MaybeCreateExprWithCleanups(result);
6590        Expr *init = result.takeAs<Expr>();
6591        Context.setBlockVarCopyInits(var, init);
6592      }
6593    }
6594  }
6595
6596  Expr *Init = var->getInit();
6597  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6598
6599  if (!var->getDeclContext()->isDependentContext() && Init) {
6600    if (IsGlobal && !var->isConstexpr() &&
6601        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6602                                            var->getLocation())
6603          != DiagnosticsEngine::Ignored &&
6604        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6605      Diag(var->getLocation(), diag::warn_global_constructor)
6606        << Init->getSourceRange();
6607
6608    if (var->isConstexpr()) {
6609      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6610      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6611        SourceLocation DiagLoc = var->getLocation();
6612        // If the note doesn't add any useful information other than a source
6613        // location, fold it into the primary diagnostic.
6614        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6615              diag::note_invalid_subexpr_in_const_expr) {
6616          DiagLoc = Notes[0].first;
6617          Notes.clear();
6618        }
6619        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6620          << var << Init->getSourceRange();
6621        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6622          Diag(Notes[I].first, Notes[I].second);
6623      }
6624    } else if (var->isUsableInConstantExpressions()) {
6625      // Check whether the initializer of a const variable of integral or
6626      // enumeration type is an ICE now, since we can't tell whether it was
6627      // initialized by a constant expression if we check later.
6628      var->checkInitIsICE();
6629    }
6630  }
6631
6632  // Require the destructor.
6633  if (const RecordType *recordType = baseType->getAs<RecordType>())
6634    FinalizeVarWithDestructor(var, recordType);
6635}
6636
6637/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6638/// any semantic actions necessary after any initializer has been attached.
6639void
6640Sema::FinalizeDeclaration(Decl *ThisDecl) {
6641  // Note that we are no longer parsing the initializer for this declaration.
6642  ParsingInitForAutoVars.erase(ThisDecl);
6643}
6644
6645Sema::DeclGroupPtrTy
6646Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6647                              Decl **Group, unsigned NumDecls) {
6648  SmallVector<Decl*, 8> Decls;
6649
6650  if (DS.isTypeSpecOwned())
6651    Decls.push_back(DS.getRepAsDecl());
6652
6653  for (unsigned i = 0; i != NumDecls; ++i)
6654    if (Decl *D = Group[i])
6655      Decls.push_back(D);
6656
6657  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6658                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6659}
6660
6661/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6662/// group, performing any necessary semantic checking.
6663Sema::DeclGroupPtrTy
6664Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6665                           bool TypeMayContainAuto) {
6666  // C++0x [dcl.spec.auto]p7:
6667  //   If the type deduced for the template parameter U is not the same in each
6668  //   deduction, the program is ill-formed.
6669  // FIXME: When initializer-list support is added, a distinction is needed
6670  // between the deduced type U and the deduced type which 'auto' stands for.
6671  //   auto a = 0, b = { 1, 2, 3 };
6672  // is legal because the deduced type U is 'int' in both cases.
6673  if (TypeMayContainAuto && NumDecls > 1) {
6674    QualType Deduced;
6675    CanQualType DeducedCanon;
6676    VarDecl *DeducedDecl = 0;
6677    for (unsigned i = 0; i != NumDecls; ++i) {
6678      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6679        AutoType *AT = D->getType()->getContainedAutoType();
6680        // Don't reissue diagnostics when instantiating a template.
6681        if (AT && D->isInvalidDecl())
6682          break;
6683        if (AT && AT->isDeduced()) {
6684          QualType U = AT->getDeducedType();
6685          CanQualType UCanon = Context.getCanonicalType(U);
6686          if (Deduced.isNull()) {
6687            Deduced = U;
6688            DeducedCanon = UCanon;
6689            DeducedDecl = D;
6690          } else if (DeducedCanon != UCanon) {
6691            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6692                 diag::err_auto_different_deductions)
6693              << Deduced << DeducedDecl->getDeclName()
6694              << U << D->getDeclName()
6695              << DeducedDecl->getInit()->getSourceRange()
6696              << D->getInit()->getSourceRange();
6697            D->setInvalidDecl();
6698            break;
6699          }
6700        }
6701      }
6702    }
6703  }
6704
6705  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6706}
6707
6708
6709/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6710/// to introduce parameters into function prototype scope.
6711Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6712  const DeclSpec &DS = D.getDeclSpec();
6713
6714  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6715  // C++03 [dcl.stc]p2 also permits 'auto'.
6716  VarDecl::StorageClass StorageClass = SC_None;
6717  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6718  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6719    StorageClass = SC_Register;
6720    StorageClassAsWritten = SC_Register;
6721  } else if (getLangOptions().CPlusPlus &&
6722             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6723    StorageClass = SC_Auto;
6724    StorageClassAsWritten = SC_Auto;
6725  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6726    Diag(DS.getStorageClassSpecLoc(),
6727         diag::err_invalid_storage_class_in_func_decl);
6728    D.getMutableDeclSpec().ClearStorageClassSpecs();
6729  }
6730
6731  if (D.getDeclSpec().isThreadSpecified())
6732    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6733  if (D.getDeclSpec().isConstexprSpecified())
6734    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6735      << 0;
6736
6737  DiagnoseFunctionSpecifiers(D);
6738
6739  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6740  QualType parmDeclType = TInfo->getType();
6741
6742  if (getLangOptions().CPlusPlus) {
6743    // Check that there are no default arguments inside the type of this
6744    // parameter.
6745    CheckExtraCXXDefaultArguments(D);
6746
6747    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6748    if (D.getCXXScopeSpec().isSet()) {
6749      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6750        << D.getCXXScopeSpec().getRange();
6751      D.getCXXScopeSpec().clear();
6752    }
6753  }
6754
6755  // Ensure we have a valid name
6756  IdentifierInfo *II = 0;
6757  if (D.hasName()) {
6758    II = D.getIdentifier();
6759    if (!II) {
6760      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6761        << GetNameForDeclarator(D).getName().getAsString();
6762      D.setInvalidType(true);
6763    }
6764  }
6765
6766  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6767  if (II) {
6768    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6769                   ForRedeclaration);
6770    LookupName(R, S);
6771    if (R.isSingleResult()) {
6772      NamedDecl *PrevDecl = R.getFoundDecl();
6773      if (PrevDecl->isTemplateParameter()) {
6774        // Maybe we will complain about the shadowed template parameter.
6775        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6776        // Just pretend that we didn't see the previous declaration.
6777        PrevDecl = 0;
6778      } else if (S->isDeclScope(PrevDecl)) {
6779        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6780        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6781
6782        // Recover by removing the name
6783        II = 0;
6784        D.SetIdentifier(0, D.getIdentifierLoc());
6785        D.setInvalidType(true);
6786      }
6787    }
6788  }
6789
6790  // Temporarily put parameter variables in the translation unit, not
6791  // the enclosing context.  This prevents them from accidentally
6792  // looking like class members in C++.
6793  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6794                                    D.getSourceRange().getBegin(),
6795                                    D.getIdentifierLoc(), II,
6796                                    parmDeclType, TInfo,
6797                                    StorageClass, StorageClassAsWritten);
6798
6799  if (D.isInvalidType())
6800    New->setInvalidDecl();
6801
6802  assert(S->isFunctionPrototypeScope());
6803  assert(S->getFunctionPrototypeDepth() >= 1);
6804  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6805                    S->getNextFunctionPrototypeIndex());
6806
6807  // Add the parameter declaration into this scope.
6808  S->AddDecl(New);
6809  if (II)
6810    IdResolver.AddDecl(New);
6811
6812  ProcessDeclAttributes(S, New, D);
6813
6814  if (D.getDeclSpec().isModulePrivateSpecified())
6815    Diag(New->getLocation(), diag::err_module_private_local)
6816      << 1 << New->getDeclName()
6817      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6818      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6819
6820  if (New->hasAttr<BlocksAttr>()) {
6821    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6822  }
6823  return New;
6824}
6825
6826/// \brief Synthesizes a variable for a parameter arising from a
6827/// typedef.
6828ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6829                                              SourceLocation Loc,
6830                                              QualType T) {
6831  /* FIXME: setting StartLoc == Loc.
6832     Would it be worth to modify callers so as to provide proper source
6833     location for the unnamed parameters, embedding the parameter's type? */
6834  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6835                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6836                                           SC_None, SC_None, 0);
6837  Param->setImplicit();
6838  return Param;
6839}
6840
6841void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6842                                    ParmVarDecl * const *ParamEnd) {
6843  // Don't diagnose unused-parameter errors in template instantiations; we
6844  // will already have done so in the template itself.
6845  if (!ActiveTemplateInstantiations.empty())
6846    return;
6847
6848  for (; Param != ParamEnd; ++Param) {
6849    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6850        !(*Param)->hasAttr<UnusedAttr>()) {
6851      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6852        << (*Param)->getDeclName();
6853    }
6854  }
6855}
6856
6857void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6858                                                  ParmVarDecl * const *ParamEnd,
6859                                                  QualType ReturnTy,
6860                                                  NamedDecl *D) {
6861  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6862    return;
6863
6864  // Warn if the return value is pass-by-value and larger than the specified
6865  // threshold.
6866  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6867    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6868    if (Size > LangOpts.NumLargeByValueCopy)
6869      Diag(D->getLocation(), diag::warn_return_value_size)
6870          << D->getDeclName() << Size;
6871  }
6872
6873  // Warn if any parameter is pass-by-value and larger than the specified
6874  // threshold.
6875  for (; Param != ParamEnd; ++Param) {
6876    QualType T = (*Param)->getType();
6877    if (T->isDependentType() || !T.isPODType(Context))
6878      continue;
6879    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6880    if (Size > LangOpts.NumLargeByValueCopy)
6881      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6882          << (*Param)->getDeclName() << Size;
6883  }
6884}
6885
6886ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6887                                  SourceLocation NameLoc, IdentifierInfo *Name,
6888                                  QualType T, TypeSourceInfo *TSInfo,
6889                                  VarDecl::StorageClass StorageClass,
6890                                  VarDecl::StorageClass StorageClassAsWritten) {
6891  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6892  if (getLangOptions().ObjCAutoRefCount &&
6893      T.getObjCLifetime() == Qualifiers::OCL_None &&
6894      T->isObjCLifetimeType()) {
6895
6896    Qualifiers::ObjCLifetime lifetime;
6897
6898    // Special cases for arrays:
6899    //   - if it's const, use __unsafe_unretained
6900    //   - otherwise, it's an error
6901    if (T->isArrayType()) {
6902      if (!T.isConstQualified()) {
6903        DelayedDiagnostics.add(
6904            sema::DelayedDiagnostic::makeForbiddenType(
6905            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6906      }
6907      lifetime = Qualifiers::OCL_ExplicitNone;
6908    } else {
6909      lifetime = T->getObjCARCImplicitLifetime();
6910    }
6911    T = Context.getLifetimeQualifiedType(T, lifetime);
6912  }
6913
6914  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6915                                         Context.getAdjustedParameterType(T),
6916                                         TSInfo,
6917                                         StorageClass, StorageClassAsWritten,
6918                                         0);
6919
6920  // Parameters can not be abstract class types.
6921  // For record types, this is done by the AbstractClassUsageDiagnoser once
6922  // the class has been completely parsed.
6923  if (!CurContext->isRecord() &&
6924      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6925                             AbstractParamType))
6926    New->setInvalidDecl();
6927
6928  // Parameter declarators cannot be interface types. All ObjC objects are
6929  // passed by reference.
6930  if (T->isObjCObjectType()) {
6931    Diag(NameLoc,
6932         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6933      << FixItHint::CreateInsertion(NameLoc, "*");
6934    T = Context.getObjCObjectPointerType(T);
6935    New->setType(T);
6936  }
6937
6938  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6939  // duration shall not be qualified by an address-space qualifier."
6940  // Since all parameters have automatic store duration, they can not have
6941  // an address space.
6942  if (T.getAddressSpace() != 0) {
6943    Diag(NameLoc, diag::err_arg_with_address_space);
6944    New->setInvalidDecl();
6945  }
6946
6947  return New;
6948}
6949
6950void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6951                                           SourceLocation LocAfterDecls) {
6952  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6953
6954  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6955  // for a K&R function.
6956  if (!FTI.hasPrototype) {
6957    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6958      --i;
6959      if (FTI.ArgInfo[i].Param == 0) {
6960        llvm::SmallString<256> Code;
6961        llvm::raw_svector_ostream(Code) << "  int "
6962                                        << FTI.ArgInfo[i].Ident->getName()
6963                                        << ";\n";
6964        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6965          << FTI.ArgInfo[i].Ident
6966          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6967
6968        // Implicitly declare the argument as type 'int' for lack of a better
6969        // type.
6970        AttributeFactory attrs;
6971        DeclSpec DS(attrs);
6972        const char* PrevSpec; // unused
6973        unsigned DiagID; // unused
6974        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6975                           PrevSpec, DiagID);
6976        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6977        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6978        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6979      }
6980    }
6981  }
6982}
6983
6984Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6985                                         Declarator &D) {
6986  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6987  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6988  Scope *ParentScope = FnBodyScope->getParent();
6989
6990  D.setFunctionDefinitionKind(FDK_Definition);
6991  Decl *DP = HandleDeclarator(ParentScope, D,
6992                              MultiTemplateParamsArg(*this));
6993  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6994}
6995
6996static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6997  // Don't warn about invalid declarations.
6998  if (FD->isInvalidDecl())
6999    return false;
7000
7001  // Or declarations that aren't global.
7002  if (!FD->isGlobal())
7003    return false;
7004
7005  // Don't warn about C++ member functions.
7006  if (isa<CXXMethodDecl>(FD))
7007    return false;
7008
7009  // Don't warn about 'main'.
7010  if (FD->isMain())
7011    return false;
7012
7013  // Don't warn about inline functions.
7014  if (FD->isInlined())
7015    return false;
7016
7017  // Don't warn about function templates.
7018  if (FD->getDescribedFunctionTemplate())
7019    return false;
7020
7021  // Don't warn about function template specializations.
7022  if (FD->isFunctionTemplateSpecialization())
7023    return false;
7024
7025  bool MissingPrototype = true;
7026  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7027       Prev; Prev = Prev->getPreviousDecl()) {
7028    // Ignore any declarations that occur in function or method
7029    // scope, because they aren't visible from the header.
