SemaDecl.cpp revision 1d954f6a0057cb55a3a5d483904a3c57d03c996f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185
186DeclContext *Sema::getContainingDC(DeclContext *DC) {
187  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
188    // A C++ out-of-line method will return to the file declaration context.
189    if (MD->isOutOfLine())
190      return MD->getLexicalDeclContext();
191
192    // A C++ inline method is parsed *after* the topmost class it was declared
193    // in is fully parsed (it's "complete").
194    // The parsing of a C++ inline method happens at the declaration context of
195    // the topmost (non-nested) class it is lexically declared in.
196    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
197    DC = MD->getParent();
198    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
199      DC = RD;
200
201    // Return the declaration context of the topmost class the inline method is
202    // declared in.
203    return DC;
204  }
205
206  if (isa<ObjCMethodDecl>(DC))
207    return Context.getTranslationUnitDecl();
208
209  return DC->getLexicalParent();
210}
211
212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
213  assert(getContainingDC(DC) == CurContext &&
214      "The next DeclContext should be lexically contained in the current one.");
215  CurContext = DC;
216  S->setEntity(DC);
217}
218
219void Sema::PopDeclContext() {
220  assert(CurContext && "DeclContext imbalance!");
221
222  CurContext = getContainingDC(CurContext);
223}
224
225/// EnterDeclaratorContext - Used when we must lookup names in the context
226/// of a declarator's nested name specifier.
227void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
228  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
229  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
230  CurContext = DC;
231  assert(CurContext && "No context?");
232  S->setEntity(CurContext);
233}
234
235void Sema::ExitDeclaratorContext(Scope *S) {
236  S->setEntity(PreDeclaratorDC);
237  PreDeclaratorDC = 0;
238
239  // Reset CurContext to the nearest enclosing context.
240  while (!S->getEntity() && S->getParent())
241    S = S->getParent();
242  CurContext = static_cast<DeclContext*>(S->getEntity());
243  assert(CurContext && "No context?");
244}
245
246/// \brief Determine whether we allow overloading of the function
247/// PrevDecl with another declaration.
248///
249/// This routine determines whether overloading is possible, not
250/// whether some new function is actually an overload. It will return
251/// true in C++ (where we can always provide overloads) or, as an
252/// extension, in C when the previous function is already an
253/// overloaded function declaration or has the "overloadable"
254/// attribute.
255static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
256  if (Context.getLangOptions().CPlusPlus)
257    return true;
258
259  if (isa<OverloadedFunctionDecl>(PrevDecl))
260    return true;
261
262  return PrevDecl->getAttr<OverloadableAttr>() != 0;
263}
264
265/// Add this decl to the scope shadowed decl chains.
266void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
267  // Move up the scope chain until we find the nearest enclosing
268  // non-transparent context. The declaration will be introduced into this
269  // scope.
270  while (S->getEntity() &&
271         ((DeclContext *)S->getEntity())->isTransparentContext())
272    S = S->getParent();
273
274  S->AddDecl(DeclPtrTy::make(D));
275
276  // Add scoped declarations into their context, so that they can be
277  // found later. Declarations without a context won't be inserted
278  // into any context.
279  CurContext->addDecl(D);
280
281  // C++ [basic.scope]p4:
282  //   -- exactly one declaration shall declare a class name or
283  //   enumeration name that is not a typedef name and the other
284  //   declarations shall all refer to the same object or
285  //   enumerator, or all refer to functions and function templates;
286  //   in this case the class name or enumeration name is hidden.
287  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
288    // We are pushing the name of a tag (enum or class).
289    if (CurContext->getLookupContext()
290          == TD->getDeclContext()->getLookupContext()) {
291      // We're pushing the tag into the current context, which might
292      // require some reshuffling in the identifier resolver.
293      IdentifierResolver::iterator
294        I = IdResolver.begin(TD->getDeclName()),
295        IEnd = IdResolver.end();
296      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
297        NamedDecl *PrevDecl = *I;
298        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
299             PrevDecl = *I, ++I) {
300          if (TD->declarationReplaces(*I)) {
301            // This is a redeclaration. Remove it from the chain and
302            // break out, so that we'll add in the shadowed
303            // declaration.
304            S->RemoveDecl(DeclPtrTy::make(*I));
305            if (PrevDecl == *I) {
306              IdResolver.RemoveDecl(*I);
307              IdResolver.AddDecl(TD);
308              return;
309            } else {
310              IdResolver.RemoveDecl(*I);
311              break;
312            }
313          }
314        }
315
316        // There is already a declaration with the same name in the same
317        // scope, which is not a tag declaration. It must be found
318        // before we find the new declaration, so insert the new
319        // declaration at the end of the chain.
320        IdResolver.AddShadowedDecl(TD, PrevDecl);
321
322        return;
323      }
324    }
325  } else if ((isa<FunctionDecl>(D) &&
326              AllowOverloadingOfFunction(D, Context)) ||
327             isa<FunctionTemplateDecl>(D)) {
328    // We are pushing the name of a function or function template,
329    // which might be an overloaded name.
330    IdentifierResolver::iterator Redecl
331      = std::find_if(IdResolver.begin(D->getDeclName()),
332                     IdResolver.end(),
333                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
334                                  D));
335    if (Redecl != IdResolver.end() &&
336        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
337      // There is already a declaration of a function on our
338      // IdResolver chain. Replace it with this declaration.
339      S->RemoveDecl(DeclPtrTy::make(*Redecl));
340      IdResolver.RemoveDecl(*Redecl);
341    }
342  } else if (isa<ObjCInterfaceDecl>(D)) {
343    // We're pushing an Objective-C interface into the current
344    // context. If there is already an alias declaration, remove it first.
345    for (IdentifierResolver::iterator
346           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
347         I != IEnd; ++I) {
348      if (isa<ObjCCompatibleAliasDecl>(*I)) {
349        S->RemoveDecl(DeclPtrTy::make(*I));
350        IdResolver.RemoveDecl(*I);
351        break;
352      }
353    }
354  }
355
356  IdResolver.AddDecl(D);
357}
358
359void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
360  if (S->decl_empty()) return;
361  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
362	 "Scope shouldn't contain decls!");
363
364  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
365       I != E; ++I) {
366    Decl *TmpD = (*I).getAs<Decl>();
367    assert(TmpD && "This decl didn't get pushed??");
368
369    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
370    NamedDecl *D = cast<NamedDecl>(TmpD);
371
372    if (!D->getDeclName()) continue;
373
374    // Remove this name from our lexical scope.
375    IdResolver.RemoveDecl(D);
376  }
377}
378
379/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
380/// return 0 if one not found.
381ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
383  // creation from this context.
384  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
385
386  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
387}
388
389/// getNonFieldDeclScope - Retrieves the innermost scope, starting
390/// from S, where a non-field would be declared. This routine copes
391/// with the difference between C and C++ scoping rules in structs and
392/// unions. For example, the following code is well-formed in C but
393/// ill-formed in C++:
394/// @code
395/// struct S6 {
396///   enum { BAR } e;
397/// };
398///
399/// void test_S6() {
400///   struct S6 a;
401///   a.e = BAR;
402/// }
403/// @endcode
404/// For the declaration of BAR, this routine will return a different
405/// scope. The scope S will be the scope of the unnamed enumeration
406/// within S6. In C++, this routine will return the scope associated
407/// with S6, because the enumeration's scope is a transparent
408/// context but structures can contain non-field names. In C, this
409/// routine will return the translation unit scope, since the
410/// enumeration's scope is a transparent context and structures cannot
411/// contain non-field names.
412Scope *Sema::getNonFieldDeclScope(Scope *S) {
413  while (((S->getFlags() & Scope::DeclScope) == 0) ||
414         (S->getEntity() &&
415          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
416         (S->isClassScope() && !getLangOptions().CPlusPlus))
417    S = S->getParent();
418  return S;
419}
420
421void Sema::InitBuiltinVaListType() {
422  if (!Context.getBuiltinVaListType().isNull())
423    return;
424
425  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
426  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
427  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
428  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
429}
430
431/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
432/// file scope.  lazily create a decl for it. ForRedeclaration is true
433/// if we're creating this built-in in anticipation of redeclaring the
434/// built-in.
435NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
436                                     Scope *S, bool ForRedeclaration,
437                                     SourceLocation Loc) {
438  Builtin::ID BID = (Builtin::ID)bid;
439
440  if (Context.BuiltinInfo.hasVAListUse(BID))
441    InitBuiltinVaListType();
442
443  ASTContext::GetBuiltinTypeError Error;
444  QualType R = Context.GetBuiltinType(BID, Error);
445  switch (Error) {
446  case ASTContext::GE_None:
447    // Okay
448    break;
449
450  case ASTContext::GE_Missing_stdio:
451    if (ForRedeclaration)
452      Diag(Loc, diag::err_implicit_decl_requires_stdio)
453        << Context.BuiltinInfo.GetName(BID);
454    return 0;
455
456  case ASTContext::GE_Missing_setjmp:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461  }
462
463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
464    Diag(Loc, diag::ext_implicit_lib_function_decl)
465      << Context.BuiltinInfo.GetName(BID)
466      << R;
467    if (Context.BuiltinInfo.getHeaderName(BID) &&
468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
469          != Diagnostic::Ignored)
470      Diag(Loc, diag::note_please_include_header)
471        << Context.BuiltinInfo.getHeaderName(BID)
472        << Context.BuiltinInfo.GetName(BID);
473  }
474
475  FunctionDecl *New = FunctionDecl::Create(Context,
476                                           Context.getTranslationUnitDecl(),
477                                           Loc, II, R,
478                                           FunctionDecl::Extern, false,
479                                           /*hasPrototype=*/true);
480  New->setImplicit();
481
482  // Create Decl objects for each parameter, adding them to the
483  // FunctionDecl.
484  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
485    llvm::SmallVector<ParmVarDecl*, 16> Params;
486    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
487      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
488                                           FT->getArgType(i), VarDecl::None, 0));
489    New->setParams(Context, Params.data(), Params.size());
490  }
491
492  AddKnownFunctionAttributes(New);
493
494  // TUScope is the translation-unit scope to insert this function into.
495  // FIXME: This is hideous. We need to teach PushOnScopeChains to
496  // relate Scopes to DeclContexts, and probably eliminate CurContext
497  // entirely, but we're not there yet.
498  DeclContext *SavedContext = CurContext;
499  CurContext = Context.getTranslationUnitDecl();
500  PushOnScopeChains(New, TUScope);
501  CurContext = SavedContext;
502  return New;
503}
504
505/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
506/// everything from the standard library is defined.
507NamespaceDecl *Sema::GetStdNamespace() {
508  if (!StdNamespace) {
509    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
510    DeclContext *Global = Context.getTranslationUnitDecl();
511    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
512    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
513  }
514  return StdNamespace;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      // Install the built-in type for 'id', ignoring the current definition.
538      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
539      return;
540    case 5:
541      if (!TypeID->isStr("Class"))
542        break;
543      // Install the built-in type for 'Class', ignoring the current definition.
544      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
545      return;
546    case 3:
547      if (!TypeID->isStr("SEL"))
548        break;
549      Context.setObjCSelType(Context.getTypeDeclType(New));
550      return;
551    case 8:
552      if (!TypeID->isStr("Protocol"))
553        break;
554      Context.setObjCProtoType(New->getUnderlyingType());
555      return;
556    }
557    // Fall through - the typedef name was not a builtin type.
558  }
559  // Verify the old decl was also a type.
560  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
561  if (!Old) {
562    Diag(New->getLocation(), diag::err_redefinition_different_kind)
563      << New->getDeclName();
564    if (OldD->getLocation().isValid())
565      Diag(OldD->getLocation(), diag::note_previous_definition);
566    return New->setInvalidDecl();
567  }
568
569  // Determine the "old" type we'll use for checking and diagnostics.
570  QualType OldType;
571  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
572    OldType = OldTypedef->getUnderlyingType();
573  else
574    OldType = Context.getTypeDeclType(Old);
575
576  // If the typedef types are not identical, reject them in all languages and
577  // with any extensions enabled.
578
579  if (OldType != New->getUnderlyingType() &&
580      Context.getCanonicalType(OldType) !=
581      Context.getCanonicalType(New->getUnderlyingType())) {
582    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
583      << New->getUnderlyingType() << OldType;
584    if (Old->getLocation().isValid())
585      Diag(Old->getLocation(), diag::note_previous_definition);
586    return New->setInvalidDecl();
587  }
588
589  if (getLangOptions().Microsoft)
590    return;
591
592  // C++ [dcl.typedef]p2:
593  //   In a given non-class scope, a typedef specifier can be used to
594  //   redefine the name of any type declared in that scope to refer
595  //   to the type to which it already refers.
596  if (getLangOptions().CPlusPlus) {
597    if (!isa<CXXRecordDecl>(CurContext))
598      return;
599    Diag(New->getLocation(), diag::err_redefinition)
600      << New->getDeclName();
601    Diag(Old->getLocation(), diag::note_previous_definition);
602    return New->setInvalidDecl();
603  }
604
605  // If we have a redefinition of a typedef in C, emit a warning.  This warning
606  // is normally mapped to an error, but can be controlled with
607  // -Wtypedef-redefinition.  If either the original or the redefinition is
608  // in a system header, don't emit this for compatibility with GCC.
609  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
610      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
611       Context.getSourceManager().isInSystemHeader(New->getLocation())))
612    return;
613
614  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
615    << New->getDeclName();
616  Diag(Old->getLocation(), diag::note_previous_definition);
617  return;
618}
619
620/// DeclhasAttr - returns true if decl Declaration already has the target
621/// attribute.
622static bool
623DeclHasAttr(const Decl *decl, const Attr *target) {
624  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
625    if (attr->getKind() == target->getKind())
626      return true;
627
628  return false;
629}
630
631/// MergeAttributes - append attributes from the Old decl to the New one.
632static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
633  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
634    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
635      Attr *NewAttr = attr->clone(C);
636      NewAttr->setInherited(true);
637      New->addAttr(NewAttr);
638    }
639  }
640}
641
642/// Used in MergeFunctionDecl to keep track of function parameters in
643/// C.
644struct GNUCompatibleParamWarning {
645  ParmVarDecl *OldParm;
646  ParmVarDecl *NewParm;
647  QualType PromotedType;
648};
649
650/// MergeFunctionDecl - We just parsed a function 'New' from
651/// declarator D which has the same name and scope as a previous
652/// declaration 'Old'.  Figure out how to resolve this situation,
653/// merging decls or emitting diagnostics as appropriate.
654///
655/// In C++, New and Old must be declarations that are not
656/// overloaded. Use IsOverload to determine whether New and Old are
657/// overloaded, and to select the Old declaration that New should be
658/// merged with.
659///
660/// Returns true if there was an error, false otherwise.
661bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
662  assert(!isa<OverloadedFunctionDecl>(OldD) &&
663         "Cannot merge with an overloaded function declaration");
664
665  // Verify the old decl was also a function.
666  FunctionDecl *Old = 0;
667  if (FunctionTemplateDecl *OldFunctionTemplate
668        = dyn_cast<FunctionTemplateDecl>(OldD))
669    Old = OldFunctionTemplate->getTemplatedDecl();
670  else
671    Old = dyn_cast<FunctionDecl>(OldD);
672  if (!Old) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675    Diag(OldD->getLocation(), diag::note_previous_definition);
676    return true;
677  }
678
679  // Determine whether the previous declaration was a definition,
680  // implicit declaration, or a declaration.
681  diag::kind PrevDiag;
682  if (Old->isThisDeclarationADefinition())
683    PrevDiag = diag::note_previous_definition;
684  else if (Old->isImplicit())
685    PrevDiag = diag::note_previous_implicit_declaration;
686  else
687    PrevDiag = diag::note_previous_declaration;
688
689  QualType OldQType = Context.getCanonicalType(Old->getType());
690  QualType NewQType = Context.getCanonicalType(New->getType());
691
692  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
693      New->getStorageClass() == FunctionDecl::Static &&
694      Old->getStorageClass() != FunctionDecl::Static) {
695    Diag(New->getLocation(), diag::err_static_non_static)
696      << New;
697    Diag(Old->getLocation(), PrevDiag);
698    return true;
699  }
700
701  if (getLangOptions().CPlusPlus) {
702    // (C++98 13.1p2):
703    //   Certain function declarations cannot be overloaded:
704    //     -- Function declarations that differ only in the return type
705    //        cannot be overloaded.
706    QualType OldReturnType
707      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
708    QualType NewReturnType
709      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
710    if (OldReturnType != NewReturnType) {
711      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
712      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
713      return true;
714    }
715
716    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
717    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
718    if (OldMethod && NewMethod &&
719        NewMethod->getLexicalDeclContext()->isRecord()) {
720      //    -- Member function declarations with the same name and the
721      //       same parameter types cannot be overloaded if any of them
722      //       is a static member function declaration.
723      if (OldMethod->isStatic() || NewMethod->isStatic()) {
724        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
725        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
726        return true;
727      }
728
729      // C++ [class.mem]p1:
730      //   [...] A member shall not be declared twice in the
731      //   member-specification, except that a nested class or member
732      //   class template can be declared and then later defined.
733      unsigned NewDiag;
734      if (isa<CXXConstructorDecl>(OldMethod))
735        NewDiag = diag::err_constructor_redeclared;
736      else if (isa<CXXDestructorDecl>(NewMethod))
737        NewDiag = diag::err_destructor_redeclared;
738      else if (isa<CXXConversionDecl>(NewMethod))
739        NewDiag = diag::err_conv_function_redeclared;
740      else
741        NewDiag = diag::err_member_redeclared;
742
743      Diag(New->getLocation(), NewDiag);
744      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
745    }
746
747    // (C++98 8.3.5p3):
748    //   All declarations for a function shall agree exactly in both the
749    //   return type and the parameter-type-list.
750    if (OldQType == NewQType)
751      return MergeCompatibleFunctionDecls(New, Old);
752
753    // Fall through for conflicting redeclarations and redefinitions.
754  }
755
756  // C: Function types need to be compatible, not identical. This handles
757  // duplicate function decls like "void f(int); void f(enum X);" properly.
758  if (!getLangOptions().CPlusPlus &&
759      Context.typesAreCompatible(OldQType, NewQType)) {
760    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
761    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
762    const FunctionProtoType *OldProto = 0;
763    if (isa<FunctionNoProtoType>(NewFuncType) &&
764        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
765      // The old declaration provided a function prototype, but the
766      // new declaration does not. Merge in the prototype.
767      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
768      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
769                                                 OldProto->arg_type_end());
770      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
771                                         ParamTypes.data(), ParamTypes.size(),
772                                         OldProto->isVariadic(),
773                                         OldProto->getTypeQuals());
774      New->setType(NewQType);
775      New->setHasInheritedPrototype();
776
777      // Synthesize a parameter for each argument type.
778      llvm::SmallVector<ParmVarDecl*, 16> Params;
779      for (FunctionProtoType::arg_type_iterator
780             ParamType = OldProto->arg_type_begin(),
781             ParamEnd = OldProto->arg_type_end();
782           ParamType != ParamEnd; ++ParamType) {
783        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
784                                                 SourceLocation(), 0,
785                                                 *ParamType, VarDecl::None,
786                                                 0);
787        Param->setImplicit();
788        Params.push_back(Param);
789      }
790
791      New->setParams(Context, Params.data(), Params.size());
792    }
793
794    return MergeCompatibleFunctionDecls(New, Old);
795  }
796
797  // GNU C permits a K&R definition to follow a prototype declaration
798  // if the declared types of the parameters in the K&R definition
799  // match the types in the prototype declaration, even when the
800  // promoted types of the parameters from the K&R definition differ
801  // from the types in the prototype. GCC then keeps the types from
802  // the prototype.
803  //
804  // If a variadic prototype is followed by a non-variadic K&R definition,
805  // the K&R definition becomes variadic.  This is sort of an edge case, but
806  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
807  // C99 6.9.1p8.
808  if (!getLangOptions().CPlusPlus &&
809      Old->hasPrototype() && !New->hasPrototype() &&
810      New->getType()->getAsFunctionProtoType() &&
811      Old->getNumParams() == New->getNumParams()) {
812    llvm::SmallVector<QualType, 16> ArgTypes;
813    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
814    const FunctionProtoType *OldProto
815      = Old->getType()->getAsFunctionProtoType();
816    const FunctionProtoType *NewProto
817      = New->getType()->getAsFunctionProtoType();
818
819    // Determine whether this is the GNU C extension.
