SemaDecl.cpp revision 16f1f717af196b1448258857b2e6dcfe144b39d0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOptions().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOptions()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOptions().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOptions().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOptions().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOptions().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  PushDeclContext(S, FD);
876  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877    ParmVarDecl *Param = FD->getParamDecl(P);
878    // If the parameter has an identifier, then add it to the scope
879    if (Param->getIdentifier()) {
880      S->AddDecl(Param);
881      IdResolver.AddDecl(Param);
882    }
883  }
884}
885
886
887/// \brief Determine whether we allow overloading of the function
888/// PrevDecl with another declaration.
889///
890/// This routine determines whether overloading is possible, not
891/// whether some new function is actually an overload. It will return
892/// true in C++ (where we can always provide overloads) or, as an
893/// extension, in C when the previous function is already an
894/// overloaded function declaration or has the "overloadable"
895/// attribute.
896static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                       ASTContext &Context) {
898  if (Context.getLangOptions().CPlusPlus)
899    return true;
900
901  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902    return true;
903
904  return (Previous.getResultKind() == LookupResult::Found
905          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906}
907
908/// Add this decl to the scope shadowed decl chains.
909void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910  // Move up the scope chain until we find the nearest enclosing
911  // non-transparent context. The declaration will be introduced into this
912  // scope.
913  while (S->getEntity() &&
914         ((DeclContext *)S->getEntity())->isTransparentContext())
915    S = S->getParent();
916
917  // Add scoped declarations into their context, so that they can be
918  // found later. Declarations without a context won't be inserted
919  // into any context.
920  if (AddToContext)
921    CurContext->addDecl(D);
922
923  // Out-of-line definitions shouldn't be pushed into scope in C++.
924  // Out-of-line variable and function definitions shouldn't even in C.
925  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926      D->isOutOfLine() &&
927      !D->getDeclContext()->getRedeclContext()->Equals(
928        D->getLexicalDeclContext()->getRedeclContext()))
929    return;
930
931  // Template instantiations should also not be pushed into scope.
932  if (isa<FunctionDecl>(D) &&
933      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934    return;
935
936  // If this replaces anything in the current scope,
937  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                               IEnd = IdResolver.end();
939  for (; I != IEnd; ++I) {
940    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941      S->RemoveDecl(*I);
942      IdResolver.RemoveDecl(*I);
943
944      // Should only need to replace one decl.
945      break;
946    }
947  }
948
949  S->AddDecl(D);
950
951  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952    // Implicitly-generated labels may end up getting generated in an order that
953    // isn't strictly lexical, which breaks name lookup. Be careful to insert
954    // the label at the appropriate place in the identifier chain.
955    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957      if (IDC == CurContext) {
958        if (!S->isDeclScope(*I))
959          continue;
960      } else if (IDC->Encloses(CurContext))
961        break;
962    }
963
964    IdResolver.InsertDeclAfter(I, D);
965  } else {
966    IdResolver.AddDecl(D);
967  }
968}
969
970void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972    TUScope->AddDecl(D);
973}
974
975bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                         bool ExplicitInstantiationOrSpecialization) {
977  return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                  ExplicitInstantiationOrSpecialization);
979}
980
981Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982  DeclContext *TargetDC = DC->getPrimaryContext();
983  do {
984    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985      if (ScopeDC->getPrimaryContext() == TargetDC)
986        return S;
987  } while ((S = S->getParent()));
988
989  return 0;
990}
991
992static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                            DeclContext*,
994                                            ASTContext&);
995
996/// Filters out lookup results that don't fall within the given scope
997/// as determined by isDeclInScope.
998void Sema::FilterLookupForScope(LookupResult &R,
999                                DeclContext *Ctx, Scope *S,
1000                                bool ConsiderLinkage,
1001                                bool ExplicitInstantiationOrSpecialization) {
1002  LookupResult::Filter F = R.makeFilter();
1003  while (F.hasNext()) {
1004    NamedDecl *D = F.next();
1005
1006    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007      continue;
1008
1009    if (ConsiderLinkage &&
1010        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011      continue;
1012
1013    F.erase();
1014  }
1015
1016  F.done();
1017}
1018
1019static bool isUsingDecl(NamedDecl *D) {
1020  return isa<UsingShadowDecl>(D) ||
1021         isa<UnresolvedUsingTypenameDecl>(D) ||
1022         isa<UnresolvedUsingValueDecl>(D);
1023}
1024
1025/// Removes using shadow declarations from the lookup results.
1026static void RemoveUsingDecls(LookupResult &R) {
1027  LookupResult::Filter F = R.makeFilter();
1028  while (F.hasNext())
1029    if (isUsingDecl(F.next()))
1030      F.erase();
1031
1032  F.done();
1033}
1034
1035/// \brief Check for this common pattern:
1036/// @code
1037/// class S {
1038///   S(const S&); // DO NOT IMPLEMENT
1039///   void operator=(const S&); // DO NOT IMPLEMENT
1040/// };
1041/// @endcode
1042static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043  // FIXME: Should check for private access too but access is set after we get
1044  // the decl here.
1045  if (D->doesThisDeclarationHaveABody())
1046    return false;
1047
1048  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049    return CD->isCopyConstructor();
1050  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051    return Method->isCopyAssignmentOperator();
1052  return false;
1053}
1054
1055bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056  assert(D);
1057
1058  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059    return false;
1060
1061  // Ignore class templates.
1062  if (D->getDeclContext()->isDependentContext() ||
1063      D->getLexicalDeclContext()->isDependentContext())
1064    return false;
1065
1066  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068      return false;
1069
1070    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072        return false;
1073    } else {
1074      // 'static inline' functions are used in headers; don't warn.
1075      if (FD->getStorageClass() == SC_Static &&
1076          FD->isInlineSpecified())
1077        return false;
1078    }
1079
1080    if (FD->doesThisDeclarationHaveABody() &&
1081        Context.DeclMustBeEmitted(FD))
1082      return false;
1083  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    if (!VD->isFileVarDecl() ||
1085        VD->getType().isConstant(Context) ||
1086        Context.DeclMustBeEmitted(VD))
1087      return false;
1088
1089    if (VD->isStaticDataMember() &&
1090        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091      return false;
1092
1093  } else {
1094    return false;
1095  }
1096
1097  // Only warn for unused decls internal to the translation unit.
1098  if (D->getLinkage() == ExternalLinkage)
1099    return false;
1100
1101  return true;
1102}
1103
1104void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105  if (!D)
1106    return;
1107
1108  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109    const FunctionDecl *First = FD->getFirstDeclaration();
1110    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111      return; // First should already be in the vector.
1112  }
1113
1114  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115    const VarDecl *First = VD->getFirstDeclaration();
1116    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117      return; // First should already be in the vector.
1118  }
1119
1120   if (ShouldWarnIfUnusedFileScopedDecl(D))
1121     UnusedFileScopedDecls.push_back(D);
1122 }
1123
1124static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125  if (D->isInvalidDecl())
1126    return false;
1127
1128  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129    return false;
1130
1131  if (isa<LabelDecl>(D))
1132    return true;
1133
1134  // White-list anything that isn't a local variable.
1135  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136      !D->getDeclContext()->isFunctionOrMethod())
1137    return false;
1138
1139  // Types of valid local variables should be complete, so this should succeed.
1140  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141
1142    // White-list anything with an __attribute__((unused)) type.
1143    QualType Ty = VD->getType();
1144
1145    // Only look at the outermost level of typedef.
1146    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147      if (TT->getDecl()->hasAttr<UnusedAttr>())
1148        return false;
1149    }
1150
1151    // If we failed to complete the type for some reason, or if the type is
1152    // dependent, don't diagnose the variable.
1153    if (Ty->isIncompleteType() || Ty->isDependentType())
1154      return false;
1155
1156    if (const TagType *TT = Ty->getAs<TagType>()) {
1157      const TagDecl *Tag = TT->getDecl();
1158      if (Tag->hasAttr<UnusedAttr>())
1159        return false;
1160
1161      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162        if (!RD->hasTrivialDestructor())
1163          return false;
1164
1165        if (const Expr *Init = VD->getInit()) {
1166          const CXXConstructExpr *Construct =
1167            dyn_cast<CXXConstructExpr>(Init);
1168          if (Construct && !Construct->isElidable()) {
1169            CXXConstructorDecl *CD = Construct->getConstructor();
1170            if (!CD->isTrivial())
1171              return false;
1172          }
1173        }
1174      }
1175    }
1176
1177    // TODO: __attribute__((unused)) templates?
1178  }
1179
1180  return true;
1181}
1182
1183static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                     FixItHint &Hint) {
1185  if (isa<LabelDecl>(D)) {
1186    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1188    if (AfterColon.isInvalid())
1189      return;
1190    Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                    getCharRange(D->getLocStart(), AfterColon));
1192  }
1193  return;
1194}
1195
1196/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197/// unless they are marked attr(unused).
1198void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199  FixItHint Hint;
1200  if (!ShouldDiagnoseUnusedDecl(D))
1201    return;
1202
1203  GenerateFixForUnusedDecl(D, Context, Hint);
1204
1205  unsigned DiagID;
1206  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207    DiagID = diag::warn_unused_exception_param;
1208  else if (isa<LabelDecl>(D))
1209    DiagID = diag::warn_unused_label;
1210  else
1211    DiagID = diag::warn_unused_variable;
1212
1213  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214}
1215
1216static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217  // Verify that we have no forward references left.  If so, there was a goto
1218  // or address of a label taken, but no definition of it.  Label fwd
1219  // definitions are indicated with a null substmt.
1220  if (L->getStmt() == 0)
1221    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222}
1223
1224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225  if (S->decl_empty()) return;
1226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227         "Scope shouldn't contain decls!");
1228
1229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230       I != E; ++I) {
1231    Decl *TmpD = (*I);
1232    assert(TmpD && "This decl didn't get pushed??");
1233
1234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235    NamedDecl *D = cast<NamedDecl>(TmpD);
1236
1237    if (!D->getDeclName()) continue;
1238
1239    // Diagnose unused variables in this scope.
1240    if (!S->hasErrorOccurred())
1241      DiagnoseUnusedDecl(D);
1242
1243    // If this was a forward reference to a label, verify it was defined.
1244    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245      CheckPoppedLabel(LD, *this);
1246
1247    // Remove this name from our lexical scope.
1248    IdResolver.RemoveDecl(D);
1249  }
1250}
1251
1252void Sema::ActOnStartFunctionDeclarator() {
1253  ++InFunctionDeclarator;
1254}
1255
1256void Sema::ActOnEndFunctionDeclarator() {
1257  assert(InFunctionDeclarator);
1258  --InFunctionDeclarator;
1259}
1260
1261/// \brief Look for an Objective-C class in the translation unit.
1262///
1263/// \param Id The name of the Objective-C class we're looking for. If
1264/// typo-correction fixes this name, the Id will be updated
1265/// to the fixed name.
1266///
1267/// \param IdLoc The location of the name in the translation unit.
1268///
1269/// \param TypoCorrection If true, this routine will attempt typo correction
1270/// if there is no class with the given name.
1271///
1272/// \returns The declaration of the named Objective-C class, or NULL if the
1273/// class could not be found.
1274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1275                                              SourceLocation IdLoc,
1276                                              bool DoTypoCorrection) {
1277  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1278  // creation from this context.
1279  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1280
1281  if (!IDecl && DoTypoCorrection) {
1282    // Perform typo correction at the given location, but only if we
1283    // find an Objective-C class name.
1284    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1285    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1286                                       LookupOrdinaryName, TUScope, NULL,
1287                                       Validator)) {
1288      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1289      Diag(IdLoc, diag::err_undef_interface_suggest)
1290        << Id << IDecl->getDeclName()
1291        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1292      Diag(IDecl->getLocation(), diag::note_previous_decl)
1293        << IDecl->getDeclName();
1294
1295      Id = IDecl->getIdentifier();
1296    }
1297  }
1298  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1299  // This routine must always return a class definition, if any.
1300  if (Def && Def->getDefinition())
1301      Def = Def->getDefinition();
1302  return Def;
1303}
1304
1305/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1306/// from S, where a non-field would be declared. This routine copes
1307/// with the difference between C and C++ scoping rules in structs and
1308/// unions. For example, the following code is well-formed in C but
1309/// ill-formed in C++:
1310/// @code
1311/// struct S6 {
1312///   enum { BAR } e;
1313/// };
1314///
1315/// void test_S6() {
1316///   struct S6 a;
1317///   a.e = BAR;
1318/// }
1319/// @endcode
1320/// For the declaration of BAR, this routine will return a different
1321/// scope. The scope S will be the scope of the unnamed enumeration
1322/// within S6. In C++, this routine will return the scope associated
1323/// with S6, because the enumeration's scope is a transparent
1324/// context but structures can contain non-field names. In C, this
1325/// routine will return the translation unit scope, since the
1326/// enumeration's scope is a transparent context and structures cannot
1327/// contain non-field names.
1328Scope *Sema::getNonFieldDeclScope(Scope *S) {
1329  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1330         (S->getEntity() &&
1331          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1332         (S->isClassScope() && !getLangOptions().CPlusPlus))
1333    S = S->getParent();
1334  return S;
1335}
1336
1337/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1338/// file scope.  lazily create a decl for it. ForRedeclaration is true
1339/// if we're creating this built-in in anticipation of redeclaring the
1340/// built-in.
1341NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1342                                     Scope *S, bool ForRedeclaration,
1343                                     SourceLocation Loc) {
1344  Builtin::ID BID = (Builtin::ID)bid;
1345
1346  ASTContext::GetBuiltinTypeError Error;
1347  QualType R = Context.GetBuiltinType(BID, Error);
1348  switch (Error) {
1349  case ASTContext::GE_None:
1350    // Okay
1351    break;
1352
1353  case ASTContext::GE_Missing_stdio:
1354    if (ForRedeclaration)
1355      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1356        << Context.BuiltinInfo.GetName(BID);
1357    return 0;
1358
1359  case ASTContext::GE_Missing_setjmp:
1360    if (ForRedeclaration)
1361      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1362        << Context.BuiltinInfo.GetName(BID);
1363    return 0;
1364
1365  case ASTContext::GE_Missing_ucontext:
1366    if (ForRedeclaration)
1367      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1368        << Context.BuiltinInfo.GetName(BID);
1369    return 0;
1370  }
1371
1372  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1373    Diag(Loc, diag::ext_implicit_lib_function_decl)
1374      << Context.BuiltinInfo.GetName(BID)
1375      << R;
1376    if (Context.BuiltinInfo.getHeaderName(BID) &&
1377        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1378          != DiagnosticsEngine::Ignored)
1379      Diag(Loc, diag::note_please_include_header)
1380        << Context.BuiltinInfo.getHeaderName(BID)
1381        << Context.BuiltinInfo.GetName(BID);
1382  }
1383
1384  FunctionDecl *New = FunctionDecl::Create(Context,
1385                                           Context.getTranslationUnitDecl(),
1386                                           Loc, Loc, II, R, /*TInfo=*/0,
1387                                           SC_Extern,
1388                                           SC_None, false,
1389                                           /*hasPrototype=*/true);
1390  New->setImplicit();
1391
1392  // Create Decl objects for each parameter, adding them to the
1393  // FunctionDecl.
1394  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1395    SmallVector<ParmVarDecl*, 16> Params;
1396    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1397      ParmVarDecl *parm =
1398        ParmVarDecl::Create(Context, New, SourceLocation(),
1399                            SourceLocation(), 0,
1400                            FT->getArgType(i), /*TInfo=*/0,
1401                            SC_None, SC_None, 0);
1402      parm->setScopeInfo(0, i);
1403      Params.push_back(parm);
1404    }
1405    New->setParams(Params);
1406  }
1407
1408  AddKnownFunctionAttributes(New);
1409
1410  // TUScope is the translation-unit scope to insert this function into.
1411  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1412  // relate Scopes to DeclContexts, and probably eliminate CurContext
1413  // entirely, but we're not there yet.
1414  DeclContext *SavedContext = CurContext;
1415  CurContext = Context.getTranslationUnitDecl();
1416  PushOnScopeChains(New, TUScope);
1417  CurContext = SavedContext;
1418  return New;
1419}
1420
1421bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1422  QualType OldType;
1423  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1424    OldType = OldTypedef->getUnderlyingType();
1425  else
1426    OldType = Context.getTypeDeclType(Old);
1427  QualType NewType = New->getUnderlyingType();
1428
1429  if (NewType->isVariablyModifiedType()) {
1430    // Must not redefine a typedef with a variably-modified type.
1431    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1432    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1433      << Kind << NewType;
1434    if (Old->getLocation().isValid())
1435      Diag(Old->getLocation(), diag::note_previous_definition);
1436    New->setInvalidDecl();
1437    return true;
1438  }
1439
1440  if (OldType != NewType &&
1441      !OldType->isDependentType() &&
1442      !NewType->isDependentType() &&
1443      !Context.hasSameType(OldType, NewType)) {
1444    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1445    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1446      << Kind << NewType << OldType;
1447    if (Old->getLocation().isValid())
1448      Diag(Old->getLocation(), diag::note_previous_definition);
1449    New->setInvalidDecl();
1450    return true;
1451  }
1452  return false;
1453}
1454
1455/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1456/// same name and scope as a previous declaration 'Old'.  Figure out
1457/// how to resolve this situation, merging decls or emitting
1458/// diagnostics as appropriate. If there was an error, set New to be invalid.
1459///
1460void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1461  // If the new decl is known invalid already, don't bother doing any
1462  // merging checks.
1463  if (New->isInvalidDecl()) return;
1464
1465  // Allow multiple definitions for ObjC built-in typedefs.
1466  // FIXME: Verify the underlying types are equivalent!
1467  if (getLangOptions().ObjC1) {
1468    const IdentifierInfo *TypeID = New->getIdentifier();
1469    switch (TypeID->getLength()) {
1470    default: break;
1471    case 2:
1472      if (!TypeID->isStr("id"))
1473        break;
1474      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1475      // Install the built-in type for 'id', ignoring the current definition.
1476      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1477      return;
1478    case 5:
1479      if (!TypeID->isStr("Class"))
1480        break;
1481      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1482      // Install the built-in type for 'Class', ignoring the current definition.
1483      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1484      return;
1485    case 3:
1486      if (!TypeID->isStr("SEL"))
1487        break;
1488      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1489      // Install the built-in type for 'SEL', ignoring the current definition.
1490      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1491      return;
1492    }
1493    // Fall through - the typedef name was not a builtin type.
1494  }
1495
1496  // Verify the old decl was also a type.
1497  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1498  if (!Old) {
1499    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1500      << New->getDeclName();
1501
1502    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1503    if (OldD->getLocation().isValid())
1504      Diag(OldD->getLocation(), diag::note_previous_definition);
1505
1506    return New->setInvalidDecl();
1507  }
1508
1509  // If the old declaration is invalid, just give up here.
1510  if (Old->isInvalidDecl())
1511    return New->setInvalidDecl();
1512
1513  // If the typedef types are not identical, reject them in all languages and
1514  // with any extensions enabled.
1515  if (isIncompatibleTypedef(Old, New))
1516    return;
1517
1518  // The types match.  Link up the redeclaration chain if the old
1519  // declaration was a typedef.
1520  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1521    New->setPreviousDeclaration(Typedef);
1522
1523  if (getLangOptions().MicrosoftExt)
1524    return;
1525
1526  if (getLangOptions().CPlusPlus) {
1527    // C++ [dcl.typedef]p2:
1528    //   In a given non-class scope, a typedef specifier can be used to
1529    //   redefine the name of any type declared in that scope to refer
1530    //   to the type to which it already refers.
1531    if (!isa<CXXRecordDecl>(CurContext))
1532      return;
1533
1534    // C++0x [dcl.typedef]p4:
1535    //   In a given class scope, a typedef specifier can be used to redefine
1536    //   any class-name declared in that scope that is not also a typedef-name
1537    //   to refer to the type to which it already refers.
1538    //
1539    // This wording came in via DR424, which was a correction to the
1540    // wording in DR56, which accidentally banned code like:
1541    //
1542    //   struct S {
1543    //     typedef struct A { } A;
1544    //   };
1545    //
1546    // in the C++03 standard. We implement the C++0x semantics, which
1547    // allow the above but disallow
1548    //
1549    //   struct S {
1550    //     typedef int I;
1551    //     typedef int I;
1552    //   };
1553    //
1554    // since that was the intent of DR56.
1555    if (!isa<TypedefNameDecl>(Old))
1556      return;
1557
1558    Diag(New->getLocation(), diag::err_redefinition)
1559      << New->getDeclName();
1560    Diag(Old->getLocation(), diag::note_previous_definition);
1561    return New->setInvalidDecl();
1562  }
1563
1564  // Modules always permit redefinition of typedefs, as does C11.
1565  if (getLangOptions().Modules || getLangOptions().C11)
1566    return;
1567
1568  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1569  // is normally mapped to an error, but can be controlled with
1570  // -Wtypedef-redefinition.  If either the original or the redefinition is
1571  // in a system header, don't emit this for compatibility with GCC.
1572  if (getDiagnostics().getSuppressSystemWarnings() &&
1573      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1574       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1575    return;
1576
1577  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1578    << New->getDeclName();
1579  Diag(Old->getLocation(), diag::note_previous_definition);
1580  return;
1581}
1582
1583/// DeclhasAttr - returns true if decl Declaration already has the target
1584/// attribute.
1585static bool
1586DeclHasAttr(const Decl *D, const Attr *A) {
1587  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1588  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1589  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1590    if ((*i)->getKind() == A->getKind()) {
1591      if (Ann) {
1592        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1593          return true;
1594        continue;
1595      }
1596      // FIXME: Don't hardcode this check
1597      if (OA && isa<OwnershipAttr>(*i))
1598        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1599      return true;
1600    }
1601
1602  return false;
1603}
1604
1605/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1606void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1607                               bool MergeDeprecation) {
1608  if (!Old->hasAttrs())
1609    return;
1610
1611  bool foundAny = New->hasAttrs();
1612
1613  // Ensure that any moving of objects within the allocated map is done before
1614  // we process them.
1615  if (!foundAny) New->setAttrs(AttrVec());
1616
1617  for (specific_attr_iterator<InheritableAttr>
1618         i = Old->specific_attr_begin<InheritableAttr>(),
1619         e = Old->specific_attr_end<InheritableAttr>();
1620       i != e; ++i) {
1621    // Ignore deprecated/unavailable/availability attributes if requested.
1622    if (!MergeDeprecation &&
1623        (isa<DeprecatedAttr>(*i) ||
1624         isa<UnavailableAttr>(*i) ||
1625         isa<AvailabilityAttr>(*i)))
1626      continue;
1627
1628    if (!DeclHasAttr(New, *i)) {
1629      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1630      newAttr->setInherited(true);
1631      New->addAttr(newAttr);
1632      foundAny = true;
1633    }
1634  }
1635
1636  if (!foundAny) New->dropAttrs();
1637}
1638
1639/// mergeParamDeclAttributes - Copy attributes from the old parameter
1640/// to the new one.
1641static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1642                                     const ParmVarDecl *oldDecl,
1643                                     ASTContext &C) {
1644  if (!oldDecl->hasAttrs())
1645    return;
1646
1647  bool foundAny = newDecl->hasAttrs();
1648
1649  // Ensure that any moving of objects within the allocated map is
1650  // done before we process them.
1651  if (!foundAny) newDecl->setAttrs(AttrVec());
1652
1653  for (specific_attr_iterator<InheritableParamAttr>
1654       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1655       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1656    if (!DeclHasAttr(newDecl, *i)) {
1657      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1658      newAttr->setInherited(true);
1659      newDecl->addAttr(newAttr);
1660      foundAny = true;
1661    }
1662  }
1663
1664  if (!foundAny) newDecl->dropAttrs();
1665}
1666
1667namespace {
1668
1669/// Used in MergeFunctionDecl to keep track of function parameters in
1670/// C.
1671struct GNUCompatibleParamWarning {
1672  ParmVarDecl *OldParm;
1673  ParmVarDecl *NewParm;
1674  QualType PromotedType;
1675};
1676
1677}
1678
1679/// getSpecialMember - get the special member enum for a method.
1680Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1681  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1682    if (Ctor->isDefaultConstructor())
1683      return Sema::CXXDefaultConstructor;
1684
1685    if (Ctor->isCopyConstructor())
1686      return Sema::CXXCopyConstructor;
1687
1688    if (Ctor->isMoveConstructor())
1689      return Sema::CXXMoveConstructor;
1690  } else if (isa<CXXDestructorDecl>(MD)) {
1691    return Sema::CXXDestructor;
1692  } else if (MD->isCopyAssignmentOperator()) {
1693    return Sema::CXXCopyAssignment;
1694  } else if (MD->isMoveAssignmentOperator()) {
1695    return Sema::CXXMoveAssignment;
1696  }
1697
1698  return Sema::CXXInvalid;
1699}
1700
1701/// canRedefineFunction - checks if a function can be redefined. Currently,
1702/// only extern inline functions can be redefined, and even then only in
1703/// GNU89 mode.
1704static bool canRedefineFunction(const FunctionDecl *FD,
1705                                const LangOptions& LangOpts) {
1706  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1707          !LangOpts.CPlusPlus &&
1708          FD->isInlineSpecified() &&
1709          FD->getStorageClass() == SC_Extern);
1710}
1711
1712/// MergeFunctionDecl - We just parsed a function 'New' from
1713/// declarator D which has the same name and scope as a previous
1714/// declaration 'Old'.  Figure out how to resolve this situation,
1715/// merging decls or emitting diagnostics as appropriate.
1716///
1717/// In C++, New and Old must be declarations that are not
1718/// overloaded. Use IsOverload to determine whether New and Old are
1719/// overloaded, and to select the Old declaration that New should be
1720/// merged with.
1721///
1722/// Returns true if there was an error, false otherwise.
1723bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1724  // Verify the old decl was also a function.
1725  FunctionDecl *Old = 0;
1726  if (FunctionTemplateDecl *OldFunctionTemplate
1727        = dyn_cast<FunctionTemplateDecl>(OldD))
1728    Old = OldFunctionTemplate->getTemplatedDecl();
1729  else
1730    Old = dyn_cast<FunctionDecl>(OldD);
1731  if (!Old) {
1732    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1733      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1734      Diag(Shadow->getTargetDecl()->getLocation(),
1735           diag::note_using_decl_target);
1736      Diag(Shadow->getUsingDecl()->getLocation(),
1737           diag::note_using_decl) << 0;
1738      return true;
1739    }
1740
1741    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1742      << New->getDeclName();
1743    Diag(OldD->getLocation(), diag::note_previous_definition);
1744    return true;
1745  }
1746
1747  // Determine whether the previous declaration was a definition,
1748  // implicit declaration, or a declaration.
1749  diag::kind PrevDiag;
1750  if (Old->isThisDeclarationADefinition())
1751    PrevDiag = diag::note_previous_definition;
1752  else if (Old->isImplicit())
1753    PrevDiag = diag::note_previous_implicit_declaration;
1754  else
1755    PrevDiag = diag::note_previous_declaration;
1756
1757  QualType OldQType = Context.getCanonicalType(Old->getType());
1758  QualType NewQType = Context.getCanonicalType(New->getType());
1759
1760  // Don't complain about this if we're in GNU89 mode and the old function
1761  // is an extern inline function.
1762  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1763      New->getStorageClass() == SC_Static &&
1764      Old->getStorageClass() != SC_Static &&
1765      !canRedefineFunction(Old, getLangOptions())) {
1766    if (getLangOptions().MicrosoftExt) {
1767      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1768      Diag(Old->getLocation(), PrevDiag);
1769    } else {
1770      Diag(New->getLocation(), diag::err_static_non_static) << New;
1771      Diag(Old->getLocation(), PrevDiag);
1772      return true;
1773    }
1774  }
1775
1776  // If a function is first declared with a calling convention, but is
1777  // later declared or defined without one, the second decl assumes the
1778  // calling convention of the first.
1779  //
1780  // For the new decl, we have to look at the NON-canonical type to tell the
1781  // difference between a function that really doesn't have a calling
1782  // convention and one that is declared cdecl. That's because in
1783  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1784  // because it is the default calling convention.
1785  //
1786  // Note also that we DO NOT return at this point, because we still have
1787  // other tests to run.
1788  const FunctionType *OldType = cast<FunctionType>(OldQType);
1789  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1790  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1791  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1792  bool RequiresAdjustment = false;
1793  if (OldTypeInfo.getCC() != CC_Default &&
1794      NewTypeInfo.getCC() == CC_Default) {
1795    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1796    RequiresAdjustment = true;
1797  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1798                                     NewTypeInfo.getCC())) {
1799    // Calling conventions really aren't compatible, so complain.
1800    Diag(New->getLocation(), diag::err_cconv_change)
1801      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1802      << (OldTypeInfo.getCC() == CC_Default)
1803      << (OldTypeInfo.getCC() == CC_Default ? "" :
1804          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1805    Diag(Old->getLocation(), diag::note_previous_declaration);
1806    return true;
1807  }
1808
1809  // FIXME: diagnose the other way around?
1810  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1811    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1812    RequiresAdjustment = true;
1813  }
1814
1815  // Merge regparm attribute.
1816  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1817      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1818    if (NewTypeInfo.getHasRegParm()) {
1819      Diag(New->getLocation(), diag::err_regparm_mismatch)
1820        << NewType->getRegParmType()
1821        << OldType->getRegParmType();
1822      Diag(Old->getLocation(), diag::note_previous_declaration);
1823      return true;
1824    }
1825
1826    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1827    RequiresAdjustment = true;
1828  }
1829
1830  // Merge ns_returns_retained attribute.
1831  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1832    if (NewTypeInfo.getProducesResult()) {
1833      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1834      Diag(Old->getLocation(), diag::note_previous_declaration);
1835      return true;
1836    }
1837
1838    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1839    RequiresAdjustment = true;
1840  }
1841
1842  if (RequiresAdjustment) {
1843    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1844    New->setType(QualType(NewType, 0));
1845    NewQType = Context.getCanonicalType(New->getType());
1846  }
1847
1848  if (getLangOptions().CPlusPlus) {
1849    // (C++98 13.1p2):
1850    //   Certain function declarations cannot be overloaded:
1851    //     -- Function declarations that differ only in the return type
1852    //        cannot be overloaded.
1853    QualType OldReturnType = OldType->getResultType();
1854    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1855    QualType ResQT;
1856    if (OldReturnType != NewReturnType) {
1857      if (NewReturnType->isObjCObjectPointerType()
1858          && OldReturnType->isObjCObjectPointerType())
1859        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1860      if (ResQT.isNull()) {
1861        if (New->isCXXClassMember() && New->isOutOfLine())
1862          Diag(New->getLocation(),
1863               diag::err_member_def_does_not_match_ret_type) << New;
1864        else
1865          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1866        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1867        return true;
1868      }
1869      else
1870        NewQType = ResQT;
1871    }
1872
1873    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1874    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1875    if (OldMethod && NewMethod) {
1876      // Preserve triviality.
1877      NewMethod->setTrivial(OldMethod->isTrivial());
1878
1879      // MSVC allows explicit template specialization at class scope:
1880      // 2 CXMethodDecls referring to the same function will be injected.
1881      // We don't want a redeclartion error.
1882      bool IsClassScopeExplicitSpecialization =
1883                              OldMethod->isFunctionTemplateSpecialization() &&
1884                              NewMethod->isFunctionTemplateSpecialization();
1885      bool isFriend = NewMethod->getFriendObjectKind();
1886
1887      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1888          !IsClassScopeExplicitSpecialization) {
1889        //    -- Member function declarations with the same name and the
1890        //       same parameter types cannot be overloaded if any of them
1891        //       is a static member function declaration.
1892        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1893          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1894          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1895          return true;
1896        }
1897
1898        // C++ [class.mem]p1:
1899        //   [...] A member shall not be declared twice in the
1900        //   member-specification, except that a nested class or member
1901        //   class template can be declared and then later defined.
1902        unsigned NewDiag;
1903        if (isa<CXXConstructorDecl>(OldMethod))
1904          NewDiag = diag::err_constructor_redeclared;
1905        else if (isa<CXXDestructorDecl>(NewMethod))
1906          NewDiag = diag::err_destructor_redeclared;
1907        else if (isa<CXXConversionDecl>(NewMethod))
1908          NewDiag = diag::err_conv_function_redeclared;
1909        else
1910          NewDiag = diag::err_member_redeclared;
1911
1912        Diag(New->getLocation(), NewDiag);
1913        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1914
1915      // Complain if this is an explicit declaration of a special
1916      // member that was initially declared implicitly.
1917      //
1918      // As an exception, it's okay to befriend such methods in order
1919      // to permit the implicit constructor/destructor/operator calls.
1920      } else if (OldMethod->isImplicit()) {
1921        if (isFriend) {
1922          NewMethod->setImplicit();
1923        } else {
1924          Diag(NewMethod->getLocation(),
1925               diag::err_definition_of_implicitly_declared_member)
1926            << New << getSpecialMember(OldMethod);
1927          return true;
1928        }
1929      } else if (OldMethod->isExplicitlyDefaulted()) {
1930        Diag(NewMethod->getLocation(),
1931             diag::err_definition_of_explicitly_defaulted_member)
1932          << getSpecialMember(OldMethod);
1933        return true;
1934      }
1935    }
1936
1937    // (C++98 8.3.5p3):
1938    //   All declarations for a function shall agree exactly in both the
1939    //   return type and the parameter-type-list.
1940    // We also want to respect all the extended bits except noreturn.
1941
1942    // noreturn should now match unless the old type info didn't have it.
1943    QualType OldQTypeForComparison = OldQType;
1944    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1945      assert(OldQType == QualType(OldType, 0));
1946      const FunctionType *OldTypeForComparison
1947        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1948      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1949      assert(OldQTypeForComparison.isCanonical());
1950    }
1951
1952    if (OldQTypeForComparison == NewQType)
1953      return MergeCompatibleFunctionDecls(New, Old);
1954
1955    // Fall through for conflicting redeclarations and redefinitions.
1956  }
1957
1958  // C: Function types need to be compatible, not identical. This handles
1959  // duplicate function decls like "void f(int); void f(enum X);" properly.
1960  if (!getLangOptions().CPlusPlus &&
1961      Context.typesAreCompatible(OldQType, NewQType)) {
1962    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1963    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1964    const FunctionProtoType *OldProto = 0;
1965    if (isa<FunctionNoProtoType>(NewFuncType) &&
1966        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1967      // The old declaration provided a function prototype, but the
1968      // new declaration does not. Merge in the prototype.
1969      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1970      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1971                                                 OldProto->arg_type_end());
1972      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1973                                         ParamTypes.data(), ParamTypes.size(),
1974                                         OldProto->getExtProtoInfo());
1975      New->setType(NewQType);
1976      New->setHasInheritedPrototype();
1977
1978      // Synthesize a parameter for each argument type.
1979      SmallVector<ParmVarDecl*, 16> Params;
1980      for (FunctionProtoType::arg_type_iterator
1981             ParamType = OldProto->arg_type_begin(),
1982             ParamEnd = OldProto->arg_type_end();
1983           ParamType != ParamEnd; ++ParamType) {
1984        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1985                                                 SourceLocation(),
1986                                                 SourceLocation(), 0,
1987                                                 *ParamType, /*TInfo=*/0,
1988                                                 SC_None, SC_None,
1989                                                 0);
1990        Param->setScopeInfo(0, Params.size());
1991        Param->setImplicit();
1992        Params.push_back(Param);
1993      }
1994
1995      New->setParams(Params);
1996    }
1997
1998    return MergeCompatibleFunctionDecls(New, Old);
1999  }
2000
2001  // GNU C permits a K&R definition to follow a prototype declaration
2002  // if the declared types of the parameters in the K&R definition
2003  // match the types in the prototype declaration, even when the
2004  // promoted types of the parameters from the K&R definition differ
2005  // from the types in the prototype. GCC then keeps the types from
2006  // the prototype.
2007  //
2008  // If a variadic prototype is followed by a non-variadic K&R definition,
2009  // the K&R definition becomes variadic.  This is sort of an edge case, but
2010  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2011  // C99 6.9.1p8.
2012  if (!getLangOptions().CPlusPlus &&
2013      Old->hasPrototype() && !New->hasPrototype() &&
2014      New->getType()->getAs<FunctionProtoType>() &&
2015      Old->getNumParams() == New->getNumParams()) {
2016    SmallVector<QualType, 16> ArgTypes;
2017    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2018    const FunctionProtoType *OldProto
2019      = Old->getType()->getAs<FunctionProtoType>();
2020    const FunctionProtoType *NewProto
2021      = New->getType()->getAs<FunctionProtoType>();
2022
2023    // Determine whether this is the GNU C extension.
2024    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2025                                               NewProto->getResultType());
2026    bool LooseCompatible = !MergedReturn.isNull();
2027    for (unsigned Idx = 0, End = Old->getNumParams();
2028         LooseCompatible && Idx != End; ++Idx) {
2029      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2030      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2031      if (Context.typesAreCompatible(OldParm->getType(),
2032                                     NewProto->getArgType(Idx))) {
2033        ArgTypes.push_back(NewParm->getType());
2034      } else if (Context.typesAreCompatible(OldParm->getType(),
2035                                            NewParm->getType(),
2036                                            /*CompareUnqualified=*/true)) {
2037        GNUCompatibleParamWarning Warn
2038          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2039        Warnings.push_back(Warn);
2040        ArgTypes.push_back(NewParm->getType());
2041      } else
2042        LooseCompatible = false;
2043    }
2044
2045    if (LooseCompatible) {
2046      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2047        Diag(Warnings[Warn].NewParm->getLocation(),
2048             diag::ext_param_promoted_not_compatible_with_prototype)
2049          << Warnings[Warn].PromotedType
2050          << Warnings[Warn].OldParm->getType();
2051        if (Warnings[Warn].OldParm->getLocation().isValid())
2052          Diag(Warnings[Warn].OldParm->getLocation(),
2053               diag::note_previous_declaration);
2054      }
2055
2056      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2057                                           ArgTypes.size(),
2058                                           OldProto->getExtProtoInfo()));
2059      return MergeCompatibleFunctionDecls(New, Old);
2060    }
2061
2062    // Fall through to diagnose conflicting types.
2063  }
2064
2065  // A function that has already been declared has been redeclared or defined
2066  // with a different type- show appropriate diagnostic
2067  if (unsigned BuiltinID = Old->getBuiltinID()) {
2068    // The user has declared a builtin function with an incompatible
2069    // signature.
2070    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2071      // The function the user is redeclaring is a library-defined
2072      // function like 'malloc' or 'printf'. Warn about the
2073      // redeclaration, then pretend that we don't know about this
2074      // library built-in.