7030    if (Prev->getDeclContext()->isFunctionOrMethod())
7031      continue;
7032
7033    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7034    break;
7035  }
7036
7037  return MissingPrototype;
7038}
7039
7040void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7041  // Don't complain if we're in GNU89 mode and the previous definition
7042  // was an extern inline function.
7043  const FunctionDecl *Definition;
7044  if (FD->isDefined(Definition) &&
7045      !canRedefineFunction(Definition, getLangOptions())) {
7046    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7047        Definition->getStorageClass() == SC_Extern)
7048      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7049        << FD->getDeclName() << getLangOptions().CPlusPlus;
7050    else
7051      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7052    Diag(Definition->getLocation(), diag::note_previous_definition);
7053  }
7054}
7055
7056Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7057  // Clear the last template instantiation error context.
7058  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7059
7060  if (!D)
7061    return D;
7062  FunctionDecl *FD = 0;
7063
7064  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7065    FD = FunTmpl->getTemplatedDecl();
7066  else
7067    FD = cast<FunctionDecl>(D);
7068
7069  // Enter a new function scope
7070  PushFunctionScope();
7071
7072  // See if this is a redefinition.
7073  if (!FD->isLateTemplateParsed())
7074    CheckForFunctionRedefinition(FD);
7075
7076  // Builtin functions cannot be defined.
7077  if (unsigned BuiltinID = FD->getBuiltinID()) {
7078    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7079      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7080      FD->setInvalidDecl();
7081    }
7082  }
7083
7084  // The return type of a function definition must be complete
7085  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7086  QualType ResultType = FD->getResultType();
7087  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7088      !FD->isInvalidDecl() &&
7089      RequireCompleteType(FD->getLocation(), ResultType,
7090                          diag::err_func_def_incomplete_result))
7091    FD->setInvalidDecl();
7092
7093  // GNU warning -Wmissing-prototypes:
7094  //   Warn if a global function is defined without a previous
7095  //   prototype declaration. This warning is issued even if the
7096  //   definition itself provides a prototype. The aim is to detect
7097  //   global functions that fail to be declared in header files.
7098  if (ShouldWarnAboutMissingPrototype(FD))
7099    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7100
7101  if (FnBodyScope)
7102    PushDeclContext(FnBodyScope, FD);
7103
7104  // Check the validity of our function parameters
7105  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7106                           /*CheckParameterNames=*/true);
7107
7108  // Introduce our parameters into the function scope
7109  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7110    ParmVarDecl *Param = FD->getParamDecl(p);
7111    Param->setOwningFunction(FD);
7112
7113    // If this has an identifier, add it to the scope stack.
7114    if (Param->getIdentifier() && FnBodyScope) {
7115      CheckShadow(FnBodyScope, Param);
7116
7117      PushOnScopeChains(Param, FnBodyScope);
7118    }
7119  }
7120
7121  // Checking attributes of current function definition
7122  // dllimport attribute.
7123  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7124  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7125    // dllimport attribute cannot be directly applied to definition.
7126    // Microsoft accepts dllimport for functions defined within class scope.
7127    if (!DA->isInherited() &&
7128        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7129      Diag(FD->getLocation(),
7130           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7131        << "dllimport";
7132      FD->setInvalidDecl();
7133      return FD;
7134    }
7135
7136    // Visual C++ appears to not think this is an issue, so only issue
7137    // a warning when Microsoft extensions are disabled.
7138    if (!LangOpts.MicrosoftExt) {
7139      // If a symbol previously declared dllimport is later defined, the
7140      // attribute is ignored in subsequent references, and a warning is
7141      // emitted.
7142      Diag(FD->getLocation(),
7143           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7144        << FD->getName() << "dllimport";
7145    }
7146  }
7147  return FD;
7148}
7149
7150/// \brief Given the set of return statements within a function body,
7151/// compute the variables that are subject to the named return value
7152/// optimization.
7153///
7154/// Each of the variables that is subject to the named return value
7155/// optimization will be marked as NRVO variables in the AST, and any
7156/// return statement that has a marked NRVO variable as its NRVO candidate can
7157/// use the named return value optimization.
7158///
7159/// This function applies a very simplistic algorithm for NRVO: if every return
7160/// statement in the function has the same NRVO candidate, that candidate is
7161/// the NRVO variable.
7162///
7163/// FIXME: Employ a smarter algorithm that accounts for multiple return
7164/// statements and the lifetimes of the NRVO candidates. We should be able to
7165/// find a maximal set of NRVO variables.
7166void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7167  ReturnStmt **Returns = Scope->Returns.data();
7168
7169  const VarDecl *NRVOCandidate = 0;
7170  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7171    if (!Returns[I]->getNRVOCandidate())
7172      return;
7173
7174    if (!NRVOCandidate)
7175      NRVOCandidate = Returns[I]->getNRVOCandidate();
7176    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7177      return;
7178  }
7179
7180  if (NRVOCandidate)
7181    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7182}
7183
7184Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7185  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7186}
7187
7188Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7189                                    bool IsInstantiation) {
7190  FunctionDecl *FD = 0;
7191  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7192  if (FunTmpl)
7193    FD = FunTmpl->getTemplatedDecl();
7194  else
7195    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7196
7197  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7198  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7199
7200  if (FD) {
7201    FD->setBody(Body);
7202    if (FD->isMain()) {
7203      // C and C++ allow for main to automagically return 0.
7204      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7205      FD->setHasImplicitReturnZero(true);
7206      WP.disableCheckFallThrough();
7207    } else if (FD->hasAttr<NakedAttr>()) {
7208      // If the function is marked 'naked', don't complain about missing return
7209      // statements.
7210      WP.disableCheckFallThrough();
7211    }
7212
7213    // MSVC permits the use of pure specifier (=0) on function definition,
7214    // defined at class scope, warn about this non standard construct.
7215    if (getLangOptions().MicrosoftExt && FD->isPure())
7216      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7217
7218    if (!FD->isInvalidDecl()) {
7219      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7220      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7221                                             FD->getResultType(), FD);
7222
7223      // If this is a constructor, we need a vtable.
7224      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7225        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7226
7227      computeNRVO(Body, getCurFunction());
7228    }
7229
7230    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7231  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7232    assert(MD == getCurMethodDecl() && "Method parsing confused");
7233    MD->setBody(Body);
7234    if (Body)
7235      MD->setEndLoc(Body->getLocEnd());
7236    if (!MD->isInvalidDecl()) {
7237      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7238      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7239                                             MD->getResultType(), MD);
7240
7241      if (Body)
7242        computeNRVO(Body, getCurFunction());
7243    }
7244    if (ObjCShouldCallSuperDealloc) {
7245      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7246      ObjCShouldCallSuperDealloc = false;
7247    }
7248    if (ObjCShouldCallSuperFinalize) {
7249      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7250      ObjCShouldCallSuperFinalize = false;
7251    }
7252  } else {
7253    return 0;
7254  }
7255
7256  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7257         "ObjC methods, which should have been handled in the block above.");
7258  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7259         "ObjC methods, which should have been handled in the block above.");
7260
7261  // Verify and clean out per-function state.
7262  if (Body) {
7263    // C++ constructors that have function-try-blocks can't have return
7264    // statements in the handlers of that block. (C++ [except.handle]p14)
7265    // Verify this.
7266    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7267      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7268
7269    // Verify that gotos and switch cases don't jump into scopes illegally.
7270    if (getCurFunction()->NeedsScopeChecking() &&
7271        !dcl->isInvalidDecl() &&
7272        !hasAnyUnrecoverableErrorsInThisFunction())
7273      DiagnoseInvalidJumps(Body);
7274
7275    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7276      if (!Destructor->getParent()->isDependentType())
7277        CheckDestructor(Destructor);
7278
7279      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7280                                             Destructor->getParent());
7281    }
7282
7283    // If any errors have occurred, clear out any temporaries that may have
7284    // been leftover. This ensures that these temporaries won't be picked up for
7285    // deletion in some later function.
7286    if (PP.getDiagnostics().hasErrorOccurred() ||
7287        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7288      DiscardCleanupsInEvaluationContext();
7289    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7290      // Since the body is valid, issue any analysis-based warnings that are
7291      // enabled.
7292      ActivePolicy = &WP;
7293    }
7294
7295    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7296        !CheckConstexprFunctionBody(FD, Body))
7297      FD->setInvalidDecl();
7298
7299    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7300    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7301  }
7302
7303  if (!IsInstantiation)
7304    PopDeclContext();
7305
7306  PopFunctionScopeInfo(ActivePolicy, dcl);
7307
7308  // If any errors have occurred, clear out any temporaries that may have
7309  // been leftover. This ensures that these temporaries won't be picked up for
7310  // deletion in some later function.
7311  if (getDiagnostics().hasErrorOccurred()) {
7312    DiscardCleanupsInEvaluationContext();
7313  }
7314
7315  return dcl;
7316}
7317
7318
7319/// When we finish delayed parsing of an attribute, we must attach it to the
7320/// relevant Decl.
7321void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7322                                       ParsedAttributes &Attrs) {
7323  // Always attach attributes to the underlying decl.
7324  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7325    D = TD->getTemplatedDecl();
7326  ProcessDeclAttributeList(S, D, Attrs.getList());
7327}
7328
7329
7330/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7331/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7332NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7333                                          IdentifierInfo &II, Scope *S) {
7334  // Before we produce a declaration for an implicitly defined
7335  // function, see whether there was a locally-scoped declaration of
7336  // this name as a function or variable. If so, use that
7337  // (non-visible) declaration, and complain about it.
7338  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7339    = findLocallyScopedExternalDecl(&II);
7340  if (Pos != LocallyScopedExternalDecls.end()) {
7341    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7342    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7343    return Pos->second;
7344  }
7345
7346  // Extension in C99.  Legal in C90, but warn about it.
7347  unsigned diag_id;
7348  if (II.getName().startswith("__builtin_"))
7349    diag_id = diag::warn_builtin_unknown;
7350  else if (getLangOptions().C99)
7351    diag_id = diag::ext_implicit_function_decl;
7352  else
7353    diag_id = diag::warn_implicit_function_decl;
7354  Diag(Loc, diag_id) << &II;
7355
7356  // Because typo correction is expensive, only do it if the implicit
7357  // function declaration is going to be treated as an error.
7358  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7359    TypoCorrection Corrected;
7360    DeclFilterCCC<FunctionDecl> Validator;
7361    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7362                                      LookupOrdinaryName, S, 0, Validator))) {
7363      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7364      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7365      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7366
7367      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7368          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7369
7370      if (Func->getLocation().isValid()
7371          && !II.getName().startswith("__builtin_"))
7372        Diag(Func->getLocation(), diag::note_previous_decl)
7373            << CorrectedQuotedStr;
7374    }
7375  }
7376
7377  // Set a Declarator for the implicit definition: int foo();
7378  const char *Dummy;
7379  AttributeFactory attrFactory;
7380  DeclSpec DS(attrFactory);
7381  unsigned DiagID;
7382  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7383  (void)Error; // Silence warning.
7384  assert(!Error && "Error setting up implicit decl!");
7385  Declarator D(DS, Declarator::BlockContext);
7386  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7387                                             0, 0, true, SourceLocation(),
7388                                             SourceLocation(), SourceLocation(),
7389                                             SourceLocation(),
7390                                             EST_None, SourceLocation(),
7391                                             0, 0, 0, 0, Loc, Loc, D),
7392                DS.getAttributes(),
7393                SourceLocation());
7394  D.SetIdentifier(&II, Loc);
7395
7396  // Insert this function into translation-unit scope.
7397
7398  DeclContext *PrevDC = CurContext;
7399  CurContext = Context.getTranslationUnitDecl();
7400
7401  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7402  FD->setImplicit();
7403
7404  CurContext = PrevDC;
7405
7406  AddKnownFunctionAttributes(FD);
7407
7408  return FD;
7409}
7410
7411/// \brief Adds any function attributes that we know a priori based on
7412/// the declaration of this function.
7413///
7414/// These attributes can apply both to implicitly-declared builtins
7415/// (like __builtin___printf_chk) or to library-declared functions
7416/// like NSLog or printf.
7417///
7418/// We need to check for duplicate attributes both here and where user-written
7419/// attributes are applied to declarations.
7420void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7421  if (FD->isInvalidDecl())
7422    return;
7423
7424  // If this is a built-in function, map its builtin attributes to
7425  // actual attributes.
7426  if (unsigned BuiltinID = FD->getBuiltinID()) {
7427    // Handle printf-formatting attributes.
7428    unsigned FormatIdx;
7429    bool HasVAListArg;
7430    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7431      if (!FD->getAttr<FormatAttr>()) {
7432        const char *fmt = "printf";
7433        unsigned int NumParams = FD->getNumParams();
7434        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7435            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7436          fmt = "NSString";
7437        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7438                                               fmt, FormatIdx+1,
7439                                               HasVAListArg ? 0 : FormatIdx+2));
7440      }
7441    }
7442    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7443                                             HasVAListArg)) {
7444     if (!FD->getAttr<FormatAttr>())
7445       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7446                                              "scanf", FormatIdx+1,
7447                                              HasVAListArg ? 0 : FormatIdx+2));
7448    }
7449
7450    // Mark const if we don't care about errno and that is the only
7451    // thing preventing the function from being const. This allows
7452    // IRgen to use LLVM intrinsics for such functions.
7453    if (!getLangOptions().MathErrno &&
7454        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7455      if (!FD->getAttr<ConstAttr>())
7456        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7457    }
7458
7459    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7460        !FD->getAttr<ReturnsTwiceAttr>())
7461      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7462    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7463      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7464    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7465      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7466  }
7467
7468  IdentifierInfo *Name = FD->getIdentifier();
7469  if (!Name)
7470    return;
7471  if ((!getLangOptions().CPlusPlus &&
7472       FD->getDeclContext()->isTranslationUnit()) ||
7473      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7474       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7475       LinkageSpecDecl::lang_c)) {
7476    // Okay: this could be a libc/libm/Objective-C function we know
7477    // about.
7478  } else
7479    return;
7480
7481  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7482    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7483    // target-specific builtins, perhaps?
7484    if (!FD->getAttr<FormatAttr>())
7485      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7486                                             "printf", 2,
7487                                             Name->isStr("vasprintf") ? 0 : 3));
7488  }
7489}
7490
7491TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7492                                    TypeSourceInfo *TInfo) {
7493  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7494  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7495
7496  if (!TInfo) {
7497    assert(D.isInvalidType() && "no declarator info for valid type");
7498    TInfo = Context.getTrivialTypeSourceInfo(T);
7499  }
7500
7501  // Scope manipulation handled by caller.