820    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
821                                               NewProto->getResultType());
822    bool LooseCompatible = !MergedReturn.isNull();
823    for (unsigned Idx = 0, End = Old->getNumParams();
824         LooseCompatible && Idx != End; ++Idx) {
825      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
826      ParmVarDecl *NewParm = New->getParamDecl(Idx);
827      if (Context.typesAreCompatible(OldParm->getType(),
828                                     NewProto->getArgType(Idx))) {
829        ArgTypes.push_back(NewParm->getType());
830      } else if (Context.typesAreCompatible(OldParm->getType(),
831                                            NewParm->getType())) {
832        GNUCompatibleParamWarning Warn
833          = { OldParm, NewParm, NewProto->getArgType(Idx) };
834        Warnings.push_back(Warn);
835        ArgTypes.push_back(NewParm->getType());
836      } else
837        LooseCompatible = false;
838    }
839
840    if (LooseCompatible) {
841      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
842        Diag(Warnings[Warn].NewParm->getLocation(),
843             diag::ext_param_promoted_not_compatible_with_prototype)
844          << Warnings[Warn].PromotedType
845          << Warnings[Warn].OldParm->getType();
846        Diag(Warnings[Warn].OldParm->getLocation(),
847             diag::note_previous_declaration);
848      }
849
850      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
851                                           ArgTypes.size(),
852                                           OldProto->isVariadic(), 0));
853      return MergeCompatibleFunctionDecls(New, Old);
854    }
855
856    // Fall through to diagnose conflicting types.
857  }
858
859  // A function that has already been declared has been redeclared or defined
860  // with a different type- show appropriate diagnostic
861  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
862    // The user has declared a builtin function with an incompatible
863    // signature.
864    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
865      // The function the user is redeclaring is a library-defined
866      // function like 'malloc' or 'printf'. Warn about the
867      // redeclaration, then pretend that we don't know about this
868      // library built-in.
869      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
870      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
871        << Old << Old->getType();
872      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
873      Old->setInvalidDecl();
874      return false;
875    }
876
877    PrevDiag = diag::note_previous_builtin_declaration;
878  }
879
880  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
881  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
882  return true;
883}
884
885/// \brief Completes the merge of two function declarations that are
886/// known to be compatible.
887///
888/// This routine handles the merging of attributes and other
889/// properties of function declarations form the old declaration to
890/// the new declaration, once we know that New is in fact a
891/// redeclaration of Old.
892///
893/// \returns false
894bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
895  // Merge the attributes
896  MergeAttributes(New, Old, Context);
897
898  // Merge the storage class.
899  if (Old->getStorageClass() != FunctionDecl::Extern)
900    New->setStorageClass(Old->getStorageClass());
901
902  // Merge "inline"
903  if (Old->isInline())
904    New->setInline(true);
905
906  // If this function declaration by itself qualifies as a C99 inline
907  // definition (C99 6.7.4p6), but the previous definition did not,
908  // then the function is not a C99 inline definition.
909  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
910    New->setC99InlineDefinition(false);
911  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
912    // Mark all preceding definitions as not being C99 inline definitions.
913    for (const FunctionDecl *Prev = Old; Prev;
914         Prev = Prev->getPreviousDeclaration())
915      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
916  }
917
918  // Merge "pure" flag.
919  if (Old->isPure())
920    New->setPure();
921
922  // Merge the "deleted" flag.
923  if (Old->isDeleted())
924    New->setDeleted();
925
926  if (getLangOptions().CPlusPlus)
927    return MergeCXXFunctionDecl(New, Old);
928
929  return false;
930}
931
932/// MergeVarDecl - We just parsed a variable 'New' which has the same name
933/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
934/// situation, merging decls or emitting diagnostics as appropriate.
935///
936/// Tentative definition rules (C99 6.9.2p2) are checked by
937/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
938/// definitions here, since the initializer hasn't been attached.
939///
940void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
941  // If either decl is invalid, make sure the new one is marked invalid and
942  // don't do any other checking.
943  if (New->isInvalidDecl() || OldD->isInvalidDecl())
944    return New->setInvalidDecl();
945
946  // Verify the old decl was also a variable.
947  VarDecl *Old = dyn_cast<VarDecl>(OldD);
948  if (!Old) {
949    Diag(New->getLocation(), diag::err_redefinition_different_kind)
950      << New->getDeclName();
951    Diag(OldD->getLocation(), diag::note_previous_definition);
952    return New->setInvalidDecl();
953  }
954
955  MergeAttributes(New, Old, Context);
956
957  // Merge the types
958  QualType MergedT;
959  if (getLangOptions().CPlusPlus) {
960    if (Context.hasSameType(New->getType(), Old->getType()))
961      MergedT = New->getType();
962  } else {
963    MergedT = Context.mergeTypes(New->getType(), Old->getType());
964  }
965  if (MergedT.isNull()) {
966    Diag(New->getLocation(), diag::err_redefinition_different_type)
967      << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  New->setType(MergedT);
972
973  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
974  if (New->getStorageClass() == VarDecl::Static &&
975      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
976    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  // C99 6.2.2p4:
981  //   For an identifier declared with the storage-class specifier
982  //   extern in a scope in which a prior declaration of that
983  //   identifier is visible,23) if the prior declaration specifies
984  //   internal or external linkage, the linkage of the identifier at
985  //   the later declaration is the same as the linkage specified at
986  //   the prior declaration. If no prior declaration is visible, or
987  //   if the prior declaration specifies no linkage, then the
988  //   identifier has external linkage.
989  if (New->hasExternalStorage() && Old->hasLinkage())
990    /* Okay */;
991  else if (New->getStorageClass() != VarDecl::Static &&
992           Old->getStorageClass() == VarDecl::Static) {
993    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
999
1000  // FIXME: The test for external storage here seems wrong? We still
1001  // need to check for mismatches.
1002  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1003      // Don't complain about out-of-line definitions of static members.
1004      !(Old->getLexicalDeclContext()->isRecord() &&
1005        !New->getLexicalDeclContext()->isRecord())) {
1006    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008    return New->setInvalidDecl();
1009  }
1010
1011  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1012    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1015    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017  }
1018
1019  // Keep a chain of previous declarations.
1020  New->setPreviousDeclaration(Old);
1021}
1022
1023/// CheckFallThrough - Check that we don't fall off the end of a
1024/// Statement that should return a value.
1025///
1026/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1027/// MaybeFallThrough iff we might or might not fall off the end and
1028/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1029/// that functions not marked noreturn will return.
1030Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1031  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1032
1033  // FIXME: They should never return 0, fix that, delete this code.
1034  if (cfg == 0)
1035    return NeverFallThrough;
1036  // The CFG leaves in dead things, and we don't want to dead code paths to
1037  // confuse us, so we mark all live things first.
1038  std::queue<CFGBlock*> workq;
1039  llvm::BitVector live(cfg->getNumBlockIDs());
1040  // Prep work queue
1041  workq.push(&cfg->getEntry());
1042  // Solve
1043  while (!workq.empty()) {
1044    CFGBlock *item = workq.front();
1045    workq.pop();
1046    live.set(item->getBlockID());
1047    for (CFGBlock::succ_iterator I=item->succ_begin(),
1048           E=item->succ_end();
1049         I != E;
1050         ++I) {
1051      if ((*I) && !live[(*I)->getBlockID()]) {
1052        live.set((*I)->getBlockID());
1053        workq.push(*I);
1054      }
1055    }
1056  }
1057
1058  // Now we know what is live, we check the live precessors of the exit block
1059  // and look for fall through paths, being careful to ignore normal returns,
1060  // and exceptional paths.
1061  bool HasLiveReturn = false;
1062  bool HasFakeEdge = false;
1063  bool HasPlainEdge = false;
1064  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1065         E = cfg->getExit().pred_end();
1066       I != E;
1067       ++I) {
1068    CFGBlock& B = **I;
1069    if (!live[B.getBlockID()])
1070      continue;
1071    if (B.size() == 0) {
1072      // A labeled empty statement, or the entry block...
1073      HasPlainEdge = true;
1074      continue;
1075    }
1076    Stmt *S = B[B.size()-1];
1077    if (isa<ReturnStmt>(S)) {
1078      HasLiveReturn = true;
1079      continue;
1080    }
1081    if (isa<ObjCAtThrowStmt>(S)) {
1082      HasFakeEdge = true;
1083      continue;
1084    }
1085    if (isa<CXXThrowExpr>(S)) {
1086      HasFakeEdge = true;
1087      continue;
1088    }
1089    bool NoReturnEdge = false;
1090    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1091      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1092      if (CEE->getType().getNoReturnAttr()) {
1093        NoReturnEdge = true;
1094        HasFakeEdge = true;
1095      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1096        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1097          if (FD->hasAttr<NoReturnAttr>()) {
1098            NoReturnEdge = true;
1099            HasFakeEdge = true;
1100          }
1101        }
1102      }
1103    }
1104    // FIXME: Add noreturn message sends.
1105    if (NoReturnEdge == false)
1106      HasPlainEdge = true;
1107  }
1108  if (!HasPlainEdge)
1109    return NeverFallThrough;
1110  if (HasFakeEdge || HasLiveReturn)
1111    return MaybeFallThrough;
1112  // This says AlwaysFallThrough for calls to functions that are not marked
1113  // noreturn, that don't return.  If people would like this warning to be more
1114  // accurate, such functions should be marked as noreturn.
1115  return AlwaysFallThrough;
1116}
1117
1118/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1119/// function that should return a value.  Check that we don't fall off the end
1120/// of a noreturn function.  We assume that functions and blocks not marked
1121/// noreturn will return.
1122void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1123  // FIXME: Would be nice if we had a better way to control cascading errors,
1124  // but for now, avoid them.  The problem is that when Parse sees:
1125  //   int foo() { return a; }
1126  // The return is eaten and the Sema code sees just:
1127  //   int foo() { }
1128  // which this code would then warn about.
1129  if (getDiagnostics().hasErrorOccurred())
1130    return;
1131  bool ReturnsVoid = false;
1132  bool HasNoReturn = false;
1133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1134    if (FD->getResultType()->isVoidType())
1135      ReturnsVoid = true;
1136    if (FD->hasAttr<NoReturnAttr>())
1137      HasNoReturn = true;
1138  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1139    if (MD->getResultType()->isVoidType())
1140      ReturnsVoid = true;
1141    if (MD->hasAttr<NoReturnAttr>())
1142      HasNoReturn = true;
1143  }
1144
1145  // Short circuit for compilation speed.
1146  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1147       == Diagnostic::Ignored || ReturnsVoid)
1148      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1149          == Diagnostic::Ignored || !HasNoReturn)
1150      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1151          == Diagnostic::Ignored || !ReturnsVoid))
1152    return;
1153  // FIXME: Funtion try block
1154  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1155    switch (CheckFallThrough(Body)) {
1156    case MaybeFallThrough:
1157      if (HasNoReturn)
1158        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1159      else if (!ReturnsVoid)
1160        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1161      break;
1162    case AlwaysFallThrough:
1163      if (HasNoReturn)
1164        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1165      else if (!ReturnsVoid)
1166        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1167      break;
1168    case NeverFallThrough:
1169      if (ReturnsVoid)
1170        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1171      break;
1172    }
1173  }
1174}
1175
1176/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1177/// that should return a value.  Check that we don't fall off the end of a
1178/// noreturn block.  We assume that functions and blocks not marked noreturn
1179/// will return.
1180void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1181  // FIXME: Would be nice if we had a better way to control cascading errors,
1182  // but for now, avoid them.  The problem is that when Parse sees:
1183  //   int foo() { return a; }
1184  // The return is eaten and the Sema code sees just:
1185  //   int foo() { }
1186  // which this code would then warn about.
1187  if (getDiagnostics().hasErrorOccurred())
1188    return;
1189  bool ReturnsVoid = false;
1190  bool HasNoReturn = false;
1191  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1192    if (FT->getResultType()->isVoidType())
1193      ReturnsVoid = true;
1194    if (FT->getNoReturnAttr())
1195      HasNoReturn = true;
1196  }
1197
1198  // Short circuit for compilation speed.
1199  if (ReturnsVoid
1200      && !HasNoReturn
1201      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1202          == Diagnostic::Ignored || !ReturnsVoid))
1203    return;
1204  // FIXME: Funtion try block
1205  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1206    switch (CheckFallThrough(Body)) {
1207    case MaybeFallThrough:
1208      if (HasNoReturn)
1209        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1210      else if (!ReturnsVoid)
1211        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1212      break;
1213    case AlwaysFallThrough:
1214      if (HasNoReturn)
1215        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1216      else if (!ReturnsVoid)
1217        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1218      break;
1219    case NeverFallThrough:
1220      if (ReturnsVoid)
1221        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1222      break;
1223    }
1224  }
1225}
1226
1227/// CheckParmsForFunctionDef - Check that the parameters of the given
1228/// function are appropriate for the definition of a function. This
1229/// takes care of any checks that cannot be performed on the
1230/// declaration itself, e.g., that the types of each of the function
1231/// parameters are complete.
1232bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1233  bool HasInvalidParm = false;
1234  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1235    ParmVarDecl *Param = FD->getParamDecl(p);
1236
1237    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1238    // function declarator that is part of a function definition of
1239    // that function shall not have incomplete type.
1240    //
1241    // This is also C++ [dcl.fct]p6.
1242    if (!Param->isInvalidDecl() &&
1243        RequireCompleteType(Param->getLocation(), Param->getType(),
1244                               diag::err_typecheck_decl_incomplete_type)) {
1245      Param->setInvalidDecl();
1246      HasInvalidParm = true;
1247    }
1248
1249    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1250    // declaration of each parameter shall include an identifier.
1251    if (Param->getIdentifier() == 0 &&
1252        !Param->isImplicit() &&
1253        !getLangOptions().CPlusPlus)
1254      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1255  }
1256
1257  return HasInvalidParm;
1258}
1259
1260/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1261/// no declarator (e.g. "struct foo;") is parsed.
1262Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1263  // FIXME: Error on auto/register at file scope
1264  // FIXME: Error on inline/virtual/explicit
1265  // FIXME: Error on invalid restrict
1266  // FIXME: Warn on useless __thread
1267  // FIXME: Warn on useless const/volatile
1268  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1269  // FIXME: Warn on useless attributes
1270  TagDecl *Tag = 0;
1271  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1272      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1273      DS.getTypeSpecType() == DeclSpec::TST_union ||
1274      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1275    if (!DS.getTypeRep()) // We probably had an error
1276      return DeclPtrTy();
1277
1278    // Note that the above type specs guarantee that the
1279    // type rep is a Decl, whereas in many of the others
1280    // it's a Type.
1281    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1282  }
1283
1284  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1285    if (!Record->getDeclName() && Record->isDefinition() &&
1286        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1287      if (getLangOptions().CPlusPlus ||
1288          Record->getDeclContext()->isRecord())
1289        return BuildAnonymousStructOrUnion(S, DS, Record);
1290
1291      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1292        << DS.getSourceRange();
1293    }
1294
1295    // Microsoft allows unnamed struct/union fields. Don't complain
1296    // about them.
1297    // FIXME: Should we support Microsoft's extensions in this area?
1298    if (Record->getDeclName() && getLangOptions().Microsoft)
1299      return DeclPtrTy::make(Tag);
1300  }
1301
1302  if (!DS.isMissingDeclaratorOk() &&
1303      DS.getTypeSpecType() != DeclSpec::TST_error) {
1304    // Warn about typedefs of enums without names, since this is an
1305    // extension in both Microsoft an GNU.
1306    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1307        Tag && isa<EnumDecl>(Tag)) {
1308      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1309        << DS.getSourceRange();
1310      return DeclPtrTy::make(Tag);
1311    }
1312
1313    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1314      << DS.getSourceRange();
1315    return DeclPtrTy();
1316  }
1317
1318  return DeclPtrTy::make(Tag);
1319}
1320
1321/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1322/// anonymous struct or union AnonRecord into the owning context Owner
1323/// and scope S. This routine will be invoked just after we realize
1324/// that an unnamed union or struct is actually an anonymous union or
1325/// struct, e.g.,
1326///
1327/// @code
1328/// union {
1329///   int i;
1330///   float f;
1331/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1332///    // f into the surrounding scope.x
1333/// @endcode
1334///
1335/// This routine is recursive, injecting the names of nested anonymous
1336/// structs/unions into the owning context and scope as well.
1337bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1338                                               RecordDecl *AnonRecord) {
1339  bool Invalid = false;
1340  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1341                               FEnd = AnonRecord->field_end();
1342       F != FEnd; ++F) {
1343    if ((*F)->getDeclName()) {
1344      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1345                                                LookupOrdinaryName, true);
1346      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1347        // C++ [class.union]p2:
1348        //   The names of the members of an anonymous union shall be
1349        //   distinct from the names of any other entity in the
1350        //   scope in which the anonymous union is declared.
1351        unsigned diagKind
1352          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1353                                 : diag::err_anonymous_struct_member_redecl;
1354        Diag((*F)->getLocation(), diagKind)
1355          << (*F)->getDeclName();
1356        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1357        Invalid = true;
1358      } else {
1359        // C++ [class.union]p2:
1360        //   For the purpose of name lookup, after the anonymous union
1361        //   definition, the members of the anonymous union are
1362        //   considered to have been defined in the scope in which the
1363        //   anonymous union is declared.
1364        Owner->makeDeclVisibleInContext(*F);
1365        S->AddDecl(DeclPtrTy::make(*F));
1366        IdResolver.AddDecl(*F);
1367      }
1368    } else if (const RecordType *InnerRecordType
1369                 = (*F)->getType()->getAs<RecordType>()) {
1370      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1371      if (InnerRecord->isAnonymousStructOrUnion())
1372        Invalid = Invalid ||
1373          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1374    }
1375  }
1376
1377  return Invalid;
1378}
1379
1380/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1381/// anonymous structure or union. Anonymous unions are a C++ feature
1382/// (C++ [class.union]) and a GNU C extension; anonymous structures
1383/// are a GNU C and GNU C++ extension.
1384Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1385                                                  RecordDecl *Record) {
1386  DeclContext *Owner = Record->getDeclContext();
1387
1388  // Diagnose whether this anonymous struct/union is an extension.
1389  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1390    Diag(Record->getLocation(), diag::ext_anonymous_union);
1391  else if (!Record->isUnion())
1392    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1393
1394  // C and C++ require different kinds of checks for anonymous
1395  // structs/unions.
1396  bool Invalid = false;
1397  if (getLangOptions().CPlusPlus) {
1398    const char* PrevSpec = 0;
1399    unsigned DiagID;
1400    // C++ [class.union]p3:
1401    //   Anonymous unions declared in a named namespace or in the
1402    //   global namespace shall be declared static.
1403    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1404        (isa<TranslationUnitDecl>(Owner) ||
1405         (isa<NamespaceDecl>(Owner) &&
1406          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1407      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1408      Invalid = true;
1409
1410      // Recover by adding 'static'.
1411      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1412                             PrevSpec, DiagID);
1413    }
1414    // C++ [class.union]p3:
1415    //   A storage class is not allowed in a declaration of an
1416    //   anonymous union in a class scope.
1417    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1418             isa<RecordDecl>(Owner)) {
1419      Diag(DS.getStorageClassSpecLoc(),
1420           diag::err_anonymous_union_with_storage_spec);
1421      Invalid = true;
1422
1423      // Recover by removing the storage specifier.
1424      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1425                             PrevSpec, DiagID);
1426    }
1427
1428    // C++ [class.union]p2:
1429    //   The member-specification of an anonymous union shall only
1430    //   define non-static data members. [Note: nested types and
1431    //   functions cannot be declared within an anonymous union. ]
1432    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1433                                 MemEnd = Record->decls_end();
1434         Mem != MemEnd; ++Mem) {
1435      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1436        // C++ [class.union]p3:
1437        //   An anonymous union shall not have private or protected
1438        //   members (clause 11).
1439        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1440          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1441            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1442          Invalid = true;
1443        }
1444      } else if ((*Mem)->isImplicit()) {
1445        // Any implicit members are fine.
1446      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1447        // This is a type that showed up in an
1448        // elaborated-type-specifier inside the anonymous struct or
1449        // union, but which actually declares a type outside of the
1450        // anonymous struct or union. It's okay.
1451      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1452        if (!MemRecord->isAnonymousStructOrUnion() &&
1453            MemRecord->getDeclName()) {
1454          // This is a nested type declaration.
1455          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1456            << (int)Record->isUnion();
1457          Invalid = true;
1458        }
1459      } else {
1460        // We have something that isn't a non-static data
1461        // member. Complain about it.
1462        unsigned DK = diag::err_anonymous_record_bad_member;
1463        if (isa<TypeDecl>(*Mem))
1464          DK = diag::err_anonymous_record_with_type;
1465        else if (isa<FunctionDecl>(*Mem))
1466          DK = diag::err_anonymous_record_with_function;
1467        else if (isa<VarDecl>(*Mem))
1468          DK = diag::err_anonymous_record_with_static;
1469        Diag((*Mem)->getLocation(), DK)
1470            << (int)Record->isUnion();
1471          Invalid = true;
1472      }
1473    }
1474  }
1475
1476  if (!Record->isUnion() && !Owner->isRecord()) {
1477    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1478      << (int)getLangOptions().CPlusPlus;
1479    Invalid = true;
1480  }
1481
1482  // Create a declaration for this anonymous struct/union.
