SemaDecl.cpp revision 2b345eb7832dd4ffcc91e795d8f95bdd62e9e95a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() &&
90        IdResolver.isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  }
99  IdResolver.AddDecl(D);
100}
101
102void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
103  if (S->decl_empty()) return;
104  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
105
106  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
107       I != E; ++I) {
108    Decl *TmpD = static_cast<Decl*>(*I);
109    assert(TmpD && "This decl didn't get pushed??");
110
111    if (isa<CXXFieldDecl>(TmpD)) continue;
112
113    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
114    ScopedDecl *D = cast<ScopedDecl>(TmpD);
115
116    IdentifierInfo *II = D->getIdentifier();
117    if (!II) continue;
118
119    // We only want to remove the decls from the identifier decl chains for
120    // local scopes, when inside a function/method.
121    if (S->getFnParent() != 0)
122      IdResolver.RemoveDecl(D);
123
124    // Chain this decl to the containing DeclContext.
125    D->setNext(CurContext->getDeclChain());
126    CurContext->setDeclChain(D);
127  }
128}
129
130/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
131/// return 0 if one not found.
132ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
133  // The third "scope" argument is 0 since we aren't enabling lazy built-in
134  // creation from this context.
135  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
136
137  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
138}
139
140/// LookupDecl - Look up the inner-most declaration in the specified
141/// namespace.
142Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
143                       Scope *S, bool enableLazyBuiltinCreation) {
144  if (II == 0) return 0;
145  unsigned NS = NSI;
146  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
147    NS |= Decl::IDNS_Tag;
148
149  // Scan up the scope chain looking for a decl that matches this identifier
150  // that is in the appropriate namespace.  This search should not take long, as
151  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
152  for (IdentifierResolver::iterator
153       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
154    if ((*I)->getIdentifierNamespace() & NS)
155      return *I;
156
157  // If we didn't find a use of this identifier, and if the identifier
158  // corresponds to a compiler builtin, create the decl object for the builtin
159  // now, injecting it into translation unit scope, and return it.
160  if (NS & Decl::IDNS_Ordinary) {
161    if (enableLazyBuiltinCreation) {
162      // If this is a builtin on this (or all) targets, create the decl.
163      if (unsigned BuiltinID = II->getBuiltinID())
164        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
165    }
166    if (getLangOptions().ObjC1) {
167      // @interface and @compatibility_alias introduce typedef-like names.
168      // Unlike typedef's, they can only be introduced at file-scope (and are
169      // therefore not scoped decls). They can, however, be shadowed by
170      // other names in IDNS_Ordinary.
171      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
172      if (IDI != ObjCInterfaceDecls.end())
173        return IDI->second;
174      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
175      if (I != ObjCAliasDecls.end())
176        return I->second->getClassInterface();
177    }
178  }
179  return 0;
180}
181
182void Sema::InitBuiltinVaListType() {
183  if (!Context.getBuiltinVaListType().isNull())
184    return;
185
186  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
187  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
188  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
189  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
190}
191
192/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
193/// lazily create a decl for it.
194ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
195                                      Scope *S) {
196  Builtin::ID BID = (Builtin::ID)bid;
197
198  if (BID == Builtin::BI__builtin_va_start ||
199      BID == Builtin::BI__builtin_va_copy ||
200      BID == Builtin::BI__builtin_va_end ||
201      BID == Builtin::BI__builtin_stdarg_start)
202    InitBuiltinVaListType();
203
204  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
205  FunctionDecl *New = FunctionDecl::Create(Context,
206                                           Context.getTranslationUnitDecl(),
207                                           SourceLocation(), II, R,
208                                           FunctionDecl::Extern, false, 0);
209
210  // Create Decl objects for each parameter, adding them to the
211  // FunctionDecl.
212  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
213    llvm::SmallVector<ParmVarDecl*, 16> Params;
214    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
215      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
216                                           FT->getArgType(i), VarDecl::None, 0,
217                                           0));
218    New->setParams(&Params[0], Params.size());
219  }
220
221
222
223  // TUScope is the translation-unit scope to insert this function into.
224  PushOnScopeChains(New, TUScope);
225  return New;
226}
227
228/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
229/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
230/// situation, merging decls or emitting diagnostics as appropriate.
231///
232TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
233  // Verify the old decl was also a typedef.