7502  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7503                                           D.getSourceRange().getBegin(),
7504                                           D.getIdentifierLoc(),
7505                                           D.getIdentifier(),
7506                                           TInfo);
7507
7508  // Bail out immediately if we have an invalid declaration.
7509  if (D.isInvalidType()) {
7510    NewTD->setInvalidDecl();
7511    return NewTD;
7512  }
7513
7514  if (D.getDeclSpec().isModulePrivateSpecified()) {
7515    if (CurContext->isFunctionOrMethod())
7516      Diag(NewTD->getLocation(), diag::err_module_private_local)
7517        << 2 << NewTD->getDeclName()
7518        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7519        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7520    else
7521      NewTD->setModulePrivate();
7522  }
7523
7524  // C++ [dcl.typedef]p8:
7525  //   If the typedef declaration defines an unnamed class (or
7526  //   enum), the first typedef-name declared by the declaration
7527  //   to be that class type (or enum type) is used to denote the
7528  //   class type (or enum type) for linkage purposes only.
7529  // We need to check whether the type was declared in the declaration.
7530  switch (D.getDeclSpec().getTypeSpecType()) {
7531  case TST_enum:
7532  case TST_struct:
7533  case TST_union:
7534  case TST_class: {
7535    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7536
7537    // Do nothing if the tag is not anonymous or already has an
7538    // associated typedef (from an earlier typedef in this decl group).
7539    if (tagFromDeclSpec->getIdentifier()) break;
7540    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7541
7542    // A well-formed anonymous tag must always be a TUK_Definition.
7543    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7544
7545    // The type must match the tag exactly;  no qualifiers allowed.
7546    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7547      break;
7548
7549    // Otherwise, set this is the anon-decl typedef for the tag.
7550    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7551    break;
7552  }
7553
7554  default:
7555    break;
7556  }
7557
7558  return NewTD;
7559}
7560
7561
7562/// \brief Determine whether a tag with a given kind is acceptable
7563/// as a redeclaration of the given tag declaration.
7564///
7565/// \returns true if the new tag kind is acceptable, false otherwise.
7566bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7567                                        TagTypeKind NewTag, bool isDefinition,
7568                                        SourceLocation NewTagLoc,
7569                                        const IdentifierInfo &Name) {
7570  // C++ [dcl.type.elab]p3:
7571  //   The class-key or enum keyword present in the
7572  //   elaborated-type-specifier shall agree in kind with the
7573  //   declaration to which the name in the elaborated-type-specifier
7574  //   refers. This rule also applies to the form of
7575  //   elaborated-type-specifier that declares a class-name or
7576  //   friend class since it can be construed as referring to the
7577  //   definition of the class. Thus, in any
7578  //   elaborated-type-specifier, the enum keyword shall be used to
7579  //   refer to an enumeration (7.2), the union class-key shall be
7580  //   used to refer to a union (clause 9), and either the class or
7581  //   struct class-key shall be used to refer to a class (clause 9)
7582  //   declared using the class or struct class-key.
7583  TagTypeKind OldTag = Previous->getTagKind();
7584  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7585    if (OldTag == NewTag)
7586      return true;
7587
7588  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7589      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7590    // Warn about the struct/class tag mismatch.
7591    bool isTemplate = false;
7592    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7593      isTemplate = Record->getDescribedClassTemplate();
7594
7595    if (!ActiveTemplateInstantiations.empty()) {
7596      // In a template instantiation, do not offer fix-its for tag mismatches
7597      // since they usually mess up the template instead of fixing the problem.
7598      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7599        << (NewTag == TTK_Class) << isTemplate << &Name;
7600      return true;
7601    }
7602
7603    if (isDefinition) {
7604      // On definitions, check previous tags and issue a fix-it for each
7605      // one that doesn't match the current tag.
7606      if (Previous->getDefinition()) {
7607        // Don't suggest fix-its for redefinitions.
7608        return true;
7609      }
7610
7611      bool previousMismatch = false;
7612      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7613           E(Previous->redecls_end()); I != E; ++I) {
7614        if (I->getTagKind() != NewTag) {
7615          if (!previousMismatch) {
7616            previousMismatch = true;
7617            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7618              << (NewTag == TTK_Class) << isTemplate << &Name;
7619          }
7620          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7621            << (NewTag == TTK_Class)
7622            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7623                                            NewTag == TTK_Class?
7624                                            "class" : "struct");
7625        }
7626      }
7627      return true;
7628    }
7629
7630    // Check for a previous definition.  If current tag and definition
7631    // are same type, do nothing.  If no definition, but disagree with
7632    // with previous tag type, give a warning, but no fix-it.
7633    const TagDecl *Redecl = Previous->getDefinition() ?
7634                            Previous->getDefinition() : Previous;
7635    if (Redecl->getTagKind() == NewTag) {
7636      return true;
7637    }
7638
7639    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7640      << (NewTag == TTK_Class)
7641      << isTemplate << &Name;
7642    Diag(Redecl->getLocation(), diag::note_previous_use);
7643
7644    // If there is a previous defintion, suggest a fix-it.
7645    if (Previous->getDefinition()) {
7646        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7647          << (Redecl->getTagKind() == TTK_Class)
7648          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7649                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7650    }
7651
7652    return true;
7653  }
7654  return false;
7655}
7656
7657/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7658/// former case, Name will be non-null.  In the later case, Name will be null.
7659/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7660/// reference/declaration/definition of a tag.
7661Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7662                     SourceLocation KWLoc, CXXScopeSpec &SS,
7663                     IdentifierInfo *Name, SourceLocation NameLoc,
7664                     AttributeList *Attr, AccessSpecifier AS,
7665                     SourceLocation ModulePrivateLoc,
7666                     MultiTemplateParamsArg TemplateParameterLists,
7667                     bool &OwnedDecl, bool &IsDependent,
7668                     SourceLocation ScopedEnumKWLoc,
7669                     bool ScopedEnumUsesClassTag,
7670                     TypeResult UnderlyingType) {
7671  // If this is not a definition, it must have a name.
7672  assert((Name != 0 || TUK == TUK_Definition) &&
7673         "Nameless record must be a definition!");
7674  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7675
7676  OwnedDecl = false;
7677  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7678  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7679
7680  // FIXME: Check explicit specializations more carefully.
7681  bool isExplicitSpecialization = false;
7682  bool Invalid = false;
7683
7684  // We only need to do this matching if we have template parameters
7685  // or a scope specifier, which also conveniently avoids this work
7686  // for non-C++ cases.
7687  if (TemplateParameterLists.size() > 0 ||
7688      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7689    if (TemplateParameterList *TemplateParams
7690          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7691                                                TemplateParameterLists.get(),
7692                                                TemplateParameterLists.size(),
7693                                                    TUK == TUK_Friend,
7694                                                    isExplicitSpecialization,
7695                                                    Invalid)) {
7696      if (TemplateParams->size() > 0) {
7697        // This is a declaration or definition of a class template (which may
7698        // be a member of another template).
7699
7700        if (Invalid)
7701          return 0;
7702
7703        OwnedDecl = false;
7704        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7705                                               SS, Name, NameLoc, Attr,
7706                                               TemplateParams, AS,
7707                                               ModulePrivateLoc,
7708                                           TemplateParameterLists.size() - 1,
7709                 (TemplateParameterList**) TemplateParameterLists.release());
7710        return Result.get();
7711      } else {
7712        // The "template<>" header is extraneous.
7713        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7714          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7715        isExplicitSpecialization = true;
7716      }
7717    }
7718  }
7719
7720  // Figure out the underlying type if this a enum declaration. We need to do
7721  // this early, because it's needed to detect if this is an incompatible
7722  // redeclaration.
7723  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7724
7725  if (Kind == TTK_Enum) {
7726    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7727      // No underlying type explicitly specified, or we failed to parse the
7728      // type, default to int.
7729      EnumUnderlying = Context.IntTy.getTypePtr();
7730    else if (UnderlyingType.get()) {
7731      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7732      // integral type; any cv-qualification is ignored.
7733      TypeSourceInfo *TI = 0;
7734      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7735      EnumUnderlying = TI;
7736
7737      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7738
7739      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7740        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7741          << T;
7742        // Recover by falling back to int.
7743        EnumUnderlying = Context.IntTy.getTypePtr();
7744      }
7745
7746      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7747                                          UPPC_FixedUnderlyingType))
7748        EnumUnderlying = Context.IntTy.getTypePtr();
7749
7750    } else if (getLangOptions().MicrosoftExt)
7751      // Microsoft enums are always of int type.
7752      EnumUnderlying = Context.IntTy.getTypePtr();
7753  }
7754
7755  DeclContext *SearchDC = CurContext;
7756  DeclContext *DC = CurContext;
7757  bool isStdBadAlloc = false;
7758
7759  RedeclarationKind Redecl = ForRedeclaration;
7760  if (TUK == TUK_Friend || TUK == TUK_Reference)
7761    Redecl = NotForRedeclaration;
7762
7763  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7764
7765  if (Name && SS.isNotEmpty()) {
7766    // We have a nested-name tag ('struct foo::bar').
7767
7768    // Check for invalid 'foo::'.
7769    if (SS.isInvalid()) {
7770      Name = 0;
7771      goto CreateNewDecl;
7772    }
7773
7774    // If this is a friend or a reference to a class in a dependent
7775    // context, don't try to make a decl for it.
7776    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7777      DC = computeDeclContext(SS, false);
7778      if (!DC) {
7779        IsDependent = true;
7780        return 0;
7781      }
7782    } else {
7783      DC = computeDeclContext(SS, true);
7784      if (!DC) {
7785        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7786          << SS.getRange();
7787        return 0;
7788      }
7789    }
7790
7791    if (RequireCompleteDeclContext(SS, DC))
7792      return 0;
7793
7794    SearchDC = DC;
7795    // Look-up name inside 'foo::'.
7796    LookupQualifiedName(Previous, DC);
7797
7798    if (Previous.isAmbiguous())
7799      return 0;
7800
7801    if (Previous.empty()) {
7802      // Name lookup did not find anything. However, if the
7803      // nested-name-specifier refers to the current instantiation,
7804      // and that current instantiation has any dependent base
7805      // classes, we might find something at instantiation time: treat
7806      // this as a dependent elaborated-type-specifier.
7807      // But this only makes any sense for reference-like lookups.
7808      if (Previous.wasNotFoundInCurrentInstantiation() &&
7809          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7810        IsDependent = true;
7811        return 0;
7812      }
7813
7814      // A tag 'foo::bar' must already exist.
7815      Diag(NameLoc, diag::err_not_tag_in_scope)
7816        << Kind << Name << DC << SS.getRange();
7817      Name = 0;
7818      Invalid = true;
7819      goto CreateNewDecl;
7820    }
7821  } else if (Name) {
7822    // If this is a named struct, check to see if there was a previous forward
7823    // declaration or definition.
7824    // FIXME: We're looking into outer scopes here, even when we
7825    // shouldn't be. Doing so can result in ambiguities that we
7826    // shouldn't be diagnosing.
7827    LookupName(Previous, S);
7828
7829    if (Previous.isAmbiguous() &&
7830        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7831      LookupResult::Filter F = Previous.makeFilter();
7832      while (F.hasNext()) {
7833        NamedDecl *ND = F.next();
7834        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7835          F.erase();
7836      }
7837      F.done();
7838    }
7839
7840    // Note:  there used to be some attempt at recovery here.
7841    if (Previous.isAmbiguous())
7842      return 0;
7843
7844    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7845      // FIXME: This makes sure that we ignore the contexts associated
7846      // with C structs, unions, and enums when looking for a matching
7847      // tag declaration or definition. See the similar lookup tweak
7848      // in Sema::LookupName; is there a better way to deal with this?
7849      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7850        SearchDC = SearchDC->getParent();
7851    }
7852  } else if (S->isFunctionPrototypeScope()) {
7853    // If this is an enum declaration in function prototype scope, set its
7854    // initial context to the translation unit.
7855    SearchDC = Context.getTranslationUnitDecl();
7856  }
7857
7858  if (Previous.isSingleResult() &&
7859      Previous.getFoundDecl()->isTemplateParameter()) {
7860    // Maybe we will complain about the shadowed template parameter.
7861    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7862    // Just pretend that we didn't see the previous declaration.
7863    Previous.clear();
7864  }
7865
7866  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7867      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7868    // This is a declaration of or a reference to "std::bad_alloc".
7869    isStdBadAlloc = true;
7870
7871    if (Previous.empty() && StdBadAlloc) {
7872      // std::bad_alloc has been implicitly declared (but made invisible to
7873      // name lookup). Fill in this implicit declaration as the previous
7874      // declaration, so that the declarations get chained appropriately.
7875      Previous.addDecl(getStdBadAlloc());
7876    }
7877  }
7878
7879  // If we didn't find a previous declaration, and this is a reference
7880  // (or friend reference), move to the correct scope.  In C++, we
7881  // also need to do a redeclaration lookup there, just in case
7882  // there's a shadow friend decl.
7883  if (Name && Previous.empty() &&
7884      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7885    if (Invalid) goto CreateNewDecl;
7886    assert(SS.isEmpty());
7887
7888    if (TUK == TUK_Reference) {
7889      // C++ [basic.scope.pdecl]p5:
7890      //   -- for an elaborated-type-specifier of the form
7891      //
7892      //          class-key identifier
7893      //
7894      //      if the elaborated-type-specifier is used in the
7895      //      decl-specifier-seq or parameter-declaration-clause of a
7896      //      function defined in namespace scope, the identifier is
7897      //      declared as a class-name in the namespace that contains
7898      //      the declaration; otherwise, except as a friend
7899      //      declaration, the identifier is declared in the smallest
7900      //      non-class, non-function-prototype scope that contains the
7901      //      declaration.
7902      //
7903      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7904      // C structs and unions.
7905      //
7906      // It is an error in C++ to declare (rather than define) an enum
7907      // type, including via an elaborated type specifier.  We'll
7908      // diagnose that later; for now, declare the enum in the same
7909      // scope as we would have picked for any other tag type.
7910      //
7911      // GNU C also supports this behavior as part of its incomplete
7912      // enum types extension, while GNU C++ does not.
7913      //
7914      // Find the context where we'll be declaring the tag.