2075      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2076      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2077        << Old << Old->getType();
2078      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2079      Old->setInvalidDecl();
2080      return false;
2081    }
2082
2083    PrevDiag = diag::note_previous_builtin_declaration;
2084  }
2085
2086  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2087  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2088  return true;
2089}
2090
2091/// \brief Completes the merge of two function declarations that are
2092/// known to be compatible.
2093///
2094/// This routine handles the merging of attributes and other
2095/// properties of function declarations form the old declaration to
2096/// the new declaration, once we know that New is in fact a
2097/// redeclaration of Old.
2098///
2099/// \returns false
2100bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2101  // Merge the attributes
2102  mergeDeclAttributes(New, Old);
2103
2104  // Merge the storage class.
2105  if (Old->getStorageClass() != SC_Extern &&
2106      Old->getStorageClass() != SC_None)
2107    New->setStorageClass(Old->getStorageClass());
2108
2109  // Merge "pure" flag.
2110  if (Old->isPure())
2111    New->setPure();
2112
2113  // Merge attributes from the parameters.  These can mismatch with K&R
2114  // declarations.
2115  if (New->getNumParams() == Old->getNumParams())
2116    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2117      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2118                               Context);
2119
2120  if (getLangOptions().CPlusPlus)
2121    return MergeCXXFunctionDecl(New, Old);
2122
2123  return false;
2124}
2125
2126
2127void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2128                                ObjCMethodDecl *oldMethod) {
2129  // We don't want to merge unavailable and deprecated attributes
2130  // except from interface to implementation.
2131  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2132
2133  // Merge the attributes.
2134  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2135
2136  // Merge attributes from the parameters.
2137  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2138  for (ObjCMethodDecl::param_iterator
2139         ni = newMethod->param_begin(), ne = newMethod->param_end();
2140       ni != ne; ++ni, ++oi)
2141    mergeParamDeclAttributes(*ni, *oi, Context);
2142
2143  CheckObjCMethodOverride(newMethod, oldMethod, true);
2144}
2145
2146/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2147/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2148/// emitting diagnostics as appropriate.
2149///
2150/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2151/// to here in AddInitializerToDecl. We can't check them before the initializer
2152/// is attached.
2153void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2154  if (New->isInvalidDecl() || Old->isInvalidDecl())
2155    return;
2156
2157  QualType MergedT;
2158  if (getLangOptions().CPlusPlus) {
2159    AutoType *AT = New->getType()->getContainedAutoType();
2160    if (AT && !AT->isDeduced()) {
2161      // We don't know what the new type is until the initializer is attached.
2162      return;
2163    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2164      // These could still be something that needs exception specs checked.
2165      return MergeVarDeclExceptionSpecs(New, Old);
2166    }
2167    // C++ [basic.link]p10:
2168    //   [...] the types specified by all declarations referring to a given
2169    //   object or function shall be identical, except that declarations for an
2170    //   array object can specify array types that differ by the presence or
2171    //   absence of a major array bound (8.3.4).
2172    else if (Old->getType()->isIncompleteArrayType() &&
2173             New->getType()->isArrayType()) {
2174      CanQual<ArrayType> OldArray
2175        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2176      CanQual<ArrayType> NewArray
2177        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2178      if (OldArray->getElementType() == NewArray->getElementType())
2179        MergedT = New->getType();
2180    } else if (Old->getType()->isArrayType() &&
2181             New->getType()->isIncompleteArrayType()) {
2182      CanQual<ArrayType> OldArray
2183        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2184      CanQual<ArrayType> NewArray
2185        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2186      if (OldArray->getElementType() == NewArray->getElementType())
2187        MergedT = Old->getType();
2188    } else if (New->getType()->isObjCObjectPointerType()
2189               && Old->getType()->isObjCObjectPointerType()) {
2190        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2191                                                        Old->getType());
2192    }
2193  } else {
2194    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2195  }
2196  if (MergedT.isNull()) {
2197    Diag(New->getLocation(), diag::err_redefinition_different_type)
2198      << New->getDeclName();
2199    Diag(Old->getLocation(), diag::note_previous_definition);
2200    return New->setInvalidDecl();
2201  }
2202  New->setType(MergedT);
2203}
2204
2205/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2206/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2207/// situation, merging decls or emitting diagnostics as appropriate.
2208///
2209/// Tentative definition rules (C99 6.9.2p2) are checked by
2210/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2211/// definitions here, since the initializer hasn't been attached.
2212///
2213void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2214  // If the new decl is already invalid, don't do any other checking.
2215  if (New->isInvalidDecl())
2216    return;
2217
2218  // Verify the old decl was also a variable.
2219  VarDecl *Old = 0;
2220  if (!Previous.isSingleResult() ||
2221      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2222    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2223      << New->getDeclName();
2224    Diag(Previous.getRepresentativeDecl()->getLocation(),
2225         diag::note_previous_definition);
2226    return New->setInvalidDecl();
2227  }
2228
2229  // C++ [class.mem]p1:
2230  //   A member shall not be declared twice in the member-specification [...]
2231  //
2232  // Here, we need only consider static data members.
2233  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2234    Diag(New->getLocation(), diag::err_duplicate_member)
2235      << New->getIdentifier();
2236    Diag(Old->getLocation(), diag::note_previous_declaration);
2237    New->setInvalidDecl();
2238  }
2239
2240  mergeDeclAttributes(New, Old);
2241  // Warn if an already-declared variable is made a weak_import in a subsequent
2242  // declaration
2243  if (New->getAttr<WeakImportAttr>() &&
2244      Old->getStorageClass() == SC_None &&
2245      !Old->getAttr<WeakImportAttr>()) {
2246    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2247    Diag(Old->getLocation(), diag::note_previous_definition);
2248    // Remove weak_import attribute on new declaration.
2249    New->dropAttr<WeakImportAttr>();
2250  }
2251
2252  // Merge the types.
2253  MergeVarDeclTypes(New, Old);
2254  if (New->isInvalidDecl())
2255    return;
2256
2257  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2258  if (New->getStorageClass() == SC_Static &&
2259      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2260    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2261    Diag(Old->getLocation(), diag::note_previous_definition);
2262    return New->setInvalidDecl();
2263  }
2264  // C99 6.2.2p4:
2265  //   For an identifier declared with the storage-class specifier
2266  //   extern in a scope in which a prior declaration of that
2267  //   identifier is visible,23) if the prior declaration specifies
2268  //   internal or external linkage, the linkage of the identifier at
2269  //   the later declaration is the same as the linkage specified at
2270  //   the prior declaration. If no prior declaration is visible, or
2271  //   if the prior declaration specifies no linkage, then the
2272  //   identifier has external linkage.
2273  if (New->hasExternalStorage() && Old->hasLinkage())
2274    /* Okay */;
2275  else if (New->getStorageClass() != SC_Static &&
2276           Old->getStorageClass() == SC_Static) {
2277    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2278    Diag(Old->getLocation(), diag::note_previous_definition);
2279    return New->setInvalidDecl();
2280  }
2281
2282  // Check if extern is followed by non-extern and vice-versa.
2283  if (New->hasExternalStorage() &&
2284      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2285    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2286    Diag(Old->getLocation(), diag::note_previous_definition);
2287    return New->setInvalidDecl();
2288  }
2289  if (Old->hasExternalStorage() &&
2290      !New->hasLinkage() && New->isLocalVarDecl()) {
2291    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2292    Diag(Old->getLocation(), diag::note_previous_definition);
2293    return New->setInvalidDecl();
2294  }
2295
2296  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2297
2298  // FIXME: The test for external storage here seems wrong? We still
2299  // need to check for mismatches.
2300  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2301      // Don't complain about out-of-line definitions of static members.
2302      !(Old->getLexicalDeclContext()->isRecord() &&
2303        !New->getLexicalDeclContext()->isRecord())) {
2304    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2305    Diag(Old->getLocation(), diag::note_previous_definition);
2306    return New->setInvalidDecl();
2307  }
2308
2309  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2310    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2311    Diag(Old->getLocation(), diag::note_previous_definition);
2312  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2313    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2314    Diag(Old->getLocation(), diag::note_previous_definition);
2315  }
2316
2317  // C++ doesn't have tentative definitions, so go right ahead and check here.
2318  const VarDecl *Def;
2319  if (getLangOptions().CPlusPlus &&
2320      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2321      (Def = Old->getDefinition())) {
2322    Diag(New->getLocation(), diag::err_redefinition)
2323      << New->getDeclName();
2324    Diag(Def->getLocation(), diag::note_previous_definition);
2325    New->setInvalidDecl();
2326    return;
2327  }
2328  // c99 6.2.2 P4.
2329  // For an identifier declared with the storage-class specifier extern in a
2330  // scope in which a prior declaration of that identifier is visible, if
2331  // the prior declaration specifies internal or external linkage, the linkage
2332  // of the identifier at the later declaration is the same as the linkage
2333  // specified at the prior declaration.
2334  // FIXME. revisit this code.
2335  if (New->hasExternalStorage() &&
2336      Old->getLinkage() == InternalLinkage &&
2337      New->getDeclContext() == Old->getDeclContext())
2338    New->setStorageClass(Old->getStorageClass());
2339
2340  // Keep a chain of previous declarations.
2341  New->setPreviousDeclaration(Old);
2342
2343  // Inherit access appropriately.
2344  New->setAccess(Old->getAccess());
2345}
2346
2347/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2348/// no declarator (e.g. "struct foo;") is parsed.
2349Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                       DeclSpec &DS) {
2351  return ParsedFreeStandingDeclSpec(S, AS, DS,
2352                                    MultiTemplateParamsArg(*this, 0, 0));
2353}
2354
2355/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2356/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2357/// parameters to cope with template friend declarations.
2358Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2359                                       DeclSpec &DS,
2360                                       MultiTemplateParamsArg TemplateParams) {
2361  Decl *TagD = 0;
2362  TagDecl *Tag = 0;
2363  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2364      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2365      DS.getTypeSpecType() == DeclSpec::TST_union ||
2366      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2367    TagD = DS.getRepAsDecl();
2368
2369    if (!TagD) // We probably had an error
2370      return 0;
2371
2372    // Note that the above type specs guarantee that the
2373    // type rep is a Decl, whereas in many of the others
2374    // it's a Type.
2375    if (isa<TagDecl>(TagD))
2376      Tag = cast<TagDecl>(TagD);
2377    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2378      Tag = CTD->getTemplatedDecl();
2379  }
2380
2381  if (Tag)
2382    Tag->setFreeStanding();
2383
2384  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2385    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2386    // or incomplete types shall not be restrict-qualified."
2387    if (TypeQuals & DeclSpec::TQ_restrict)
2388      Diag(DS.getRestrictSpecLoc(),
2389           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2390           << DS.getSourceRange();
2391  }
2392
2393  if (DS.isConstexprSpecified()) {
2394    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2395    // and definitions of functions and variables.
2396    if (Tag)
2397      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2398        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2399            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2400            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2401    else
2402      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2403    // Don't emit warnings after this error.
2404    return TagD;
2405  }
2406
2407  if (DS.isFriendSpecified()) {
2408    // If we're dealing with a decl but not a TagDecl, assume that
2409    // whatever routines created it handled the friendship aspect.
2410    if (TagD && !Tag)
2411      return 0;
2412    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2413  }
2414
2415  // Track whether we warned about the fact that there aren't any
2416  // declarators.
2417  bool emittedWarning = false;
2418
2419  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2420    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2421        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2422      if (getLangOptions().CPlusPlus ||
2423          Record->getDeclContext()->isRecord())
2424        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2425
2426      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2427        << DS.getSourceRange();
2428      emittedWarning = true;
2429    }
2430  }
2431
2432  // Check for Microsoft C extension: anonymous struct.
2433  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2434      CurContext->isRecord() &&
2435      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2436    // Handle 2 kinds of anonymous struct:
2437    //   struct STRUCT;
2438    // and
2439    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2440    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2441    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2442        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2443         DS.getRepAsType().get()->isStructureType())) {
2444      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2445        << DS.getSourceRange();
2446      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2447    }
2448  }
2449
2450  if (getLangOptions().CPlusPlus &&
2451      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2452    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2453      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2454          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2455        Diag(Enum->getLocation(), diag::ext_no_declarators)
2456          << DS.getSourceRange();
2457        emittedWarning = true;
2458      }
2459
2460  // Skip all the checks below if we have a type error.
2461  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2462
2463  if (!DS.isMissingDeclaratorOk()) {
2464    // Warn about typedefs of enums without names, since this is an
2465    // extension in both Microsoft and GNU.
2466    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2467        Tag && isa<EnumDecl>(Tag)) {
2468      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2469        << DS.getSourceRange();
2470      return Tag;
2471    }
2472
2473    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2474      << DS.getSourceRange();
2475    emittedWarning = true;
2476  }
2477
2478  // We're going to complain about a bunch of spurious specifiers;
2479  // only do this if we're declaring a tag, because otherwise we
2480  // should be getting diag::ext_no_declarators.
2481  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2482    return TagD;
2483
2484  // Note that a linkage-specification sets a storage class, but
2485  // 'extern "C" struct foo;' is actually valid and not theoretically
2486  // useless.
2487  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2488    if (!DS.isExternInLinkageSpec())
2489      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2490        << DeclSpec::getSpecifierName(scs);
2491
2492  if (DS.isThreadSpecified())
2493    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2494  if (DS.getTypeQualifiers()) {
2495    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2496      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2497    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2498      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2499    // Restrict is covered above.
2500  }
2501  if (DS.isInlineSpecified())
2502    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2503  if (DS.isVirtualSpecified())
2504    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2505  if (DS.isExplicitSpecified())
2506    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2507
2508  if (DS.isModulePrivateSpecified() &&
2509      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2510    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2511      << Tag->getTagKind()
2512      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2513
2514  // Warn about ignored type attributes, for example:
2515  // __attribute__((aligned)) struct A;
2516  // Attributes should be placed after tag to apply to type declaration.
2517  if (!DS.getAttributes().empty()) {
2518    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2519    if (TypeSpecType == DeclSpec::TST_class ||
2520        TypeSpecType == DeclSpec::TST_struct ||
2521        TypeSpecType == DeclSpec::TST_union ||
2522        TypeSpecType == DeclSpec::TST_enum) {
2523      AttributeList* attrs = DS.getAttributes().getList();
2524      while (attrs) {
2525        Diag(attrs->getScopeLoc(),
2526             diag::warn_declspec_attribute_ignored)
2527        << attrs->getName()
2528        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2529            TypeSpecType == DeclSpec::TST_struct ? 1 :
2530            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2531        attrs = attrs->getNext();
2532      }
2533    }
2534  }
2535
2536  return TagD;
2537}
2538
2539/// We are trying to inject an anonymous member into the given scope;
2540/// check if there's an existing declaration that can't be overloaded.
2541///
2542/// \return true if this is a forbidden redeclaration
2543static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2544                                         Scope *S,
2545                                         DeclContext *Owner,
2546                                         DeclarationName Name,
2547                                         SourceLocation NameLoc,
2548                                         unsigned diagnostic) {
2549  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2550                 Sema::ForRedeclaration);
2551  if (!SemaRef.LookupName(R, S)) return false;
2552
2553  if (R.getAsSingle<TagDecl>())
2554    return false;
2555
2556  // Pick a representative declaration.
2557  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2558  assert(PrevDecl && "Expected a non-null Decl");
2559
2560  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2561    return false;
2562
2563  SemaRef.Diag(NameLoc, diagnostic) << Name;
2564  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2565
2566  return true;
2567}
2568
2569/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2570/// anonymous struct or union AnonRecord into the owning context Owner
2571/// and scope S. This routine will be invoked just after we realize
2572/// that an unnamed union or struct is actually an anonymous union or
2573/// struct, e.g.,
2574///
2575/// @code
2576/// union {
2577///   int i;
2578///   float f;
2579/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2580///    // f into the surrounding scope.x
2581/// @endcode
2582///
2583/// This routine is recursive, injecting the names of nested anonymous
2584/// structs/unions into the owning context and scope as well.
2585static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2586                                                DeclContext *Owner,
2587                                                RecordDecl *AnonRecord,
2588                                                AccessSpecifier AS,
2589                              SmallVector<NamedDecl*, 2> &Chaining,
2590                                                      bool MSAnonStruct) {
2591  unsigned diagKind
2592    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2593                            : diag::err_anonymous_struct_member_redecl;
2594
2595  bool Invalid = false;
2596
2597  // Look every FieldDecl and IndirectFieldDecl with a name.
2598  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2599                               DEnd = AnonRecord->decls_end();
2600       D != DEnd; ++D) {
2601    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2602        cast<NamedDecl>(*D)->getDeclName()) {
2603      ValueDecl *VD = cast<ValueDecl>(*D);
2604      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2605                                       VD->getLocation(), diagKind)) {
2606        // C++ [class.union]p2:
2607        //   The names of the members of an anonymous union shall be
2608        //   distinct from the names of any other entity in the
2609        //   scope in which the anonymous union is declared.
2610        Invalid = true;
2611      } else {
2612        // C++ [class.union]p2:
2613        //   For the purpose of name lookup, after the anonymous union
2614        //   definition, the members of the anonymous union are
2615        //   considered to have been defined in the scope in which the
2616        //   anonymous union is declared.
2617        unsigned OldChainingSize = Chaining.size();
2618        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2619          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2620               PE = IF->chain_end(); PI != PE; ++PI)
2621            Chaining.push_back(*PI);
2622        else
2623          Chaining.push_back(VD);
2624
2625        assert(Chaining.size() >= 2);
2626        NamedDecl **NamedChain =
2627          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2628        for (unsigned i = 0; i < Chaining.size(); i++)
2629          NamedChain[i] = Chaining[i];
2630
2631        IndirectFieldDecl* IndirectField =
2632          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2633                                    VD->getIdentifier(), VD->getType(),
2634                                    NamedChain, Chaining.size());
2635
2636        IndirectField->setAccess(AS);
2637        IndirectField->setImplicit();
2638        SemaRef.PushOnScopeChains(IndirectField, S);
2639
2640        // That includes picking up the appropriate access specifier.
2641        if (AS != AS_none) IndirectField->setAccess(AS);
2642
2643        Chaining.resize(OldChainingSize);
2644      }
2645    }
2646  }
2647
2648  return Invalid;
2649}
2650
2651/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2652/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2653/// illegal input values are mapped to SC_None.
2654static StorageClass
2655StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2656  switch (StorageClassSpec) {
2657  case DeclSpec::SCS_unspecified:    return SC_None;
2658  case DeclSpec::SCS_extern:         return SC_Extern;
2659  case DeclSpec::SCS_static:         return SC_Static;
2660  case DeclSpec::SCS_auto:           return SC_Auto;
2661  case DeclSpec::SCS_register:       return SC_Register;
2662  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2663    // Illegal SCSs map to None: error reporting is up to the caller.
2664  case DeclSpec::SCS_mutable:        // Fall through.
2665  case DeclSpec::SCS_typedef:        return SC_None;
2666  }
2667  llvm_unreachable("unknown storage class specifier");
2668}
2669
2670/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2671/// a StorageClass. Any error reporting is up to the caller:
2672/// illegal input values are mapped to SC_None.
2673static StorageClass
2674StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2675  switch (StorageClassSpec) {
2676  case DeclSpec::SCS_unspecified:    return SC_None;
2677  case DeclSpec::SCS_extern:         return SC_Extern;
2678  case DeclSpec::SCS_static:         return SC_Static;
2679  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2680    // Illegal SCSs map to None: error reporting is up to the caller.
2681  case DeclSpec::SCS_auto:           // Fall through.
2682  case DeclSpec::SCS_mutable:        // Fall through.
2683  case DeclSpec::SCS_register:       // Fall through.
2684  case DeclSpec::SCS_typedef:        return SC_None;
2685  }
2686  llvm_unreachable("unknown storage class specifier");
2687}
2688
2689/// BuildAnonymousStructOrUnion - Handle the declaration of an
2690/// anonymous structure or union. Anonymous unions are a C++ feature
2691/// (C++ [class.union]) and a C11 feature; anonymous structures
2692/// are a C11 feature and GNU C++ extension.
2693Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2694                                             AccessSpecifier AS,
2695                                             RecordDecl *Record) {
2696  DeclContext *Owner = Record->getDeclContext();
2697
2698  // Diagnose whether this anonymous struct/union is an extension.
2699  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2700    Diag(Record->getLocation(), diag::ext_anonymous_union);
2701  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2702    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2703  else if (!Record->isUnion() && !getLangOptions().C11)
2704    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2705
2706  // C and C++ require different kinds of checks for anonymous
2707  // structs/unions.
2708  bool Invalid = false;
2709  if (getLangOptions().CPlusPlus) {
2710    const char* PrevSpec = 0;
2711    unsigned DiagID;
2712    if (Record->isUnion()) {
2713      // C++ [class.union]p6:
2714      //   Anonymous unions declared in a named namespace or in the
2715      //   global namespace shall be declared static.
2716      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2717          (isa<TranslationUnitDecl>(Owner) ||
2718           (isa<NamespaceDecl>(Owner) &&
2719            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2720        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2721          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2722
2723        // Recover by adding 'static'.
2724        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2725                               PrevSpec, DiagID);
2726      }
2727      // C++ [class.union]p6:
2728      //   A storage class is not allowed in a declaration of an
2729      //   anonymous union in a class scope.
2730      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2731               isa<RecordDecl>(Owner)) {
2732        Diag(DS.getStorageClassSpecLoc(),
2733             diag::err_anonymous_union_with_storage_spec)
2734          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2735
2736        // Recover by removing the storage specifier.
2737        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2738                               SourceLocation(),
2739                               PrevSpec, DiagID);
2740      }
2741    }
2742
2743    // Ignore const/volatile/restrict qualifiers.
2744    if (DS.getTypeQualifiers()) {
2745      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2746        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2747          << Record->isUnion() << 0
2748          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2749      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2750        Diag(DS.getVolatileSpecLoc(),
2751             diag::ext_anonymous_struct_union_qualified)
2752          << Record->isUnion() << 1
2753          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2754      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2755        Diag(DS.getRestrictSpecLoc(),
2756             diag::ext_anonymous_struct_union_qualified)
2757          << Record->isUnion() << 2
2758          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2759
2760      DS.ClearTypeQualifiers();
2761    }
2762
2763    // C++ [class.union]p2:
2764    //   The member-specification of an anonymous union shall only
2765    //   define non-static data members. [Note: nested types and
2766    //   functions cannot be declared within an anonymous union. ]
2767    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2768                                 MemEnd = Record->decls_end();
2769         Mem != MemEnd; ++Mem) {
2770      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2771        // C++ [class.union]p3:
2772        //   An anonymous union shall not have private or protected
2773        //   members (clause 11).
2774        assert(FD->getAccess() != AS_none);
2775        if (FD->getAccess() != AS_public) {
2776          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2777            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2778          Invalid = true;
2779        }
2780
2781        // C++ [class.union]p1
2782        //   An object of a class with a non-trivial constructor, a non-trivial
2783        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2784        //   assignment operator cannot be a member of a union, nor can an
2785        //   array of such objects.
2786        if (CheckNontrivialField(FD))
2787          Invalid = true;
2788      } else if ((*Mem)->isImplicit()) {
2789        // Any implicit members are fine.
2790      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2791        // This is a type that showed up in an
2792        // elaborated-type-specifier inside the anonymous struct or
2793        // union, but which actually declares a type outside of the
2794        // anonymous struct or union. It's okay.
2795      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2796        if (!MemRecord->isAnonymousStructOrUnion() &&
2797            MemRecord->getDeclName()) {
2798          // Visual C++ allows type definition in anonymous struct or union.
2799          if (getLangOptions().MicrosoftExt)
2800            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2801              << (int)Record->isUnion();
2802          else {
2803            // This is a nested type declaration.
2804            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2805              << (int)Record->isUnion();
2806            Invalid = true;
2807          }
2808        }
2809      } else if (isa<AccessSpecDecl>(*Mem)) {
2810        // Any access specifier is fine.
2811      } else {
2812        // We have something that isn't a non-static data
2813        // member. Complain about it.
2814        unsigned DK = diag::err_anonymous_record_bad_member;
2815        if (isa<TypeDecl>(*Mem))
2816          DK = diag::err_anonymous_record_with_type;
2817        else if (isa<FunctionDecl>(*Mem))
2818          DK = diag::err_anonymous_record_with_function;
2819        else if (isa<VarDecl>(*Mem))
2820          DK = diag::err_anonymous_record_with_static;
2821
2822        // Visual C++ allows type definition in anonymous struct or union.
2823        if (getLangOptions().MicrosoftExt &&
2824            DK == diag::err_anonymous_record_with_type)
2825          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2826            << (int)Record->isUnion();
2827        else {
2828          Diag((*Mem)->getLocation(), DK)
2829              << (int)Record->isUnion();
2830          Invalid = true;
2831        }
2832      }
2833    }
2834  }
2835
2836  if (!Record->isUnion() && !Owner->isRecord()) {
2837    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2838      << (int)getLangOptions().CPlusPlus;
2839    Invalid = true;
2840  }
2841
2842  // Mock up a declarator.
2843  Declarator Dc(DS, Declarator::MemberContext);
2844  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2845  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2846
2847  // Create a declaration for this anonymous struct/union.
2848  NamedDecl *Anon = 0;
2849  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2850    Anon = FieldDecl::Create(Context, OwningClass,
2851                             DS.getSourceRange().getBegin(),
2852                             Record->getLocation(),
2853                             /*IdentifierInfo=*/0,
2854                             Context.getTypeDeclType(Record),
2855                             TInfo,
2856                             /*BitWidth=*/0, /*Mutable=*/false,
2857                             /*HasInit=*/false);
2858    Anon->setAccess(AS);
2859    if (getLangOptions().CPlusPlus)
2860      FieldCollector->Add(cast<FieldDecl>(Anon));
2861  } else {
2862    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2863    assert(SCSpec != DeclSpec::SCS_typedef &&
2864           "Parser allowed 'typedef' as storage class VarDecl.");
2865    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2866    if (SCSpec == DeclSpec::SCS_mutable) {
2867      // mutable can only appear on non-static class members, so it's always
2868      // an error here
2869      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2870      Invalid = true;
2871      SC = SC_None;
2872    }
2873    SCSpec = DS.getStorageClassSpecAsWritten();
2874    VarDecl::StorageClass SCAsWritten
2875      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2876
2877    Anon = VarDecl::Create(Context, Owner,
2878                           DS.getSourceRange().getBegin(),
2879                           Record->getLocation(), /*IdentifierInfo=*/0,
2880                           Context.getTypeDeclType(Record),
2881                           TInfo, SC, SCAsWritten);
2882
2883    // Default-initialize the implicit variable. This initialization will be
2884    // trivial in almost all cases, except if a union member has an in-class
2885    // initializer:
2886    //   union { int n = 0; };
2887    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2888  }
2889  Anon->setImplicit();
2890
2891  // Add the anonymous struct/union object to the current
2892  // context. We'll be referencing this object when we refer to one of
2893  // its members.
2894  Owner->addDecl(Anon);
2895
2896  // Inject the members of the anonymous struct/union into the owning
2897  // context and into the identifier resolver chain for name lookup
2898  // purposes.
2899  SmallVector<NamedDecl*, 2> Chain;
2900  Chain.push_back(Anon);
2901
2902  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2903                                          Chain, false))
2904    Invalid = true;
2905
2906  // Mark this as an anonymous struct/union type. Note that we do not
2907  // do this until after we have already checked and injected the
2908  // members of this anonymous struct/union type, because otherwise
2909  // the members could be injected twice: once by DeclContext when it
2910  // builds its lookup table, and once by
2911  // InjectAnonymousStructOrUnionMembers.
2912  Record->setAnonymousStructOrUnion(true);
2913
2914  if (Invalid)
2915    Anon->setInvalidDecl();
2916
2917  return Anon;
2918}
2919
2920/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2921/// Microsoft C anonymous structure.
2922/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2923/// Example:
2924///
2925/// struct A { int a; };
2926/// struct B { struct A; int b; };
2927///
2928/// void foo() {
2929///   B var;
2930///   var.a = 3;
2931/// }
2932///
2933Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2934                                           RecordDecl *Record) {
2935
2936  // If there is no Record, get the record via the typedef.
2937  if (!Record)
2938    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2939
2940  // Mock up a declarator.
2941  Declarator Dc(DS, Declarator::TypeNameContext);
2942  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2943  assert(TInfo && "couldn't build declarator info for anonymous struct");
2944
2945  // Create a declaration for this anonymous struct.
2946  NamedDecl* Anon = FieldDecl::Create(Context,
2947                             cast<RecordDecl>(CurContext),
2948                             DS.getSourceRange().getBegin(),
2949                             DS.getSourceRange().getBegin(),
2950                             /*IdentifierInfo=*/0,
2951                             Context.getTypeDeclType(Record),
2952                             TInfo,
2953                             /*BitWidth=*/0, /*Mutable=*/false,
2954                             /*HasInit=*/false);
2955  Anon->setImplicit();
2956
2957  // Add the anonymous struct object to the current context.
2958  CurContext->addDecl(Anon);
2959
2960  // Inject the members of the anonymous struct into the current
2961  // context and into the identifier resolver chain for name lookup
2962  // purposes.
2963  SmallVector<NamedDecl*, 2> Chain;
2964  Chain.push_back(Anon);
2965
2966  RecordDecl *RecordDef = Record->getDefinition();
2967  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2968                                                        RecordDef, AS_none,
2969                                                        Chain, true))
2970    Anon->setInvalidDecl();
2971
2972  return Anon;
2973}
2974
2975/// GetNameForDeclarator - Determine the full declaration name for the
2976/// given Declarator.
2977DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2978  return GetNameFromUnqualifiedId(D.getName());
2979}
2980
2981/// \brief Retrieves the declaration name from a parsed unqualified-id.
2982DeclarationNameInfo
2983Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2984  DeclarationNameInfo NameInfo;
2985  NameInfo.setLoc(Name.StartLocation);
2986
2987  switch (Name.getKind()) {
2988
2989  case UnqualifiedId::IK_ImplicitSelfParam:
2990  case UnqualifiedId::IK_Identifier:
2991    NameInfo.setName(Name.Identifier);
2992    NameInfo.setLoc(Name.StartLocation);
2993    return NameInfo;
2994
2995  case UnqualifiedId::IK_OperatorFunctionId:
2996    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2997                                           Name.OperatorFunctionId.Operator));
2998    NameInfo.setLoc(Name.StartLocation);
2999    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3000      = Name.OperatorFunctionId.SymbolLocations[0];
3001    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3002      = Name.EndLocation.getRawEncoding();
3003    return NameInfo;
3004
3005  case UnqualifiedId::IK_LiteralOperatorId:
3006    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3007                                                           Name.Identifier));
3008    NameInfo.setLoc(Name.StartLocation);
3009    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3010    return NameInfo;
3011
3012  case UnqualifiedId::IK_ConversionFunctionId: {
3013    TypeSourceInfo *TInfo;
3014    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3015    if (Ty.isNull())
3016      return DeclarationNameInfo();
3017    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3018                                               Context.getCanonicalType(Ty)));
3019    NameInfo.setLoc(Name.StartLocation);
3020    NameInfo.setNamedTypeInfo(TInfo);
3021    return NameInfo;
3022  }
3023
3024  case UnqualifiedId::IK_ConstructorName: {
3025    TypeSourceInfo *TInfo;
3026    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3027    if (Ty.isNull())
3028      return DeclarationNameInfo();
3029    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3030                                              Context.getCanonicalType(Ty)));
3031    NameInfo.setLoc(Name.StartLocation);
3032    NameInfo.setNamedTypeInfo(TInfo);
3033    return NameInfo;
3034  }
3035
3036  case UnqualifiedId::IK_ConstructorTemplateId: {
3037    // In well-formed code, we can only have a constructor
3038    // template-id that refers to the current context, so go there
3039    // to find the actual type being constructed.
3040    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3041    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3042      return DeclarationNameInfo();
3043
3044    // Determine the type of the class being constructed.
3045    QualType CurClassType = Context.getTypeDeclType(CurClass);
3046
3047    // FIXME: Check two things: that the template-id names the same type as
3048    // CurClassType, and that the template-id does not occur when the name
3049    // was qualified.
3050
3051    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3052                                    Context.getCanonicalType(CurClassType)));
3053    NameInfo.setLoc(Name.StartLocation);
3054    // FIXME: should we retrieve TypeSourceInfo?
3055    NameInfo.setNamedTypeInfo(0);
3056    return NameInfo;
3057  }
3058
3059  case UnqualifiedId::IK_DestructorName: {
3060    TypeSourceInfo *TInfo;
3061    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3062    if (Ty.isNull())
3063      return DeclarationNameInfo();
3064    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3065                                              Context.getCanonicalType(Ty)));
3066    NameInfo.setLoc(Name.StartLocation);
3067    NameInfo.setNamedTypeInfo(TInfo);
3068    return NameInfo;
3069  }
3070
3071  case UnqualifiedId::IK_TemplateId: {
3072    TemplateName TName = Name.TemplateId->Template.get();
3073    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3074    return Context.getNameForTemplate(TName, TNameLoc);
3075  }
3076
3077  } // switch (Name.getKind())
3078
3079  llvm_unreachable("Unknown name kind");
3080}
3081
3082static QualType getCoreType(QualType Ty) {
3083  do {
3084    if (Ty->isPointerType() || Ty->isReferenceType())
3085      Ty = Ty->getPointeeType();
3086    else if (Ty->isArrayType())
3087      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3088    else
3089      return Ty.withoutLocalFastQualifiers();
3090  } while (true);
3091}
3092
3093/// hasSimilarParameters - Determine whether the C++ functions Declaration
3094/// and Definition have "nearly" matching parameters. This heuristic is
3095/// used to improve diagnostics in the case where an out-of-line function
3096/// definition doesn't match any declaration within the class or namespace.
3097/// Also sets Params to the list of indices to the parameters that differ
3098/// between the declaration and the definition. If hasSimilarParameters
3099/// returns true and Params is empty, then all of the parameters match.
3100static bool hasSimilarParameters(ASTContext &Context,
3101                                     FunctionDecl *Declaration,
3102                                     FunctionDecl *Definition,
3103                                     llvm::SmallVectorImpl<unsigned> &Params) {
3104  Params.clear();
3105  if (Declaration->param_size() != Definition->param_size())
3106    return false;
3107  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3108    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3109    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3110
3111    // The parameter types are identical
3112    if (Context.hasSameType(DefParamTy, DeclParamTy))
3113      continue;
3114
3115    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3116    QualType DefParamBaseTy = getCoreType(DefParamTy);
3117    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3118    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3119
3120    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3121        (DeclTyName && DeclTyName == DefTyName))
3122      Params.push_back(Idx);
3123    else  // The two parameters aren't even close
3124      return false;
3125  }
3126
3127  return true;
3128}
3129
3130/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3131/// declarator needs to be rebuilt in the current instantiation.
3132/// Any bits of declarator which appear before the name are valid for
3133/// consideration here.  That's specifically the type in the decl spec
3134/// and the base type in any member-pointer chunks.
3135static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3136                                                    DeclarationName Name) {
3137  // The types we specifically need to rebuild are:
3138  //   - typenames, typeofs, and decltypes
3139  //   - types which will become injected class names
3140  // Of course, we also need to rebuild any type referencing such a
3141  // type.  It's safest to just say "dependent", but we call out a
3142  // few cases here.
3143
3144  DeclSpec &DS = D.getMutableDeclSpec();
3145  switch (DS.getTypeSpecType()) {
3146  case DeclSpec::TST_typename:
3147  case DeclSpec::TST_typeofType:
3148  case DeclSpec::TST_decltype:
3149  case DeclSpec::TST_underlyingType:
3150  case DeclSpec::TST_atomic: {
3151    // Grab the type from the parser.
3152    TypeSourceInfo *TSI = 0;
3153    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3154    if (T.isNull() || !T->isDependentType()) break;
3155
3156    // Make sure there's a type source info.  This isn't really much
3157    // of a waste; most dependent types should have type source info
3158    // attached already.
3159    if (!TSI)
3160      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3161
3162    // Rebuild the type in the current instantiation.
3163    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3164    if (!TSI) return true;
3165
3166    // Store the new type back in the decl spec.
3167    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3168    DS.UpdateTypeRep(LocType);
3169    break;
3170  }
3171
3172  case DeclSpec::TST_typeofExpr: {
3173    Expr *E = DS.getRepAsExpr();
3174    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3175    if (Result.isInvalid()) return true;
3176    DS.UpdateExprRep(Result.get());
3177    break;
3178  }
3179
3180  default:
3181    // Nothing to do for these decl specs.
3182    break;
3183  }
3184
3185  // It doesn't matter what order we do this in.
3186  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3187    DeclaratorChunk &Chunk = D.getTypeObject(I);
3188
3189    // The only type information in the declarator which can come
3190    // before the declaration name is the base type of a member
3191    // pointer.
3192    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3193      continue;
3194
3195    // Rebuild the scope specifier in-place.
3196    CXXScopeSpec &SS = Chunk.Mem.Scope();
3197    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3198      return true;
3199  }
3200
3201  return false;
3202}
3203
3204Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3205  D.setFunctionDefinitionKind(FDK_Declaration);
3206  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3207
3208  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3209      Dcl->getDeclContext()->isFileContext())
3210    Dcl->setTopLevelDeclInObjCContainer();
3211
3212  return Dcl;
3213}
3214
3215/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3216///   If T is the name of a class, then each of the following shall have a
3217///   name different from T:
3218///     - every static data member of class T;
3219///     - every member function of class T
3220///     - every member of class T that is itself a type;
3221/// \returns true if the declaration name violates these rules.
3222bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3223                                   DeclarationNameInfo NameInfo) {
3224  DeclarationName Name = NameInfo.getName();
3225
3226  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3227    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3228      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3229      return true;
3230    }
3231
3232  return false;
3233}
3234
3235Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3236                             MultiTemplateParamsArg TemplateParamLists) {
3237  // TODO: consider using NameInfo for diagnostic.
3238  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3239  DeclarationName Name = NameInfo.getName();
3240
3241  // All of these full declarators require an identifier.  If it doesn't have
3242  // one, the ParsedFreeStandingDeclSpec action should be used.
3243  if (!Name) {
3244    if (!D.isInvalidType())  // Reject this if we think it is valid.
3245      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3246           diag::err_declarator_need_ident)
3247        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3248    return 0;
3249  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3250    return 0;
3251
3252  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3253  // we find one that is.