234  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
235  if (!Old) {
236    Diag(New->getLocation(), diag::err_redefinition_different_kind,
237         New->getName());
238    Diag(OldD->getLocation(), diag::err_previous_definition);
239    return New;
240  }
241
242  // If the typedef types are not identical, reject them in all languages and
243  // with any extensions enabled.
244  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
245      Context.getCanonicalType(Old->getUnderlyingType()) !=
246      Context.getCanonicalType(New->getUnderlyingType())) {
247    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
248         New->getUnderlyingType().getAsString(),
249         Old->getUnderlyingType().getAsString());
250    Diag(Old->getLocation(), diag::err_previous_definition);
251    return Old;
252  }
253
254  // Allow multiple definitions for ObjC built-in typedefs.
255  // FIXME: Verify the underlying types are equivalent!
256  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
257    return Old;
258
259  if (getLangOptions().Microsoft) return New;
260
261  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
262  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
263  // *either* declaration is in a system header. The code below implements
264  // this adhoc compatibility rule. FIXME: The following code will not
265  // work properly when compiling ".i" files (containing preprocessed output).
266  SourceManager &SrcMgr = Context.getSourceManager();
267  if (SrcMgr.isInSystemHeader(Old->getLocation()))
268    return New;
269  if (SrcMgr.isInSystemHeader(New->getLocation()))
270    return New;
271
272  Diag(New->getLocation(), diag::err_redefinition, New->getName());
273  Diag(Old->getLocation(), diag::err_previous_definition);
274  return New;
275}
276
277/// DeclhasAttr - returns true if decl Declaration already has the target
278/// attribute.
279static bool DeclHasAttr(const Decl *decl, const Attr *target) {
280  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
281    if (attr->getKind() == target->getKind())
282      return true;
283
284  return false;
285}
286
287/// MergeAttributes - append attributes from the Old decl to the New one.
288static void MergeAttributes(Decl *New, Decl *Old) {
289  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
290
291  while (attr) {
292     tmp = attr;
293     attr = attr->getNext();
294
295    if (!DeclHasAttr(New, tmp)) {
296       New->addAttr(tmp);
297    } else {
298       tmp->setNext(0);
299       delete(tmp);
300    }
301  }
302
303  Old->invalidateAttrs();
304}
305
306/// MergeFunctionDecl - We just parsed a function 'New' from
307/// declarator D which has the same name and scope as a previous
308/// declaration 'Old'.  Figure out how to resolve this situation,
309/// merging decls or emitting diagnostics as appropriate.
310/// Redeclaration will be set true if thisNew is a redeclaration OldD.
311FunctionDecl *
312Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
313  Redeclaration = false;
314  // Verify the old decl was also a function.
315  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
316  if (!Old) {
317    Diag(New->getLocation(), diag::err_redefinition_different_kind,
318         New->getName());
319    Diag(OldD->getLocation(), diag::err_previous_definition);
320    return New;
321  }
322
323  QualType OldQType = Context.getCanonicalType(Old->getType());
324  QualType NewQType = Context.getCanonicalType(New->getType());
325
326  // C++ [dcl.fct]p3:
327  //   All declarations for a function shall agree exactly in both the
328  //   return type and the parameter-type-list.
329  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
330    MergeAttributes(New, Old);
331    Redeclaration = true;
332    return MergeCXXFunctionDecl(New, Old);
333  }
334
335  // C: Function types need to be compatible, not identical. This handles
336  // duplicate function decls like "void f(int); void f(enum X);" properly.
337  if (!getLangOptions().CPlusPlus &&
338      Context.typesAreCompatible(OldQType, NewQType)) {
339    MergeAttributes(New, Old);
340    Redeclaration = true;
341    return New;
342  }
343
344  // A function that has already been declared has been redeclared or defined
345  // with a different type- show appropriate diagnostic
346  diag::kind PrevDiag;
347  if (Old->isThisDeclarationADefinition())
348    PrevDiag = diag::err_previous_definition;
349  else if (Old->isImplicit())
350    PrevDiag = diag::err_previous_implicit_declaration;
351  else
352    PrevDiag = diag::err_previous_declaration;
353
354  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
355  // TODO: This is totally simplistic.  It should handle merging functions
356  // together etc, merging extern int X; int X; ...
357  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
358  Diag(Old->getLocation(), PrevDiag);
359  return New;
360}
361
362/// Predicate for C "tentative" external object definitions (C99 6.9.2).