7915      // FIXME: We would like to maintain the current DeclContext as the
7916      // lexical context,
7917      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7918             SearchDC->isObjCContainer())
7919        SearchDC = SearchDC->getParent();
7920
7921      // Find the scope where we'll be declaring the tag.
7922      while (S->isClassScope() ||
7923             (getLangOptions().CPlusPlus &&
7924              S->isFunctionPrototypeScope()) ||
7925             ((S->getFlags() & Scope::DeclScope) == 0) ||
7926             (S->getEntity() &&
7927              ((DeclContext *)S->getEntity())->isTransparentContext()))
7928        S = S->getParent();
7929    } else {
7930      assert(TUK == TUK_Friend);
7931      // C++ [namespace.memdef]p3:
7932      //   If a friend declaration in a non-local class first declares a
7933      //   class or function, the friend class or function is a member of
7934      //   the innermost enclosing namespace.
7935      SearchDC = SearchDC->getEnclosingNamespaceContext();
7936    }
7937
7938    // In C++, we need to do a redeclaration lookup to properly
7939    // diagnose some problems.
7940    if (getLangOptions().CPlusPlus) {
7941      Previous.setRedeclarationKind(ForRedeclaration);
7942      LookupQualifiedName(Previous, SearchDC);
7943    }
7944  }
7945
7946  if (!Previous.empty()) {
7947    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7948
7949    // It's okay to have a tag decl in the same scope as a typedef
7950    // which hides a tag decl in the same scope.  Finding this
7951    // insanity with a redeclaration lookup can only actually happen
7952    // in C++.
7953    //
7954    // This is also okay for elaborated-type-specifiers, which is
7955    // technically forbidden by the current standard but which is
7956    // okay according to the likely resolution of an open issue;
7957    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7958    if (getLangOptions().CPlusPlus) {
7959      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7960        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7961          TagDecl *Tag = TT->getDecl();
7962          if (Tag->getDeclName() == Name &&
7963              Tag->getDeclContext()->getRedeclContext()
7964                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7965            PrevDecl = Tag;
7966            Previous.clear();
7967            Previous.addDecl(Tag);
7968            Previous.resolveKind();
7969          }
7970        }
7971      }
7972    }
7973
7974    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7975      // If this is a use of a previous tag, or if the tag is already declared
7976      // in the same scope (so that the definition/declaration completes or
7977      // rementions the tag), reuse the decl.
7978      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7979          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7980        // Make sure that this wasn't declared as an enum and now used as a
7981        // struct or something similar.
7982        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7983                                          TUK == TUK_Definition, KWLoc,
7984                                          *Name)) {
7985          bool SafeToContinue
7986            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7987               Kind != TTK_Enum);
7988          if (SafeToContinue)
7989            Diag(KWLoc, diag::err_use_with_wrong_tag)
7990              << Name
7991              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7992                                              PrevTagDecl->getKindName());
7993          else
7994            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7995          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7996
7997          if (SafeToContinue)
7998            Kind = PrevTagDecl->getTagKind();
7999          else {
8000            // Recover by making this an anonymous redefinition.
8001            Name = 0;
8002            Previous.clear();
8003            Invalid = true;
8004          }
8005        }
8006
8007        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8008          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8009
8010          // If this is an elaborated-type-specifier for a scoped enumeration,
8011          // the 'class' keyword is not necessary and not permitted.
8012          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8013            if (ScopedEnum)
8014              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8015                << PrevEnum->isScoped()
8016                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8017            return PrevTagDecl;
8018          }
8019
8020          // All conflicts with previous declarations are recovered by
8021          // returning the previous declaration.
8022          if (ScopedEnum != PrevEnum->isScoped()) {
8023            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8024              << PrevEnum->isScoped();
8025            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8026            return PrevTagDecl;
8027          }
8028          else if (EnumUnderlying && PrevEnum->isFixed()) {
8029            QualType T;
8030            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8031                T = TI->getType();
8032            else
8033                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8034
8035            if (!Context.hasSameUnqualifiedType(T,
8036                                                PrevEnum->getIntegerType())) {
8037              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8038                   diag::err_enum_redeclare_type_mismatch)
8039                << T
8040                << PrevEnum->getIntegerType();
8041              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8042              return PrevTagDecl;
8043            }
8044          }
8045          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8046            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8047              << PrevEnum->isFixed();
8048            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8049            return PrevTagDecl;
8050          }
8051        }
8052
8053        if (!Invalid) {
8054          // If this is a use, just return the declaration we found.
8055
8056          // FIXME: In the future, return a variant or some other clue
8057          // for the consumer of this Decl to know it doesn't own it.
8058          // For our current ASTs this shouldn't be a problem, but will
8059          // need to be changed with DeclGroups.
8060          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8061               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8062            return PrevTagDecl;
8063
8064          // Diagnose attempts to redefine a tag.
8065          if (TUK == TUK_Definition) {
8066            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8067              // If we're defining a specialization and the previous definition
8068              // is from an implicit instantiation, don't emit an error
8069              // here; we'll catch this in the general case below.
8070              if (!isExplicitSpecialization ||
8071                  !isa<CXXRecordDecl>(Def) ||
8072                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8073                                               == TSK_ExplicitSpecialization) {
8074                Diag(NameLoc, diag::err_redefinition) << Name;
8075                Diag(Def->getLocation(), diag::note_previous_definition);
8076                // If this is a redefinition, recover by making this
8077                // struct be anonymous, which will make any later
8078                // references get the previous definition.
8079                Name = 0;
8080                Previous.clear();
8081                Invalid = true;
8082              }
8083            } else {
8084              // If the type is currently being defined, complain
8085              // about a nested redefinition.
8086              const TagType *Tag
8087                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8088              if (Tag->isBeingDefined()) {
8089                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8090                Diag(PrevTagDecl->getLocation(),
8091                     diag::note_previous_definition);
8092                Name = 0;
8093                Previous.clear();
8094                Invalid = true;
8095              }
8096            }
8097
8098            // Okay, this is definition of a previously declared or referenced
8099            // tag PrevDecl. We're going to create a new Decl for it.
8100          }
8101        }
8102        // If we get here we have (another) forward declaration or we
8103        // have a definition.  Just create a new decl.
8104
8105      } else {
8106        // If we get here, this is a definition of a new tag type in a nested
8107        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8108        // new decl/type.  We set PrevDecl to NULL so that the entities
8109        // have distinct types.
8110        Previous.clear();
8111      }
8112      // If we get here, we're going to create a new Decl. If PrevDecl
8113      // is non-NULL, it's a definition of the tag declared by
8114      // PrevDecl. If it's NULL, we have a new definition.
8115
8116
8117    // Otherwise, PrevDecl is not a tag, but was found with tag
8118    // lookup.  This is only actually possible in C++, where a few
8119    // things like templates still live in the tag namespace.
8120    } else {
8121      // Use a better diagnostic if an elaborated-type-specifier
8122      // found the wrong kind of type on the first
8123      // (non-redeclaration) lookup.
8124      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8125          !Previous.isForRedeclaration()) {
8126        unsigned Kind = 0;
8127        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8128        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8129        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8130        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8131        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8132        Invalid = true;
8133
8134      // Otherwise, only diagnose if the declaration is in scope.
8135      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8136                                isExplicitSpecialization)) {
8137        // do nothing
8138
8139      // Diagnose implicit declarations introduced by elaborated types.
8140      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8141        unsigned Kind = 0;
8142        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8143        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8144        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8145        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8146        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8147        Invalid = true;
8148
8149      // Otherwise it's a declaration.  Call out a particularly common
8150      // case here.
8151      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8152        unsigned Kind = 0;
8153        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8154        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8155          << Name << Kind << TND->getUnderlyingType();
8156        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8157        Invalid = true;
8158
8159      // Otherwise, diagnose.
8160      } else {
8161        // The tag name clashes with something else in the target scope,
8162        // issue an error and recover by making this tag be anonymous.
8163        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8164        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8165        Name = 0;
8166        Invalid = true;
8167      }
8168
8169      // The existing declaration isn't relevant to us; we're in a
8170      // new scope, so clear out the previous declaration.
8171      Previous.clear();
8172    }
8173  }
8174
8175CreateNewDecl:
8176
8177  TagDecl *PrevDecl = 0;
8178  if (Previous.isSingleResult())
8179    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8180
8181  // If there is an identifier, use the location of the identifier as the
8182  // location of the decl, otherwise use the location of the struct/union
8183  // keyword.
8184  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8185
8186  // Otherwise, create a new declaration. If there is a previous
8187  // declaration of the same entity, the two will be linked via
8188  // PrevDecl.
8189  TagDecl *New;
8190
8191  bool IsForwardReference = false;
8192  if (Kind == TTK_Enum) {
8193    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8194    // enum X { A, B, C } D;    D should chain to X.
8195    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8196                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8197                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8198    // If this is an undefined enum, warn.
8199    if (TUK != TUK_Definition && !Invalid) {
8200      TagDecl *Def;
8201      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8202        // C++0x: 7.2p2: opaque-enum-declaration.
8203        // Conflicts are diagnosed above. Do nothing.
8204      }
8205      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8206        Diag(Loc, diag::ext_forward_ref_enum_def)
8207          << New;
8208        Diag(Def->getLocation(), diag::note_previous_definition);
8209      } else {
8210        unsigned DiagID = diag::ext_forward_ref_enum;
8211        if (getLangOptions().MicrosoftExt)
8212          DiagID = diag::ext_ms_forward_ref_enum;
8213        else if (getLangOptions().CPlusPlus)
8214          DiagID = diag::err_forward_ref_enum;
8215        Diag(Loc, DiagID);
8216
8217        // If this is a forward-declared reference to an enumeration, make a
8218        // note of it; we won't actually be introducing the declaration into
8219        // the declaration context.
8220        if (TUK == TUK_Reference)
8221          IsForwardReference = true;
8222      }
8223    }
8224
8225    if (EnumUnderlying) {
8226      EnumDecl *ED = cast<EnumDecl>(New);
8227      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8228        ED->setIntegerTypeSourceInfo(TI);
8229      else
8230        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8231      ED->setPromotionType(ED->getIntegerType());
8232    }
8233
8234  } else {
8235    // struct/union/class
8236
8237    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8238    // struct X { int A; } D;    D should chain to X.
8239    if (getLangOptions().CPlusPlus) {
8240      // FIXME: Look for a way to use RecordDecl for simple structs.
8241      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8242                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8243
8244      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8245        StdBadAlloc = cast<CXXRecordDecl>(New);
8246    } else
8247      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8248                               cast_or_null<RecordDecl>(PrevDecl));
8249  }
8250
8251  // Maybe add qualifier info.
8252  if (SS.isNotEmpty()) {
8253    if (SS.isSet()) {
8254      New->setQualifierInfo(SS.getWithLocInContext(Context));
8255      if (TemplateParameterLists.size() > 0) {
8256        New->setTemplateParameterListsInfo(Context,
8257                                           TemplateParameterLists.size(),
8258                    (TemplateParameterList**) TemplateParameterLists.release());
8259      }
8260    }
8261    else
8262      Invalid = true;
8263  }
8264
8265  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8266    // Add alignment attributes if necessary; these attributes are checked when
8267    // the ASTContext lays out the structure.
8268    //
8269    // It is important for implementing the correct semantics that this
8270    // happen here (in act on tag decl). The #pragma pack stack is
8271    // maintained as a result of parser callbacks which can occur at
8272    // many points during the parsing of a struct declaration (because
8273    // the #pragma tokens are effectively skipped over during the
8274    // parsing of the struct).
8275    AddAlignmentAttributesForRecord(RD);
8276
8277    AddMsStructLayoutForRecord(RD);
8278  }
8279
8280  if (ModulePrivateLoc.isValid()) {
8281    if (isExplicitSpecialization)
8282      Diag(New->getLocation(), diag::err_module_private_specialization)
8283        << 2
8284        << FixItHint::CreateRemoval(ModulePrivateLoc);
8285    // __module_private__ does not apply to local classes. However, we only
8286    // diagnose this as an error when the declaration specifiers are
8287    // freestanding. Here, we just ignore the __module_private__.
8288    else if (!SearchDC->isFunctionOrMethod())
8289      New->setModulePrivate();
8290  }
8291
8292  // If this is a specialization of a member class (of a class template),
8293  // check the specialization.
8294  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8295    Invalid = true;
8296
8297  if (Invalid)
8298    New->setInvalidDecl();
8299
8300  if (Attr)
8301    ProcessDeclAttributeList(S, New, Attr);
8302
8303  // If we're declaring or defining a tag in function prototype scope
8304  // in C, note that this type can only be used within the function.
8305  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8306    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8307
8308  // Set the lexical context. If the tag has a C++ scope specifier, the
8309  // lexical context will be different from the semantic context.
8310  New->setLexicalDeclContext(CurContext);
8311
8312  // Mark this as a friend decl if applicable.
8313  // In Microsoft mode, a friend declaration also acts as a forward
8314  // declaration so we always pass true to setObjectOfFriendDecl to make
8315  // the tag name visible.
8316  if (TUK == TUK_Friend)
8317    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8318                               getLangOptions().MicrosoftExt);
8319
8320  // Set the access specifier.
8321  if (!Invalid && SearchDC->isRecord())
8322    SetMemberAccessSpecifier(New, PrevDecl, AS);
8323
8324  if (TUK == TUK_Definition)
8325    New->startDefinition();
8326
8327  // If this has an identifier, add it to the scope stack.
8328  if (TUK == TUK_Friend) {
8329    // We might be replacing an existing declaration in the lookup tables;
8330    // if so, borrow its access specifier.
8331    if (PrevDecl)
8332      New->setAccess(PrevDecl->getAccess());
8333
8334    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8335    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8336    if (Name) // can be null along some error paths
8337      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8338        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8339  } else if (Name) {
8340    S = getNonFieldDeclScope(S);
8341    PushOnScopeChains(New, S, !IsForwardReference);
8342    if (IsForwardReference)
8343      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8344
8345  } else {
8346    CurContext->addDecl(New);
8347  }
8348
8349  // If this is the C FILE type, notify the AST context.
8350  if (IdentifierInfo *II = New->getIdentifier())
8351    if (!New->isInvalidDecl() &&
8352        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8353        II->isStr("FILE"))
8354      Context.setFILEDecl(New);
8355
8356  OwnedDecl = true;
8357  return New;
8358}
8359
8360void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8361  AdjustDeclIfTemplate(TagD);
8362  TagDecl *Tag = cast<TagDecl>(TagD);
8363
8364  // Enter the tag context.