3254  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3255         (S->getFlags() & Scope::TemplateParamScope) != 0)
3256    S = S->getParent();
3257
3258  DeclContext *DC = CurContext;
3259  if (D.getCXXScopeSpec().isInvalid())
3260    D.setInvalidType();
3261  else if (D.getCXXScopeSpec().isSet()) {
3262    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3263                                        UPPC_DeclarationQualifier))
3264      return 0;
3265
3266    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3267    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3268    if (!DC) {
3269      // If we could not compute the declaration context, it's because the
3270      // declaration context is dependent but does not refer to a class,
3271      // class template, or class template partial specialization. Complain
3272      // and return early, to avoid the coming semantic disaster.
3273      Diag(D.getIdentifierLoc(),
3274           diag::err_template_qualified_declarator_no_match)
3275        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3276        << D.getCXXScopeSpec().getRange();
3277      return 0;
3278    }
3279    bool IsDependentContext = DC->isDependentContext();
3280
3281    if (!IsDependentContext &&
3282        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3283      return 0;
3284
3285    if (isa<CXXRecordDecl>(DC)) {
3286      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3287        Diag(D.getIdentifierLoc(),
3288             diag::err_member_def_undefined_record)
3289          << Name << DC << D.getCXXScopeSpec().getRange();
3290        D.setInvalidType();
3291      } else if (isa<CXXRecordDecl>(CurContext) &&
3292                 !D.getDeclSpec().isFriendSpecified()) {
3293        // The user provided a superfluous scope specifier inside a class
3294        // definition:
3295        //
3296        // class X {
3297        //   void X::f();
3298        // };
3299        if (CurContext->Equals(DC)) {
3300          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3301            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3302        } else {
3303          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3304            << Name << D.getCXXScopeSpec().getRange();
3305
3306          // C++ constructors and destructors with incorrect scopes can break
3307          // our AST invariants by having the wrong underlying types. If
3308          // that's the case, then drop this declaration entirely.
3309          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3310               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3311              !Context.hasSameType(Name.getCXXNameType(),
3312                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3313            return 0;
3314        }
3315
3316        // Pretend that this qualifier was not here.
3317        D.getCXXScopeSpec().clear();
3318      }
3319    }
3320
3321    // Check whether we need to rebuild the type of the given
3322    // declaration in the current instantiation.
3323    if (EnteringContext && IsDependentContext &&
3324        TemplateParamLists.size() != 0) {
3325      ContextRAII SavedContext(*this, DC);
3326      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3327        D.setInvalidType();
3328    }
3329  }
3330
3331  if (DiagnoseClassNameShadow(DC, NameInfo))
3332    // If this is a typedef, we'll end up spewing multiple diagnostics.
3333    // Just return early; it's safer.
3334    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3335      return 0;
3336
3337  NamedDecl *New;
3338
3339  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3340  QualType R = TInfo->getType();
3341
3342  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3343                                      UPPC_DeclarationType))
3344    D.setInvalidType();
3345
3346  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3347                        ForRedeclaration);
3348
3349  // See if this is a redefinition of a variable in the same scope.
3350  if (!D.getCXXScopeSpec().isSet()) {
3351    bool IsLinkageLookup = false;
3352
3353    // If the declaration we're planning to build will be a function
3354    // or object with linkage, then look for another declaration with
3355    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3356    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3357      /* Do nothing*/;
3358    else if (R->isFunctionType()) {
3359      if (CurContext->isFunctionOrMethod() ||
3360          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3361        IsLinkageLookup = true;
3362    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3363      IsLinkageLookup = true;
3364    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3365             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3366      IsLinkageLookup = true;
3367
3368    if (IsLinkageLookup)
3369      Previous.clear(LookupRedeclarationWithLinkage);
3370
3371    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3372  } else { // Something like "int foo::x;"
3373    LookupQualifiedName(Previous, DC);
3374
3375    // Don't consider using declarations as previous declarations for
3376    // out-of-line members.
3377    RemoveUsingDecls(Previous);
3378
3379    // C++ 7.3.1.2p2:
3380    // Members (including explicit specializations of templates) of a named
3381    // namespace can also be defined outside that namespace by explicit
3382    // qualification of the name being defined, provided that the entity being
3383    // defined was already declared in the namespace and the definition appears
3384    // after the point of declaration in a namespace that encloses the
3385    // declarations namespace.
3386    //
3387    // Note that we only check the context at this point. We don't yet
3388    // have enough information to make sure that PrevDecl is actually
3389    // the declaration we want to match. For example, given:
3390    //
3391    //   class X {
3392    //     void f();
3393    //     void f(float);
3394    //   };
3395    //
3396    //   void X::f(int) { } // ill-formed
3397    //
3398    // In this case, PrevDecl will point to the overload set
3399    // containing the two f's declared in X, but neither of them
3400    // matches.
3401
3402    // First check whether we named the global scope.
3403    if (isa<TranslationUnitDecl>(DC)) {
3404      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3405        << Name << D.getCXXScopeSpec().getRange();
3406    } else {
3407      DeclContext *Cur = CurContext;
3408      while (isa<LinkageSpecDecl>(Cur))
3409        Cur = Cur->getParent();
3410      if (!Cur->Encloses(DC)) {
3411        // The qualifying scope doesn't enclose the original declaration.
3412        // Emit diagnostic based on current scope.
3413        SourceLocation L = D.getIdentifierLoc();
3414        SourceRange R = D.getCXXScopeSpec().getRange();
3415        if (isa<FunctionDecl>(Cur))
3416          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3417        else
3418          Diag(L, diag::err_invalid_declarator_scope)
3419            << Name << cast<NamedDecl>(DC) << R;
3420        D.setInvalidType();
3421      }
3422
3423      // C++11 8.3p1:
3424      // ... "The nested-name-specifier of the qualified declarator-id shall
3425      // not begin with a decltype-specifer"
3426      NestedNameSpecifierLoc SpecLoc =
3427            D.getCXXScopeSpec().getWithLocInContext(Context);
3428      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3429                        "NestedNameSpecifierLoc");
3430      while (SpecLoc.getPrefix())
3431        SpecLoc = SpecLoc.getPrefix();
3432      if (dyn_cast_or_null<DecltypeType>(
3433            SpecLoc.getNestedNameSpecifier()->getAsType()))
3434        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3435          << SpecLoc.getTypeLoc().getSourceRange();
3436    }
3437  }
3438
3439  if (Previous.isSingleResult() &&
3440      Previous.getFoundDecl()->isTemplateParameter()) {
3441    // Maybe we will complain about the shadowed template parameter.
3442    if (!D.isInvalidType())
3443      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3444                                      Previous.getFoundDecl());
3445
3446    // Just pretend that we didn't see the previous declaration.
3447    Previous.clear();
3448  }
3449
3450  // In C++, the previous declaration we find might be a tag type
3451  // (class or enum). In this case, the new declaration will hide the
3452  // tag type. Note that this does does not apply if we're declaring a
3453  // typedef (C++ [dcl.typedef]p4).
3454  if (Previous.isSingleTagDecl() &&
3455      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3456    Previous.clear();
3457
3458  bool AddToScope = true;
3459  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3460    if (TemplateParamLists.size()) {
3461      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3462      return 0;
3463    }
3464
3465    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3466  } else if (R->isFunctionType()) {
3467    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3468                                  move(TemplateParamLists),
3469                                  AddToScope);
3470  } else {
3471    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3472                                  move(TemplateParamLists));
3473  }
3474
3475  if (New == 0)
3476    return 0;
3477
3478  // If this has an identifier and is not an invalid redeclaration or
3479  // function template specialization, add it to the scope stack.
3480  if (New->getDeclName() && AddToScope &&
3481       !(D.isRedeclaration() && New->isInvalidDecl()))
3482    PushOnScopeChains(New, S);
3483
3484  return New;
3485}
3486
3487/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3488/// types into constant array types in certain situations which would otherwise
3489/// be errors (for GCC compatibility).
3490static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3491                                                    ASTContext &Context,
3492                                                    bool &SizeIsNegative,
3493                                                    llvm::APSInt &Oversized) {
3494  // This method tries to turn a variable array into a constant
3495  // array even when the size isn't an ICE.  This is necessary
3496  // for compatibility with code that depends on gcc's buggy
3497  // constant expression folding, like struct {char x[(int)(char*)2];}
3498  SizeIsNegative = false;
3499  Oversized = 0;
3500
3501  if (T->isDependentType())
3502    return QualType();
3503
3504  QualifierCollector Qs;
3505  const Type *Ty = Qs.strip(T);
3506
3507  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3508    QualType Pointee = PTy->getPointeeType();
3509    QualType FixedType =
3510        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3511                                            Oversized);
3512    if (FixedType.isNull()) return FixedType;
3513    FixedType = Context.getPointerType(FixedType);
3514    return Qs.apply(Context, FixedType);
3515  }
3516  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3517    QualType Inner = PTy->getInnerType();
3518    QualType FixedType =
3519        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3520                                            Oversized);
3521    if (FixedType.isNull()) return FixedType;
3522    FixedType = Context.getParenType(FixedType);
3523    return Qs.apply(Context, FixedType);
3524  }
3525
3526  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3527  if (!VLATy)
3528    return QualType();
3529  // FIXME: We should probably handle this case
3530  if (VLATy->getElementType()->isVariablyModifiedType())
3531    return QualType();
3532
3533  llvm::APSInt Res;
3534  if (!VLATy->getSizeExpr() ||
3535      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3536    return QualType();
3537
3538  // Check whether the array size is negative.
3539  if (Res.isSigned() && Res.isNegative()) {
3540    SizeIsNegative = true;
3541    return QualType();
3542  }
3543
3544  // Check whether the array is too large to be addressed.
3545  unsigned ActiveSizeBits
3546    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3547                                              Res);
3548  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3549    Oversized = Res;
3550    return QualType();
3551  }
3552
3553  return Context.getConstantArrayType(VLATy->getElementType(),
3554                                      Res, ArrayType::Normal, 0);
3555}
3556
3557/// \brief Register the given locally-scoped external C declaration so
3558/// that it can be found later for redeclarations
3559void
3560Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3561                                       const LookupResult &Previous,
3562                                       Scope *S) {
3563  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3564         "Decl is not a locally-scoped decl!");
3565  // Note that we have a locally-scoped external with this name.
3566  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3567
3568  if (!Previous.isSingleResult())
3569    return;
3570
3571  NamedDecl *PrevDecl = Previous.getFoundDecl();
3572
3573  // If there was a previous declaration of this variable, it may be
3574  // in our identifier chain. Update the identifier chain with the new
3575  // declaration.
3576  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3577    // The previous declaration was found on the identifer resolver
3578    // chain, so remove it from its scope.
3579
3580    if (S->isDeclScope(PrevDecl)) {
3581      // Special case for redeclarations in the SAME scope.
3582      // Because this declaration is going to be added to the identifier chain
3583      // later, we should temporarily take it OFF the chain.
3584      IdResolver.RemoveDecl(ND);
3585
3586    } else {
3587      // Find the scope for the original declaration.
3588      while (S && !S->isDeclScope(PrevDecl))
3589        S = S->getParent();
3590    }
3591
3592    if (S)
3593      S->RemoveDecl(PrevDecl);
3594  }
3595}
3596
3597llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3598Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3599  if (ExternalSource) {
3600    // Load locally-scoped external decls from the external source.
3601    SmallVector<NamedDecl *, 4> Decls;
3602    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3603    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3604      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3605        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3606      if (Pos == LocallyScopedExternalDecls.end())
3607        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3608    }
3609  }
3610
3611  return LocallyScopedExternalDecls.find(Name);
3612}
3613
3614/// \brief Diagnose function specifiers on a declaration of an identifier that
3615/// does not identify a function.
3616void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3617  // FIXME: We should probably indicate the identifier in question to avoid
3618  // confusion for constructs like "inline int a(), b;"
3619  if (D.getDeclSpec().isInlineSpecified())
3620    Diag(D.getDeclSpec().getInlineSpecLoc(),
3621         diag::err_inline_non_function);
3622
3623  if (D.getDeclSpec().isVirtualSpecified())
3624    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3625         diag::err_virtual_non_function);
3626
3627  if (D.getDeclSpec().isExplicitSpecified())
3628    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3629         diag::err_explicit_non_function);
3630}
3631
3632NamedDecl*
3633Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3634                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3635  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3636  if (D.getCXXScopeSpec().isSet()) {
3637    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3638      << D.getCXXScopeSpec().getRange();
3639    D.setInvalidType();
3640    // Pretend we didn't see the scope specifier.
3641    DC = CurContext;
3642    Previous.clear();
3643  }
3644
3645  if (getLangOptions().CPlusPlus) {
3646    // Check that there are no default arguments (C++ only).
3647    CheckExtraCXXDefaultArguments(D);
3648  }
3649
3650  DiagnoseFunctionSpecifiers(D);
3651
3652  if (D.getDeclSpec().isThreadSpecified())
3653    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3654  if (D.getDeclSpec().isConstexprSpecified())
3655    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3656      << 1;
3657
3658  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3659    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3660      << D.getName().getSourceRange();
3661    return 0;
3662  }
3663
3664  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3665  if (!NewTD) return 0;
3666
3667  // Handle attributes prior to checking for duplicates in MergeVarDecl
3668  ProcessDeclAttributes(S, NewTD, D);
3669
3670  CheckTypedefForVariablyModifiedType(S, NewTD);
3671
3672  bool Redeclaration = D.isRedeclaration();
3673  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3674  D.setRedeclaration(Redeclaration);
3675  return ND;
3676}
3677
3678void
3679Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3680  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3681  // then it shall have block scope.
3682  // Note that variably modified types must be fixed before merging the decl so
3683  // that redeclarations will match.
3684  QualType T = NewTD->getUnderlyingType();
3685  if (T->isVariablyModifiedType()) {
3686    getCurFunction()->setHasBranchProtectedScope();
3687
3688    if (S->getFnParent() == 0) {
3689      bool SizeIsNegative;
3690      llvm::APSInt Oversized;
3691      QualType FixedTy =
3692          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3693                                              Oversized);
3694      if (!FixedTy.isNull()) {
3695        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3696        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3697      } else {
3698        if (SizeIsNegative)
3699          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3700        else if (T->isVariableArrayType())
3701          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3702        else if (Oversized.getBoolValue())
3703          Diag(NewTD->getLocation(), diag::err_array_too_large)
3704            << Oversized.toString(10);
3705        else
3706          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3707        NewTD->setInvalidDecl();
3708      }
3709    }
3710  }
3711}
3712
3713
3714/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3715/// declares a typedef-name, either using the 'typedef' type specifier or via
3716/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3717NamedDecl*
3718Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3719                           LookupResult &Previous, bool &Redeclaration) {
3720  // Merge the decl with the existing one if appropriate. If the decl is
3721  // in an outer scope, it isn't the same thing.
3722  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3723                       /*ExplicitInstantiationOrSpecialization=*/false);
3724  if (!Previous.empty()) {
3725    Redeclaration = true;
3726    MergeTypedefNameDecl(NewTD, Previous);
3727  }
3728
3729  // If this is the C FILE type, notify the AST context.
3730  if (IdentifierInfo *II = NewTD->getIdentifier())
3731    if (!NewTD->isInvalidDecl() &&
3732        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3733      if (II->isStr("FILE"))
3734        Context.setFILEDecl(NewTD);
3735      else if (II->isStr("jmp_buf"))
3736        Context.setjmp_bufDecl(NewTD);
3737      else if (II->isStr("sigjmp_buf"))
3738        Context.setsigjmp_bufDecl(NewTD);
3739      else if (II->isStr("ucontext_t"))
3740        Context.setucontext_tDecl(NewTD);
3741      else if (II->isStr("__builtin_va_list"))
3742        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3743    }
3744
3745  return NewTD;
3746}
3747
3748/// \brief Determines whether the given declaration is an out-of-scope
3749/// previous declaration.
3750///
3751/// This routine should be invoked when name lookup has found a
3752/// previous declaration (PrevDecl) that is not in the scope where a
3753/// new declaration by the same name is being introduced. If the new
3754/// declaration occurs in a local scope, previous declarations with
3755/// linkage may still be considered previous declarations (C99
3756/// 6.2.2p4-5, C++ [basic.link]p6).
3757///
3758/// \param PrevDecl the previous declaration found by name
3759/// lookup
3760///
3761/// \param DC the context in which the new declaration is being
3762/// declared.
3763///
3764/// \returns true if PrevDecl is an out-of-scope previous declaration
3765/// for a new delcaration with the same name.
3766static bool
3767isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3768                                ASTContext &Context) {
3769  if (!PrevDecl)
3770    return false;
3771
3772  if (!PrevDecl->hasLinkage())
3773    return false;
3774
3775  if (Context.getLangOptions().CPlusPlus) {
3776    // C++ [basic.link]p6:
3777    //   If there is a visible declaration of an entity with linkage
3778    //   having the same name and type, ignoring entities declared
3779    //   outside the innermost enclosing namespace scope, the block
3780    //   scope declaration declares that same entity and receives the
3781    //   linkage of the previous declaration.
3782    DeclContext *OuterContext = DC->getRedeclContext();
3783    if (!OuterContext->isFunctionOrMethod())
3784      // This rule only applies to block-scope declarations.
3785      return false;
3786
3787    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3788    if (PrevOuterContext->isRecord())
3789      // We found a member function: ignore it.
3790      return false;
3791
3792    // Find the innermost enclosing namespace for the new and
3793    // previous declarations.
3794    OuterContext = OuterContext->getEnclosingNamespaceContext();
3795    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3796
3797    // The previous declaration is in a different namespace, so it
3798    // isn't the same function.
3799    if (!OuterContext->Equals(PrevOuterContext))
3800      return false;
3801  }
3802
3803  return true;
3804}
3805
3806static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3807  CXXScopeSpec &SS = D.getCXXScopeSpec();
3808  if (!SS.isSet()) return;
3809  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3810}
3811
3812bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3813  QualType type = decl->getType();
3814  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3815  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3816    // Various kinds of declaration aren't allowed to be __autoreleasing.
3817    unsigned kind = -1U;
3818    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3819      if (var->hasAttr<BlocksAttr>())
3820        kind = 0; // __block
3821      else if (!var->hasLocalStorage())
3822        kind = 1; // global
3823    } else if (isa<ObjCIvarDecl>(decl)) {
3824      kind = 3; // ivar
3825    } else if (isa<FieldDecl>(decl)) {
3826      kind = 2; // field
3827    }
3828
3829    if (kind != -1U) {
3830      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3831        << kind;
3832    }
3833  } else if (lifetime == Qualifiers::OCL_None) {
3834    // Try to infer lifetime.
3835    if (!type->isObjCLifetimeType())
3836      return false;
3837
3838    lifetime = type->getObjCARCImplicitLifetime();
3839    type = Context.getLifetimeQualifiedType(type, lifetime);
3840    decl->setType(type);
3841  }
3842
3843  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3844    // Thread-local variables cannot have lifetime.
3845    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3846        var->isThreadSpecified()) {
3847      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3848        << var->getType();
3849      return true;
3850    }
3851  }
3852
3853  return false;
3854}
3855
3856NamedDecl*
3857Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3858                              TypeSourceInfo *TInfo, LookupResult &Previous,
3859                              MultiTemplateParamsArg TemplateParamLists) {
3860  QualType R = TInfo->getType();
3861  DeclarationName Name = GetNameForDeclarator(D).getName();
3862
3863  // Check that there are no default arguments (C++ only).
3864  if (getLangOptions().CPlusPlus)
3865    CheckExtraCXXDefaultArguments(D);
3866
3867  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3868  assert(SCSpec != DeclSpec::SCS_typedef &&
3869         "Parser allowed 'typedef' as storage class VarDecl.");
3870  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3871  if (SCSpec == DeclSpec::SCS_mutable) {
3872    // mutable can only appear on non-static class members, so it's always
3873    // an error here
3874    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3875    D.setInvalidType();
3876    SC = SC_None;
3877  }
3878  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3879  VarDecl::StorageClass SCAsWritten
3880    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3881
3882  IdentifierInfo *II = Name.getAsIdentifierInfo();
3883  if (!II) {
3884    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3885      << Name;
3886    return 0;
3887  }
3888
3889  DiagnoseFunctionSpecifiers(D);
3890
3891  if (!DC->isRecord() && S->getFnParent() == 0) {
3892    // C99 6.9p2: The storage-class specifiers auto and register shall not
3893    // appear in the declaration specifiers in an external declaration.
3894    if (SC == SC_Auto || SC == SC_Register) {
3895
3896      // If this is a register variable with an asm label specified, then this
3897      // is a GNU extension.
3898      if (SC == SC_Register && D.getAsmLabel())
3899        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3900      else
3901        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3902      D.setInvalidType();
3903    }
3904  }
3905
3906  if (getLangOptions().OpenCL) {
3907    // Set up the special work-group-local storage class for variables in the
3908    // OpenCL __local address space.
3909    if (R.getAddressSpace() == LangAS::opencl_local)
3910      SC = SC_OpenCLWorkGroupLocal;
3911  }
3912
3913  bool isExplicitSpecialization = false;
3914  VarDecl *NewVD;
3915  if (!getLangOptions().CPlusPlus) {
3916    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3917                            D.getIdentifierLoc(), II,
3918                            R, TInfo, SC, SCAsWritten);
3919
3920    if (D.isInvalidType())
3921      NewVD->setInvalidDecl();
3922  } else {
3923    if (DC->isRecord() && !CurContext->isRecord()) {
3924      // This is an out-of-line definition of a static data member.
3925      if (SC == SC_Static) {
3926        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3927             diag::err_static_out_of_line)
3928          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3929      } else if (SC == SC_None)
3930        SC = SC_Static;
3931    }
3932    if (SC == SC_Static && CurContext->isRecord()) {
3933      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3934        if (RD->isLocalClass())
3935          Diag(D.getIdentifierLoc(),
3936               diag::err_static_data_member_not_allowed_in_local_class)
3937            << Name << RD->getDeclName();
3938
3939        // C++98 [class.union]p1: If a union contains a static data member,
3940        // the program is ill-formed. C++11 drops this restriction.
3941        if (RD->isUnion())
3942          Diag(D.getIdentifierLoc(),
3943               getLangOptions().CPlusPlus0x
3944                 ? diag::warn_cxx98_compat_static_data_member_in_union
3945                 : diag::ext_static_data_member_in_union) << Name;
3946        // We conservatively disallow static data members in anonymous structs.
3947        else if (!RD->getDeclName())
3948          Diag(D.getIdentifierLoc(),
3949               diag::err_static_data_member_not_allowed_in_anon_struct)
3950            << Name << RD->isUnion();
3951      }
3952    }
3953
3954    // Match up the template parameter lists with the scope specifier, then
3955    // determine whether we have a template or a template specialization.
3956    isExplicitSpecialization = false;
3957    bool Invalid = false;
3958    if (TemplateParameterList *TemplateParams
3959        = MatchTemplateParametersToScopeSpecifier(
3960                                  D.getDeclSpec().getSourceRange().getBegin(),
3961                                                  D.getIdentifierLoc(),
3962                                                  D.getCXXScopeSpec(),
3963                                                  TemplateParamLists.get(),
3964                                                  TemplateParamLists.size(),
3965                                                  /*never a friend*/ false,
3966                                                  isExplicitSpecialization,
3967                                                  Invalid)) {
3968      if (TemplateParams->size() > 0) {
3969        // There is no such thing as a variable template.
3970        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3971          << II
3972          << SourceRange(TemplateParams->getTemplateLoc(),
3973                         TemplateParams->getRAngleLoc());
3974        return 0;
3975      } else {
3976        // There is an extraneous 'template<>' for this variable. Complain
3977        // about it, but allow the declaration of the variable.
3978        Diag(TemplateParams->getTemplateLoc(),
3979             diag::err_template_variable_noparams)
3980          << II
3981          << SourceRange(TemplateParams->getTemplateLoc(),
3982                         TemplateParams->getRAngleLoc());
3983      }
3984    }
3985
3986    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3987                            D.getIdentifierLoc(), II,
3988                            R, TInfo, SC, SCAsWritten);
3989
3990    // If this decl has an auto type in need of deduction, make a note of the
3991    // Decl so we can diagnose uses of it in its own initializer.
3992    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3993        R->getContainedAutoType())
3994      ParsingInitForAutoVars.insert(NewVD);
3995
3996    if (D.isInvalidType() || Invalid)
3997      NewVD->setInvalidDecl();
3998
3999    SetNestedNameSpecifier(NewVD, D);
4000
4001    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4002      NewVD->setTemplateParameterListsInfo(Context,
4003                                           TemplateParamLists.size(),
4004                                           TemplateParamLists.release());
4005    }
4006
4007    if (D.getDeclSpec().isConstexprSpecified())
4008      NewVD->setConstexpr(true);
4009  }
4010
4011  // Set the lexical context. If the declarator has a C++ scope specifier, the
4012  // lexical context will be different from the semantic context.
4013  NewVD->setLexicalDeclContext(CurContext);
4014
4015  if (D.getDeclSpec().isThreadSpecified()) {
4016    if (NewVD->hasLocalStorage())
4017      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4018    else if (!Context.getTargetInfo().isTLSSupported())
4019      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4020    else
4021      NewVD->setThreadSpecified(true);
4022  }
4023
4024  if (D.getDeclSpec().isModulePrivateSpecified()) {
4025    if (isExplicitSpecialization)
4026      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4027        << 2
4028        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4029    else if (NewVD->hasLocalStorage())
4030      Diag(NewVD->getLocation(), diag::err_module_private_local)
4031        << 0 << NewVD->getDeclName()
4032        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4033        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4034    else
4035      NewVD->setModulePrivate();
4036  }
4037
4038  // Handle attributes prior to checking for duplicates in MergeVarDecl
4039  ProcessDeclAttributes(S, NewVD, D);
4040
4041  // In auto-retain/release, infer strong retension for variables of
4042  // retainable type.
4043  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4044    NewVD->setInvalidDecl();
4045
4046  // Handle GNU asm-label extension (encoded as an attribute).
4047  if (Expr *E = (Expr*)D.getAsmLabel()) {
4048    // The parser guarantees this is a string.
4049    StringLiteral *SE = cast<StringLiteral>(E);
4050    StringRef Label = SE->getString();
4051    if (S->getFnParent() != 0) {
4052      switch (SC) {
4053      case SC_None:
4054      case SC_Auto:
4055        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4056        break;
4057      case SC_Register:
4058        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4059          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4060        break;
4061      case SC_Static:
4062      case SC_Extern:
4063      case SC_PrivateExtern:
4064      case SC_OpenCLWorkGroupLocal:
4065        break;
4066      }
4067    }
4068
4069    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4070                                                Context, Label));
4071  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4072    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4073      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4074    if (I != ExtnameUndeclaredIdentifiers.end()) {
4075      NewVD->addAttr(I->second);
4076      ExtnameUndeclaredIdentifiers.erase(I);
4077    }
4078  }
4079
4080  // Diagnose shadowed variables before filtering for scope.
4081  if (!D.getCXXScopeSpec().isSet())
4082    CheckShadow(S, NewVD, Previous);
4083
4084  // Don't consider existing declarations that are in a different
4085  // scope and are out-of-semantic-context declarations (if the new
4086  // declaration has linkage).
4087  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4088                       isExplicitSpecialization);
4089
4090  if (!getLangOptions().CPlusPlus) {
4091    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4092  } else {
4093    // Merge the decl with the existing one if appropriate.
4094    if (!Previous.empty()) {
4095      if (Previous.isSingleResult() &&
4096          isa<FieldDecl>(Previous.getFoundDecl()) &&
4097          D.getCXXScopeSpec().isSet()) {
4098        // The user tried to define a non-static data member
4099        // out-of-line (C++ [dcl.meaning]p1).
4100        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4101          << D.getCXXScopeSpec().getRange();
4102        Previous.clear();
4103        NewVD->setInvalidDecl();
4104      }
4105    } else if (D.getCXXScopeSpec().isSet()) {
4106      // No previous declaration in the qualifying scope.
4107      Diag(D.getIdentifierLoc(), diag::err_no_member)
4108        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4109        << D.getCXXScopeSpec().getRange();
4110      NewVD->setInvalidDecl();
4111    }
4112
4113    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4114
4115    // This is an explicit specialization of a static data member. Check it.
4116    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4117        CheckMemberSpecialization(NewVD, Previous))
4118      NewVD->setInvalidDecl();
4119  }
4120
4121  // attributes declared post-definition are currently ignored
4122  // FIXME: This should be handled in attribute merging, not
4123  // here.
4124  if (Previous.isSingleResult()) {
4125    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4126    if (Def && (Def = Def->getDefinition()) &&
4127        Def != NewVD && D.hasAttributes()) {
4128      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4129      Diag(Def->getLocation(), diag::note_previous_definition);
4130    }
4131  }
4132
4133  // If this is a locally-scoped extern C variable, update the map of
4134  // such variables.
4135  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4136      !NewVD->isInvalidDecl())
4137    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4138
4139  // If there's a #pragma GCC visibility in scope, and this isn't a class
4140  // member, set the visibility of this variable.
4141  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4142    AddPushedVisibilityAttribute(NewVD);
4143
4144  MarkUnusedFileScopedDecl(NewVD);
4145
4146  return NewVD;
4147}
4148
4149/// \brief Diagnose variable or built-in function shadowing.  Implements
4150/// -Wshadow.
4151///
4152/// This method is called whenever a VarDecl is added to a "useful"
4153/// scope.
4154///
4155/// \param S the scope in which the shadowing name is being declared
4156/// \param R the lookup of the name
4157///
4158void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4159  // Return if warning is ignored.
4160  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4161        DiagnosticsEngine::Ignored)
4162    return;
4163
4164  // Don't diagnose declarations at file scope.
4165  if (D->hasGlobalStorage())
4166    return;
4167
4168  DeclContext *NewDC = D->getDeclContext();
4169
4170  // Only diagnose if we're shadowing an unambiguous field or variable.
4171  if (R.getResultKind() != LookupResult::Found)
4172    return;
4173
4174  NamedDecl* ShadowedDecl = R.getFoundDecl();
4175  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4176    return;
4177
4178  // Fields are not shadowed by variables in C++ static methods.
4179  if (isa<FieldDecl>(ShadowedDecl))
4180    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4181      if (MD->isStatic())
4182        return;
4183
4184  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4185    if (shadowedVar->isExternC()) {
4186      // For shadowing external vars, make sure that we point to the global
4187      // declaration, not a locally scoped extern declaration.
4188      for (VarDecl::redecl_iterator
4189             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4190           I != E; ++I)
4191        if (I->isFileVarDecl()) {
4192          ShadowedDecl = *I;
4193          break;
4194        }
4195    }
4196
4197  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4198
4199  // Only warn about certain kinds of shadowing for class members.
4200  if (NewDC && NewDC->isRecord()) {
4201    // In particular, don't warn about shadowing non-class members.
4202    if (!OldDC->isRecord())
4203      return;
4204
4205    // TODO: should we warn about static data members shadowing
4206    // static data members from base classes?
4207
4208    // TODO: don't diagnose for inaccessible shadowed members.
4209    // This is hard to do perfectly because we might friend the
4210    // shadowing context, but that's just a false negative.
4211  }
4212
4213  // Determine what kind of declaration we're shadowing.
4214  unsigned Kind;
4215  if (isa<RecordDecl>(OldDC)) {
4216    if (isa<FieldDecl>(ShadowedDecl))
4217      Kind = 3; // field
4218    else
4219      Kind = 2; // static data member
4220  } else if (OldDC->isFileContext())
4221    Kind = 1; // global
4222  else
4223    Kind = 0; // local
4224
4225  DeclarationName Name = R.getLookupName();
4226
4227  // Emit warning and note.
4228  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4229  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4230}
4231
4232/// \brief Check -Wshadow without the advantage of a previous lookup.
4233void Sema::CheckShadow(Scope *S, VarDecl *D) {
4234  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4235        DiagnosticsEngine::Ignored)
4236    return;
4237
4238  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4239                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4240  LookupName(R, S);
4241  CheckShadow(S, D, R);
4242}
4243
4244/// \brief Perform semantic checking on a newly-created variable
4245/// declaration.
4246///
4247/// This routine performs all of the type-checking required for a
4248/// variable declaration once it has been built. It is used both to
4249/// check variables after they have been parsed and their declarators
4250/// have been translated into a declaration, and to check variables
4251/// that have been instantiated from a template.
4252///
4253/// Sets NewVD->isInvalidDecl() if an error was encountered.
4254///
4255/// Returns true if the variable declaration is a redeclaration.
4256bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4257                                    LookupResult &Previous) {
4258  // If the decl is already known invalid, don't check it.
4259  if (NewVD->isInvalidDecl())
4260    return false;
4261
4262  QualType T = NewVD->getType();
4263
4264  if (T->isObjCObjectType()) {
4265    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4266      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4267    T = Context.getObjCObjectPointerType(T);
4268    NewVD->setType(T);
4269  }
4270
4271  // Emit an error if an address space was applied to decl with local storage.
4272  // This includes arrays of objects with address space qualifiers, but not
4273  // automatic variables that point to other address spaces.
4274  // ISO/IEC TR 18037 S5.1.2
4275  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4276    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4277    NewVD->setInvalidDecl();
4278    return false;
4279  }
4280
4281  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4282      && !NewVD->hasAttr<BlocksAttr>()) {
4283    if (getLangOptions().getGC() != LangOptions::NonGC)
4284      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4285    else
4286      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4287  }
4288
4289  bool isVM = T->isVariablyModifiedType();
4290  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4291      NewVD->hasAttr<BlocksAttr>())
4292    getCurFunction()->setHasBranchProtectedScope();
4293
4294  if ((isVM && NewVD->hasLinkage()) ||
4295      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4296    bool SizeIsNegative;
4297    llvm::APSInt Oversized;
4298    QualType FixedTy =
4299        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4300                                            Oversized);
4301
4302    if (FixedTy.isNull() && T->isVariableArrayType()) {
4303      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4304      // FIXME: This won't give the correct result for
4305      // int a[10][n];
4306      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4307
4308      if (NewVD->isFileVarDecl())
4309        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4310        << SizeRange;
4311      else if (NewVD->getStorageClass() == SC_Static)
4312        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4313        << SizeRange;
4314      else
4315        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4316        << SizeRange;
4317      NewVD->setInvalidDecl();
4318      return false;
4319    }
4320
4321    if (FixedTy.isNull()) {
4322      if (NewVD->isFileVarDecl())
4323        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4324      else
4325        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4326      NewVD->setInvalidDecl();
4327      return false;
4328    }
4329
4330    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4331    NewVD->setType(FixedTy);
4332  }
4333
4334  if (Previous.empty() && NewVD->isExternC()) {
4335    // Since we did not find anything by this name and we're declaring
4336    // an extern "C" variable, look for a non-visible extern "C"
4337    // declaration with the same name.
4338    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4339      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4340    if (Pos != LocallyScopedExternalDecls.end())
4341      Previous.addDecl(Pos->second);
4342  }
4343
4344  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4345    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4346      << T;
4347    NewVD->setInvalidDecl();
4348    return false;
4349  }
4350
4351  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4352    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4353    NewVD->setInvalidDecl();
4354    return false;
4355  }
4356
4357  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4358    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4359    NewVD->setInvalidDecl();
4360    return false;
4361  }
4362
4363  if (NewVD->isConstexpr() && !T->isDependentType() &&
4364      RequireLiteralType(NewVD->getLocation(), T,
4365                         PDiag(diag::err_constexpr_var_non_literal))) {
4366    NewVD->setInvalidDecl();
4367    return false;
4368  }
4369
4370  if (!Previous.empty()) {
4371    MergeVarDecl(NewVD, Previous);
4372    return true;
4373  }
4374  return false;
4375}
4376
4377/// \brief Data used with FindOverriddenMethod
4378struct FindOverriddenMethodData {
4379  Sema *S;
4380  CXXMethodDecl *Method;
4381};
4382
4383/// \brief Member lookup function that determines whether a given C++
4384/// method overrides a method in a base class, to be used with
4385/// CXXRecordDecl::lookupInBases().
4386static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4387                                 CXXBasePath &Path,
4388                                 void *UserData) {
4389  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4390
4391  FindOverriddenMethodData *Data
4392    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4393
4394  DeclarationName Name = Data->Method->getDeclName();
4395
4396  // FIXME: Do we care about other names here too?
4397  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4398    // We really want to find the base class destructor here.
4399    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4400    CanQualType CT = Data->S->Context.getCanonicalType(T);
4401
4402    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4403  }
4404
4405  for (Path.Decls = BaseRecord->lookup(Name);
4406       Path.Decls.first != Path.Decls.second;
4407       ++Path.Decls.first) {
4408    NamedDecl *D = *Path.Decls.first;
4409    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4410      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4411        return true;
4412    }
4413  }
4414
4415  return false;
4416}
4417
4418/// AddOverriddenMethods - See if a method overrides any in the base classes,
4419/// and if so, check that it's a valid override and remember it.
4420bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4421  // Look for virtual methods in base classes that this method might override.
4422  CXXBasePaths Paths;
4423  FindOverriddenMethodData Data;
4424  Data.Method = MD;
4425  Data.S = this;
4426  bool AddedAny = false;
4427  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4428    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4429         E = Paths.found_decls_end(); I != E; ++I) {
4430      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4431        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4432        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4433            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4434            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4435          AddedAny = true;
4436        }
4437      }
4438    }
4439  }
4440
4441  return AddedAny;
4442}
4443
4444namespace {
4445  // Struct for holding all of the extra arguments needed by
4446  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4447  struct ActOnFDArgs {
4448    Scope *S;
4449    Declarator &D;
4450    MultiTemplateParamsArg TemplateParamLists;
4451    bool AddToScope;
4452  };
4453}
4454
4455namespace {
4456
4457// Callback to only accept typo corrections that have a non-zero edit distance.
4458// Also only accept corrections that have the same parent decl.
4459class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4460 public:
4461  DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4462      : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4463
4464  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4465    if (candidate.getEditDistance() == 0)
4466      return false;
4467
4468    if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4469      CXXRecordDecl *Parent = MD->getParent();
4470      return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4471    }
4472
4473    return !ExpectedParent;
4474  }
4475
4476 private:
4477  CXXRecordDecl *ExpectedParent;
4478};
4479
4480}
4481
4482/// \brief Generate diagnostics for an invalid function redeclaration.
4483///
4484/// This routine handles generating the diagnostic messages for an invalid
4485/// function redeclaration, including finding possible similar declarations
4486/// or performing typo correction if there are no previous declarations with
4487/// the same name.
4488///
4489/// Returns a NamedDecl iff typo correction was performed and substituting in
4490/// the new declaration name does not cause new errors.
