SemaDecl.cpp revision 1dfa6e15cba39f27a438d63837435596e58af1c1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Basic/SourceManager.h"
23// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Lex/HeaderSearch.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include <algorithm>
29#include <functional>
30
31using namespace clang;
32
33Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, Scope *S,
34                                const CXXScopeSpec *SS) {
35  Decl *IIDecl = 0;
36  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false);
37  switch (Result.getKind()) {
38    case LookupResult::NotFound:
39    case LookupResult::FoundOverloaded:
40    case LookupResult::AmbiguousBaseSubobjectTypes:
41    case LookupResult::AmbiguousBaseSubobjects:
42      // FIXME: In the event of an ambiguous lookup, we could visit all of
43      // the entities found to determine whether they are all types. This
44      // might provide better diagnostics.
45      return 0;
46    case LookupResult::Found:
47      IIDecl = Result.getAsDecl();
48      break;
49  }
50
51  if (IIDecl) {
52    if (isa<TypedefDecl>(IIDecl) ||
53        isa<ObjCInterfaceDecl>(IIDecl) ||
54        isa<TagDecl>(IIDecl) ||
55        isa<TemplateTypeParmDecl>(IIDecl))
56      return IIDecl;
57  }
58  return 0;
59}
60
61DeclContext *Sema::getContainingDC(DeclContext *DC) {
62  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
63    // A C++ out-of-line method will return to the file declaration context.
64    if (MD->isOutOfLineDefinition())
65      return MD->getLexicalDeclContext();
66
67    // A C++ inline method is parsed *after* the topmost class it was declared in
68    // is fully parsed (it's "complete").
69    // The parsing of a C++ inline method happens at the declaration context of
70    // the topmost (non-nested) class it is lexically declared in.
71    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
72    DC = MD->getParent();
73    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
74      DC = RD;
75
76    // Return the declaration context of the topmost class the inline method is
77    // declared in.
78    return DC;
79  }
80
81  if (isa<ObjCMethodDecl>(DC))
82    return Context.getTranslationUnitDecl();
83
84  if (Decl *D = dyn_cast<Decl>(DC))
85    return D->getLexicalDeclContext();
86
87  return DC->getLexicalParent();
88}
89
90void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
91  assert(getContainingDC(DC) == CurContext &&
92      "The next DeclContext should be lexically contained in the current one.");
93  CurContext = DC;
94  S->setEntity(DC);
95}
96
97void Sema::PopDeclContext() {
98  assert(CurContext && "DeclContext imbalance!");
99
100  CurContext = getContainingDC(CurContext);
101}
102
103/// Add this decl to the scope shadowed decl chains.
104void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
105  // Move up the scope chain until we find the nearest enclosing
106  // non-transparent context. The declaration will be introduced into this
107  // scope.
108  while (S->getEntity() &&
109         ((DeclContext *)S->getEntity())->isTransparentContext())
110    S = S->getParent();
111
112  S->AddDecl(D);
113
114  // Add scoped declarations into their context, so that they can be
115  // found later. Declarations without a context won't be inserted
116  // into any context.
117  CurContext->addDecl(D);
118
119  // C++ [basic.scope]p4:
120  //   -- exactly one declaration shall declare a class name or
121  //   enumeration name that is not a typedef name and the other
122  //   declarations shall all refer to the same object or
123  //   enumerator, or all refer to functions and function templates;
124  //   in this case the class name or enumeration name is hidden.
125  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
126    // We are pushing the name of a tag (enum or class).
127    if (CurContext->getLookupContext()
128          == TD->getDeclContext()->getLookupContext()) {
129      // We're pushing the tag into the current context, which might
130      // require some reshuffling in the identifier resolver.
131      IdentifierResolver::iterator
132        I = IdResolver.begin(TD->getDeclName()),
133        IEnd = IdResolver.end();
134      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
135        NamedDecl *PrevDecl = *I;
136        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
137             PrevDecl = *I, ++I) {
138          if (TD->declarationReplaces(*I)) {
139            // This is a redeclaration. Remove it from the chain and
140            // break out, so that we'll add in the shadowed
141            // declaration.
142            S->RemoveDecl(*I);
143            if (PrevDecl == *I) {
144              IdResolver.RemoveDecl(*I);
145              IdResolver.AddDecl(TD);
146              return;
147            } else {
148              IdResolver.RemoveDecl(*I);
149              break;
150            }
151          }
152        }
153
154        // There is already a declaration with the same name in the same
155        // scope, which is not a tag declaration. It must be found
156        // before we find the new declaration, so insert the new
157        // declaration at the end of the chain.
158        IdResolver.AddShadowedDecl(TD, PrevDecl);
159
160        return;
161      }
162    }
163  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
164    // We are pushing the name of a function, which might be an
165    // overloaded name.
166    FunctionDecl *FD = cast<FunctionDecl>(D);
167    IdentifierResolver::iterator Redecl
168      = std::find_if(IdResolver.begin(FD->getDeclName()),
169                     IdResolver.end(),
170                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
171                                  FD));
172    if (Redecl != IdResolver.end()) {
173      // There is already a declaration of a function on our
174      // IdResolver chain. Replace it with this declaration.
175      S->RemoveDecl(*Redecl);
176      IdResolver.RemoveDecl(*Redecl);
177    }
178  }
179
180  IdResolver.AddDecl(D);
181}
182
183void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
184  if (S->decl_empty()) return;
185  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
186	 "Scope shouldn't contain decls!");
187
188  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
189       I != E; ++I) {
190    Decl *TmpD = static_cast<Decl*>(*I);
191    assert(TmpD && "This decl didn't get pushed??");
192
193    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
194    NamedDecl *D = cast<NamedDecl>(TmpD);
195
196    if (!D->getDeclName()) continue;
197
198    // Remove this name from our lexical scope.
199    IdResolver.RemoveDecl(D);
200  }
201}
202
203/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
204/// return 0 if one not found.
205ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
206  // The third "scope" argument is 0 since we aren't enabling lazy built-in
207  // creation from this context.
208  Decl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
209
210  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
211}
212
213/// getNonFieldDeclScope - Retrieves the innermost scope, starting
214/// from S, where a non-field would be declared. This routine copes
215/// with the difference between C and C++ scoping rules in structs and
216/// unions. For example, the following code is well-formed in C but
217/// ill-formed in C++:
218/// @code
219/// struct S6 {
220///   enum { BAR } e;
221/// };
222///
223/// void test_S6() {
224///   struct S6 a;
225///   a.e = BAR;
226/// }
227/// @endcode
228/// For the declaration of BAR, this routine will return a different
229/// scope. The scope S will be the scope of the unnamed enumeration
230/// within S6. In C++, this routine will return the scope associated
231/// with S6, because the enumeration's scope is a transparent
232/// context but structures can contain non-field names. In C, this
233/// routine will return the translation unit scope, since the
234/// enumeration's scope is a transparent context and structures cannot
235/// contain non-field names.
236Scope *Sema::getNonFieldDeclScope(Scope *S) {
237  while (((S->getFlags() & Scope::DeclScope) == 0) ||
238         (S->getEntity() &&
239          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
240         (S->isClassScope() && !getLangOptions().CPlusPlus))
241    S = S->getParent();
242  return S;
243}
244
245void Sema::InitBuiltinVaListType() {
246  if (!Context.getBuiltinVaListType().isNull())
247    return;
248
249  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
250  Decl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
251  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
252  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
253}
254
255/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
256/// lazily create a decl for it.
257NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
258                                     Scope *S) {
259  Builtin::ID BID = (Builtin::ID)bid;
260
261  if (Context.BuiltinInfo.hasVAListUse(BID))
262    InitBuiltinVaListType();
263
264  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
265  FunctionDecl *New = FunctionDecl::Create(Context,
266                                           Context.getTranslationUnitDecl(),
267                                           SourceLocation(), II, R,
268                                           FunctionDecl::Extern, false);
269
270  // Create Decl objects for each parameter, adding them to the
271  // FunctionDecl.
272  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
273    llvm::SmallVector<ParmVarDecl*, 16> Params;
274    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
275      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
276                                           FT->getArgType(i), VarDecl::None, 0));
277    New->setParams(Context, &Params[0], Params.size());
278  }
279
280
281
282  // TUScope is the translation-unit scope to insert this function into.
283  // FIXME: This is hideous. We need to teach PushOnScopeChains to
284  // relate Scopes to DeclContexts, and probably eliminate CurContext
285  // entirely, but we're not there yet.
286  DeclContext *SavedContext = CurContext;
287  CurContext = Context.getTranslationUnitDecl();
288  PushOnScopeChains(New, TUScope);
289  CurContext = SavedContext;
290  return New;
291}
292
293/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
294/// everything from the standard library is defined.
295NamespaceDecl *Sema::GetStdNamespace() {
296  if (!StdNamespace) {
297    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
298    DeclContext *Global = Context.getTranslationUnitDecl();
299    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
300    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
301  }
302  return StdNamespace;
303}
304
305/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
306/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
307/// situation, merging decls or emitting diagnostics as appropriate.
308///
309TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
310  bool objc_types = false;
311  // Allow multiple definitions for ObjC built-in typedefs.
312  // FIXME: Verify the underlying types are equivalent!
313  if (getLangOptions().ObjC1) {
314    const IdentifierInfo *TypeID = New->getIdentifier();
315    switch (TypeID->getLength()) {
316    default: break;
317    case 2:
318      if (!TypeID->isStr("id"))
319        break;
320      Context.setObjCIdType(New);
321      objc_types = true;
322      break;
323    case 5:
324      if (!TypeID->isStr("Class"))
325        break;
326      Context.setObjCClassType(New);
327      objc_types = true;
328      return New;
329    case 3:
330      if (!TypeID->isStr("SEL"))
331        break;
332      Context.setObjCSelType(New);
333      objc_types = true;
334      return New;
335    case 8:
336      if (!TypeID->isStr("Protocol"))
337        break;
338      Context.setObjCProtoType(New->getUnderlyingType());
339      objc_types = true;
340      return New;
341    }
342    // Fall through - the typedef name was not a builtin type.
343  }
344  // Verify the old decl was also a type.
345  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
346  if (!Old) {
347    Diag(New->getLocation(), diag::err_redefinition_different_kind)
348      << New->getDeclName();
349    if (!objc_types)
350      Diag(OldD->getLocation(), diag::note_previous_definition);
351    return New;
352  }
353
354  // Determine the "old" type we'll use for checking and diagnostics.
355  QualType OldType;
356  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
357    OldType = OldTypedef->getUnderlyingType();
358  else
359    OldType = Context.getTypeDeclType(Old);
360
361  // If the typedef types are not identical, reject them in all languages and
362  // with any extensions enabled.
363
364  if (OldType != New->getUnderlyingType() &&
365      Context.getCanonicalType(OldType) !=
366      Context.getCanonicalType(New->getUnderlyingType())) {
367    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
368      << New->getUnderlyingType() << OldType;
369    if (!objc_types)
370      Diag(Old->getLocation(), diag::note_previous_definition);
371    return New;
372  }
373  if (objc_types) return New;
374  if (getLangOptions().Microsoft) return New;
375
376  // C++ [dcl.typedef]p2:
377  //   In a given non-class scope, a typedef specifier can be used to
378  //   redefine the name of any type declared in that scope to refer
379  //   to the type to which it already refers.
380  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
381    return New;
382
383  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
384  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
385  // *either* declaration is in a system header. The code below implements
386  // this adhoc compatibility rule. FIXME: The following code will not
387  // work properly when compiling ".i" files (containing preprocessed output).
388  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
389    SourceManager &SrcMgr = Context.getSourceManager();
390    if (SrcMgr.isInSystemHeader(Old->getLocation()))
391      return New;
392    if (SrcMgr.isInSystemHeader(New->getLocation()))
393      return New;
394  }
395
396  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
397  Diag(Old->getLocation(), diag::note_previous_definition);
398  return New;
399}
400
401/// DeclhasAttr - returns true if decl Declaration already has the target
402/// attribute.
403static bool DeclHasAttr(const Decl *decl, const Attr *target) {
404  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
405    if (attr->getKind() == target->getKind())
406      return true;
407
408  return false;
409}
410
411/// MergeAttributes - append attributes from the Old decl to the New one.
412static void MergeAttributes(Decl *New, Decl *Old) {
413  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
414
415  while (attr) {
416     tmp = attr;
417     attr = attr->getNext();
418
419    if (!DeclHasAttr(New, tmp)) {
420       tmp->setInherited(true);
421       New->addAttr(tmp);
422    } else {
423       tmp->setNext(0);
424       delete(tmp);
425    }
426  }
427
428  Old->invalidateAttrs();
429}
430
431/// MergeFunctionDecl - We just parsed a function 'New' from
432/// declarator D which has the same name and scope as a previous
433/// declaration 'Old'.  Figure out how to resolve this situation,
434/// merging decls or emitting diagnostics as appropriate.
435/// Redeclaration will be set true if this New is a redeclaration OldD.
436///
437/// In C++, New and Old must be declarations that are not
438/// overloaded. Use IsOverload to determine whether New and Old are
439/// overloaded, and to select the Old declaration that New should be
440/// merged with.
441FunctionDecl *
442Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
443  assert(!isa<OverloadedFunctionDecl>(OldD) &&
444         "Cannot merge with an overloaded function declaration");
445
446  Redeclaration = false;
447  // Verify the old decl was also a function.
448  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
449  if (!Old) {
450    Diag(New->getLocation(), diag::err_redefinition_different_kind)
451      << New->getDeclName();
452    Diag(OldD->getLocation(), diag::note_previous_definition);
453    return New;
454  }
455
456  // Determine whether the previous declaration was a definition,
457  // implicit declaration, or a declaration.
458  diag::kind PrevDiag;
459  if (Old->isThisDeclarationADefinition())
460    PrevDiag = diag::note_previous_definition;
461  else if (Old->isImplicit())
462    PrevDiag = diag::note_previous_implicit_declaration;
463  else
464    PrevDiag = diag::note_previous_declaration;
465
466  QualType OldQType = Context.getCanonicalType(Old->getType());
467  QualType NewQType = Context.getCanonicalType(New->getType());
468
469  if (getLangOptions().CPlusPlus) {
470    // (C++98 13.1p2):
471    //   Certain function declarations cannot be overloaded:
472    //     -- Function declarations that differ only in the return type
473    //        cannot be overloaded.
474    QualType OldReturnType
475      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
476    QualType NewReturnType
477      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
478    if (OldReturnType != NewReturnType) {
479      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
480      Diag(Old->getLocation(), PrevDiag);
481      Redeclaration = true;
482      return New;
483    }
484
485    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
486    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
487    if (OldMethod && NewMethod) {
488      //    -- Member function declarations with the same name and the
489      //       same parameter types cannot be overloaded if any of them
490      //       is a static member function declaration.
491      if (OldMethod->isStatic() || NewMethod->isStatic()) {
492        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
493        Diag(Old->getLocation(), PrevDiag);
494        return New;
495      }
496
497      // C++ [class.mem]p1:
498      //   [...] A member shall not be declared twice in the
499      //   member-specification, except that a nested class or member
500      //   class template can be declared and then later defined.