8365  PushDeclContext(S, Tag);
8366}
8367
8368Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8369  assert(isa<ObjCContainerDecl>(IDecl) &&
8370         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8371  DeclContext *OCD = cast<DeclContext>(IDecl);
8372  assert(getContainingDC(OCD) == CurContext &&
8373      "The next DeclContext should be lexically contained in the current one.");
8374  CurContext = OCD;
8375  return IDecl;
8376}
8377
8378void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8379                                           SourceLocation FinalLoc,
8380                                           SourceLocation LBraceLoc) {
8381  AdjustDeclIfTemplate(TagD);
8382  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8383
8384  FieldCollector->StartClass();
8385
8386  if (!Record->getIdentifier())
8387    return;
8388
8389  if (FinalLoc.isValid())
8390    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8391
8392  // C++ [class]p2:
8393  //   [...] The class-name is also inserted into the scope of the
8394  //   class itself; this is known as the injected-class-name. For
8395  //   purposes of access checking, the injected-class-name is treated
8396  //   as if it were a public member name.
8397  CXXRecordDecl *InjectedClassName
8398    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8399                            Record->getLocStart(), Record->getLocation(),
8400                            Record->getIdentifier(),
8401                            /*PrevDecl=*/0,
8402                            /*DelayTypeCreation=*/true);
8403  Context.getTypeDeclType(InjectedClassName, Record);
8404  InjectedClassName->setImplicit();
8405  InjectedClassName->setAccess(AS_public);
8406  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8407      InjectedClassName->setDescribedClassTemplate(Template);
8408  PushOnScopeChains(InjectedClassName, S);
8409  assert(InjectedClassName->isInjectedClassName() &&
8410         "Broken injected-class-name");
8411}
8412
8413void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8414                                    SourceLocation RBraceLoc) {
8415  AdjustDeclIfTemplate(TagD);
8416  TagDecl *Tag = cast<TagDecl>(TagD);
8417  Tag->setRBraceLoc(RBraceLoc);
8418
8419  if (isa<CXXRecordDecl>(Tag))
8420    FieldCollector->FinishClass();
8421
8422  // Exit this scope of this tag's definition.
8423  PopDeclContext();
8424
8425  // Notify the consumer that we've defined a tag.
8426  Consumer.HandleTagDeclDefinition(Tag);
8427}
8428
8429void Sema::ActOnObjCContainerFinishDefinition() {
8430  // Exit this scope of this interface definition.
8431  PopDeclContext();
8432}
8433
8434void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8435  assert(DC == CurContext && "Mismatch of container contexts");
8436  OriginalLexicalContext = DC;
8437  ActOnObjCContainerFinishDefinition();
8438}
8439
8440void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8441  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8442  OriginalLexicalContext = 0;
8443}
8444
8445void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8446  AdjustDeclIfTemplate(TagD);
8447  TagDecl *Tag = cast<TagDecl>(TagD);
8448  Tag->setInvalidDecl();
8449
8450  // We're undoing ActOnTagStartDefinition here, not
8451  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8452  // the FieldCollector.
8453
8454  PopDeclContext();
8455}
8456
8457// Note that FieldName may be null for anonymous bitfields.
8458bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8459                          QualType FieldTy, const Expr *BitWidth,
8460                          bool *ZeroWidth) {
8461  // Default to true; that shouldn't confuse checks for emptiness
8462  if (ZeroWidth)
8463    *ZeroWidth = true;
8464
8465  // C99 6.7.2.1p4 - verify the field type.
8466  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8467  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8468    // Handle incomplete types with specific error.
8469    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8470      return true;
8471    if (FieldName)
8472      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8473        << FieldName << FieldTy << BitWidth->getSourceRange();
8474    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8475      << FieldTy << BitWidth->getSourceRange();
8476  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8477                                             UPPC_BitFieldWidth))
8478    return true;
8479
8480  // If the bit-width is type- or value-dependent, don't try to check
8481  // it now.
8482  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8483    return false;
8484
8485  llvm::APSInt Value;
8486  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8487    return true;
8488
8489  if (Value != 0 && ZeroWidth)
8490    *ZeroWidth = false;
8491
8492  // Zero-width bitfield is ok for anonymous field.
8493  if (Value == 0 && FieldName)
8494    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8495
8496  if (Value.isSigned() && Value.isNegative()) {
8497    if (FieldName)
8498      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8499               << FieldName << Value.toString(10);
8500    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8501      << Value.toString(10);
8502  }
8503
8504  if (!FieldTy->isDependentType()) {
8505    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8506    if (Value.getZExtValue() > TypeSize) {
8507      if (!getLangOptions().CPlusPlus) {
8508        if (FieldName)
8509          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8510            << FieldName << (unsigned)Value.getZExtValue()
8511            << (unsigned)TypeSize;
8512
8513        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8514          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8515      }
8516
8517      if (FieldName)
8518        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8519          << FieldName << (unsigned)Value.getZExtValue()
8520          << (unsigned)TypeSize;
8521      else
8522        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8523          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8524    }
8525  }
8526
8527  return false;
8528}
8529
8530/// ActOnField - Each field of a C struct/union is passed into this in order
8531/// to create a FieldDecl object for it.
8532Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8533                       Declarator &D, Expr *BitfieldWidth) {
8534  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8535                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8536                               /*HasInit=*/false, AS_public);
8537  return Res;
8538}
8539
8540/// HandleField - Analyze a field of a C struct or a C++ data member.
8541///
8542FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8543                             SourceLocation DeclStart,
8544                             Declarator &D, Expr *BitWidth, bool HasInit,
8545                             AccessSpecifier AS) {
8546  IdentifierInfo *II = D.getIdentifier();
8547  SourceLocation Loc = DeclStart;
8548  if (II) Loc = D.getIdentifierLoc();
8549
8550  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8551  QualType T = TInfo->getType();
8552  if (getLangOptions().CPlusPlus) {
8553    CheckExtraCXXDefaultArguments(D);
8554
8555    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8556                                        UPPC_DataMemberType)) {
8557      D.setInvalidType();
8558      T = Context.IntTy;
8559      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8560    }
8561  }
8562
8563  DiagnoseFunctionSpecifiers(D);
8564
8565  if (D.getDeclSpec().isThreadSpecified())
8566    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8567  if (D.getDeclSpec().isConstexprSpecified())
8568    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8569      << 2;
8570
8571  // Check to see if this name was declared as a member previously
8572  NamedDecl *PrevDecl = 0;
8573  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8574  LookupName(Previous, S);
8575  switch (Previous.getResultKind()) {
8576    case LookupResult::Found:
8577    case LookupResult::FoundUnresolvedValue:
8578      PrevDecl = Previous.getAsSingle<NamedDecl>();
8579      break;
8580
8581    case LookupResult::FoundOverloaded:
8582      PrevDecl = Previous.getRepresentativeDecl();
8583      break;
8584
8585    case LookupResult::NotFound:
8586    case LookupResult::NotFoundInCurrentInstantiation:
8587    case LookupResult::Ambiguous:
8588      break;
8589  }
8590  Previous.suppressDiagnostics();
8591
8592  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8593    // Maybe we will complain about the shadowed template parameter.
8594    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8595    // Just pretend that we didn't see the previous declaration.
8596    PrevDecl = 0;
8597  }
8598
8599  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8600    PrevDecl = 0;
8601
8602  bool Mutable
8603    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8604  SourceLocation TSSL = D.getSourceRange().getBegin();
8605  FieldDecl *NewFD
8606    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8607                     TSSL, AS, PrevDecl, &D);
8608
8609  if (NewFD->isInvalidDecl())
8610    Record->setInvalidDecl();
8611
8612  if (D.getDeclSpec().isModulePrivateSpecified())
8613    NewFD->setModulePrivate();
8614
8615  if (NewFD->isInvalidDecl() && PrevDecl) {
8616    // Don't introduce NewFD into scope; there's already something
8617    // with the same name in the same scope.
8618  } else if (II) {
8619    PushOnScopeChains(NewFD, S);
8620  } else
8621    Record->addDecl(NewFD);
8622
8623  return NewFD;
8624}
8625
8626/// \brief Build a new FieldDecl and check its well-formedness.
8627///
8628/// This routine builds a new FieldDecl given the fields name, type,
8629/// record, etc. \p PrevDecl should refer to any previous declaration
8630/// with the same name and in the same scope as the field to be
8631/// created.
8632///
8633/// \returns a new FieldDecl.
8634///
8635/// \todo The Declarator argument is a hack. It will be removed once
8636FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8637                                TypeSourceInfo *TInfo,
8638                                RecordDecl *Record, SourceLocation Loc,
8639                                bool Mutable, Expr *BitWidth, bool HasInit,
8640                                SourceLocation TSSL,
8641                                AccessSpecifier AS, NamedDecl *PrevDecl,
8642                                Declarator *D) {
8643  IdentifierInfo *II = Name.getAsIdentifierInfo();
8644  bool InvalidDecl = false;
8645  if (D) InvalidDecl = D->isInvalidType();
8646
8647  // If we receive a broken type, recover by assuming 'int' and
8648  // marking this declaration as invalid.
8649  if (T.isNull()) {
8650    InvalidDecl = true;
8651    T = Context.IntTy;
8652  }
8653
8654  QualType EltTy = Context.getBaseElementType(T);
8655  if (!EltTy->isDependentType() &&
8656      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8657    // Fields of incomplete type force their record to be invalid.
8658    Record->setInvalidDecl();
8659    InvalidDecl = true;
8660  }
8661
8662  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8663  // than a variably modified type.
8664  if (!InvalidDecl && T->isVariablyModifiedType()) {
8665    bool SizeIsNegative;
8666    llvm::APSInt Oversized;
8667    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8668                                                           SizeIsNegative,
8669                                                           Oversized);
8670    if (!FixedTy.isNull()) {
8671      Diag(Loc, diag::warn_illegal_constant_array_size);
8672      T = FixedTy;
8673    } else {
8674      if (SizeIsNegative)
8675        Diag(Loc, diag::err_typecheck_negative_array_size);
8676      else if (Oversized.getBoolValue())
8677        Diag(Loc, diag::err_array_too_large)
8678          << Oversized.toString(10);
8679      else
8680        Diag(Loc, diag::err_typecheck_field_variable_size);
8681      InvalidDecl = true;
8682    }
8683  }
8684
8685  // Fields can not have abstract class types
8686  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8687                                             diag::err_abstract_type_in_decl,
8688                                             AbstractFieldType))
8689    InvalidDecl = true;
8690
8691  bool ZeroWidth = false;
8692  // If this is declared as a bit-field, check the bit-field.
8693  if (!InvalidDecl && BitWidth &&
8694      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8695    InvalidDecl = true;
8696    BitWidth = 0;
8697    ZeroWidth = false;
8698  }
8699
8700  // Check that 'mutable' is consistent with the type of the declaration.
8701  if (!InvalidDecl && Mutable) {
8702    unsigned DiagID = 0;
8703    if (T->isReferenceType())
8704      DiagID = diag::err_mutable_reference;
8705    else if (T.isConstQualified())
8706      DiagID = diag::err_mutable_const;
8707
8708    if (DiagID) {
8709      SourceLocation ErrLoc = Loc;
8710      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8711        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8712      Diag(ErrLoc, DiagID);
8713      Mutable = false;
8714      InvalidDecl = true;
8715    }
8716  }
8717
8718  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8719                                       BitWidth, Mutable, HasInit);
8720  if (InvalidDecl)
8721    NewFD->setInvalidDecl();
8722
8723  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8724    Diag(Loc, diag::err_duplicate_member) << II;
8725    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8726    NewFD->setInvalidDecl();
8727  }
8728
8729  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8730    if (Record->isUnion()) {
8731      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8732        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8733        if (RDecl->getDefinition()) {
8734          // C++ [class.union]p1: An object of a class with a non-trivial
8735          // constructor, a non-trivial copy constructor, a non-trivial
8736          // destructor, or a non-trivial copy assignment operator
8737          // cannot be a member of a union, nor can an array of such
8738          // objects.
8739          if (CheckNontrivialField(NewFD))
8740            NewFD->setInvalidDecl();
8741        }
8742      }
8743
8744      // C++ [class.union]p1: If a union contains a member of reference type,
8745      // the program is ill-formed.
8746      if (EltTy->isReferenceType()) {
8747        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8748          << NewFD->getDeclName() << EltTy;
8749        NewFD->setInvalidDecl();
8750      }
8751    }
8752  }
8753
8754  // FIXME: We need to pass in the attributes given an AST
8755  // representation, not a parser representation.
8756  if (D)
8757    // FIXME: What to pass instead of TUScope?
8758    ProcessDeclAttributes(TUScope, NewFD, *D);
8759
8760  // In auto-retain/release, infer strong retension for fields of
8761  // retainable type.
8762  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8763    NewFD->setInvalidDecl();
8764
8765  if (T.isObjCGCWeak())
8766    Diag(Loc, diag::warn_attribute_weak_on_field);
8767
8768  NewFD->setAccess(AS);
8769  return NewFD;
8770}
8771
8772bool Sema::CheckNontrivialField(FieldDecl *FD) {
8773  assert(FD);
8774  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8775
8776  if (FD->isInvalidDecl())
8777    return true;
8778
8779  QualType EltTy = Context.getBaseElementType(FD->getType());
8780  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8781    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8782    if (RDecl->getDefinition()) {
8783      // We check for copy constructors before constructors
8784      // because otherwise we'll never get complaints about
8785      // copy constructors.
8786
8787      CXXSpecialMember member = CXXInvalid;
8788      if (!RDecl->hasTrivialCopyConstructor())
8789        member = CXXCopyConstructor;
8790      else if (!RDecl->hasTrivialDefaultConstructor())
8791        member = CXXDefaultConstructor;
8792      else if (!RDecl->hasTrivialCopyAssignment())
8793        member = CXXCopyAssignment;
8794      else if (!RDecl->hasTrivialDestructor())
8795        member = CXXDestructor;
8796
8797      if (member != CXXInvalid) {
8798        if (!getLangOptions().CPlusPlus0x &&
8799            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8800          // Objective-C++ ARC: it is an error to have a non-trivial field of
8801          // a union. However, system headers in Objective-C programs
8802          // occasionally have Objective-C lifetime objects within unions,
8803          // and rather than cause the program to fail, we make those
8804          // members unavailable.