4491static NamedDecl* DiagnoseInvalidRedeclaration(
4492    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4493    ActOnFDArgs &ExtraArgs) {
4494  NamedDecl *Result = NULL;
4495  DeclarationName Name = NewFD->getDeclName();
4496  DeclContext *NewDC = NewFD->getDeclContext();
4497  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4498                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4499  llvm::SmallVector<unsigned, 1> MismatchedParams;
4500  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4501  TypoCorrection Correction;
4502  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4503                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4504  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4505                                  : diag::err_member_def_does_not_match;
4506
4507  NewFD->setInvalidDecl();
4508  SemaRef.LookupQualifiedName(Prev, NewDC);
4509  assert(!Prev.isAmbiguous() &&
4510         "Cannot have an ambiguity in previous-declaration lookup");
4511  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4512  DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4513  if (!Prev.empty()) {
4514    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4515         Func != FuncEnd; ++Func) {
4516      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4517      if (FD &&
4518          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4519        // Add 1 to the index so that 0 can mean the mismatch didn't
4520        // involve a parameter
4521        unsigned ParamNum =
4522            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4523        NearMatches.push_back(std::make_pair(FD, ParamNum));
4524      }
4525    }
4526  // If the qualified name lookup yielded nothing, try typo correction
4527  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4528                                         Prev.getLookupKind(), 0, 0,
4529                                         Validator, NewDC))) {
4530    // Trap errors.
4531    Sema::SFINAETrap Trap(SemaRef);
4532
4533    // Set up everything for the call to ActOnFunctionDeclarator
4534    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4535                              ExtraArgs.D.getIdentifierLoc());
4536    Previous.clear();
4537    Previous.setLookupName(Correction.getCorrection());
4538    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4539                                    CDeclEnd = Correction.end();
4540         CDecl != CDeclEnd; ++CDecl) {
4541      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4542      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4543                                     MismatchedParams)) {
4544        Previous.addDecl(FD);
4545      }
4546    }
4547    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4548    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4549    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4550    // eliminate the need for the parameter pack ExtraArgs.
4551    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4552                                             NewFD->getDeclContext(),
4553                                             NewFD->getTypeSourceInfo(),
4554                                             Previous,
4555                                             ExtraArgs.TemplateParamLists,
4556                                             ExtraArgs.AddToScope);
4557    if (Trap.hasErrorOccurred()) {
4558      // Pretend the typo correction never occurred
4559      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4560                                ExtraArgs.D.getIdentifierLoc());
4561      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4562      Previous.clear();
4563      Previous.setLookupName(Name);
4564      Result = NULL;
4565    } else {
4566      for (LookupResult::iterator Func = Previous.begin(),
4567                               FuncEnd = Previous.end();
4568           Func != FuncEnd; ++Func) {
4569        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4570          NearMatches.push_back(std::make_pair(FD, 0));
4571      }
4572    }
4573    if (NearMatches.empty()) {
4574      // Ignore the correction if it didn't yield any close FunctionDecl matches
4575      Correction = TypoCorrection();
4576    } else {
4577      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4578                             : diag::err_member_def_does_not_match_suggest;
4579    }
4580  }
4581
4582  if (Correction)
4583    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4584        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4585        << FixItHint::CreateReplacement(
4586            NewFD->getLocation(),
4587            Correction.getAsString(SemaRef.getLangOptions()));
4588  else
4589    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4590        << Name << NewDC << NewFD->getLocation();
4591
4592  bool NewFDisConst = false;
4593  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4594    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4595
4596  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4597       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4598       NearMatch != NearMatchEnd; ++NearMatch) {
4599    FunctionDecl *FD = NearMatch->first;
4600    bool FDisConst = false;
4601    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4602      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4603
4604    if (unsigned Idx = NearMatch->second) {
4605      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4606      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4607             diag::note_member_def_close_param_match)
4608          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4609    } else if (Correction) {
4610      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4611          << Correction.getQuoted(SemaRef.getLangOptions());
4612    } else if (FDisConst != NewFDisConst) {
4613      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4614          << NewFDisConst << FD->getSourceRange().getEnd();
4615    } else
4616      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4617  }
4618  return Result;
4619}
4620
4621static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4622                                                          Declarator &D) {
4623  switch (D.getDeclSpec().getStorageClassSpec()) {
4624  default: llvm_unreachable("Unknown storage class!");
4625  case DeclSpec::SCS_auto:
4626  case DeclSpec::SCS_register:
4627  case DeclSpec::SCS_mutable:
4628    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4629                 diag::err_typecheck_sclass_func);
4630    D.setInvalidType();
4631    break;
4632  case DeclSpec::SCS_unspecified: break;
4633  case DeclSpec::SCS_extern: return SC_Extern;
4634  case DeclSpec::SCS_static: {
4635    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4636      // C99 6.7.1p5:
4637      //   The declaration of an identifier for a function that has
4638      //   block scope shall have no explicit storage-class specifier
4639      //   other than extern
4640      // See also (C++ [dcl.stc]p4).
4641      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4642                   diag::err_static_block_func);
4643      break;
4644    } else
4645      return SC_Static;
4646  }
4647  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4648  }
4649
4650  // No explicit storage class has already been returned
4651  return SC_None;
4652}
4653
4654static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4655                                           DeclContext *DC, QualType &R,
4656                                           TypeSourceInfo *TInfo,
4657                                           FunctionDecl::StorageClass SC,
4658                                           bool &IsVirtualOkay) {
4659  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4660  DeclarationName Name = NameInfo.getName();
4661
4662  FunctionDecl *NewFD = 0;
4663  bool isInline = D.getDeclSpec().isInlineSpecified();
4664  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4665  FunctionDecl::StorageClass SCAsWritten
4666    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4667
4668  if (!SemaRef.getLangOptions().CPlusPlus) {
4669    // Determine whether the function was written with a
4670    // prototype. This true when:
4671    //   - there is a prototype in the declarator, or
4672    //   - the type R of the function is some kind of typedef or other reference
4673    //     to a type name (which eventually refers to a function type).
4674    bool HasPrototype =
4675      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4676      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4677
4678    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4679                                 D.getSourceRange().getBegin(), NameInfo, R,
4680                                 TInfo, SC, SCAsWritten, isInline,
4681                                 HasPrototype);
4682    if (D.isInvalidType())
4683      NewFD->setInvalidDecl();
4684
4685    // Set the lexical context.
4686    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4687
4688    return NewFD;
4689  }
4690
4691  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4692  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4693
4694  // Check that the return type is not an abstract class type.
4695  // For record types, this is done by the AbstractClassUsageDiagnoser once
4696  // the class has been completely parsed.
4697  if (!DC->isRecord() &&
4698      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4699                                     R->getAs<FunctionType>()->getResultType(),
4700                                     diag::err_abstract_type_in_decl,
4701                                     SemaRef.AbstractReturnType))
4702    D.setInvalidType();
4703
4704  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4705    // This is a C++ constructor declaration.
4706    assert(DC->isRecord() &&
4707           "Constructors can only be declared in a member context");
4708
4709    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4710    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4711                                      D.getSourceRange().getBegin(), NameInfo,
4712                                      R, TInfo, isExplicit, isInline,
4713                                      /*isImplicitlyDeclared=*/false,
4714                                      isConstexpr);
4715
4716  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4717    // This is a C++ destructor declaration.
4718    if (DC->isRecord()) {
4719      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4720      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4721      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4722                                        SemaRef.Context, Record,
4723                                        D.getSourceRange().getBegin(),
4724                                        NameInfo, R, TInfo, isInline,
4725                                        /*isImplicitlyDeclared=*/false);
4726
4727      // If the class is complete, then we now create the implicit exception
4728      // specification. If the class is incomplete or dependent, we can't do
4729      // it yet.
4730      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4731          Record->getDefinition() && !Record->isBeingDefined() &&
4732          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4733        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4734      }
4735
4736      IsVirtualOkay = true;
4737      return NewDD;
4738
4739    } else {
4740      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4741      D.setInvalidType();
4742
4743      // Create a FunctionDecl to satisfy the function definition parsing
4744      // code path.
4745      return FunctionDecl::Create(SemaRef.Context, DC,
4746                                  D.getSourceRange().getBegin(),
4747                                  D.getIdentifierLoc(), Name, R, TInfo,
4748                                  SC, SCAsWritten, isInline,
4749                                  /*hasPrototype=*/true, isConstexpr);
4750    }
4751
4752  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4753    if (!DC->isRecord()) {
4754      SemaRef.Diag(D.getIdentifierLoc(),
4755           diag::err_conv_function_not_member);
4756      return 0;
4757    }
4758
4759    SemaRef.CheckConversionDeclarator(D, R, SC);
4760    IsVirtualOkay = true;
4761    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4762                                     D.getSourceRange().getBegin(), NameInfo,
4763                                     R, TInfo, isInline, isExplicit,
4764                                     isConstexpr, SourceLocation());
4765
4766  } else if (DC->isRecord()) {
4767    // If the name of the function is the same as the name of the record,
4768    // then this must be an invalid constructor that has a return type.
4769    // (The parser checks for a return type and makes the declarator a
4770    // constructor if it has no return type).
4771    if (Name.getAsIdentifierInfo() &&
4772        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4773      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4774        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4775        << SourceRange(D.getIdentifierLoc());
4776      return 0;
4777    }
4778
4779    bool isStatic = SC == SC_Static;
4780
4781    // [class.free]p1:
4782    // Any allocation function for a class T is a static member
4783    // (even if not explicitly declared static).
4784    if (Name.getCXXOverloadedOperator() == OO_New ||
4785        Name.getCXXOverloadedOperator() == OO_Array_New)
4786      isStatic = true;
4787
4788    // [class.free]p6 Any deallocation function for a class X is a static member
4789    // (even if not explicitly declared static).
4790    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4791        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4792      isStatic = true;
4793
4794    IsVirtualOkay = !isStatic;
4795
4796    // This is a C++ method declaration.
4797    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4798                                 D.getSourceRange().getBegin(), NameInfo, R,
4799                                 TInfo, isStatic, SCAsWritten, isInline,
4800                                 isConstexpr, SourceLocation());
4801
4802  } else {
4803    // Determine whether the function was written with a
4804    // prototype. This true when:
4805    //   - we're in C++ (where every function has a prototype),
4806    return FunctionDecl::Create(SemaRef.Context, DC,
4807                                D.getSourceRange().getBegin(),
4808                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4809                                true/*HasPrototype*/, isConstexpr);
4810  }
4811}
4812
4813NamedDecl*
4814Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4815                              TypeSourceInfo *TInfo, LookupResult &Previous,
4816                              MultiTemplateParamsArg TemplateParamLists,
4817                              bool &AddToScope) {
4818  QualType R = TInfo->getType();
4819
4820  assert(R.getTypePtr()->isFunctionType());
4821
4822  // TODO: consider using NameInfo for diagnostic.
4823  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4824  DeclarationName Name = NameInfo.getName();
4825  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4826
4827  if (D.getDeclSpec().isThreadSpecified())
4828    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4829
4830  // Do not allow returning a objc interface by-value.
4831  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4832    Diag(D.getIdentifierLoc(),
4833         diag::err_object_cannot_be_passed_returned_by_value) << 0
4834    << R->getAs<FunctionType>()->getResultType()
4835    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4836
4837    QualType T = R->getAs<FunctionType>()->getResultType();
4838    T = Context.getObjCObjectPointerType(T);
4839    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4840      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4841      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4842                                  FPT->getNumArgs(), EPI);
4843    }
4844    else if (isa<FunctionNoProtoType>(R))
4845      R = Context.getFunctionNoProtoType(T);
4846  }
4847
4848  bool isFriend = false;
4849  FunctionTemplateDecl *FunctionTemplate = 0;
4850  bool isExplicitSpecialization = false;
4851  bool isFunctionTemplateSpecialization = false;
4852  bool isDependentClassScopeExplicitSpecialization = false;
4853  bool isVirtualOkay = false;
4854
4855  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4856                                              isVirtualOkay);
4857  if (!NewFD) return 0;
4858
4859  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4860    NewFD->setTopLevelDeclInObjCContainer();
4861
4862  if (getLangOptions().CPlusPlus) {
4863    bool isInline = D.getDeclSpec().isInlineSpecified();
4864    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4865    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4866    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4867    isFriend = D.getDeclSpec().isFriendSpecified();
4868    if (isFriend && !isInline && D.isFunctionDefinition()) {
4869      // C++ [class.friend]p5
4870      //   A function can be defined in a friend declaration of a
4871      //   class . . . . Such a function is implicitly inline.
4872      NewFD->setImplicitlyInline();
4873    }
4874
4875    SetNestedNameSpecifier(NewFD, D);
4876    isExplicitSpecialization = false;
4877    isFunctionTemplateSpecialization = false;
4878    if (D.isInvalidType())
4879      NewFD->setInvalidDecl();
4880
4881    // Set the lexical context. If the declarator has a C++
4882    // scope specifier, or is the object of a friend declaration, the
4883    // lexical context will be different from the semantic context.
4884    NewFD->setLexicalDeclContext(CurContext);
4885
4886    // Match up the template parameter lists with the scope specifier, then
4887    // determine whether we have a template or a template specialization.
4888    bool Invalid = false;
4889    if (TemplateParameterList *TemplateParams
4890          = MatchTemplateParametersToScopeSpecifier(
4891                                  D.getDeclSpec().getSourceRange().getBegin(),
4892                                  D.getIdentifierLoc(),
4893                                  D.getCXXScopeSpec(),
4894                                  TemplateParamLists.get(),
4895                                  TemplateParamLists.size(),
4896                                  isFriend,
4897                                  isExplicitSpecialization,
4898                                  Invalid)) {
4899      if (TemplateParams->size() > 0) {
4900        // This is a function template
4901
4902        // Check that we can declare a template here.
4903        if (CheckTemplateDeclScope(S, TemplateParams))
4904          return 0;
4905
4906        // A destructor cannot be a template.
4907        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4908          Diag(NewFD->getLocation(), diag::err_destructor_template);
4909          return 0;
4910        }
4911
4912        // If we're adding a template to a dependent context, we may need to
4913        // rebuilding some of the types used within the template parameter list,
4914        // now that we know what the current instantiation is.
4915        if (DC->isDependentContext()) {
4916          ContextRAII SavedContext(*this, DC);
4917          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4918            Invalid = true;
4919        }
4920
4921
4922        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4923                                                        NewFD->getLocation(),
4924                                                        Name, TemplateParams,
4925                                                        NewFD);
4926        FunctionTemplate->setLexicalDeclContext(CurContext);
4927        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4928
4929        // For source fidelity, store the other template param lists.
4930        if (TemplateParamLists.size() > 1) {
4931          NewFD->setTemplateParameterListsInfo(Context,
4932                                               TemplateParamLists.size() - 1,
4933                                               TemplateParamLists.release());
4934        }
4935      } else {
4936        // This is a function template specialization.
4937        isFunctionTemplateSpecialization = true;
4938        // For source fidelity, store all the template param lists.
4939        NewFD->setTemplateParameterListsInfo(Context,
4940                                             TemplateParamLists.size(),
4941                                             TemplateParamLists.release());
4942
4943        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4944        if (isFriend) {
4945          // We want to remove the "template<>", found here.
4946          SourceRange RemoveRange = TemplateParams->getSourceRange();
4947
4948          // If we remove the template<> and the name is not a
4949          // template-id, we're actually silently creating a problem:
4950          // the friend declaration will refer to an untemplated decl,
4951          // and clearly the user wants a template specialization.  So
4952          // we need to insert '<>' after the name.
4953          SourceLocation InsertLoc;
4954          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4955            InsertLoc = D.getName().getSourceRange().getEnd();
4956            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4957          }
4958
4959          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4960            << Name << RemoveRange
4961            << FixItHint::CreateRemoval(RemoveRange)
4962            << FixItHint::CreateInsertion(InsertLoc, "<>");
4963        }
4964      }
4965    }
4966    else {
4967      // All template param lists were matched against the scope specifier:
4968      // this is NOT (an explicit specialization of) a template.
4969      if (TemplateParamLists.size() > 0)
4970        // For source fidelity, store all the template param lists.
4971        NewFD->setTemplateParameterListsInfo(Context,
4972                                             TemplateParamLists.size(),
4973                                             TemplateParamLists.release());
4974    }
4975
4976    if (Invalid) {
4977      NewFD->setInvalidDecl();
4978      if (FunctionTemplate)
4979        FunctionTemplate->setInvalidDecl();
4980    }
4981
4982    // If we see "T var();" at block scope, where T is a class type, it is
4983    // probably an attempt to initialize a variable, not a function declaration.
4984    // We don't catch this case earlier, since there is no ambiguity here.
4985    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4986        CurContext->isFunctionOrMethod() &&
4987        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4988        D.getDeclSpec().getStorageClassSpecAsWritten()
4989          == DeclSpec::SCS_unspecified) {
4990      QualType T = R->getAs<FunctionType>()->getResultType();
4991      DeclaratorChunk &C = D.getTypeObject(0);
4992      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4993          !C.Fun.TrailingReturnType &&
4994          C.Fun.getExceptionSpecType() == EST_None) {
4995        SourceRange ParenRange(C.Loc, C.EndLoc);
4996        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4997
4998        // If the declaration looks like:
4999        //   T var1,
5000        //   f();
5001        // and name lookup finds a function named 'f', then the ',' was
5002        // probably intended to be a ';'.
5003        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5004          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5005          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5006          if (Comma.getFileID() != Name.getFileID() ||
5007              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5008            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5009                                LookupOrdinaryName);
5010            if (LookupName(Result, S))
5011              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5012                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5013          }
5014        }
5015        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5016        // Empty parens mean value-initialization, and no parens mean default
5017        // initialization. These are equivalent if the default constructor is
5018        // user-provided, or if zero-initialization is a no-op.
5019        if (RD && RD->hasDefinition() &&
5020            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5021          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5022            << FixItHint::CreateRemoval(ParenRange);
5023        else if (const char *Init = getFixItZeroInitializerForType(T))
5024          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5025            << FixItHint::CreateReplacement(ParenRange, Init);
5026        else if (LangOpts.CPlusPlus0x)
5027          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5028            << FixItHint::CreateReplacement(ParenRange, "{}");
5029      }
5030    }
5031
5032    // C++ [dcl.fct.spec]p5:
5033    //   The virtual specifier shall only be used in declarations of
5034    //   nonstatic class member functions that appear within a
5035    //   member-specification of a class declaration; see 10.3.
5036    //
5037    if (isVirtual && !NewFD->isInvalidDecl()) {
5038      if (!isVirtualOkay) {
5039        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5040             diag::err_virtual_non_function);
5041      } else if (!CurContext->isRecord()) {
5042        // 'virtual' was specified outside of the class.
5043        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5044             diag::err_virtual_out_of_class)
5045          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5046      } else if (NewFD->getDescribedFunctionTemplate()) {
5047        // C++ [temp.mem]p3:
5048        //  A member function template shall not be virtual.
5049        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5050             diag::err_virtual_member_function_template)
5051          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5052      } else {
5053        // Okay: Add virtual to the method.
5054        NewFD->setVirtualAsWritten(true);
5055      }
5056    }
5057
5058    // C++ [dcl.fct.spec]p3:
5059    //  The inline specifier shall not appear on a block scope function
5060    //  declaration.
5061    if (isInline && !NewFD->isInvalidDecl()) {
5062      if (CurContext->isFunctionOrMethod()) {
5063        // 'inline' is not allowed on block scope function declaration.
5064        Diag(D.getDeclSpec().getInlineSpecLoc(),
5065             diag::err_inline_declaration_block_scope) << Name
5066          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5067      }
5068    }
5069
5070    // C++ [dcl.fct.spec]p6:
5071    //  The explicit specifier shall be used only in the declaration of a
5072    //  constructor or conversion function within its class definition;
5073    //  see 12.3.1 and 12.3.2.
5074    if (isExplicit && !NewFD->isInvalidDecl()) {
5075      if (!CurContext->isRecord()) {
5076        // 'explicit' was specified outside of the class.
5077        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5078             diag::err_explicit_out_of_class)
5079          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5080      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5081                 !isa<CXXConversionDecl>(NewFD)) {
5082        // 'explicit' was specified on a function that wasn't a constructor
5083        // or conversion function.
5084        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5085             diag::err_explicit_non_ctor_or_conv_function)
5086          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5087      }
5088    }
5089
5090    if (isConstexpr) {
5091      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5092      // are implicitly inline.
5093      NewFD->setImplicitlyInline();
5094
5095      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5096      // be either constructors or to return a literal type. Therefore,
5097      // destructors cannot be declared constexpr.
5098      if (isa<CXXDestructorDecl>(NewFD))
5099        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5100    }
5101
5102    // If __module_private__ was specified, mark the function accordingly.
5103    if (D.getDeclSpec().isModulePrivateSpecified()) {
5104      if (isFunctionTemplateSpecialization) {
5105        SourceLocation ModulePrivateLoc
5106          = D.getDeclSpec().getModulePrivateSpecLoc();
5107        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5108          << 0
5109          << FixItHint::CreateRemoval(ModulePrivateLoc);
5110      } else {
5111        NewFD->setModulePrivate();
5112        if (FunctionTemplate)
5113          FunctionTemplate->setModulePrivate();
5114      }
5115    }
5116
5117    if (isFriend) {
5118      // For now, claim that the objects have no previous declaration.
5119      if (FunctionTemplate) {
5120        FunctionTemplate->setObjectOfFriendDecl(false);
5121        FunctionTemplate->setAccess(AS_public);
5122      }
5123      NewFD->setObjectOfFriendDecl(false);
5124      NewFD->setAccess(AS_public);
5125    }
5126
5127    // If a function is defined as defaulted or deleted, mark it as such now.
5128    switch (D.getFunctionDefinitionKind()) {
5129      case FDK_Declaration:
5130      case FDK_Definition:
5131        break;
5132
5133      case FDK_Defaulted:
5134        NewFD->setDefaulted();
5135        break;
5136
5137      case FDK_Deleted:
5138        NewFD->setDeletedAsWritten();
5139        break;
5140    }
5141
5142    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5143        D.isFunctionDefinition()) {
5144      // C++ [class.mfct]p2:
5145      //   A member function may be defined (8.4) in its class definition, in
5146      //   which case it is an inline member function (7.1.2)
5147      NewFD->setImplicitlyInline();
5148    }
5149
5150    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5151        !CurContext->isRecord()) {
5152      // C++ [class.static]p1:
5153      //   A data or function member of a class may be declared static
5154      //   in a class definition, in which case it is a static member of
5155      //   the class.
5156
5157      // Complain about the 'static' specifier if it's on an out-of-line
5158      // member function definition.
5159      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5160           diag::err_static_out_of_line)
5161        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5162    }
5163  }
5164
5165  // Filter out previous declarations that don't match the scope.
5166  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5167                       isExplicitSpecialization ||
5168                       isFunctionTemplateSpecialization);
5169
5170  // Handle GNU asm-label extension (encoded as an attribute).
5171  if (Expr *E = (Expr*) D.getAsmLabel()) {
5172    // The parser guarantees this is a string.
5173    StringLiteral *SE = cast<StringLiteral>(E);
5174    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5175                                                SE->getString()));
5176  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5177    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5178      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5179    if (I != ExtnameUndeclaredIdentifiers.end()) {
5180      NewFD->addAttr(I->second);
5181      ExtnameUndeclaredIdentifiers.erase(I);
5182    }
5183  }
5184
5185  // Copy the parameter declarations from the declarator D to the function
5186  // declaration NewFD, if they are available.  First scavenge them into Params.
5187  SmallVector<ParmVarDecl*, 16> Params;
5188  if (D.isFunctionDeclarator()) {
5189    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5190
5191    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5192    // function that takes no arguments, not a function that takes a
5193    // single void argument.
5194    // We let through "const void" here because Sema::GetTypeForDeclarator
5195    // already checks for that case.
5196    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5197        FTI.ArgInfo[0].Param &&
5198        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5199      // Empty arg list, don't push any params.
5200      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5201
5202      // In C++, the empty parameter-type-list must be spelled "void"; a
5203      // typedef of void is not permitted.
5204      if (getLangOptions().CPlusPlus &&
5205          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5206        bool IsTypeAlias = false;
5207        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5208          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5209        else if (const TemplateSpecializationType *TST =
5210                   Param->getType()->getAs<TemplateSpecializationType>())
5211          IsTypeAlias = TST->isTypeAlias();
5212        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5213          << IsTypeAlias;
5214      }
5215    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5216      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5217        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5218        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5219        Param->setDeclContext(NewFD);
5220        Params.push_back(Param);
5221
5222        if (Param->isInvalidDecl())
5223          NewFD->setInvalidDecl();
5224      }
5225    }
5226
5227  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5228    // When we're declaring a function with a typedef, typeof, etc as in the
5229    // following example, we'll need to synthesize (unnamed)
5230    // parameters for use in the declaration.
5231    //
5232    // @code
5233    // typedef void fn(int);
5234    // fn f;
5235    // @endcode
5236
5237    // Synthesize a parameter for each argument type.
5238    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5239         AE = FT->arg_type_end(); AI != AE; ++AI) {
5240      ParmVarDecl *Param =
5241        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5242      Param->setScopeInfo(0, Params.size());
5243      Params.push_back(Param);
5244    }
5245  } else {
5246    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5247           "Should not need args for typedef of non-prototype fn");
5248  }
5249
5250  // Finally, we know we have the right number of parameters, install them.
5251  NewFD->setParams(Params);
5252
5253  // Find all anonymous symbols defined during the declaration of this function
5254  // and add to NewFD. This lets us track decls such 'enum Y' in:
5255  //
5256  //   void f(enum Y {AA} x) {}
5257  //
5258  // which would otherwise incorrectly end up in the translation unit scope.
5259  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5260  DeclsInPrototypeScope.clear();
5261
5262  // Process the non-inheritable attributes on this declaration.
5263  ProcessDeclAttributes(S, NewFD, D,
5264                        /*NonInheritable=*/true, /*Inheritable=*/false);
5265
5266  if (!getLangOptions().CPlusPlus) {
5267    // Perform semantic checking on the function declaration.
5268    bool isExplicitSpecialization=false;
5269    if (!NewFD->isInvalidDecl()) {
5270      if (NewFD->getResultType()->isVariablyModifiedType()) {
5271        // Functions returning a variably modified type violate C99 6.7.5.2p2
5272        // because all functions have linkage.
5273        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5274        NewFD->setInvalidDecl();
5275      } else {
5276        if (NewFD->isMain())
5277          CheckMain(NewFD, D.getDeclSpec());
5278        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5279                                                    isExplicitSpecialization));
5280      }
5281    }
5282    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5283            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5284           "previous declaration set still overloaded");
5285  } else {
5286    // If the declarator is a template-id, translate the parser's template
5287    // argument list into our AST format.
5288    bool HasExplicitTemplateArgs = false;
5289    TemplateArgumentListInfo TemplateArgs;
5290    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5291      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5292      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5293      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5294      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5295                                         TemplateId->getTemplateArgs(),
5296                                         TemplateId->NumArgs);
5297      translateTemplateArguments(TemplateArgsPtr,
5298                                 TemplateArgs);
5299      TemplateArgsPtr.release();
5300
5301      HasExplicitTemplateArgs = true;
5302
5303      if (NewFD->isInvalidDecl()) {
5304        HasExplicitTemplateArgs = false;
5305      } else if (FunctionTemplate) {
5306        // Function template with explicit template arguments.
5307        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5308          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5309
5310        HasExplicitTemplateArgs = false;
5311      } else if (!isFunctionTemplateSpecialization &&
5312                 !D.getDeclSpec().isFriendSpecified()) {
5313        // We have encountered something that the user meant to be a
5314        // specialization (because it has explicitly-specified template
5315        // arguments) but that was not introduced with a "template<>" (or had
5316        // too few of them).
5317        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5318          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5319          << FixItHint::CreateInsertion(
5320                                    D.getDeclSpec().getSourceRange().getBegin(),
5321                                        "template<> ");
5322        isFunctionTemplateSpecialization = true;
5323      } else {
5324        // "friend void foo<>(int);" is an implicit specialization decl.
5325        isFunctionTemplateSpecialization = true;
5326      }
5327    } else if (isFriend && isFunctionTemplateSpecialization) {
5328      // This combination is only possible in a recovery case;  the user
5329      // wrote something like:
5330      //   template <> friend void foo(int);
5331      // which we're recovering from as if the user had written:
5332      //   friend void foo<>(int);
5333      // Go ahead and fake up a template id.
5334      HasExplicitTemplateArgs = true;
5335        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5336      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5337    }
5338
5339    // If it's a friend (and only if it's a friend), it's possible
5340    // that either the specialized function type or the specialized
5341    // template is dependent, and therefore matching will fail.  In
5342    // this case, don't check the specialization yet.
5343    bool InstantiationDependent = false;
5344    if (isFunctionTemplateSpecialization && isFriend &&
5345        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5346         TemplateSpecializationType::anyDependentTemplateArguments(
5347            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5348            InstantiationDependent))) {
5349      assert(HasExplicitTemplateArgs &&
5350             "friend function specialization without template args");
5351      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5352                                                       Previous))
5353        NewFD->setInvalidDecl();
5354    } else if (isFunctionTemplateSpecialization) {
5355      if (CurContext->isDependentContext() && CurContext->isRecord()
5356          && !isFriend) {
5357        isDependentClassScopeExplicitSpecialization = true;
5358        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5359          diag::ext_function_specialization_in_class :
5360          diag::err_function_specialization_in_class)
5361          << NewFD->getDeclName();
5362      } else if (CheckFunctionTemplateSpecialization(NewFD,
5363                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5364                                                     Previous))
5365        NewFD->setInvalidDecl();
5366
5367      // C++ [dcl.stc]p1:
5368      //   A storage-class-specifier shall not be specified in an explicit
5369      //   specialization (14.7.3)
5370      if (SC != SC_None) {
5371        if (SC != NewFD->getStorageClass())
5372          Diag(NewFD->getLocation(),
5373               diag::err_explicit_specialization_inconsistent_storage_class)
5374            << SC
5375            << FixItHint::CreateRemoval(
5376                                      D.getDeclSpec().getStorageClassSpecLoc());
5377
5378        else
5379          Diag(NewFD->getLocation(),
5380               diag::ext_explicit_specialization_storage_class)
5381            << FixItHint::CreateRemoval(
5382                                      D.getDeclSpec().getStorageClassSpecLoc());
5383      }
5384
5385    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5386      if (CheckMemberSpecialization(NewFD, Previous))
5387          NewFD->setInvalidDecl();
5388    }
5389
5390    // Perform semantic checking on the function declaration.
5391    if (!isDependentClassScopeExplicitSpecialization) {
5392      if (NewFD->isInvalidDecl()) {
5393        // If this is a class member, mark the class invalid immediately.
5394        // This avoids some consistency errors later.
5395        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5396          methodDecl->getParent()->setInvalidDecl();
5397      } else {
5398        if (NewFD->isMain())
5399          CheckMain(NewFD, D.getDeclSpec());
5400        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5401                                                    isExplicitSpecialization));
5402      }
5403    }
5404
5405    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5406            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5407           "previous declaration set still overloaded");
5408
5409    NamedDecl *PrincipalDecl = (FunctionTemplate
5410                                ? cast<NamedDecl>(FunctionTemplate)
5411                                : NewFD);
5412
5413    if (isFriend && D.isRedeclaration()) {
5414      AccessSpecifier Access = AS_public;
5415      if (!NewFD->isInvalidDecl())
5416        Access = NewFD->getPreviousDecl()->getAccess();
5417
5418      NewFD->setAccess(Access);
5419      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5420
5421      PrincipalDecl->setObjectOfFriendDecl(true);
5422    }
5423
5424    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5425        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5426      PrincipalDecl->setNonMemberOperator();
5427
5428    // If we have a function template, check the template parameter
5429    // list. This will check and merge default template arguments.
5430    if (FunctionTemplate) {
5431      FunctionTemplateDecl *PrevTemplate =
5432                                     FunctionTemplate->getPreviousDecl();
5433      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5434                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5435                            D.getDeclSpec().isFriendSpecified()
5436                              ? (D.isFunctionDefinition()
5437                                   ? TPC_FriendFunctionTemplateDefinition
5438                                   : TPC_FriendFunctionTemplate)
5439                              : (D.getCXXScopeSpec().isSet() &&
5440                                 DC && DC->isRecord() &&
5441                                 DC->isDependentContext())
5442                                  ? TPC_ClassTemplateMember
5443                                  : TPC_FunctionTemplate);
5444    }
5445
5446    if (NewFD->isInvalidDecl()) {
5447      // Ignore all the rest of this.
5448    } else if (!D.isRedeclaration()) {
5449      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5450                                       AddToScope };
5451      // Fake up an access specifier if it's supposed to be a class member.
5452      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5453        NewFD->setAccess(AS_public);
5454
5455      // Qualified decls generally require a previous declaration.
5456      if (D.getCXXScopeSpec().isSet()) {
5457        // ...with the major exception of templated-scope or
5458        // dependent-scope friend declarations.
5459
5460        // TODO: we currently also suppress this check in dependent
5461        // contexts because (1) the parameter depth will be off when
5462        // matching friend templates and (2) we might actually be
5463        // selecting a friend based on a dependent factor.  But there
5464        // are situations where these conditions don't apply and we
5465        // can actually do this check immediately.
5466        if (isFriend &&
5467            (TemplateParamLists.size() ||
5468             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5469             CurContext->isDependentContext())) {
5470          // ignore these
5471        } else {
5472          // The user tried to provide an out-of-line definition for a
5473          // function that is a member of a class or namespace, but there
5474          // was no such member function declared (C++ [class.mfct]p2,
5475          // C++ [namespace.memdef]p2). For example:
5476          //
5477          // class X {
5478          //   void f() const;
5479          // };
5480          //
5481          // void X::f() { } // ill-formed
5482          //
5483          // Complain about this problem, and attempt to suggest close
5484          // matches (e.g., those that differ only in cv-qualifiers and
5485          // whether the parameter types are references).
5486
5487          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5488                                                               NewFD,
5489                                                               ExtraArgs)) {
5490            AddToScope = ExtraArgs.AddToScope;
5491            return Result;
5492          }
5493        }
5494
5495        // Unqualified local friend declarations are required to resolve
5496        // to something.
5497      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5498        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5499                                                             NewFD,
5500                                                             ExtraArgs)) {
5501          AddToScope = ExtraArgs.AddToScope;
5502          return Result;
5503        }
5504      }
5505
5506    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5507               !isFriend && !isFunctionTemplateSpecialization &&
5508               !isExplicitSpecialization) {
5509      // An out-of-line member function declaration must also be a
5510      // definition (C++ [dcl.meaning]p1).
5511      // Note that this is not the case for explicit specializations of
5512      // function templates or member functions of class templates, per
5513      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5514      // extension for compatibility with old SWIG code which likes to
5515      // generate them.
5516      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5517        << D.getCXXScopeSpec().getRange();
5518    }
5519  }
5520
5521
5522  // Handle attributes. We need to have merged decls when handling attributes
5523  // (for example to check for conflicts, etc).
5524  // FIXME: This needs to happen before we merge declarations. Then,
5525  // let attribute merging cope with attribute conflicts.
5526  ProcessDeclAttributes(S, NewFD, D,
5527                        /*NonInheritable=*/false, /*Inheritable=*/true);
5528
5529  // attributes declared post-definition are currently ignored
5530  // FIXME: This should happen during attribute merging
5531  if (D.isRedeclaration() && Previous.isSingleResult()) {
5532    const FunctionDecl *Def;
5533    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5534    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5535      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5536      Diag(Def->getLocation(), diag::note_previous_definition);
5537    }
5538  }
5539
5540  AddKnownFunctionAttributes(NewFD);
5541
5542  if (NewFD->hasAttr<OverloadableAttr>() &&
5543      !NewFD->getType()->getAs<FunctionProtoType>()) {
5544    Diag(NewFD->getLocation(),
5545         diag::err_attribute_overloadable_no_prototype)
5546      << NewFD;
5547
5548    // Turn this into a variadic function with no parameters.
5549    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5550    FunctionProtoType::ExtProtoInfo EPI;
5551    EPI.Variadic = true;
5552    EPI.ExtInfo = FT->getExtInfo();
5553
5554    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5555    NewFD->setType(R);
5556  }
5557
5558  // If there's a #pragma GCC visibility in scope, and this isn't a class
5559  // member, set the visibility of this function.
5560  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5561    AddPushedVisibilityAttribute(NewFD);
5562
5563  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5564  // marking the function.
5565  AddCFAuditedAttribute(NewFD);
5566
5567  // If this is a locally-scoped extern C function, update the
5568  // map of such names.
5569  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5570      && !NewFD->isInvalidDecl())
5571    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5572
5573  // Set this FunctionDecl's range up to the right paren.
5574  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5575
5576  if (getLangOptions().CPlusPlus) {
5577    if (FunctionTemplate) {
5578      if (NewFD->isInvalidDecl())
5579        FunctionTemplate->setInvalidDecl();
5580      return FunctionTemplate;
5581    }
5582  }
5583
5584  MarkUnusedFileScopedDecl(NewFD);
5585
5586  if (getLangOptions().CUDA)
5587    if (IdentifierInfo *II = NewFD->getIdentifier())
5588      if (!NewFD->isInvalidDecl() &&
5589          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5590        if (II->isStr("cudaConfigureCall")) {
5591          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5592            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5593
5594          Context.setcudaConfigureCallDecl(NewFD);
5595        }
5596      }
5597
5598  // Here we have an function template explicit specialization at class scope.
5599  // The actually specialization will be postponed to template instatiation
5600  // time via the ClassScopeFunctionSpecializationDecl node.
5601  if (isDependentClassScopeExplicitSpecialization) {
5602    ClassScopeFunctionSpecializationDecl *NewSpec =
5603                         ClassScopeFunctionSpecializationDecl::Create(
5604                                Context, CurContext,  SourceLocation(),
5605                                cast<CXXMethodDecl>(NewFD));
5606    CurContext->addDecl(NewSpec);
5607    AddToScope = false;
5608  }
5609
5610  return NewFD;
5611}
5612
5613/// \brief Perform semantic checking of a new function declaration.
5614///
5615/// Performs semantic analysis of the new function declaration
5616/// NewFD. This routine performs all semantic checking that does not
5617/// require the actual declarator involved in the declaration, and is
5618/// used both for the declaration of functions as they are parsed
5619/// (called via ActOnDeclarator) and for the declaration of functions
5620/// that have been instantiated via C++ template instantiation (called
5621/// via InstantiateDecl).