363static bool isTentativeDefinition(VarDecl *VD) {
364  if (VD->isFileVarDecl())
365    return (!VD->getInit() &&
366            (VD->getStorageClass() == VarDecl::None ||
367             VD->getStorageClass() == VarDecl::Static));
368  return false;
369}
370
371/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
372/// when dealing with C "tentative" external object definitions (C99 6.9.2).
373void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
374  bool VDIsTentative = isTentativeDefinition(VD);
375  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
376
377  for (IdentifierResolver::iterator
378       I = IdResolver.begin(VD->getIdentifier(),
379                            VD->getDeclContext(), false/*LookInParentCtx*/),
380       E = IdResolver.end(); I != E; ++I) {
381    if (*I != VD && IdResolver.isDeclInScope(*I, VD->getDeclContext(), S)) {
382      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
383
384      // Handle the following case:
385      //   int a[10];
386      //   int a[];   - the code below makes sure we set the correct type.
387      //   int a[11]; - this is an error, size isn't 10.
388      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
389          OldDecl->getType()->isConstantArrayType())
390        VD->setType(OldDecl->getType());
391
392      // Check for "tentative" definitions. We can't accomplish this in
393      // MergeVarDecl since the initializer hasn't been attached.
394      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
395        continue;
396
397      // Handle __private_extern__ just like extern.
398      if (OldDecl->getStorageClass() != VarDecl::Extern &&
399          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
400          VD->getStorageClass() != VarDecl::Extern &&
401          VD->getStorageClass() != VarDecl::PrivateExtern) {
402        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
403        Diag(OldDecl->getLocation(), diag::err_previous_definition);
404      }
405    }
406  }
407}
408
409/// MergeVarDecl - We just parsed a variable 'New' which has the same name
410/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
411/// situation, merging decls or emitting diagnostics as appropriate.
412///
413/// Tentative definition rules (C99 6.9.2p2) are checked by
414/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
415/// definitions here, since the initializer hasn't been attached.
416///
417VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
418  // Verify the old decl was also a variable.
419  VarDecl *Old = dyn_cast<VarDecl>(OldD);
420  if (!Old) {
421    Diag(New->getLocation(), diag::err_redefinition_different_kind,
422         New->getName());
423    Diag(OldD->getLocation(), diag::err_previous_definition);
424    return New;
425  }
426
427  MergeAttributes(New, Old);
428
429  // Verify the types match.
430  QualType OldCType = Context.getCanonicalType(Old->getType());
431  QualType NewCType = Context.getCanonicalType(New->getType());
432  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
433    Diag(New->getLocation(), diag::err_redefinition, New->getName());
434    Diag(Old->getLocation(), diag::err_previous_definition);
435    return New;
436  }
437  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
438  if (New->getStorageClass() == VarDecl::Static &&
439      (Old->getStorageClass() == VarDecl::None ||
440       Old->getStorageClass() == VarDecl::Extern)) {
441    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
442    Diag(Old->getLocation(), diag::err_previous_definition);
443    return New;
444  }
445  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
446  if (New->getStorageClass() != VarDecl::Static &&
447      Old->getStorageClass() == VarDecl::Static) {
448    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
449    Diag(Old->getLocation(), diag::err_previous_definition);
450    return New;
451  }
452  // File scoped variables are analyzed in FinalizeDeclaratorGroup.
453  if (!New->isFileVarDecl()) {
454    Diag(New->getLocation(), diag::err_redefinition, New->getName());
455    Diag(Old->getLocation(), diag::err_previous_definition);
456  }
457  return New;
458}
459
460/// CheckParmsForFunctionDef - Check that the parameters of the given
461/// function are appropriate for the definition of a function. This
462/// takes care of any checks that cannot be performed on the
463/// declaration itself, e.g., that the types of each of the function
464/// parameters are complete.
465bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
466  bool HasInvalidParm = false;
467  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
468    ParmVarDecl *Param = FD->getParamDecl(p);
469
470    // C99 6.7.5.3p4: the parameters in a parameter type list in a
471    // function declarator that is part of a function definition of
472    // that function shall not have incomplete type.
473    if (Param->getType()->isIncompleteType() &&
474        !Param->isInvalidDecl()) {
475      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
476           Param->getType().getAsString());
477      Param->setInvalidDecl();
478      HasInvalidParm = true;
479    }
480  }
481
482  return HasInvalidParm;
483}
484
485/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
486/// no declarator (e.g. "struct foo;") is parsed.
487Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
488  // TODO: emit error on 'int;' or 'const enum foo;'.