501      if (OldMethod->getLexicalDeclContext() ==
502            NewMethod->getLexicalDeclContext()) {
503        unsigned NewDiag;
504        if (isa<CXXConstructorDecl>(OldMethod))
505          NewDiag = diag::err_constructor_redeclared;
506        else if (isa<CXXDestructorDecl>(NewMethod))
507          NewDiag = diag::err_destructor_redeclared;
508        else if (isa<CXXConversionDecl>(NewMethod))
509          NewDiag = diag::err_conv_function_redeclared;
510        else
511          NewDiag = diag::err_member_redeclared;
512
513        Diag(New->getLocation(), NewDiag);
514        Diag(Old->getLocation(), PrevDiag);
515      }
516    }
517
518    // (C++98 8.3.5p3):
519    //   All declarations for a function shall agree exactly in both the
520    //   return type and the parameter-type-list.
521    if (OldQType == NewQType) {
522      // We have a redeclaration.
523      MergeAttributes(New, Old);
524      Redeclaration = true;
525      return MergeCXXFunctionDecl(New, Old);
526    }
527
528    // Fall through for conflicting redeclarations and redefinitions.
529  }
530
531  // C: Function types need to be compatible, not identical. This handles
532  // duplicate function decls like "void f(int); void f(enum X);" properly.
533  if (!getLangOptions().CPlusPlus &&
534      Context.typesAreCompatible(OldQType, NewQType)) {
535    MergeAttributes(New, Old);
536    Redeclaration = true;
537    return New;
538  }
539
540  // A function that has already been declared has been redeclared or defined
541  // with a different type- show appropriate diagnostic
542
543  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
544  // TODO: This is totally simplistic.  It should handle merging functions
545  // together etc, merging extern int X; int X; ...
546  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
547  Diag(Old->getLocation(), PrevDiag);
548  return New;
549}
550
551/// Predicate for C "tentative" external object definitions (C99 6.9.2).
552static bool isTentativeDefinition(VarDecl *VD) {
553  if (VD->isFileVarDecl())
554    return (!VD->getInit() &&
555            (VD->getStorageClass() == VarDecl::None ||
556             VD->getStorageClass() == VarDecl::Static));
557  return false;
558}
559
560/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
561/// when dealing with C "tentative" external object definitions (C99 6.9.2).
562void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
563  bool VDIsTentative = isTentativeDefinition(VD);
564  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
565
566  // FIXME: I don't think this will actually see all of the
567  // redefinitions. Can't we check this property on-the-fly?
568  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
569                                    E = IdResolver.end();
570       I != E; ++I) {
571    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
572      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
573
574      // Handle the following case:
575      //   int a[10];
576      //   int a[];   - the code below makes sure we set the correct type.
577      //   int a[11]; - this is an error, size isn't 10.
578      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
579          OldDecl->getType()->isConstantArrayType())
580        VD->setType(OldDecl->getType());
581
582      // Check for "tentative" definitions. We can't accomplish this in
583      // MergeVarDecl since the initializer hasn't been attached.
584      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
585        continue;
586
587      // Handle __private_extern__ just like extern.
588      if (OldDecl->getStorageClass() != VarDecl::Extern &&
589          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
590          VD->getStorageClass() != VarDecl::Extern &&
591          VD->getStorageClass() != VarDecl::PrivateExtern) {
592        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
593        Diag(OldDecl->getLocation(), diag::note_previous_definition);
594      }
595    }
596  }
597}
598
599/// MergeVarDecl - We just parsed a variable 'New' which has the same name
600/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
601/// situation, merging decls or emitting diagnostics as appropriate.
602///
603/// Tentative definition rules (C99 6.9.2p2) are checked by
604/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
605/// definitions here, since the initializer hasn't been attached.
606///
607VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
608  // Verify the old decl was also a variable.
609  VarDecl *Old = dyn_cast<VarDecl>(OldD);
610  if (!Old) {
611    Diag(New->getLocation(), diag::err_redefinition_different_kind)
612      << New->getDeclName();
613    Diag(OldD->getLocation(), diag::note_previous_definition);
614    return New;
615  }
616
617  MergeAttributes(New, Old);
618
619  // Merge the types
620  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
621  if (MergedT.isNull()) {
622    Diag(New->getLocation(), diag::err_redefinition_different_type)
623      << New->getDeclName();
624    Diag(Old->getLocation(), diag::note_previous_definition);
625    return New;
626  }
627  New->setType(MergedT);
628  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
629  if (New->getStorageClass() == VarDecl::Static &&
630      (Old->getStorageClass() == VarDecl::None ||
631       Old->getStorageClass() == VarDecl::Extern)) {
632    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
633    Diag(Old->getLocation(), diag::note_previous_definition);
634    return New;
635  }
636  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
637  if (New->getStorageClass() != VarDecl::Static &&
638      Old->getStorageClass() == VarDecl::Static) {
639    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
640    Diag(Old->getLocation(), diag::note_previous_definition);
641    return New;
642  }
643  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
644  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
645    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
646    Diag(Old->getLocation(), diag::note_previous_definition);
647  }
648  return New;
649}
650
651/// CheckParmsForFunctionDef - Check that the parameters of the given
652/// function are appropriate for the definition of a function. This
653/// takes care of any checks that cannot be performed on the
654/// declaration itself, e.g., that the types of each of the function
655/// parameters are complete.
656bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
657  bool HasInvalidParm = false;
658  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
659    ParmVarDecl *Param = FD->getParamDecl(p);
660
661    // C99 6.7.5.3p4: the parameters in a parameter type list in a
662    // function declarator that is part of a function definition of
663    // that function shall not have incomplete type.
664    if (!Param->isInvalidDecl() &&
665        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
666                               diag::err_typecheck_decl_incomplete_type)) {
667      Param->setInvalidDecl();
668      HasInvalidParm = true;
669    }
670
671    // C99 6.9.1p5: If the declarator includes a parameter type list, the
672    // declaration of each parameter shall include an identifier.
673    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
674      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
675  }
676
677  return HasInvalidParm;
678}
679
680/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
681/// no declarator (e.g. "struct foo;") is parsed.
682Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
683  TagDecl *Tag
684    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
685  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
686    if (!Record->getDeclName() && Record->isDefinition() &&
687        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
688      return BuildAnonymousStructOrUnion(S, DS, Record);
689
690    // Microsoft allows unnamed struct/union fields. Don't complain
691    // about them.
692    // FIXME: Should we support Microsoft's extensions in this area?
693    if (Record->getDeclName() && getLangOptions().Microsoft)
694      return Tag;
695  }
696
697  if (!DS.isMissingDeclaratorOk()) {
698    // Warn about typedefs of enums without names, since this is an
699    // extension in both Microsoft an GNU.
700    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
701        Tag && isa<EnumDecl>(Tag)) {
702      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
703        << DS.getSourceRange();
704      return Tag;
705    }
706
707    // FIXME: This diagnostic is emitted even when various previous
708    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
709    // DeclSpec has no means of communicating this information, and the
710    // responsible parser functions are quite far apart.
711    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
712      << DS.getSourceRange();
713    return 0;
714  }
715
716  return Tag;
717}
718
719/// InjectAnonymousStructOrUnionMembers - Inject the members of the
720/// anonymous struct or union AnonRecord into the owning context Owner
721/// and scope S. This routine will be invoked just after we realize
722/// that an unnamed union or struct is actually an anonymous union or
723/// struct, e.g.,
724///
725/// @code
726/// union {
727///   int i;
728///   float f;
729/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
730///    // f into the surrounding scope.x
731/// @endcode
732///
733/// This routine is recursive, injecting the names of nested anonymous
734/// structs/unions into the owning context and scope as well.
735bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
736                                               RecordDecl *AnonRecord) {
737  bool Invalid = false;
738  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
739                               FEnd = AnonRecord->field_end();
740       F != FEnd; ++F) {
741    if ((*F)->getDeclName()) {
742      Decl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
743                                           LookupOrdinaryName, true);
744      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
745        // C++ [class.union]p2:
746        //   The names of the members of an anonymous union shall be
747        //   distinct from the names of any other entity in the
748        //   scope in which the anonymous union is declared.
749        unsigned diagKind
750          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
751                                 : diag::err_anonymous_struct_member_redecl;
752        Diag((*F)->getLocation(), diagKind)
753          << (*F)->getDeclName();
754        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
755        Invalid = true;
756      } else {
757        // C++ [class.union]p2:
758        //   For the purpose of name lookup, after the anonymous union
759        //   definition, the members of the anonymous union are
760        //   considered to have been defined in the scope in which the
761        //   anonymous union is declared.
762        Owner->makeDeclVisibleInContext(*F);
763        S->AddDecl(*F);
764        IdResolver.AddDecl(*F);
765      }
766    } else if (const RecordType *InnerRecordType
767                 = (*F)->getType()->getAsRecordType()) {
768      RecordDecl *InnerRecord = InnerRecordType->getDecl();
769      if (InnerRecord->isAnonymousStructOrUnion())
770        Invalid = Invalid ||
771          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
772    }
773  }
774
775  return Invalid;
776}
777
778/// ActOnAnonymousStructOrUnion - Handle the declaration of an
779/// anonymous structure or union. Anonymous unions are a C++ feature
780/// (C++ [class.union]) and a GNU C extension; anonymous structures
781/// are a GNU C and GNU C++ extension.
782Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
783                                                RecordDecl *Record) {
784  DeclContext *Owner = Record->getDeclContext();
785
786  // Diagnose whether this anonymous struct/union is an extension.
787  if (Record->isUnion() && !getLangOptions().CPlusPlus)
788    Diag(Record->getLocation(), diag::ext_anonymous_union);
789  else if (!Record->isUnion())
790    Diag(Record->getLocation(), diag::ext_anonymous_struct);
791
792  // C and C++ require different kinds of checks for anonymous
793  // structs/unions.
794  bool Invalid = false;
795  if (getLangOptions().CPlusPlus) {
796    const char* PrevSpec = 0;
797    // C++ [class.union]p3:
798    //   Anonymous unions declared in a named namespace or in the
799    //   global namespace shall be declared static.
800    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
801        (isa<TranslationUnitDecl>(Owner) ||
802         (isa<NamespaceDecl>(Owner) &&
803          cast<NamespaceDecl>(Owner)->getDeclName()))) {
804      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
805      Invalid = true;
806
807      // Recover by adding 'static'.
808      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
809    }
810    // C++ [class.union]p3:
811    //   A storage class is not allowed in a declaration of an
812    //   anonymous union in a class scope.
813    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
814             isa<RecordDecl>(Owner)) {
815      Diag(DS.getStorageClassSpecLoc(),
816           diag::err_anonymous_union_with_storage_spec);
817      Invalid = true;
818
819      // Recover by removing the storage specifier.
820      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
821                             PrevSpec);
822    }
823
824    // C++ [class.union]p2:
825    //   The member-specification of an anonymous union shall only
826    //   define non-static data members. [Note: nested types and
827    //   functions cannot be declared within an anonymous union. ]
828    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
829                                 MemEnd = Record->decls_end();
830         Mem != MemEnd; ++Mem) {
831      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
832        // C++ [class.union]p3:
833        //   An anonymous union shall not have private or protected
834        //   members (clause 11).
835        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
836          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
837            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
838          Invalid = true;
839        }
840      } else if ((*Mem)->isImplicit()) {
841        // Any implicit members are fine.
842      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
843        if (!MemRecord->isAnonymousStructOrUnion() &&
844            MemRecord->getDeclName()) {
845          // This is a nested type declaration.
846          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
847            << (int)Record->isUnion();
848          Invalid = true;
849        }
850      } else {
851        // We have something that isn't a non-static data
852        // member. Complain about it.
853        unsigned DK = diag::err_anonymous_record_bad_member;
854        if (isa<TypeDecl>(*Mem))
855          DK = diag::err_anonymous_record_with_type;
856        else if (isa<FunctionDecl>(*Mem))
857          DK = diag::err_anonymous_record_with_function;
858        else if (isa<VarDecl>(*Mem))
859          DK = diag::err_anonymous_record_with_static;
860        Diag((*Mem)->getLocation(), DK)
861            << (int)Record->isUnion();
862          Invalid = true;
863      }
864    }
865  } else {
866    // FIXME: Check GNU C semantics
867    if (Record->isUnion() && !Owner->isRecord()) {
868      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
869        << (int)getLangOptions().CPlusPlus;
870      Invalid = true;
871    }
872  }
873
874  if (!Record->isUnion() && !Owner->isRecord()) {
875    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
876      << (int)getLangOptions().CPlusPlus;
877    Invalid = true;
878  }
879
880  // Create a declaration for this anonymous struct/union.
881  NamedDecl *Anon = 0;
882  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
883    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
884                             /*IdentifierInfo=*/0,
885                             Context.getTypeDeclType(Record),
886                             /*BitWidth=*/0, /*Mutable=*/false);
887    Anon->setAccess(AS_public);
888    if (getLangOptions().CPlusPlus)
889      FieldCollector->Add(cast<FieldDecl>(Anon));
890  } else {
891    VarDecl::StorageClass SC;
892    switch (DS.getStorageClassSpec()) {
893    default: assert(0 && "Unknown storage class!");
894    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
895    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
896    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
897    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
898    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
899    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
900    case DeclSpec::SCS_mutable:
901      // mutable can only appear on non-static class members, so it's always
902      // an error here
903      Diag(Record->getLocation(), diag::err_mutable_nonmember);
904      Invalid = true;
905      SC = VarDecl::None;
906      break;
907    }
908
909    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
910                           /*IdentifierInfo=*/0,
911                           Context.getTypeDeclType(Record),
912                           SC, DS.getSourceRange().getBegin());
913  }
914  Anon->setImplicit();
915
916  // Add the anonymous struct/union object to the current
917  // context. We'll be referencing this object when we refer to one of
918  // its members.
919  Owner->addDecl(Anon);
920
921  // Inject the members of the anonymous struct/union into the owning
922  // context and into the identifier resolver chain for name lookup
923  // purposes.
924  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
925    Invalid = true;
926
927  // Mark this as an anonymous struct/union type. Note that we do not
928  // do this until after we have already checked and injected the
929  // members of this anonymous struct/union type, because otherwise
930  // the members could be injected twice: once by DeclContext when it
931  // builds its lookup table, and once by
932  // InjectAnonymousStructOrUnionMembers.
933  Record->setAnonymousStructOrUnion(true);
934
935  if (Invalid)
936    Anon->setInvalidDecl();
937
938  return Anon;
939}
940
941bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
942                                  bool DirectInit) {
943  // Get the type before calling CheckSingleAssignmentConstraints(), since
944  // it can promote the expression.
945  QualType InitType = Init->getType();
946
947  if (getLangOptions().CPlusPlus) {
948    // FIXME: I dislike this error message. A lot.
949    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
950      return Diag(Init->getSourceRange().getBegin(),
951                  diag::err_typecheck_convert_incompatible)
952        << DeclType << Init->getType() << "initializing"
953        << Init->getSourceRange();
954
955    return false;
956  }
957
958  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
959  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
960                                  InitType, Init, "initializing");
961}
962
963bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
964  const ArrayType *AT = Context.getAsArrayType(DeclT);
965
966  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
967    // C99 6.7.8p14. We have an array of character type with unknown size
968    // being initialized to a string literal.
969    llvm::APSInt ConstVal(32);
970    ConstVal = strLiteral->getByteLength() + 1;
971    // Return a new array type (C99 6.7.8p22).
972    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
973                                         ArrayType::Normal, 0);
974  } else {
975    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
976    // C99 6.7.8p14. We have an array of character type with known size.
977    // FIXME: Avoid truncation for 64-bit length strings.