5622///
5623/// \param IsExplicitSpecialiation whether this new function declaration is
5624/// an explicit specialization of the previous declaration.
5625///
5626/// This sets NewFD->isInvalidDecl() to true if there was an error.
5627///
5628/// Returns true if the function declaration is a redeclaration.
5629bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5630                                    LookupResult &Previous,
5631                                    bool IsExplicitSpecialization) {
5632  assert(!NewFD->getResultType()->isVariablyModifiedType()
5633         && "Variably modified return types are not handled here");
5634
5635  // Check for a previous declaration of this name.
5636  if (Previous.empty() && NewFD->isExternC()) {
5637    // Since we did not find anything by this name and we're declaring
5638    // an extern "C" function, look for a non-visible extern "C"
5639    // declaration with the same name.
5640    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5641      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5642    if (Pos != LocallyScopedExternalDecls.end())
5643      Previous.addDecl(Pos->second);
5644  }
5645
5646  bool Redeclaration = false;
5647
5648  // Merge or overload the declaration with an existing declaration of
5649  // the same name, if appropriate.
5650  if (!Previous.empty()) {
5651    // Determine whether NewFD is an overload of PrevDecl or
5652    // a declaration that requires merging. If it's an overload,
5653    // there's no more work to do here; we'll just add the new
5654    // function to the scope.
5655
5656    NamedDecl *OldDecl = 0;
5657    if (!AllowOverloadingOfFunction(Previous, Context)) {
5658      Redeclaration = true;
5659      OldDecl = Previous.getFoundDecl();
5660    } else {
5661      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5662                            /*NewIsUsingDecl*/ false)) {
5663      case Ovl_Match:
5664        Redeclaration = true;
5665        break;
5666
5667      case Ovl_NonFunction:
5668        Redeclaration = true;
5669        break;
5670
5671      case Ovl_Overload:
5672        Redeclaration = false;
5673        break;
5674      }
5675
5676      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5677        // If a function name is overloadable in C, then every function
5678        // with that name must be marked "overloadable".
5679        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5680          << Redeclaration << NewFD;
5681        NamedDecl *OverloadedDecl = 0;
5682        if (Redeclaration)
5683          OverloadedDecl = OldDecl;
5684        else if (!Previous.empty())
5685          OverloadedDecl = Previous.getRepresentativeDecl();
5686        if (OverloadedDecl)
5687          Diag(OverloadedDecl->getLocation(),
5688               diag::note_attribute_overloadable_prev_overload);
5689        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5690                                                        Context));
5691      }
5692    }
5693
5694    if (Redeclaration) {
5695      // NewFD and OldDecl represent declarations that need to be
5696      // merged.
5697      if (MergeFunctionDecl(NewFD, OldDecl)) {
5698        NewFD->setInvalidDecl();
5699        return Redeclaration;
5700      }
5701
5702      Previous.clear();
5703      Previous.addDecl(OldDecl);
5704
5705      if (FunctionTemplateDecl *OldTemplateDecl
5706                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5707        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5708        FunctionTemplateDecl *NewTemplateDecl
5709          = NewFD->getDescribedFunctionTemplate();
5710        assert(NewTemplateDecl && "Template/non-template mismatch");
5711        if (CXXMethodDecl *Method
5712              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5713          Method->setAccess(OldTemplateDecl->getAccess());
5714          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5715        }
5716
5717        // If this is an explicit specialization of a member that is a function
5718        // template, mark it as a member specialization.
5719        if (IsExplicitSpecialization &&
5720            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5721          NewTemplateDecl->setMemberSpecialization();
5722          assert(OldTemplateDecl->isMemberSpecialization());
5723        }
5724
5725      } else {
5726        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5727          NewFD->setAccess(OldDecl->getAccess());
5728        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5729      }
5730    }
5731  }
5732
5733  // Semantic checking for this function declaration (in isolation).
5734  if (getLangOptions().CPlusPlus) {
5735    // C++-specific checks.
5736    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5737      CheckConstructor(Constructor);
5738    } else if (CXXDestructorDecl *Destructor =
5739                dyn_cast<CXXDestructorDecl>(NewFD)) {
5740      CXXRecordDecl *Record = Destructor->getParent();
5741      QualType ClassType = Context.getTypeDeclType(Record);
5742
5743      // FIXME: Shouldn't we be able to perform this check even when the class
5744      // type is dependent? Both gcc and edg can handle that.
5745      if (!ClassType->isDependentType()) {
5746        DeclarationName Name
5747          = Context.DeclarationNames.getCXXDestructorName(
5748                                        Context.getCanonicalType(ClassType));
5749        if (NewFD->getDeclName() != Name) {
5750          Diag(NewFD->getLocation(), diag::err_destructor_name);
5751          NewFD->setInvalidDecl();
5752          return Redeclaration;
5753        }
5754      }
5755    } else if (CXXConversionDecl *Conversion
5756               = dyn_cast<CXXConversionDecl>(NewFD)) {
5757      ActOnConversionDeclarator(Conversion);
5758    }
5759
5760    // Find any virtual functions that this function overrides.
5761    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5762      if (!Method->isFunctionTemplateSpecialization() &&
5763          !Method->getDescribedFunctionTemplate()) {
5764        if (AddOverriddenMethods(Method->getParent(), Method)) {
5765          // If the function was marked as "static", we have a problem.
5766          if (NewFD->getStorageClass() == SC_Static) {
5767            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5768              << NewFD->getDeclName();
5769            for (CXXMethodDecl::method_iterator
5770                      Overridden = Method->begin_overridden_methods(),
5771                   OverriddenEnd = Method->end_overridden_methods();
5772                 Overridden != OverriddenEnd;
5773                 ++Overridden) {
5774              Diag((*Overridden)->getLocation(),
5775                   diag::note_overridden_virtual_function);
5776            }
5777          }
5778        }
5779      }
5780    }
5781
5782    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5783    if (NewFD->isOverloadedOperator() &&
5784        CheckOverloadedOperatorDeclaration(NewFD)) {
5785      NewFD->setInvalidDecl();
5786      return Redeclaration;
5787    }
5788
5789    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5790    if (NewFD->getLiteralIdentifier() &&
5791        CheckLiteralOperatorDeclaration(NewFD)) {
5792      NewFD->setInvalidDecl();
5793      return Redeclaration;
5794    }
5795
5796    // In C++, check default arguments now that we have merged decls. Unless
5797    // the lexical context is the class, because in this case this is done
5798    // during delayed parsing anyway.
5799    if (!CurContext->isRecord())
5800      CheckCXXDefaultArguments(NewFD);
5801
5802    // If this function declares a builtin function, check the type of this
5803    // declaration against the expected type for the builtin.
5804    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5805      ASTContext::GetBuiltinTypeError Error;
5806      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5807      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5808        // The type of this function differs from the type of the builtin,
5809        // so forget about the builtin entirely.
5810        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5811      }
5812    }
5813
5814    // If this function is declared as being extern "C", then check to see if
5815    // the function returns a UDT (class, struct, or union type) that is not C
5816    // compatible, and if it does, warn the user.
5817    if (NewFD->isExternC()) {
5818      QualType R = NewFD->getResultType();
5819      if (!R.isPODType(Context) &&
5820          !R->isVoidType())
5821        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5822          << NewFD << R;
5823    }
5824  }
5825  return Redeclaration;
5826}
5827
5828void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5829  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5830  //   static or constexpr is ill-formed.
5831  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5832  //   shall not appear in a declaration of main.
5833  // static main is not an error under C99, but we should warn about it.
5834  if (FD->getStorageClass() == SC_Static)
5835    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5836         ? diag::err_static_main : diag::warn_static_main)
5837      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5838  if (FD->isInlineSpecified())
5839    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5840      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5841  if (FD->isConstexpr()) {
5842    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5843      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5844    FD->setConstexpr(false);
5845  }
5846
5847  QualType T = FD->getType();
5848  assert(T->isFunctionType() && "function decl is not of function type");
5849  const FunctionType* FT = T->castAs<FunctionType>();
5850
5851  // All the standards say that main() should should return 'int'.
5852  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5853    // In C and C++, main magically returns 0 if you fall off the end;
5854    // set the flag which tells us that.
5855    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5856    FD->setHasImplicitReturnZero(true);
5857
5858  // In C with GNU extensions we allow main() to have non-integer return
5859  // type, but we should warn about the extension, and we disable the
5860  // implicit-return-zero rule.
5861  } else if (getLangOptions().GNUMode && !getLangOptions().CPlusPlus) {
5862    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5863
5864  // Otherwise, this is just a flat-out error.
5865  } else {
5866    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5867    FD->setInvalidDecl(true);
5868  }
5869
5870  // Treat protoless main() as nullary.
5871  if (isa<FunctionNoProtoType>(FT)) return;
5872
5873  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5874  unsigned nparams = FTP->getNumArgs();
5875  assert(FD->getNumParams() == nparams);
5876
5877  bool HasExtraParameters = (nparams > 3);
5878
5879  // Darwin passes an undocumented fourth argument of type char**.  If
5880  // other platforms start sprouting these, the logic below will start
5881  // getting shifty.
5882  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5883    HasExtraParameters = false;
5884
5885  if (HasExtraParameters) {
5886    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5887    FD->setInvalidDecl(true);
5888    nparams = 3;
5889  }
5890
5891  // FIXME: a lot of the following diagnostics would be improved
5892  // if we had some location information about types.
5893
5894  QualType CharPP =
5895    Context.getPointerType(Context.getPointerType(Context.CharTy));
5896  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5897
5898  for (unsigned i = 0; i < nparams; ++i) {
5899    QualType AT = FTP->getArgType(i);
5900
5901    bool mismatch = true;
5902
5903    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5904      mismatch = false;
5905    else if (Expected[i] == CharPP) {
5906      // As an extension, the following forms are okay:
5907      //   char const **
5908      //   char const * const *
5909      //   char * const *
5910
5911      QualifierCollector qs;
5912      const PointerType* PT;
5913      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5914          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5915          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5916        qs.removeConst();
5917        mismatch = !qs.empty();
5918      }
5919    }
5920
5921    if (mismatch) {
5922      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5923      // TODO: suggest replacing given type with expected type
5924      FD->setInvalidDecl(true);
5925    }
5926  }
5927
5928  if (nparams == 1 && !FD->isInvalidDecl()) {
5929    Diag(FD->getLocation(), diag::warn_main_one_arg);
5930  }
5931
5932  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5933    Diag(FD->getLocation(), diag::err_main_template_decl);
5934    FD->setInvalidDecl();
5935  }
5936}
5937
5938bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5939  // FIXME: Need strict checking.  In C89, we need to check for
5940  // any assignment, increment, decrement, function-calls, or
5941  // commas outside of a sizeof.  In C99, it's the same list,
5942  // except that the aforementioned are allowed in unevaluated
5943  // expressions.  Everything else falls under the
5944  // "may accept other forms of constant expressions" exception.
5945  // (We never end up here for C++, so the constant expression
5946  // rules there don't matter.)
5947  if (Init->isConstantInitializer(Context, false))
5948    return false;
5949  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5950    << Init->getSourceRange();
5951  return true;
5952}
5953
5954namespace {
5955  // Visits an initialization expression to see if OrigDecl is evaluated in
5956  // its own initialization and throws a warning if it does.
5957  class SelfReferenceChecker
5958      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5959    Sema &S;
5960    Decl *OrigDecl;
5961    bool isRecordType;
5962    bool isPODType;
5963
5964  public:
5965    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5966
5967    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5968                                                    S(S), OrigDecl(OrigDecl) {
5969      isPODType = false;
5970      isRecordType = false;
5971      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5972        isPODType = VD->getType().isPODType(S.Context);
5973        isRecordType = VD->getType()->isRecordType();
5974      }
5975    }
5976
5977    void VisitExpr(Expr *E) {
5978      if (isa<ObjCMessageExpr>(*E)) return;
5979      if (isRecordType) {
5980        Expr *expr = E;
5981        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5982          ValueDecl *VD = ME->getMemberDecl();
5983          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5984          expr = ME->getBase();
5985        }
5986        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5987          HandleDeclRefExpr(DRE);
5988          return;
5989        }
5990      }
5991      Inherited::VisitExpr(E);
5992    }
5993
5994    void VisitMemberExpr(MemberExpr *E) {
5995      if (E->getType()->canDecayToPointerType()) return;
5996      if (isa<FieldDecl>(E->getMemberDecl()))
5997        if (DeclRefExpr *DRE
5998              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5999          HandleDeclRefExpr(DRE);
6000          return;
6001        }
6002      Inherited::VisitMemberExpr(E);
6003    }
6004
6005    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6006      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
6007          (isRecordType && E->getCastKind() == CK_NoOp)) {
6008        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
6009        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
6010          SubExpr = ME->getBase()->IgnoreParenImpCasts();
6011        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
6012          HandleDeclRefExpr(DRE);
6013          return;
6014        }
6015      }
6016      Inherited::VisitImplicitCastExpr(E);
6017    }
6018
6019    void VisitUnaryOperator(UnaryOperator *E) {
6020      // For POD record types, addresses of its own members are well-defined.
6021      if (isRecordType && isPODType) return;
6022      Inherited::VisitUnaryOperator(E);
6023    }
6024
6025    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6026      Decl* ReferenceDecl = DRE->getDecl();
6027      if (OrigDecl != ReferenceDecl) return;
6028      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6029                          Sema::NotForRedeclaration);
6030      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6031                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6032                              << Result.getLookupName()
6033                              << OrigDecl->getLocation()
6034                              << DRE->getSourceRange());
6035    }
6036  };
6037}
6038
6039/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6040void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6041  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6042}
6043
6044/// AddInitializerToDecl - Adds the initializer Init to the
6045/// declaration dcl. If DirectInit is true, this is C++ direct
6046/// initialization rather than copy initialization.
6047void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6048                                bool DirectInit, bool TypeMayContainAuto) {
6049  // If there is no declaration, there was an error parsing it.  Just ignore
6050  // the initializer.
6051  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6052    return;
6053
6054  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6055    // With declarators parsed the way they are, the parser cannot
6056    // distinguish between a normal initializer and a pure-specifier.
6057    // Thus this grotesque test.
6058    IntegerLiteral *IL;
6059    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6060        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6061      CheckPureMethod(Method, Init->getSourceRange());
6062    else {
6063      Diag(Method->getLocation(), diag::err_member_function_initialization)
6064        << Method->getDeclName() << Init->getSourceRange();
6065      Method->setInvalidDecl();
6066    }
6067    return;
6068  }
6069
6070  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6071  if (!VDecl) {
6072    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6073    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6074    RealDecl->setInvalidDecl();
6075    return;
6076  }
6077
6078  // Check for self-references within variable initializers.
6079  // Variables declared within a function/method body are handled
6080  // by a dataflow analysis.
6081  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6082    CheckSelfReference(RealDecl, Init);
6083
6084  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6085
6086  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6087  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6088    Expr *DeduceInit = Init;
6089    // Initializer could be a C++ direct-initializer. Deduction only works if it
6090    // contains exactly one expression.
6091    if (CXXDirectInit) {
6092      if (CXXDirectInit->getNumExprs() == 0) {
6093        // It isn't possible to write this directly, but it is possible to
6094        // end up in this situation with "auto x(some_pack...);"
6095        Diag(CXXDirectInit->getSourceRange().getBegin(),
6096             diag::err_auto_var_init_no_expression)
6097          << VDecl->getDeclName() << VDecl->getType()
6098          << VDecl->getSourceRange();
6099        RealDecl->setInvalidDecl();
6100        return;
6101      } else if (CXXDirectInit->getNumExprs() > 1) {
6102        Diag(CXXDirectInit->getExpr(1)->getSourceRange().getBegin(),
6103             diag::err_auto_var_init_multiple_expressions)
6104          << VDecl->getDeclName() << VDecl->getType()
6105          << VDecl->getSourceRange();
6106        RealDecl->setInvalidDecl();
6107        return;
6108      } else {
6109        DeduceInit = CXXDirectInit->getExpr(0);
6110      }
6111    }
6112    TypeSourceInfo *DeducedType = 0;
6113    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6114            DAR_Failed)
6115      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6116    if (!DeducedType) {
6117      RealDecl->setInvalidDecl();
6118      return;
6119    }
6120    VDecl->setTypeSourceInfo(DeducedType);
6121    VDecl->setType(DeducedType->getType());
6122    VDecl->ClearLinkageCache();
6123
6124    // In ARC, infer lifetime.
6125    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6126      VDecl->setInvalidDecl();
6127
6128    // If this is a redeclaration, check that the type we just deduced matches
6129    // the previously declared type.
6130    if (VarDecl *Old = VDecl->getPreviousDecl())
6131      MergeVarDeclTypes(VDecl, Old);
6132  }
6133
6134  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6135    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6136    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6137    VDecl->setInvalidDecl();
6138    return;
6139  }
6140
6141  if (!VDecl->getType()->isDependentType()) {
6142    // A definition must end up with a complete type, which means it must be
6143    // complete with the restriction that an array type might be completed by
6144    // the initializer; note that later code assumes this restriction.
6145    QualType BaseDeclType = VDecl->getType();
6146    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6147      BaseDeclType = Array->getElementType();
6148    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6149                            diag::err_typecheck_decl_incomplete_type)) {
6150      RealDecl->setInvalidDecl();
6151      return;
6152    }
6153
6154    // The variable can not have an abstract class type.
6155    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6156                               diag::err_abstract_type_in_decl,
6157                               AbstractVariableType))
6158      VDecl->setInvalidDecl();
6159  }
6160
6161  const VarDecl *Def;
6162  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6163    Diag(VDecl->getLocation(), diag::err_redefinition)
6164      << VDecl->getDeclName();
6165    Diag(Def->getLocation(), diag::note_previous_definition);
6166    VDecl->setInvalidDecl();
6167    return;
6168  }
6169
6170  const VarDecl* PrevInit = 0;
6171  if (getLangOptions().CPlusPlus) {
6172    // C++ [class.static.data]p4
6173    //   If a static data member is of const integral or const
6174    //   enumeration type, its declaration in the class definition can
6175    //   specify a constant-initializer which shall be an integral
6176    //   constant expression (5.19). In that case, the member can appear
6177    //   in integral constant expressions. The member shall still be
6178    //   defined in a namespace scope if it is used in the program and the
6179    //   namespace scope definition shall not contain an initializer.
6180    //
6181    // We already performed a redefinition check above, but for static
6182    // data members we also need to check whether there was an in-class
6183    // declaration with an initializer.
6184    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6185      Diag(VDecl->getLocation(), diag::err_redefinition)
6186        << VDecl->getDeclName();
6187      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6188      return;
6189    }
6190
6191    if (VDecl->hasLocalStorage())
6192      getCurFunction()->setHasBranchProtectedScope();
6193
6194    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6195      VDecl->setInvalidDecl();
6196      return;
6197    }
6198  }
6199
6200  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6201  // a kernel function cannot be initialized."
6202  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6203    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6204    VDecl->setInvalidDecl();
6205    return;
6206  }
6207
6208  // Get the decls type and save a reference for later, since
6209  // CheckInitializerTypes may change it.
6210  QualType DclT = VDecl->getType(), SavT = DclT;
6211
6212  // Perform the initialization.
6213  if (!VDecl->isInvalidDecl()) {
6214    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6215    InitializationKind Kind
6216      = DirectInit ?
6217          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6218                                                           Init->getLocStart(),
6219                                                           Init->getLocEnd())
6220                        : InitializationKind::CreateDirectList(
6221                                                          VDecl->getLocation())
6222                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6223                                                    Init->getLocStart());
6224
6225    Expr **Args = &Init;
6226    unsigned NumArgs = 1;
6227    if (CXXDirectInit) {
6228      Args = CXXDirectInit->getExprs();
6229      NumArgs = CXXDirectInit->getNumExprs();
6230    }
6231    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6232    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6233                                              MultiExprArg(*this, Args,NumArgs),
6234                                              &DclT);
6235    if (Result.isInvalid()) {
6236      VDecl->setInvalidDecl();
6237      return;
6238    }
6239
6240    Init = Result.takeAs<Expr>();
6241  }
6242
6243  // If the type changed, it means we had an incomplete type that was
6244  // completed by the initializer. For example:
6245  //   int ary[] = { 1, 3, 5 };
6246  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6247  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6248    VDecl->setType(DclT);
6249
6250  // Check any implicit conversions within the expression.
6251  CheckImplicitConversions(Init, VDecl->getLocation());
6252
6253  if (!VDecl->isInvalidDecl())
6254    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6255
6256  Init = MaybeCreateExprWithCleanups(Init);
6257  // Attach the initializer to the decl.
6258  VDecl->setInit(Init);
6259
6260  if (VDecl->isLocalVarDecl()) {
6261    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6262    // static storage duration shall be constant expressions or string literals.
6263    // C++ does not have this restriction.
6264    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6265        VDecl->getStorageClass() == SC_Static)
6266      CheckForConstantInitializer(Init, DclT);
6267  } else if (VDecl->isStaticDataMember() &&
6268             VDecl->getLexicalDeclContext()->isRecord()) {
6269    // This is an in-class initialization for a static data member, e.g.,
6270    //
6271    // struct S {
6272    //   static const int value = 17;
6273    // };
6274
6275    // C++ [class.mem]p4:
6276    //   A member-declarator can contain a constant-initializer only
6277    //   if it declares a static member (9.4) of const integral or
6278    //   const enumeration type, see 9.4.2.
6279    //
6280    // C++11 [class.static.data]p3:
6281    //   If a non-volatile const static data member is of integral or
6282    //   enumeration type, its declaration in the class definition can
6283    //   specify a brace-or-equal-initializer in which every initalizer-clause
6284    //   that is an assignment-expression is a constant expression. A static
6285    //   data member of literal type can be declared in the class definition
6286    //   with the constexpr specifier; if so, its declaration shall specify a
6287    //   brace-or-equal-initializer in which every initializer-clause that is
6288    //   an assignment-expression is a constant expression.
6289
6290    // Do nothing on dependent types.
6291    if (DclT->isDependentType()) {
6292
6293    // Allow any 'static constexpr' members, whether or not they are of literal
6294    // type. We separately check that every constexpr variable is of literal
6295    // type.
6296    } else if (VDecl->isConstexpr()) {
6297
6298    // Require constness.
6299    } else if (!DclT.isConstQualified()) {
6300      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6301        << Init->getSourceRange();
6302      VDecl->setInvalidDecl();
6303
6304    // We allow integer constant expressions in all cases.
6305    } else if (DclT->isIntegralOrEnumerationType()) {
6306      // Check whether the expression is a constant expression.
6307      SourceLocation Loc;
6308      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6309        // In C++11, a non-constexpr const static data member with an
6310        // in-class initializer cannot be volatile.
6311        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6312      else if (Init->isValueDependent())
6313        ; // Nothing to check.
6314      else if (Init->isIntegerConstantExpr(Context, &Loc))
6315        ; // Ok, it's an ICE!
6316      else if (Init->isEvaluatable(Context)) {
6317        // If we can constant fold the initializer through heroics, accept it,
6318        // but report this as a use of an extension for -pedantic.
6319        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6320          << Init->getSourceRange();
6321      } else {
6322        // Otherwise, this is some crazy unknown case.  Report the issue at the
6323        // location provided by the isIntegerConstantExpr failed check.
6324        Diag(Loc, diag::err_in_class_initializer_non_constant)
6325          << Init->getSourceRange();
6326        VDecl->setInvalidDecl();
6327      }
6328
6329    // We allow foldable floating-point constants as an extension.
6330    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6331      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6332        << DclT << Init->getSourceRange();
6333      if (getLangOptions().CPlusPlus0x)
6334        Diag(VDecl->getLocation(),
6335             diag::note_in_class_initializer_float_type_constexpr)
6336          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6337
6338      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6339        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6340          << Init->getSourceRange();
6341        VDecl->setInvalidDecl();
6342      }
6343
6344    // Suggest adding 'constexpr' in C++11 for literal types.
6345    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6346      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6347        << DclT << Init->getSourceRange()
6348        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6349      VDecl->setConstexpr(true);
6350
6351    } else {
6352      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6353        << DclT << Init->getSourceRange();
6354      VDecl->setInvalidDecl();
6355    }
6356  } else if (VDecl->isFileVarDecl()) {
6357    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6358        (!getLangOptions().CPlusPlus ||
6359         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6360      Diag(VDecl->getLocation(), diag::warn_extern_init);
6361
6362    // C99 6.7.8p4. All file scoped initializers need to be constant.
6363    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6364      CheckForConstantInitializer(Init, DclT);
6365  }
6366
6367  // We will represent direct-initialization similarly to copy-initialization:
6368  //    int x(1);  -as-> int x = 1;
6369  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6370  //
6371  // Clients that want to distinguish between the two forms, can check for
6372  // direct initializer using VarDecl::getInitStyle().
6373  // A major benefit is that clients that don't particularly care about which
6374  // exactly form was it (like the CodeGen) can handle both cases without
6375  // special case code.
6376
6377  // C++ 8.5p11:
6378  // The form of initialization (using parentheses or '=') is generally
6379  // insignificant, but does matter when the entity being initialized has a
6380  // class type.
6381  if (CXXDirectInit) {
6382    assert(DirectInit && "Call-style initializer must be direct init.");
6383    VDecl->setInitStyle(VarDecl::CallInit);
6384  } else if (DirectInit) {
6385    // This must be list-initialization. No other way is direct-initialization.
6386    VDecl->setInitStyle(VarDecl::ListInit);
6387  }
6388
6389  CheckCompleteVariableDeclaration(VDecl);
6390}
6391
6392/// ActOnInitializerError - Given that there was an error parsing an
6393/// initializer for the given declaration, try to return to some form
6394/// of sanity.
6395void Sema::ActOnInitializerError(Decl *D) {
6396  // Our main concern here is re-establishing invariants like "a
6397  // variable's type is either dependent or complete".
6398  if (!D || D->isInvalidDecl()) return;
6399
6400  VarDecl *VD = dyn_cast<VarDecl>(D);
6401  if (!VD) return;
6402
6403  // Auto types are meaningless if we can't make sense of the initializer.
6404  if (ParsingInitForAutoVars.count(D)) {
6405    D->setInvalidDecl();
6406    return;
6407  }
6408
6409  QualType Ty = VD->getType();
6410  if (Ty->isDependentType()) return;
6411
6412  // Require a complete type.
6413  if (RequireCompleteType(VD->getLocation(),
6414                          Context.getBaseElementType(Ty),
6415                          diag::err_typecheck_decl_incomplete_type)) {
6416    VD->setInvalidDecl();
6417    return;
6418  }
6419
6420  // Require an abstract type.
6421  if (RequireNonAbstractType(VD->getLocation(), Ty,
6422                             diag::err_abstract_type_in_decl,
6423                             AbstractVariableType)) {
6424    VD->setInvalidDecl();
6425    return;
6426  }
6427
6428  // Don't bother complaining about constructors or destructors,
6429  // though.
6430}
6431
6432void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6433                                  bool TypeMayContainAuto) {
6434  // If there is no declaration, there was an error parsing it. Just ignore it.
6435  if (RealDecl == 0)
6436    return;
6437
6438  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6439    QualType Type = Var->getType();
6440
6441    // C++11 [dcl.spec.auto]p3
6442    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6443      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6444        << Var->getDeclName() << Type;
6445      Var->setInvalidDecl();
6446      return;
6447    }
6448
6449    // C++11 [class.static.data]p3: A static data member can be declared with
6450    // the constexpr specifier; if so, its declaration shall specify
6451    // a brace-or-equal-initializer.
6452    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6453    // the definition of a variable [...] or the declaration of a static data
6454    // member.
6455    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6456      if (Var->isStaticDataMember())
6457        Diag(Var->getLocation(),
6458             diag::err_constexpr_static_mem_var_requires_init)
6459          << Var->getDeclName();
6460      else
6461        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6462      Var->setInvalidDecl();
6463      return;
6464    }
6465
6466    switch (Var->isThisDeclarationADefinition()) {
6467    case VarDecl::Definition:
6468      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6469        break;
6470
6471      // We have an out-of-line definition of a static data member
6472      // that has an in-class initializer, so we type-check this like
6473      // a declaration.
6474      //
6475      // Fall through
6476
6477    case VarDecl::DeclarationOnly:
6478      // It's only a declaration.
6479
6480      // Block scope. C99 6.7p7: If an identifier for an object is
6481      // declared with no linkage (C99 6.2.2p6), the type for the
6482      // object shall be complete.
6483      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6484          !Var->getLinkage() && !Var->isInvalidDecl() &&
6485          RequireCompleteType(Var->getLocation(), Type,
6486                              diag::err_typecheck_decl_incomplete_type))
6487        Var->setInvalidDecl();
6488
6489      // Make sure that the type is not abstract.
6490      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6491          RequireNonAbstractType(Var->getLocation(), Type,
6492                                 diag::err_abstract_type_in_decl,
6493                                 AbstractVariableType))
6494        Var->setInvalidDecl();
6495      return;
6496
6497    case VarDecl::TentativeDefinition:
6498      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6499      // object that has file scope without an initializer, and without a
6500      // storage-class specifier or with the storage-class specifier "static",
6501      // constitutes a tentative definition. Note: A tentative definition with
6502      // external linkage is valid (C99 6.2.2p5).
6503      if (!Var->isInvalidDecl()) {
6504        if (const IncompleteArrayType *ArrayT
6505                                    = Context.getAsIncompleteArrayType(Type)) {
6506          if (RequireCompleteType(Var->getLocation(),
6507                                  ArrayT->getElementType(),
6508                                  diag::err_illegal_decl_array_incomplete_type))
6509            Var->setInvalidDecl();
6510        } else if (Var->getStorageClass() == SC_Static) {
6511          // C99 6.9.2p3: If the declaration of an identifier for an object is
6512          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6513          // declared type shall not be an incomplete type.
6514          // NOTE: code such as the following
6515          //     static struct s;
6516          //     struct s { int a; };
6517          // is accepted by gcc. Hence here we issue a warning instead of
6518          // an error and we do not invalidate the static declaration.
6519          // NOTE: to avoid multiple warnings, only check the first declaration.
6520          if (Var->getPreviousDecl() == 0)
6521            RequireCompleteType(Var->getLocation(), Type,
6522                                diag::ext_typecheck_decl_incomplete_type);
6523        }
6524      }
6525
6526      // Record the tentative definition; we're done.
6527      if (!Var->isInvalidDecl())
6528        TentativeDefinitions.push_back(Var);
6529      return;
6530    }
6531
6532    // Provide a specific diagnostic for uninitialized variable
6533    // definitions with incomplete array type.
6534    if (Type->isIncompleteArrayType()) {
6535      Diag(Var->getLocation(),
6536           diag::err_typecheck_incomplete_array_needs_initializer);
6537      Var->setInvalidDecl();
6538      return;
6539    }
6540
6541    // Provide a specific diagnostic for uninitialized variable
6542    // definitions with reference type.
6543    if (Type->isReferenceType()) {
6544      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6545        << Var->getDeclName()
6546        << SourceRange(Var->getLocation(), Var->getLocation());
6547      Var->setInvalidDecl();
6548      return;
6549    }
6550
6551    // Do not attempt to type-check the default initializer for a
6552    // variable with dependent type.
6553    if (Type->isDependentType())
6554      return;
6555
6556    if (Var->isInvalidDecl())
6557      return;
6558
6559    if (RequireCompleteType(Var->getLocation(),
6560                            Context.getBaseElementType(Type),
6561                            diag::err_typecheck_decl_incomplete_type)) {
6562      Var->setInvalidDecl();
6563      return;
6564    }
6565
6566    // The variable can not have an abstract class type.
6567    if (RequireNonAbstractType(Var->getLocation(), Type,
6568                               diag::err_abstract_type_in_decl,
6569                               AbstractVariableType)) {
6570      Var->setInvalidDecl();
6571      return;
6572    }
6573
6574    // Check for jumps past the implicit initializer.  C++0x
6575    // clarifies that this applies to a "variable with automatic
6576    // storage duration", not a "local variable".
6577    // C++11 [stmt.dcl]p3
6578    //   A program that jumps from a point where a variable with automatic
6579    //   storage duration is not in scope to a point where it is in scope is
6580    //   ill-formed unless the variable has scalar type, class type with a
6581    //   trivial default constructor and a trivial destructor, a cv-qualified
6582    //   version of one of these types, or an array of one of the preceding
6583    //   types and is declared without an initializer.
6584    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6585      if (const RecordType *Record
6586            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6587        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6588        // Mark the function for further checking even if the looser rules of
6589        // C++11 do not require such checks, so that we can diagnose
6590        // incompatibilities with C++98.
6591        if (!CXXRecord->isPOD())
6592          getCurFunction()->setHasBranchProtectedScope();
6593      }
6594    }
6595
6596    // C++03 [dcl.init]p9:
6597    //   If no initializer is specified for an object, and the
6598    //   object is of (possibly cv-qualified) non-POD class type (or
6599    //   array thereof), the object shall be default-initialized; if
6600    //   the object is of const-qualified type, the underlying class
6601    //   type shall have a user-declared default
6602    //   constructor. Otherwise, if no initializer is specified for
6603    //   a non- static object, the object and its subobjects, if
6604    //   any, have an indeterminate initial value); if the object
6605    //   or any of its subobjects are of const-qualified type, the
6606    //   program is ill-formed.
6607    // C++0x [dcl.init]p11:
6608    //   If no initializer is specified for an object, the object is
6609    //   default-initialized; [...].
6610    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6611    InitializationKind Kind
6612      = InitializationKind::CreateDefault(Var->getLocation());
6613
6614    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6615    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6616                                      MultiExprArg(*this, 0, 0));
6617    if (Init.isInvalid())
6618      Var->setInvalidDecl();
6619    else if (Init.get()) {
6620      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6621      // This is important for template substitution.
6622      Var->setInitStyle(VarDecl::CallInit);
6623    }
6624
6625    CheckCompleteVariableDeclaration(Var);
6626  }
6627}
6628
6629void Sema::ActOnCXXForRangeDecl(Decl *D) {
6630  VarDecl *VD = dyn_cast<VarDecl>(D);
6631  if (!VD) {
6632    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6633    D->setInvalidDecl();
6634    return;
6635  }
6636
6637  VD->setCXXForRangeDecl(true);
6638
6639  // for-range-declaration cannot be given a storage class specifier.
6640  int Error = -1;
6641  switch (VD->getStorageClassAsWritten()) {
6642  case SC_None:
6643    break;
6644  case SC_Extern:
6645    Error = 0;
6646    break;
6647  case SC_Static:
6648    Error = 1;
6649    break;
6650  case SC_PrivateExtern:
6651    Error = 2;
6652    break;
6653  case SC_Auto:
6654    Error = 3;
6655    break;
6656  case SC_Register:
6657    Error = 4;
6658    break;
6659  case SC_OpenCLWorkGroupLocal:
6660    llvm_unreachable("Unexpected storage class");
6661  }
6662  if (VD->isConstexpr())
6663    Error = 5;
6664  if (Error != -1) {
6665    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6666      << VD->getDeclName() << Error;
6667    D->setInvalidDecl();
6668  }
6669}
6670
6671void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6672  if (var->isInvalidDecl()) return;
6673
6674  // In ARC, don't allow jumps past the implicit initialization of a
6675  // local retaining variable.
6676  if (getLangOptions().ObjCAutoRefCount &&
6677      var->hasLocalStorage()) {
6678    switch (var->getType().getObjCLifetime()) {
6679    case Qualifiers::OCL_None:
6680    case Qualifiers::OCL_ExplicitNone:
6681    case Qualifiers::OCL_Autoreleasing:
6682      break;
6683
6684    case Qualifiers::OCL_Weak:
6685    case Qualifiers::OCL_Strong:
6686      getCurFunction()->setHasBranchProtectedScope();
6687      break;
6688    }
6689  }
6690
6691  // All the following checks are C++ only.
6692  if (!getLangOptions().CPlusPlus) return;
6693
6694  QualType baseType = Context.getBaseElementType(var->getType());
6695  if (baseType->isDependentType()) return;
6696
6697  // __block variables might require us to capture a copy-initializer.
6698  if (var->hasAttr<BlocksAttr>()) {
6699    // It's currently invalid to ever have a __block variable with an
6700    // array type; should we diagnose that here?
6701
6702    // Regardless, we don't want to ignore array nesting when
6703    // constructing this copy.
6704    QualType type = var->getType();
6705
6706    if (type->isStructureOrClassType()) {
6707      SourceLocation poi = var->getLocation();
6708      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6709      ExprResult result =
6710        PerformCopyInitialization(
6711                        InitializedEntity::InitializeBlock(poi, type, false),
6712                                  poi, Owned(varRef));
6713      if (!result.isInvalid()) {
6714        result = MaybeCreateExprWithCleanups(result);
6715        Expr *init = result.takeAs<Expr>();
6716        Context.setBlockVarCopyInits(var, init);
6717      }
6718    }
6719  }
6720
6721  Expr *Init = var->getInit();
6722  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6723
6724  if (!var->getDeclContext()->isDependentContext() && Init) {
6725    if (IsGlobal && !var->isConstexpr() &&
6726        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6727                                            var->getLocation())
6728          != DiagnosticsEngine::Ignored &&
6729        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6730      Diag(var->getLocation(), diag::warn_global_constructor)
6731        << Init->getSourceRange();
6732
6733    if (var->isConstexpr()) {
6734      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6735      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6736        SourceLocation DiagLoc = var->getLocation();
6737        // If the note doesn't add any useful information other than a source
6738        // location, fold it into the primary diagnostic.
6739        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6740              diag::note_invalid_subexpr_in_const_expr) {
6741          DiagLoc = Notes[0].first;
6742          Notes.clear();
6743        }
6744        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6745          << var << Init->getSourceRange();
6746        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6747          Diag(Notes[I].first, Notes[I].second);
6748      }
6749    } else if (var->isUsableInConstantExpressions()) {
6750      // Check whether the initializer of a const variable of integral or
6751      // enumeration type is an ICE now, since we can't tell whether it was
6752      // initialized by a constant expression if we check later.
6753      var->checkInitIsICE();
6754    }
6755  }
6756
6757  // Require the destructor.
6758  if (const RecordType *recordType = baseType->getAs<RecordType>())
6759    FinalizeVarWithDestructor(var, recordType);
6760}
6761
6762/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6763/// any semantic actions necessary after any initializer has been attached.
6764void
6765Sema::FinalizeDeclaration(Decl *ThisDecl) {
6766  // Note that we are no longer parsing the initializer for this declaration.