8805          SourceLocation Loc = FD->getLocation();
8806          if (getSourceManager().isInSystemHeader(Loc)) {
8807            if (!FD->hasAttr<UnavailableAttr>())
8808              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8809                                  "this system field has retaining ownership"));
8810            return false;
8811          }
8812        }
8813
8814        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8815               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8816               diag::err_illegal_union_or_anon_struct_member)
8817          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8818        DiagnoseNontrivial(RT, member);
8819        return !getLangOptions().CPlusPlus0x;
8820      }
8821    }
8822  }
8823
8824  return false;
8825}
8826
8827/// DiagnoseNontrivial - Given that a class has a non-trivial
8828/// special member, figure out why.
8829void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8830  QualType QT(T, 0U);
8831  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8832
8833  // Check whether the member was user-declared.
8834  switch (member) {
8835  case CXXInvalid:
8836    break;
8837
8838  case CXXDefaultConstructor:
8839    if (RD->hasUserDeclaredConstructor()) {
8840      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8841      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8842        const FunctionDecl *body = 0;
8843        ci->hasBody(body);
8844        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8845          SourceLocation CtorLoc = ci->getLocation();
8846          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8847          return;
8848        }
8849      }
8850
8851      llvm_unreachable("found no user-declared constructors");
8852    }
8853    break;
8854
8855  case CXXCopyConstructor:
8856    if (RD->hasUserDeclaredCopyConstructor()) {
8857      SourceLocation CtorLoc =
8858        RD->getCopyConstructor(0)->getLocation();
8859      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8860      return;
8861    }
8862    break;
8863
8864  case CXXMoveConstructor:
8865    if (RD->hasUserDeclaredMoveConstructor()) {
8866      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8867      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8868      return;
8869    }
8870    break;
8871
8872  case CXXCopyAssignment:
8873    if (RD->hasUserDeclaredCopyAssignment()) {
8874      // FIXME: this should use the location of the copy
8875      // assignment, not the type.
8876      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8877      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8878      return;
8879    }
8880    break;
8881
8882  case CXXMoveAssignment:
8883    if (RD->hasUserDeclaredMoveAssignment()) {
8884      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8885      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8886      return;
8887    }
8888    break;
8889
8890  case CXXDestructor:
8891    if (RD->hasUserDeclaredDestructor()) {
8892      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8893      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8894      return;
8895    }
8896    break;
8897  }
8898
8899  typedef CXXRecordDecl::base_class_iterator base_iter;
8900
8901  // Virtual bases and members inhibit trivial copying/construction,
8902  // but not trivial destruction.
8903  if (member != CXXDestructor) {
8904    // Check for virtual bases.  vbases includes indirect virtual bases,
8905    // so we just iterate through the direct bases.
8906    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8907      if (bi->isVirtual()) {
8908        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8909        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8910        return;
8911      }
8912
8913    // Check for virtual methods.
8914    typedef CXXRecordDecl::method_iterator meth_iter;
8915    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8916         ++mi) {
8917      if (mi->isVirtual()) {
8918        SourceLocation MLoc = mi->getSourceRange().getBegin();
8919        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8920        return;
8921      }
8922    }
8923  }
8924
8925  bool (CXXRecordDecl::*hasTrivial)() const;
8926  switch (member) {
8927  case CXXDefaultConstructor:
8928    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8929  case CXXCopyConstructor:
8930    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8931  case CXXCopyAssignment:
8932    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8933  case CXXDestructor:
8934    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8935  default:
8936    llvm_unreachable("unexpected special member");
8937  }
8938
8939  // Check for nontrivial bases (and recurse).
8940  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8941    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8942    assert(BaseRT && "Don't know how to handle dependent bases");
8943    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8944    if (!(BaseRecTy->*hasTrivial)()) {
8945      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8946      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8947      DiagnoseNontrivial(BaseRT, member);
8948      return;
8949    }
8950  }
8951
8952  // Check for nontrivial members (and recurse).
8953  typedef RecordDecl::field_iterator field_iter;
8954  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8955       ++fi) {
8956    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8957    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8958      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8959
8960      if (!(EltRD->*hasTrivial)()) {
8961        SourceLocation FLoc = (*fi)->getLocation();
8962        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8963        DiagnoseNontrivial(EltRT, member);
8964        return;
8965      }
8966    }
8967
8968    if (EltTy->isObjCLifetimeType()) {
8969      switch (EltTy.getObjCLifetime()) {
8970      case Qualifiers::OCL_None:
8971      case Qualifiers::OCL_ExplicitNone:
8972        break;
8973
8974      case Qualifiers::OCL_Autoreleasing:
8975      case Qualifiers::OCL_Weak:
8976      case Qualifiers::OCL_Strong:
8977        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8978          << QT << EltTy.getObjCLifetime();
8979        return;
8980      }
8981    }
8982  }
8983
8984  llvm_unreachable("found no explanation for non-trivial member");
8985}
8986
8987/// TranslateIvarVisibility - Translate visibility from a token ID to an
8988///  AST enum value.
8989static ObjCIvarDecl::AccessControl
8990TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8991  switch (ivarVisibility) {
8992  default: llvm_unreachable("Unknown visitibility kind");
8993  case tok::objc_private: return ObjCIvarDecl::Private;
8994  case tok::objc_public: return ObjCIvarDecl::Public;
8995  case tok::objc_protected: return ObjCIvarDecl::Protected;
8996  case tok::objc_package: return ObjCIvarDecl::Package;
8997  }
8998}
8999
9000/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9001/// in order to create an IvarDecl object for it.
9002Decl *Sema::ActOnIvar(Scope *S,
9003                                SourceLocation DeclStart,
9004                                Declarator &D, Expr *BitfieldWidth,
9005                                tok::ObjCKeywordKind Visibility) {
9006
9007  IdentifierInfo *II = D.getIdentifier();
9008  Expr *BitWidth = (Expr*)BitfieldWidth;
9009  SourceLocation Loc = DeclStart;
9010  if (II) Loc = D.getIdentifierLoc();
9011
9012  // FIXME: Unnamed fields can be handled in various different ways, for
9013  // example, unnamed unions inject all members into the struct namespace!
9014
9015  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9016  QualType T = TInfo->getType();
9017
9018  if (BitWidth) {
9019    // 6.7.2.1p3, 6.7.2.1p4
9020    if (VerifyBitField(Loc, II, T, BitWidth)) {
9021      D.setInvalidType();
9022      BitWidth = 0;
9023    }
9024  } else {
9025    // Not a bitfield.
9026
9027    // validate II.
9028
9029  }
9030  if (T->isReferenceType()) {
9031    Diag(Loc, diag::err_ivar_reference_type);
9032    D.setInvalidType();
9033  }
9034  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9035  // than a variably modified type.
9036  else if (T->isVariablyModifiedType()) {
9037    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9038    D.setInvalidType();
9039  }
9040
9041  // Get the visibility (access control) for this ivar.
9042  ObjCIvarDecl::AccessControl ac =
9043    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9044                                        : ObjCIvarDecl::None;
9045  // Must set ivar's DeclContext to its enclosing interface.
9046  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9047  ObjCContainerDecl *EnclosingContext;
9048  if (ObjCImplementationDecl *IMPDecl =
9049      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9050    if (!LangOpts.ObjCNonFragileABI2) {
9051    // Case of ivar declared in an implementation. Context is that of its class.
9052      EnclosingContext = IMPDecl->getClassInterface();
9053      assert(EnclosingContext && "Implementation has no class interface!");
9054    }
9055    else
9056      EnclosingContext = EnclosingDecl;
9057  } else {
9058    if (ObjCCategoryDecl *CDecl =
9059        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9060      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9061        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9062        return 0;
9063      }
9064    }
9065    EnclosingContext = EnclosingDecl;
9066  }
9067
9068  // Construct the decl.
9069  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9070                                             DeclStart, Loc, II, T,
9071                                             TInfo, ac, (Expr *)BitfieldWidth);
9072
9073  if (II) {
9074    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9075                                           ForRedeclaration);
9076    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9077        && !isa<TagDecl>(PrevDecl)) {
9078      Diag(Loc, diag::err_duplicate_member) << II;
9079      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9080      NewID->setInvalidDecl();
9081    }
9082  }
9083
9084  // Process attributes attached to the ivar.
9085  ProcessDeclAttributes(S, NewID, D);
9086
9087  if (D.isInvalidType())
9088    NewID->setInvalidDecl();
9089
9090  // In ARC, infer 'retaining' for ivars of retainable type.
9091  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9092    NewID->setInvalidDecl();
9093
9094  if (D.getDeclSpec().isModulePrivateSpecified())
9095    NewID->setModulePrivate();
9096
9097  if (II) {
9098    // FIXME: When interfaces are DeclContexts, we'll need to add
9099    // these to the interface.
9100    S->AddDecl(NewID);
9101    IdResolver.AddDecl(NewID);
9102  }
9103
9104  return NewID;
9105}
9106
9107/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9108/// class and class extensions. For every class @interface and class
9109/// extension @interface, if the last ivar is a bitfield of any type,
9110/// then add an implicit `char :0` ivar to the end of that interface.
9111void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9112                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9113  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9114    return;
9115
9116  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9117  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9118
9119  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9120    return;
9121  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9122  if (!ID) {
9123    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9124      if (!CD->IsClassExtension())
9125        return;
9126    }
9127    // No need to add this to end of @implementation.
9128    else
9129      return;
9130  }
9131  // All conditions are met. Add a new bitfield to the tail end of ivars.
9132  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9133  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9134
9135  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9136                              DeclLoc, DeclLoc, 0,
9137                              Context.CharTy,
9138                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9139                                                               DeclLoc),
9140                              ObjCIvarDecl::Private, BW,
9141                              true);
9142  AllIvarDecls.push_back(Ivar);
9143}
9144
9145void Sema::ActOnFields(Scope* S,
9146                       SourceLocation RecLoc, Decl *EnclosingDecl,
9147                       llvm::ArrayRef<Decl *> Fields,
9148                       SourceLocation LBrac, SourceLocation RBrac,
9149                       AttributeList *Attr) {
9150  assert(EnclosingDecl && "missing record or interface decl");
9151
9152  // If the decl this is being inserted into is invalid, then it may be a
9153  // redeclaration or some other bogus case.  Don't try to add fields to it.
9154  if (EnclosingDecl->isInvalidDecl())
9155    return;
9156
9157  // Verify that all the fields are okay.
9158  unsigned NumNamedMembers = 0;
9159  SmallVector<FieldDecl*, 32> RecFields;
9160
9161  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9162  bool ARCErrReported = false;
9163  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9164       i != end; ++i) {
9165    FieldDecl *FD = cast<FieldDecl>(*i);
9166
9167    // Get the type for the field.
9168    const Type *FDTy = FD->getType().getTypePtr();
9169
9170    if (!FD->isAnonymousStructOrUnion()) {
9171      // Remember all fields written by the user.
9172      RecFields.push_back(FD);
9173    }
9174
9175    // If the field is already invalid for some reason, don't emit more
9176    // diagnostics about it.
9177    if (FD->isInvalidDecl()) {
9178      EnclosingDecl->setInvalidDecl();
9179      continue;
9180    }
9181
9182    // C99 6.7.2.1p2:
9183    //   A structure or union shall not contain a member with
9184    //   incomplete or function type (hence, a structure shall not
9185    //   contain an instance of itself, but may contain a pointer to
9186    //   an instance of itself), except that the last member of a
9187    //   structure with more than one named member may have incomplete
9188    //   array type; such a structure (and any union containing,
9189    //   possibly recursively, a member that is such a structure)
9190    //   shall not be a member of a structure or an element of an
9191    //   array.
9192    if (FDTy->isFunctionType()) {
9193      // Field declared as a function.
9194      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9195        << FD->getDeclName();
9196      FD->setInvalidDecl();
9197      EnclosingDecl->setInvalidDecl();
9198      continue;
9199    } else if (FDTy->isIncompleteArrayType() && Record &&
9200               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9201                ((getLangOptions().MicrosoftExt ||
9202                  getLangOptions().CPlusPlus) &&
9203                 (i + 1 == Fields.end() || Record->isUnion())))) {
9204      // Flexible array member.
9205      // Microsoft and g++ is more permissive regarding flexible array.
9206      // It will accept flexible array in union and also
9207      // as the sole element of a struct/class.
9208      if (getLangOptions().MicrosoftExt) {
9209        if (Record->isUnion())
9210          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9211            << FD->getDeclName();
9212        else if (Fields.size() == 1)
9213          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9214            << FD->getDeclName() << Record->getTagKind();
9215      } else if (getLangOptions().CPlusPlus) {
9216        if (Record->isUnion())
9217          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9218            << FD->getDeclName();
9219        else if (Fields.size() == 1)
9220          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9221            << FD->getDeclName() << Record->getTagKind();
9222      } else if (NumNamedMembers < 1) {
9223        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9224          << FD->getDeclName();
9225        FD->setInvalidDecl();
9226        EnclosingDecl->setInvalidDecl();
9227        continue;
9228      }
9229      if (!FD->getType()->isDependentType() &&
9230          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9231        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9232          << FD->getDeclName() << FD->getType();
9233        FD->setInvalidDecl();
9234        EnclosingDecl->setInvalidDecl();
9235        continue;
9236      }
9237      // Okay, we have a legal flexible array member at the end of the struct.
9238      if (Record)
9239        Record->setHasFlexibleArrayMember(true);
9240    } else if (!FDTy->isDependentType() &&
9241               RequireCompleteType(FD->getLocation(), FD->getType(),
9242                                   diag::err_field_incomplete)) {
9243      // Incomplete type
9244      FD->setInvalidDecl();
9245      EnclosingDecl->setInvalidDecl();
9246      continue;
9247    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9248      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9249        // If this is a member of a union, then entire union becomes "flexible".
9250        if (Record && Record->isUnion()) {
9251          Record->setHasFlexibleArrayMember(true);
9252        } else {
9253          // If this is a struct/class and this is not the last element, reject
9254          // it.  Note that GCC supports variable sized arrays in the middle of
9255          // structures.
9256          if (i + 1 != Fields.end())
9257            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9258              << FD->getDeclName() << FD->getType();
9259          else {
9260            // We support flexible arrays at the end of structs in
9261            // other structs as an extension.