978    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
979      Diag(strLiteral->getSourceRange().getBegin(),
980           diag::warn_initializer_string_for_char_array_too_long)
981        << strLiteral->getSourceRange();
982  }
983  // Set type from "char *" to "constant array of char".
984  strLiteral->setType(DeclT);
985  // For now, we always return false (meaning success).
986  return false;
987}
988
989StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
990  const ArrayType *AT = Context.getAsArrayType(DeclType);
991  if (AT && AT->getElementType()->isCharType()) {
992    return dyn_cast<StringLiteral>(Init->IgnoreParens());
993  }
994  return 0;
995}
996
997bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
998                                 SourceLocation InitLoc,
999                                 DeclarationName InitEntity,
1000                                 bool DirectInit) {
1001  if (DeclType->isDependentType() || Init->isTypeDependent())
1002    return false;
1003
1004  // C++ [dcl.init.ref]p1:
1005  //   A variable declared to be a T&, that is "reference to type T"
1006  //   (8.3.2), shall be initialized by an object, or function, of
1007  //   type T or by an object that can be converted into a T.
1008  if (DeclType->isReferenceType())
1009    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1010
1011  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1012  // of unknown size ("[]") or an object type that is not a variable array type.
1013  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1014    return Diag(InitLoc,  diag::err_variable_object_no_init)
1015      << VAT->getSizeExpr()->getSourceRange();
1016
1017  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1018  if (!InitList) {
1019    // FIXME: Handle wide strings
1020    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1021      return CheckStringLiteralInit(strLiteral, DeclType);
1022
1023    // C++ [dcl.init]p14:
1024    //   -- If the destination type is a (possibly cv-qualified) class
1025    //      type:
1026    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1027      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1028      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1029
1030      //   -- If the initialization is direct-initialization, or if it is
1031      //      copy-initialization where the cv-unqualified version of the
1032      //      source type is the same class as, or a derived class of, the
1033      //      class of the destination, constructors are considered.
1034      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1035          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1036        CXXConstructorDecl *Constructor
1037          = PerformInitializationByConstructor(DeclType, &Init, 1,
1038                                               InitLoc, Init->getSourceRange(),
1039                                               InitEntity,
1040                                               DirectInit? IK_Direct : IK_Copy);
1041        return Constructor == 0;
1042      }
1043
1044      //   -- Otherwise (i.e., for the remaining copy-initialization
1045      //      cases), user-defined conversion sequences that can
1046      //      convert from the source type to the destination type or
1047      //      (when a conversion function is used) to a derived class
1048      //      thereof are enumerated as described in 13.3.1.4, and the
1049      //      best one is chosen through overload resolution
1050      //      (13.3). If the conversion cannot be done or is
1051      //      ambiguous, the initialization is ill-formed. The
1052      //      function selected is called with the initializer
1053      //      expression as its argument; if the function is a
1054      //      constructor, the call initializes a temporary of the
1055      //      destination type.
1056      // FIXME: We're pretending to do copy elision here; return to
1057      // this when we have ASTs for such things.
1058      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1059        return false;
1060
1061      if (InitEntity)
1062        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1063          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1064          << Init->getType() << Init->getSourceRange();
1065      else
1066        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1067          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1068          << Init->getType() << Init->getSourceRange();
1069    }
1070
1071    // C99 6.7.8p16.
1072    if (DeclType->isArrayType())
1073      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1074        << Init->getSourceRange();
1075
1076    return CheckSingleInitializer(Init, DeclType, DirectInit);
1077  }
1078
1079  bool hadError = CheckInitList(InitList, DeclType);
1080  Init = InitList;
1081  return hadError;
1082}
1083
1084/// GetNameForDeclarator - Determine the full declaration name for the
1085/// given Declarator.
1086DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1087  switch (D.getKind()) {
1088  case Declarator::DK_Abstract:
1089    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1090    return DeclarationName();
1091
1092  case Declarator::DK_Normal:
1093    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1094    return DeclarationName(D.getIdentifier());
1095
1096  case Declarator::DK_Constructor: {
1097    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1098    Ty = Context.getCanonicalType(Ty);
1099    return Context.DeclarationNames.getCXXConstructorName(Ty);
1100  }
1101
1102  case Declarator::DK_Destructor: {
1103    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1104    Ty = Context.getCanonicalType(Ty);
1105    return Context.DeclarationNames.getCXXDestructorName(Ty);
1106  }
1107
1108  case Declarator::DK_Conversion: {
1109    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1110    Ty = Context.getCanonicalType(Ty);
1111    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1112  }
1113
1114  case Declarator::DK_Operator:
1115    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1116    return Context.DeclarationNames.getCXXOperatorName(
1117                                                D.getOverloadedOperator());
1118  }
1119
1120  assert(false && "Unknown name kind");
1121  return DeclarationName();
1122}
1123
1124/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1125/// functions Declaration and Definition are "nearly" matching. This
1126/// heuristic is used to improve diagnostics in the case where an
1127/// out-of-line member function definition doesn't match any
1128/// declaration within the class.
1129static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1130                                           FunctionDecl *Declaration,
1131                                           FunctionDecl *Definition) {
1132  if (Declaration->param_size() != Definition->param_size())
1133    return false;
1134  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1135    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1136    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1137
1138    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1139    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1140    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1141      return false;
1142  }
1143
1144  return true;
1145}
1146
1147Sema::DeclTy *
1148Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1149                      bool IsFunctionDefinition) {
1150  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1151  DeclarationName Name = GetNameForDeclarator(D);
1152
1153  // All of these full declarators require an identifier.  If it doesn't have
1154  // one, the ParsedFreeStandingDeclSpec action should be used.
1155  if (!Name) {
1156    if (!D.getInvalidType())  // Reject this if we think it is valid.
1157      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1158           diag::err_declarator_need_ident)
1159        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1160    return 0;
1161  }
1162
1163  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1164  // we find one that is.
1165  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1166        (S->getFlags() & Scope::TemplateParamScope) != 0)
1167    S = S->getParent();
1168
1169  DeclContext *DC;
1170  Decl *PrevDecl;
1171  NamedDecl *New;
1172  bool InvalidDecl = false;
1173
1174  // See if this is a redefinition of a variable in the same scope.
1175  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1176    DC = CurContext;
1177    PrevDecl = LookupName(S, Name, LookupOrdinaryName);
1178  } else { // Something like "int foo::x;"
1179    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1180    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1181
1182    // C++ 7.3.1.2p2:
1183    // Members (including explicit specializations of templates) of a named
1184    // namespace can also be defined outside that namespace by explicit
1185    // qualification of the name being defined, provided that the entity being
1186    // defined was already declared in the namespace and the definition appears
1187    // after the point of declaration in a namespace that encloses the
1188    // declarations namespace.
1189    //
1190    // Note that we only check the context at this point. We don't yet
1191    // have enough information to make sure that PrevDecl is actually
1192    // the declaration we want to match. For example, given:
1193    //
1194    //   class X {
1195    //     void f();
1196    //     void f(float);
1197    //   };
1198    //
1199    //   void X::f(int) { } // ill-formed
1200    //
1201    // In this case, PrevDecl will point to the overload set
1202    // containing the two f's declared in X, but neither of them
1203    // matches.
1204    if (!CurContext->Encloses(DC)) {
1205      // The qualifying scope doesn't enclose the original declaration.
1206      // Emit diagnostic based on current scope.
1207      SourceLocation L = D.getIdentifierLoc();
1208      SourceRange R = D.getCXXScopeSpec().getRange();
1209      if (isa<FunctionDecl>(CurContext)) {
1210        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1211      } else {
1212        Diag(L, diag::err_invalid_declarator_scope)
1213          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1214      }
1215      InvalidDecl = true;
1216    }
1217  }
1218
1219  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1220    // Maybe we will complain about the shadowed template parameter.
1221    InvalidDecl = InvalidDecl
1222      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1223    // Just pretend that we didn't see the previous declaration.
1224    PrevDecl = 0;
1225  }
1226
1227  // In C++, the previous declaration we find might be a tag type
1228  // (class or enum). In this case, the new declaration will hide the
1229  // tag type. Note that this does does not apply if we're declaring a
1230  // typedef (C++ [dcl.typedef]p4).
1231  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1232      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1233    PrevDecl = 0;
1234
1235  QualType R = GetTypeForDeclarator(D, S);
1236  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1237
1238  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1239    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1240                                 InvalidDecl);
1241  } else if (R.getTypePtr()->isFunctionType()) {
1242    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1243                                  IsFunctionDefinition, InvalidDecl);
1244  } else {
1245    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1246                                  InvalidDecl);
1247  }
1248
1249  if (New == 0)
1250    return 0;
1251
1252  // Set the lexical context. If the declarator has a C++ scope specifier, the
1253  // lexical context will be different from the semantic context.
1254  New->setLexicalDeclContext(CurContext);
1255
1256  // If this has an identifier, add it to the scope stack.
1257  if (Name)
1258    PushOnScopeChains(New, S);
1259  // If any semantic error occurred, mark the decl as invalid.
1260  if (D.getInvalidType() || InvalidDecl)
1261    New->setInvalidDecl();
1262
1263  return New;
1264}
1265
1266NamedDecl*
1267Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1268                             QualType R, Decl* LastDeclarator,
1269                             Decl* PrevDecl, bool& InvalidDecl) {
1270  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1271  if (D.getCXXScopeSpec().isSet()) {
1272    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1273      << D.getCXXScopeSpec().getRange();
1274    InvalidDecl = true;
1275    // Pretend we didn't see the scope specifier.
1276    DC = 0;
1277  }
1278
1279  // Check that there are no default arguments (C++ only).
1280  if (getLangOptions().CPlusPlus)
1281    CheckExtraCXXDefaultArguments(D);
1282
1283  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1284  if (!NewTD) return 0;
1285
1286  // Handle attributes prior to checking for duplicates in MergeVarDecl
1287  ProcessDeclAttributes(NewTD, D);
1288  // Merge the decl with the existing one if appropriate. If the decl is
1289  // in an outer scope, it isn't the same thing.
1290  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1291    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1292    if (NewTD == 0) return 0;
1293  }
1294
1295  if (S->getFnParent() == 0) {
1296    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1297    // then it shall have block scope.
1298    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1299      if (NewTD->getUnderlyingType()->isVariableArrayType())
1300        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1301      else
1302        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1303
1304      InvalidDecl = true;
1305    }
1306  }
1307  return NewTD;
1308}
1309
1310NamedDecl*
1311Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1312                              QualType R, Decl* LastDeclarator,
1313                              Decl* PrevDecl, bool& InvalidDecl) {
1314  DeclarationName Name = GetNameForDeclarator(D);
1315
1316  // Check that there are no default arguments (C++ only).
1317  if (getLangOptions().CPlusPlus)
1318    CheckExtraCXXDefaultArguments(D);
1319
1320  if (R.getTypePtr()->isObjCInterfaceType()) {
1321    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1322      << D.getIdentifier();
1323    InvalidDecl = true;
1324  }
1325
1326  VarDecl *NewVD;
1327  VarDecl::StorageClass SC;
1328  switch (D.getDeclSpec().getStorageClassSpec()) {
1329  default: assert(0 && "Unknown storage class!");
1330  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1331  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1332  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1333  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1334  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1335  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1336  case DeclSpec::SCS_mutable:
1337    // mutable can only appear on non-static class members, so it's always
1338    // an error here
1339    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1340    InvalidDecl = true;
1341    SC = VarDecl::None;
1342    break;
1343  }
1344
1345  IdentifierInfo *II = Name.getAsIdentifierInfo();
1346  if (!II) {
1347    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1348      << Name.getAsString();
1349    return 0;
1350  }
1351
1352  if (DC->isRecord()) {
1353    // This is a static data member for a C++ class.
1354    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1355                                    D.getIdentifierLoc(), II,
1356                                    R);
1357  } else {
1358    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1359    if (S->getFnParent() == 0) {
1360      // C99 6.9p2: The storage-class specifiers auto and register shall not
1361      // appear in the declaration specifiers in an external declaration.
1362      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1363        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1364        InvalidDecl = true;
1365      }
1366    }
1367    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1368                            II, R, SC,
1369                            // FIXME: Move to DeclGroup...
1370                            D.getDeclSpec().getSourceRange().getBegin());
1371    NewVD->setThreadSpecified(ThreadSpecified);
1372  }
1373  NewVD->setNextDeclarator(LastDeclarator);
1374
1375  // Handle attributes prior to checking for duplicates in MergeVarDecl
1376  ProcessDeclAttributes(NewVD, D);
1377
1378  // Handle GNU asm-label extension (encoded as an attribute).
1379  if (Expr *E = (Expr*) D.getAsmLabel()) {
1380    // The parser guarantees this is a string.
1381    StringLiteral *SE = cast<StringLiteral>(E);
1382    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1383                                                SE->getByteLength())));
1384  }
1385
1386  // Emit an error if an address space was applied to decl with local storage.
1387  // This includes arrays of objects with address space qualifiers, but not
1388  // automatic variables that point to other address spaces.
1389  // ISO/IEC TR 18037 S5.1.2
1390  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1391    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1392    InvalidDecl = true;
1393  }
1394  // Merge the decl with the existing one if appropriate. If the decl is
1395  // in an outer scope, it isn't the same thing.
1396  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1397    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1398      // The user tried to define a non-static data member
1399      // out-of-line (C++ [dcl.meaning]p1).
1400      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1401        << D.getCXXScopeSpec().getRange();
1402      NewVD->Destroy(Context);
1403      return 0;
1404    }
1405
1406    NewVD = MergeVarDecl(NewVD, PrevDecl);
1407    if (NewVD == 0) return 0;
1408
1409    if (D.getCXXScopeSpec().isSet()) {
1410      // No previous declaration in the qualifying scope.
1411      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1412        << Name << D.getCXXScopeSpec().getRange();
1413      InvalidDecl = true;
1414    }
1415  }
1416  return NewVD;
1417}
1418
1419NamedDecl*
1420Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1421                              QualType R, Decl *LastDeclarator,
1422                              Decl* PrevDecl, bool IsFunctionDefinition,
1423                              bool& InvalidDecl) {
1424  assert(R.getTypePtr()->isFunctionType());
1425
1426  DeclarationName Name = GetNameForDeclarator(D);
1427  FunctionDecl::StorageClass SC = FunctionDecl::None;
1428  switch (D.getDeclSpec().getStorageClassSpec()) {
1429  default: assert(0 && "Unknown storage class!");
1430  case DeclSpec::SCS_auto:
1431  case DeclSpec::SCS_register:
1432  case DeclSpec::SCS_mutable:
1433    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1434    InvalidDecl = true;
1435    break;
1436  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1437  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1438  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1439  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1440  }
1441
1442  bool isInline = D.getDeclSpec().isInlineSpecified();
1443  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1444  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1445
1446  FunctionDecl *NewFD;
1447  if (D.getKind() == Declarator::DK_Constructor) {
1448    // This is a C++ constructor declaration.
1449    assert(DC->isRecord() &&
1450           "Constructors can only be declared in a member context");
1451
1452    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1453
1454    // Create the new declaration
1455    NewFD = CXXConstructorDecl::Create(Context,
1456                                       cast<CXXRecordDecl>(DC),
1457                                       D.getIdentifierLoc(), Name, R,
1458                                       isExplicit, isInline,
1459                                       /*isImplicitlyDeclared=*/false);
1460
1461    if (InvalidDecl)
1462      NewFD->setInvalidDecl();
1463  } else if (D.getKind() == Declarator::DK_Destructor) {
1464    // This is a C++ destructor declaration.