6767  ParsingInitForAutoVars.erase(ThisDecl);
6768}
6769
6770Sema::DeclGroupPtrTy
6771Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6772                              Decl **Group, unsigned NumDecls) {
6773  SmallVector<Decl*, 8> Decls;
6774
6775  if (DS.isTypeSpecOwned())
6776    Decls.push_back(DS.getRepAsDecl());
6777
6778  for (unsigned i = 0; i != NumDecls; ++i)
6779    if (Decl *D = Group[i])
6780      Decls.push_back(D);
6781
6782  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6783                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6784}
6785
6786/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6787/// group, performing any necessary semantic checking.
6788Sema::DeclGroupPtrTy
6789Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6790                           bool TypeMayContainAuto) {
6791  // C++0x [dcl.spec.auto]p7:
6792  //   If the type deduced for the template parameter U is not the same in each
6793  //   deduction, the program is ill-formed.
6794  // FIXME: When initializer-list support is added, a distinction is needed
6795  // between the deduced type U and the deduced type which 'auto' stands for.
6796  //   auto a = 0, b = { 1, 2, 3 };
6797  // is legal because the deduced type U is 'int' in both cases.
6798  if (TypeMayContainAuto && NumDecls > 1) {
6799    QualType Deduced;
6800    CanQualType DeducedCanon;
6801    VarDecl *DeducedDecl = 0;
6802    for (unsigned i = 0; i != NumDecls; ++i) {
6803      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6804        AutoType *AT = D->getType()->getContainedAutoType();
6805        // Don't reissue diagnostics when instantiating a template.
6806        if (AT && D->isInvalidDecl())
6807          break;
6808        if (AT && AT->isDeduced()) {
6809          QualType U = AT->getDeducedType();
6810          CanQualType UCanon = Context.getCanonicalType(U);
6811          if (Deduced.isNull()) {
6812            Deduced = U;
6813            DeducedCanon = UCanon;
6814            DeducedDecl = D;
6815          } else if (DeducedCanon != UCanon) {
6816            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6817                 diag::err_auto_different_deductions)
6818              << Deduced << DeducedDecl->getDeclName()
6819              << U << D->getDeclName()
6820              << DeducedDecl->getInit()->getSourceRange()
6821              << D->getInit()->getSourceRange();
6822            D->setInvalidDecl();
6823            break;
6824          }
6825        }
6826      }
6827    }
6828  }
6829
6830  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6831}
6832
6833
6834/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6835/// to introduce parameters into function prototype scope.
6836Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6837  const DeclSpec &DS = D.getDeclSpec();
6838
6839  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6840  // C++03 [dcl.stc]p2 also permits 'auto'.
6841  VarDecl::StorageClass StorageClass = SC_None;
6842  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6843  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6844    StorageClass = SC_Register;
6845    StorageClassAsWritten = SC_Register;
6846  } else if (getLangOptions().CPlusPlus &&
6847             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6848    StorageClass = SC_Auto;
6849    StorageClassAsWritten = SC_Auto;
6850  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6851    Diag(DS.getStorageClassSpecLoc(),
6852         diag::err_invalid_storage_class_in_func_decl);
6853    D.getMutableDeclSpec().ClearStorageClassSpecs();
6854  }
6855
6856  if (D.getDeclSpec().isThreadSpecified())
6857    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6858  if (D.getDeclSpec().isConstexprSpecified())
6859    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6860      << 0;
6861
6862  DiagnoseFunctionSpecifiers(D);
6863
6864  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6865  QualType parmDeclType = TInfo->getType();
6866
6867  if (getLangOptions().CPlusPlus) {
6868    // Check that there are no default arguments inside the type of this
6869    // parameter.
6870    CheckExtraCXXDefaultArguments(D);
6871
6872    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6873    if (D.getCXXScopeSpec().isSet()) {
6874      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6875        << D.getCXXScopeSpec().getRange();
6876      D.getCXXScopeSpec().clear();
6877    }
6878  }
6879
6880  // Ensure we have a valid name
6881  IdentifierInfo *II = 0;
6882  if (D.hasName()) {
6883    II = D.getIdentifier();
6884    if (!II) {
6885      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6886        << GetNameForDeclarator(D).getName().getAsString();
6887      D.setInvalidType(true);
6888    }
6889  }
6890
6891  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6892  if (II) {
6893    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6894                   ForRedeclaration);
6895    LookupName(R, S);
6896    if (R.isSingleResult()) {
6897      NamedDecl *PrevDecl = R.getFoundDecl();
6898      if (PrevDecl->isTemplateParameter()) {
6899        // Maybe we will complain about the shadowed template parameter.
6900        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6901        // Just pretend that we didn't see the previous declaration.
6902        PrevDecl = 0;
6903      } else if (S->isDeclScope(PrevDecl)) {
6904        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6905        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6906
6907        // Recover by removing the name
6908        II = 0;
6909        D.SetIdentifier(0, D.getIdentifierLoc());
6910        D.setInvalidType(true);
6911      }
6912    }
6913  }
6914
6915  // Temporarily put parameter variables in the translation unit, not
6916  // the enclosing context.  This prevents them from accidentally
6917  // looking like class members in C++.
6918  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6919                                    D.getSourceRange().getBegin(),
6920                                    D.getIdentifierLoc(), II,
6921                                    parmDeclType, TInfo,
6922                                    StorageClass, StorageClassAsWritten);
6923
6924  if (D.isInvalidType())
6925    New->setInvalidDecl();
6926
6927  assert(S->isFunctionPrototypeScope());
6928  assert(S->getFunctionPrototypeDepth() >= 1);
6929  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6930                    S->getNextFunctionPrototypeIndex());
6931
6932  // Add the parameter declaration into this scope.
6933  S->AddDecl(New);
6934  if (II)
6935    IdResolver.AddDecl(New);
6936
6937  ProcessDeclAttributes(S, New, D);
6938
6939  if (D.getDeclSpec().isModulePrivateSpecified())
6940    Diag(New->getLocation(), diag::err_module_private_local)
6941      << 1 << New->getDeclName()
6942      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6943      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6944
6945  if (New->hasAttr<BlocksAttr>()) {
6946    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6947  }
6948  return New;
6949}
6950
6951/// \brief Synthesizes a variable for a parameter arising from a
6952/// typedef.
6953ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6954                                              SourceLocation Loc,
6955                                              QualType T) {
6956  /* FIXME: setting StartLoc == Loc.
6957     Would it be worth to modify callers so as to provide proper source
6958     location for the unnamed parameters, embedding the parameter's type? */
6959  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6960                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6961                                           SC_None, SC_None, 0);
6962  Param->setImplicit();
6963  return Param;
6964}
6965
6966void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6967                                    ParmVarDecl * const *ParamEnd) {
6968  // Don't diagnose unused-parameter errors in template instantiations; we
6969  // will already have done so in the template itself.
6970  if (!ActiveTemplateInstantiations.empty())
6971    return;
6972
6973  for (; Param != ParamEnd; ++Param) {
6974    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6975        !(*Param)->hasAttr<UnusedAttr>()) {
6976      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6977        << (*Param)->getDeclName();
6978    }
6979  }
6980}
6981
6982void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6983                                                  ParmVarDecl * const *ParamEnd,
6984                                                  QualType ReturnTy,
6985                                                  NamedDecl *D) {
6986  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6987    return;
6988
6989  // Warn if the return value is pass-by-value and larger than the specified
6990  // threshold.
6991  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6992    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6993    if (Size > LangOpts.NumLargeByValueCopy)
6994      Diag(D->getLocation(), diag::warn_return_value_size)
6995          << D->getDeclName() << Size;
6996  }
6997
6998  // Warn if any parameter is pass-by-value and larger than the specified
6999  // threshold.
7000  for (; Param != ParamEnd; ++Param) {
7001    QualType T = (*Param)->getType();
7002    if (T->isDependentType() || !T.isPODType(Context))
7003      continue;
7004    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7005    if (Size > LangOpts.NumLargeByValueCopy)
7006      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7007          << (*Param)->getDeclName() << Size;
7008  }
7009}
7010
7011ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7012                                  SourceLocation NameLoc, IdentifierInfo *Name,
7013                                  QualType T, TypeSourceInfo *TSInfo,
7014                                  VarDecl::StorageClass StorageClass,
7015                                  VarDecl::StorageClass StorageClassAsWritten) {
7016  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7017  if (getLangOptions().ObjCAutoRefCount &&
7018      T.getObjCLifetime() == Qualifiers::OCL_None &&
7019      T->isObjCLifetimeType()) {
7020
7021    Qualifiers::ObjCLifetime lifetime;
7022
7023    // Special cases for arrays:
7024    //   - if it's const, use __unsafe_unretained
7025    //   - otherwise, it's an error
7026    if (T->isArrayType()) {
7027      if (!T.isConstQualified()) {
7028        DelayedDiagnostics.add(
7029            sema::DelayedDiagnostic::makeForbiddenType(
7030            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7031      }
7032      lifetime = Qualifiers::OCL_ExplicitNone;
7033    } else {
7034      lifetime = T->getObjCARCImplicitLifetime();
7035    }
7036    T = Context.getLifetimeQualifiedType(T, lifetime);
7037  }
7038
7039  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7040                                         Context.getAdjustedParameterType(T),
7041                                         TSInfo,
7042                                         StorageClass, StorageClassAsWritten,
7043                                         0);
7044
7045  // Parameters can not be abstract class types.
7046  // For record types, this is done by the AbstractClassUsageDiagnoser once
7047  // the class has been completely parsed.
7048  if (!CurContext->isRecord() &&
7049      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7050                             AbstractParamType))
7051    New->setInvalidDecl();
7052
7053  // Parameter declarators cannot be interface types. All ObjC objects are
7054  // passed by reference.
7055  if (T->isObjCObjectType()) {
7056    Diag(NameLoc,
7057         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7058      << FixItHint::CreateInsertion(NameLoc, "*");
7059    T = Context.getObjCObjectPointerType(T);
7060    New->setType(T);
7061  }
7062
7063  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7064  // duration shall not be qualified by an address-space qualifier."
7065  // Since all parameters have automatic store duration, they can not have
7066  // an address space.
7067  if (T.getAddressSpace() != 0) {
7068    Diag(NameLoc, diag::err_arg_with_address_space);
7069    New->setInvalidDecl();
7070  }
7071
7072  return New;
7073}
7074
7075void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7076                                           SourceLocation LocAfterDecls) {
7077  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7078
7079  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7080  // for a K&R function.
7081  if (!FTI.hasPrototype) {
7082    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7083      --i;
7084      if (FTI.ArgInfo[i].Param == 0) {
7085        SmallString<256> Code;
7086        llvm::raw_svector_ostream(Code) << "  int "
7087                                        << FTI.ArgInfo[i].Ident->getName()
7088                                        << ";\n";
7089        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7090          << FTI.ArgInfo[i].Ident
7091          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7092
7093        // Implicitly declare the argument as type 'int' for lack of a better
7094        // type.
7095        AttributeFactory attrs;
7096        DeclSpec DS(attrs);
7097        const char* PrevSpec; // unused
7098        unsigned DiagID; // unused
7099        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7100                           PrevSpec, DiagID);
7101        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7102        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7103        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7104      }
7105    }
7106  }
7107}
7108
7109Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
7110                                         Declarator &D) {
7111  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7112  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7113  Scope *ParentScope = FnBodyScope->getParent();
7114
7115  D.setFunctionDefinitionKind(FDK_Definition);
7116  Decl *DP = HandleDeclarator(ParentScope, D,
7117                              MultiTemplateParamsArg(*this));
7118  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7119}
7120
7121static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7122  // Don't warn about invalid declarations.
7123  if (FD->isInvalidDecl())
7124    return false;
7125
7126  // Or declarations that aren't global.
7127  if (!FD->isGlobal())
7128    return false;
7129
7130  // Don't warn about C++ member functions.
7131  if (isa<CXXMethodDecl>(FD))
7132    return false;
7133
7134  // Don't warn about 'main'.
7135  if (FD->isMain())
7136    return false;
7137
7138  // Don't warn about inline functions.
7139  if (FD->isInlined())
7140    return false;
7141
7142  // Don't warn about function templates.
7143  if (FD->getDescribedFunctionTemplate())
7144    return false;
7145
7146  // Don't warn about function template specializations.
7147  if (FD->isFunctionTemplateSpecialization())
7148    return false;
7149
7150  bool MissingPrototype = true;
7151  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7152       Prev; Prev = Prev->getPreviousDecl()) {
7153    // Ignore any declarations that occur in function or method
7154    // scope, because they aren't visible from the header.
7155    if (Prev->getDeclContext()->isFunctionOrMethod())
7156      continue;
7157
7158    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7159    break;
7160  }
7161
7162  return MissingPrototype;
7163}
7164
7165void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7166  // Don't complain if we're in GNU89 mode and the previous definition
7167  // was an extern inline function.
7168  const FunctionDecl *Definition;
7169  if (FD->isDefined(Definition) &&
7170      !canRedefineFunction(Definition, getLangOptions())) {
7171    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7172        Definition->getStorageClass() == SC_Extern)
7173      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7174        << FD->getDeclName() << getLangOptions().CPlusPlus;
7175    else
7176      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7177    Diag(Definition->getLocation(), diag::note_previous_definition);
7178  }
7179}
7180
7181Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7182  // Clear the last template instantiation error context.
7183  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7184
7185  if (!D)
7186    return D;
7187  FunctionDecl *FD = 0;
7188
7189  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7190    FD = FunTmpl->getTemplatedDecl();
7191  else
7192    FD = cast<FunctionDecl>(D);
7193
7194  // Enter a new function scope
7195  PushFunctionScope();
7196
7197  // See if this is a redefinition.
7198  if (!FD->isLateTemplateParsed())
7199    CheckForFunctionRedefinition(FD);
7200
7201  // Builtin functions cannot be defined.
7202  if (unsigned BuiltinID = FD->getBuiltinID()) {
7203    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7204      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7205      FD->setInvalidDecl();
7206    }
7207  }
7208
7209  // The return type of a function definition must be complete
7210  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7211  QualType ResultType = FD->getResultType();
7212  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7213      !FD->isInvalidDecl() &&
7214      RequireCompleteType(FD->getLocation(), ResultType,
7215                          diag::err_func_def_incomplete_result))
7216    FD->setInvalidDecl();
7217
7218  // GNU warning -Wmissing-prototypes:
7219  //   Warn if a global function is defined without a previous
7220  //   prototype declaration. This warning is issued even if the
7221  //   definition itself provides a prototype. The aim is to detect
7222  //   global functions that fail to be declared in header files.
7223  if (ShouldWarnAboutMissingPrototype(FD))
7224    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7225
7226  if (FnBodyScope)
7227    PushDeclContext(FnBodyScope, FD);
7228
7229  // Check the validity of our function parameters
7230  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7231                           /*CheckParameterNames=*/true);
7232
7233  // Introduce our parameters into the function scope
7234  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7235    ParmVarDecl *Param = FD->getParamDecl(p);
7236    Param->setOwningFunction(FD);
7237
7238    // If this has an identifier, add it to the scope stack.
7239    if (Param->getIdentifier() && FnBodyScope) {
7240      CheckShadow(FnBodyScope, Param);
7241
7242      PushOnScopeChains(Param, FnBodyScope);
7243    }
7244  }
7245
7246  // If we had any tags defined in the function prototype,
7247  // introduce them into the function scope.
7248  if (FnBodyScope) {
7249    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7250           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7251      NamedDecl *D = *I;
7252
7253      // Some of these decls (like enums) may have been pinned to the translation unit
7254      // for lack of a real context earlier. If so, remove from the translation unit
7255      // and reattach to the current context.
7256      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7257        // Is the decl actually in the context?
7258        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7259               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7260          if (*DI == D) {
7261            Context.getTranslationUnitDecl()->removeDecl(D);
7262            break;
7263          }
7264        }
7265        // Either way, reassign the lexical decl context to our FunctionDecl.
7266        D->setLexicalDeclContext(CurContext);
7267      }
7268
7269      // If the decl has a non-null name, make accessible in the current scope.
7270      if (!D->getName().empty())
7271        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7272
7273      // Similarly, dive into enums and fish their constants out, making them
7274      // accessible in this scope.
7275      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7276        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7277               EE = ED->enumerator_end(); EI != EE; ++EI)
7278          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7279      }
7280    }
7281  }
7282
7283  // Checking attributes of current function definition
7284  // dllimport attribute.
7285  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7286  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7287    // dllimport attribute cannot be directly applied to definition.
7288    // Microsoft accepts dllimport for functions defined within class scope.
7289    if (!DA->isInherited() &&
7290        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7291      Diag(FD->getLocation(),
7292           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7293        << "dllimport";
7294      FD->setInvalidDecl();
7295      return FD;
7296    }
7297
7298    // Visual C++ appears to not think this is an issue, so only issue
7299    // a warning when Microsoft extensions are disabled.
7300    if (!LangOpts.MicrosoftExt) {
7301      // If a symbol previously declared dllimport is later defined, the
7302      // attribute is ignored in subsequent references, and a warning is
7303      // emitted.
7304      Diag(FD->getLocation(),
7305           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7306        << FD->getName() << "dllimport";
7307    }
7308  }
7309  return FD;
7310}
7311
7312/// \brief Given the set of return statements within a function body,
7313/// compute the variables that are subject to the named return value
7314/// optimization.
7315///
7316/// Each of the variables that is subject to the named return value
7317/// optimization will be marked as NRVO variables in the AST, and any
7318/// return statement that has a marked NRVO variable as its NRVO candidate can
7319/// use the named return value optimization.
7320///
7321/// This function applies a very simplistic algorithm for NRVO: if every return
7322/// statement in the function has the same NRVO candidate, that candidate is
7323/// the NRVO variable.
7324///
7325/// FIXME: Employ a smarter algorithm that accounts for multiple return
7326/// statements and the lifetimes of the NRVO candidates. We should be able to
7327/// find a maximal set of NRVO variables.
7328void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7329  ReturnStmt **Returns = Scope->Returns.data();
7330
7331  const VarDecl *NRVOCandidate = 0;
7332  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7333    if (!Returns[I]->getNRVOCandidate())
7334      return;
7335
7336    if (!NRVOCandidate)
7337      NRVOCandidate = Returns[I]->getNRVOCandidate();
7338    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7339      return;
7340  }
7341
7342  if (NRVOCandidate)
7343    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7344}
7345
7346Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7347  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7348}
7349
7350Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7351                                    bool IsInstantiation) {
7352  FunctionDecl *FD = 0;
7353  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7354  if (FunTmpl)
7355    FD = FunTmpl->getTemplatedDecl();
7356  else
7357    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7358
7359  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7360  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7361
7362  if (FD) {
7363    FD->setBody(Body);
7364
7365    // If the function implicitly returns zero (like 'main') or is naked,
7366    // don't complain about missing return statements.
7367    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7368      WP.disableCheckFallThrough();
7369
7370    // MSVC permits the use of pure specifier (=0) on function definition,
7371    // defined at class scope, warn about this non standard construct.
7372    if (getLangOptions().MicrosoftExt && FD->isPure())
7373      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7374
7375    if (!FD->isInvalidDecl()) {
7376      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7377      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7378                                             FD->getResultType(), FD);
7379
7380      // If this is a constructor, we need a vtable.
7381      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7382        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7383
7384      computeNRVO(Body, getCurFunction());
7385    }
7386
7387    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7388           "Function parsing confused");
7389  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7390    assert(MD == getCurMethodDecl() && "Method parsing confused");
7391    MD->setBody(Body);
7392    if (Body)
7393      MD->setEndLoc(Body->getLocEnd());
7394    if (!MD->isInvalidDecl()) {
7395      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7396      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7397                                             MD->getResultType(), MD);
7398
7399      if (Body)
7400        computeNRVO(Body, getCurFunction());
7401    }
7402    if (ObjCShouldCallSuperDealloc) {
7403      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7404      ObjCShouldCallSuperDealloc = false;
7405    }
7406    if (ObjCShouldCallSuperFinalize) {
7407      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7408      ObjCShouldCallSuperFinalize = false;
7409    }
7410  } else {
7411    return 0;
7412  }
7413
7414  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7415         "ObjC methods, which should have been handled in the block above.");
7416  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7417         "ObjC methods, which should have been handled in the block above.");
7418
7419  // Verify and clean out per-function state.
7420  if (Body) {
7421    // C++ constructors that have function-try-blocks can't have return
7422    // statements in the handlers of that block. (C++ [except.handle]p14)
7423    // Verify this.
7424    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7425      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7426
7427    // Verify that gotos and switch cases don't jump into scopes illegally.
7428    if (getCurFunction()->NeedsScopeChecking() &&
7429        !dcl->isInvalidDecl() &&
7430        !hasAnyUnrecoverableErrorsInThisFunction())
7431      DiagnoseInvalidJumps(Body);
7432
7433    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7434      if (!Destructor->getParent()->isDependentType())
7435        CheckDestructor(Destructor);
7436
7437      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7438                                             Destructor->getParent());
7439    }
7440
7441    // If any errors have occurred, clear out any temporaries that may have
7442    // been leftover. This ensures that these temporaries won't be picked up for
7443    // deletion in some later function.
7444    if (PP.getDiagnostics().hasErrorOccurred() ||
7445        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7446      DiscardCleanupsInEvaluationContext();
7447    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7448      // Since the body is valid, issue any analysis-based warnings that are
7449      // enabled.
7450      ActivePolicy = &WP;
7451    }
7452
7453    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7454        (!CheckConstexprFunctionDecl(FD) ||
7455         !CheckConstexprFunctionBody(FD, Body)))
7456      FD->setInvalidDecl();
7457
7458    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7459    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7460    assert(MaybeODRUseExprs.empty() &&
7461           "Leftover expressions for odr-use checking");
7462  }
7463
7464  if (!IsInstantiation)
7465    PopDeclContext();
7466
7467  PopFunctionScopeInfo(ActivePolicy, dcl);
7468
7469  // If any errors have occurred, clear out any temporaries that may have
7470  // been leftover. This ensures that these temporaries won't be picked up for
7471  // deletion in some later function.
7472  if (getDiagnostics().hasErrorOccurred()) {
7473    DiscardCleanupsInEvaluationContext();
7474  }
7475
7476  return dcl;
7477}
7478
7479
7480/// When we finish delayed parsing of an attribute, we must attach it to the
7481/// relevant Decl.
7482void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7483                                       ParsedAttributes &Attrs) {
7484  // Always attach attributes to the underlying decl.
7485  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7486    D = TD->getTemplatedDecl();
7487  ProcessDeclAttributeList(S, D, Attrs.getList());
7488}
7489
7490
7491/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7492/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7493NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7494                                          IdentifierInfo &II, Scope *S) {
7495  // Before we produce a declaration for an implicitly defined
7496  // function, see whether there was a locally-scoped declaration of
7497  // this name as a function or variable. If so, use that
7498  // (non-visible) declaration, and complain about it.
7499  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7500    = findLocallyScopedExternalDecl(&II);
7501  if (Pos != LocallyScopedExternalDecls.end()) {
7502    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7503    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7504    return Pos->second;
7505  }
7506
7507  // Extension in C99.  Legal in C90, but warn about it.
7508  unsigned diag_id;
7509  if (II.getName().startswith("__builtin_"))
7510    diag_id = diag::warn_builtin_unknown;
7511  else if (getLangOptions().C99)
7512    diag_id = diag::ext_implicit_function_decl;
7513  else
7514    diag_id = diag::warn_implicit_function_decl;
7515  Diag(Loc, diag_id) << &II;
7516
7517  // Because typo correction is expensive, only do it if the implicit
7518  // function declaration is going to be treated as an error.
7519  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7520    TypoCorrection Corrected;
7521    DeclFilterCCC<FunctionDecl> Validator;
7522    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7523                                      LookupOrdinaryName, S, 0, Validator))) {
7524      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7525      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7526      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7527
7528      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7529          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7530
7531      if (Func->getLocation().isValid()
7532          && !II.getName().startswith("__builtin_"))
7533        Diag(Func->getLocation(), diag::note_previous_decl)
7534            << CorrectedQuotedStr;
7535    }
7536  }
7537
7538  // Set a Declarator for the implicit definition: int foo();
7539  const char *Dummy;
7540  AttributeFactory attrFactory;
7541  DeclSpec DS(attrFactory);
7542  unsigned DiagID;
7543  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7544  (void)Error; // Silence warning.
7545  assert(!Error && "Error setting up implicit decl!");
7546  Declarator D(DS, Declarator::BlockContext);
7547  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7548                                             0, 0, true, SourceLocation(),
7549                                             SourceLocation(), SourceLocation(),
7550                                             SourceLocation(),
7551                                             EST_None, SourceLocation(),
7552                                             0, 0, 0, 0, Loc, Loc, D),
7553                DS.getAttributes(),
7554                SourceLocation());
7555  D.SetIdentifier(&II, Loc);
7556
7557  // Insert this function into translation-unit scope.
7558
7559  DeclContext *PrevDC = CurContext;
7560  CurContext = Context.getTranslationUnitDecl();
7561
7562  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7563  FD->setImplicit();
7564
7565  CurContext = PrevDC;
7566
7567  AddKnownFunctionAttributes(FD);
7568
7569  return FD;
7570}
7571
7572/// \brief Adds any function attributes that we know a priori based on
7573/// the declaration of this function.
7574///
7575/// These attributes can apply both to implicitly-declared builtins
7576/// (like __builtin___printf_chk) or to library-declared functions
7577/// like NSLog or printf.
7578///
7579/// We need to check for duplicate attributes both here and where user-written
7580/// attributes are applied to declarations.
7581void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7582  if (FD->isInvalidDecl())
7583    return;
7584
7585  // If this is a built-in function, map its builtin attributes to
7586  // actual attributes.
7587  if (unsigned BuiltinID = FD->getBuiltinID()) {
7588    // Handle printf-formatting attributes.
7589    unsigned FormatIdx;
7590    bool HasVAListArg;
7591    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7592      if (!FD->getAttr<FormatAttr>()) {
7593        const char *fmt = "printf";
7594        unsigned int NumParams = FD->getNumParams();
7595        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7596            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7597          fmt = "NSString";
7598        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7599                                               fmt, FormatIdx+1,
7600                                               HasVAListArg ? 0 : FormatIdx+2));
7601      }
7602    }
7603    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7604                                             HasVAListArg)) {
7605     if (!FD->getAttr<FormatAttr>())
7606       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7607                                              "scanf", FormatIdx+1,
7608                                              HasVAListArg ? 0 : FormatIdx+2));
7609    }
7610
7611    // Mark const if we don't care about errno and that is the only
7612    // thing preventing the function from being const. This allows
7613    // IRgen to use LLVM intrinsics for such functions.
7614    if (!getLangOptions().MathErrno &&
7615        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7616      if (!FD->getAttr<ConstAttr>())
7617        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7618    }
7619
7620    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7621        !FD->getAttr<ReturnsTwiceAttr>())
7622      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7623    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7624      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7625    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7626      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7627  }
7628
7629  IdentifierInfo *Name = FD->getIdentifier();
7630  if (!Name)
7631    return;
7632  if ((!getLangOptions().CPlusPlus &&
7633       FD->getDeclContext()->isTranslationUnit()) ||
7634      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7635       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7636       LinkageSpecDecl::lang_c)) {
7637    // Okay: this could be a libc/libm/Objective-C function we know
7638    // about.
7639  } else
7640    return;
7641
7642  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7643    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7644    // target-specific builtins, perhaps?
7645    if (!FD->getAttr<FormatAttr>())
7646      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7647                                             "printf", 2,
7648                                             Name->isStr("vasprintf") ? 0 : 3));
7649  }
7650}
7651
7652TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7653                                    TypeSourceInfo *TInfo) {
7654  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7655  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7656
7657  if (!TInfo) {
7658    assert(D.isInvalidType() && "no declarator info for valid type");
7659    TInfo = Context.getTrivialTypeSourceInfo(T);
7660  }
7661
7662  // Scope manipulation handled by caller.
7663  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7664                                           D.getSourceRange().getBegin(),
7665                                           D.getIdentifierLoc(),
7666                                           D.getIdentifier(),
7667                                           TInfo);
7668
7669  // Bail out immediately if we have an invalid declaration.
7670  if (D.isInvalidType()) {
7671    NewTD->setInvalidDecl();
7672    return NewTD;
7673  }
7674
7675  if (D.getDeclSpec().isModulePrivateSpecified()) {
7676    if (CurContext->isFunctionOrMethod())
7677      Diag(NewTD->getLocation(), diag::err_module_private_local)
7678        << 2 << NewTD->getDeclName()
7679        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7680        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7681    else
7682      NewTD->setModulePrivate();
7683  }
7684
7685  // C++ [dcl.typedef]p8:
7686  //   If the typedef declaration defines an unnamed class (or
7687  //   enum), the first typedef-name declared by the declaration
7688  //   to be that class type (or enum type) is used to denote the
7689  //   class type (or enum type) for linkage purposes only.
7690  // We need to check whether the type was declared in the declaration.
7691  switch (D.getDeclSpec().getTypeSpecType()) {
7692  case TST_enum:
7693  case TST_struct:
7694  case TST_union:
7695  case TST_class: {
7696    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7697
7698    // Do nothing if the tag is not anonymous or already has an
7699    // associated typedef (from an earlier typedef in this decl group).
7700    if (tagFromDeclSpec->getIdentifier()) break;
7701    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7702
7703    // A well-formed anonymous tag must always be a TUK_Definition.
7704    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7705
7706    // The type must match the tag exactly;  no qualifiers allowed.
7707    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7708      break;
7709
7710    // Otherwise, set this is the anon-decl typedef for the tag.
7711    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7712    break;
7713  }
7714
7715  default:
7716    break;
7717  }
7718
7719  return NewTD;
7720}
7721
7722
7723/// \brief Determine whether a tag with a given kind is acceptable
7724/// as a redeclaration of the given tag declaration.
7725///
7726/// \returns true if the new tag kind is acceptable, false otherwise.
7727bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7728                                        TagTypeKind NewTag, bool isDefinition,
7729                                        SourceLocation NewTagLoc,
7730                                        const IdentifierInfo &Name) {
7731  // C++ [dcl.type.elab]p3:
7732  //   The class-key or enum keyword present in the
7733  //   elaborated-type-specifier shall agree in kind with the
7734  //   declaration to which the name in the elaborated-type-specifier
7735  //   refers. This rule also applies to the form of
7736  //   elaborated-type-specifier that declares a class-name or
7737  //   friend class since it can be construed as referring to the
7738  //   definition of the class. Thus, in any
7739  //   elaborated-type-specifier, the enum keyword shall be used to
7740  //   refer to an enumeration (7.2), the union class-key shall be
7741  //   used to refer to a union (clause 9), and either the class or
7742  //   struct class-key shall be used to refer to a class (clause 9)
7743  //   declared using the class or struct class-key.
7744  TagTypeKind OldTag = Previous->getTagKind();
7745  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7746    if (OldTag == NewTag)
7747      return true;
7748
7749  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7750      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7751    // Warn about the struct/class tag mismatch.
7752    bool isTemplate = false;
7753    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7754      isTemplate = Record->getDescribedClassTemplate();
7755
7756    if (!ActiveTemplateInstantiations.empty()) {
7757      // In a template instantiation, do not offer fix-its for tag mismatches
7758      // since they usually mess up the template instead of fixing the problem.
7759      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7760        << (NewTag == TTK_Class) << isTemplate << &Name;
7761      return true;
7762    }
7763
7764    if (isDefinition) {
7765      // On definitions, check previous tags and issue a fix-it for each
7766      // one that doesn't match the current tag.
7767      if (Previous->getDefinition()) {
7768        // Don't suggest fix-its for redefinitions.
7769        return true;
7770      }
7771
7772      bool previousMismatch = false;
7773      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7774           E(Previous->redecls_end()); I != E; ++I) {
7775        if (I->getTagKind() != NewTag) {
7776          if (!previousMismatch) {
7777            previousMismatch = true;
7778            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7779              << (NewTag == TTK_Class) << isTemplate << &Name;
7780          }
7781          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7782            << (NewTag == TTK_Class)
7783            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7784                                            NewTag == TTK_Class?
7785                                            "class" : "struct");
7786        }
7787      }
7788      return true;
7789    }
7790
7791    // Check for a previous definition.  If current tag and definition
7792    // are same type, do nothing.  If no definition, but disagree with
7793    // with previous tag type, give a warning, but no fix-it.
7794    const TagDecl *Redecl = Previous->getDefinition() ?
7795                            Previous->getDefinition() : Previous;
7796    if (Redecl->getTagKind() == NewTag) {
7797      return true;
7798    }
7799
7800    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7801      << (NewTag == TTK_Class)
7802      << isTemplate << &Name;
7803    Diag(Redecl->getLocation(), diag::note_previous_use);
7804
7805    // If there is a previous defintion, suggest a fix-it.
7806    if (Previous->getDefinition()) {
7807        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7808          << (Redecl->getTagKind() == TTK_Class)
7809          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7810                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7811    }
7812
7813    return true;
7814  }
7815  return false;
7816}
7817
7818/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7819/// former case, Name will be non-null.  In the later case, Name will be null.
7820/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7821/// reference/declaration/definition of a tag.
7822Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7823                     SourceLocation KWLoc, CXXScopeSpec &SS,
7824                     IdentifierInfo *Name, SourceLocation NameLoc,
7825                     AttributeList *Attr, AccessSpecifier AS,
7826                     SourceLocation ModulePrivateLoc,
7827                     MultiTemplateParamsArg TemplateParameterLists,
7828                     bool &OwnedDecl, bool &IsDependent,
7829                     SourceLocation ScopedEnumKWLoc,
7830                     bool ScopedEnumUsesClassTag,
7831                     TypeResult UnderlyingType) {
7832  // If this is not a definition, it must have a name.
7833  assert((Name != 0 || TUK == TUK_Definition) &&
7834         "Nameless record must be a definition!");
7835  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7836
7837  OwnedDecl = false;
7838  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7839  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7840
7841  // FIXME: Check explicit specializations more carefully.
7842  bool isExplicitSpecialization = false;
7843  bool Invalid = false;
7844
7845  // We only need to do this matching if we have template parameters
7846  // or a scope specifier, which also conveniently avoids this work
7847  // for non-C++ cases.
7848  if (TemplateParameterLists.size() > 0 ||
7849      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7850    if (TemplateParameterList *TemplateParams
7851          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7852                                                TemplateParameterLists.get(),
7853                                                TemplateParameterLists.size(),
7854                                                    TUK == TUK_Friend,
7855                                                    isExplicitSpecialization,
7856                                                    Invalid)) {
7857      if (TemplateParams->size() > 0) {
7858        // This is a declaration or definition of a class template (which may
7859        // be a member of another template).
7860
7861        if (Invalid)
7862          return 0;
7863
7864        OwnedDecl = false;
7865        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7866                                               SS, Name, NameLoc, Attr,
7867                                               TemplateParams, AS,
7868                                               ModulePrivateLoc,
7869                                           TemplateParameterLists.size() - 1,
7870                 (TemplateParameterList**) TemplateParameterLists.release());
7871        return Result.get();
7872      } else {
7873        // The "template<>" header is extraneous.
7874        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7875          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7876        isExplicitSpecialization = true;
7877      }
7878    }
7879  }
7880
7881  // Figure out the underlying type if this a enum declaration. We need to do
7882  // this early, because it's needed to detect if this is an incompatible
7883  // redeclaration.
7884  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7885
7886  if (Kind == TTK_Enum) {
7887    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7888      // No underlying type explicitly specified, or we failed to parse the
7889      // type, default to int.
7890      EnumUnderlying = Context.IntTy.getTypePtr();
7891    else if (UnderlyingType.get()) {
7892      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7893      // integral type; any cv-qualification is ignored.
7894      TypeSourceInfo *TI = 0;
7895      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7896      EnumUnderlying = TI;
7897
7898      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7899
7900      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7901        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7902          << T;
7903        // Recover by falling back to int.
7904        EnumUnderlying = Context.IntTy.getTypePtr();
7905      }
7906
7907      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7908                                          UPPC_FixedUnderlyingType))
7909        EnumUnderlying = Context.IntTy.getTypePtr();
7910
7911    } else if (getLangOptions().MicrosoftMode)
7912      // Microsoft enums are always of int type.
7913      EnumUnderlying = Context.IntTy.getTypePtr();
7914  }
7915
7916  DeclContext *SearchDC = CurContext;
7917  DeclContext *DC = CurContext;
7918  bool isStdBadAlloc = false;
7919
7920  RedeclarationKind Redecl = ForRedeclaration;
7921  if (TUK == TUK_Friend || TUK == TUK_Reference)
7922    Redecl = NotForRedeclaration;
7923
7924  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7925
7926  if (Name && SS.isNotEmpty()) {
7927    // We have a nested-name tag ('struct foo::bar').
7928
7929    // Check for invalid 'foo::'.
7930    if (SS.isInvalid()) {
7931      Name = 0;
7932      goto CreateNewDecl;
7933    }
7934
7935    // If this is a friend or a reference to a class in a dependent
7936    // context, don't try to make a decl for it.
7937    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7938      DC = computeDeclContext(SS, false);
7939      if (!DC) {
7940        IsDependent = true;
7941        return 0;
7942      }
7943    } else {
7944      DC = computeDeclContext(SS, true);
7945      if (!DC) {
7946        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7947          << SS.getRange();
7948        return 0;
7949      }
7950    }
7951
7952    if (RequireCompleteDeclContext(SS, DC))
7953      return 0;
7954
7955    SearchDC = DC;
7956    // Look-up name inside 'foo::'.
7957    LookupQualifiedName(Previous, DC);
7958
7959    if (Previous.isAmbiguous())
7960      return 0;
7961
7962    if (Previous.empty()) {
7963      // Name lookup did not find anything. However, if the
7964      // nested-name-specifier refers to the current instantiation,
7965      // and that current instantiation has any dependent base
7966      // classes, we might find something at instantiation time: treat
7967      // this as a dependent elaborated-type-specifier.
7968      // But this only makes any sense for reference-like lookups.
7969      if (Previous.wasNotFoundInCurrentInstantiation() &&
7970          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7971        IsDependent = true;
7972        return 0;
7973      }
7974
7975      // A tag 'foo::bar' must already exist.
7976      Diag(NameLoc, diag::err_not_tag_in_scope)
7977        << Kind << Name << DC << SS.getRange();
7978      Name = 0;
7979      Invalid = true;
7980      goto CreateNewDecl;
7981    }
7982  } else if (Name) {
7983    // If this is a named struct, check to see if there was a previous forward
7984    // declaration or definition.
7985    // FIXME: We're looking into outer scopes here, even when we
7986    // shouldn't be. Doing so can result in ambiguities that we
7987    // shouldn't be diagnosing.