1483  NamedDecl *Anon = 0;
1484  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1485    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1486                             /*IdentifierInfo=*/0,
1487                             Context.getTypeDeclType(Record),
1488                             /*BitWidth=*/0, /*Mutable=*/false,
1489                             DS.getSourceRange().getBegin());
1490    Anon->setAccess(AS_public);
1491    if (getLangOptions().CPlusPlus)
1492      FieldCollector->Add(cast<FieldDecl>(Anon));
1493  } else {
1494    VarDecl::StorageClass SC;
1495    switch (DS.getStorageClassSpec()) {
1496    default: assert(0 && "Unknown storage class!");
1497    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1498    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1499    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1500    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1501    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1502    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1503    case DeclSpec::SCS_mutable:
1504      // mutable can only appear on non-static class members, so it's always
1505      // an error here
1506      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1507      Invalid = true;
1508      SC = VarDecl::None;
1509      break;
1510    }
1511
1512    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1513                           /*IdentifierInfo=*/0,
1514                           Context.getTypeDeclType(Record),
1515                           SC, DS.getSourceRange().getBegin());
1516  }
1517  Anon->setImplicit();
1518
1519  // Add the anonymous struct/union object to the current
1520  // context. We'll be referencing this object when we refer to one of
1521  // its members.
1522  Owner->addDecl(Anon);
1523
1524  // Inject the members of the anonymous struct/union into the owning
1525  // context and into the identifier resolver chain for name lookup
1526  // purposes.
1527  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1528    Invalid = true;
1529
1530  // Mark this as an anonymous struct/union type. Note that we do not
1531  // do this until after we have already checked and injected the
1532  // members of this anonymous struct/union type, because otherwise
1533  // the members could be injected twice: once by DeclContext when it
1534  // builds its lookup table, and once by
1535  // InjectAnonymousStructOrUnionMembers.
1536  Record->setAnonymousStructOrUnion(true);
1537
1538  if (Invalid)
1539    Anon->setInvalidDecl();
1540
1541  return DeclPtrTy::make(Anon);
1542}
1543
1544
1545/// GetNameForDeclarator - Determine the full declaration name for the
1546/// given Declarator.
1547DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1548  switch (D.getKind()) {
1549  case Declarator::DK_Abstract:
1550    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1551    return DeclarationName();
1552
1553  case Declarator::DK_Normal:
1554    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1555    return DeclarationName(D.getIdentifier());
1556
1557  case Declarator::DK_Constructor: {
1558    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1559    return Context.DeclarationNames.getCXXConstructorName(
1560                                                Context.getCanonicalType(Ty));
1561  }
1562
1563  case Declarator::DK_Destructor: {
1564    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1565    return Context.DeclarationNames.getCXXDestructorName(
1566                                                Context.getCanonicalType(Ty));
1567  }
1568
1569  case Declarator::DK_Conversion: {
1570    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1571    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1572    return Context.DeclarationNames.getCXXConversionFunctionName(
1573                                                Context.getCanonicalType(Ty));
1574  }
1575
1576  case Declarator::DK_Operator:
1577    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1578    return Context.DeclarationNames.getCXXOperatorName(
1579                                                D.getOverloadedOperator());
1580  }
1581
1582  assert(false && "Unknown name kind");
1583  return DeclarationName();
1584}
1585
1586/// isNearlyMatchingFunction - Determine whether the C++ functions
1587/// Declaration and Definition are "nearly" matching. This heuristic
1588/// is used to improve diagnostics in the case where an out-of-line
1589/// function definition doesn't match any declaration within
1590/// the class or namespace.
1591static bool isNearlyMatchingFunction(ASTContext &Context,
1592                                     FunctionDecl *Declaration,
1593                                     FunctionDecl *Definition) {
1594  if (Declaration->param_size() != Definition->param_size())
1595    return false;
1596  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1597    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1598    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1599
1600    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1601    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1602    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1603      return false;
1604  }
1605
1606  return true;
1607}
1608
1609Sema::DeclPtrTy
1610Sema::HandleDeclarator(Scope *S, Declarator &D,
1611                       MultiTemplateParamsArg TemplateParamLists,
1612                       bool IsFunctionDefinition) {
1613  DeclarationName Name = GetNameForDeclarator(D);
1614
1615  // All of these full declarators require an identifier.  If it doesn't have
1616  // one, the ParsedFreeStandingDeclSpec action should be used.
1617  if (!Name) {
1618    if (!D.isInvalidType())  // Reject this if we think it is valid.
1619      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1620           diag::err_declarator_need_ident)
1621        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1622    return DeclPtrTy();
1623  }
1624
1625  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1626  // we find one that is.
1627  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1628         (S->getFlags() & Scope::TemplateParamScope) != 0)
1629    S = S->getParent();
1630
1631  // If this is an out-of-line definition of a member of a class template
1632  // or class template partial specialization, we may need to rebuild the
1633  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1634  // for more information.
1635  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1636  // handle expressions properly.
1637  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1638  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1639      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1640      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1641       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1642       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1643       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1644    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1645      QualType T = QualType::getFromOpaquePtr(DS.getTypeRep());
1646      EnterDeclaratorContext(S, DC);
1647      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1648      ExitDeclaratorContext(S);
1649      if (T.isNull())
1650        return DeclPtrTy();
1651      DS.UpdateTypeRep(T.getAsOpaquePtr());
1652    }
1653  }
1654
1655  DeclContext *DC;
1656  NamedDecl *PrevDecl;
1657  NamedDecl *New;
1658
1659  QualType R = GetTypeForDeclarator(D, S);
1660
1661  // See if this is a redefinition of a variable in the same scope.
1662  if (D.getCXXScopeSpec().isInvalid()) {
1663    DC = CurContext;
1664    PrevDecl = 0;
1665    D.setInvalidType();
1666  } else if (!D.getCXXScopeSpec().isSet()) {
1667    LookupNameKind NameKind = LookupOrdinaryName;
1668
1669    // If the declaration we're planning to build will be a function
1670    // or object with linkage, then look for another declaration with
1671    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1672    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1673      /* Do nothing*/;
1674    else if (R->isFunctionType()) {
1675      if (CurContext->isFunctionOrMethod() ||
1676          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1677        NameKind = LookupRedeclarationWithLinkage;
1678    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1679      NameKind = LookupRedeclarationWithLinkage;
1680    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1681             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1682      NameKind = LookupRedeclarationWithLinkage;
1683
1684    DC = CurContext;
1685    PrevDecl = LookupName(S, Name, NameKind, true,
1686                          NameKind == LookupRedeclarationWithLinkage,
1687                          D.getIdentifierLoc());
1688  } else { // Something like "int foo::x;"
1689    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1690    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1691    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1692
1693    // C++ 7.3.1.2p2:
1694    // Members (including explicit specializations of templates) of a named
1695    // namespace can also be defined outside that namespace by explicit
1696    // qualification of the name being defined, provided that the entity being
1697    // defined was already declared in the namespace and the definition appears
1698    // after the point of declaration in a namespace that encloses the
1699    // declarations namespace.
1700    //
1701    // Note that we only check the context at this point. We don't yet
1702    // have enough information to make sure that PrevDecl is actually
1703    // the declaration we want to match. For example, given:
1704    //
1705    //   class X {
1706    //     void f();
1707    //     void f(float);
1708    //   };
1709    //
1710    //   void X::f(int) { } // ill-formed
1711    //
1712    // In this case, PrevDecl will point to the overload set
1713    // containing the two f's declared in X, but neither of them
1714    // matches.
1715
1716    // First check whether we named the global scope.
1717    if (isa<TranslationUnitDecl>(DC)) {
1718      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1719        << Name << D.getCXXScopeSpec().getRange();
1720    } else if (!CurContext->Encloses(DC)) {
1721      // The qualifying scope doesn't enclose the original declaration.
1722      // Emit diagnostic based on current scope.
1723      SourceLocation L = D.getIdentifierLoc();
1724      SourceRange R = D.getCXXScopeSpec().getRange();
1725      if (isa<FunctionDecl>(CurContext))
1726        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1727      else
1728        Diag(L, diag::err_invalid_declarator_scope)
1729          << Name << cast<NamedDecl>(DC) << R;
1730      D.setInvalidType();
1731    }
1732  }
1733
1734  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1735    // Maybe we will complain about the shadowed template parameter.
1736    if (!D.isInvalidType())
1737      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1738        D.setInvalidType();
1739
1740    // Just pretend that we didn't see the previous declaration.
1741    PrevDecl = 0;
1742  }
1743
1744  // In C++, the previous declaration we find might be a tag type
1745  // (class or enum). In this case, the new declaration will hide the
1746  // tag type. Note that this does does not apply if we're declaring a
1747  // typedef (C++ [dcl.typedef]p4).
1748  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1749      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1750    PrevDecl = 0;
1751
1752  bool Redeclaration = false;
1753  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1754    if (TemplateParamLists.size()) {
1755      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1756      return DeclPtrTy();
1757    }
1758
1759    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1760  } else if (R->isFunctionType()) {
1761    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1762                                  move(TemplateParamLists),
1763                                  IsFunctionDefinition, Redeclaration);
1764  } else {
1765    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1766                                  move(TemplateParamLists),
1767                                  Redeclaration);
1768  }
1769
1770  if (New == 0)
1771    return DeclPtrTy();
1772
1773  // If this has an identifier and is not an invalid redeclaration,
1774  // add it to the scope stack.
1775  if (Name && !(Redeclaration && New->isInvalidDecl()))
1776    PushOnScopeChains(New, S);
1777
1778  return DeclPtrTy::make(New);
1779}
1780
1781/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1782/// types into constant array types in certain situations which would otherwise
1783/// be errors (for GCC compatibility).
1784static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1785                                                    ASTContext &Context,
1786                                                    bool &SizeIsNegative) {
1787  // This method tries to turn a variable array into a constant
1788  // array even when the size isn't an ICE.  This is necessary
1789  // for compatibility with code that depends on gcc's buggy
1790  // constant expression folding, like struct {char x[(int)(char*)2];}
1791  SizeIsNegative = false;
1792
1793  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1794    QualType Pointee = PTy->getPointeeType();
1795    QualType FixedType =
1796        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1797    if (FixedType.isNull()) return FixedType;
1798    FixedType = Context.getPointerType(FixedType);
1799    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1800    return FixedType;
1801  }
1802
1803  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1804  if (!VLATy)
1805    return QualType();
1806  // FIXME: We should probably handle this case
1807  if (VLATy->getElementType()->isVariablyModifiedType())
1808    return QualType();
1809
1810  Expr::EvalResult EvalResult;
1811  if (!VLATy->getSizeExpr() ||
1812      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1813      !EvalResult.Val.isInt())
1814    return QualType();
1815
1816  llvm::APSInt &Res = EvalResult.Val.getInt();
1817  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1818    Expr* ArySizeExpr = VLATy->getSizeExpr();
1819    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1820    // so as to transfer ownership to the ConstantArrayWithExpr.
1821    // Alternatively, we could "clone" it (how?).
1822    // Since we don't know how to do things above, we just use the
1823    // very same Expr*.
1824    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1825                                                Res, ArySizeExpr,
1826                                                ArrayType::Normal, 0,
1827                                                VLATy->getBracketsRange());
1828  }
1829
1830  SizeIsNegative = true;
1831  return QualType();
1832}
1833
1834/// \brief Register the given locally-scoped external C declaration so
1835/// that it can be found later for redeclarations
1836void
1837Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1838                                       Scope *S) {
1839  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1840         "Decl is not a locally-scoped decl!");
1841  // Note that we have a locally-scoped external with this name.
1842  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1843
1844  if (!PrevDecl)
1845    return;
1846
1847  // If there was a previous declaration of this variable, it may be
1848  // in our identifier chain. Update the identifier chain with the new
1849  // declaration.
1850  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1851    // The previous declaration was found on the identifer resolver
1852    // chain, so remove it from its scope.
1853    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1854      S = S->getParent();
1855
1856    if (S)
1857      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1858  }
1859}
1860
1861/// \brief Diagnose function specifiers on a declaration of an identifier that
1862/// does not identify a function.
1863void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1864  // FIXME: We should probably indicate the identifier in question to avoid
1865  // confusion for constructs like "inline int a(), b;"
1866  if (D.getDeclSpec().isInlineSpecified())
1867    Diag(D.getDeclSpec().getInlineSpecLoc(),
1868         diag::err_inline_non_function);
1869
1870  if (D.getDeclSpec().isVirtualSpecified())
1871    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1872         diag::err_virtual_non_function);
1873
1874  if (D.getDeclSpec().isExplicitSpecified())
1875    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1876         diag::err_explicit_non_function);
1877}
1878
1879NamedDecl*
1880Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1881                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1882  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1883  if (D.getCXXScopeSpec().isSet()) {
1884    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1885      << D.getCXXScopeSpec().getRange();
1886    D.setInvalidType();
1887    // Pretend we didn't see the scope specifier.
1888    DC = 0;
1889  }
1890
1891  if (getLangOptions().CPlusPlus) {
1892    // Check that there are no default arguments (C++ only).
1893    CheckExtraCXXDefaultArguments(D);
1894  }
1895
1896  DiagnoseFunctionSpecifiers(D);
1897
1898  if (D.getDeclSpec().isThreadSpecified())
1899    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1900
1901  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1902  if (!NewTD) return 0;
1903
1904  if (D.isInvalidType())
1905    NewTD->setInvalidDecl();
1906
1907  // Handle attributes prior to checking for duplicates in MergeVarDecl
1908  ProcessDeclAttributes(S, NewTD, D);
1909  // Merge the decl with the existing one if appropriate. If the decl is
1910  // in an outer scope, it isn't the same thing.
1911  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1912    Redeclaration = true;
1913    MergeTypeDefDecl(NewTD, PrevDecl);
1914  }
1915
1916  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1917  // then it shall have block scope.
1918  QualType T = NewTD->getUnderlyingType();
1919  if (T->isVariablyModifiedType()) {
1920    CurFunctionNeedsScopeChecking = true;
1921
1922    if (S->getFnParent() == 0) {
1923      bool SizeIsNegative;
1924      QualType FixedTy =
1925          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1926      if (!FixedTy.isNull()) {
1927        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1928        NewTD->setUnderlyingType(FixedTy);
1929      } else {
1930        if (SizeIsNegative)
1931          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1932        else if (T->isVariableArrayType())
1933          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1934        else
1935          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1936        NewTD->setInvalidDecl();
1937      }
1938    }
1939  }
1940
1941  // If this is the C FILE type, notify the AST context.
1942  if (IdentifierInfo *II = NewTD->getIdentifier())
1943    if (!NewTD->isInvalidDecl() &&
1944        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1945      if (II->isStr("FILE"))
1946        Context.setFILEDecl(NewTD);
1947      else if (II->isStr("jmp_buf"))
1948        Context.setjmp_bufDecl(NewTD);
1949      else if (II->isStr("sigjmp_buf"))
1950        Context.setsigjmp_bufDecl(NewTD);
1951    }
1952
1953  return NewTD;
1954}
1955
1956/// \brief Determines whether the given declaration is an out-of-scope
1957/// previous declaration.
1958///
1959/// This routine should be invoked when name lookup has found a
1960/// previous declaration (PrevDecl) that is not in the scope where a
1961/// new declaration by the same name is being introduced. If the new
1962/// declaration occurs in a local scope, previous declarations with
1963/// linkage may still be considered previous declarations (C99
1964/// 6.2.2p4-5, C++ [basic.link]p6).
1965///
1966/// \param PrevDecl the previous declaration found by name
1967/// lookup
1968///
1969/// \param DC the context in which the new declaration is being
1970/// declared.
1971///
1972/// \returns true if PrevDecl is an out-of-scope previous declaration
1973/// for a new delcaration with the same name.
1974static bool
1975isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1976                                ASTContext &Context) {
1977  if (!PrevDecl)
1978    return 0;
1979
1980  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1981  // case we need to check each of the overloaded functions.
1982  if (!PrevDecl->hasLinkage())
1983    return false;
1984
1985  if (Context.getLangOptions().CPlusPlus) {
1986    // C++ [basic.link]p6:
1987    //   If there is a visible declaration of an entity with linkage
1988    //   having the same name and type, ignoring entities declared
1989    //   outside the innermost enclosing namespace scope, the block
1990    //   scope declaration declares that same entity and receives the
1991    //   linkage of the previous declaration.
1992    DeclContext *OuterContext = DC->getLookupContext();
1993    if (!OuterContext->isFunctionOrMethod())
1994      // This rule only applies to block-scope declarations.
1995      return false;
1996    else {
1997      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1998      if (PrevOuterContext->isRecord())
1999        // We found a member function: ignore it.
2000        return false;
2001      else {
2002        // Find the innermost enclosing namespace for the new and
2003        // previous declarations.
2004        while (!OuterContext->isFileContext())
2005          OuterContext = OuterContext->getParent();
2006        while (!PrevOuterContext->isFileContext())
2007          PrevOuterContext = PrevOuterContext->getParent();
2008
2009        // The previous declaration is in a different namespace, so it
2010        // isn't the same function.
2011        if (OuterContext->getPrimaryContext() !=
2012            PrevOuterContext->getPrimaryContext())
2013          return false;
2014      }
2015    }
2016  }
2017
2018  return true;
2019}
2020
2021NamedDecl*
2022Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2023                              QualType R,NamedDecl* PrevDecl,
2024                              MultiTemplateParamsArg TemplateParamLists,
2025                              bool &Redeclaration) {
2026  DeclarationName Name = GetNameForDeclarator(D);
2027
2028  // Check that there are no default arguments (C++ only).
2029  if (getLangOptions().CPlusPlus)
2030    CheckExtraCXXDefaultArguments(D);
2031
2032  VarDecl *NewVD;
2033  VarDecl::StorageClass SC;
2034  switch (D.getDeclSpec().getStorageClassSpec()) {
2035  default: assert(0 && "Unknown storage class!");
2036  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2037  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2038  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2039  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2040  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2041  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2042  case DeclSpec::SCS_mutable:
2043    // mutable can only appear on non-static class members, so it's always
2044    // an error here
2045    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2046    D.setInvalidType();
2047    SC = VarDecl::None;
2048    break;
2049  }
2050
2051  IdentifierInfo *II = Name.getAsIdentifierInfo();
2052  if (!II) {
2053    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2054      << Name.getAsString();
2055    return 0;
2056  }
2057
2058  DiagnoseFunctionSpecifiers(D);
2059
2060  if (!DC->isRecord() && S->getFnParent() == 0) {
2061    // C99 6.9p2: The storage-class specifiers auto and register shall not
2062    // appear in the declaration specifiers in an external declaration.
2063    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2064
2065      // If this is a register variable with an asm label specified, then this
2066      // is a GNU extension.
2067      if (SC == VarDecl::Register && D.getAsmLabel())
2068        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2069      else
2070        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2071      D.setInvalidType();
2072    }
2073  }
2074  if (DC->isRecord() && !CurContext->isRecord()) {
2075    // This is an out-of-line definition of a static data member.
2076    if (SC == VarDecl::Static) {
2077      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2078           diag::err_static_out_of_line)
2079        << CodeModificationHint::CreateRemoval(
2080                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2081    } else if (SC == VarDecl::None)
2082      SC = VarDecl::Static;
2083  }
2084  if (SC == VarDecl::Static) {
2085    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2086      if (RD->isLocalClass())
2087        Diag(D.getIdentifierLoc(),
2088             diag::err_static_data_member_not_allowed_in_local_class)
2089          << Name << RD->getDeclName();
2090    }
2091  }
2092
2093  // Check that we can declare a template here.
2094  if (TemplateParamLists.size() &&
2095      CheckTemplateDeclScope(S, TemplateParamLists))
2096    return 0;
2097
2098  // Match up the template parameter lists with the scope specifier, then
2099  // determine whether we have a template or a template specialization.
2100  if (TemplateParameterList *TemplateParams
2101      = MatchTemplateParametersToScopeSpecifier(
2102                                  D.getDeclSpec().getSourceRange().getBegin(),
2103                                                D.getCXXScopeSpec(),
2104                        (TemplateParameterList**)TemplateParamLists.get(),
2105                                                 TemplateParamLists.size())) {
2106    if (TemplateParams->size() > 0) {
2107      // There is no such thing as a variable template.
2108      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2109        << II
2110        << SourceRange(TemplateParams->getTemplateLoc(),
2111                       TemplateParams->getRAngleLoc());
2112      return 0;
2113    } else {
2114      // There is an extraneous 'template<>' for this variable. Complain
2115      // about it, but allow the declaration of the variable.
2116      Diag(TemplateParams->getTemplateLoc(),
2117           diag::err_template_variable_noparams)
2118        << II
2119        << SourceRange(TemplateParams->getTemplateLoc(),
2120                       TemplateParams->getRAngleLoc());
2121    }
2122  }
2123
2124  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2125                          II, R, SC,
2126                          // FIXME: Move to DeclGroup...
2127                          D.getDeclSpec().getSourceRange().getBegin());
2128
2129  if (D.isInvalidType())
2130    NewVD->setInvalidDecl();
2131
2132  if (D.getDeclSpec().isThreadSpecified()) {
2133    if (NewVD->hasLocalStorage())
2134      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2135    else if (!Context.Target.isTLSSupported())
2136      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2137    else
2138      NewVD->setThreadSpecified(true);
2139  }
2140
2141  // Set the lexical context. If the declarator has a C++ scope specifier, the
2142  // lexical context will be different from the semantic context.
2143  NewVD->setLexicalDeclContext(CurContext);
2144
2145  // Handle attributes prior to checking for duplicates in MergeVarDecl
2146  ProcessDeclAttributes(S, NewVD, D);
2147
2148  // Handle GNU asm-label extension (encoded as an attribute).