1465    if (DC->isRecord()) {
1466      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1467
1468      NewFD = CXXDestructorDecl::Create(Context,
1469                                        cast<CXXRecordDecl>(DC),
1470                                        D.getIdentifierLoc(), Name, R,
1471                                        isInline,
1472                                        /*isImplicitlyDeclared=*/false);
1473
1474      if (InvalidDecl)
1475        NewFD->setInvalidDecl();
1476    } else {
1477      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1478
1479      // Create a FunctionDecl to satisfy the function definition parsing
1480      // code path.
1481      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1482                                   Name, R, SC, isInline,
1483                                   // FIXME: Move to DeclGroup...
1484                                   D.getDeclSpec().getSourceRange().getBegin());
1485      InvalidDecl = true;
1486      NewFD->setInvalidDecl();
1487    }
1488  } else if (D.getKind() == Declarator::DK_Conversion) {
1489    if (!DC->isRecord()) {
1490      Diag(D.getIdentifierLoc(),
1491           diag::err_conv_function_not_member);
1492      return 0;
1493    } else {
1494      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1495
1496      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1497                                        D.getIdentifierLoc(), Name, R,
1498                                        isInline, isExplicit);
1499
1500      if (InvalidDecl)
1501        NewFD->setInvalidDecl();
1502    }
1503  } else if (DC->isRecord()) {
1504    // This is a C++ method declaration.
1505    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1506                                  D.getIdentifierLoc(), Name, R,
1507                                  (SC == FunctionDecl::Static), isInline);
1508  } else {
1509    NewFD = FunctionDecl::Create(Context, DC,
1510                                 D.getIdentifierLoc(),
1511                                 Name, R, SC, isInline,
1512                                 // FIXME: Move to DeclGroup...
1513                                 D.getDeclSpec().getSourceRange().getBegin());
1514  }
1515  NewFD->setNextDeclarator(LastDeclarator);
1516
1517  // Set the lexical context. If the declarator has a C++
1518  // scope specifier, the lexical context will be different
1519  // from the semantic context.
1520  NewFD->setLexicalDeclContext(CurContext);
1521
1522  // Handle GNU asm-label extension (encoded as an attribute).
1523  if (Expr *E = (Expr*) D.getAsmLabel()) {
1524    // The parser guarantees this is a string.
1525    StringLiteral *SE = cast<StringLiteral>(E);
1526    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1527                                                SE->getByteLength())));
1528  }
1529
1530  // Copy the parameter declarations from the declarator D to
1531  // the function declaration NewFD, if they are available.
1532  if (D.getNumTypeObjects() > 0) {
1533    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1534
1535    // Create Decl objects for each parameter, adding them to the
1536    // FunctionDecl.
1537    llvm::SmallVector<ParmVarDecl*, 16> Params;
1538
1539    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1540    // function that takes no arguments, not a function that takes a
1541    // single void argument.
1542    // We let through "const void" here because Sema::GetTypeForDeclarator
1543    // already checks for that case.
1544    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1545        FTI.ArgInfo[0].Param &&
1546        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1547      // empty arg list, don't push any params.
1548      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1549
1550      // In C++, the empty parameter-type-list must be spelled "void"; a
1551      // typedef of void is not permitted.
1552      if (getLangOptions().CPlusPlus &&
1553          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1554        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1555      }
1556    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1557      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1558        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1559    }
1560
1561    NewFD->setParams(Context, &Params[0], Params.size());
1562  } else if (R->getAsTypedefType()) {
1563    // When we're declaring a function with a typedef, as in the
1564    // following example, we'll need to synthesize (unnamed)
1565    // parameters for use in the declaration.
1566    //
1567    // @code
1568    // typedef void fn(int);
1569    // fn f;
1570    // @endcode
1571    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1572    if (!FT) {
1573      // This is a typedef of a function with no prototype, so we
1574      // don't need to do anything.
1575    } else if ((FT->getNumArgs() == 0) ||
1576               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1577                FT->getArgType(0)->isVoidType())) {
1578      // This is a zero-argument function. We don't need to do anything.
1579    } else {
1580      // Synthesize a parameter for each argument type.
1581      llvm::SmallVector<ParmVarDecl*, 16> Params;
1582      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1583           ArgType != FT->arg_type_end(); ++ArgType) {
1584        Params.push_back(ParmVarDecl::Create(Context, DC,
1585                                             SourceLocation(), 0,
1586                                             *ArgType, VarDecl::None,
1587                                             0));
1588      }
1589
1590      NewFD->setParams(Context, &Params[0], Params.size());
1591    }
1592  }
1593
1594  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1595    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1596  else if (isa<CXXDestructorDecl>(NewFD)) {
1597    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1598    Record->setUserDeclaredDestructor(true);
1599    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1600    // user-defined destructor.
1601    Record->setPOD(false);
1602  } else if (CXXConversionDecl *Conversion =
1603             dyn_cast<CXXConversionDecl>(NewFD))
1604    ActOnConversionDeclarator(Conversion);
1605
1606  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1607  if (NewFD->isOverloadedOperator() &&
1608      CheckOverloadedOperatorDeclaration(NewFD))
1609    NewFD->setInvalidDecl();
1610
1611  // Merge the decl with the existing one if appropriate. Since C functions
1612  // are in a flat namespace, make sure we consider decls in outer scopes.
1613  if (PrevDecl &&
1614      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1615    bool Redeclaration = false;
1616
1617    // If C++, determine whether NewFD is an overload of PrevDecl or
1618    // a declaration that requires merging. If it's an overload,
1619    // there's no more work to do here; we'll just add the new
1620    // function to the scope.
1621    OverloadedFunctionDecl::function_iterator MatchedDecl;
1622    if (!getLangOptions().CPlusPlus ||
1623        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1624      Decl *OldDecl = PrevDecl;
1625
1626      // If PrevDecl was an overloaded function, extract the
1627      // FunctionDecl that matched.
1628      if (isa<OverloadedFunctionDecl>(PrevDecl))
1629        OldDecl = *MatchedDecl;
1630
1631      // NewFD and PrevDecl represent declarations that need to be
1632      // merged.
1633      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1634
1635      if (NewFD == 0) return 0;
1636      if (Redeclaration) {
1637        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1638
1639        // An out-of-line member function declaration must also be a
1640        // definition (C++ [dcl.meaning]p1).
1641        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1642            !InvalidDecl) {
1643          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1644            << D.getCXXScopeSpec().getRange();
1645          NewFD->setInvalidDecl();
1646        }
1647      }
1648    }
1649
1650    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1651      // The user tried to provide an out-of-line definition for a
1652      // member function, but there was no such member function
1653      // declared (C++ [class.mfct]p2). For example:
1654      //
1655      // class X {
1656      //   void f() const;
1657      // };
1658      //
1659      // void X::f() { } // ill-formed
1660      //
1661      // Complain about this problem, and attempt to suggest close
1662      // matches (e.g., those that differ only in cv-qualifiers and
1663      // whether the parameter types are references).
1664      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1665        << cast<CXXRecordDecl>(DC)->getDeclName()
1666        << D.getCXXScopeSpec().getRange();
1667      InvalidDecl = true;
1668
1669      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1670                                              true);
1671      assert(!Prev.isAmbiguous() &&
1672             "Cannot have an ambiguity in previous-declaration lookup");
1673      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1674           Func != FuncEnd; ++Func) {
1675        if (isa<CXXMethodDecl>(*Func) &&
1676            isNearlyMatchingMemberFunction(Context, cast<FunctionDecl>(*Func),
1677                                           NewFD))
1678          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1679      }
1680
1681      PrevDecl = 0;
1682    }
1683  }
1684
1685  // Handle attributes. We need to have merged decls when handling attributes
1686  // (for example to check for conflicts, etc).
1687  ProcessDeclAttributes(NewFD, D);
1688
1689  if (getLangOptions().CPlusPlus) {
1690    // In C++, check default arguments now that we have merged decls.
1691    CheckCXXDefaultArguments(NewFD);
1692
1693    // An out-of-line member function declaration must also be a
1694    // definition (C++ [dcl.meaning]p1).
1695    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1696      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1697        << D.getCXXScopeSpec().getRange();
1698      InvalidDecl = true;
1699    }
1700  }
1701  return NewFD;
1702}
1703
1704void Sema::InitializerElementNotConstant(const Expr *Init) {
1705  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1706    << Init->getSourceRange();
1707}
1708
1709bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1710  switch (Init->getStmtClass()) {
1711  default:
1712    InitializerElementNotConstant(Init);
1713    return true;
1714  case Expr::ParenExprClass: {
1715    const ParenExpr* PE = cast<ParenExpr>(Init);
1716    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1717  }
1718  case Expr::CompoundLiteralExprClass:
1719    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1720  case Expr::DeclRefExprClass:
1721  case Expr::QualifiedDeclRefExprClass: {
1722    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1723    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1724      if (VD->hasGlobalStorage())
1725        return false;
1726      InitializerElementNotConstant(Init);
1727      return true;
1728    }
1729    if (isa<FunctionDecl>(D))
1730      return false;
1731    InitializerElementNotConstant(Init);
1732    return true;
1733  }
1734  case Expr::MemberExprClass: {
1735    const MemberExpr *M = cast<MemberExpr>(Init);
1736    if (M->isArrow())
1737      return CheckAddressConstantExpression(M->getBase());
1738    return CheckAddressConstantExpressionLValue(M->getBase());
1739  }
1740  case Expr::ArraySubscriptExprClass: {
1741    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1742    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1743    return CheckAddressConstantExpression(ASE->getBase()) ||
1744           CheckArithmeticConstantExpression(ASE->getIdx());
1745  }
1746  case Expr::StringLiteralClass:
1747  case Expr::PredefinedExprClass:
1748    return false;
1749  case Expr::UnaryOperatorClass: {
1750    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1751
1752    // C99 6.6p9
1753    if (Exp->getOpcode() == UnaryOperator::Deref)
1754      return CheckAddressConstantExpression(Exp->getSubExpr());
1755
1756    InitializerElementNotConstant(Init);
1757    return true;
1758  }
1759  }
1760}
1761
1762bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1763  switch (Init->getStmtClass()) {
1764  default:
1765    InitializerElementNotConstant(Init);
1766    return true;
1767  case Expr::ParenExprClass:
1768    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1769  case Expr::StringLiteralClass:
1770  case Expr::ObjCStringLiteralClass:
1771    return false;
1772  case Expr::CallExprClass:
1773  case Expr::CXXOperatorCallExprClass:
1774    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1775    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1776           Builtin::BI__builtin___CFStringMakeConstantString)
1777      return false;
1778
1779    InitializerElementNotConstant(Init);
1780    return true;
1781
1782  case Expr::UnaryOperatorClass: {
1783    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1784
1785    // C99 6.6p9
1786    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1787      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1788
1789    if (Exp->getOpcode() == UnaryOperator::Extension)
1790      return CheckAddressConstantExpression(Exp->getSubExpr());
1791
1792    InitializerElementNotConstant(Init);
1793    return true;
1794  }
1795  case Expr::BinaryOperatorClass: {
1796    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1797    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1798
1799    Expr *PExp = Exp->getLHS();
1800    Expr *IExp = Exp->getRHS();
1801    if (IExp->getType()->isPointerType())
1802      std::swap(PExp, IExp);
1803
1804    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1805    return CheckAddressConstantExpression(PExp) ||
1806           CheckArithmeticConstantExpression(IExp);
1807  }
1808  case Expr::ImplicitCastExprClass:
1809  case Expr::CStyleCastExprClass: {
1810    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1811    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1812      // Check for implicit promotion
1813      if (SubExpr->getType()->isFunctionType() ||
1814          SubExpr->getType()->isArrayType())
1815        return CheckAddressConstantExpressionLValue(SubExpr);
1816    }
1817
1818    // Check for pointer->pointer cast
1819    if (SubExpr->getType()->isPointerType())
1820      return CheckAddressConstantExpression(SubExpr);
1821
1822    if (SubExpr->getType()->isIntegralType()) {
1823      // Check for the special-case of a pointer->int->pointer cast;
1824      // this isn't standard, but some code requires it. See
1825      // PR2720 for an example.
1826      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1827        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1828          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1829          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1830          if (IntWidth >= PointerWidth) {
1831            return CheckAddressConstantExpression(SubCast->getSubExpr());
1832          }
1833        }
1834      }
1835    }
1836    if (SubExpr->getType()->isArithmeticType()) {
1837      return CheckArithmeticConstantExpression(SubExpr);
1838    }
1839
1840    InitializerElementNotConstant(Init);
1841    return true;
1842  }
1843  case Expr::ConditionalOperatorClass: {
1844    // FIXME: Should we pedwarn here?
1845    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1846    if (!Exp->getCond()->getType()->isArithmeticType()) {
1847      InitializerElementNotConstant(Init);
1848      return true;
1849    }
1850    if (CheckArithmeticConstantExpression(Exp->getCond()))
1851      return true;
1852    if (Exp->getLHS() &&
1853        CheckAddressConstantExpression(Exp->getLHS()))
1854      return true;
1855    return CheckAddressConstantExpression(Exp->getRHS());
1856  }
1857  case Expr::AddrLabelExprClass:
1858    return false;
1859  }
1860}
1861
1862static const Expr* FindExpressionBaseAddress(const Expr* E);
1863
1864static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1865  switch (E->getStmtClass()) {
1866  default:
1867    return E;
1868  case Expr::ParenExprClass: {
1869    const ParenExpr* PE = cast<ParenExpr>(E);
1870    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1871  }
1872  case Expr::MemberExprClass: {
1873    const MemberExpr *M = cast<MemberExpr>(E);
1874    if (M->isArrow())
1875      return FindExpressionBaseAddress(M->getBase());
1876    return FindExpressionBaseAddressLValue(M->getBase());
1877  }
1878  case Expr::ArraySubscriptExprClass: {
1879    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1880    return FindExpressionBaseAddress(ASE->getBase());
1881  }
1882  case Expr::UnaryOperatorClass: {
1883    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1884
1885    if (Exp->getOpcode() == UnaryOperator::Deref)
1886      return FindExpressionBaseAddress(Exp->getSubExpr());
1887
1888    return E;
1889  }
1890  }
1891}
1892
1893static const Expr* FindExpressionBaseAddress(const Expr* E) {
1894  switch (E->getStmtClass()) {
1895  default:
1896    return E;
1897  case Expr::ParenExprClass: {
1898    const ParenExpr* PE = cast<ParenExpr>(E);
1899    return FindExpressionBaseAddress(PE->getSubExpr());
1900  }
1901  case Expr::UnaryOperatorClass: {
1902    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1903
1904    // C99 6.6p9
1905    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1906      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1907
1908    if (Exp->getOpcode() == UnaryOperator::Extension)
1909      return FindExpressionBaseAddress(Exp->getSubExpr());
1910
1911    return E;
1912  }
1913  case Expr::BinaryOperatorClass: {
1914    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1915
1916    Expr *PExp = Exp->getLHS();
1917    Expr *IExp = Exp->getRHS();
1918    if (IExp->getType()->isPointerType())
1919      std::swap(PExp, IExp);
1920
1921    return FindExpressionBaseAddress(PExp);
1922  }
1923  case Expr::ImplicitCastExprClass: {
1924    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1925
1926    // Check for implicit promotion
1927    if (SubExpr->getType()->isFunctionType() ||
1928        SubExpr->getType()->isArrayType())
1929      return FindExpressionBaseAddressLValue(SubExpr);
1930
1931    // Check for pointer->pointer cast
1932    if (SubExpr->getType()->isPointerType())
1933      return FindExpressionBaseAddress(SubExpr);
1934
1935    // We assume that we have an arithmetic expression here;
1936    // if we don't, we'll figure it out later
1937    return 0;
1938  }
1939  case Expr::CStyleCastExprClass: {
1940    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1941
1942    // Check for pointer->pointer cast
1943    if (SubExpr->getType()->isPointerType())
1944      return FindExpressionBaseAddress(SubExpr);
1945
1946    // We assume that we have an arithmetic expression here;
1947    // if we don't, we'll figure it out later
1948    return 0;
1949  }
1950  }
1951}
1952
1953bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1954  switch (Init->getStmtClass()) {
1955  default:
1956    InitializerElementNotConstant(Init);
1957    return true;
1958  case Expr::ParenExprClass: {
1959    const ParenExpr* PE = cast<ParenExpr>(Init);
1960    return CheckArithmeticConstantExpression(PE->getSubExpr());
1961  }
1962  case Expr::FloatingLiteralClass:
1963  case Expr::IntegerLiteralClass:
1964  case Expr::CharacterLiteralClass:
1965  case Expr::ImaginaryLiteralClass:
1966  case Expr::TypesCompatibleExprClass:
1967  case Expr::CXXBoolLiteralExprClass:
1968    return false;
1969  case Expr::CallExprClass:
1970  case Expr::CXXOperatorCallExprClass: {
1971    const CallExpr *CE = cast<CallExpr>(Init);
1972
1973    // Allow any constant foldable calls to builtins.