489  // TODO: emit error on 'typedef int;'
490  // if (!DS.isMissingDeclaratorOk()) Diag(...);
491
492  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
493}
494
495bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
496  // Get the type before calling CheckSingleAssignmentConstraints(), since
497  // it can promote the expression.
498  QualType InitType = Init->getType();
499
500  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
501  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
502                                  InitType, Init, "initializing");
503}
504
505bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
506  const ArrayType *AT = Context.getAsArrayType(DeclT);
507
508  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
509    // C99 6.7.8p14. We have an array of character type with unknown size
510    // being initialized to a string literal.
511    llvm::APSInt ConstVal(32);
512    ConstVal = strLiteral->getByteLength() + 1;
513    // Return a new array type (C99 6.7.8p22).
514    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
515                                         ArrayType::Normal, 0);
516  } else {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
518    // C99 6.7.8p14. We have an array of character type with known size.
519    // FIXME: Avoid truncation for 64-bit length strings.
520    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
521      Diag(strLiteral->getSourceRange().getBegin(),
522           diag::warn_initializer_string_for_char_array_too_long,
523           strLiteral->getSourceRange());
524  }
525  // Set type from "char *" to "constant array of char".
526  strLiteral->setType(DeclT);
527  // For now, we always return false (meaning success).
528  return false;
529}
530
531StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
532  const ArrayType *AT = Context.getAsArrayType(DeclType);
533  if (AT && AT->getElementType()->isCharType()) {
534    return dyn_cast<StringLiteral>(Init);
535  }
536  return 0;
537}
538
539bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
540  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
541  // of unknown size ("[]") or an object type that is not a variable array type.
542  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
543    return Diag(VAT->getSizeExpr()->getLocStart(),
544                diag::err_variable_object_no_init,
545                VAT->getSizeExpr()->getSourceRange());
546
547  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
548  if (!InitList) {
549    // FIXME: Handle wide strings
550    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
551      return CheckStringLiteralInit(strLiteral, DeclType);
552
553    if (DeclType->isArrayType())
554      return Diag(Init->getLocStart(),
555                  diag::err_array_init_list_required,
556                  Init->getSourceRange());
557
558    return CheckSingleInitializer(Init, DeclType);
559  }
560
561  InitListChecker CheckInitList(this, InitList, DeclType);
562  return CheckInitList.HadError();
563}
564
565Sema::DeclTy *
566Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
567  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
568  IdentifierInfo *II = D.getIdentifier();
569
570  // All of these full declarators require an identifier.  If it doesn't have
571  // one, the ParsedFreeStandingDeclSpec action should be used.
572  if (II == 0) {
573    Diag(D.getDeclSpec().getSourceRange().getBegin(),
574         diag::err_declarator_need_ident,
575         D.getDeclSpec().getSourceRange(), D.getSourceRange());
576    return 0;
577  }
578
579  // The scope passed in may not be a decl scope.  Zip up the scope tree until
580  // we find one that is.
581  while ((S->getFlags() & Scope::DeclScope) == 0)
582    S = S->getParent();
583
584  // See if this is a redefinition of a variable in the same scope.
585  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
586  ScopedDecl *New;
587  bool InvalidDecl = false;
588
589  // In C++, the previous declaration we find might be a tag type
590  // (class or enum). In this case, the new declaration will hide the
591  // tag type.
592  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
593    PrevDecl = 0;
594
595  QualType R = GetTypeForDeclarator(D, S);
596  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
597
598  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
599    // Check that there are no default arguments (C++ only).
600    if (getLangOptions().CPlusPlus)
601      CheckExtraCXXDefaultArguments(D);
602
603    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
604    if (!NewTD) return 0;
605
606    // Handle attributes prior to checking for duplicates in MergeVarDecl
607    ProcessDeclAttributes(NewTD, D);
608    // Merge the decl with the existing one if appropriate. If the decl is
609    // in an outer scope, it isn't the same thing.
610    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
611      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
612      if (NewTD == 0) return 0;
613    }
614    New = NewTD;
615    if (S->getFnParent() == 0) {
616      // C99 6.7.7p2: If a typedef name specifies a variably modified type
617      // then it shall have block scope.
618      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
619        // FIXME: Diagnostic needs to be fixed.