2149  if (Expr *E = (Expr*) D.getAsmLabel()) {
2150    // The parser guarantees this is a string.
2151    StringLiteral *SE = cast<StringLiteral>(E);
2152    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2153                                                        SE->getByteLength())));
2154  }
2155
2156  // If name lookup finds a previous declaration that is not in the
2157  // same scope as the new declaration, this may still be an
2158  // acceptable redeclaration.
2159  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2160      !(NewVD->hasLinkage() &&
2161        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2162    PrevDecl = 0;
2163
2164  // Merge the decl with the existing one if appropriate.
2165  if (PrevDecl) {
2166    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2167      // The user tried to define a non-static data member
2168      // out-of-line (C++ [dcl.meaning]p1).
2169      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2170        << D.getCXXScopeSpec().getRange();
2171      PrevDecl = 0;
2172      NewVD->setInvalidDecl();
2173    }
2174  } else if (D.getCXXScopeSpec().isSet()) {
2175    // No previous declaration in the qualifying scope.
2176    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2177      << Name << D.getCXXScopeSpec().getRange();
2178    NewVD->setInvalidDecl();
2179  }
2180
2181  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2182
2183  // attributes declared post-definition are currently ignored
2184  if (PrevDecl) {
2185    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2186    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2187      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2188      Diag(Def->getLocation(), diag::note_previous_definition);
2189    }
2190  }
2191
2192  // If this is a locally-scoped extern C variable, update the map of
2193  // such variables.
2194  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2195      !NewVD->isInvalidDecl())
2196    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2197
2198  return NewVD;
2199}
2200
2201/// \brief Perform semantic checking on a newly-created variable
2202/// declaration.
2203///
2204/// This routine performs all of the type-checking required for a
2205/// variable declaration once it has been built. It is used both to
2206/// check variables after they have been parsed and their declarators
2207/// have been translated into a declaration, and to check variables
2208/// that have been instantiated from a template.
2209///
2210/// Sets NewVD->isInvalidDecl() if an error was encountered.
2211void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2212                                    bool &Redeclaration) {
2213  // If the decl is already known invalid, don't check it.
2214  if (NewVD->isInvalidDecl())
2215    return;
2216
2217  QualType T = NewVD->getType();
2218
2219  if (T->isObjCInterfaceType()) {
2220    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2221    return NewVD->setInvalidDecl();
2222  }
2223
2224  // The variable can not have an abstract class type.
2225  if (RequireNonAbstractType(NewVD->getLocation(), T,
2226                             diag::err_abstract_type_in_decl,
2227                             AbstractVariableType))
2228    return NewVD->setInvalidDecl();
2229
2230  // Emit an error if an address space was applied to decl with local storage.
2231  // This includes arrays of objects with address space qualifiers, but not
2232  // automatic variables that point to other address spaces.
2233  // ISO/IEC TR 18037 S5.1.2
2234  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2235    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2236    return NewVD->setInvalidDecl();
2237  }
2238
2239  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2240      && !NewVD->hasAttr<BlocksAttr>())
2241    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2242
2243  bool isVM = T->isVariablyModifiedType();
2244  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2245      NewVD->hasAttr<BlocksAttr>())
2246    CurFunctionNeedsScopeChecking = true;
2247
2248  if ((isVM && NewVD->hasLinkage()) ||
2249      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2250    bool SizeIsNegative;
2251    QualType FixedTy =
2252        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2253
2254    if (FixedTy.isNull() && T->isVariableArrayType()) {
2255      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2256      // FIXME: This won't give the correct result for
2257      // int a[10][n];
2258      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2259
2260      if (NewVD->isFileVarDecl())
2261        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2262        << SizeRange;
2263      else if (NewVD->getStorageClass() == VarDecl::Static)
2264        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2265        << SizeRange;
2266      else
2267        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2268        << SizeRange;
2269      return NewVD->setInvalidDecl();
2270    }
2271
2272    if (FixedTy.isNull()) {
2273      if (NewVD->isFileVarDecl())
2274        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2275      else
2276        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2277      return NewVD->setInvalidDecl();
2278    }
2279
2280    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2281    NewVD->setType(FixedTy);
2282  }
2283
2284  if (!PrevDecl && NewVD->isExternC(Context)) {
2285    // Since we did not find anything by this name and we're declaring
2286    // an extern "C" variable, look for a non-visible extern "C"
2287    // declaration with the same name.
2288    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2289      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2290    if (Pos != LocallyScopedExternalDecls.end())
2291      PrevDecl = Pos->second;
2292  }
2293
2294  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2295    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2296      << T;
2297    return NewVD->setInvalidDecl();
2298  }
2299
2300  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2301    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2302    return NewVD->setInvalidDecl();
2303  }
2304
2305  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2306    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2307    return NewVD->setInvalidDecl();
2308  }
2309
2310  if (PrevDecl) {
2311    Redeclaration = true;
2312    MergeVarDecl(NewVD, PrevDecl);
2313  }
2314}
2315
2316NamedDecl*
2317Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2318                              QualType R, NamedDecl* PrevDecl,
2319                              MultiTemplateParamsArg TemplateParamLists,
2320                              bool IsFunctionDefinition, bool &Redeclaration) {
2321  assert(R.getTypePtr()->isFunctionType());
2322
2323  DeclarationName Name = GetNameForDeclarator(D);
2324  FunctionDecl::StorageClass SC = FunctionDecl::None;
2325  switch (D.getDeclSpec().getStorageClassSpec()) {
2326  default: assert(0 && "Unknown storage class!");
2327  case DeclSpec::SCS_auto:
2328  case DeclSpec::SCS_register:
2329  case DeclSpec::SCS_mutable:
2330    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2331         diag::err_typecheck_sclass_func);
2332    D.setInvalidType();
2333    break;
2334  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2335  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2336  case DeclSpec::SCS_static: {
2337    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2338      // C99 6.7.1p5:
2339      //   The declaration of an identifier for a function that has
2340      //   block scope shall have no explicit storage-class specifier
2341      //   other than extern
2342      // See also (C++ [dcl.stc]p4).
2343      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2344           diag::err_static_block_func);
2345      SC = FunctionDecl::None;
2346    } else
2347      SC = FunctionDecl::Static;
2348    break;
2349  }
2350  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2351  }
2352
2353  if (D.getDeclSpec().isThreadSpecified())
2354    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2355
2356  bool isFriend = D.getDeclSpec().isFriendSpecified();
2357  bool isInline = D.getDeclSpec().isInlineSpecified();
2358  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2359  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2360
2361  // Check that the return type is not an abstract class type.
2362  // For record types, this is done by the AbstractClassUsageDiagnoser once
2363  // the class has been completely parsed.
2364  if (!DC->isRecord() &&
2365      RequireNonAbstractType(D.getIdentifierLoc(),
2366                             R->getAsFunctionType()->getResultType(),
2367                             diag::err_abstract_type_in_decl,
2368                             AbstractReturnType))
2369    D.setInvalidType();
2370
2371  // Do not allow returning a objc interface by-value.
2372  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2373    Diag(D.getIdentifierLoc(),
2374         diag::err_object_cannot_be_passed_returned_by_value) << 0
2375      << R->getAsFunctionType()->getResultType();
2376    D.setInvalidType();
2377  }
2378
2379  // Check that we can declare a template here.
2380  if (TemplateParamLists.size() &&
2381      CheckTemplateDeclScope(S, TemplateParamLists))
2382    return 0;
2383
2384  bool isVirtualOkay = false;
2385  FunctionDecl *NewFD;
2386  if (isFriend) {
2387    // DC is the namespace in which the function is being declared.
2388    assert(DC->isFileContext() || PrevDecl);
2389
2390    // C++ [class.friend]p5
2391    //   A function can be defined in a friend declaration of a
2392    //   class . . . . Such a function is implicitly inline.
2393    isInline |= IsFunctionDefinition;
2394
2395    NewFD = FriendFunctionDecl::Create(Context, DC,
2396                                       D.getIdentifierLoc(), Name, R,
2397                                       isInline,
2398                                       D.getDeclSpec().getFriendSpecLoc());
2399  } else if (D.getKind() == Declarator::DK_Constructor) {
2400    // This is a C++ constructor declaration.
2401    assert(DC->isRecord() &&
2402           "Constructors can only be declared in a member context");
2403
2404    R = CheckConstructorDeclarator(D, R, SC);
2405
2406    // Create the new declaration
2407    NewFD = CXXConstructorDecl::Create(Context,
2408                                       cast<CXXRecordDecl>(DC),
2409                                       D.getIdentifierLoc(), Name, R,
2410                                       isExplicit, isInline,
2411                                       /*isImplicitlyDeclared=*/false);
2412  } else if (D.getKind() == Declarator::DK_Destructor) {
2413    // This is a C++ destructor declaration.
2414    if (DC->isRecord()) {
2415      R = CheckDestructorDeclarator(D, SC);
2416
2417      NewFD = CXXDestructorDecl::Create(Context,
2418                                        cast<CXXRecordDecl>(DC),
2419                                        D.getIdentifierLoc(), Name, R,
2420                                        isInline,
2421                                        /*isImplicitlyDeclared=*/false);
2422
2423      isVirtualOkay = true;
2424    } else {
2425      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2426
2427      // Create a FunctionDecl to satisfy the function definition parsing
2428      // code path.
2429      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2430                                   Name, R, SC, isInline,
2431                                   /*hasPrototype=*/true,
2432                                   // FIXME: Move to DeclGroup...
2433                                   D.getDeclSpec().getSourceRange().getBegin());
2434      D.setInvalidType();
2435    }
2436  } else if (D.getKind() == Declarator::DK_Conversion) {
2437    if (!DC->isRecord()) {
2438      Diag(D.getIdentifierLoc(),
2439           diag::err_conv_function_not_member);
2440      return 0;
2441    }
2442
2443    CheckConversionDeclarator(D, R, SC);
2444    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2445                                      D.getIdentifierLoc(), Name, R,
2446                                      isInline, isExplicit);
2447
2448    isVirtualOkay = true;
2449  } else if (DC->isRecord()) {
2450    // If the of the function is the same as the name of the record, then this
2451    // must be an invalid constructor that has a return type.
2452    // (The parser checks for a return type and makes the declarator a
2453    // constructor if it has no return type).
2454    // must have an invalid constructor that has a return type
2455    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2456      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2457        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2458        << SourceRange(D.getIdentifierLoc());
2459      return 0;
2460    }
2461
2462    // This is a C++ method declaration.
2463    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2464                                  D.getIdentifierLoc(), Name, R,
2465                                  (SC == FunctionDecl::Static), isInline);
2466
2467    isVirtualOkay = (SC != FunctionDecl::Static);
2468  } else {
2469    // Determine whether the function was written with a
2470    // prototype. This true when:
2471    //   - we're in C++ (where every function has a prototype),
2472    //   - there is a prototype in the declarator, or
2473    //   - the type R of the function is some kind of typedef or other reference
2474    //     to a type name (which eventually refers to a function type).
2475    bool HasPrototype =
2476       getLangOptions().CPlusPlus ||
2477       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2478       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2479
2480    NewFD = FunctionDecl::Create(Context, DC,
2481                                 D.getIdentifierLoc(),
2482                                 Name, R, SC, isInline, HasPrototype,
2483                                 // FIXME: Move to DeclGroup...
2484                                 D.getDeclSpec().getSourceRange().getBegin());
2485  }
2486
2487  if (D.isInvalidType())
2488    NewFD->setInvalidDecl();
2489
2490  // Set the lexical context. If the declarator has a C++
2491  // scope specifier, the lexical context will be different
2492  // from the semantic context.
2493  NewFD->setLexicalDeclContext(CurContext);
2494
2495  // Match up the template parameter lists with the scope specifier, then
2496  // determine whether we have a template or a template specialization.
2497  FunctionTemplateDecl *FunctionTemplate = 0;
2498  if (TemplateParameterList *TemplateParams
2499        = MatchTemplateParametersToScopeSpecifier(
2500                                  D.getDeclSpec().getSourceRange().getBegin(),
2501                                  D.getCXXScopeSpec(),
2502                           (TemplateParameterList**)TemplateParamLists.get(),
2503                                                  TemplateParamLists.size())) {
2504    if (TemplateParams->size() > 0) {
2505      // This is a function template
2506      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2507                                                      NewFD->getLocation(),
2508                                                      Name, TemplateParams,
2509                                                      NewFD);
2510      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2511    } else {
2512      // FIXME: Handle function template specializations
2513    }
2514
2515    // FIXME: Free this memory properly.
2516    TemplateParamLists.release();
2517  }
2518
2519  // C++ [dcl.fct.spec]p5:
2520  //   The virtual specifier shall only be used in declarations of
2521  //   nonstatic class member functions that appear within a
2522  //   member-specification of a class declaration; see 10.3.
2523  //
2524  if (isVirtual && !NewFD->isInvalidDecl()) {
2525    if (!isVirtualOkay) {
2526       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2527           diag::err_virtual_non_function);
2528    } else if (!CurContext->isRecord()) {
2529      // 'virtual' was specified outside of the class.
2530      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2531        << CodeModificationHint::CreateRemoval(
2532                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2533    } else {
2534      // Okay: Add virtual to the method.
2535      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2536      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2537      CurClass->setAggregate(false);
2538      CurClass->setPOD(false);
2539      CurClass->setEmpty(false);
2540      CurClass->setPolymorphic(true);
2541      CurClass->setHasTrivialConstructor(false);
2542      CurClass->setHasTrivialCopyConstructor(false);
2543      CurClass->setHasTrivialCopyAssignment(false);
2544    }
2545  }
2546
2547  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2548    // Look for virtual methods in base classes that this method might override.
2549
2550    BasePaths Paths;
2551    if (LookupInBases(cast<CXXRecordDecl>(DC),
2552                      MemberLookupCriteria(NewMD), Paths)) {
2553      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2554           E = Paths.found_decls_end(); I != E; ++I) {
2555        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2556          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2557              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2558            NewMD->addOverriddenMethod(OldMD);
2559        }
2560      }
2561    }
2562  }
2563
2564  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2565      !CurContext->isRecord()) {
2566    // C++ [class.static]p1:
2567    //   A data or function member of a class may be declared static
2568    //   in a class definition, in which case it is a static member of
2569    //   the class.
2570
2571    // Complain about the 'static' specifier if it's on an out-of-line
2572    // member function definition.
2573    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2574         diag::err_static_out_of_line)
2575      << CodeModificationHint::CreateRemoval(
2576                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2577  }
2578
2579  // Handle GNU asm-label extension (encoded as an attribute).
2580  if (Expr *E = (Expr*) D.getAsmLabel()) {
2581    // The parser guarantees this is a string.
2582    StringLiteral *SE = cast<StringLiteral>(E);
2583    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2584                                                        SE->getByteLength())));
2585  }
2586
2587  // Copy the parameter declarations from the declarator D to the function
2588  // declaration NewFD, if they are available.  First scavenge them into Params.
2589  llvm::SmallVector<ParmVarDecl*, 16> Params;
2590  if (D.getNumTypeObjects() > 0) {
2591    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2592
2593    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2594    // function that takes no arguments, not a function that takes a
2595    // single void argument.
2596    // We let through "const void" here because Sema::GetTypeForDeclarator
2597    // already checks for that case.
2598    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2599        FTI.ArgInfo[0].Param &&
2600        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2601      // Empty arg list, don't push any params.
2602      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2603
2604      // In C++, the empty parameter-type-list must be spelled "void"; a
2605      // typedef of void is not permitted.
2606      if (getLangOptions().CPlusPlus &&
2607          Param->getType().getUnqualifiedType() != Context.VoidTy)
2608        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2609      // FIXME: Leaks decl?
2610    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2611      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2612        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2613        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2614        Param->setDeclContext(NewFD);
2615        Params.push_back(Param);
2616      }
2617    }
2618
2619  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2620    // When we're declaring a function with a typedef, typeof, etc as in the
2621    // following example, we'll need to synthesize (unnamed)
2622    // parameters for use in the declaration.
2623    //
2624    // @code
2625    // typedef void fn(int);
2626    // fn f;
2627    // @endcode
2628
2629    // Synthesize a parameter for each argument type.
2630    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2631         AE = FT->arg_type_end(); AI != AE; ++AI) {
2632      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2633                                               SourceLocation(), 0,
2634                                               *AI, VarDecl::None, 0);
2635      Param->setImplicit();
2636      Params.push_back(Param);
2637    }
2638  } else {
2639    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2640           "Should not need args for typedef of non-prototype fn");
2641  }
2642  // Finally, we know we have the right number of parameters, install them.
2643  NewFD->setParams(Context, Params.data(), Params.size());
2644
2645  // If name lookup finds a previous declaration that is not in the
2646  // same scope as the new declaration, this may still be an
2647  // acceptable redeclaration.
2648  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2649      !(NewFD->hasLinkage() &&
2650        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2651    PrevDecl = 0;
2652
2653  // Perform semantic checking on the function declaration.
2654  bool OverloadableAttrRequired = false; // FIXME: HACK!
2655  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2656                           /*FIXME:*/OverloadableAttrRequired);
2657
2658  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2659    // An out-of-line member function declaration must also be a
2660    // definition (C++ [dcl.meaning]p1).
2661    if (!IsFunctionDefinition && !isFriend) {
2662      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2663        << D.getCXXScopeSpec().getRange();
2664      NewFD->setInvalidDecl();
2665    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2666      // The user tried to provide an out-of-line definition for a
2667      // function that is a member of a class or namespace, but there
2668      // was no such member function declared (C++ [class.mfct]p2,
2669      // C++ [namespace.memdef]p2). For example:
2670      //
2671      // class X {
2672      //   void f() const;
2673      // };
2674      //
2675      // void X::f() { } // ill-formed
2676      //
2677      // Complain about this problem, and attempt to suggest close
2678      // matches (e.g., those that differ only in cv-qualifiers and
2679      // whether the parameter types are references).
2680      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2681        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2682      NewFD->setInvalidDecl();
2683
2684      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2685                                              true);
2686      assert(!Prev.isAmbiguous() &&
2687             "Cannot have an ambiguity in previous-declaration lookup");
2688      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2689           Func != FuncEnd; ++Func) {
2690        if (isa<FunctionDecl>(*Func) &&
2691            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2692          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2693      }
2694
2695      PrevDecl = 0;
2696    }
2697  }
2698
2699  // Handle attributes. We need to have merged decls when handling attributes
2700  // (for example to check for conflicts, etc).
2701  // FIXME: This needs to happen before we merge declarations. Then,
2702  // let attribute merging cope with attribute conflicts.
2703  ProcessDeclAttributes(S, NewFD, D);
2704
2705  // attributes declared post-definition are currently ignored
2706  if (PrevDecl) {
2707    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2708    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2709      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2710      Diag(Def->getLocation(), diag::note_previous_definition);
2711    }
2712  }
2713
2714  AddKnownFunctionAttributes(NewFD);
2715
2716  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2717    // If a function name is overloadable in C, then every function
2718    // with that name must be marked "overloadable".
2719    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2720      << Redeclaration << NewFD;
2721    if (PrevDecl)
2722      Diag(PrevDecl->getLocation(),
2723           diag::note_attribute_overloadable_prev_overload);
2724    NewFD->addAttr(::new (Context) OverloadableAttr());
2725  }
2726
2727  // If this is a locally-scoped extern C function, update the
2728  // map of such names.
2729  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2730      && !NewFD->isInvalidDecl())
2731    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2732
2733  // Set this FunctionDecl's range up to the right paren.
2734  NewFD->setLocEnd(D.getSourceRange().getEnd());
2735
2736  if (FunctionTemplate && NewFD->isInvalidDecl())
2737    FunctionTemplate->setInvalidDecl();
2738
2739  if (FunctionTemplate)
2740    return FunctionTemplate;
2741
2742  return NewFD;
2743}
2744
2745/// \brief Perform semantic checking of a new function declaration.
2746///
2747/// Performs semantic analysis of the new function declaration
2748/// NewFD. This routine performs all semantic checking that does not
2749/// require the actual declarator involved in the declaration, and is
2750/// used both for the declaration of functions as they are parsed
2751/// (called via ActOnDeclarator) and for the declaration of functions
2752/// that have been instantiated via C++ template instantiation (called
2753/// via InstantiateDecl).
2754///
2755/// This sets NewFD->isInvalidDecl() to true if there was an error.
2756void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2757                                    bool &Redeclaration,
2758                                    bool &OverloadableAttrRequired) {
2759  // If NewFD is already known erroneous, don't do any of this checking.
2760  if (NewFD->isInvalidDecl())
2761    return;
2762
2763  if (NewFD->getResultType()->isVariablyModifiedType()) {
2764    // Functions returning a variably modified type violate C99 6.7.5.2p2
2765    // because all functions have linkage.
2766    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2767    return NewFD->setInvalidDecl();
2768  }
2769
2770  if (NewFD->isMain(Context)) CheckMain(NewFD);
2771
2772  // Semantic checking for this function declaration (in isolation).
2773  if (getLangOptions().CPlusPlus) {
2774    // C++-specific checks.