1974    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1975      return false;
1976
1977    InitializerElementNotConstant(Init);
1978    return true;
1979  }
1980  case Expr::DeclRefExprClass:
1981  case Expr::QualifiedDeclRefExprClass: {
1982    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1983    if (isa<EnumConstantDecl>(D))
1984      return false;
1985    InitializerElementNotConstant(Init);
1986    return true;
1987  }
1988  case Expr::CompoundLiteralExprClass:
1989    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1990    // but vectors are allowed to be magic.
1991    if (Init->getType()->isVectorType())
1992      return false;
1993    InitializerElementNotConstant(Init);
1994    return true;
1995  case Expr::UnaryOperatorClass: {
1996    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1997
1998    switch (Exp->getOpcode()) {
1999    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2000    // See C99 6.6p3.
2001    default:
2002      InitializerElementNotConstant(Init);
2003      return true;
2004    case UnaryOperator::OffsetOf:
2005      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2006        return false;
2007      InitializerElementNotConstant(Init);
2008      return true;
2009    case UnaryOperator::Extension:
2010    case UnaryOperator::LNot:
2011    case UnaryOperator::Plus:
2012    case UnaryOperator::Minus:
2013    case UnaryOperator::Not:
2014      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2015    }
2016  }
2017  case Expr::SizeOfAlignOfExprClass: {
2018    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2019    // Special check for void types, which are allowed as an extension
2020    if (Exp->getTypeOfArgument()->isVoidType())
2021      return false;
2022    // alignof always evaluates to a constant.
2023    // FIXME: is sizeof(int[3.0]) a constant expression?
2024    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2025      InitializerElementNotConstant(Init);
2026      return true;
2027    }
2028    return false;
2029  }
2030  case Expr::BinaryOperatorClass: {
2031    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2032
2033    if (Exp->getLHS()->getType()->isArithmeticType() &&
2034        Exp->getRHS()->getType()->isArithmeticType()) {
2035      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2036             CheckArithmeticConstantExpression(Exp->getRHS());
2037    }
2038
2039    if (Exp->getLHS()->getType()->isPointerType() &&
2040        Exp->getRHS()->getType()->isPointerType()) {
2041      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2042      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2043
2044      // Only allow a null (constant integer) base; we could
2045      // allow some additional cases if necessary, but this
2046      // is sufficient to cover offsetof-like constructs.
2047      if (!LHSBase && !RHSBase) {
2048        return CheckAddressConstantExpression(Exp->getLHS()) ||
2049               CheckAddressConstantExpression(Exp->getRHS());
2050      }
2051    }
2052
2053    InitializerElementNotConstant(Init);
2054    return true;
2055  }
2056  case Expr::ImplicitCastExprClass:
2057  case Expr::CStyleCastExprClass: {
2058    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2059    if (SubExpr->getType()->isArithmeticType())
2060      return CheckArithmeticConstantExpression(SubExpr);
2061
2062    if (SubExpr->getType()->isPointerType()) {
2063      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2064      // If the pointer has a null base, this is an offsetof-like construct
2065      return Base ? false : CheckAddressConstantExpression(SubExpr);
2066    }
2067
2068    InitializerElementNotConstant(Init);
2069    return true;
2070  }
2071  case Expr::ConditionalOperatorClass: {
2072    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2073
2074    // If GNU extensions are disabled, we require all operands to be arithmetic
2075    // constant expressions.
2076    if (getLangOptions().NoExtensions) {
2077      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2078          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2079             CheckArithmeticConstantExpression(Exp->getRHS());
2080    }
2081
2082    // Otherwise, we have to emulate some of the behavior of fold here.
2083    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2084    // because it can constant fold things away.  To retain compatibility with
2085    // GCC code, we see if we can fold the condition to a constant (which we
2086    // should always be able to do in theory).  If so, we only require the
2087    // specified arm of the conditional to be a constant.  This is a horrible
2088    // hack, but is require by real world code that uses __builtin_constant_p.
2089    Expr::EvalResult EvalResult;
2090    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2091        EvalResult.HasSideEffects) {
2092      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2093      // won't be able to either.  Use it to emit the diagnostic though.
2094      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2095      assert(Res && "Evaluate couldn't evaluate this constant?");
2096      return Res;
2097    }
2098
2099    // Verify that the side following the condition is also a constant.
2100    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2101    if (EvalResult.Val.getInt() == 0)
2102      std::swap(TrueSide, FalseSide);
2103
2104    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2105      return true;
2106
2107    // Okay, the evaluated side evaluates to a constant, so we accept this.
2108    // Check to see if the other side is obviously not a constant.  If so,
2109    // emit a warning that this is a GNU extension.
2110    if (FalseSide && !FalseSide->isEvaluatable(Context))
2111      Diag(Init->getExprLoc(),
2112           diag::ext_typecheck_expression_not_constant_but_accepted)
2113        << FalseSide->getSourceRange();
2114    return false;
2115  }
2116  }
2117}
2118
2119bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2120  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2121    Init = DIE->getInit();
2122
2123  Init = Init->IgnoreParens();
2124
2125  if (Init->isEvaluatable(Context))
2126    return false;
2127
2128  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2129  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2130    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2131
2132  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2133    return CheckForConstantInitializer(e->getInitializer(), DclT);
2134
2135  if (isa<ImplicitValueInitExpr>(Init)) {
2136    // FIXME: In C++, check for non-POD types.
2137    return false;
2138  }
2139
2140  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2141    unsigned numInits = Exp->getNumInits();
2142    for (unsigned i = 0; i < numInits; i++) {
2143      // FIXME: Need to get the type of the declaration for C++,
2144      // because it could be a reference?
2145
2146      if (CheckForConstantInitializer(Exp->getInit(i),
2147                                      Exp->getInit(i)->getType()))
2148        return true;
2149    }
2150    return false;
2151  }
2152
2153  // FIXME: We can probably remove some of this code below, now that
2154  // Expr::Evaluate is doing the heavy lifting for scalars.
2155
2156  if (Init->isNullPointerConstant(Context))
2157    return false;
2158  if (Init->getType()->isArithmeticType()) {
2159    QualType InitTy = Context.getCanonicalType(Init->getType())
2160                             .getUnqualifiedType();
2161    if (InitTy == Context.BoolTy) {
2162      // Special handling for pointers implicitly cast to bool;
2163      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2164      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2165        Expr* SubE = ICE->getSubExpr();
2166        if (SubE->getType()->isPointerType() ||
2167            SubE->getType()->isArrayType() ||
2168            SubE->getType()->isFunctionType()) {
2169          return CheckAddressConstantExpression(Init);
2170        }
2171      }
2172    } else if (InitTy->isIntegralType()) {
2173      Expr* SubE = 0;
2174      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2175        SubE = CE->getSubExpr();
2176      // Special check for pointer cast to int; we allow as an extension
2177      // an address constant cast to an integer if the integer
2178      // is of an appropriate width (this sort of code is apparently used
2179      // in some places).
2180      // FIXME: Add pedwarn?
2181      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2182      if (SubE && (SubE->getType()->isPointerType() ||
2183                   SubE->getType()->isArrayType() ||
2184                   SubE->getType()->isFunctionType())) {
2185        unsigned IntWidth = Context.getTypeSize(Init->getType());
2186        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2187        if (IntWidth >= PointerWidth)
2188          return CheckAddressConstantExpression(Init);
2189      }
2190    }
2191
2192    return CheckArithmeticConstantExpression(Init);
2193  }
2194
2195  if (Init->getType()->isPointerType())
2196    return CheckAddressConstantExpression(Init);
2197
2198  // An array type at the top level that isn't an init-list must
2199  // be a string literal
2200  if (Init->getType()->isArrayType())
2201    return false;
2202
2203  if (Init->getType()->isFunctionType())
2204    return false;
2205
2206  // Allow block exprs at top level.
2207  if (Init->getType()->isBlockPointerType())
2208    return false;
2209
2210  // GCC cast to union extension
2211  // note: the validity of the cast expr is checked by CheckCastTypes()
2212  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2213    QualType T = C->getType();
2214    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2215  }
2216
2217  InitializerElementNotConstant(Init);
2218  return true;
2219}
2220
2221void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2222  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2223}
2224
2225/// AddInitializerToDecl - Adds the initializer Init to the
2226/// declaration dcl. If DirectInit is true, this is C++ direct
2227/// initialization rather than copy initialization.
2228void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2229  Decl *RealDecl = static_cast<Decl *>(dcl);
2230  Expr *Init = static_cast<Expr *>(init.release());
2231  assert(Init && "missing initializer");
2232
2233  // If there is no declaration, there was an error parsing it.  Just ignore
2234  // the initializer.
2235  if (RealDecl == 0) {
2236    delete Init;
2237    return;
2238  }
2239
2240  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2241  if (!VDecl) {
2242    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2243    RealDecl->setInvalidDecl();
2244    return;
2245  }
2246  // Get the decls type and save a reference for later, since
2247  // CheckInitializerTypes may change it.
2248  QualType DclT = VDecl->getType(), SavT = DclT;
2249  if (VDecl->isBlockVarDecl()) {
2250    VarDecl::StorageClass SC = VDecl->getStorageClass();
2251    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2252      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2253      VDecl->setInvalidDecl();
2254    } else if (!VDecl->isInvalidDecl()) {
2255      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2256                                VDecl->getDeclName(), DirectInit))
2257        VDecl->setInvalidDecl();
2258
2259      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2260      if (!getLangOptions().CPlusPlus) {
2261        if (SC == VarDecl::Static) // C99 6.7.8p4.
2262          CheckForConstantInitializer(Init, DclT);
2263      }
2264    }
2265  } else if (VDecl->isFileVarDecl()) {
2266    if (VDecl->getStorageClass() == VarDecl::Extern)
2267      Diag(VDecl->getLocation(), diag::warn_extern_init);
2268    if (!VDecl->isInvalidDecl())
2269      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2270                                VDecl->getDeclName(), DirectInit))
2271        VDecl->setInvalidDecl();
2272
2273    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2274    if (!getLangOptions().CPlusPlus) {
2275      // C99 6.7.8p4. All file scoped initializers need to be constant.
2276      CheckForConstantInitializer(Init, DclT);
2277    }
2278  }
2279  // If the type changed, it means we had an incomplete type that was
2280  // completed by the initializer. For example:
2281  //   int ary[] = { 1, 3, 5 };
2282  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2283  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2284    VDecl->setType(DclT);
2285    Init->setType(DclT);
2286  }
2287
2288  // Attach the initializer to the decl.
2289  VDecl->setInit(Init);
2290  return;
2291}
2292
2293void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2294  Decl *RealDecl = static_cast<Decl *>(dcl);
2295
2296  // If there is no declaration, there was an error parsing it. Just ignore it.
2297  if (RealDecl == 0)
2298    return;
2299
2300  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2301    QualType Type = Var->getType();
2302    // C++ [dcl.init.ref]p3:
2303    //   The initializer can be omitted for a reference only in a
2304    //   parameter declaration (8.3.5), in the declaration of a
2305    //   function return type, in the declaration of a class member
2306    //   within its class declaration (9.2), and where the extern
2307    //   specifier is explicitly used.
2308    if (Type->isReferenceType() &&
2309        Var->getStorageClass() != VarDecl::Extern &&
2310        Var->getStorageClass() != VarDecl::PrivateExtern) {
2311      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2312        << Var->getDeclName()
2313        << SourceRange(Var->getLocation(), Var->getLocation());
2314      Var->setInvalidDecl();
2315      return;
2316    }
2317
2318    // C++ [dcl.init]p9:
2319    //
2320    //   If no initializer is specified for an object, and the object
2321    //   is of (possibly cv-qualified) non-POD class type (or array
2322    //   thereof), the object shall be default-initialized; if the
2323    //   object is of const-qualified type, the underlying class type
2324    //   shall have a user-declared default constructor.
2325    if (getLangOptions().CPlusPlus) {
2326      QualType InitType = Type;
2327      if (const ArrayType *Array = Context.getAsArrayType(Type))
2328        InitType = Array->getElementType();
2329      if (Var->getStorageClass() != VarDecl::Extern &&
2330          Var->getStorageClass() != VarDecl::PrivateExtern &&
2331          InitType->isRecordType()) {
2332        const CXXConstructorDecl *Constructor
2333          = PerformInitializationByConstructor(InitType, 0, 0,
2334                                               Var->getLocation(),
2335                                               SourceRange(Var->getLocation(),
2336                                                           Var->getLocation()),
2337                                               Var->getDeclName(),
2338                                               IK_Default);
2339        if (!Constructor)
2340          Var->setInvalidDecl();
2341      }
2342    }
2343
2344#if 0
2345    // FIXME: Temporarily disabled because we are not properly parsing
2346    // linkage specifications on declarations, e.g.,
2347    //
2348    //   extern "C" const CGPoint CGPointerZero;
2349    //
2350    // C++ [dcl.init]p9:
2351    //
2352    //     If no initializer is specified for an object, and the
2353    //     object is of (possibly cv-qualified) non-POD class type (or
2354    //     array thereof), the object shall be default-initialized; if
2355    //     the object is of const-qualified type, the underlying class
2356    //     type shall have a user-declared default
2357    //     constructor. Otherwise, if no initializer is specified for
2358    //     an object, the object and its subobjects, if any, have an
2359    //     indeterminate initial value; if the object or any of its
2360    //     subobjects are of const-qualified type, the program is
2361    //     ill-formed.
2362    //
2363    // This isn't technically an error in C, so we don't diagnose it.
2364    //
2365    // FIXME: Actually perform the POD/user-defined default
2366    // constructor check.
2367    if (getLangOptions().CPlusPlus &&
2368        Context.getCanonicalType(Type).isConstQualified() &&
2369        Var->getStorageClass() != VarDecl::Extern)
2370      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2371        << Var->getName()
2372        << SourceRange(Var->getLocation(), Var->getLocation());
2373#endif
2374  }
2375}
2376
2377/// The declarators are chained together backwards, reverse the list.