9262            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9263              << FD->getDeclName();
9264            if (Record)
9265              Record->setHasFlexibleArrayMember(true);
9266          }
9267        }
9268      }
9269      if (Record && FDTTy->getDecl()->hasObjectMember())
9270        Record->setHasObjectMember(true);
9271    } else if (FDTy->isObjCObjectType()) {
9272      /// A field cannot be an Objective-c object
9273      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9274        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9275      QualType T = Context.getObjCObjectPointerType(FD->getType());
9276      FD->setType(T);
9277    }
9278    else if (!getLangOptions().CPlusPlus) {
9279      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9280        // It's an error in ARC if a field has lifetime.
9281        // We don't want to report this in a system header, though,
9282        // so we just make the field unavailable.
9283        // FIXME: that's really not sufficient; we need to make the type
9284        // itself invalid to, say, initialize or copy.
9285        QualType T = FD->getType();
9286        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9287        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9288          SourceLocation loc = FD->getLocation();
9289          if (getSourceManager().isInSystemHeader(loc)) {
9290            if (!FD->hasAttr<UnavailableAttr>()) {
9291              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9292                                "this system field has retaining ownership"));
9293            }
9294          } else {
9295            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9296              << T->isBlockPointerType();
9297          }
9298          ARCErrReported = true;
9299        }
9300      }
9301      else if (getLangOptions().ObjC1 &&
9302               getLangOptions().getGC() != LangOptions::NonGC &&
9303               Record && !Record->hasObjectMember()) {
9304        if (FD->getType()->isObjCObjectPointerType() ||
9305            FD->getType().isObjCGCStrong())
9306          Record->setHasObjectMember(true);
9307        else if (Context.getAsArrayType(FD->getType())) {
9308          QualType BaseType = Context.getBaseElementType(FD->getType());
9309          if (BaseType->isRecordType() &&
9310              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9311            Record->setHasObjectMember(true);
9312          else if (BaseType->isObjCObjectPointerType() ||
9313                   BaseType.isObjCGCStrong())
9314                 Record->setHasObjectMember(true);
9315        }
9316      }
9317    }
9318    // Keep track of the number of named members.
9319    if (FD->getIdentifier())
9320      ++NumNamedMembers;
9321  }
9322
9323  // Okay, we successfully defined 'Record'.
9324  if (Record) {
9325    bool Completed = false;
9326    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9327      if (!CXXRecord->isInvalidDecl()) {
9328        // Set access bits correctly on the directly-declared conversions.
9329        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9330        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9331             I != E; ++I)
9332          Convs->setAccess(I, (*I)->getAccess());
9333
9334        if (!CXXRecord->isDependentType()) {
9335          // Objective-C Automatic Reference Counting:
9336          //   If a class has a non-static data member of Objective-C pointer
9337          //   type (or array thereof), it is a non-POD type and its
9338          //   default constructor (if any), copy constructor, copy assignment
9339          //   operator, and destructor are non-trivial.
9340          //
9341          // This rule is also handled by CXXRecordDecl::completeDefinition().
9342          // However, here we check whether this particular class is only
9343          // non-POD because of the presence of an Objective-C pointer member.
9344          // If so, objects of this type cannot be shared between code compiled
9345          // with instant objects and code compiled with manual retain/release.
9346          if (getLangOptions().ObjCAutoRefCount &&
9347              CXXRecord->hasObjectMember() &&
9348              CXXRecord->getLinkage() == ExternalLinkage) {
9349            if (CXXRecord->isPOD()) {
9350              Diag(CXXRecord->getLocation(),
9351                   diag::warn_arc_non_pod_class_with_object_member)
9352               << CXXRecord;
9353            } else {
9354              // FIXME: Fix-Its would be nice here, but finding a good location
9355              // for them is going to be tricky.
9356              if (CXXRecord->hasTrivialCopyConstructor())
9357                Diag(CXXRecord->getLocation(),
9358                     diag::warn_arc_trivial_member_function_with_object_member)
9359                  << CXXRecord << 0;
9360              if (CXXRecord->hasTrivialCopyAssignment())
9361                Diag(CXXRecord->getLocation(),
9362                     diag::warn_arc_trivial_member_function_with_object_member)
9363                << CXXRecord << 1;
9364              if (CXXRecord->hasTrivialDestructor())
9365                Diag(CXXRecord->getLocation(),
9366                     diag::warn_arc_trivial_member_function_with_object_member)
9367                << CXXRecord << 2;
9368            }
9369          }
9370
9371          // Adjust user-defined destructor exception spec.
9372          if (getLangOptions().CPlusPlus0x &&
9373              CXXRecord->hasUserDeclaredDestructor())
9374            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9375
9376          // Add any implicitly-declared members to this class.
9377          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9378
9379          // If we have virtual base classes, we may end up finding multiple
9380          // final overriders for a given virtual function. Check for this
9381          // problem now.
9382          if (CXXRecord->getNumVBases()) {
9383            CXXFinalOverriderMap FinalOverriders;
9384            CXXRecord->getFinalOverriders(FinalOverriders);
9385
9386            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9387                                             MEnd = FinalOverriders.end();
9388                 M != MEnd; ++M) {
9389              for (OverridingMethods::iterator SO = M->second.begin(),
9390                                            SOEnd = M->second.end();
9391                   SO != SOEnd; ++SO) {
9392                assert(SO->second.size() > 0 &&
9393                       "Virtual function without overridding functions?");
9394                if (SO->second.size() == 1)
9395                  continue;
9396
9397                // C++ [class.virtual]p2:
9398                //   In a derived class, if a virtual member function of a base
9399                //   class subobject has more than one final overrider the
9400                //   program is ill-formed.
9401                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9402                  << (NamedDecl *)M->first << Record;
9403                Diag(M->first->getLocation(),
9404                     diag::note_overridden_virtual_function);
9405                for (OverridingMethods::overriding_iterator
9406                          OM = SO->second.begin(),
9407                       OMEnd = SO->second.end();
9408                     OM != OMEnd; ++OM)
9409                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9410                    << (NamedDecl *)M->first << OM->Method->getParent();
9411
9412                Record->setInvalidDecl();
9413              }
9414            }
9415            CXXRecord->completeDefinition(&FinalOverriders);
9416            Completed = true;
9417          }
9418        }
9419      }
9420    }
9421
9422    if (!Completed)
9423      Record->completeDefinition();
9424
9425    // Now that the record is complete, do any delayed exception spec checks
9426    // we were missing.
9427    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9428      const CXXDestructorDecl *Dtor =
9429              DelayedDestructorExceptionSpecChecks.back().first;
9430      if (Dtor->getParent() != Record)
9431        break;
9432
9433      assert(!Dtor->getParent()->isDependentType() &&
9434          "Should not ever add destructors of templates into the list.");
9435      CheckOverridingFunctionExceptionSpec(Dtor,
9436          DelayedDestructorExceptionSpecChecks.back().second);
9437      DelayedDestructorExceptionSpecChecks.pop_back();
9438    }
9439
9440  } else {
9441    ObjCIvarDecl **ClsFields =
9442      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9443    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9444      ID->setEndOfDefinitionLoc(RBrac);
9445      // Add ivar's to class's DeclContext.
9446      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9447        ClsFields[i]->setLexicalDeclContext(ID);
9448        ID->addDecl(ClsFields[i]);
9449      }
9450      // Must enforce the rule that ivars in the base classes may not be
9451      // duplicates.
9452      if (ID->getSuperClass())
9453        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9454    } else if (ObjCImplementationDecl *IMPDecl =
9455                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9456      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9457      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9458        // Ivar declared in @implementation never belongs to the implementation.
9459        // Only it is in implementation's lexical context.
9460        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9461      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9462    } else if (ObjCCategoryDecl *CDecl =
9463                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9464      // case of ivars in class extension; all other cases have been
9465      // reported as errors elsewhere.
9466      // FIXME. Class extension does not have a LocEnd field.
9467      // CDecl->setLocEnd(RBrac);
9468      // Add ivar's to class extension's DeclContext.
9469      // Diagnose redeclaration of private ivars.
9470      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9471      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9472        if (IDecl) {
9473          if (const ObjCIvarDecl *ClsIvar =
9474              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9475            Diag(ClsFields[i]->getLocation(),
9476                 diag::err_duplicate_ivar_declaration);
9477            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9478            continue;
9479          }
9480          for (const ObjCCategoryDecl *ClsExtDecl =
9481                IDecl->getFirstClassExtension();
9482               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9483            if (const ObjCIvarDecl *ClsExtIvar =
9484                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9485              Diag(ClsFields[i]->getLocation(),
9486                   diag::err_duplicate_ivar_declaration);
9487              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9488              continue;
9489            }
9490          }
9491        }
9492        ClsFields[i]->setLexicalDeclContext(CDecl);
9493        CDecl->addDecl(ClsFields[i]);
9494      }
9495    }
9496  }
9497
9498  if (Attr)
9499    ProcessDeclAttributeList(S, Record, Attr);
9500
9501  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9502  // set the visibility of this record.
9503  if (Record && !Record->getDeclContext()->isRecord())
9504    AddPushedVisibilityAttribute(Record);
9505}
9506
9507/// \brief Determine whether the given integral value is representable within
9508/// the given type T.
9509static bool isRepresentableIntegerValue(ASTContext &Context,
9510                                        llvm::APSInt &Value,
9511                                        QualType T) {
9512  assert(T->isIntegralType(Context) && "Integral type required!");
9513  unsigned BitWidth = Context.getIntWidth(T);
9514
9515  if (Value.isUnsigned() || Value.isNonNegative()) {
9516    if (T->isSignedIntegerOrEnumerationType())
9517      --BitWidth;
9518    return Value.getActiveBits() <= BitWidth;
9519  }
9520  return Value.getMinSignedBits() <= BitWidth;
9521}
9522
9523// \brief Given an integral type, return the next larger integral type
9524// (or a NULL type of no such type exists).
9525static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9526  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9527  // enum checking below.
9528  assert(T->isIntegralType(Context) && "Integral type required!");
9529  const unsigned NumTypes = 4;
9530  QualType SignedIntegralTypes[NumTypes] = {
9531    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9532  };
9533  QualType UnsignedIntegralTypes[NumTypes] = {
9534    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9535    Context.UnsignedLongLongTy
9536  };
9537
9538  unsigned BitWidth = Context.getTypeSize(T);
9539  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9540                                                        : UnsignedIntegralTypes;
9541  for (unsigned I = 0; I != NumTypes; ++I)
9542    if (Context.getTypeSize(Types[I]) > BitWidth)
9543      return Types[I];
9544
9545  return QualType();
9546}
9547
9548EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9549                                          EnumConstantDecl *LastEnumConst,
9550                                          SourceLocation IdLoc,
9551                                          IdentifierInfo *Id,
9552                                          Expr *Val) {
9553  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9554  llvm::APSInt EnumVal(IntWidth);
9555  QualType EltTy;
9556
9557  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9558    Val = 0;
9559
9560  if (Val)
9561    Val = DefaultLvalueConversion(Val).take();
9562
9563  if (Val) {
9564    if (Enum->isDependentType() || Val->isTypeDependent())
9565      EltTy = Context.DependentTy;
9566    else {
9567      SourceLocation ExpLoc;
9568      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9569          !getLangOptions().MicrosoftMode) {
9570        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9571        // constant-expression in the enumerator-definition shall be a converted
9572        // constant expression of the underlying type.
9573        EltTy = Enum->getIntegerType();
9574        ExprResult Converted =
9575          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9576                                           CCEK_Enumerator);
9577        if (Converted.isInvalid())
9578          Val = 0;
9579        else
9580          Val = Converted.take();
9581      } else if (!Val->isValueDependent() &&
9582                 VerifyIntegerConstantExpression(Val, &EnumVal)) {
9583        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9584        Val = 0;
9585      } else {
9586        if (!getLangOptions().CPlusPlus) {
9587          // C99 6.7.2.2p2:
9588          //   The expression that defines the value of an enumeration constant
9589          //   shall be an integer constant expression that has a value
9590          //   representable as an int.
9591
9592          // Complain if the value is not representable in an int.
9593          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9594            Diag(IdLoc, diag::ext_enum_value_not_int)
9595              << EnumVal.toString(10) << Val->getSourceRange()
9596              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9597          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9598            // Force the type of the expression to 'int'.
9599            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9600          }
9601        }
9602
9603        if (Enum->isFixed()) {
9604          EltTy = Enum->getIntegerType();
9605
9606          // In Obj-C and Microsoft mode, require the enumeration value to be
9607          // representable in the underlying type of the enumeration. In C++11,
9608          // we perform a non-narrowing conversion as part of converted constant
9609          // expression checking.
9610          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9611            if (getLangOptions().MicrosoftExt) {
9612              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9613              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9614            } else
9615              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9616          } else
9617            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9618        } else {
9619          // C++11 [dcl.enum]p5:
9620          //   If the underlying type is not fixed, the type of each enumerator
9621          //   is the type of its initializing value:
9622          //     - If an initializer is specified for an enumerator, the
9623          //       initializing value has the same type as the expression.
9624          EltTy = Val->getType();
9625        }
9626      }
9627    }
9628  }
9629
9630  if (!Val) {
9631    if (Enum->isDependentType())
9632      EltTy = Context.DependentTy;
9633    else if (!LastEnumConst) {
9634      // C++0x [dcl.enum]p5:
9635      //   If the underlying type is not fixed, the type of each enumerator
9636      //   is the type of its initializing value:
9637      //     - If no initializer is specified for the first enumerator, the
9638      //       initializing value has an unspecified integral type.
9639      //
9640      // GCC uses 'int' for its unspecified integral type, as does
9641      // C99 6.7.2.2p3.
9642      if (Enum->isFixed()) {
9643        EltTy = Enum->getIntegerType();
9644      }
9645      else {
9646        EltTy = Context.IntTy;
9647      }
9648    } else {
9649      // Assign the last value + 1.
9650      EnumVal = LastEnumConst->getInitVal();
9651      ++EnumVal;
9652      EltTy = LastEnumConst->getType();
9653
9654      // Check for overflow on increment.
9655      if (EnumVal < LastEnumConst->getInitVal()) {
9656        // C++0x [dcl.enum]p5:
9657        //   If the underlying type is not fixed, the type of each enumerator
9658        //   is the type of its initializing value:
9659        //
9660        //     - Otherwise the type of the initializing value is the same as
9661        //       the type of the initializing value of the preceding enumerator
9662        //       unless the incremented value is not representable in that type,
9663        //       in which case the type is an unspecified integral type
9664        //       sufficient to contain the incremented value. If no such type
9665        //       exists, the program is ill-formed.