2775    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2776      CheckConstructor(Constructor);
2777    } else if (isa<CXXDestructorDecl>(NewFD)) {
2778      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2779      QualType ClassType = Context.getTypeDeclType(Record);
2780      if (!ClassType->isDependentType()) {
2781        DeclarationName Name
2782          = Context.DeclarationNames.getCXXDestructorName(
2783                                        Context.getCanonicalType(ClassType));
2784        if (NewFD->getDeclName() != Name) {
2785          Diag(NewFD->getLocation(), diag::err_destructor_name);
2786          return NewFD->setInvalidDecl();
2787        }
2788      }
2789      Record->setUserDeclaredDestructor(true);
2790      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2791      // user-defined destructor.
2792      Record->setPOD(false);
2793
2794      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2795      // declared destructor.
2796      // FIXME: C++0x: don't do this for "= default" destructors
2797      Record->setHasTrivialDestructor(false);
2798    } else if (CXXConversionDecl *Conversion
2799               = dyn_cast<CXXConversionDecl>(NewFD))
2800      ActOnConversionDeclarator(Conversion);
2801
2802    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2803    if (NewFD->isOverloadedOperator() &&
2804        CheckOverloadedOperatorDeclaration(NewFD))
2805      return NewFD->setInvalidDecl();
2806  }
2807
2808  // C99 6.7.4p6:
2809  //   [... ] For a function with external linkage, the following
2810  //   restrictions apply: [...] If all of the file scope declarations
2811  //   for a function in a translation unit include the inline
2812  //   function specifier without extern, then the definition in that
2813  //   translation unit is an inline definition. An inline definition
2814  //   does not provide an external definition for the function, and
2815  //   does not forbid an external definition in another translation
2816  //   unit.
2817  //
2818  // Here we determine whether this function, in isolation, would be a
2819  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2820  // previous declarations.
2821  if (NewFD->isInline() && getLangOptions().C99 &&
2822      NewFD->getStorageClass() == FunctionDecl::None &&
2823      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2824    NewFD->setC99InlineDefinition(true);
2825
2826  // Check for a previous declaration of this name.
2827  if (!PrevDecl && NewFD->isExternC(Context)) {
2828    // Since we did not find anything by this name and we're declaring
2829    // an extern "C" function, look for a non-visible extern "C"
2830    // declaration with the same name.
2831    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2832      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2833    if (Pos != LocallyScopedExternalDecls.end())
2834      PrevDecl = Pos->second;
2835  }
2836
2837  // Merge or overload the declaration with an existing declaration of
2838  // the same name, if appropriate.
2839  if (PrevDecl) {
2840    // Determine whether NewFD is an overload of PrevDecl or
2841    // a declaration that requires merging. If it's an overload,
2842    // there's no more work to do here; we'll just add the new
2843    // function to the scope.
2844    OverloadedFunctionDecl::function_iterator MatchedDecl;
2845
2846    if (!getLangOptions().CPlusPlus &&
2847        AllowOverloadingOfFunction(PrevDecl, Context)) {
2848      OverloadableAttrRequired = true;
2849
2850      // Functions marked "overloadable" must have a prototype (that
2851      // we can't get through declaration merging).
2852      if (!NewFD->getType()->getAsFunctionProtoType()) {
2853        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2854          << NewFD;
2855        Redeclaration = true;
2856
2857        // Turn this into a variadic function with no parameters.
2858        QualType R = Context.getFunctionType(
2859                       NewFD->getType()->getAsFunctionType()->getResultType(),
2860                       0, 0, true, 0);
2861        NewFD->setType(R);
2862        return NewFD->setInvalidDecl();
2863      }
2864    }
2865
2866    if (PrevDecl &&
2867        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2868         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2869        !isa<UsingDecl>(PrevDecl)) {
2870      Redeclaration = true;
2871      Decl *OldDecl = PrevDecl;
2872
2873      // If PrevDecl was an overloaded function, extract the
2874      // FunctionDecl that matched.
2875      if (isa<OverloadedFunctionDecl>(PrevDecl))
2876        OldDecl = *MatchedDecl;
2877
2878      // NewFD and OldDecl represent declarations that need to be
2879      // merged.
2880      if (MergeFunctionDecl(NewFD, OldDecl))
2881        return NewFD->setInvalidDecl();
2882
2883      if (FunctionTemplateDecl *OldTemplateDecl
2884            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2885        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2886      else {
2887        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2888          NewFD->setAccess(OldDecl->getAccess());
2889        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2890      }
2891    }
2892  }
2893
2894  // In C++, check default arguments now that we have merged decls. Unless
2895  // the lexical context is the class, because in this case this is done
2896  // during delayed parsing anyway.
2897  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2898    CheckCXXDefaultArguments(NewFD);
2899}
2900
2901void Sema::CheckMain(FunctionDecl* FD) {
2902  // C++ [basic.start.main]p3:  A program that declares main to be inline
2903  //   or static is ill-formed.
2904  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2905  //   shall not appear in a declaration of main.
2906  // static main is not an error under C99, but we should warn about it.
2907  bool isInline = FD->isInline();
2908  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2909  if (isInline || isStatic) {
2910    unsigned diagID = diag::warn_unusual_main_decl;
2911    if (isInline || getLangOptions().CPlusPlus)
2912      diagID = diag::err_unusual_main_decl;
2913
2914    int which = isStatic + (isInline << 1) - 1;
2915    Diag(FD->getLocation(), diagID) << which;
2916  }
2917
2918  QualType T = FD->getType();
2919  assert(T->isFunctionType() && "function decl is not of function type");
2920  const FunctionType* FT = T->getAsFunctionType();
2921
2922  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2923    // TODO: add a replacement fixit to turn the return type into 'int'.
2924    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2925    FD->setInvalidDecl(true);
2926  }
2927
2928  // Treat protoless main() as nullary.
2929  if (isa<FunctionNoProtoType>(FT)) return;
2930
2931  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2932  unsigned nparams = FTP->getNumArgs();
2933  assert(FD->getNumParams() == nparams);
2934
2935  if (nparams > 3) {
2936    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2937    FD->setInvalidDecl(true);
2938    nparams = 3;
2939  }
2940
2941  // FIXME: a lot of the following diagnostics would be improved
2942  // if we had some location information about types.
2943
2944  QualType CharPP =
2945    Context.getPointerType(Context.getPointerType(Context.CharTy));
2946  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2947
2948  for (unsigned i = 0; i < nparams; ++i) {
2949    QualType AT = FTP->getArgType(i);
2950
2951    bool mismatch = true;
2952
2953    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2954      mismatch = false;
2955    else if (Expected[i] == CharPP) {
2956      // As an extension, the following forms are okay:
2957      //   char const **
2958      //   char const * const *
2959      //   char * const *
2960
2961      QualifierSet qs;
2962      const PointerType* PT;
2963      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2964          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2965          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2966        qs.removeConst();
2967        mismatch = !qs.empty();
2968      }
2969    }
2970
2971    if (mismatch) {
2972      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2973      // TODO: suggest replacing given type with expected type
2974      FD->setInvalidDecl(true);
2975    }
2976  }
2977
2978  if (nparams == 1 && !FD->isInvalidDecl()) {
2979    Diag(FD->getLocation(), diag::warn_main_one_arg);
2980  }
2981}
2982
2983bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2984  // FIXME: Need strict checking.  In C89, we need to check for
2985  // any assignment, increment, decrement, function-calls, or
2986  // commas outside of a sizeof.  In C99, it's the same list,
2987  // except that the aforementioned are allowed in unevaluated
2988  // expressions.  Everything else falls under the
2989  // "may accept other forms of constant expressions" exception.
2990  // (We never end up here for C++, so the constant expression
2991  // rules there don't matter.)
2992  if (Init->isConstantInitializer(Context))
2993    return false;
2994  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2995    << Init->getSourceRange();
2996  return true;
2997}
2998
2999void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
3000  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
3001}
3002
3003/// AddInitializerToDecl - Adds the initializer Init to the
3004/// declaration dcl. If DirectInit is true, this is C++ direct
3005/// initialization rather than copy initialization.
3006void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3007  Decl *RealDecl = dcl.getAs<Decl>();
3008  // If there is no declaration, there was an error parsing it.  Just ignore
3009  // the initializer.
3010  if (RealDecl == 0)
3011    return;
3012
3013  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3014    // With declarators parsed the way they are, the parser cannot
3015    // distinguish between a normal initializer and a pure-specifier.
3016    // Thus this grotesque test.
3017    IntegerLiteral *IL;
3018    Expr *Init = static_cast<Expr *>(init.get());
3019    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3020        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3021      if (Method->isVirtualAsWritten()) {
3022        Method->setPure();
3023
3024        // A class is abstract if at least one function is pure virtual.
3025        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3026      } else if (!Method->isInvalidDecl()) {
3027        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3028          << Method->getDeclName() << Init->getSourceRange();
3029        Method->setInvalidDecl();
3030      }
3031    } else {
3032      Diag(Method->getLocation(), diag::err_member_function_initialization)
3033        << Method->getDeclName() << Init->getSourceRange();
3034      Method->setInvalidDecl();
3035    }
3036    return;
3037  }
3038
3039  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3040  if (!VDecl) {
3041    if (getLangOptions().CPlusPlus &&
3042        RealDecl->getLexicalDeclContext()->isRecord() &&
3043        isa<NamedDecl>(RealDecl))
3044      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3045        << cast<NamedDecl>(RealDecl)->getDeclName();
3046    else
3047      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3048    RealDecl->setInvalidDecl();
3049    return;
3050  }
3051
3052  if (!VDecl->getType()->isArrayType() &&
3053      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3054                          diag::err_typecheck_decl_incomplete_type)) {
3055    RealDecl->setInvalidDecl();
3056    return;
3057  }
3058
3059  const VarDecl *Def = 0;
3060  if (VDecl->getDefinition(Def)) {
3061    Diag(VDecl->getLocation(), diag::err_redefinition)
3062      << VDecl->getDeclName();
3063    Diag(Def->getLocation(), diag::note_previous_definition);
3064    VDecl->setInvalidDecl();
3065    return;
3066  }
3067
3068  // Take ownership of the expression, now that we're sure we have somewhere
3069  // to put it.
3070  Expr *Init = init.takeAs<Expr>();
3071  assert(Init && "missing initializer");
3072
3073  // Get the decls type and save a reference for later, since
3074  // CheckInitializerTypes may change it.
3075  QualType DclT = VDecl->getType(), SavT = DclT;
3076  if (VDecl->isBlockVarDecl()) {
3077    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3078      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3079      VDecl->setInvalidDecl();
3080    } else if (!VDecl->isInvalidDecl()) {
3081      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3082                                VDecl->getDeclName(), DirectInit))
3083        VDecl->setInvalidDecl();
3084
3085      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3086      // Don't check invalid declarations to avoid emitting useless diagnostics.
3087      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3088        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3089          CheckForConstantInitializer(Init, DclT);
3090      }
3091    }
3092  } else if (VDecl->isStaticDataMember() &&
3093             VDecl->getLexicalDeclContext()->isRecord()) {
3094    // This is an in-class initialization for a static data member, e.g.,
3095    //
3096    // struct S {
3097    //   static const int value = 17;
3098    // };
3099
3100    // Attach the initializer
3101    VDecl->setInit(Context, Init);
3102
3103    // C++ [class.mem]p4:
3104    //   A member-declarator can contain a constant-initializer only
3105    //   if it declares a static member (9.4) of const integral or
3106    //   const enumeration type, see 9.4.2.
3107    QualType T = VDecl->getType();
3108    if (!T->isDependentType() &&
3109        (!Context.getCanonicalType(T).isConstQualified() ||
3110         !T->isIntegralType())) {
3111      Diag(VDecl->getLocation(), diag::err_member_initialization)
3112        << VDecl->getDeclName() << Init->getSourceRange();
3113      VDecl->setInvalidDecl();
3114    } else {
3115      // C++ [class.static.data]p4:
3116      //   If a static data member is of const integral or const
3117      //   enumeration type, its declaration in the class definition
3118      //   can specify a constant-initializer which shall be an
3119      //   integral constant expression (5.19).
3120      if (!Init->isTypeDependent() &&
3121          !Init->getType()->isIntegralType()) {
3122        // We have a non-dependent, non-integral or enumeration type.
3123        Diag(Init->getSourceRange().getBegin(),
3124             diag::err_in_class_initializer_non_integral_type)
3125          << Init->getType() << Init->getSourceRange();
3126        VDecl->setInvalidDecl();
3127      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3128        // Check whether the expression is a constant expression.
3129        llvm::APSInt Value;
3130        SourceLocation Loc;
3131        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3132          Diag(Loc, diag::err_in_class_initializer_non_constant)
3133            << Init->getSourceRange();
3134          VDecl->setInvalidDecl();
3135        } else if (!VDecl->getType()->isDependentType())
3136          ImpCastExprToType(Init, VDecl->getType());
3137      }
3138    }
3139  } else if (VDecl->isFileVarDecl()) {
3140    if (VDecl->getStorageClass() == VarDecl::Extern)
3141      Diag(VDecl->getLocation(), diag::warn_extern_init);
3142    if (!VDecl->isInvalidDecl())
3143      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3144                                VDecl->getDeclName(), DirectInit))
3145        VDecl->setInvalidDecl();
3146
3147    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3148    // Don't check invalid declarations to avoid emitting useless diagnostics.
3149    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3150      // C99 6.7.8p4. All file scoped initializers need to be constant.
3151      CheckForConstantInitializer(Init, DclT);
3152    }
3153  }
3154  // If the type changed, it means we had an incomplete type that was
3155  // completed by the initializer. For example:
3156  //   int ary[] = { 1, 3, 5 };
3157  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3158  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3159    VDecl->setType(DclT);
3160    Init->setType(DclT);
3161  }
3162
3163  // Attach the initializer to the decl.
3164  VDecl->setInit(Context, Init);
3165
3166  // If the previous declaration of VDecl was a tentative definition,
3167  // remove it from the set of tentative definitions.
3168  if (VDecl->getPreviousDeclaration() &&
3169      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3170    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3171      = TentativeDefinitions.find(VDecl->getDeclName());
3172    assert(Pos != TentativeDefinitions.end() &&
3173           "Unrecorded tentative definition?");
3174    TentativeDefinitions.erase(Pos);
3175  }
3176
3177  return;
3178}
3179
3180void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3181                                  bool TypeContainsUndeducedAuto) {
3182  Decl *RealDecl = dcl.getAs<Decl>();
3183
3184  // If there is no declaration, there was an error parsing it. Just ignore it.
3185  if (RealDecl == 0)
3186    return;
3187
3188  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3189    QualType Type = Var->getType();
3190
3191    // Record tentative definitions.
3192    if (Var->isTentativeDefinition(Context))
3193      TentativeDefinitions[Var->getDeclName()] = Var;
3194
3195    // C++ [dcl.init.ref]p3:
3196    //   The initializer can be omitted for a reference only in a
3197    //   parameter declaration (8.3.5), in the declaration of a
3198    //   function return type, in the declaration of a class member
3199    //   within its class declaration (9.2), and where the extern
3200    //   specifier is explicitly used.
3201    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3202      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3203        << Var->getDeclName()
3204        << SourceRange(Var->getLocation(), Var->getLocation());
3205      Var->setInvalidDecl();
3206      return;
3207    }
3208
3209    // C++0x [dcl.spec.auto]p3
3210    if (TypeContainsUndeducedAuto) {
3211      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3212        << Var->getDeclName() << Type;
3213      Var->setInvalidDecl();
3214      return;
3215    }
3216
3217    // C++ [dcl.init]p9:
3218    //
3219    //   If no initializer is specified for an object, and the object
3220    //   is of (possibly cv-qualified) non-POD class type (or array
3221    //   thereof), the object shall be default-initialized; if the
3222    //   object is of const-qualified type, the underlying class type
3223    //   shall have a user-declared default constructor.
3224    if (getLangOptions().CPlusPlus) {
3225      QualType InitType = Type;
3226      if (const ArrayType *Array = Context.getAsArrayType(Type))
3227        InitType = Array->getElementType();
3228      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3229          InitType->isRecordType() && !InitType->isDependentType()) {
3230        CXXRecordDecl *RD =
3231          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3232        CXXConstructorDecl *Constructor = 0;
3233        if (!RequireCompleteType(Var->getLocation(), InitType,
3234                                    diag::err_invalid_incomplete_type_use))
3235          Constructor
3236            = PerformInitializationByConstructor(InitType, 0, 0,
3237                                                 Var->getLocation(),
3238                                               SourceRange(Var->getLocation(),
3239                                                           Var->getLocation()),
3240                                                 Var->getDeclName(),
3241                                                 IK_Default);
3242        if (!Constructor)
3243          Var->setInvalidDecl();
3244        else {
3245          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
3246            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3247          FinalizeVarWithDestructor(Var, InitType);
3248        }
3249      }
3250    }
3251
3252#if 0
3253    // FIXME: Temporarily disabled because we are not properly parsing
3254    // linkage specifications on declarations, e.g.,
3255    //
3256    //   extern "C" const CGPoint CGPointerZero;
3257    //
3258    // C++ [dcl.init]p9:
3259    //
3260    //     If no initializer is specified for an object, and the
3261    //     object is of (possibly cv-qualified) non-POD class type (or
3262    //     array thereof), the object shall be default-initialized; if
3263    //     the object is of const-qualified type, the underlying class
3264    //     type shall have a user-declared default
3265    //     constructor. Otherwise, if no initializer is specified for
3266    //     an object, the object and its subobjects, if any, have an
3267    //     indeterminate initial value; if the object or any of its
3268    //     subobjects are of const-qualified type, the program is
3269    //     ill-formed.
3270    //
3271    // This isn't technically an error in C, so we don't diagnose it.
3272    //
3273    // FIXME: Actually perform the POD/user-defined default
3274    // constructor check.
3275    if (getLangOptions().CPlusPlus &&
3276        Context.getCanonicalType(Type).isConstQualified() &&
3277        !Var->hasExternalStorage())
3278      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3279        << Var->getName()
3280        << SourceRange(Var->getLocation(), Var->getLocation());
3281#endif
3282  }
3283}
3284
3285Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3286                                                   DeclPtrTy *Group,
3287                                                   unsigned NumDecls) {
3288  llvm::SmallVector<Decl*, 8> Decls;
3289
3290  if (DS.isTypeSpecOwned())
3291    Decls.push_back((Decl*)DS.getTypeRep());
3292
3293  for (unsigned i = 0; i != NumDecls; ++i)
3294    if (Decl *D = Group[i].getAs<Decl>())
3295      Decls.push_back(D);
3296
3297  // Perform semantic analysis that depends on having fully processed both
3298  // the declarator and initializer.
3299  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3300    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3301    if (!IDecl)
3302      continue;
3303    QualType T = IDecl->getType();
3304
3305    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3306    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3307    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3308      if (!IDecl->isInvalidDecl() &&
3309          RequireCompleteType(IDecl->getLocation(), T,
3310                              diag::err_typecheck_decl_incomplete_type))
3311        IDecl->setInvalidDecl();
3312    }
3313    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3314    // object that has file scope without an initializer, and without a
3315    // storage-class specifier or with the storage-class specifier "static",
3316    // constitutes a tentative definition. Note: A tentative definition with
3317    // external linkage is valid (C99 6.2.2p5).
3318    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3319      if (const IncompleteArrayType *ArrayT
3320          = Context.getAsIncompleteArrayType(T)) {
3321        if (RequireCompleteType(IDecl->getLocation(),
3322                                ArrayT->getElementType(),
3323                                diag::err_illegal_decl_array_incomplete_type))
3324          IDecl->setInvalidDecl();
3325      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3326        // C99 6.9.2p3: If the declaration of an identifier for an object is
3327        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3328        // declared type shall not be an incomplete type.
3329        // NOTE: code such as the following
3330        //     static struct s;
3331        //     struct s { int a; };
3332        // is accepted by gcc. Hence here we issue a warning instead of
3333        // an error and we do not invalidate the static declaration.
3334        // NOTE: to avoid multiple warnings, only check the first declaration.
3335        if (IDecl->getPreviousDeclaration() == 0)
3336          RequireCompleteType(IDecl->getLocation(), T,
3337                              diag::ext_typecheck_decl_incomplete_type);
3338      }
3339    }
3340  }
3341  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3342                                                   Decls.data(), Decls.size()));
3343}
3344
3345
3346/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3347/// to introduce parameters into function prototype scope.
3348Sema::DeclPtrTy
3349Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3350  const DeclSpec &DS = D.getDeclSpec();
3351
3352  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3353  VarDecl::StorageClass StorageClass = VarDecl::None;
3354  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3355    StorageClass = VarDecl::Register;
3356  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3357    Diag(DS.getStorageClassSpecLoc(),
3358         diag::err_invalid_storage_class_in_func_decl);
3359    D.getMutableDeclSpec().ClearStorageClassSpecs();
3360  }
3361
3362  if (D.getDeclSpec().isThreadSpecified())
3363    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3364
3365  DiagnoseFunctionSpecifiers(D);
3366
3367  // Check that there are no default arguments inside the type of this
3368  // parameter (C++ only).