2378Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2379  // Often we have single declarators, handle them quickly.
2380  Decl *GroupDecl = static_cast<Decl*>(group);
2381  if (GroupDecl == 0)
2382    return 0;
2383
2384  Decl *Group = dyn_cast<Decl>(GroupDecl);
2385  Decl *NewGroup = 0;
2386  if (Group->getNextDeclarator() == 0)
2387    NewGroup = Group;
2388  else { // reverse the list.
2389    while (Group) {
2390      Decl *Next = Group->getNextDeclarator();
2391      Group->setNextDeclarator(NewGroup);
2392      NewGroup = Group;
2393      Group = Next;
2394    }
2395  }
2396  // Perform semantic analysis that depends on having fully processed both
2397  // the declarator and initializer.
2398  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2399    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2400    if (!IDecl)
2401      continue;
2402    QualType T = IDecl->getType();
2403
2404    if (T->isVariableArrayType()) {
2405      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2406
2407      // FIXME: This won't give the correct result for
2408      // int a[10][n];
2409      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2410      if (IDecl->isFileVarDecl()) {
2411        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2412          SizeRange;
2413
2414        IDecl->setInvalidDecl();
2415      } else {
2416        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2417        // static storage duration, it shall not have a variable length array.
2418        if (IDecl->getStorageClass() == VarDecl::Static) {
2419          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2420            << SizeRange;
2421          IDecl->setInvalidDecl();
2422        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2423          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2424            << SizeRange;
2425          IDecl->setInvalidDecl();
2426        }
2427      }
2428    } else if (T->isVariablyModifiedType()) {
2429      if (IDecl->isFileVarDecl()) {
2430        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2431        IDecl->setInvalidDecl();
2432      } else {
2433        if (IDecl->getStorageClass() == VarDecl::Extern) {
2434          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2435          IDecl->setInvalidDecl();
2436        }
2437      }
2438    }
2439
2440    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2441    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2442    if (IDecl->isBlockVarDecl() &&
2443        IDecl->getStorageClass() != VarDecl::Extern) {
2444      if (!IDecl->isInvalidDecl() &&
2445          DiagnoseIncompleteType(IDecl->getLocation(), T,
2446                                 diag::err_typecheck_decl_incomplete_type))
2447        IDecl->setInvalidDecl();
2448    }
2449    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2450    // object that has file scope without an initializer, and without a
2451    // storage-class specifier or with the storage-class specifier "static",
2452    // constitutes a tentative definition. Note: A tentative definition with
2453    // external linkage is valid (C99 6.2.2p5).
2454    if (isTentativeDefinition(IDecl)) {
2455      if (T->isIncompleteArrayType()) {
2456        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2457        // array to be completed. Don't issue a diagnostic.
2458      } else if (!IDecl->isInvalidDecl() &&
2459                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2460                                        diag::err_typecheck_decl_incomplete_type))
2461        // C99 6.9.2p3: If the declaration of an identifier for an object is
2462        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2463        // declared type shall not be an incomplete type.
2464        IDecl->setInvalidDecl();
2465    }
2466    if (IDecl->isFileVarDecl())
2467      CheckForFileScopedRedefinitions(S, IDecl);
2468  }
2469  return NewGroup;
2470}
2471
2472/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2473/// to introduce parameters into function prototype scope.
2474Sema::DeclTy *
2475Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2476  const DeclSpec &DS = D.getDeclSpec();
2477
2478  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2479  VarDecl::StorageClass StorageClass = VarDecl::None;
2480  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2481    StorageClass = VarDecl::Register;
2482  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2483    Diag(DS.getStorageClassSpecLoc(),
2484         diag::err_invalid_storage_class_in_func_decl);
2485    D.getMutableDeclSpec().ClearStorageClassSpecs();
2486  }
2487  if (DS.isThreadSpecified()) {
2488    Diag(DS.getThreadSpecLoc(),
2489         diag::err_invalid_storage_class_in_func_decl);
2490    D.getMutableDeclSpec().ClearStorageClassSpecs();
2491  }
2492
2493  // Check that there are no default arguments inside the type of this
2494  // parameter (C++ only).
2495  if (getLangOptions().CPlusPlus)
2496    CheckExtraCXXDefaultArguments(D);
2497
2498  // In this context, we *do not* check D.getInvalidType(). If the declarator
2499  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2500  // though it will not reflect the user specified type.
2501  QualType parmDeclType = GetTypeForDeclarator(D, S);
2502
2503  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2504
2505  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2506  // Can this happen for params?  We already checked that they don't conflict
2507  // among each other.  Here they can only shadow globals, which is ok.
2508  IdentifierInfo *II = D.getIdentifier();
2509  if (II) {
2510    if (Decl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2511      if (PrevDecl->isTemplateParameter()) {
2512        // Maybe we will complain about the shadowed template parameter.
2513        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2514        // Just pretend that we didn't see the previous declaration.
2515        PrevDecl = 0;
2516      } else if (S->isDeclScope(PrevDecl)) {
2517        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2518
2519        // Recover by removing the name
2520        II = 0;
2521        D.SetIdentifier(0, D.getIdentifierLoc());
2522      }
2523    }
2524  }
2525
2526  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2527  // Doing the promotion here has a win and a loss. The win is the type for
2528  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2529  // code generator). The loss is the orginal type isn't preserved. For example:
2530  //
2531  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2532  //    int blockvardecl[5];
2533  //    sizeof(parmvardecl);  // size == 4
2534  //    sizeof(blockvardecl); // size == 20
2535  // }
2536  //
2537  // For expressions, all implicit conversions are captured using the
2538  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2539  //
2540  // FIXME: If a source translation tool needs to see the original type, then
2541  // we need to consider storing both types (in ParmVarDecl)...
2542  //
2543  if (parmDeclType->isArrayType()) {
2544    // int x[restrict 4] ->  int *restrict
2545    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2546  } else if (parmDeclType->isFunctionType())
2547    parmDeclType = Context.getPointerType(parmDeclType);
2548
2549  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2550                                         D.getIdentifierLoc(), II,
2551                                         parmDeclType, StorageClass,
2552                                         0);
2553
2554  if (D.getInvalidType())
2555    New->setInvalidDecl();
2556
2557  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2558  if (D.getCXXScopeSpec().isSet()) {
2559    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2560      << D.getCXXScopeSpec().getRange();
2561    New->setInvalidDecl();
2562  }
2563
2564  // Add the parameter declaration into this scope.
2565  S->AddDecl(New);
2566  if (II)
2567    IdResolver.AddDecl(New);
2568
2569  ProcessDeclAttributes(New, D);
2570  return New;
2571
2572}
2573
2574void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2575  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2576         "Not a function declarator!");
2577  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2578
2579  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2580  // for a K&R function.
2581  if (!FTI.hasPrototype) {
2582    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2583      if (FTI.ArgInfo[i].Param == 0) {
2584        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2585          << FTI.ArgInfo[i].Ident;
2586        // Implicitly declare the argument as type 'int' for lack of a better
2587        // type.
2588        DeclSpec DS;
2589        const char* PrevSpec; // unused
2590        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2591                           PrevSpec);
2592        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2593        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2594        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2595      }
2596    }
2597  }
2598}
2599
2600Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2601  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2602  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2603         "Not a function declarator!");
2604  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2605
2606  if (FTI.hasPrototype) {
2607    // FIXME: Diagnose arguments without names in C.
2608  }
2609
2610  Scope *ParentScope = FnBodyScope->getParent();
2611
2612  return ActOnStartOfFunctionDef(FnBodyScope,
2613                                 ActOnDeclarator(ParentScope, D, 0,
2614                                                 /*IsFunctionDefinition=*/true));
2615}
2616
2617Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2618  Decl *decl = static_cast<Decl*>(D);
2619  FunctionDecl *FD = cast<FunctionDecl>(decl);
2620
2621  // See if this is a redefinition.
2622  const FunctionDecl *Definition;
2623  if (FD->getBody(Definition)) {
2624    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2625    Diag(Definition->getLocation(), diag::note_previous_definition);
2626  }
2627
2628  PushDeclContext(FnBodyScope, FD);
2629
2630  // Check the validity of our function parameters
2631  CheckParmsForFunctionDef(FD);
2632
2633  // Introduce our parameters into the function scope
2634  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2635    ParmVarDecl *Param = FD->getParamDecl(p);
2636    Param->setOwningFunction(FD);
2637
2638    // If this has an identifier, add it to the scope stack.
2639    if (Param->getIdentifier())
2640      PushOnScopeChains(Param, FnBodyScope);
2641  }
2642
2643  // Checking attributes of current function definition
2644  // dllimport attribute.
2645  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2646    // dllimport attribute cannot be applied to definition.
2647    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2648      Diag(FD->getLocation(),
2649           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2650        << "dllimport";
2651      FD->setInvalidDecl();
2652      return FD;
2653    } else {
2654      // If a symbol previously declared dllimport is later defined, the
2655      // attribute is ignored in subsequent references, and a warning is
2656      // emitted.
2657      Diag(FD->getLocation(),
2658           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2659        << FD->getNameAsCString() << "dllimport";
2660    }
2661  }
2662  return FD;
2663}
2664
2665Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2666  Decl *dcl = static_cast<Decl *>(D);
2667  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2668  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2669    FD->setBody(Body);
2670    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2671  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2672    MD->setBody((Stmt*)Body);
2673  } else
2674    return 0;
2675  PopDeclContext();
2676  // Verify and clean out per-function state.
2677
2678  // Check goto/label use.
2679  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2680       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2681    // Verify that we have no forward references left.  If so, there was a goto
2682    // or address of a label taken, but no definition of it.  Label fwd
2683    // definitions are indicated with a null substmt.
2684    if (I->second->getSubStmt() == 0) {
2685      LabelStmt *L = I->second;
2686      // Emit error.
2687      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2688
2689      // At this point, we have gotos that use the bogus label.  Stitch it into
2690      // the function body so that they aren't leaked and that the AST is well
2691      // formed.
2692      if (Body) {
2693        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2694        cast<CompoundStmt>(Body)->push_back(L);
2695      } else {
2696        // The whole function wasn't parsed correctly, just delete this.
2697        delete L;
2698      }
2699    }
2700  }
2701  LabelMap.clear();
2702
2703  return D;
2704}
2705
2706/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2707/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2708NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2709                                          IdentifierInfo &II, Scope *S) {
2710  // Extension in C99.  Legal in C90, but warn about it.
2711  if (getLangOptions().C99)
2712    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2713  else
2714    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2715
2716  // FIXME: handle stuff like:
2717  // void foo() { extern float X(); }
2718  // void bar() { X(); }  <-- implicit decl for X in another scope.
2719
2720  // Set a Declarator for the implicit definition: int foo();
2721  const char *Dummy;
2722  DeclSpec DS;
2723  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2724  Error = Error; // Silence warning.
2725  assert(!Error && "Error setting up implicit decl!");
2726  Declarator D(DS, Declarator::BlockContext);
2727  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2728  D.SetIdentifier(&II, Loc);
2729
2730  // Insert this function into translation-unit scope.
2731
2732  DeclContext *PrevDC = CurContext;
2733  CurContext = Context.getTranslationUnitDecl();
2734
2735  FunctionDecl *FD =
2736    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2737  FD->setImplicit();
2738
2739  CurContext = PrevDC;
2740
2741  return FD;
2742}
2743
2744
2745TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2746                                    Decl *LastDeclarator) {
2747  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2748  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2749
2750  // Scope manipulation handled by caller.
2751  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2752                                           D.getIdentifierLoc(),
2753                                           D.getIdentifier(),
2754                                           T);
2755  NewTD->setNextDeclarator(LastDeclarator);
2756  if (D.getInvalidType())
2757    NewTD->setInvalidDecl();
2758  return NewTD;
2759}
2760
2761/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2762/// former case, Name will be non-null.  In the later case, Name will be null.
2763/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2764/// reference/declaration/definition of a tag.
2765Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2766                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2767                             IdentifierInfo *Name, SourceLocation NameLoc,
2768                             AttributeList *Attr,
2769                             MultiTemplateParamsArg TemplateParameterLists) {
2770  // If this is not a definition, it must have a name.
2771  assert((Name != 0 || TK == TK_Definition) &&
2772         "Nameless record must be a definition!");
2773
2774  TagDecl::TagKind Kind;
2775  switch (TagSpec) {
2776  default: assert(0 && "Unknown tag type!");
2777  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2778  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2779  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2780  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2781  }
2782
2783  DeclContext *SearchDC = CurContext;
2784  DeclContext *DC = CurContext;
2785  DeclContext *LexicalContext = CurContext;
2786  Decl *PrevDecl = 0;
2787
2788  bool Invalid = false;
2789
2790  if (Name && SS.isNotEmpty()) {
2791    // We have a nested-name tag ('struct foo::bar').
2792
2793    // Check for invalid 'foo::'.
2794    if (SS.isInvalid()) {
2795      Name = 0;
2796      goto CreateNewDecl;
2797    }
2798
2799    DC = static_cast<DeclContext*>(SS.getScopeRep());
2800    // Look-up name inside 'foo::'.
2801    PrevDecl = dyn_cast_or_null<TagDecl>(
2802                     LookupQualifiedName(DC, Name, LookupTagName).getAsDecl());
2803
2804    // A tag 'foo::bar' must already exist.
2805    if (PrevDecl == 0) {
2806      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2807      Name = 0;
2808      goto CreateNewDecl;
2809    }
2810  } else if (Name) {
2811    // If this is a named struct, check to see if there was a previous forward
2812    // declaration or definition.
2813    Decl *D = LookupName(S, Name, LookupTagName);
2814    PrevDecl = dyn_cast_or_null<NamedDecl>(D);
2815
2816    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2817      // FIXME: This makes sure that we ignore the contexts associated
2818      // with C structs, unions, and enums when looking for a matching
2819      // tag declaration or definition. See the similar lookup tweak
2820      // in Sema::LookupName; is there a better way to deal with this?
2821      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2822        SearchDC = SearchDC->getParent();
2823    }
2824  }
2825
2826  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2827    // Maybe we will complain about the shadowed template parameter.
2828    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2829    // Just pretend that we didn't see the previous declaration.
2830    PrevDecl = 0;
2831  }
2832
2833  if (PrevDecl) {
2834    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2835      // If this is a use of a previous tag, or if the tag is already declared
2836      // in the same scope (so that the definition/declaration completes or
2837      // rementions the tag), reuse the decl.
2838      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2839        // Make sure that this wasn't declared as an enum and now used as a
2840        // struct or something similar.
2841        if (PrevTagDecl->getTagKind() != Kind) {
2842          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2843          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2844          // Recover by making this an anonymous redefinition.
2845          Name = 0;
2846          PrevDecl = 0;
2847          Invalid = true;
2848        } else {
2849          // If this is a use, just return the declaration we found.
2850
2851          // FIXME: In the future, return a variant or some other clue
2852          // for the consumer of this Decl to know it doesn't own it.
2853          // For our current ASTs this shouldn't be a problem, but will
2854          // need to be changed with DeclGroups.
2855          if (TK == TK_Reference)
2856            return PrevDecl;
2857
2858          // Diagnose attempts to redefine a tag.