620        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
621        InvalidDecl = true;
622      }
623    }
624  } else if (R.getTypePtr()->isFunctionType()) {
625    FunctionDecl::StorageClass SC = FunctionDecl::None;
626    switch (D.getDeclSpec().getStorageClassSpec()) {
627      default: assert(0 && "Unknown storage class!");
628      case DeclSpec::SCS_auto:
629      case DeclSpec::SCS_register:
630        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
631             R.getAsString());
632        InvalidDecl = true;
633        break;
634      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
635      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
636      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
637      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
638    }
639
640    bool isInline = D.getDeclSpec().isInlineSpecified();
641    FunctionDecl *NewFD;
642    if (D.getContext() == Declarator::MemberContext) {
643      // This is a C++ method declaration.
644      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
645                                    D.getIdentifierLoc(), II, R,
646                                    (SC == FunctionDecl::Static), isInline,
647                                    LastDeclarator);
648    } else {
649      NewFD = FunctionDecl::Create(Context, CurContext,
650                                   D.getIdentifierLoc(),
651                                   II, R, SC, isInline,
652                                   LastDeclarator);
653    }
654    // Handle attributes.
655    ProcessDeclAttributes(NewFD, D);
656
657    // Handle GNU asm-label extension (encoded as an attribute).
658    if (Expr *E = (Expr*) D.getAsmLabel()) {
659      // The parser guarantees this is a string.
660      StringLiteral *SE = cast<StringLiteral>(E);
661      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
662                                                  SE->getByteLength())));
663    }
664
665    // Copy the parameter declarations from the declarator D to
666    // the function declaration NewFD, if they are available.
667    if (D.getNumTypeObjects() > 0) {
668      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
669
670      // Create Decl objects for each parameter, adding them to the
671      // FunctionDecl.
672      llvm::SmallVector<ParmVarDecl*, 16> Params;
673
674      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
675      // function that takes no arguments, not a function that takes a
676      // single void argument.
677      // We let through "const void" here because Sema::GetTypeForDeclarator
678      // already checks for that case.
679      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
680          FTI.ArgInfo[0].Param &&
681          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
682        // empty arg list, don't push any params.
683        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
684
685        // In C++, the empty parameter-type-list must be spelled "void"; a
686        // typedef of void is not permitted.
687        if (getLangOptions().CPlusPlus &&
688            Param->getType().getUnqualifiedType() != Context.VoidTy) {
689          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
690        }
691
692      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
693        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
694          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
695      }
696
697      NewFD->setParams(&Params[0], Params.size());
698    }
699
700    // Merge the decl with the existing one if appropriate. Since C functions
701    // are in a flat namespace, make sure we consider decls in outer scopes.
702    if (PrevDecl &&
703        (!getLangOptions().CPlusPlus ||
704         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
705      bool Redeclaration = false;
706      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
707      if (NewFD == 0) return 0;
708      if (Redeclaration) {
709        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
710      }
711    }
712    New = NewFD;
713
714    // In C++, check default arguments now that we have merged decls.
715    if (getLangOptions().CPlusPlus)
716      CheckCXXDefaultArguments(NewFD);
717  } else {
718    // Check that there are no default arguments (C++ only).
719    if (getLangOptions().CPlusPlus)
720      CheckExtraCXXDefaultArguments(D);
721
722    if (R.getTypePtr()->isObjCInterfaceType()) {
723      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
724           D.getIdentifier()->getName());
725      InvalidDecl = true;
726    }
727
728    VarDecl *NewVD;
729    VarDecl::StorageClass SC;
730    switch (D.getDeclSpec().getStorageClassSpec()) {
731    default: assert(0 && "Unknown storage class!");
732    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
733    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
734    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
735    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
736    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
737    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
738    }
739    if (D.getContext() == Declarator::MemberContext) {
740      assert(SC == VarDecl::Static && "Invalid storage class for member!");
741      // This is a static data member for a C++ class.
742      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
743                                      D.getIdentifierLoc(), II,
744                                      R, LastDeclarator);
745    } else {
746      if (S->getFnParent() == 0) {
747        // C99 6.9p2: The storage-class specifiers auto and register shall not
748        // appear in the declaration specifiers in an external declaration.
749        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
750          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
751               R.getAsString());
752          InvalidDecl = true;
753        }
754        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
755                                II, R, SC, LastDeclarator);
756      } else {
757        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
758                                II, R, SC, LastDeclarator);
759      }
760    }
761    // Handle attributes prior to checking for duplicates in MergeVarDecl
762    ProcessDeclAttributes(NewVD, D);
763
764    // Handle GNU asm-label extension (encoded as an attribute).