3369  if (getLangOptions().CPlusPlus)
3370    CheckExtraCXXDefaultArguments(D);
3371
3372  TagDecl *OwnedDecl = 0;
3373  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3374
3375  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3376    // C++ [dcl.fct]p6:
3377    //   Types shall not be defined in return or parameter types.
3378    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3379      << Context.getTypeDeclType(OwnedDecl);
3380  }
3381
3382  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3383  // Can this happen for params?  We already checked that they don't conflict
3384  // among each other.  Here they can only shadow globals, which is ok.
3385  IdentifierInfo *II = D.getIdentifier();
3386  if (II) {
3387    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3388      if (PrevDecl->isTemplateParameter()) {
3389        // Maybe we will complain about the shadowed template parameter.
3390        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3391        // Just pretend that we didn't see the previous declaration.
3392        PrevDecl = 0;
3393      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3394        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3395
3396        // Recover by removing the name
3397        II = 0;
3398        D.SetIdentifier(0, D.getIdentifierLoc());
3399      }
3400    }
3401  }
3402
3403  // Parameters can not be abstract class types.
3404  // For record types, this is done by the AbstractClassUsageDiagnoser once
3405  // the class has been completely parsed.
3406  if (!CurContext->isRecord() &&
3407      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3408                             diag::err_abstract_type_in_decl,
3409                             AbstractParamType))
3410    D.setInvalidType(true);
3411
3412  QualType T = adjustParameterType(parmDeclType);
3413
3414  ParmVarDecl *New;
3415  if (T == parmDeclType) // parameter type did not need adjustment
3416    New = ParmVarDecl::Create(Context, CurContext,
3417                              D.getIdentifierLoc(), II,
3418                              parmDeclType, StorageClass,
3419                              0);
3420  else // keep track of both the adjusted and unadjusted types
3421    New = OriginalParmVarDecl::Create(Context, CurContext,
3422                                      D.getIdentifierLoc(), II, T,
3423                                      parmDeclType, StorageClass, 0);
3424
3425  if (D.isInvalidType())
3426    New->setInvalidDecl();
3427
3428  // Parameter declarators cannot be interface types. All ObjC objects are
3429  // passed by reference.
3430  if (T->isObjCInterfaceType()) {
3431    Diag(D.getIdentifierLoc(),
3432         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3433    New->setInvalidDecl();
3434  }
3435
3436  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3437  if (D.getCXXScopeSpec().isSet()) {
3438    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3439      << D.getCXXScopeSpec().getRange();
3440    New->setInvalidDecl();
3441  }
3442
3443  // Add the parameter declaration into this scope.
3444  S->AddDecl(DeclPtrTy::make(New));
3445  if (II)
3446    IdResolver.AddDecl(New);
3447
3448  ProcessDeclAttributes(S, New, D);
3449
3450  if (New->hasAttr<BlocksAttr>()) {
3451    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3452  }
3453  return DeclPtrTy::make(New);
3454}
3455
3456void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3457                                           SourceLocation LocAfterDecls) {
3458  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3459         "Not a function declarator!");
3460  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3461
3462  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3463  // for a K&R function.
3464  if (!FTI.hasPrototype) {
3465    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3466      --i;
3467      if (FTI.ArgInfo[i].Param == 0) {
3468        std::string Code = "  int ";
3469        Code += FTI.ArgInfo[i].Ident->getName();
3470        Code += ";\n";
3471        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3472          << FTI.ArgInfo[i].Ident
3473          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3474
3475        // Implicitly declare the argument as type 'int' for lack of a better
3476        // type.
3477        DeclSpec DS;
3478        const char* PrevSpec; // unused
3479        unsigned DiagID; // unused
3480        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3481                           PrevSpec, DiagID);
3482        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3483        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3484        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3485      }
3486    }
3487  }
3488}
3489
3490Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3491                                              Declarator &D) {
3492  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3493  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3494         "Not a function declarator!");
3495  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3496
3497  if (FTI.hasPrototype) {
3498    // FIXME: Diagnose arguments without names in C.
3499  }
3500
3501  Scope *ParentScope = FnBodyScope->getParent();
3502
3503  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3504                                  MultiTemplateParamsArg(*this),
3505                                  /*IsFunctionDefinition=*/true);
3506  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3507}
3508
3509Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3510  if (!D)
3511    return D;
3512  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3513
3514  CurFunctionNeedsScopeChecking = false;
3515
3516  // See if this is a redefinition.
3517  const FunctionDecl *Definition;
3518  if (FD->getBody(Definition)) {
3519    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3520    Diag(Definition->getLocation(), diag::note_previous_definition);
3521  }
3522
3523  // Builtin functions cannot be defined.
3524  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3525    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3526      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3527      FD->setInvalidDecl();
3528    }
3529  }
3530
3531  // The return type of a function definition must be complete
3532  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3533  QualType ResultType = FD->getResultType();
3534  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3535      !FD->isInvalidDecl() &&
3536      RequireCompleteType(FD->getLocation(), ResultType,
3537                          diag::err_func_def_incomplete_result))
3538    FD->setInvalidDecl();
3539
3540  // GNU warning -Wmissing-prototypes:
3541  //   Warn if a global function is defined without a previous
3542  //   prototype declaration. This warning is issued even if the
3543  //   definition itself provides a prototype. The aim is to detect
3544  //   global functions that fail to be declared in header files.
3545  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3546      !FD->isMain(Context)) {
3547    bool MissingPrototype = true;
3548    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3549         Prev; Prev = Prev->getPreviousDeclaration()) {
3550      // Ignore any declarations that occur in function or method
3551      // scope, because they aren't visible from the header.
3552      if (Prev->getDeclContext()->isFunctionOrMethod())
3553        continue;
3554
3555      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3556      break;
3557    }
3558
3559    if (MissingPrototype)
3560      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3561  }
3562
3563  if (FnBodyScope)
3564    PushDeclContext(FnBodyScope, FD);
3565
3566  // Check the validity of our function parameters
3567  CheckParmsForFunctionDef(FD);
3568
3569  // Introduce our parameters into the function scope
3570  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3571    ParmVarDecl *Param = FD->getParamDecl(p);
3572    Param->setOwningFunction(FD);
3573
3574    // If this has an identifier, add it to the scope stack.
3575    if (Param->getIdentifier() && FnBodyScope)
3576      PushOnScopeChains(Param, FnBodyScope);
3577  }
3578
3579  // Checking attributes of current function definition
3580  // dllimport attribute.
3581  if (FD->getAttr<DLLImportAttr>() &&
3582      (!FD->getAttr<DLLExportAttr>())) {
3583    // dllimport attribute cannot be applied to definition.
3584    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3585      Diag(FD->getLocation(),
3586           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3587        << "dllimport";
3588      FD->setInvalidDecl();
3589      return DeclPtrTy::make(FD);
3590    } else {
3591      // If a symbol previously declared dllimport is later defined, the
3592      // attribute is ignored in subsequent references, and a warning is
3593      // emitted.
3594      Diag(FD->getLocation(),
3595           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3596        << FD->getNameAsCString() << "dllimport";
3597    }
3598  }
3599  return DeclPtrTy::make(FD);
3600}
3601
3602Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3603  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3604}
3605
3606Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3607                                              bool IsInstantiation) {
3608  Decl *dcl = D.getAs<Decl>();
3609  Stmt *Body = BodyArg.takeAs<Stmt>();
3610  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3611    FD->setBody(Body);
3612    if (FD->isMain(Context))
3613      // C and C++ allow for main to automagically return 0.
3614      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3615      FD->setHasImplicitReturnZero(true);
3616    else
3617      CheckFallThroughForFunctionDef(FD, Body);
3618
3619    if (!FD->isInvalidDecl())
3620      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3621
3622    // C++ [basic.def.odr]p2:
3623    //   [...] A virtual member function is used if it is not pure. [...]
3624    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3625      if (Method->isVirtual() && !Method->isPure())
3626        MarkDeclarationReferenced(Method->getLocation(), Method);
3627
3628    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3629  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3630    assert(MD == getCurMethodDecl() && "Method parsing confused");
3631    MD->setBody(Body);
3632    CheckFallThroughForFunctionDef(MD, Body);
3633    MD->setEndLoc(Body->getLocEnd());
3634
3635    if (!MD->isInvalidDecl())
3636      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3637  } else {
3638    Body->Destroy(Context);
3639    return DeclPtrTy();
3640  }
3641  if (!IsInstantiation)
3642    PopDeclContext();
3643
3644  // Verify and clean out per-function state.
3645
3646  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3647
3648  // Check goto/label use.
3649  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3650       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3651    LabelStmt *L = I->second;
3652
3653    // Verify that we have no forward references left.  If so, there was a goto
3654    // or address of a label taken, but no definition of it.  Label fwd
3655    // definitions are indicated with a null substmt.
3656    if (L->getSubStmt() != 0)
3657      continue;
3658
3659    // Emit error.
3660    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3661
3662    // At this point, we have gotos that use the bogus label.  Stitch it into
3663    // the function body so that they aren't leaked and that the AST is well
3664    // formed.
3665    if (Body == 0) {
3666      // The whole function wasn't parsed correctly, just delete this.
3667      L->Destroy(Context);
3668      continue;
3669    }
3670
3671    // Otherwise, the body is valid: we want to stitch the label decl into the
3672    // function somewhere so that it is properly owned and so that the goto
3673    // has a valid target.  Do this by creating a new compound stmt with the
3674    // label in it.
3675
3676    // Give the label a sub-statement.
3677    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3678
3679    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3680                               cast<CXXTryStmt>(Body)->getTryBlock() :
3681                               cast<CompoundStmt>(Body);
3682    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3683    Elements.push_back(L);
3684    Compound->setStmts(Context, &Elements[0], Elements.size());
3685  }
3686  FunctionLabelMap.clear();
3687
3688  if (!Body) return D;
3689
3690  // Verify that that gotos and switch cases don't jump into scopes illegally.
3691  if (CurFunctionNeedsScopeChecking)
3692    DiagnoseInvalidJumps(Body);
3693
3694  // C++ constructors that have function-try-blocks can't have return
3695  // statements in the handlers of that block. (C++ [except.handle]p14)
3696  // Verify this.
3697  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3698    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3699
3700  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3701    Destructor->computeBaseOrMembersToDestroy(Context);
3702  return D;
3703}
3704
3705/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3706/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3707NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3708                                          IdentifierInfo &II, Scope *S) {
3709  // Before we produce a declaration for an implicitly defined
3710  // function, see whether there was a locally-scoped declaration of
3711  // this name as a function or variable. If so, use that
3712  // (non-visible) declaration, and complain about it.
3713  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3714    = LocallyScopedExternalDecls.find(&II);
3715  if (Pos != LocallyScopedExternalDecls.end()) {
3716    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3717    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3718    return Pos->second;
3719  }
3720
3721  // Extension in C99.  Legal in C90, but warn about it.
3722  if (getLangOptions().C99)
3723    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3724  else
3725    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3726
3727  // FIXME: handle stuff like:
3728  // void foo() { extern float X(); }
3729  // void bar() { X(); }  <-- implicit decl for X in another scope.
3730
3731  // Set a Declarator for the implicit definition: int foo();
3732  const char *Dummy;
3733  DeclSpec DS;
3734  unsigned DiagID;
3735  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3736  Error = Error; // Silence warning.
3737  assert(!Error && "Error setting up implicit decl!");
3738  Declarator D(DS, Declarator::BlockContext);
3739  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3740                                             0, 0, false, SourceLocation(),
3741                                             false, 0,0,0, Loc, D),
3742                SourceLocation());
3743  D.SetIdentifier(&II, Loc);
3744
3745  // Insert this function into translation-unit scope.
3746
3747  DeclContext *PrevDC = CurContext;
3748  CurContext = Context.getTranslationUnitDecl();
3749
3750  FunctionDecl *FD =
3751 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3752  FD->setImplicit();
3753
3754  CurContext = PrevDC;
3755
3756  AddKnownFunctionAttributes(FD);
3757
3758  return FD;
3759}
3760
3761/// \brief Adds any function attributes that we know a priori based on
3762/// the declaration of this function.
3763///
3764/// These attributes can apply both to implicitly-declared builtins
3765/// (like __builtin___printf_chk) or to library-declared functions
3766/// like NSLog or printf.
3767void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3768  if (FD->isInvalidDecl())
3769    return;
3770
3771  // If this is a built-in function, map its builtin attributes to
3772  // actual attributes.
3773  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3774    // Handle printf-formatting attributes.
3775    unsigned FormatIdx;
3776    bool HasVAListArg;
3777    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3778      if (!FD->getAttr<FormatAttr>())
3779        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3780                                             HasVAListArg ? 0 : FormatIdx + 2));
3781    }
3782
3783    // Mark const if we don't care about errno and that is the only
3784    // thing preventing the function from being const. This allows
3785    // IRgen to use LLVM intrinsics for such functions.
3786    if (!getLangOptions().MathErrno &&
3787        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3788      if (!FD->getAttr<ConstAttr>())
3789        FD->addAttr(::new (Context) ConstAttr());
3790    }
3791
3792    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3793      FD->addAttr(::new (Context) NoReturnAttr());
3794  }
3795
3796  IdentifierInfo *Name = FD->getIdentifier();
3797  if (!Name)
3798    return;
3799  if ((!getLangOptions().CPlusPlus &&
3800       FD->getDeclContext()->isTranslationUnit()) ||
3801      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3802       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3803       LinkageSpecDecl::lang_c)) {
3804    // Okay: this could be a libc/libm/Objective-C function we know
3805    // about.
3806  } else
3807    return;
3808
3809  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3810    // FIXME: NSLog and NSLogv should be target specific
3811    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3812      // FIXME: We known better than our headers.
3813      const_cast<FormatAttr *>(Format)->setType("printf");
3814    } else
3815      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3816                                             Name->isStr("NSLogv") ? 0 : 2));
3817  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3818    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3819    // target-specific builtins, perhaps?
3820    if (!FD->getAttr<FormatAttr>())
3821      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3822                                             Name->isStr("vasprintf") ? 0 : 3));
3823  }
3824}
3825
3826TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3827  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3828  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3829
3830  // Scope manipulation handled by caller.
3831  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3832                                           D.getIdentifierLoc(),
3833                                           D.getIdentifier(),
3834                                           T);
3835
3836  if (TagType *TT = dyn_cast<TagType>(T)) {
3837    TagDecl *TD = TT->getDecl();
3838
3839    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3840    // keep track of the TypedefDecl.
3841    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3842      TD->setTypedefForAnonDecl(NewTD);
3843  }
3844
3845  if (D.isInvalidType())
3846    NewTD->setInvalidDecl();
3847  return NewTD;
3848}
3849
3850
3851/// \brief Determine whether a tag with a given kind is acceptable
3852/// as a redeclaration of the given tag declaration.
3853///
3854/// \returns true if the new tag kind is acceptable, false otherwise.
3855bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3856                                        TagDecl::TagKind NewTag,
3857                                        SourceLocation NewTagLoc,
3858                                        const IdentifierInfo &Name) {
3859  // C++ [dcl.type.elab]p3:
3860  //   The class-key or enum keyword present in the
3861  //   elaborated-type-specifier shall agree in kind with the
3862  //   declaration to which the name in theelaborated-type-specifier
3863  //   refers. This rule also applies to the form of
3864  //   elaborated-type-specifier that declares a class-name or
3865  //   friend class since it can be construed as referring to the
3866  //   definition of the class. Thus, in any
3867  //   elaborated-type-specifier, the enum keyword shall be used to
3868  //   refer to an enumeration (7.2), the union class-keyshall be
3869  //   used to refer to a union (clause 9), and either the class or
3870  //   struct class-key shall be used to refer to a class (clause 9)
3871  //   declared using the class or struct class-key.
3872  TagDecl::TagKind OldTag = Previous->getTagKind();
3873  if (OldTag == NewTag)
3874    return true;
3875
3876  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3877      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3878    // Warn about the struct/class tag mismatch.
3879    bool isTemplate = false;
3880    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3881      isTemplate = Record->getDescribedClassTemplate();
3882
3883    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3884      << (NewTag == TagDecl::TK_class)
3885      << isTemplate << &Name
3886      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3887                              OldTag == TagDecl::TK_class? "class" : "struct");
3888    Diag(Previous->getLocation(), diag::note_previous_use);
3889    return true;
3890  }
3891  return false;
3892}
3893
3894/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3895/// former case, Name will be non-null.  In the later case, Name will be null.
3896/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3897/// reference/declaration/definition of a tag.
3898Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3899                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3900                               IdentifierInfo *Name, SourceLocation NameLoc,
3901                               AttributeList *Attr, AccessSpecifier AS,
3902                               MultiTemplateParamsArg TemplateParameterLists,
3903                               bool &OwnedDecl) {
3904  // If this is not a definition, it must have a name.
3905  assert((Name != 0 || TUK == TUK_Definition) &&
3906         "Nameless record must be a definition!");
3907
3908  OwnedDecl = false;
3909  TagDecl::TagKind Kind;
3910  switch (TagSpec) {
3911  default: assert(0 && "Unknown tag type!");
3912  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3913  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3914  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3915  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3916  }
3917
3918  if (TUK != TUK_Reference) {
3919    if (TemplateParameterList *TemplateParams
3920          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3921                        (TemplateParameterList**)TemplateParameterLists.get(),
3922                                              TemplateParameterLists.size())) {
3923      if (TemplateParams->size() > 0) {
3924        // This is a declaration or definition of a class template (which may
3925        // be a member of another template).
3926        OwnedDecl = false;
3927        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3928                                               SS, Name, NameLoc, Attr,
3929                                               move(TemplateParameterLists),
3930                                               AS);
3931        return Result.get();
3932      } else {
3933        // FIXME: diagnose the extraneous 'template<>', once we recover
3934        // slightly better in ParseTemplate.cpp from bogus template
3935        // parameters.
3936      }
3937    }
3938  }
3939
3940  DeclContext *SearchDC = CurContext;
3941  DeclContext *DC = CurContext;
3942  NamedDecl *PrevDecl = 0;
3943
3944  bool Invalid = false;
3945
3946  if (Name && SS.isNotEmpty()) {
3947    // We have a nested-name tag ('struct foo::bar').
3948
3949    // Check for invalid 'foo::'.
3950    if (SS.isInvalid()) {
3951      Name = 0;
3952      goto CreateNewDecl;
3953    }
3954
3955    if (RequireCompleteDeclContext(SS))
3956      return DeclPtrTy::make((Decl *)0);
3957
3958    DC = computeDeclContext(SS, true);
3959    SearchDC = DC;
3960    // Look-up name inside 'foo::'.
3961    PrevDecl
3962      = dyn_cast_or_null<TagDecl>(
3963               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3964
3965    // A tag 'foo::bar' must already exist.
3966    if (PrevDecl == 0) {
3967      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3968      Name = 0;
3969      Invalid = true;
3970      goto CreateNewDecl;
3971    }
3972  } else if (Name) {
3973    // If this is a named struct, check to see if there was a previous forward
3974    // declaration or definition.
3975    // FIXME: We're looking into outer scopes here, even when we
3976    // shouldn't be. Doing so can result in ambiguities that we
3977    // shouldn't be diagnosing.
3978    LookupResult R = LookupName(S, Name, LookupTagName,
3979                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
3980    if (R.isAmbiguous()) {
3981      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3982      // FIXME: This is not best way to recover from case like:
3983      //
3984      // struct S s;
3985      //
3986      // causes needless "incomplete type" error later.
3987      Name = 0;
3988      PrevDecl = 0;
3989      Invalid = true;
3990    } else
3991      PrevDecl = R;
3992
3993    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
3994      // FIXME: This makes sure that we ignore the contexts associated
3995      // with C structs, unions, and enums when looking for a matching
3996      // tag declaration or definition. See the similar lookup tweak
3997      // in Sema::LookupName; is there a better way to deal with this?
3998      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3999        SearchDC = SearchDC->getParent();
4000    }
4001  }
4002
4003  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4004    // Maybe we will complain about the shadowed template parameter.
4005    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4006    // Just pretend that we didn't see the previous declaration.
4007    PrevDecl = 0;
4008  }
4009
4010  if (PrevDecl) {
4011    // Check whether the previous declaration is usable.
4012    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4013
4014    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4015      // If this is a use of a previous tag, or if the tag is already declared
4016      // in the same scope (so that the definition/declaration completes or
4017      // rementions the tag), reuse the decl.
4018      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4019          isDeclInScope(PrevDecl, SearchDC, S)) {
4020        // Make sure that this wasn't declared as an enum and now used as a
4021        // struct or something similar.
4022        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4023          bool SafeToContinue
4024            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4025               Kind != TagDecl::TK_enum);
4026          if (SafeToContinue)
4027            Diag(KWLoc, diag::err_use_with_wrong_tag)
4028              << Name
4029              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4030                                                  PrevTagDecl->getKindName());
4031          else
4032            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4033          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4034
4035          if (SafeToContinue)
4036            Kind = PrevTagDecl->getTagKind();
4037          else {
4038            // Recover by making this an anonymous redefinition.