2859          if (TK == TK_Definition) {
2860            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2861              Diag(NameLoc, diag::err_redefinition) << Name;
2862              Diag(Def->getLocation(), diag::note_previous_definition);
2863              // If this is a redefinition, recover by making this
2864              // struct be anonymous, which will make any later
2865              // references get the previous definition.
2866              Name = 0;
2867              PrevDecl = 0;
2868              Invalid = true;
2869            } else {
2870              // If the type is currently being defined, complain
2871              // about a nested redefinition.
2872              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2873              if (Tag->isBeingDefined()) {
2874                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2875                Diag(PrevTagDecl->getLocation(),
2876                     diag::note_previous_definition);
2877                Name = 0;
2878                PrevDecl = 0;
2879                Invalid = true;
2880              }
2881            }
2882
2883            // Okay, this is definition of a previously declared or referenced
2884            // tag PrevDecl. We're going to create a new Decl for it.
2885          }
2886        }
2887        // If we get here we have (another) forward declaration or we
2888        // have a definition.  Just create a new decl.
2889      } else {
2890        // If we get here, this is a definition of a new tag type in a nested
2891        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2892        // new decl/type.  We set PrevDecl to NULL so that the entities
2893        // have distinct types.
2894        PrevDecl = 0;
2895      }
2896      // If we get here, we're going to create a new Decl. If PrevDecl
2897      // is non-NULL, it's a definition of the tag declared by
2898      // PrevDecl. If it's NULL, we have a new definition.
2899    } else {
2900      // PrevDecl is a namespace, template, or anything else
2901      // that lives in the IDNS_Tag identifier namespace.
2902      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2903        // The tag name clashes with a namespace name, issue an error and
2904        // recover by making this tag be anonymous.
2905        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2906        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2907        Name = 0;
2908        PrevDecl = 0;
2909        Invalid = true;
2910      } else {
2911        // The existing declaration isn't relevant to us; we're in a
2912        // new scope, so clear out the previous declaration.
2913        PrevDecl = 0;
2914      }
2915    }
2916  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2917             (Kind != TagDecl::TK_enum))  {
2918    // C++ [basic.scope.pdecl]p5:
2919    //   -- for an elaborated-type-specifier of the form
2920    //
2921    //          class-key identifier
2922    //
2923    //      if the elaborated-type-specifier is used in the
2924    //      decl-specifier-seq or parameter-declaration-clause of a
2925    //      function defined in namespace scope, the identifier is
2926    //      declared as a class-name in the namespace that contains
2927    //      the declaration; otherwise, except as a friend
2928    //      declaration, the identifier is declared in the smallest
2929    //      non-class, non-function-prototype scope that contains the
2930    //      declaration.
2931    //
2932    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2933    // C structs and unions.
2934
2935    // Find the context where we'll be declaring the tag.
2936    // FIXME: We would like to maintain the current DeclContext as the
2937    // lexical context,
2938    while (DC->isRecord())
2939      DC = DC->getParent();
2940    LexicalContext = DC;
2941
2942    // Find the scope where we'll be declaring the tag.
2943    while (S->isClassScope() ||
2944           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2945           ((S->getFlags() & Scope::DeclScope) == 0) ||
2946           (S->getEntity() &&
2947            ((DeclContext *)S->getEntity())->isTransparentContext()))
2948      S = S->getParent();
2949  }
2950
2951CreateNewDecl:
2952
2953  // If there is an identifier, use the location of the identifier as the
2954  // location of the decl, otherwise use the location of the struct/union
2955  // keyword.
2956  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2957
2958  // Otherwise, create a new declaration. If there is a previous
2959  // declaration of the same entity, the two will be linked via
2960  // PrevDecl.
2961  TagDecl *New;
2962
2963  if (Kind == TagDecl::TK_enum) {
2964    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2965    // enum X { A, B, C } D;    D should chain to X.
2966    New = EnumDecl::Create(Context, DC, Loc, Name,
2967                           cast_or_null<EnumDecl>(PrevDecl));
2968    // If this is an undefined enum, warn.
2969    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2970  } else {
2971    // struct/union/class
2972
2973    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2974    // struct X { int A; } D;    D should chain to X.
2975    if (getLangOptions().CPlusPlus)
2976      // FIXME: Look for a way to use RecordDecl for simple structs.
2977      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2978                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2979    else
2980      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2981                               cast_or_null<RecordDecl>(PrevDecl));
2982  }
2983
2984  if (Kind != TagDecl::TK_enum) {
2985    // Handle #pragma pack: if the #pragma pack stack has non-default
2986    // alignment, make up a packed attribute for this decl. These
2987    // attributes are checked when the ASTContext lays out the
2988    // structure.
2989    //
2990    // It is important for implementing the correct semantics that this
2991    // happen here (in act on tag decl). The #pragma pack stack is
2992    // maintained as a result of parser callbacks which can occur at
2993    // many points during the parsing of a struct declaration (because
2994    // the #pragma tokens are effectively skipped over during the
2995    // parsing of the struct).
2996    if (unsigned Alignment = PackContext.getAlignment())
2997      New->addAttr(new PackedAttr(Alignment * 8));
2998  }
2999
3000  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3001    // C++ [dcl.typedef]p3:
3002    //   [...] Similarly, in a given scope, a class or enumeration
3003    //   shall not be declared with the same name as a typedef-name
3004    //   that is declared in that scope and refers to a type other
3005    //   than the class or enumeration itself.
3006    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3007    TypedefDecl *PrevTypedef = 0;
3008    if (Lookup.getKind() == LookupResult::Found)
3009      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3010
3011    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3012        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3013          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3014      Diag(Loc, diag::err_tag_definition_of_typedef)
3015        << Context.getTypeDeclType(New)
3016        << PrevTypedef->getUnderlyingType();
3017      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3018      Invalid = true;
3019    }
3020  }
3021
3022  if (Invalid)
3023    New->setInvalidDecl();
3024
3025  if (Attr)
3026    ProcessDeclAttributeList(New, Attr);
3027
3028  // If we're declaring or defining a tag in function prototype scope
3029  // in C, note that this type can only be used within the function.
3030  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3031    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3032
3033  // Set the lexical context. If the tag has a C++ scope specifier, the
3034  // lexical context will be different from the semantic context.
3035  New->setLexicalDeclContext(LexicalContext);
3036
3037  if (TK == TK_Definition)
3038    New->startDefinition();
3039
3040  // If this has an identifier, add it to the scope stack.
3041  if (Name) {
3042    S = getNonFieldDeclScope(S);
3043
3044    // Add it to the decl chain.
3045    if (LexicalContext != CurContext) {
3046      // FIXME: PushOnScopeChains should not rely on CurContext!
3047      DeclContext *OldContext = CurContext;
3048      CurContext = LexicalContext;
3049      PushOnScopeChains(New, S);
3050      CurContext = OldContext;
3051    } else
3052      PushOnScopeChains(New, S);
3053  } else {
3054    LexicalContext->addDecl(New);
3055  }
3056
3057  return New;
3058}
3059
3060void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3061  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3062
3063  // Enter the tag context.
3064  PushDeclContext(S, Tag);
3065
3066  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3067    FieldCollector->StartClass();
3068
3069    if (Record->getIdentifier()) {
3070      // C++ [class]p2:
3071      //   [...] The class-name is also inserted into the scope of the
3072      //   class itself; this is known as the injected-class-name. For
3073      //   purposes of access checking, the injected-class-name is treated
3074      //   as if it were a public member name.
3075      RecordDecl *InjectedClassName
3076        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3077                                CurContext, Record->getLocation(),
3078                                Record->getIdentifier(), Record);
3079      InjectedClassName->setImplicit();
3080      PushOnScopeChains(InjectedClassName, S);
3081    }
3082  }
3083}
3084
3085void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3086  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3087
3088  if (isa<CXXRecordDecl>(Tag))
3089    FieldCollector->FinishClass();
3090
3091  // Exit this scope of this tag's definition.
3092  PopDeclContext();
3093
3094  // Notify the consumer that we've defined a tag.
3095  Consumer.HandleTagDeclDefinition(Tag);
3096}
3097
3098/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3099/// types into constant array types in certain situations which would otherwise
3100/// be errors (for GCC compatibility).
3101static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3102                                                    ASTContext &Context) {
3103  // This method tries to turn a variable array into a constant
3104  // array even when the size isn't an ICE.  This is necessary
3105  // for compatibility with code that depends on gcc's buggy
3106  // constant expression folding, like struct {char x[(int)(char*)2];}
3107  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3108  if (!VLATy) return QualType();
3109
3110  Expr::EvalResult EvalResult;
3111  if (!VLATy->getSizeExpr() ||
3112      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3113    return QualType();
3114
3115  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3116  llvm::APSInt &Res = EvalResult.Val.getInt();
3117  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3118    return Context.getConstantArrayType(VLATy->getElementType(),
3119                                        Res, ArrayType::Normal, 0);
3120  return QualType();
3121}
3122
3123bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3124                          QualType FieldTy, const Expr *BitWidth) {
3125  // FIXME: 6.7.2.1p4 - verify the field type.
3126
3127  llvm::APSInt Value;
3128  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3129    return true;
3130
3131  // Zero-width bitfield is ok for anonymous field.
3132  if (Value == 0 && FieldName)
3133    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3134
3135  if (Value.isNegative())
3136    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3137
3138  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3139  // FIXME: We won't need the 0 size once we check that the field type is valid.
3140  if (TypeSize && Value.getZExtValue() > TypeSize)
3141    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3142       << FieldName << (unsigned)TypeSize;
3143
3144  return false;
3145}
3146
3147/// ActOnField - Each field of a struct/union/class is passed into this in order
3148/// to create a FieldDecl object for it.
3149Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3150                               SourceLocation DeclStart,
3151                               Declarator &D, ExprTy *BitfieldWidth) {
3152  IdentifierInfo *II = D.getIdentifier();
3153  Expr *BitWidth = (Expr*)BitfieldWidth;
3154  SourceLocation Loc = DeclStart;
3155  RecordDecl *Record = (RecordDecl *)TagD;
3156  if (II) Loc = D.getIdentifierLoc();
3157
3158  // FIXME: Unnamed fields can be handled in various different ways, for
3159  // example, unnamed unions inject all members into the struct namespace!
3160
3161  QualType T = GetTypeForDeclarator(D, S);
3162  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3163  bool InvalidDecl = false;
3164
3165  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3166  // than a variably modified type.
3167  if (T->isVariablyModifiedType()) {
3168    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3169    if (!FixedTy.isNull()) {
3170      Diag(Loc, diag::warn_illegal_constant_array_size);
3171      T = FixedTy;
3172    } else {
3173      Diag(Loc, diag::err_typecheck_field_variable_size);
3174      T = Context.IntTy;
3175      InvalidDecl = true;
3176    }
3177  }
3178
3179  if (BitWidth) {
3180    if (VerifyBitField(Loc, II, T, BitWidth))
3181      InvalidDecl = true;
3182  } else {
3183    // Not a bitfield.
3184
3185    // validate II.
3186
3187  }
3188
3189  // FIXME: Chain fielddecls together.
3190  FieldDecl *NewFD;
3191
3192  NewFD = FieldDecl::Create(Context, Record,
3193                            Loc, II, T, BitWidth,
3194                            D.getDeclSpec().getStorageClassSpec() ==
3195                              DeclSpec::SCS_mutable);
3196
3197  if (II) {
3198    Decl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3199    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3200        && !isa<TagDecl>(PrevDecl)) {
3201      Diag(Loc, diag::err_duplicate_member) << II;
3202      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3203      NewFD->setInvalidDecl();
3204      Record->setInvalidDecl();
3205    }
3206  }
3207
3208  if (getLangOptions().CPlusPlus) {
3209    CheckExtraCXXDefaultArguments(D);
3210    if (!T->isPODType())
3211      cast<CXXRecordDecl>(Record)->setPOD(false);
3212  }
3213
3214  ProcessDeclAttributes(NewFD, D);
3215
3216  if (D.getInvalidType() || InvalidDecl)
3217    NewFD->setInvalidDecl();
3218
3219  if (II) {
3220    PushOnScopeChains(NewFD, S);
3221  } else
3222    Record->addDecl(NewFD);
3223
3224  return NewFD;
3225}
3226
3227/// TranslateIvarVisibility - Translate visibility from a token ID to an
3228///  AST enum value.
3229static ObjCIvarDecl::AccessControl
3230TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3231  switch (ivarVisibility) {
3232  default: assert(0 && "Unknown visitibility kind");
3233  case tok::objc_private: return ObjCIvarDecl::Private;
3234  case tok::objc_public: return ObjCIvarDecl::Public;
3235  case tok::objc_protected: return ObjCIvarDecl::Protected;
3236  case tok::objc_package: return ObjCIvarDecl::Package;
3237  }
3238}
3239
3240/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3241/// in order to create an IvarDecl object for it.
3242Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3243                              SourceLocation DeclStart,
3244                              Declarator &D, ExprTy *BitfieldWidth,
3245                              tok::ObjCKeywordKind Visibility) {
3246
3247  IdentifierInfo *II = D.getIdentifier();
3248  Expr *BitWidth = (Expr*)BitfieldWidth;
3249  SourceLocation Loc = DeclStart;
3250  if (II) Loc = D.getIdentifierLoc();
3251
3252  // FIXME: Unnamed fields can be handled in various different ways, for
3253  // example, unnamed unions inject all members into the struct namespace!
3254
3255  QualType T = GetTypeForDeclarator(D, S);
3256  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3257  bool InvalidDecl = false;
3258
3259  if (BitWidth) {
3260    // TODO: Validate.
3261    //printf("WARNING: BITFIELDS IGNORED!\n");
3262
3263    // 6.7.2.1p3
3264    // 6.7.2.1p4
3265
3266  } else {
3267    // Not a bitfield.
3268
3269    // validate II.
3270
3271  }
3272
3273  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3274  // than a variably modified type.
3275  if (T->isVariablyModifiedType()) {
3276    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3277    InvalidDecl = true;
3278  }
3279
3280  // Get the visibility (access control) for this ivar.
3281  ObjCIvarDecl::AccessControl ac =
3282    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3283                                        : ObjCIvarDecl::None;
3284
3285  // Construct the decl.
3286  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3287                                             (Expr *)BitfieldWidth);
3288
3289  if (II) {
3290    Decl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3291    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3292        && !isa<TagDecl>(PrevDecl)) {
3293      Diag(Loc, diag::err_duplicate_member) << II;
3294      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3295      NewID->setInvalidDecl();
3296    }
3297  }
3298
3299  // Process attributes attached to the ivar.
3300  ProcessDeclAttributes(NewID, D);
3301
3302  if (D.getInvalidType() || InvalidDecl)
3303    NewID->setInvalidDecl();
3304
3305  if (II) {
3306    // FIXME: When interfaces are DeclContexts, we'll need to add
3307    // these to the interface.
3308    S->AddDecl(NewID);
3309    IdResolver.AddDecl(NewID);
3310  }
3311
3312  return NewID;
3313}
3314
3315void Sema::ActOnFields(Scope* S,
3316                       SourceLocation RecLoc, DeclTy *RecDecl,
3317                       DeclTy **Fields, unsigned NumFields,
3318                       SourceLocation LBrac, SourceLocation RBrac,
3319                       AttributeList *Attr) {
3320  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3321  assert(EnclosingDecl && "missing record or interface decl");
3322  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3323
3324  // Verify that all the fields are okay.