9666        QualType T = getNextLargerIntegralType(Context, EltTy);
9667        if (T.isNull() || Enum->isFixed()) {
9668          // There is no integral type larger enough to represent this
9669          // value. Complain, then allow the value to wrap around.
9670          EnumVal = LastEnumConst->getInitVal();
9671          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9672          ++EnumVal;
9673          if (Enum->isFixed())
9674            // When the underlying type is fixed, this is ill-formed.
9675            Diag(IdLoc, diag::err_enumerator_wrapped)
9676              << EnumVal.toString(10)
9677              << EltTy;
9678          else
9679            Diag(IdLoc, diag::warn_enumerator_too_large)
9680              << EnumVal.toString(10);
9681        } else {
9682          EltTy = T;
9683        }
9684
9685        // Retrieve the last enumerator's value, extent that type to the
9686        // type that is supposed to be large enough to represent the incremented
9687        // value, then increment.
9688        EnumVal = LastEnumConst->getInitVal();
9689        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9690        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9691        ++EnumVal;
9692
9693        // If we're not in C++, diagnose the overflow of enumerator values,
9694        // which in C99 means that the enumerator value is not representable in
9695        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9696        // permits enumerator values that are representable in some larger
9697        // integral type.
9698        if (!getLangOptions().CPlusPlus && !T.isNull())
9699          Diag(IdLoc, diag::warn_enum_value_overflow);
9700      } else if (!getLangOptions().CPlusPlus &&
9701                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9702        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9703        Diag(IdLoc, diag::ext_enum_value_not_int)
9704          << EnumVal.toString(10) << 1;
9705      }
9706    }
9707  }
9708
9709  if (!EltTy->isDependentType()) {
9710    // Make the enumerator value match the signedness and size of the
9711    // enumerator's type.
9712    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9713    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9714  }
9715
9716  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9717                                  Val, EnumVal);
9718}
9719
9720
9721Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9722                              SourceLocation IdLoc, IdentifierInfo *Id,
9723                              AttributeList *Attr,
9724                              SourceLocation EqualLoc, Expr *Val) {
9725  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9726  EnumConstantDecl *LastEnumConst =
9727    cast_or_null<EnumConstantDecl>(lastEnumConst);
9728
9729  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9730  // we find one that is.
9731  S = getNonFieldDeclScope(S);
9732
9733  // Verify that there isn't already something declared with this name in this
9734  // scope.
9735  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9736                                         ForRedeclaration);
9737  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9738    // Maybe we will complain about the shadowed template parameter.
9739    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9740    // Just pretend that we didn't see the previous declaration.
9741    PrevDecl = 0;
9742  }
9743
9744  if (PrevDecl) {
9745    // When in C++, we may get a TagDecl with the same name; in this case the
9746    // enum constant will 'hide' the tag.
9747    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9748           "Received TagDecl when not in C++!");
9749    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9750      if (isa<EnumConstantDecl>(PrevDecl))
9751        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9752      else
9753        Diag(IdLoc, diag::err_redefinition) << Id;
9754      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9755      return 0;
9756    }
9757  }
9758
9759  // C++ [class.mem]p13:
9760  //   If T is the name of a class, then each of the following shall have a
9761  //   name different from T:
9762  //     - every enumerator of every member of class T that is an enumerated
9763  //       type
9764  if (CXXRecordDecl *Record
9765                      = dyn_cast<CXXRecordDecl>(
9766                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9767    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9768      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9769
9770  EnumConstantDecl *New =
9771    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9772
9773  if (New) {
9774    // Process attributes.
9775    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9776
9777    // Register this decl in the current scope stack.
9778    New->setAccess(TheEnumDecl->getAccess());
9779    PushOnScopeChains(New, S);
9780  }
9781
9782  return New;
9783}
9784
9785void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9786                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9787                         Decl **Elements, unsigned NumElements,
9788                         Scope *S, AttributeList *Attr) {
9789  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9790  QualType EnumType = Context.getTypeDeclType(Enum);
9791
9792  if (Attr)
9793    ProcessDeclAttributeList(S, Enum, Attr);
9794
9795  if (Enum->isDependentType()) {
9796    for (unsigned i = 0; i != NumElements; ++i) {
9797      EnumConstantDecl *ECD =
9798        cast_or_null<EnumConstantDecl>(Elements[i]);
9799      if (!ECD) continue;
9800
9801      ECD->setType(EnumType);
9802    }
9803
9804    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9805    return;
9806  }
9807
9808  // TODO: If the result value doesn't fit in an int, it must be a long or long
9809  // long value.  ISO C does not support this, but GCC does as an extension,
9810  // emit a warning.
9811  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9812  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9813  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9814
9815  // Verify that all the values are okay, compute the size of the values, and
9816  // reverse the list.
9817  unsigned NumNegativeBits = 0;
9818  unsigned NumPositiveBits = 0;
9819
9820  // Keep track of whether all elements have type int.
9821  bool AllElementsInt = true;
9822
9823  for (unsigned i = 0; i != NumElements; ++i) {
9824    EnumConstantDecl *ECD =
9825      cast_or_null<EnumConstantDecl>(Elements[i]);
9826    if (!ECD) continue;  // Already issued a diagnostic.
9827
9828    const llvm::APSInt &InitVal = ECD->getInitVal();
9829
9830    // Keep track of the size of positive and negative values.
9831    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9832      NumPositiveBits = std::max(NumPositiveBits,
9833                                 (unsigned)InitVal.getActiveBits());
9834    else
9835      NumNegativeBits = std::max(NumNegativeBits,
9836                                 (unsigned)InitVal.getMinSignedBits());
9837
9838    // Keep track of whether every enum element has type int (very commmon).
9839    if (AllElementsInt)
9840      AllElementsInt = ECD->getType() == Context.IntTy;
9841  }
9842
9843  // Figure out the type that should be used for this enum.
9844  QualType BestType;
9845  unsigned BestWidth;
9846
9847  // C++0x N3000 [conv.prom]p3:
9848  //   An rvalue of an unscoped enumeration type whose underlying
9849  //   type is not fixed can be converted to an rvalue of the first
9850  //   of the following types that can represent all the values of
9851  //   the enumeration: int, unsigned int, long int, unsigned long
9852  //   int, long long int, or unsigned long long int.
9853  // C99 6.4.4.3p2:
9854  //   An identifier declared as an enumeration constant has type int.
9855  // The C99 rule is modified by a gcc extension
9856  QualType BestPromotionType;
9857
9858  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9859  // -fshort-enums is the equivalent to specifying the packed attribute on all
9860  // enum definitions.
9861  if (LangOpts.ShortEnums)
9862    Packed = true;
9863
9864  if (Enum->isFixed()) {
9865    BestType = Enum->getIntegerType();
9866    if (BestType->isPromotableIntegerType())
9867      BestPromotionType = Context.getPromotedIntegerType(BestType);
9868    else
9869      BestPromotionType = BestType;
9870    // We don't need to set BestWidth, because BestType is going to be the type
9871    // of the enumerators, but we do anyway because otherwise some compilers
9872    // warn that it might be used uninitialized.
9873    BestWidth = CharWidth;
9874  }
9875  else if (NumNegativeBits) {
9876    // If there is a negative value, figure out the smallest integer type (of
9877    // int/long/longlong) that fits.
9878    // If it's packed, check also if it fits a char or a short.
9879    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9880      BestType = Context.SignedCharTy;
9881      BestWidth = CharWidth;
9882    } else if (Packed && NumNegativeBits <= ShortWidth &&
9883               NumPositiveBits < ShortWidth) {
9884      BestType = Context.ShortTy;
9885      BestWidth = ShortWidth;
9886    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9887      BestType = Context.IntTy;
9888      BestWidth = IntWidth;
9889    } else {
9890      BestWidth = Context.getTargetInfo().getLongWidth();
9891
9892      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9893        BestType = Context.LongTy;
9894      } else {
9895        BestWidth = Context.getTargetInfo().getLongLongWidth();
9896
9897        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9898          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9899        BestType = Context.LongLongTy;
9900      }
9901    }
9902    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9903  } else {
9904    // If there is no negative value, figure out the smallest type that fits
9905    // all of the enumerator values.
9906    // If it's packed, check also if it fits a char or a short.
9907    if (Packed && NumPositiveBits <= CharWidth) {
9908      BestType = Context.UnsignedCharTy;
9909      BestPromotionType = Context.IntTy;
9910      BestWidth = CharWidth;
9911    } else if (Packed && NumPositiveBits <= ShortWidth) {
9912      BestType = Context.UnsignedShortTy;
9913      BestPromotionType = Context.IntTy;
9914      BestWidth = ShortWidth;
9915    } else if (NumPositiveBits <= IntWidth) {
9916      BestType = Context.UnsignedIntTy;
9917      BestWidth = IntWidth;
9918      BestPromotionType
9919        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9920                           ? Context.UnsignedIntTy : Context.IntTy;
9921    } else if (NumPositiveBits <=
9922               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9923      BestType = Context.UnsignedLongTy;
9924      BestPromotionType
9925        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9926                           ? Context.UnsignedLongTy : Context.LongTy;
9927    } else {
9928      BestWidth = Context.getTargetInfo().getLongLongWidth();
9929      assert(NumPositiveBits <= BestWidth &&
9930             "How could an initializer get larger than ULL?");
9931      BestType = Context.UnsignedLongLongTy;
9932      BestPromotionType
9933        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9934                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9935    }
9936  }
9937
9938  // Loop over all of the enumerator constants, changing their types to match
9939  // the type of the enum if needed.
9940  for (unsigned i = 0; i != NumElements; ++i) {
9941    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9942    if (!ECD) continue;  // Already issued a diagnostic.
9943
9944    // Standard C says the enumerators have int type, but we allow, as an
9945    // extension, the enumerators to be larger than int size.  If each
9946    // enumerator value fits in an int, type it as an int, otherwise type it the
9947    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9948    // that X has type 'int', not 'unsigned'.
9949
9950    // Determine whether the value fits into an int.
9951    llvm::APSInt InitVal = ECD->getInitVal();
9952
9953    // If it fits into an integer type, force it.  Otherwise force it to match
9954    // the enum decl type.
9955    QualType NewTy;
9956    unsigned NewWidth;
9957    bool NewSign;
9958    if (!getLangOptions().CPlusPlus &&
9959        !Enum->isFixed() &&
9960        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9961      NewTy = Context.IntTy;
9962      NewWidth = IntWidth;
9963      NewSign = true;
9964    } else if (ECD->getType() == BestType) {
9965      // Already the right type!
9966      if (getLangOptions().CPlusPlus)
9967        // C++ [dcl.enum]p4: Following the closing brace of an
9968        // enum-specifier, each enumerator has the type of its
9969        // enumeration.
9970        ECD->setType(EnumType);
9971      continue;
9972    } else {
9973      NewTy = BestType;
9974      NewWidth = BestWidth;
9975      NewSign = BestType->isSignedIntegerOrEnumerationType();
9976    }
9977
9978    // Adjust the APSInt value.
9979    InitVal = InitVal.extOrTrunc(NewWidth);
9980    InitVal.setIsSigned(NewSign);
9981    ECD->setInitVal(InitVal);
9982
9983    // Adjust the Expr initializer and type.
9984    if (ECD->getInitExpr() &&
9985        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9986      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9987                                                CK_IntegralCast,
9988                                                ECD->getInitExpr(),
9989                                                /*base paths*/ 0,
9990                                                VK_RValue));
9991    if (getLangOptions().CPlusPlus)
9992      // C++ [dcl.enum]p4: Following the closing brace of an
9993      // enum-specifier, each enumerator has the type of its
9994      // enumeration.
9995      ECD->setType(EnumType);
9996    else
9997      ECD->setType(NewTy);
9998  }
9999
10000  Enum->completeDefinition(BestType, BestPromotionType,
10001                           NumPositiveBits, NumNegativeBits);
10002}
10003
10004Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10005                                  SourceLocation StartLoc,
10006                                  SourceLocation EndLoc) {
10007  StringLiteral *AsmString = cast<StringLiteral>(expr);
10008
10009  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10010                                                   AsmString, StartLoc,
10011                                                   EndLoc);
10012  CurContext->addDecl(New);
10013  return New;
10014}
10015
10016DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10017                                   SourceLocation ImportLoc,
10018                                   ModuleIdPath Path) {
10019  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10020                                                Module::AllVisible,
10021                                                /*IsIncludeDirective=*/false);
10022  if (!Mod)
10023    return true;
10024
10025  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10026  Module *ModCheck = Mod;
10027  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10028    // If we've run out of module parents, just drop the remaining identifiers.
10029    // We need the length to be consistent.
10030    if (!ModCheck)
10031      break;
10032    ModCheck = ModCheck->Parent;
10033
10034    IdentifierLocs.push_back(Path[I].second);
10035  }
10036
10037  ImportDecl *Import = ImportDecl::Create(Context,
10038                                          Context.getTranslationUnitDecl(),
10039                                          AtLoc.isValid()? AtLoc : ImportLoc,
10040                                          Mod, IdentifierLocs);
10041  Context.getTranslationUnitDecl()->addDecl(Import);
10042  return Import;
10043}
10044
10045void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10046                             SourceLocation PragmaLoc,
10047                             SourceLocation NameLoc) {
10048  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10049
10050  if (PrevDecl) {
10051    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10052  } else {
10053    (void)WeakUndeclaredIdentifiers.insert(
10054      std::pair<IdentifierInfo*,WeakInfo>
10055        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10056  }
10057}
10058
10059void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10060                                IdentifierInfo* AliasName,
10061                                SourceLocation PragmaLoc,
10062                                SourceLocation NameLoc,
10063                                SourceLocation AliasNameLoc) {
10064  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10065                                    LookupOrdinaryName);
10066  WeakInfo W = WeakInfo(Name, NameLoc);
10067
10068  if (PrevDecl) {
10069    if (!PrevDecl->hasAttr<AliasAttr>())
10070      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10071        DeclApplyPragmaWeak(TUScope, ND, W);
10072  } else {
10073    (void)WeakUndeclaredIdentifiers.insert(
10074      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10075  }
10076}
10077
10078Decl *Sema::getObjCDeclContext() const {
10079  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10080}
10081
10082AvailabilityResult Sema::getCurContextAvailability() const {
10083  const Decl *D = cast<Decl>(getCurLexicalContext());
10084  // A category implicitly has the availability of the interface.
10085  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10086    D = CatD->getClassInterface();
10087
10088  return D->getAvailability();
10089}
10090