4039            Name = 0;
4040            PrevDecl = 0;
4041            Invalid = true;
4042          }
4043        }
4044
4045        if (!Invalid) {
4046          // If this is a use, just return the declaration we found.
4047
4048          // FIXME: In the future, return a variant or some other clue
4049          // for the consumer of this Decl to know it doesn't own it.
4050          // For our current ASTs this shouldn't be a problem, but will
4051          // need to be changed with DeclGroups.
4052          if (TUK == TUK_Reference)
4053            return DeclPtrTy::make(PrevDecl);
4054
4055          // If this is a friend, make sure we create the new
4056          // declaration in the appropriate semantic context.
4057          if (TUK == TUK_Friend)
4058            SearchDC = PrevDecl->getDeclContext();
4059
4060          // Diagnose attempts to redefine a tag.
4061          if (TUK == TUK_Definition) {
4062            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4063              Diag(NameLoc, diag::err_redefinition) << Name;
4064              Diag(Def->getLocation(), diag::note_previous_definition);
4065              // If this is a redefinition, recover by making this
4066              // struct be anonymous, which will make any later
4067              // references get the previous definition.
4068              Name = 0;
4069              PrevDecl = 0;
4070              Invalid = true;
4071            } else {
4072              // If the type is currently being defined, complain
4073              // about a nested redefinition.
4074              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4075              if (Tag->isBeingDefined()) {
4076                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4077                Diag(PrevTagDecl->getLocation(),
4078                     diag::note_previous_definition);
4079                Name = 0;
4080                PrevDecl = 0;
4081                Invalid = true;
4082              }
4083            }
4084
4085            // Okay, this is definition of a previously declared or referenced
4086            // tag PrevDecl. We're going to create a new Decl for it.
4087          }
4088        }
4089        // If we get here we have (another) forward declaration or we
4090        // have a definition.  Just create a new decl.
4091
4092      } else {
4093        // If we get here, this is a definition of a new tag type in a nested
4094        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4095        // new decl/type.  We set PrevDecl to NULL so that the entities
4096        // have distinct types.
4097        PrevDecl = 0;
4098      }
4099      // If we get here, we're going to create a new Decl. If PrevDecl
4100      // is non-NULL, it's a definition of the tag declared by
4101      // PrevDecl. If it's NULL, we have a new definition.
4102    } else {
4103      // PrevDecl is a namespace, template, or anything else
4104      // that lives in the IDNS_Tag identifier namespace.
4105      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4106        // The tag name clashes with a namespace name, issue an error and
4107        // recover by making this tag be anonymous.
4108        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4109        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4110        Name = 0;
4111        PrevDecl = 0;
4112        Invalid = true;
4113      } else {
4114        // The existing declaration isn't relevant to us; we're in a
4115        // new scope, so clear out the previous declaration.
4116        PrevDecl = 0;
4117      }
4118    }
4119  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4120             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4121    // C++ [basic.scope.pdecl]p5:
4122    //   -- for an elaborated-type-specifier of the form
4123    //
4124    //          class-key identifier
4125    //
4126    //      if the elaborated-type-specifier is used in the
4127    //      decl-specifier-seq or parameter-declaration-clause of a
4128    //      function defined in namespace scope, the identifier is
4129    //      declared as a class-name in the namespace that contains
4130    //      the declaration; otherwise, except as a friend
4131    //      declaration, the identifier is declared in the smallest
4132    //      non-class, non-function-prototype scope that contains the
4133    //      declaration.
4134    //
4135    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4136    // C structs and unions.
4137    //
4138    // GNU C also supports this behavior as part of its incomplete
4139    // enum types extension, while GNU C++ does not.
4140    //
4141    // Find the context where we'll be declaring the tag.
4142    // FIXME: We would like to maintain the current DeclContext as the
4143    // lexical context,
4144    while (SearchDC->isRecord())
4145      SearchDC = SearchDC->getParent();
4146
4147    // Find the scope where we'll be declaring the tag.
4148    while (S->isClassScope() ||
4149           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4150           ((S->getFlags() & Scope::DeclScope) == 0) ||
4151           (S->getEntity() &&
4152            ((DeclContext *)S->getEntity())->isTransparentContext()))
4153      S = S->getParent();
4154
4155  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4156    // C++ [namespace.memdef]p3:
4157    //   If a friend declaration in a non-local class first declares a
4158    //   class or function, the friend class or function is a member of
4159    //   the innermost enclosing namespace.
4160    while (!SearchDC->isFileContext())
4161      SearchDC = SearchDC->getParent();
4162
4163    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4164    while (S->getEntity() != SearchDC)
4165      S = S->getParent();
4166  }
4167
4168CreateNewDecl:
4169
4170  // If there is an identifier, use the location of the identifier as the
4171  // location of the decl, otherwise use the location of the struct/union
4172  // keyword.
4173  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4174
4175  // Otherwise, create a new declaration. If there is a previous
4176  // declaration of the same entity, the two will be linked via
4177  // PrevDecl.
4178  TagDecl *New;
4179
4180  if (Kind == TagDecl::TK_enum) {
4181    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4182    // enum X { A, B, C } D;    D should chain to X.
4183    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4184                           cast_or_null<EnumDecl>(PrevDecl));
4185    // If this is an undefined enum, warn.
4186    if (TUK != TUK_Definition && !Invalid)  {
4187      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4188                                              : diag::ext_forward_ref_enum;
4189      Diag(Loc, DK);
4190    }
4191  } else {
4192    // struct/union/class
4193
4194    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4195    // struct X { int A; } D;    D should chain to X.
4196    if (getLangOptions().CPlusPlus)
4197      // FIXME: Look for a way to use RecordDecl for simple structs.
4198      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4199                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4200    else
4201      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4202                               cast_or_null<RecordDecl>(PrevDecl));
4203  }
4204
4205  if (Kind != TagDecl::TK_enum) {
4206    // Handle #pragma pack: if the #pragma pack stack has non-default
4207    // alignment, make up a packed attribute for this decl. These
4208    // attributes are checked when the ASTContext lays out the
4209    // structure.
4210    //
4211    // It is important for implementing the correct semantics that this
4212    // happen here (in act on tag decl). The #pragma pack stack is
4213    // maintained as a result of parser callbacks which can occur at
4214    // many points during the parsing of a struct declaration (because
4215    // the #pragma tokens are effectively skipped over during the
4216    // parsing of the struct).
4217    if (unsigned Alignment = getPragmaPackAlignment())
4218      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4219  }
4220
4221  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4222    // C++ [dcl.typedef]p3:
4223    //   [...] Similarly, in a given scope, a class or enumeration
4224    //   shall not be declared with the same name as a typedef-name
4225    //   that is declared in that scope and refers to a type other
4226    //   than the class or enumeration itself.
4227    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4228    TypedefDecl *PrevTypedef = 0;
4229    if (Lookup.getKind() == LookupResult::Found)
4230      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4231
4232    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4233        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4234          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4235      Diag(Loc, diag::err_tag_definition_of_typedef)
4236        << Context.getTypeDeclType(New)
4237        << PrevTypedef->getUnderlyingType();
4238      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4239      Invalid = true;
4240    }
4241  }
4242
4243  if (Invalid)
4244    New->setInvalidDecl();
4245
4246  if (Attr)
4247    ProcessDeclAttributeList(S, New, Attr);
4248
4249  // If we're declaring or defining a tag in function prototype scope
4250  // in C, note that this type can only be used within the function.
4251  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4252    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4253
4254  // Set the lexical context. If the tag has a C++ scope specifier, the
4255  // lexical context will be different from the semantic context.
4256  New->setLexicalDeclContext(CurContext);
4257
4258  // Set the access specifier.
4259  if (!Invalid && TUK != TUK_Friend)
4260    SetMemberAccessSpecifier(New, PrevDecl, AS);
4261
4262  if (TUK == TUK_Definition)
4263    New->startDefinition();
4264
4265  // If this has an identifier, add it to the scope stack.
4266  if (Name && TUK != TUK_Friend) {
4267    S = getNonFieldDeclScope(S);
4268    PushOnScopeChains(New, S);
4269  } else {
4270    CurContext->addDecl(New);
4271  }
4272
4273  // If this is the C FILE type, notify the AST context.
4274  if (IdentifierInfo *II = New->getIdentifier())
4275    if (!New->isInvalidDecl() &&
4276        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4277        II->isStr("FILE"))
4278      Context.setFILEDecl(New);
4279
4280  OwnedDecl = true;
4281  return DeclPtrTy::make(New);
4282}
4283
4284void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4285  AdjustDeclIfTemplate(TagD);
4286  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4287
4288  // Enter the tag context.
4289  PushDeclContext(S, Tag);
4290
4291  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4292    FieldCollector->StartClass();
4293
4294    if (Record->getIdentifier()) {
4295      // C++ [class]p2:
4296      //   [...] The class-name is also inserted into the scope of the
4297      //   class itself; this is known as the injected-class-name. For
4298      //   purposes of access checking, the injected-class-name is treated
4299      //   as if it were a public member name.
4300      CXXRecordDecl *InjectedClassName
4301        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4302                                CurContext, Record->getLocation(),
4303                                Record->getIdentifier(),
4304                                Record->getTagKeywordLoc(),
4305                                Record);
4306      InjectedClassName->setImplicit();
4307      InjectedClassName->setAccess(AS_public);
4308      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4309        InjectedClassName->setDescribedClassTemplate(Template);
4310      PushOnScopeChains(InjectedClassName, S);
4311      assert(InjectedClassName->isInjectedClassName() &&
4312             "Broken injected-class-name");
4313    }
4314  }
4315}
4316
4317void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4318                                    SourceLocation RBraceLoc) {
4319  AdjustDeclIfTemplate(TagD);
4320  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4321  Tag->setRBraceLoc(RBraceLoc);
4322
4323  if (isa<CXXRecordDecl>(Tag))
4324    FieldCollector->FinishClass();
4325
4326  // Exit this scope of this tag's definition.
4327  PopDeclContext();
4328
4329  // Notify the consumer that we've defined a tag.
4330  Consumer.HandleTagDeclDefinition(Tag);
4331}
4332
4333// Note that FieldName may be null for anonymous bitfields.
4334bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4335                          QualType FieldTy, const Expr *BitWidth,
4336                          bool *ZeroWidth) {
4337  // Default to true; that shouldn't confuse checks for emptiness
4338  if (ZeroWidth)
4339    *ZeroWidth = true;
4340
4341  // C99 6.7.2.1p4 - verify the field type.
4342  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4343  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4344    // Handle incomplete types with specific error.
4345    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4346      return true;
4347    if (FieldName)
4348      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4349        << FieldName << FieldTy << BitWidth->getSourceRange();
4350    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4351      << FieldTy << BitWidth->getSourceRange();
4352  }
4353
4354  // If the bit-width is type- or value-dependent, don't try to check
4355  // it now.
4356  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4357    return false;
4358
4359  llvm::APSInt Value;
4360  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4361    return true;
4362
4363  if (Value != 0 && ZeroWidth)
4364    *ZeroWidth = false;
4365
4366  // Zero-width bitfield is ok for anonymous field.
4367  if (Value == 0 && FieldName)
4368    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4369
4370  if (Value.isSigned() && Value.isNegative()) {
4371    if (FieldName)
4372      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4373               << FieldName << Value.toString(10);
4374    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4375      << Value.toString(10);
4376  }
4377
4378  if (!FieldTy->isDependentType()) {
4379    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4380    if (Value.getZExtValue() > TypeSize) {
4381      if (FieldName)
4382        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4383          << FieldName << (unsigned)TypeSize;
4384      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4385        << (unsigned)TypeSize;
4386    }
4387  }
4388
4389  return false;
4390}
4391
4392/// ActOnField - Each field of a struct/union/class is passed into this in order
4393/// to create a FieldDecl object for it.
4394Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4395                                 SourceLocation DeclStart,
4396                                 Declarator &D, ExprTy *BitfieldWidth) {
4397  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4398                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4399                               AS_public);
4400  return DeclPtrTy::make(Res);
4401}
4402
4403/// HandleField - Analyze a field of a C struct or a C++ data member.
4404///
4405FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4406                             SourceLocation DeclStart,
4407                             Declarator &D, Expr *BitWidth,
4408                             AccessSpecifier AS) {
4409  IdentifierInfo *II = D.getIdentifier();
4410  SourceLocation Loc = DeclStart;
4411  if (II) Loc = D.getIdentifierLoc();
4412
4413  QualType T = GetTypeForDeclarator(D, S);
4414  if (getLangOptions().CPlusPlus)
4415    CheckExtraCXXDefaultArguments(D);
4416
4417  DiagnoseFunctionSpecifiers(D);
4418
4419  if (D.getDeclSpec().isThreadSpecified())
4420    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4421
4422  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4423
4424  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4425    // Maybe we will complain about the shadowed template parameter.
4426    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4427    // Just pretend that we didn't see the previous declaration.
4428    PrevDecl = 0;
4429  }
4430
4431  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4432    PrevDecl = 0;
4433
4434  bool Mutable
4435    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4436  SourceLocation TSSL = D.getSourceRange().getBegin();
4437  FieldDecl *NewFD
4438    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4439                     AS, PrevDecl, &D);
4440  if (NewFD->isInvalidDecl() && PrevDecl) {
4441    // Don't introduce NewFD into scope; there's already something
4442    // with the same name in the same scope.
4443  } else if (II) {
4444    PushOnScopeChains(NewFD, S);
4445  } else
4446    Record->addDecl(NewFD);
4447
4448  return NewFD;
4449}
4450
4451/// \brief Build a new FieldDecl and check its well-formedness.
4452///
4453/// This routine builds a new FieldDecl given the fields name, type,
4454/// record, etc. \p PrevDecl should refer to any previous declaration
4455/// with the same name and in the same scope as the field to be
4456/// created.
4457///
4458/// \returns a new FieldDecl.
4459///
4460/// \todo The Declarator argument is a hack. It will be removed once
4461FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4462                                RecordDecl *Record, SourceLocation Loc,
4463                                bool Mutable, Expr *BitWidth,
4464                                SourceLocation TSSL,
4465                                AccessSpecifier AS, NamedDecl *PrevDecl,
4466                                Declarator *D) {
4467  IdentifierInfo *II = Name.getAsIdentifierInfo();
4468  bool InvalidDecl = false;
4469  if (D) InvalidDecl = D->isInvalidType();
4470
4471  // If we receive a broken type, recover by assuming 'int' and
4472  // marking this declaration as invalid.
4473  if (T.isNull()) {
4474    InvalidDecl = true;
4475    T = Context.IntTy;
4476  }
4477
4478  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4479  // than a variably modified type.
4480  if (T->isVariablyModifiedType()) {
4481    bool SizeIsNegative;
4482    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4483                                                           SizeIsNegative);
4484    if (!FixedTy.isNull()) {
4485      Diag(Loc, diag::warn_illegal_constant_array_size);
4486      T = FixedTy;
4487    } else {
4488      if (SizeIsNegative)
4489        Diag(Loc, diag::err_typecheck_negative_array_size);
4490      else
4491        Diag(Loc, diag::err_typecheck_field_variable_size);
4492      InvalidDecl = true;
4493    }
4494  }
4495
4496  // Fields can not have abstract class types
4497  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4498                             AbstractFieldType))
4499    InvalidDecl = true;
4500
4501  bool ZeroWidth = false;
4502  // If this is declared as a bit-field, check the bit-field.
4503  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4504    InvalidDecl = true;
4505    DeleteExpr(BitWidth);
4506    BitWidth = 0;
4507    ZeroWidth = false;
4508  }
4509
4510  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4511                                       Mutable, TSSL);
4512  if (InvalidDecl)
4513    NewFD->setInvalidDecl();
4514
4515  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4516    Diag(Loc, diag::err_duplicate_member) << II;
4517    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4518    NewFD->setInvalidDecl();
4519  }
4520
4521  if (getLangOptions().CPlusPlus) {
4522    QualType EltTy = Context.getBaseElementType(T);
4523
4524    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4525
4526    if (!T->isPODType())
4527      CXXRecord->setPOD(false);
4528    if (!ZeroWidth)
4529      CXXRecord->setEmpty(false);
4530
4531    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4532      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4533
4534      if (!RDecl->hasTrivialConstructor())
4535        CXXRecord->setHasTrivialConstructor(false);
4536      if (!RDecl->hasTrivialCopyConstructor())
4537        CXXRecord->setHasTrivialCopyConstructor(false);
4538      if (!RDecl->hasTrivialCopyAssignment())
4539        CXXRecord->setHasTrivialCopyAssignment(false);
4540      if (!RDecl->hasTrivialDestructor())
4541        CXXRecord->setHasTrivialDestructor(false);
4542
4543      // C++ 9.5p1: An object of a class with a non-trivial
4544      // constructor, a non-trivial copy constructor, a non-trivial
4545      // destructor, or a non-trivial copy assignment operator
4546      // cannot be a member of a union, nor can an array of such
4547      // objects.
4548      // TODO: C++0x alters this restriction significantly.
4549      if (Record->isUnion()) {
4550        // We check for copy constructors before constructors
4551        // because otherwise we'll never get complaints about
4552        // copy constructors.
4553
4554        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4555
4556        CXXSpecialMember member;
4557        if (!RDecl->hasTrivialCopyConstructor())
4558          member = CXXCopyConstructor;
4559        else if (!RDecl->hasTrivialConstructor())
4560          member = CXXDefaultConstructor;
4561        else if (!RDecl->hasTrivialCopyAssignment())
4562          member = CXXCopyAssignment;
4563        else if (!RDecl->hasTrivialDestructor())
4564          member = CXXDestructor;
4565        else
4566          member = invalid;
4567
4568        if (member != invalid) {
4569          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4570          DiagnoseNontrivial(RT, member);
4571          NewFD->setInvalidDecl();
4572        }
4573      }
4574    }
4575  }
4576
4577  // FIXME: We need to pass in the attributes given an AST
4578  // representation, not a parser representation.
4579  if (D)
4580    // FIXME: What to pass instead of TUScope?
4581    ProcessDeclAttributes(TUScope, NewFD, *D);
4582
4583  if (T.isObjCGCWeak())
4584    Diag(Loc, diag::warn_attribute_weak_on_field);
4585
4586  NewFD->setAccess(AS);
4587
4588  // C++ [dcl.init.aggr]p1:
4589  //   An aggregate is an array or a class (clause 9) with [...] no
4590  //   private or protected non-static data members (clause 11).
4591  // A POD must be an aggregate.
4592  if (getLangOptions().CPlusPlus &&
4593      (AS == AS_private || AS == AS_protected)) {
4594    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4595    CXXRecord->setAggregate(false);
4596    CXXRecord->setPOD(false);
4597  }
4598
4599  return NewFD;
4600}
4601
4602/// DiagnoseNontrivial - Given that a class has a non-trivial
4603/// special member, figure out why.
4604void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4605  QualType QT(T, 0U);
4606  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4607
4608  // Check whether the member was user-declared.
4609  switch (member) {
4610  case CXXDefaultConstructor:
4611    if (RD->hasUserDeclaredConstructor()) {
4612      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4613      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4614        if (!ci->isImplicitlyDefined(Context)) {
4615          SourceLocation CtorLoc = ci->getLocation();
4616          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4617          return;
4618        }
4619
4620      assert(0 && "found no user-declared constructors");
4621      return;
4622    }
4623    break;
4624
4625  case CXXCopyConstructor:
4626    if (RD->hasUserDeclaredCopyConstructor()) {
4627      SourceLocation CtorLoc =
4628        RD->getCopyConstructor(Context, 0)->getLocation();
4629      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4630      return;
4631    }
4632    break;
4633
4634  case CXXCopyAssignment:
4635    if (RD->hasUserDeclaredCopyAssignment()) {
4636      // FIXME: this should use the location of the copy
4637      // assignment, not the type.
4638      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4639      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4640      return;
4641    }
4642    break;
4643
4644  case CXXDestructor:
4645    if (RD->hasUserDeclaredDestructor()) {
4646      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4647      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4648      return;
4649    }
4650    break;
4651  }
4652
4653  typedef CXXRecordDecl::base_class_iterator base_iter;
4654
4655  // Virtual bases and members inhibit trivial copying/construction,
4656  // but not trivial destruction.
4657  if (member != CXXDestructor) {
4658    // Check for virtual bases.  vbases includes indirect virtual bases,
4659    // so we just iterate through the direct bases.
4660    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4661      if (bi->isVirtual()) {
4662        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4663        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4664        return;
4665      }
4666
4667    // Check for virtual methods.
4668    typedef CXXRecordDecl::method_iterator meth_iter;
4669    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4670         ++mi) {
4671      if (mi->isVirtual()) {
4672        SourceLocation MLoc = mi->getSourceRange().getBegin();
4673        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4674        return;
4675      }
4676    }
4677  }
4678
4679  bool (CXXRecordDecl::*hasTrivial)() const;
4680  switch (member) {
4681  case CXXDefaultConstructor:
4682    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4683  case CXXCopyConstructor:
4684    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4685  case CXXCopyAssignment:
4686    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4687  case CXXDestructor:
4688    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4689  default:
4690    assert(0 && "unexpected special member"); return;
4691  }
4692
4693  // Check for nontrivial bases (and recurse).