3325  unsigned NumNamedMembers = 0;
3326  llvm::SmallVector<FieldDecl*, 32> RecFields;
3327
3328  for (unsigned i = 0; i != NumFields; ++i) {
3329    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3330    assert(FD && "missing field decl");
3331
3332    // Get the type for the field.
3333    Type *FDTy = FD->getType().getTypePtr();
3334
3335    if (!FD->isAnonymousStructOrUnion()) {
3336      // Remember all fields written by the user.
3337      RecFields.push_back(FD);
3338    }
3339
3340    // C99 6.7.2.1p2 - A field may not be a function type.
3341    if (FDTy->isFunctionType()) {
3342      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3343        << FD->getDeclName();
3344      FD->setInvalidDecl();
3345      EnclosingDecl->setInvalidDecl();
3346      continue;
3347    }
3348    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3349    if (FDTy->isIncompleteType()) {
3350      if (!Record) {  // Incomplete ivar type is always an error.
3351        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3352                               diag::err_field_incomplete);
3353        FD->setInvalidDecl();
3354        EnclosingDecl->setInvalidDecl();
3355        continue;
3356      }
3357      if (i != NumFields-1 ||                   // ... that the last member ...
3358          !Record->isStruct() ||  // ... of a structure ...
3359          !FDTy->isArrayType()) {         //... may have incomplete array type.
3360        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3361                               diag::err_field_incomplete);
3362        FD->setInvalidDecl();
3363        EnclosingDecl->setInvalidDecl();
3364        continue;
3365      }
3366      if (NumNamedMembers < 1) {  //... must have more than named member ...
3367        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3368          << FD->getDeclName();
3369        FD->setInvalidDecl();
3370        EnclosingDecl->setInvalidDecl();
3371        continue;
3372      }
3373      // Okay, we have a legal flexible array member at the end of the struct.
3374      if (Record)
3375        Record->setHasFlexibleArrayMember(true);
3376    }
3377    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3378    /// field of another structure or the element of an array.
3379    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3380      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3381        // If this is a member of a union, then entire union becomes "flexible".
3382        if (Record && Record->isUnion()) {
3383          Record->setHasFlexibleArrayMember(true);
3384        } else {
3385          // If this is a struct/class and this is not the last element, reject
3386          // it.  Note that GCC supports variable sized arrays in the middle of
3387          // structures.
3388          if (i != NumFields-1) {
3389            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3390              << FD->getDeclName();
3391            FD->setInvalidDecl();
3392            EnclosingDecl->setInvalidDecl();
3393            continue;
3394          }
3395          // We support flexible arrays at the end of structs in other structs
3396          // as an extension.
3397          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3398            << FD->getDeclName();
3399          if (Record)
3400            Record->setHasFlexibleArrayMember(true);
3401        }
3402      }
3403    }
3404    /// A field cannot be an Objective-c object
3405    if (FDTy->isObjCInterfaceType()) {
3406      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3407        << FD->getDeclName();
3408      FD->setInvalidDecl();
3409      EnclosingDecl->setInvalidDecl();
3410      continue;
3411    }
3412    // Keep track of the number of named members.
3413    if (FD->getIdentifier())
3414      ++NumNamedMembers;
3415  }
3416
3417  // Okay, we successfully defined 'Record'.
3418  if (Record) {
3419    Record->completeDefinition(Context);
3420  } else {
3421    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3422    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3423      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3424      // Must enforce the rule that ivars in the base classes may not be
3425      // duplicates.
3426      if (ID->getSuperClass()) {
3427        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3428             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3429          ObjCIvarDecl* Ivar = (*IVI);
3430          IdentifierInfo *II = Ivar->getIdentifier();
3431          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3432          if (prevIvar) {
3433            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3434            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3435          }
3436        }
3437      }
3438    }
3439    else if (ObjCImplementationDecl *IMPDecl =
3440               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3441      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3442      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3443      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3444    }
3445  }
3446
3447  if (Attr)
3448    ProcessDeclAttributeList(Record, Attr);
3449}
3450
3451Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3452                                      DeclTy *lastEnumConst,
3453                                      SourceLocation IdLoc, IdentifierInfo *Id,
3454                                      SourceLocation EqualLoc, ExprTy *val) {
3455  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3456  EnumConstantDecl *LastEnumConst =
3457    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3458  Expr *Val = static_cast<Expr*>(val);
3459
3460  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3461  // we find one that is.
3462  S = getNonFieldDeclScope(S);
3463
3464  // Verify that there isn't already something declared with this name in this
3465  // scope.
3466  Decl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3467  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3468    // Maybe we will complain about the shadowed template parameter.
3469    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3470    // Just pretend that we didn't see the previous declaration.
3471    PrevDecl = 0;
3472  }
3473
3474  if (PrevDecl) {
3475    // When in C++, we may get a TagDecl with the same name; in this case the
3476    // enum constant will 'hide' the tag.
3477    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3478           "Received TagDecl when not in C++!");
3479    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3480      if (isa<EnumConstantDecl>(PrevDecl))
3481        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3482      else
3483        Diag(IdLoc, diag::err_redefinition) << Id;
3484      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3485      delete Val;
3486      return 0;
3487    }
3488  }
3489
3490  llvm::APSInt EnumVal(32);
3491  QualType EltTy;
3492  if (Val) {
3493    // Make sure to promote the operand type to int.
3494    UsualUnaryConversions(Val);
3495
3496    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3497    SourceLocation ExpLoc;
3498    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3499      delete Val;
3500      Val = 0;  // Just forget about it.
3501    } else {
3502      EltTy = Val->getType();
3503    }
3504  }
3505
3506  if (!Val) {
3507    if (LastEnumConst) {
3508      // Assign the last value + 1.
3509      EnumVal = LastEnumConst->getInitVal();
3510      ++EnumVal;
3511
3512      // Check for overflow on increment.
3513      if (EnumVal < LastEnumConst->getInitVal())
3514        Diag(IdLoc, diag::warn_enum_value_overflow);
3515
3516      EltTy = LastEnumConst->getType();
3517    } else {
3518      // First value, set to zero.
3519      EltTy = Context.IntTy;
3520      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3521    }
3522  }
3523
3524  EnumConstantDecl *New =
3525    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3526                             Val, EnumVal);
3527
3528  // Register this decl in the current scope stack.
3529  PushOnScopeChains(New, S);
3530
3531  return New;
3532}
3533
3534// FIXME: For consistency with ActOnFields(), we should have the parser
3535// pass in the source location for the left/right braces.
3536void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3537                         DeclTy **Elements, unsigned NumElements) {
3538  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3539  QualType EnumType = Context.getTypeDeclType(Enum);
3540
3541  // TODO: If the result value doesn't fit in an int, it must be a long or long
3542  // long value.  ISO C does not support this, but GCC does as an extension,
3543  // emit a warning.
3544  unsigned IntWidth = Context.Target.getIntWidth();
3545
3546  // Verify that all the values are okay, compute the size of the values, and
3547  // reverse the list.
3548  unsigned NumNegativeBits = 0;
3549  unsigned NumPositiveBits = 0;
3550
3551  // Keep track of whether all elements have type int.
3552  bool AllElementsInt = true;
3553
3554  for (unsigned i = 0; i != NumElements; ++i) {
3555    EnumConstantDecl *ECD =
3556      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3557    if (!ECD) continue;  // Already issued a diagnostic.
3558
3559    // If the enum value doesn't fit in an int, emit an extension warning.
3560    const llvm::APSInt &InitVal = ECD->getInitVal();
3561    assert(InitVal.getBitWidth() >= IntWidth &&
3562           "Should have promoted value to int");
3563    if (InitVal.getBitWidth() > IntWidth) {
3564      llvm::APSInt V(InitVal);
3565      V.trunc(IntWidth);
3566      V.extend(InitVal.getBitWidth());
3567      if (V != InitVal)
3568        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3569          << InitVal.toString(10);
3570    }
3571
3572    // Keep track of the size of positive and negative values.
3573    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3574      NumPositiveBits = std::max(NumPositiveBits,
3575                                 (unsigned)InitVal.getActiveBits());
3576    else
3577      NumNegativeBits = std::max(NumNegativeBits,
3578                                 (unsigned)InitVal.getMinSignedBits());
3579
3580    // Keep track of whether every enum element has type int (very commmon).
3581    if (AllElementsInt)
3582      AllElementsInt = ECD->getType() == Context.IntTy;
3583  }
3584
3585  // Figure out the type that should be used for this enum.
3586  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3587  QualType BestType;
3588  unsigned BestWidth;
3589
3590  if (NumNegativeBits) {
3591    // If there is a negative value, figure out the smallest integer type (of
3592    // int/long/longlong) that fits.
3593    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3594      BestType = Context.IntTy;
3595      BestWidth = IntWidth;
3596    } else {
3597      BestWidth = Context.Target.getLongWidth();
3598
3599      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3600        BestType = Context.LongTy;
3601      else {
3602        BestWidth = Context.Target.getLongLongWidth();
3603
3604        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3605          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3606        BestType = Context.LongLongTy;
3607      }
3608    }
3609  } else {
3610    // If there is no negative value, figure out which of uint, ulong, ulonglong
3611    // fits.
3612    if (NumPositiveBits <= IntWidth) {
3613      BestType = Context.UnsignedIntTy;
3614      BestWidth = IntWidth;
3615    } else if (NumPositiveBits <=
3616               (BestWidth = Context.Target.getLongWidth())) {
3617      BestType = Context.UnsignedLongTy;
3618    } else {
3619      BestWidth = Context.Target.getLongLongWidth();
3620      assert(NumPositiveBits <= BestWidth &&
3621             "How could an initializer get larger than ULL?");
3622      BestType = Context.UnsignedLongLongTy;
3623    }
3624  }
3625
3626  // Loop over all of the enumerator constants, changing their types to match
3627  // the type of the enum if needed.
3628  for (unsigned i = 0; i != NumElements; ++i) {
3629    EnumConstantDecl *ECD =
3630      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3631    if (!ECD) continue;  // Already issued a diagnostic.
3632
3633    // Standard C says the enumerators have int type, but we allow, as an
3634    // extension, the enumerators to be larger than int size.  If each
3635    // enumerator value fits in an int, type it as an int, otherwise type it the
3636    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3637    // that X has type 'int', not 'unsigned'.
3638    if (ECD->getType() == Context.IntTy) {
3639      // Make sure the init value is signed.
3640      llvm::APSInt IV = ECD->getInitVal();
3641      IV.setIsSigned(true);
3642      ECD->setInitVal(IV);
3643
3644      if (getLangOptions().CPlusPlus)
3645        // C++ [dcl.enum]p4: Following the closing brace of an
3646        // enum-specifier, each enumerator has the type of its
3647        // enumeration.
3648        ECD->setType(EnumType);
3649      continue;  // Already int type.
3650    }
3651
3652    // Determine whether the value fits into an int.
3653    llvm::APSInt InitVal = ECD->getInitVal();
3654    bool FitsInInt;
3655    if (InitVal.isUnsigned() || !InitVal.isNegative())
3656      FitsInInt = InitVal.getActiveBits() < IntWidth;
3657    else
3658      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3659
3660    // If it fits into an integer type, force it.  Otherwise force it to match
3661    // the enum decl type.
3662    QualType NewTy;
3663    unsigned NewWidth;
3664    bool NewSign;
3665    if (FitsInInt) {
3666      NewTy = Context.IntTy;
3667      NewWidth = IntWidth;
3668      NewSign = true;
3669    } else if (ECD->getType() == BestType) {
3670      // Already the right type!
3671      if (getLangOptions().CPlusPlus)
3672        // C++ [dcl.enum]p4: Following the closing brace of an
3673        // enum-specifier, each enumerator has the type of its
3674        // enumeration.
3675        ECD->setType(EnumType);
3676      continue;
3677    } else {
3678      NewTy = BestType;
3679      NewWidth = BestWidth;
3680      NewSign = BestType->isSignedIntegerType();
3681    }
3682
3683    // Adjust the APSInt value.
3684    InitVal.extOrTrunc(NewWidth);
3685    InitVal.setIsSigned(NewSign);
3686    ECD->setInitVal(InitVal);
3687
3688    // Adjust the Expr initializer and type.
3689    if (ECD->getInitExpr())
3690      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3691                                            /*isLvalue=*/false));
3692    if (getLangOptions().CPlusPlus)
3693      // C++ [dcl.enum]p4: Following the closing brace of an
3694      // enum-specifier, each enumerator has the type of its
3695      // enumeration.
3696      ECD->setType(EnumType);
3697    else
3698      ECD->setType(NewTy);
3699  }
3700
3701  Enum->completeDefinition(Context, BestType);
3702}
3703
3704Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3705                                          ExprArg expr) {
3706  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3707
3708  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3709}
3710
3711
3712void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3713                           ExprTy *alignment, SourceLocation PragmaLoc,
3714                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3715  Expr *Alignment = static_cast<Expr *>(alignment);
3716
3717  // If specified then alignment must be a "small" power of two.
3718  unsigned AlignmentVal = 0;
3719  if (Alignment) {
3720    llvm::APSInt Val;
3721    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3722        !Val.isPowerOf2() ||
3723        Val.getZExtValue() > 16) {
3724      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3725      delete Alignment;
3726      return; // Ignore
3727    }
3728
3729    AlignmentVal = (unsigned) Val.getZExtValue();
3730  }
3731
3732  switch (Kind) {
3733  case Action::PPK_Default: // pack([n])
3734    PackContext.setAlignment(AlignmentVal);
3735    break;
3736
3737  case Action::PPK_Show: // pack(show)
3738    // Show the current alignment, making sure to show the right value
3739    // for the default.
3740    AlignmentVal = PackContext.getAlignment();
3741    // FIXME: This should come from the target.
3742    if (AlignmentVal == 0)
3743      AlignmentVal = 8;
3744    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3745    break;
3746
3747  case Action::PPK_Push: // pack(push [, id] [, [n])
3748    PackContext.push(Name);
3749    // Set the new alignment if specified.
3750    if (Alignment)
3751      PackContext.setAlignment(AlignmentVal);
3752    break;
3753
3754  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3755    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3756    // "#pragma pack(pop, identifier, n) is undefined"
3757    if (Alignment && Name)
3758      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3759
3760    // Do the pop.
3761    if (!PackContext.pop(Name)) {
3762      // If a name was specified then failure indicates the name
3763      // wasn't found. Otherwise failure indicates the stack was
3764      // empty.
3765      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3766        << (Name ? "no record matching name" : "stack empty");
3767
3768      // FIXME: Warn about popping named records as MSVC does.
3769    } else {
3770      // Pop succeeded, set the new alignment if specified.
3771      if (Alignment)
3772        PackContext.setAlignment(AlignmentVal);
3773    }
3774    break;
3775
3776  default:
3777    assert(0 && "Invalid #pragma pack kind.");
3778  }
3779}
3780
3781bool PragmaPackStack::pop(IdentifierInfo *Name) {
3782  if (Stack.empty())
3783    return false;
3784
3785  // If name is empty just pop top.
3786  if (!Name) {
3787    Alignment = Stack.back().first;
3788    Stack.pop_back();
3789    return true;
3790  }
3791
3792  // Otherwise, find the named record.
3793  for (unsigned i = Stack.size(); i != 0; ) {
3794    --i;
3795    if (Stack[i].second == Name) {
3796      // Found it, pop up to and including this record.
3797      Alignment = Stack[i].first;
3798      Stack.erase(Stack.begin() + i, Stack.end());
3799      return true;
3800    }
3801  }
3802
3803  return false;
3804}
3805