7988    LookupName(Previous, S);
7989
7990    if (Previous.isAmbiguous() &&
7991        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7992      LookupResult::Filter F = Previous.makeFilter();
7993      while (F.hasNext()) {
7994        NamedDecl *ND = F.next();
7995        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7996          F.erase();
7997      }
7998      F.done();
7999    }
8000
8001    // Note:  there used to be some attempt at recovery here.
8002    if (Previous.isAmbiguous())
8003      return 0;
8004
8005    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
8006      // FIXME: This makes sure that we ignore the contexts associated
8007      // with C structs, unions, and enums when looking for a matching
8008      // tag declaration or definition. See the similar lookup tweak
8009      // in Sema::LookupName; is there a better way to deal with this?
8010      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8011        SearchDC = SearchDC->getParent();
8012    }
8013  } else if (S->isFunctionPrototypeScope()) {
8014    // If this is an enum declaration in function prototype scope, set its
8015    // initial context to the translation unit.
8016    SearchDC = Context.getTranslationUnitDecl();
8017  }
8018
8019  if (Previous.isSingleResult() &&
8020      Previous.getFoundDecl()->isTemplateParameter()) {
8021    // Maybe we will complain about the shadowed template parameter.
8022    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8023    // Just pretend that we didn't see the previous declaration.
8024    Previous.clear();
8025  }
8026
8027  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
8028      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8029    // This is a declaration of or a reference to "std::bad_alloc".
8030    isStdBadAlloc = true;
8031
8032    if (Previous.empty() && StdBadAlloc) {
8033      // std::bad_alloc has been implicitly declared (but made invisible to
8034      // name lookup). Fill in this implicit declaration as the previous
8035      // declaration, so that the declarations get chained appropriately.
8036      Previous.addDecl(getStdBadAlloc());
8037    }
8038  }
8039
8040  // If we didn't find a previous declaration, and this is a reference
8041  // (or friend reference), move to the correct scope.  In C++, we
8042  // also need to do a redeclaration lookup there, just in case
8043  // there's a shadow friend decl.
8044  if (Name && Previous.empty() &&
8045      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8046    if (Invalid) goto CreateNewDecl;
8047    assert(SS.isEmpty());
8048
8049    if (TUK == TUK_Reference) {
8050      // C++ [basic.scope.pdecl]p5:
8051      //   -- for an elaborated-type-specifier of the form
8052      //
8053      //          class-key identifier
8054      //
8055      //      if the elaborated-type-specifier is used in the
8056      //      decl-specifier-seq or parameter-declaration-clause of a
8057      //      function defined in namespace scope, the identifier is
8058      //      declared as a class-name in the namespace that contains
8059      //      the declaration; otherwise, except as a friend
8060      //      declaration, the identifier is declared in the smallest
8061      //      non-class, non-function-prototype scope that contains the
8062      //      declaration.
8063      //
8064      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8065      // C structs and unions.
8066      //
8067      // It is an error in C++ to declare (rather than define) an enum
8068      // type, including via an elaborated type specifier.  We'll
8069      // diagnose that later; for now, declare the enum in the same
8070      // scope as we would have picked for any other tag type.
8071      //
8072      // GNU C also supports this behavior as part of its incomplete
8073      // enum types extension, while GNU C++ does not.
8074      //
8075      // Find the context where we'll be declaring the tag.
8076      // FIXME: We would like to maintain the current DeclContext as the
8077      // lexical context,
8078      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
8079             SearchDC->isObjCContainer())
8080        SearchDC = SearchDC->getParent();
8081
8082      // Find the scope where we'll be declaring the tag.
8083      while (S->isClassScope() ||
8084             (getLangOptions().CPlusPlus &&
8085              S->isFunctionPrototypeScope()) ||
8086             ((S->getFlags() & Scope::DeclScope) == 0) ||
8087             (S->getEntity() &&
8088              ((DeclContext *)S->getEntity())->isTransparentContext()))
8089        S = S->getParent();
8090    } else {
8091      assert(TUK == TUK_Friend);
8092      // C++ [namespace.memdef]p3:
8093      //   If a friend declaration in a non-local class first declares a
8094      //   class or function, the friend class or function is a member of
8095      //   the innermost enclosing namespace.
8096      SearchDC = SearchDC->getEnclosingNamespaceContext();
8097    }
8098
8099    // In C++, we need to do a redeclaration lookup to properly
8100    // diagnose some problems.
8101    if (getLangOptions().CPlusPlus) {
8102      Previous.setRedeclarationKind(ForRedeclaration);
8103      LookupQualifiedName(Previous, SearchDC);
8104    }
8105  }
8106
8107  if (!Previous.empty()) {
8108    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8109
8110    // It's okay to have a tag decl in the same scope as a typedef
8111    // which hides a tag decl in the same scope.  Finding this
8112    // insanity with a redeclaration lookup can only actually happen
8113    // in C++.
8114    //
8115    // This is also okay for elaborated-type-specifiers, which is
8116    // technically forbidden by the current standard but which is
8117    // okay according to the likely resolution of an open issue;
8118    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8119    if (getLangOptions().CPlusPlus) {
8120      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8121        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8122          TagDecl *Tag = TT->getDecl();
8123          if (Tag->getDeclName() == Name &&
8124              Tag->getDeclContext()->getRedeclContext()
8125                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8126            PrevDecl = Tag;
8127            Previous.clear();
8128            Previous.addDecl(Tag);
8129            Previous.resolveKind();
8130          }
8131        }
8132      }
8133    }
8134
8135    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8136      // If this is a use of a previous tag, or if the tag is already declared
8137      // in the same scope (so that the definition/declaration completes or
8138      // rementions the tag), reuse the decl.
8139      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8140          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8141        // Make sure that this wasn't declared as an enum and now used as a
8142        // struct or something similar.
8143        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8144                                          TUK == TUK_Definition, KWLoc,
8145                                          *Name)) {
8146          bool SafeToContinue
8147            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8148               Kind != TTK_Enum);
8149          if (SafeToContinue)
8150            Diag(KWLoc, diag::err_use_with_wrong_tag)
8151              << Name
8152              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8153                                              PrevTagDecl->getKindName());
8154          else
8155            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8156          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8157
8158          if (SafeToContinue)
8159            Kind = PrevTagDecl->getTagKind();
8160          else {
8161            // Recover by making this an anonymous redefinition.
8162            Name = 0;
8163            Previous.clear();
8164            Invalid = true;
8165          }
8166        }
8167
8168        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8169          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8170
8171          // If this is an elaborated-type-specifier for a scoped enumeration,
8172          // the 'class' keyword is not necessary and not permitted.
8173          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8174            if (ScopedEnum)
8175              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8176                << PrevEnum->isScoped()
8177                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8178            return PrevTagDecl;
8179          }
8180
8181          // All conflicts with previous declarations are recovered by
8182          // returning the previous declaration.
8183          if (ScopedEnum != PrevEnum->isScoped()) {
8184            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8185              << PrevEnum->isScoped();
8186            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8187            return PrevTagDecl;
8188          }
8189          else if (EnumUnderlying && PrevEnum->isFixed()) {
8190            QualType T;
8191            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8192                T = TI->getType();
8193            else
8194                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8195
8196            if (!Context.hasSameUnqualifiedType(T,
8197                                                PrevEnum->getIntegerType())) {
8198              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8199                   diag::err_enum_redeclare_type_mismatch)
8200                << T
8201                << PrevEnum->getIntegerType();
8202              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8203              return PrevTagDecl;
8204            }
8205          }
8206          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8207            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8208              << PrevEnum->isFixed();
8209            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8210            return PrevTagDecl;
8211          }
8212        }
8213
8214        if (!Invalid) {
8215          // If this is a use, just return the declaration we found.
8216
8217          // FIXME: In the future, return a variant or some other clue
8218          // for the consumer of this Decl to know it doesn't own it.
8219          // For our current ASTs this shouldn't be a problem, but will
8220          // need to be changed with DeclGroups.
8221          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8222               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8223            return PrevTagDecl;
8224
8225          // Diagnose attempts to redefine a tag.
8226          if (TUK == TUK_Definition) {
8227            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8228              // If we're defining a specialization and the previous definition
8229              // is from an implicit instantiation, don't emit an error
8230              // here; we'll catch this in the general case below.
8231              if (!isExplicitSpecialization ||
8232                  !isa<CXXRecordDecl>(Def) ||
8233                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8234                                               == TSK_ExplicitSpecialization) {
8235                // A redeclaration in function prototype scope in C isn't
8236                // visible elsewhere, so merely issue a warning.
8237                if (!getLangOptions().CPlusPlus && S->containedInPrototypeScope())
8238                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8239                else
8240                  Diag(NameLoc, diag::err_redefinition) << Name;
8241                Diag(Def->getLocation(), diag::note_previous_definition);
8242                // If this is a redefinition, recover by making this
8243                // struct be anonymous, which will make any later
8244                // references get the previous definition.
8245                Name = 0;
8246                Previous.clear();
8247                Invalid = true;
8248              }
8249            } else {
8250              // If the type is currently being defined, complain
8251              // about a nested redefinition.
8252              const TagType *Tag
8253                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8254              if (Tag->isBeingDefined()) {
8255                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8256                Diag(PrevTagDecl->getLocation(),
8257                     diag::note_previous_definition);
8258                Name = 0;
8259                Previous.clear();
8260                Invalid = true;
8261              }
8262            }
8263
8264            // Okay, this is definition of a previously declared or referenced
8265            // tag PrevDecl. We're going to create a new Decl for it.
8266          }
8267        }
8268        // If we get here we have (another) forward declaration or we
8269        // have a definition.  Just create a new decl.
8270
8271      } else {
8272        // If we get here, this is a definition of a new tag type in a nested
8273        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8274        // new decl/type.  We set PrevDecl to NULL so that the entities
8275        // have distinct types.
8276        Previous.clear();
8277      }
8278      // If we get here, we're going to create a new Decl. If PrevDecl
8279      // is non-NULL, it's a definition of the tag declared by
8280      // PrevDecl. If it's NULL, we have a new definition.
8281
8282
8283    // Otherwise, PrevDecl is not a tag, but was found with tag
8284    // lookup.  This is only actually possible in C++, where a few
8285    // things like templates still live in the tag namespace.
8286    } else {
8287      // Use a better diagnostic if an elaborated-type-specifier
8288      // found the wrong kind of type on the first
8289      // (non-redeclaration) lookup.
8290      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8291          !Previous.isForRedeclaration()) {
8292        unsigned Kind = 0;
8293        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8294        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8295        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8296        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8297        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8298        Invalid = true;
8299
8300      // Otherwise, only diagnose if the declaration is in scope.
8301      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8302                                isExplicitSpecialization)) {
8303        // do nothing
8304
8305      // Diagnose implicit declarations introduced by elaborated types.
8306      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8307        unsigned Kind = 0;
8308        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8309        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8310        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8311        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8312        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8313        Invalid = true;
8314
8315      // Otherwise it's a declaration.  Call out a particularly common
8316      // case here.
8317      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8318        unsigned Kind = 0;
8319        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8320        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8321          << Name << Kind << TND->getUnderlyingType();
8322        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8323        Invalid = true;
8324
8325      // Otherwise, diagnose.
8326      } else {
8327        // The tag name clashes with something else in the target scope,
8328        // issue an error and recover by making this tag be anonymous.
8329        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8330        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8331        Name = 0;
8332        Invalid = true;
8333      }
8334
8335      // The existing declaration isn't relevant to us; we're in a
8336      // new scope, so clear out the previous declaration.
8337      Previous.clear();
8338    }
8339  }
8340
8341CreateNewDecl:
8342
8343  TagDecl *PrevDecl = 0;
8344  if (Previous.isSingleResult())
8345    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8346
8347  // If there is an identifier, use the location of the identifier as the
8348  // location of the decl, otherwise use the location of the struct/union
8349  // keyword.
8350  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8351
8352  // Otherwise, create a new declaration. If there is a previous
8353  // declaration of the same entity, the two will be linked via
8354  // PrevDecl.
8355  TagDecl *New;
8356
8357  bool IsForwardReference = false;
8358  if (Kind == TTK_Enum) {
8359    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8360    // enum X { A, B, C } D;    D should chain to X.
8361    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8362                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8363                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8364    // If this is an undefined enum, warn.
8365    if (TUK != TUK_Definition && !Invalid) {
8366      TagDecl *Def;
8367      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8368        // C++0x: 7.2p2: opaque-enum-declaration.
8369        // Conflicts are diagnosed above. Do nothing.
8370      }
8371      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8372        Diag(Loc, diag::ext_forward_ref_enum_def)
8373          << New;
8374        Diag(Def->getLocation(), diag::note_previous_definition);
8375      } else {
8376        unsigned DiagID = diag::ext_forward_ref_enum;
8377        if (getLangOptions().MicrosoftMode)
8378          DiagID = diag::ext_ms_forward_ref_enum;
8379        else if (getLangOptions().CPlusPlus)
8380          DiagID = diag::err_forward_ref_enum;
8381        Diag(Loc, DiagID);
8382
8383        // If this is a forward-declared reference to an enumeration, make a
8384        // note of it; we won't actually be introducing the declaration into
8385        // the declaration context.
8386        if (TUK == TUK_Reference)
8387          IsForwardReference = true;
8388      }
8389    }
8390
8391    if (EnumUnderlying) {
8392      EnumDecl *ED = cast<EnumDecl>(New);
8393      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8394        ED->setIntegerTypeSourceInfo(TI);
8395      else
8396        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8397      ED->setPromotionType(ED->getIntegerType());
8398    }
8399
8400  } else {
8401    // struct/union/class
8402
8403    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8404    // struct X { int A; } D;    D should chain to X.
8405    if (getLangOptions().CPlusPlus) {
8406      // FIXME: Look for a way to use RecordDecl for simple structs.
8407      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8408                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8409
8410      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8411        StdBadAlloc = cast<CXXRecordDecl>(New);
8412    } else
8413      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8414                               cast_or_null<RecordDecl>(PrevDecl));
8415  }
8416
8417  // Maybe add qualifier info.
8418  if (SS.isNotEmpty()) {
8419    if (SS.isSet()) {
8420      New->setQualifierInfo(SS.getWithLocInContext(Context));
8421      if (TemplateParameterLists.size() > 0) {
8422        New->setTemplateParameterListsInfo(Context,
8423                                           TemplateParameterLists.size(),
8424                    (TemplateParameterList**) TemplateParameterLists.release());
8425      }
8426    }
8427    else
8428      Invalid = true;
8429  }
8430
8431  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8432    // Add alignment attributes if necessary; these attributes are checked when
8433    // the ASTContext lays out the structure.
8434    //
8435    // It is important for implementing the correct semantics that this
8436    // happen here (in act on tag decl). The #pragma pack stack is
8437    // maintained as a result of parser callbacks which can occur at
8438    // many points during the parsing of a struct declaration (because
8439    // the #pragma tokens are effectively skipped over during the
8440    // parsing of the struct).
8441    AddAlignmentAttributesForRecord(RD);
8442
8443    AddMsStructLayoutForRecord(RD);
8444  }
8445
8446  if (ModulePrivateLoc.isValid()) {
8447    if (isExplicitSpecialization)
8448      Diag(New->getLocation(), diag::err_module_private_specialization)
8449        << 2
8450        << FixItHint::CreateRemoval(ModulePrivateLoc);
8451    // __module_private__ does not apply to local classes. However, we only
8452    // diagnose this as an error when the declaration specifiers are
8453    // freestanding. Here, we just ignore the __module_private__.
8454    else if (!SearchDC->isFunctionOrMethod())
8455      New->setModulePrivate();
8456  }
8457
8458  // If this is a specialization of a member class (of a class template),
8459  // check the specialization.
8460  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8461    Invalid = true;
8462
8463  if (Invalid)
8464    New->setInvalidDecl();
8465
8466  if (Attr)
8467    ProcessDeclAttributeList(S, New, Attr);
8468
8469  // If we're declaring or defining a tag in function prototype scope
8470  // in C, note that this type can only be used within the function.
8471  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8472    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8473
8474  // Set the lexical context. If the tag has a C++ scope specifier, the
8475  // lexical context will be different from the semantic context.
8476  New->setLexicalDeclContext(CurContext);
8477
8478  // Mark this as a friend decl if applicable.
8479  // In Microsoft mode, a friend declaration also acts as a forward
8480  // declaration so we always pass true to setObjectOfFriendDecl to make
8481  // the tag name visible.
8482  if (TUK == TUK_Friend)
8483    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8484                               getLangOptions().MicrosoftExt);
8485
8486  // Set the access specifier.
8487  if (!Invalid && SearchDC->isRecord())
8488    SetMemberAccessSpecifier(New, PrevDecl, AS);
8489
8490  if (TUK == TUK_Definition)
8491    New->startDefinition();
8492
8493  // If this has an identifier, add it to the scope stack.
8494  if (TUK == TUK_Friend) {
8495    // We might be replacing an existing declaration in the lookup tables;
8496    // if so, borrow its access specifier.
8497    if (PrevDecl)
8498      New->setAccess(PrevDecl->getAccess());
8499
8500    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8501    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8502    if (Name) // can be null along some error paths
8503      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8504        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8505  } else if (Name) {
8506    S = getNonFieldDeclScope(S);
8507    PushOnScopeChains(New, S, !IsForwardReference);
8508    if (IsForwardReference)
8509      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8510
8511  } else {
8512    CurContext->addDecl(New);
8513  }
8514
8515  // If this is the C FILE type, notify the AST context.
8516  if (IdentifierInfo *II = New->getIdentifier())
8517    if (!New->isInvalidDecl() &&
8518        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8519        II->isStr("FILE"))
8520      Context.setFILEDecl(New);
8521
8522  // If we were in function prototype scope (and not in C++ mode), add this
8523  // tag to the list of decls to inject into the function definition scope.
8524  if (S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus &&
8525      InFunctionDeclarator && Name)
8526    DeclsInPrototypeScope.push_back(New);
8527
8528  OwnedDecl = true;
8529  return New;
8530}
8531
8532void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8533  AdjustDeclIfTemplate(TagD);
8534  TagDecl *Tag = cast<TagDecl>(TagD);
8535
8536  // Enter the tag context.
8537  PushDeclContext(S, Tag);
8538}
8539
8540Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8541  assert(isa<ObjCContainerDecl>(IDecl) &&
8542         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8543  DeclContext *OCD = cast<DeclContext>(IDecl);
8544  assert(getContainingDC(OCD) == CurContext &&
8545      "The next DeclContext should be lexically contained in the current one.");
8546  CurContext = OCD;
8547  return IDecl;
8548}
8549
8550void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8551                                           SourceLocation FinalLoc,
8552                                           SourceLocation LBraceLoc) {
8553  AdjustDeclIfTemplate(TagD);
8554  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8555
8556  FieldCollector->StartClass();
8557
8558  if (!Record->getIdentifier())
8559    return;
8560
8561  if (FinalLoc.isValid())
8562    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8563
8564  // C++ [class]p2:
8565  //   [...] The class-name is also inserted into the scope of the
8566  //   class itself; this is known as the injected-class-name. For
8567  //   purposes of access checking, the injected-class-name is treated
8568  //   as if it were a public member name.
8569  CXXRecordDecl *InjectedClassName
8570    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8571                            Record->getLocStart(), Record->getLocation(),
8572                            Record->getIdentifier(),
8573                            /*PrevDecl=*/0,
8574                            /*DelayTypeCreation=*/true);
8575  Context.getTypeDeclType(InjectedClassName, Record);
8576  InjectedClassName->setImplicit();
8577  InjectedClassName->setAccess(AS_public);
8578  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8579      InjectedClassName->setDescribedClassTemplate(Template);
8580  PushOnScopeChains(InjectedClassName, S);
8581  assert(InjectedClassName->isInjectedClassName() &&
8582         "Broken injected-class-name");
8583}
8584
8585void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8586                                    SourceLocation RBraceLoc) {
8587  AdjustDeclIfTemplate(TagD);
8588  TagDecl *Tag = cast<TagDecl>(TagD);
8589  Tag->setRBraceLoc(RBraceLoc);
8590
8591  if (isa<CXXRecordDecl>(Tag))
8592    FieldCollector->FinishClass();
8593
8594  // Exit this scope of this tag's definition.
8595  PopDeclContext();
8596
8597  // Notify the consumer that we've defined a tag.
8598  Consumer.HandleTagDeclDefinition(Tag);
8599}
8600
8601void Sema::ActOnObjCContainerFinishDefinition() {
8602  // Exit this scope of this interface definition.
8603  PopDeclContext();
8604}
8605
8606void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8607  assert(DC == CurContext && "Mismatch of container contexts");
8608  OriginalLexicalContext = DC;
8609  ActOnObjCContainerFinishDefinition();
8610}
8611
8612void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8613  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8614  OriginalLexicalContext = 0;
8615}
8616
8617void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8618  AdjustDeclIfTemplate(TagD);
8619  TagDecl *Tag = cast<TagDecl>(TagD);
8620  Tag->setInvalidDecl();
8621
8622  // We're undoing ActOnTagStartDefinition here, not
8623  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8624  // the FieldCollector.
8625
8626  PopDeclContext();
8627}
8628
8629// Note that FieldName may be null for anonymous bitfields.
8630ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8631                                IdentifierInfo *FieldName,
8632                                QualType FieldTy, Expr *BitWidth,
8633                                bool *ZeroWidth) {
8634  // Default to true; that shouldn't confuse checks for emptiness
8635  if (ZeroWidth)
8636    *ZeroWidth = true;
8637
8638  // C99 6.7.2.1p4 - verify the field type.
8639  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8640  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8641    // Handle incomplete types with specific error.
8642    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8643      return ExprError();
8644    if (FieldName)
8645      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8646        << FieldName << FieldTy << BitWidth->getSourceRange();
8647    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8648      << FieldTy << BitWidth->getSourceRange();
8649  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8650                                             UPPC_BitFieldWidth))
8651    return ExprError();
8652
8653  // If the bit-width is type- or value-dependent, don't try to check
8654  // it now.
8655  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8656    return Owned(BitWidth);
8657
8658  llvm::APSInt Value;
8659  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8660  if (ICE.isInvalid())
8661    return ICE;
8662  BitWidth = ICE.take();
8663
8664  if (Value != 0 && ZeroWidth)
8665    *ZeroWidth = false;
8666
8667  // Zero-width bitfield is ok for anonymous field.
8668  if (Value == 0 && FieldName)
8669    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8670
8671  if (Value.isSigned() && Value.isNegative()) {
8672    if (FieldName)
8673      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8674               << FieldName << Value.toString(10);
8675    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8676      << Value.toString(10);
8677  }
8678
8679  if (!FieldTy->isDependentType()) {
8680    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8681    if (Value.getZExtValue() > TypeSize) {
8682      if (!getLangOptions().CPlusPlus) {
8683        if (FieldName)
8684          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8685            << FieldName << (unsigned)Value.getZExtValue()
8686            << (unsigned)TypeSize;
8687
8688        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8689          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8690      }
8691
8692      if (FieldName)
8693        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8694          << FieldName << (unsigned)Value.getZExtValue()
8695          << (unsigned)TypeSize;
8696      else
8697        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8698          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8699    }
8700  }
8701
8702  return Owned(BitWidth);
8703}
8704
8705/// ActOnField - Each field of a C struct/union is passed into this in order
8706/// to create a FieldDecl object for it.
8707Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8708                       Declarator &D, Expr *BitfieldWidth) {
8709  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8710                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8711                               /*HasInit=*/false, AS_public);
8712  return Res;
8713}
8714
8715/// HandleField - Analyze a field of a C struct or a C++ data member.
8716///
8717FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8718                             SourceLocation DeclStart,
8719                             Declarator &D, Expr *BitWidth, bool HasInit,
8720                             AccessSpecifier AS) {
8721  IdentifierInfo *II = D.getIdentifier();
8722  SourceLocation Loc = DeclStart;
8723  if (II) Loc = D.getIdentifierLoc();
8724
8725  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8726  QualType T = TInfo->getType();
8727  if (getLangOptions().CPlusPlus) {
8728    CheckExtraCXXDefaultArguments(D);
8729
8730    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8731                                        UPPC_DataMemberType)) {
8732      D.setInvalidType();
8733      T = Context.IntTy;
8734      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8735    }
8736  }
8737
8738  DiagnoseFunctionSpecifiers(D);
8739
8740  if (D.getDeclSpec().isThreadSpecified())
8741    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8742  if (D.getDeclSpec().isConstexprSpecified())
8743    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8744      << 2;
8745
8746  // Check to see if this name was declared as a member previously
8747  NamedDecl *PrevDecl = 0;
8748  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8749  LookupName(Previous, S);
8750  switch (Previous.getResultKind()) {
8751    case LookupResult::Found:
8752    case LookupResult::FoundUnresolvedValue:
8753      PrevDecl = Previous.getAsSingle<NamedDecl>();
8754      break;
8755
8756    case LookupResult::FoundOverloaded:
8757      PrevDecl = Previous.getRepresentativeDecl();
8758      break;
8759
8760    case LookupResult::NotFound:
8761    case LookupResult::NotFoundInCurrentInstantiation:
8762    case LookupResult::Ambiguous:
8763      break;
8764  }
8765  Previous.suppressDiagnostics();
8766
8767  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8768    // Maybe we will complain about the shadowed template parameter.
8769    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8770    // Just pretend that we didn't see the previous declaration.
8771    PrevDecl = 0;
8772  }
8773
8774  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8775    PrevDecl = 0;
8776
8777  bool Mutable
8778    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8779  SourceLocation TSSL = D.getSourceRange().getBegin();
8780  FieldDecl *NewFD
8781    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8782                     TSSL, AS, PrevDecl, &D);
8783
8784  if (NewFD->isInvalidDecl())
8785    Record->setInvalidDecl();
8786
8787  if (D.getDeclSpec().isModulePrivateSpecified())
8788    NewFD->setModulePrivate();
8789
8790  if (NewFD->isInvalidDecl() && PrevDecl) {
8791    // Don't introduce NewFD into scope; there's already something
8792    // with the same name in the same scope.
8793  } else if (II) {
8794    PushOnScopeChains(NewFD, S);
8795  } else
8796    Record->addDecl(NewFD);
8797
8798  return NewFD;
8799}
8800
8801/// \brief Build a new FieldDecl and check its well-formedness.
8802///
8803/// This routine builds a new FieldDecl given the fields name, type,
8804/// record, etc. \p PrevDecl should refer to any previous declaration
8805/// with the same name and in the same scope as the field to be
8806/// created.
8807///
8808/// \returns a new FieldDecl.
8809///
8810/// \todo The Declarator argument is a hack. It will be removed once
8811FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8812                                TypeSourceInfo *TInfo,
8813                                RecordDecl *Record, SourceLocation Loc,
8814                                bool Mutable, Expr *BitWidth, bool HasInit,
8815                                SourceLocation TSSL,
8816                                AccessSpecifier AS, NamedDecl *PrevDecl,
8817                                Declarator *D) {
8818  IdentifierInfo *II = Name.getAsIdentifierInfo();
8819  bool InvalidDecl = false;
8820  if (D) InvalidDecl = D->isInvalidType();
8821
8822  // If we receive a broken type, recover by assuming 'int' and
8823  // marking this declaration as invalid.
8824  if (T.isNull()) {
8825    InvalidDecl = true;
8826    T = Context.IntTy;
8827  }
8828
8829  QualType EltTy = Context.getBaseElementType(T);
8830  if (!EltTy->isDependentType() &&
8831      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8832    // Fields of incomplete type force their record to be invalid.
8833    Record->setInvalidDecl();
8834    InvalidDecl = true;
8835  }
8836
8837  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8838  // than a variably modified type.
8839  if (!InvalidDecl && T->isVariablyModifiedType()) {
8840    bool SizeIsNegative;
8841    llvm::APSInt Oversized;
8842    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8843                                                           SizeIsNegative,
8844                                                           Oversized);
8845    if (!FixedTy.isNull()) {
8846      Diag(Loc, diag::warn_illegal_constant_array_size);
8847      T = FixedTy;
8848    } else {
8849      if (SizeIsNegative)
8850        Diag(Loc, diag::err_typecheck_negative_array_size);
8851      else if (Oversized.getBoolValue())
8852        Diag(Loc, diag::err_array_too_large)
8853          << Oversized.toString(10);
8854      else
8855        Diag(Loc, diag::err_typecheck_field_variable_size);
8856      InvalidDecl = true;
8857    }
8858  }
8859
8860  // Fields can not have abstract class types
8861  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8862                                             diag::err_abstract_type_in_decl,
8863                                             AbstractFieldType))
8864    InvalidDecl = true;
8865
8866  bool ZeroWidth = false;
8867  // If this is declared as a bit-field, check the bit-field.
8868  if (!InvalidDecl && BitWidth) {
8869    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8870    if (!BitWidth) {
8871      InvalidDecl = true;
8872      BitWidth = 0;
8873      ZeroWidth = false;
8874    }
8875  }
8876
8877  // Check that 'mutable' is consistent with the type of the declaration.
8878  if (!InvalidDecl && Mutable) {
8879    unsigned DiagID = 0;
8880    if (T->isReferenceType())
8881      DiagID = diag::err_mutable_reference;
8882    else if (T.isConstQualified())
8883      DiagID = diag::err_mutable_const;
8884
8885    if (DiagID) {
8886      SourceLocation ErrLoc = Loc;
8887      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8888        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8889      Diag(ErrLoc, DiagID);
8890      Mutable = false;
8891      InvalidDecl = true;
8892    }
8893  }
8894
8895  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8896                                       BitWidth, Mutable, HasInit);
8897  if (InvalidDecl)
8898    NewFD->setInvalidDecl();
8899
8900  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8901    Diag(Loc, diag::err_duplicate_member) << II;
8902    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8903    NewFD->setInvalidDecl();
8904  }
8905
8906  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8907    if (Record->isUnion()) {
8908      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8909        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8910        if (RDecl->getDefinition()) {
8911          // C++ [class.union]p1: An object of a class with a non-trivial
8912          // constructor, a non-trivial copy constructor, a non-trivial
8913          // destructor, or a non-trivial copy assignment operator
8914          // cannot be a member of a union, nor can an array of such
8915          // objects.
8916          if (CheckNontrivialField(NewFD))
8917            NewFD->setInvalidDecl();
8918        }
8919      }
8920
8921      // C++ [class.union]p1: If a union contains a member of reference type,
8922      // the program is ill-formed.
8923      if (EltTy->isReferenceType()) {
8924        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8925          << NewFD->getDeclName() << EltTy;
8926        NewFD->setInvalidDecl();
8927      }
8928    }
8929  }
8930
8931  // FIXME: We need to pass in the attributes given an AST
8932  // representation, not a parser representation.
8933  if (D)
8934    // FIXME: What to pass instead of TUScope?
8935    ProcessDeclAttributes(TUScope, NewFD, *D);
8936
8937  // In auto-retain/release, infer strong retension for fields of
8938  // retainable type.
8939  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8940    NewFD->setInvalidDecl();
8941
8942  if (T.isObjCGCWeak())
8943    Diag(Loc, diag::warn_attribute_weak_on_field);
8944
8945  NewFD->setAccess(AS);
8946  return NewFD;
8947}
8948
8949bool Sema::CheckNontrivialField(FieldDecl *FD) {
8950  assert(FD);
8951  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8952
8953  if (FD->isInvalidDecl())
8954    return true;
8955
8956  QualType EltTy = Context.getBaseElementType(FD->getType());
8957  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8958    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8959    if (RDecl->getDefinition()) {
8960      // We check for copy constructors before constructors
8961      // because otherwise we'll never get complaints about
8962      // copy constructors.
8963
8964      CXXSpecialMember member = CXXInvalid;
8965      if (!RDecl->hasTrivialCopyConstructor())
8966        member = CXXCopyConstructor;
8967      else if (!RDecl->hasTrivialDefaultConstructor())
8968        member = CXXDefaultConstructor;
8969      else if (!RDecl->hasTrivialCopyAssignment())
8970        member = CXXCopyAssignment;
8971      else if (!RDecl->hasTrivialDestructor())
8972        member = CXXDestructor;
8973
8974      if (member != CXXInvalid) {
8975        if (!getLangOptions().CPlusPlus0x &&
8976            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8977          // Objective-C++ ARC: it is an error to have a non-trivial field of
8978          // a union. However, system headers in Objective-C programs
8979          // occasionally have Objective-C lifetime objects within unions,
8980          // and rather than cause the program to fail, we make those
8981          // members unavailable.
8982          SourceLocation Loc = FD->getLocation();
8983          if (getSourceManager().isInSystemHeader(Loc)) {
8984            if (!FD->hasAttr<UnavailableAttr>())
8985              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8986                                  "this system field has retaining ownership"));
8987            return false;
8988          }
8989        }
8990
8991        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8992               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8993               diag::err_illegal_union_or_anon_struct_member)
8994          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8995        DiagnoseNontrivial(RT, member);
8996        return !getLangOptions().CPlusPlus0x;
8997      }
8998    }
8999  }
9000
9001  return false;
9002}
9003
9004/// If the given constructor is user-provided, produce a diagnostic explaining
9005/// that it makes the class non-trivial.
9006static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9007                                               CXXConstructorDecl *CD,
9008                                               Sema::CXXSpecialMember CSM) {
9009  if (!CD->isUserProvided())
9010    return false;
9011
9012  SourceLocation CtorLoc = CD->getLocation();
9013  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9014  return true;
9015}
9016
9017/// DiagnoseNontrivial - Given that a class has a non-trivial
9018/// special member, figure out why.
9019void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9020  QualType QT(T, 0U);
9021  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9022
9023  // Check whether the member was user-declared.
9024  switch (member) {
9025  case CXXInvalid:
9026    break;
9027
9028  case CXXDefaultConstructor:
9029    if (RD->hasUserDeclaredConstructor()) {
9030      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9031      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9032        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9033          return;
9034
9035      // No user-provided constructors; look for constructor templates.
9036      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9037          tmpl_iter;
9038      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9039           TI != TE; ++TI) {
9040        CXXConstructorDecl *CD =
9041            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9042        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9043          return;
9044      }
9045    }
9046    break;
9047
9048  case CXXCopyConstructor:
9049    if (RD->hasUserDeclaredCopyConstructor()) {
9050      SourceLocation CtorLoc =
9051        RD->getCopyConstructor(0)->getLocation();
9052      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9053      return;
9054    }
9055    break;
9056
9057  case CXXMoveConstructor:
9058    if (RD->hasUserDeclaredMoveConstructor()) {
9059      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9060      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9061      return;
9062    }
9063    break;
9064
9065  case CXXCopyAssignment:
9066    if (RD->hasUserDeclaredCopyAssignment()) {
9067      // FIXME: this should use the location of the copy
9068      // assignment, not the type.
9069      SourceLocation TyLoc = RD->getSourceRange().getBegin();
9070      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9071      return;
9072    }
9073    break;
9074
9075  case CXXMoveAssignment:
9076    if (RD->hasUserDeclaredMoveAssignment()) {
9077      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9078      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9079      return;
9080    }
9081    break;
9082
9083  case CXXDestructor:
9084    if (RD->hasUserDeclaredDestructor()) {
9085      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9086      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9087      return;
9088    }
9089    break;
9090  }
9091
9092  typedef CXXRecordDecl::base_class_iterator base_iter;
9093
9094  // Virtual bases and members inhibit trivial copying/construction,
9095  // but not trivial destruction.
9096  if (member != CXXDestructor) {
9097    // Check for virtual bases.  vbases includes indirect virtual bases,
9098    // so we just iterate through the direct bases.
9099    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9100      if (bi->isVirtual()) {
9101        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9102        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9103        return;
9104      }
9105
9106    // Check for virtual methods.
9107    typedef CXXRecordDecl::method_iterator meth_iter;
9108    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9109         ++mi) {
9110      if (mi->isVirtual()) {
9111        SourceLocation MLoc = mi->getSourceRange().getBegin();
9112        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9113        return;
9114      }
9115    }
9116  }
9117
9118  bool (CXXRecordDecl::*hasTrivial)() const;
9119  switch (member) {
9120  case CXXDefaultConstructor:
9121    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9122  case CXXCopyConstructor:
9123    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9124  case CXXCopyAssignment:
9125    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9126  case CXXDestructor:
9127    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9128  default:
9129    llvm_unreachable("unexpected special member");
9130  }
9131
9132  // Check for nontrivial bases (and recurse).
9133  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9134    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9135    assert(BaseRT && "Don't know how to handle dependent bases");
9136    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9137    if (!(BaseRecTy->*hasTrivial)()) {
9138      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
9139      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9140      DiagnoseNontrivial(BaseRT, member);
9141      return;
9142    }
9143  }
9144
9145  // Check for nontrivial members (and recurse).
9146  typedef RecordDecl::field_iterator field_iter;
9147  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9148       ++fi) {
9149    QualType EltTy = Context.getBaseElementType((*fi)->getType());
9150    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9151      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9152
9153      if (!(EltRD->*hasTrivial)()) {
9154        SourceLocation FLoc = (*fi)->getLocation();
9155        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9156        DiagnoseNontrivial(EltRT, member);
9157        return;
9158      }
9159    }
9160
9161    if (EltTy->isObjCLifetimeType()) {
9162      switch (EltTy.getObjCLifetime()) {
9163      case Qualifiers::OCL_None:
9164      case Qualifiers::OCL_ExplicitNone:
9165        break;
9166
9167      case Qualifiers::OCL_Autoreleasing:
9168      case Qualifiers::OCL_Weak:
9169      case Qualifiers::OCL_Strong:
9170        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9171          << QT << EltTy.getObjCLifetime();
9172        return;
9173      }
9174    }
9175  }
9176
9177  llvm_unreachable("found no explanation for non-trivial member");
9178}
9179
9180/// TranslateIvarVisibility - Translate visibility from a token ID to an
9181///  AST enum value.
9182static ObjCIvarDecl::AccessControl
9183TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9184  switch (ivarVisibility) {
9185  default: llvm_unreachable("Unknown visitibility kind");
9186  case tok::objc_private: return ObjCIvarDecl::Private;
9187  case tok::objc_public: return ObjCIvarDecl::Public;
9188  case tok::objc_protected: return ObjCIvarDecl::Protected;
9189  case tok::objc_package: return ObjCIvarDecl::Package;
9190  }
9191}
9192
9193/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9194/// in order to create an IvarDecl object for it.