4694  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4695    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4696    assert(BaseRT);
4697    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4698    if (!(BaseRecTy->*hasTrivial)()) {
4699      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4700      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4701      DiagnoseNontrivial(BaseRT, member);
4702      return;
4703    }
4704  }
4705
4706  // Check for nontrivial members (and recurse).
4707  typedef RecordDecl::field_iterator field_iter;
4708  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4709       ++fi) {
4710    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4711    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4712      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4713
4714      if (!(EltRD->*hasTrivial)()) {
4715        SourceLocation FLoc = (*fi)->getLocation();
4716        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4717        DiagnoseNontrivial(EltRT, member);
4718        return;
4719      }
4720    }
4721  }
4722
4723  assert(0 && "found no explanation for non-trivial member");
4724}
4725
4726/// TranslateIvarVisibility - Translate visibility from a token ID to an
4727///  AST enum value.
4728static ObjCIvarDecl::AccessControl
4729TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4730  switch (ivarVisibility) {
4731  default: assert(0 && "Unknown visitibility kind");
4732  case tok::objc_private: return ObjCIvarDecl::Private;
4733  case tok::objc_public: return ObjCIvarDecl::Public;
4734  case tok::objc_protected: return ObjCIvarDecl::Protected;
4735  case tok::objc_package: return ObjCIvarDecl::Package;
4736  }
4737}
4738
4739/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4740/// in order to create an IvarDecl object for it.
4741Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4742                                SourceLocation DeclStart,
4743                                DeclPtrTy IntfDecl,
4744                                Declarator &D, ExprTy *BitfieldWidth,
4745                                tok::ObjCKeywordKind Visibility) {
4746
4747  IdentifierInfo *II = D.getIdentifier();
4748  Expr *BitWidth = (Expr*)BitfieldWidth;
4749  SourceLocation Loc = DeclStart;
4750  if (II) Loc = D.getIdentifierLoc();
4751
4752  // FIXME: Unnamed fields can be handled in various different ways, for
4753  // example, unnamed unions inject all members into the struct namespace!
4754
4755  QualType T = GetTypeForDeclarator(D, S);
4756
4757  if (BitWidth) {
4758    // 6.7.2.1p3, 6.7.2.1p4
4759    if (VerifyBitField(Loc, II, T, BitWidth)) {
4760      D.setInvalidType();
4761      DeleteExpr(BitWidth);
4762      BitWidth = 0;
4763    }
4764  } else {
4765    // Not a bitfield.
4766
4767    // validate II.
4768
4769  }
4770
4771  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4772  // than a variably modified type.
4773  if (T->isVariablyModifiedType()) {
4774    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4775    D.setInvalidType();
4776  }
4777
4778  // Get the visibility (access control) for this ivar.
4779  ObjCIvarDecl::AccessControl ac =
4780    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4781                                        : ObjCIvarDecl::None;
4782  // Must set ivar's DeclContext to its enclosing interface.
4783  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4784  DeclContext *EnclosingContext;
4785  if (ObjCImplementationDecl *IMPDecl =
4786      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4787    // Case of ivar declared in an implementation. Context is that of its class.
4788    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4789    assert(IDecl && "No class- ActOnIvar");
4790    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4791  } else
4792    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4793  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4794
4795  // Construct the decl.
4796  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4797                                             EnclosingContext, Loc, II, T,ac,
4798                                             (Expr *)BitfieldWidth);
4799
4800  if (II) {
4801    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4802    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4803        && !isa<TagDecl>(PrevDecl)) {
4804      Diag(Loc, diag::err_duplicate_member) << II;
4805      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4806      NewID->setInvalidDecl();
4807    }
4808  }
4809
4810  // Process attributes attached to the ivar.
4811  ProcessDeclAttributes(S, NewID, D);
4812
4813  if (D.isInvalidType())
4814    NewID->setInvalidDecl();
4815
4816  if (II) {
4817    // FIXME: When interfaces are DeclContexts, we'll need to add
4818    // these to the interface.
4819    S->AddDecl(DeclPtrTy::make(NewID));
4820    IdResolver.AddDecl(NewID);
4821  }
4822
4823  return DeclPtrTy::make(NewID);
4824}
4825
4826void Sema::ActOnFields(Scope* S,
4827                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4828                       DeclPtrTy *Fields, unsigned NumFields,
4829                       SourceLocation LBrac, SourceLocation RBrac,
4830                       AttributeList *Attr) {
4831  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4832  assert(EnclosingDecl && "missing record or interface decl");
4833
4834  // If the decl this is being inserted into is invalid, then it may be a
4835  // redeclaration or some other bogus case.  Don't try to add fields to it.
4836  if (EnclosingDecl->isInvalidDecl()) {
4837    // FIXME: Deallocate fields?
4838    return;
4839  }
4840
4841
4842  // Verify that all the fields are okay.
4843  unsigned NumNamedMembers = 0;
4844  llvm::SmallVector<FieldDecl*, 32> RecFields;
4845
4846  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4847  for (unsigned i = 0; i != NumFields; ++i) {
4848    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4849
4850    // Get the type for the field.
4851    Type *FDTy = FD->getType().getTypePtr();
4852
4853    if (!FD->isAnonymousStructOrUnion()) {
4854      // Remember all fields written by the user.
4855      RecFields.push_back(FD);
4856    }
4857
4858    // If the field is already invalid for some reason, don't emit more
4859    // diagnostics about it.
4860    if (FD->isInvalidDecl())
4861      continue;
4862
4863    // C99 6.7.2.1p2:
4864    //   A structure or union shall not contain a member with
4865    //   incomplete or function type (hence, a structure shall not
4866    //   contain an instance of itself, but may contain a pointer to
4867    //   an instance of itself), except that the last member of a
4868    //   structure with more than one named member may have incomplete
4869    //   array type; such a structure (and any union containing,
4870    //   possibly recursively, a member that is such a structure)
4871    //   shall not be a member of a structure or an element of an
4872    //   array.
4873    if (FDTy->isFunctionType()) {
4874      // Field declared as a function.
4875      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4876        << FD->getDeclName();
4877      FD->setInvalidDecl();
4878      EnclosingDecl->setInvalidDecl();
4879      continue;
4880    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4881               Record && Record->isStruct()) {
4882      // Flexible array member.
4883      if (NumNamedMembers < 1) {
4884        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4885          << FD->getDeclName();
4886        FD->setInvalidDecl();
4887        EnclosingDecl->setInvalidDecl();
4888        continue;
4889      }
4890      // Okay, we have a legal flexible array member at the end of the struct.
4891      if (Record)
4892        Record->setHasFlexibleArrayMember(true);
4893    } else if (!FDTy->isDependentType() &&
4894               RequireCompleteType(FD->getLocation(), FD->getType(),
4895                                   diag::err_field_incomplete)) {
4896      // Incomplete type
4897      FD->setInvalidDecl();
4898      EnclosingDecl->setInvalidDecl();
4899      continue;
4900    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4901      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4902        // If this is a member of a union, then entire union becomes "flexible".
4903        if (Record && Record->isUnion()) {
4904          Record->setHasFlexibleArrayMember(true);
4905        } else {
4906          // If this is a struct/class and this is not the last element, reject
4907          // it.  Note that GCC supports variable sized arrays in the middle of
4908          // structures.
4909          if (i != NumFields-1)
4910            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4911              << FD->getDeclName() << FD->getType();
4912          else {
4913            // We support flexible arrays at the end of structs in
4914            // other structs as an extension.
4915            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4916              << FD->getDeclName();
4917            if (Record)
4918              Record->setHasFlexibleArrayMember(true);
4919          }
4920        }
4921      }
4922      if (Record && FDTTy->getDecl()->hasObjectMember())
4923        Record->setHasObjectMember(true);
4924    } else if (FDTy->isObjCInterfaceType()) {
4925      /// A field cannot be an Objective-c object
4926      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4927      FD->setInvalidDecl();
4928      EnclosingDecl->setInvalidDecl();
4929      continue;
4930    } else if (getLangOptions().ObjC1 &&
4931               getLangOptions().getGCMode() != LangOptions::NonGC &&
4932               Record &&
4933               (FD->getType()->isObjCObjectPointerType() ||
4934                FD->getType().isObjCGCStrong()))
4935      Record->setHasObjectMember(true);
4936    // Keep track of the number of named members.
4937    if (FD->getIdentifier())
4938      ++NumNamedMembers;
4939  }
4940
4941  // Okay, we successfully defined 'Record'.
4942  if (Record) {
4943    Record->completeDefinition(Context);
4944  } else {
4945    ObjCIvarDecl **ClsFields =
4946      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4947    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4948      ID->setIVarList(ClsFields, RecFields.size(), Context);
4949      ID->setLocEnd(RBrac);
4950      // Add ivar's to class's DeclContext.
4951      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4952        ClsFields[i]->setLexicalDeclContext(ID);
4953        ID->addDecl(ClsFields[i]);
4954      }
4955      // Must enforce the rule that ivars in the base classes may not be
4956      // duplicates.
4957      if (ID->getSuperClass()) {
4958        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4959             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4960          ObjCIvarDecl* Ivar = (*IVI);
4961
4962          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4963            ObjCIvarDecl* prevIvar =
4964              ID->getSuperClass()->lookupInstanceVariable(II);
4965            if (prevIvar) {
4966              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4967              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4968            }
4969          }
4970        }
4971      }
4972    } else if (ObjCImplementationDecl *IMPDecl =
4973                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4974      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4975      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4976        // Ivar declared in @implementation never belongs to the implementation.
4977        // Only it is in implementation's lexical context.
4978        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4979      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4980    }
4981  }
4982
4983  if (Attr)
4984    ProcessDeclAttributeList(S, Record, Attr);
4985}
4986
4987EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4988                                          EnumConstantDecl *LastEnumConst,
4989                                          SourceLocation IdLoc,
4990                                          IdentifierInfo *Id,
4991                                          ExprArg val) {
4992  Expr *Val = (Expr *)val.get();
4993
4994  llvm::APSInt EnumVal(32);
4995  QualType EltTy;
4996  if (Val && !Val->isTypeDependent()) {
4997    // Make sure to promote the operand type to int.
4998    UsualUnaryConversions(Val);
4999    if (Val != val.get()) {
5000      val.release();
5001      val = Val;
5002    }
5003
5004    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5005    SourceLocation ExpLoc;
5006    if (!Val->isValueDependent() &&
5007        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5008      Val = 0;
5009    } else {
5010      EltTy = Val->getType();
5011    }
5012  }
5013
5014  if (!Val) {
5015    if (LastEnumConst) {
5016      // Assign the last value + 1.
5017      EnumVal = LastEnumConst->getInitVal();
5018      ++EnumVal;
5019
5020      // Check for overflow on increment.
5021      if (EnumVal < LastEnumConst->getInitVal())
5022        Diag(IdLoc, diag::warn_enum_value_overflow);
5023
5024      EltTy = LastEnumConst->getType();
5025    } else {
5026      // First value, set to zero.
5027      EltTy = Context.IntTy;
5028      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5029    }
5030  }
5031
5032  val.release();
5033  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5034                                  Val, EnumVal);
5035}
5036
5037
5038Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5039                                        DeclPtrTy lastEnumConst,
5040                                        SourceLocation IdLoc,
5041                                        IdentifierInfo *Id,
5042                                        SourceLocation EqualLoc, ExprTy *val) {
5043  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5044  EnumConstantDecl *LastEnumConst =
5045    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5046  Expr *Val = static_cast<Expr*>(val);
5047
5048  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5049  // we find one that is.
5050  S = getNonFieldDeclScope(S);
5051
5052  // Verify that there isn't already something declared with this name in this
5053  // scope.
5054  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5055  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5056    // Maybe we will complain about the shadowed template parameter.
5057    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5058    // Just pretend that we didn't see the previous declaration.
5059    PrevDecl = 0;
5060  }
5061
5062  if (PrevDecl) {
5063    // When in C++, we may get a TagDecl with the same name; in this case the
5064    // enum constant will 'hide' the tag.
5065    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5066           "Received TagDecl when not in C++!");
5067    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5068      if (isa<EnumConstantDecl>(PrevDecl))
5069        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5070      else
5071        Diag(IdLoc, diag::err_redefinition) << Id;
5072      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5073      if (Val) Val->Destroy(Context);
5074      return DeclPtrTy();
5075    }
5076  }
5077
5078  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5079                                            IdLoc, Id, Owned(Val));
5080
5081  // Register this decl in the current scope stack.
5082  if (New)
5083    PushOnScopeChains(New, S);
5084
5085  return DeclPtrTy::make(New);
5086}
5087
5088void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5089                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5090                         DeclPtrTy *Elements, unsigned NumElements,
5091                         Scope *S, AttributeList *Attr) {
5092  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5093  QualType EnumType = Context.getTypeDeclType(Enum);
5094
5095  if (Attr)
5096    ProcessDeclAttributeList(S, Enum, Attr);
5097
5098  // TODO: If the result value doesn't fit in an int, it must be a long or long
5099  // long value.  ISO C does not support this, but GCC does as an extension,
5100  // emit a warning.
5101  unsigned IntWidth = Context.Target.getIntWidth();
5102  unsigned CharWidth = Context.Target.getCharWidth();
5103  unsigned ShortWidth = Context.Target.getShortWidth();
5104
5105  // Verify that all the values are okay, compute the size of the values, and
5106  // reverse the list.
5107  unsigned NumNegativeBits = 0;
5108  unsigned NumPositiveBits = 0;
5109
5110  // Keep track of whether all elements have type int.
5111  bool AllElementsInt = true;
5112
5113  for (unsigned i = 0; i != NumElements; ++i) {
5114    EnumConstantDecl *ECD =
5115      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5116    if (!ECD) continue;  // Already issued a diagnostic.
5117
5118    // If the enum value doesn't fit in an int, emit an extension warning.
5119    const llvm::APSInt &InitVal = ECD->getInitVal();
5120    assert(InitVal.getBitWidth() >= IntWidth &&
5121           "Should have promoted value to int");
5122    if (InitVal.getBitWidth() > IntWidth) {
5123      llvm::APSInt V(InitVal);
5124      V.trunc(IntWidth);
5125      V.extend(InitVal.getBitWidth());
5126      if (V != InitVal)
5127        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5128          << InitVal.toString(10);
5129    }
5130
5131    // Keep track of the size of positive and negative values.
5132    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5133      NumPositiveBits = std::max(NumPositiveBits,
5134                                 (unsigned)InitVal.getActiveBits());
5135    else
5136      NumNegativeBits = std::max(NumNegativeBits,
5137                                 (unsigned)InitVal.getMinSignedBits());
5138
5139    // Keep track of whether every enum element has type int (very commmon).
5140    if (AllElementsInt)
5141      AllElementsInt = ECD->getType() == Context.IntTy;
5142  }
5143
5144  // Figure out the type that should be used for this enum.
5145  // FIXME: Support -fshort-enums.
5146  QualType BestType;
5147  unsigned BestWidth;
5148
5149  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5150
5151  if (NumNegativeBits) {
5152    // If there is a negative value, figure out the smallest integer type (of
5153    // int/long/longlong) that fits.
5154    // If it's packed, check also if it fits a char or a short.
5155    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5156        BestType = Context.SignedCharTy;
5157        BestWidth = CharWidth;
5158    } else if (Packed && NumNegativeBits <= ShortWidth &&
5159               NumPositiveBits < ShortWidth) {
5160        BestType = Context.ShortTy;
5161        BestWidth = ShortWidth;
5162    }
5163    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5164      BestType = Context.IntTy;
5165      BestWidth = IntWidth;
5166    } else {
5167      BestWidth = Context.Target.getLongWidth();
5168
5169      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5170        BestType = Context.LongTy;
5171      else {
5172        BestWidth = Context.Target.getLongLongWidth();
5173
5174        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5175          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5176        BestType = Context.LongLongTy;
5177      }
5178    }
5179  } else {
5180    // If there is no negative value, figure out which of uint, ulong, ulonglong
5181    // fits.
5182    // If it's packed, check also if it fits a char or a short.
5183    if (Packed && NumPositiveBits <= CharWidth) {
5184        BestType = Context.UnsignedCharTy;
5185        BestWidth = CharWidth;
5186    } else if (Packed && NumPositiveBits <= ShortWidth) {
5187        BestType = Context.UnsignedShortTy;
5188        BestWidth = ShortWidth;
5189    }
5190    else if (NumPositiveBits <= IntWidth) {
5191      BestType = Context.UnsignedIntTy;
5192      BestWidth = IntWidth;
5193    } else if (NumPositiveBits <=
5194               (BestWidth = Context.Target.getLongWidth())) {
5195      BestType = Context.UnsignedLongTy;
5196    } else {
5197      BestWidth = Context.Target.getLongLongWidth();
5198      assert(NumPositiveBits <= BestWidth &&
5199             "How could an initializer get larger than ULL?");
5200      BestType = Context.UnsignedLongLongTy;
5201    }
5202  }
5203
5204  // Loop over all of the enumerator constants, changing their types to match
5205  // the type of the enum if needed.
5206  for (unsigned i = 0; i != NumElements; ++i) {
5207    EnumConstantDecl *ECD =
5208      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5209    if (!ECD) continue;  // Already issued a diagnostic.
5210
5211    // Standard C says the enumerators have int type, but we allow, as an
5212    // extension, the enumerators to be larger than int size.  If each
5213    // enumerator value fits in an int, type it as an int, otherwise type it the
5214    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5215    // that X has type 'int', not 'unsigned'.
5216    if (ECD->getType() == Context.IntTy) {
5217      // Make sure the init value is signed.
5218      llvm::APSInt IV = ECD->getInitVal();
5219      IV.setIsSigned(true);
5220      ECD->setInitVal(IV);
5221
5222      if (getLangOptions().CPlusPlus)
5223        // C++ [dcl.enum]p4: Following the closing brace of an
5224        // enum-specifier, each enumerator has the type of its
5225        // enumeration.
5226        ECD->setType(EnumType);
5227      continue;  // Already int type.
5228    }
5229
5230    // Determine whether the value fits into an int.
5231    llvm::APSInt InitVal = ECD->getInitVal();
5232    bool FitsInInt;
5233    if (InitVal.isUnsigned() || !InitVal.isNegative())
5234      FitsInInt = InitVal.getActiveBits() < IntWidth;
5235    else
5236      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5237
5238    // If it fits into an integer type, force it.  Otherwise force it to match
5239    // the enum decl type.
5240    QualType NewTy;
5241    unsigned NewWidth;
5242    bool NewSign;
5243    if (FitsInInt) {
5244      NewTy = Context.IntTy;
5245      NewWidth = IntWidth;
5246      NewSign = true;
5247    } else if (ECD->getType() == BestType) {
5248      // Already the right type!
5249      if (getLangOptions().CPlusPlus)
5250        // C++ [dcl.enum]p4: Following the closing brace of an
5251        // enum-specifier, each enumerator has the type of its
5252        // enumeration.
5253        ECD->setType(EnumType);
5254      continue;
5255    } else {
5256      NewTy = BestType;
5257      NewWidth = BestWidth;
5258      NewSign = BestType->isSignedIntegerType();
5259    }
5260
5261    // Adjust the APSInt value.
5262    InitVal.extOrTrunc(NewWidth);
5263    InitVal.setIsSigned(NewSign);
5264    ECD->setInitVal(InitVal);
5265
5266    // Adjust the Expr initializer and type.
5267    if (ECD->getInitExpr())
5268      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5269                                                      CastExpr::CK_Unknown,
5270                                                      ECD->getInitExpr(),
5271                                                      /*isLvalue=*/false));
5272    if (getLangOptions().CPlusPlus)
5273      // C++ [dcl.enum]p4: Following the closing brace of an
5274      // enum-specifier, each enumerator has the type of its
5275      // enumeration.
5276      ECD->setType(EnumType);
5277    else
5278      ECD->setType(NewTy);
5279  }
5280
5281  Enum->completeDefinition(Context, BestType);
5282}
5283
5284Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5285                                            ExprArg expr) {
5286  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5287
5288  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5289                                                   Loc, AsmString);
5290  CurContext->addDecl(New);
5291  return DeclPtrTy::make(New);
5292}
5293
5294void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5295                             SourceLocation PragmaLoc,
5296                             SourceLocation NameLoc) {
5297  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5298
5299  if (PrevDecl) {
5300    PrevDecl->addAttr(::new (Context) WeakAttr());
5301  } else {
5302    (void)WeakUndeclaredIdentifiers.insert(
5303      std::pair<IdentifierInfo*,WeakInfo>
5304        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5305  }
5306}
5307
5308void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5309                                IdentifierInfo* AliasName,
5310                                SourceLocation PragmaLoc,
5311                                SourceLocation NameLoc,
5312                                SourceLocation AliasNameLoc) {
5313  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5314  WeakInfo W = WeakInfo(Name, NameLoc);
5315
5316  if (PrevDecl) {
5317    if (!PrevDecl->hasAttr<AliasAttr>())
5318      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5319        DeclApplyPragmaWeak(TUScope, ND, W);
5320  } else {
5321    (void)WeakUndeclaredIdentifiers.insert(
5322      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5323  }
5324}
5325