9195Decl *Sema::ActOnIvar(Scope *S,
9196                                SourceLocation DeclStart,
9197                                Declarator &D, Expr *BitfieldWidth,
9198                                tok::ObjCKeywordKind Visibility) {
9199
9200  IdentifierInfo *II = D.getIdentifier();
9201  Expr *BitWidth = (Expr*)BitfieldWidth;
9202  SourceLocation Loc = DeclStart;
9203  if (II) Loc = D.getIdentifierLoc();
9204
9205  // FIXME: Unnamed fields can be handled in various different ways, for
9206  // example, unnamed unions inject all members into the struct namespace!
9207
9208  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9209  QualType T = TInfo->getType();
9210
9211  if (BitWidth) {
9212    // 6.7.2.1p3, 6.7.2.1p4
9213    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9214    if (!BitWidth)
9215      D.setInvalidType();
9216  } else {
9217    // Not a bitfield.
9218
9219    // validate II.
9220
9221  }
9222  if (T->isReferenceType()) {
9223    Diag(Loc, diag::err_ivar_reference_type);
9224    D.setInvalidType();
9225  }
9226  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9227  // than a variably modified type.
9228  else if (T->isVariablyModifiedType()) {
9229    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9230    D.setInvalidType();
9231  }
9232
9233  // Get the visibility (access control) for this ivar.
9234  ObjCIvarDecl::AccessControl ac =
9235    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9236                                        : ObjCIvarDecl::None;
9237  // Must set ivar's DeclContext to its enclosing interface.
9238  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9239  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9240    return 0;
9241  ObjCContainerDecl *EnclosingContext;
9242  if (ObjCImplementationDecl *IMPDecl =
9243      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9244    if (!LangOpts.ObjCNonFragileABI2) {
9245    // Case of ivar declared in an implementation. Context is that of its class.
9246      EnclosingContext = IMPDecl->getClassInterface();
9247      assert(EnclosingContext && "Implementation has no class interface!");
9248    }
9249    else
9250      EnclosingContext = EnclosingDecl;
9251  } else {
9252    if (ObjCCategoryDecl *CDecl =
9253        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9254      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9255        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9256        return 0;
9257      }
9258    }
9259    EnclosingContext = EnclosingDecl;
9260  }
9261
9262  // Construct the decl.
9263  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9264                                             DeclStart, Loc, II, T,
9265                                             TInfo, ac, (Expr *)BitfieldWidth);
9266
9267  if (II) {
9268    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9269                                           ForRedeclaration);
9270    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9271        && !isa<TagDecl>(PrevDecl)) {
9272      Diag(Loc, diag::err_duplicate_member) << II;
9273      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9274      NewID->setInvalidDecl();
9275    }
9276  }
9277
9278  // Process attributes attached to the ivar.
9279  ProcessDeclAttributes(S, NewID, D);
9280
9281  if (D.isInvalidType())
9282    NewID->setInvalidDecl();
9283
9284  // In ARC, infer 'retaining' for ivars of retainable type.
9285  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9286    NewID->setInvalidDecl();
9287
9288  if (D.getDeclSpec().isModulePrivateSpecified())
9289    NewID->setModulePrivate();
9290
9291  if (II) {
9292    // FIXME: When interfaces are DeclContexts, we'll need to add
9293    // these to the interface.
9294    S->AddDecl(NewID);
9295    IdResolver.AddDecl(NewID);
9296  }
9297
9298  return NewID;
9299}
9300
9301/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9302/// class and class extensions. For every class @interface and class
9303/// extension @interface, if the last ivar is a bitfield of any type,
9304/// then add an implicit `char :0` ivar to the end of that interface.
9305void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9306                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9307  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9308    return;
9309
9310  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9311  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9312
9313  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9314    return;
9315  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9316  if (!ID) {
9317    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9318      if (!CD->IsClassExtension())
9319        return;
9320    }
9321    // No need to add this to end of @implementation.
9322    else
9323      return;
9324  }
9325  // All conditions are met. Add a new bitfield to the tail end of ivars.
9326  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9327  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9328
9329  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9330                              DeclLoc, DeclLoc, 0,
9331                              Context.CharTy,
9332                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9333                                                               DeclLoc),
9334                              ObjCIvarDecl::Private, BW,
9335                              true);
9336  AllIvarDecls.push_back(Ivar);
9337}
9338
9339void Sema::ActOnFields(Scope* S,
9340                       SourceLocation RecLoc, Decl *EnclosingDecl,
9341                       llvm::ArrayRef<Decl *> Fields,
9342                       SourceLocation LBrac, SourceLocation RBrac,
9343                       AttributeList *Attr) {
9344  assert(EnclosingDecl && "missing record or interface decl");
9345
9346  // If the decl this is being inserted into is invalid, then it may be a
9347  // redeclaration or some other bogus case.  Don't try to add fields to it.
9348  if (EnclosingDecl->isInvalidDecl())
9349    return;
9350
9351  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9352
9353  // Start counting up the number of named members; make sure to include
9354  // members of anonymous structs and unions in the total.
9355  unsigned NumNamedMembers = 0;
9356  if (Record) {
9357    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9358                                   e = Record->decls_end(); i != e; i++) {
9359      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9360        if (IFD->getDeclName())
9361          ++NumNamedMembers;
9362    }
9363  }
9364
9365  // Verify that all the fields are okay.
9366  SmallVector<FieldDecl*, 32> RecFields;
9367
9368  bool ARCErrReported = false;
9369  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9370       i != end; ++i) {
9371    FieldDecl *FD = cast<FieldDecl>(*i);
9372
9373    // Get the type for the field.
9374    const Type *FDTy = FD->getType().getTypePtr();
9375
9376    if (!FD->isAnonymousStructOrUnion()) {
9377      // Remember all fields written by the user.
9378      RecFields.push_back(FD);
9379    }
9380
9381    // If the field is already invalid for some reason, don't emit more
9382    // diagnostics about it.
9383    if (FD->isInvalidDecl()) {
9384      EnclosingDecl->setInvalidDecl();
9385      continue;
9386    }
9387
9388    // C99 6.7.2.1p2:
9389    //   A structure or union shall not contain a member with
9390    //   incomplete or function type (hence, a structure shall not
9391    //   contain an instance of itself, but may contain a pointer to
9392    //   an instance of itself), except that the last member of a
9393    //   structure with more than one named member may have incomplete
9394    //   array type; such a structure (and any union containing,
9395    //   possibly recursively, a member that is such a structure)
9396    //   shall not be a member of a structure or an element of an
9397    //   array.
9398    if (FDTy->isFunctionType()) {
9399      // Field declared as a function.
9400      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9401        << FD->getDeclName();
9402      FD->setInvalidDecl();
9403      EnclosingDecl->setInvalidDecl();
9404      continue;
9405    } else if (FDTy->isIncompleteArrayType() && Record &&
9406               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9407                ((getLangOptions().MicrosoftExt ||
9408                  getLangOptions().CPlusPlus) &&
9409                 (i + 1 == Fields.end() || Record->isUnion())))) {
9410      // Flexible array member.
9411      // Microsoft and g++ is more permissive regarding flexible array.
9412      // It will accept flexible array in union and also
9413      // as the sole element of a struct/class.
9414      if (getLangOptions().MicrosoftExt) {
9415        if (Record->isUnion())
9416          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9417            << FD->getDeclName();
9418        else if (Fields.size() == 1)
9419          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9420            << FD->getDeclName() << Record->getTagKind();
9421      } else if (getLangOptions().CPlusPlus) {
9422        if (Record->isUnion())
9423          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9424            << FD->getDeclName();
9425        else if (Fields.size() == 1)
9426          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9427            << FD->getDeclName() << Record->getTagKind();
9428      } else if (NumNamedMembers < 1) {
9429        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9430          << FD->getDeclName();
9431        FD->setInvalidDecl();
9432        EnclosingDecl->setInvalidDecl();
9433        continue;
9434      }
9435      if (!FD->getType()->isDependentType() &&
9436          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9437        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9438          << FD->getDeclName() << FD->getType();
9439        FD->setInvalidDecl();
9440        EnclosingDecl->setInvalidDecl();
9441        continue;
9442      }
9443      // Okay, we have a legal flexible array member at the end of the struct.
9444      if (Record)
9445        Record->setHasFlexibleArrayMember(true);
9446    } else if (!FDTy->isDependentType() &&
9447               RequireCompleteType(FD->getLocation(), FD->getType(),
9448                                   diag::err_field_incomplete)) {
9449      // Incomplete type
9450      FD->setInvalidDecl();
9451      EnclosingDecl->setInvalidDecl();
9452      continue;
9453    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9454      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9455        // If this is a member of a union, then entire union becomes "flexible".
9456        if (Record && Record->isUnion()) {
9457          Record->setHasFlexibleArrayMember(true);
9458        } else {
9459          // If this is a struct/class and this is not the last element, reject
9460          // it.  Note that GCC supports variable sized arrays in the middle of
9461          // structures.
9462          if (i + 1 != Fields.end())
9463            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9464              << FD->getDeclName() << FD->getType();
9465          else {
9466            // We support flexible arrays at the end of structs in
9467            // other structs as an extension.
9468            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9469              << FD->getDeclName();
9470            if (Record)
9471              Record->setHasFlexibleArrayMember(true);
9472          }
9473        }
9474      }
9475      if (Record && FDTTy->getDecl()->hasObjectMember())
9476        Record->setHasObjectMember(true);
9477    } else if (FDTy->isObjCObjectType()) {
9478      /// A field cannot be an Objective-c object
9479      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9480        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9481      QualType T = Context.getObjCObjectPointerType(FD->getType());
9482      FD->setType(T);
9483    }
9484    else if (!getLangOptions().CPlusPlus) {
9485      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9486        // It's an error in ARC if a field has lifetime.
9487        // We don't want to report this in a system header, though,
9488        // so we just make the field unavailable.
9489        // FIXME: that's really not sufficient; we need to make the type
9490        // itself invalid to, say, initialize or copy.
9491        QualType T = FD->getType();
9492        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9493        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9494          SourceLocation loc = FD->getLocation();
9495          if (getSourceManager().isInSystemHeader(loc)) {
9496            if (!FD->hasAttr<UnavailableAttr>()) {
9497              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9498                                "this system field has retaining ownership"));
9499            }
9500          } else {
9501            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9502              << T->isBlockPointerType();
9503          }
9504          ARCErrReported = true;
9505        }
9506      }
9507      else if (getLangOptions().ObjC1 &&
9508               getLangOptions().getGC() != LangOptions::NonGC &&
9509               Record && !Record->hasObjectMember()) {
9510        if (FD->getType()->isObjCObjectPointerType() ||
9511            FD->getType().isObjCGCStrong())
9512          Record->setHasObjectMember(true);
9513        else if (Context.getAsArrayType(FD->getType())) {
9514          QualType BaseType = Context.getBaseElementType(FD->getType());
9515          if (BaseType->isRecordType() &&
9516              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9517            Record->setHasObjectMember(true);
9518          else if (BaseType->isObjCObjectPointerType() ||
9519                   BaseType.isObjCGCStrong())
9520                 Record->setHasObjectMember(true);
9521        }
9522      }
9523    }
9524    // Keep track of the number of named members.
9525    if (FD->getIdentifier())
9526      ++NumNamedMembers;
9527  }
9528
9529  // Okay, we successfully defined 'Record'.
9530  if (Record) {
9531    bool Completed = false;
9532    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9533      if (!CXXRecord->isInvalidDecl()) {
9534        // Set access bits correctly on the directly-declared conversions.
9535        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9536        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9537             I != E; ++I)
9538          Convs->setAccess(I, (*I)->getAccess());
9539
9540        if (!CXXRecord->isDependentType()) {
9541          // Objective-C Automatic Reference Counting:
9542          //   If a class has a non-static data member of Objective-C pointer
9543          //   type (or array thereof), it is a non-POD type and its
9544          //   default constructor (if any), copy constructor, copy assignment
9545          //   operator, and destructor are non-trivial.
9546          //
9547          // This rule is also handled by CXXRecordDecl::completeDefinition().
9548          // However, here we check whether this particular class is only
9549          // non-POD because of the presence of an Objective-C pointer member.
9550          // If so, objects of this type cannot be shared between code compiled
9551          // with instant objects and code compiled with manual retain/release.
9552          if (getLangOptions().ObjCAutoRefCount &&
9553              CXXRecord->hasObjectMember() &&
9554              CXXRecord->getLinkage() == ExternalLinkage) {
9555            if (CXXRecord->isPOD()) {
9556              Diag(CXXRecord->getLocation(),
9557                   diag::warn_arc_non_pod_class_with_object_member)
9558               << CXXRecord;
9559            } else {
9560              // FIXME: Fix-Its would be nice here, but finding a good location
9561              // for them is going to be tricky.
9562              if (CXXRecord->hasTrivialCopyConstructor())
9563                Diag(CXXRecord->getLocation(),
9564                     diag::warn_arc_trivial_member_function_with_object_member)
9565                  << CXXRecord << 0;
9566              if (CXXRecord->hasTrivialCopyAssignment())
9567                Diag(CXXRecord->getLocation(),
9568                     diag::warn_arc_trivial_member_function_with_object_member)
9569                << CXXRecord << 1;
9570              if (CXXRecord->hasTrivialDestructor())
9571                Diag(CXXRecord->getLocation(),
9572                     diag::warn_arc_trivial_member_function_with_object_member)
9573                << CXXRecord << 2;
9574            }
9575          }
9576
9577          // Adjust user-defined destructor exception spec.
9578          if (getLangOptions().CPlusPlus0x &&
9579              CXXRecord->hasUserDeclaredDestructor())
9580            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9581
9582          // Add any implicitly-declared members to this class.
9583          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9584
9585          // If we have virtual base classes, we may end up finding multiple
9586          // final overriders for a given virtual function. Check for this
9587          // problem now.
9588          if (CXXRecord->getNumVBases()) {
9589            CXXFinalOverriderMap FinalOverriders;
9590            CXXRecord->getFinalOverriders(FinalOverriders);
9591
9592            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9593                                             MEnd = FinalOverriders.end();
9594                 M != MEnd; ++M) {
9595              for (OverridingMethods::iterator SO = M->second.begin(),
9596                                            SOEnd = M->second.end();
9597                   SO != SOEnd; ++SO) {
9598                assert(SO->second.size() > 0 &&
9599                       "Virtual function without overridding functions?");
9600                if (SO->second.size() == 1)
9601                  continue;
9602
9603                // C++ [class.virtual]p2:
9604                //   In a derived class, if a virtual member function of a base
9605                //   class subobject has more than one final overrider the
9606                //   program is ill-formed.
9607                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9608                  << (NamedDecl *)M->first << Record;
9609                Diag(M->first->getLocation(),
9610                     diag::note_overridden_virtual_function);
9611                for (OverridingMethods::overriding_iterator
9612                          OM = SO->second.begin(),
9613                       OMEnd = SO->second.end();
9614                     OM != OMEnd; ++OM)
9615                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9616                    << (NamedDecl *)M->first << OM->Method->getParent();
9617
9618                Record->setInvalidDecl();
9619              }
9620            }
9621            CXXRecord->completeDefinition(&FinalOverriders);
9622            Completed = true;
9623          }
9624        }
9625      }
9626    }
9627
9628    if (!Completed)
9629      Record->completeDefinition();
9630
9631    // Now that the record is complete, do any delayed exception spec checks
9632    // we were missing.
9633    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9634      const CXXDestructorDecl *Dtor =
9635              DelayedDestructorExceptionSpecChecks.back().first;
9636      if (Dtor->getParent() != Record)
9637        break;
9638
9639      assert(!Dtor->getParent()->isDependentType() &&
9640          "Should not ever add destructors of templates into the list.");
9641      CheckOverridingFunctionExceptionSpec(Dtor,
9642          DelayedDestructorExceptionSpecChecks.back().second);
9643      DelayedDestructorExceptionSpecChecks.pop_back();
9644    }
9645
9646  } else {
9647    ObjCIvarDecl **ClsFields =
9648      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9649    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9650      ID->setEndOfDefinitionLoc(RBrac);
9651      // Add ivar's to class's DeclContext.
9652      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9653        ClsFields[i]->setLexicalDeclContext(ID);
9654        ID->addDecl(ClsFields[i]);
9655      }
9656      // Must enforce the rule that ivars in the base classes may not be
9657      // duplicates.
9658      if (ID->getSuperClass())
9659        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9660    } else if (ObjCImplementationDecl *IMPDecl =
9661                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9662      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9663      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9664        // Ivar declared in @implementation never belongs to the implementation.
9665        // Only it is in implementation's lexical context.
9666        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9667      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9668      IMPDecl->setIvarLBraceLoc(LBrac);
9669      IMPDecl->setIvarRBraceLoc(RBrac);
9670    } else if (ObjCCategoryDecl *CDecl =
9671                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9672      // case of ivars in class extension; all other cases have been
9673      // reported as errors elsewhere.
9674      // FIXME. Class extension does not have a LocEnd field.
9675      // CDecl->setLocEnd(RBrac);
9676      // Add ivar's to class extension's DeclContext.
9677      // Diagnose redeclaration of private ivars.
9678      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9679      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9680        if (IDecl) {
9681          if (const ObjCIvarDecl *ClsIvar =
9682              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9683            Diag(ClsFields[i]->getLocation(),
9684                 diag::err_duplicate_ivar_declaration);
9685            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9686            continue;
9687          }
9688          for (const ObjCCategoryDecl *ClsExtDecl =
9689                IDecl->getFirstClassExtension();
9690               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9691            if (const ObjCIvarDecl *ClsExtIvar =
9692                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9693              Diag(ClsFields[i]->getLocation(),
9694                   diag::err_duplicate_ivar_declaration);
9695              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9696              continue;
9697            }
9698          }
9699        }
9700        ClsFields[i]->setLexicalDeclContext(CDecl);
9701        CDecl->addDecl(ClsFields[i]);
9702      }
9703      CDecl->setIvarLBraceLoc(LBrac);
9704      CDecl->setIvarRBraceLoc(RBrac);
9705    }
9706  }
9707
9708  if (Attr)
9709    ProcessDeclAttributeList(S, Record, Attr);
9710
9711  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9712  // set the visibility of this record.
9713  if (Record && !Record->getDeclContext()->isRecord())
9714    AddPushedVisibilityAttribute(Record);
9715}
9716
9717/// \brief Determine whether the given integral value is representable within
9718/// the given type T.
9719static bool isRepresentableIntegerValue(ASTContext &Context,
9720                                        llvm::APSInt &Value,
9721                                        QualType T) {
9722  assert(T->isIntegralType(Context) && "Integral type required!");
9723  unsigned BitWidth = Context.getIntWidth(T);
9724
9725  if (Value.isUnsigned() || Value.isNonNegative()) {
9726    if (T->isSignedIntegerOrEnumerationType())
9727      --BitWidth;
9728    return Value.getActiveBits() <= BitWidth;
9729  }
9730  return Value.getMinSignedBits() <= BitWidth;
9731}
9732
9733// \brief Given an integral type, return the next larger integral type
9734// (or a NULL type of no such type exists).
9735static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9736  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9737  // enum checking below.
9738  assert(T->isIntegralType(Context) && "Integral type required!");
9739  const unsigned NumTypes = 4;
9740  QualType SignedIntegralTypes[NumTypes] = {
9741    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9742  };
9743  QualType UnsignedIntegralTypes[NumTypes] = {
9744    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9745    Context.UnsignedLongLongTy
9746  };
9747
9748  unsigned BitWidth = Context.getTypeSize(T);
9749  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9750                                                        : UnsignedIntegralTypes;
9751  for (unsigned I = 0; I != NumTypes; ++I)
9752    if (Context.getTypeSize(Types[I]) > BitWidth)
9753      return Types[I];
9754
9755  return QualType();
9756}
9757
9758EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9759                                          EnumConstantDecl *LastEnumConst,
9760                                          SourceLocation IdLoc,
9761                                          IdentifierInfo *Id,
9762                                          Expr *Val) {
9763  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9764  llvm::APSInt EnumVal(IntWidth);
9765  QualType EltTy;
9766
9767  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9768    Val = 0;
9769
9770  if (Val)
9771    Val = DefaultLvalueConversion(Val).take();
9772
9773  if (Val) {
9774    if (Enum->isDependentType() || Val->isTypeDependent())
9775      EltTy = Context.DependentTy;
9776    else {
9777      SourceLocation ExpLoc;
9778      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9779          !getLangOptions().MicrosoftMode) {
9780        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9781        // constant-expression in the enumerator-definition shall be a converted
9782        // constant expression of the underlying type.
9783        EltTy = Enum->getIntegerType();
9784        ExprResult Converted =
9785          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9786                                           CCEK_Enumerator);
9787        if (Converted.isInvalid())
9788          Val = 0;
9789        else
9790          Val = Converted.take();
9791      } else if (!Val->isValueDependent() &&
9792                 !(Val = VerifyIntegerConstantExpression(Val,
9793                                                         &EnumVal).take())) {
9794        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9795      } else {
9796        if (Enum->isFixed()) {
9797          EltTy = Enum->getIntegerType();
9798
9799          // In Obj-C and Microsoft mode, require the enumeration value to be
9800          // representable in the underlying type of the enumeration. In C++11,
9801          // we perform a non-narrowing conversion as part of converted constant
9802          // expression checking.
9803          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9804            if (getLangOptions().MicrosoftMode) {
9805              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9806              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9807            } else
9808              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9809          } else
9810            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9811        } else if (getLangOptions().CPlusPlus) {
9812          // C++11 [dcl.enum]p5:
9813          //   If the underlying type is not fixed, the type of each enumerator
9814          //   is the type of its initializing value:
9815          //     - If an initializer is specified for an enumerator, the
9816          //       initializing value has the same type as the expression.
9817          EltTy = Val->getType();
9818        } else {
9819          // C99 6.7.2.2p2:
9820          //   The expression that defines the value of an enumeration constant
9821          //   shall be an integer constant expression that has a value
9822          //   representable as an int.
9823
9824          // Complain if the value is not representable in an int.
9825          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9826            Diag(IdLoc, diag::ext_enum_value_not_int)
9827              << EnumVal.toString(10) << Val->getSourceRange()
9828              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9829          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9830            // Force the type of the expression to 'int'.
9831            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9832          }
9833          EltTy = Val->getType();
9834        }
9835      }
9836    }
9837  }
9838
9839  if (!Val) {
9840    if (Enum->isDependentType())
9841      EltTy = Context.DependentTy;
9842    else if (!LastEnumConst) {
9843      // C++0x [dcl.enum]p5:
9844      //   If the underlying type is not fixed, the type of each enumerator
9845      //   is the type of its initializing value:
9846      //     - If no initializer is specified for the first enumerator, the
9847      //       initializing value has an unspecified integral type.
9848      //
9849      // GCC uses 'int' for its unspecified integral type, as does
9850      // C99 6.7.2.2p3.
9851      if (Enum->isFixed()) {
9852        EltTy = Enum->getIntegerType();
9853      }
9854      else {
9855        EltTy = Context.IntTy;
9856      }
9857    } else {
9858      // Assign the last value + 1.
9859      EnumVal = LastEnumConst->getInitVal();
9860      ++EnumVal;
9861      EltTy = LastEnumConst->getType();
9862
9863      // Check for overflow on increment.
9864      if (EnumVal < LastEnumConst->getInitVal()) {
9865        // C++0x [dcl.enum]p5:
9866        //   If the underlying type is not fixed, the type of each enumerator
9867        //   is the type of its initializing value:
9868        //
9869        //     - Otherwise the type of the initializing value is the same as
9870        //       the type of the initializing value of the preceding enumerator
9871        //       unless the incremented value is not representable in that type,
9872        //       in which case the type is an unspecified integral type
9873        //       sufficient to contain the incremented value. If no such type
9874        //       exists, the program is ill-formed.
9875        QualType T = getNextLargerIntegralType(Context, EltTy);
9876        if (T.isNull() || Enum->isFixed()) {
9877          // There is no integral type larger enough to represent this
9878          // value. Complain, then allow the value to wrap around.
9879          EnumVal = LastEnumConst->getInitVal();
9880          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9881          ++EnumVal;
9882          if (Enum->isFixed())
9883            // When the underlying type is fixed, this is ill-formed.
9884            Diag(IdLoc, diag::err_enumerator_wrapped)
9885              << EnumVal.toString(10)
9886              << EltTy;
9887          else
9888            Diag(IdLoc, diag::warn_enumerator_too_large)
9889              << EnumVal.toString(10);
9890        } else {
9891          EltTy = T;
9892        }
9893
9894        // Retrieve the last enumerator's value, extent that type to the
9895        // type that is supposed to be large enough to represent the incremented
9896        // value, then increment.
9897        EnumVal = LastEnumConst->getInitVal();
9898        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9899        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9900        ++EnumVal;
9901
9902        // If we're not in C++, diagnose the overflow of enumerator values,
9903        // which in C99 means that the enumerator value is not representable in
9904        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9905        // permits enumerator values that are representable in some larger
9906        // integral type.
9907        if (!getLangOptions().CPlusPlus && !T.isNull())
9908          Diag(IdLoc, diag::warn_enum_value_overflow);
9909      } else if (!getLangOptions().CPlusPlus &&
9910                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9911        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9912        Diag(IdLoc, diag::ext_enum_value_not_int)
9913          << EnumVal.toString(10) << 1;
9914      }
9915    }
9916  }
9917
9918  if (!EltTy->isDependentType()) {
9919    // Make the enumerator value match the signedness and size of the
9920    // enumerator's type.
9921    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
9922    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9923  }
9924
9925  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9926                                  Val, EnumVal);
9927}
9928
9929
9930Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9931                              SourceLocation IdLoc, IdentifierInfo *Id,
9932                              AttributeList *Attr,
9933                              SourceLocation EqualLoc, Expr *Val) {
9934  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9935  EnumConstantDecl *LastEnumConst =
9936    cast_or_null<EnumConstantDecl>(lastEnumConst);
9937
9938  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9939  // we find one that is.
9940  S = getNonFieldDeclScope(S);
9941
9942  // Verify that there isn't already something declared with this name in this
9943  // scope.
9944  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9945                                         ForRedeclaration);
9946  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9947    // Maybe we will complain about the shadowed template parameter.
9948    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9949    // Just pretend that we didn't see the previous declaration.
9950    PrevDecl = 0;
9951  }
9952
9953  if (PrevDecl) {
9954    // When in C++, we may get a TagDecl with the same name; in this case the
9955    // enum constant will 'hide' the tag.
9956    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9957           "Received TagDecl when not in C++!");
9958    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9959      if (isa<EnumConstantDecl>(PrevDecl))
9960        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9961      else
9962        Diag(IdLoc, diag::err_redefinition) << Id;
9963      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9964      return 0;
9965    }
9966  }
9967
9968  // C++ [class.mem]p13:
9969  //   If T is the name of a class, then each of the following shall have a
9970  //   name different from T:
9971  //     - every enumerator of every member of class T that is an enumerated
9972  //       type
9973  if (CXXRecordDecl *Record
9974                      = dyn_cast<CXXRecordDecl>(
9975                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9976    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9977      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9978
9979  EnumConstantDecl *New =
9980    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9981
9982  if (New) {
9983    // Process attributes.
9984    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9985
9986    // Register this decl in the current scope stack.
9987    New->setAccess(TheEnumDecl->getAccess());
9988    PushOnScopeChains(New, S);
9989  }
9990
9991  return New;
9992}
9993
9994void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9995                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9996                         Decl **Elements, unsigned NumElements,
9997                         Scope *S, AttributeList *Attr) {
9998  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9999  QualType EnumType = Context.getTypeDeclType(Enum);
10000
10001  if (Attr)
10002    ProcessDeclAttributeList(S, Enum, Attr);
10003
10004  if (Enum->isDependentType()) {
10005    for (unsigned i = 0; i != NumElements; ++i) {
10006      EnumConstantDecl *ECD =
10007        cast_or_null<EnumConstantDecl>(Elements[i]);
10008      if (!ECD) continue;
10009
10010      ECD->setType(EnumType);
10011    }
10012
10013    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10014    return;
10015  }
10016
10017  // TODO: If the result value doesn't fit in an int, it must be a long or long
10018  // long value.  ISO C does not support this, but GCC does as an extension,
10019  // emit a warning.
10020  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10021  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10022  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10023
10024  // Verify that all the values are okay, compute the size of the values, and
10025  // reverse the list.
10026  unsigned NumNegativeBits = 0;
10027  unsigned NumPositiveBits = 0;
10028
10029  // Keep track of whether all elements have type int.
10030  bool AllElementsInt = true;
10031
10032  for (unsigned i = 0; i != NumElements; ++i) {
10033    EnumConstantDecl *ECD =
10034      cast_or_null<EnumConstantDecl>(Elements[i]);
10035    if (!ECD) continue;  // Already issued a diagnostic.
10036
10037    const llvm::APSInt &InitVal = ECD->getInitVal();
10038
10039    // Keep track of the size of positive and negative values.
10040    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10041      NumPositiveBits = std::max(NumPositiveBits,
10042                                 (unsigned)InitVal.getActiveBits());
10043    else
10044      NumNegativeBits = std::max(NumNegativeBits,
10045                                 (unsigned)InitVal.getMinSignedBits());
10046
10047    // Keep track of whether every enum element has type int (very commmon).
10048    if (AllElementsInt)
10049      AllElementsInt = ECD->getType() == Context.IntTy;
10050  }
10051
10052  // Figure out the type that should be used for this enum.
10053  QualType BestType;
10054  unsigned BestWidth;
10055
10056  // C++0x N3000 [conv.prom]p3:
10057  //   An rvalue of an unscoped enumeration type whose underlying
10058  //   type is not fixed can be converted to an rvalue of the first
10059  //   of the following types that can represent all the values of
10060  //   the enumeration: int, unsigned int, long int, unsigned long
10061  //   int, long long int, or unsigned long long int.
10062  // C99 6.4.4.3p2:
10063  //   An identifier declared as an enumeration constant has type int.
10064  // The C99 rule is modified by a gcc extension
10065  QualType BestPromotionType;
10066
10067  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10068  // -fshort-enums is the equivalent to specifying the packed attribute on all
10069  // enum definitions.
10070  if (LangOpts.ShortEnums)
10071    Packed = true;
10072
10073  if (Enum->isFixed()) {
10074    BestType = Enum->getIntegerType();
10075    if (BestType->isPromotableIntegerType())
10076      BestPromotionType = Context.getPromotedIntegerType(BestType);
10077    else
10078      BestPromotionType = BestType;
10079    // We don't need to set BestWidth, because BestType is going to be the type
10080    // of the enumerators, but we do anyway because otherwise some compilers
10081    // warn that it might be used uninitialized.
10082    BestWidth = CharWidth;
10083  }
10084  else if (NumNegativeBits) {
10085    // If there is a negative value, figure out the smallest integer type (of
10086    // int/long/longlong) that fits.
10087    // If it's packed, check also if it fits a char or a short.
10088    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10089      BestType = Context.SignedCharTy;
10090      BestWidth = CharWidth;
10091    } else if (Packed && NumNegativeBits <= ShortWidth &&
10092               NumPositiveBits < ShortWidth) {
10093      BestType = Context.ShortTy;
10094      BestWidth = ShortWidth;
10095    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10096      BestType = Context.IntTy;
10097      BestWidth = IntWidth;
10098    } else {
10099      BestWidth = Context.getTargetInfo().getLongWidth();
10100
10101      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10102        BestType = Context.LongTy;
10103      } else {
10104        BestWidth = Context.getTargetInfo().getLongLongWidth();
10105
10106        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10107          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10108        BestType = Context.LongLongTy;
10109      }
10110    }
10111    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10112  } else {
10113    // If there is no negative value, figure out the smallest type that fits
10114    // all of the enumerator values.
10115    // If it's packed, check also if it fits a char or a short.
10116    if (Packed && NumPositiveBits <= CharWidth) {
10117      BestType = Context.UnsignedCharTy;
10118      BestPromotionType = Context.IntTy;
10119      BestWidth = CharWidth;
10120    } else if (Packed && NumPositiveBits <= ShortWidth) {
10121      BestType = Context.UnsignedShortTy;
10122      BestPromotionType = Context.IntTy;
10123      BestWidth = ShortWidth;
10124    } else if (NumPositiveBits <= IntWidth) {
10125      BestType = Context.UnsignedIntTy;
10126      BestWidth = IntWidth;
10127      BestPromotionType
10128        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10129                           ? Context.UnsignedIntTy : Context.IntTy;
10130    } else if (NumPositiveBits <=
10131               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10132      BestType = Context.UnsignedLongTy;
10133      BestPromotionType
10134        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10135                           ? Context.UnsignedLongTy : Context.LongTy;
10136    } else {
10137      BestWidth = Context.getTargetInfo().getLongLongWidth();
10138      assert(NumPositiveBits <= BestWidth &&
10139             "How could an initializer get larger than ULL?");
10140      BestType = Context.UnsignedLongLongTy;
10141      BestPromotionType
10142        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
10143                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10144    }
10145  }
10146
10147  // Loop over all of the enumerator constants, changing their types to match
10148  // the type of the enum if needed.
10149  for (unsigned i = 0; i != NumElements; ++i) {
10150    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10151    if (!ECD) continue;  // Already issued a diagnostic.
10152
10153    // Standard C says the enumerators have int type, but we allow, as an
10154    // extension, the enumerators to be larger than int size.  If each
10155    // enumerator value fits in an int, type it as an int, otherwise type it the
10156    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10157    // that X has type 'int', not 'unsigned'.
10158
10159    // Determine whether the value fits into an int.
10160    llvm::APSInt InitVal = ECD->getInitVal();
10161
10162    // If it fits into an integer type, force it.  Otherwise force it to match
10163    // the enum decl type.
10164    QualType NewTy;
10165    unsigned NewWidth;
10166    bool NewSign;
10167    if (!getLangOptions().CPlusPlus &&
10168        !Enum->isFixed() &&
10169        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10170      NewTy = Context.IntTy;
10171      NewWidth = IntWidth;
10172      NewSign = true;
10173    } else if (ECD->getType() == BestType) {
10174      // Already the right type!
10175      if (getLangOptions().CPlusPlus)
10176        // C++ [dcl.enum]p4: Following the closing brace of an
10177        // enum-specifier, each enumerator has the type of its
10178        // enumeration.
10179        ECD->setType(EnumType);
10180      continue;
10181    } else {
10182      NewTy = BestType;
10183      NewWidth = BestWidth;
10184      NewSign = BestType->isSignedIntegerOrEnumerationType();
10185    }
10186
10187    // Adjust the APSInt value.
10188    InitVal = InitVal.extOrTrunc(NewWidth);
10189    InitVal.setIsSigned(NewSign);
10190    ECD->setInitVal(InitVal);
10191
10192    // Adjust the Expr initializer and type.
10193    if (ECD->getInitExpr() &&
10194        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10195      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10196                                                CK_IntegralCast,
10197                                                ECD->getInitExpr(),
10198                                                /*base paths*/ 0,
10199                                                VK_RValue));
10200    if (getLangOptions().CPlusPlus)
10201      // C++ [dcl.enum]p4: Following the closing brace of an
10202      // enum-specifier, each enumerator has the type of its
10203      // enumeration.
10204      ECD->setType(EnumType);
10205    else
10206      ECD->setType(NewTy);
10207  }
10208
10209  Enum->completeDefinition(BestType, BestPromotionType,
10210                           NumPositiveBits, NumNegativeBits);
10211
10212  // If we're declaring a function, ensure this decl isn't forgotten about -
10213  // it needs to go into the function scope.
10214  if (InFunctionDeclarator)
10215    DeclsInPrototypeScope.push_back(Enum);
10216
10217}
10218
10219Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10220                                  SourceLocation StartLoc,
10221                                  SourceLocation EndLoc) {
10222  StringLiteral *AsmString = cast<StringLiteral>(expr);
10223
10224  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10225                                                   AsmString, StartLoc,
10226                                                   EndLoc);
10227  CurContext->addDecl(New);
10228  return New;
10229}
10230
10231DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10232                                   SourceLocation ImportLoc,
10233                                   ModuleIdPath Path) {
10234  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10235                                                Module::AllVisible,
10236                                                /*IsIncludeDirective=*/false);
10237  if (!Mod)
10238    return true;
10239
10240  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10241  Module *ModCheck = Mod;
10242  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10243    // If we've run out of module parents, just drop the remaining identifiers.
10244    // We need the length to be consistent.
10245    if (!ModCheck)
10246      break;
10247    ModCheck = ModCheck->Parent;
10248
10249    IdentifierLocs.push_back(Path[I].second);
10250  }
10251
10252  ImportDecl *Import = ImportDecl::Create(Context,
10253                                          Context.getTranslationUnitDecl(),
10254                                          AtLoc.isValid()? AtLoc : ImportLoc,
10255                                          Mod, IdentifierLocs);
10256  Context.getTranslationUnitDecl()->addDecl(Import);
10257  return Import;
10258}
10259
10260void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10261                                      IdentifierInfo* AliasName,
10262                                      SourceLocation PragmaLoc,
10263                                      SourceLocation NameLoc,
10264                                      SourceLocation AliasNameLoc) {
10265  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10266                                    LookupOrdinaryName);
10267  AsmLabelAttr *Attr =
10268     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10269
10270  if (PrevDecl)
10271    PrevDecl->addAttr(Attr);
10272  else
10273    (void)ExtnameUndeclaredIdentifiers.insert(
10274      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10275}
10276
10277void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10278                             SourceLocation PragmaLoc,
10279                             SourceLocation NameLoc) {
10280  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10281
10282  if (PrevDecl) {
10283    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10284  } else {
10285    (void)WeakUndeclaredIdentifiers.insert(
10286      std::pair<IdentifierInfo*,WeakInfo>
10287        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10288  }
10289}
10290
10291void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10292                                IdentifierInfo* AliasName,
10293                                SourceLocation PragmaLoc,
10294                                SourceLocation NameLoc,
10295                                SourceLocation AliasNameLoc) {
10296  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10297                                    LookupOrdinaryName);
10298  WeakInfo W = WeakInfo(Name, NameLoc);
10299
10300  if (PrevDecl) {
10301    if (!PrevDecl->hasAttr<AliasAttr>())
10302      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10303        DeclApplyPragmaWeak(TUScope, ND, W);
10304  } else {
10305    (void)WeakUndeclaredIdentifiers.insert(
10306      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10307  }
10308}
10309
10310Decl *Sema::getObjCDeclContext() const {
10311  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10312}
10313
10314AvailabilityResult Sema::getCurContextAvailability() const {
10315  const Decl *D = cast<Decl>(getCurLexicalContext());
10316  // A category implicitly has the availability of the interface.
10317  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10318    D = CatD->getClassInterface();
10319
10320  return D->getAvailability();
10321}
10322