765    if (Expr *E = (Expr*) D.getAsmLabel()) {
766      // The parser guarantees this is a string.
767      StringLiteral *SE = cast<StringLiteral>(E);
768      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
769                                                  SE->getByteLength())));
770    }
771
772    // Emit an error if an address space was applied to decl with local storage.
773    // This includes arrays of objects with address space qualifiers, but not
774    // automatic variables that point to other address spaces.
775    // ISO/IEC TR 18037 S5.1.2
776    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
777      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
778      InvalidDecl = true;
779    }
780    // Merge the decl with the existing one if appropriate. If the decl is
781    // in an outer scope, it isn't the same thing.
782    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
783      NewVD = MergeVarDecl(NewVD, PrevDecl);
784      if (NewVD == 0) return 0;
785    }
786    New = NewVD;
787  }
788
789  // If this has an identifier, add it to the scope stack.
790  if (II)
791    PushOnScopeChains(New, S);
792  // If any semantic error occurred, mark the decl as invalid.
793  if (D.getInvalidType() || InvalidDecl)
794    New->setInvalidDecl();
795
796  return New;
797}
798
799bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
800  switch (Init->getStmtClass()) {
801  default:
802    Diag(Init->getExprLoc(),
803         diag::err_init_element_not_constant, Init->getSourceRange());
804    return true;
805  case Expr::ParenExprClass: {
806    const ParenExpr* PE = cast<ParenExpr>(Init);
807    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
808  }
809  case Expr::CompoundLiteralExprClass:
810    return cast<CompoundLiteralExpr>(Init)->isFileScope();
811  case Expr::DeclRefExprClass: {
812    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
813    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
814      if (VD->hasGlobalStorage())
815        return false;
816      Diag(Init->getExprLoc(),
817           diag::err_init_element_not_constant, Init->getSourceRange());
818      return true;
819    }
820    if (isa<FunctionDecl>(D))
821      return false;
822    Diag(Init->getExprLoc(),
823         diag::err_init_element_not_constant, Init->getSourceRange());
824    return true;
825  }
826  case Expr::MemberExprClass: {
827    const MemberExpr *M = cast<MemberExpr>(Init);
828    if (M->isArrow())
829      return CheckAddressConstantExpression(M->getBase());
830    return CheckAddressConstantExpressionLValue(M->getBase());
831  }
832  case Expr::ArraySubscriptExprClass: {
833    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
834    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
835    return CheckAddressConstantExpression(ASE->getBase()) ||
836           CheckArithmeticConstantExpression(ASE->getIdx());
837  }
838  case Expr::StringLiteralClass:
839  case Expr::PredefinedExprClass:
840    return false;
841  case Expr::UnaryOperatorClass: {
842    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
843
844    // C99 6.6p9
845    if (Exp->getOpcode() == UnaryOperator::Deref)
846      return CheckAddressConstantExpression(Exp->getSubExpr());
847
848    Diag(Init->getExprLoc(),
849         diag::err_init_element_not_constant, Init->getSourceRange());
850    return true;
851  }
852  }
853}
854
855bool Sema::CheckAddressConstantExpression(const Expr* Init) {
856  switch (Init->getStmtClass()) {
857  default:
858    Diag(Init->getExprLoc(),
859         diag::err_init_element_not_constant, Init->getSourceRange());
860    return true;
861  case Expr::ParenExprClass: {
862    const ParenExpr* PE = cast<ParenExpr>(Init);
863    return CheckAddressConstantExpression(PE->getSubExpr());
864  }
865  case Expr::StringLiteralClass:
866  case Expr::ObjCStringLiteralClass:
867    return false;
868  case Expr::CallExprClass: {
869    const CallExpr *CE = cast<CallExpr>(Init);
870    if (CE->isBuiltinConstantExpr())
871      return false;
872    Diag(Init->getExprLoc(),
873         diag::err_init_element_not_constant, Init->getSourceRange());
874    return true;
875  }
876  case Expr::UnaryOperatorClass: {
877    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
878
879    // C99 6.6p9
880    if (Exp->getOpcode() == UnaryOperator::AddrOf)
881      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
882
883    if (Exp->getOpcode() == UnaryOperator::Extension)
884      return CheckAddressConstantExpression(Exp->getSubExpr());
885
886    Diag(Init->getExprLoc(),
887         diag::err_init_element_not_constant, Init->getSourceRange());
888    return true;
889  }
890  case Expr::BinaryOperatorClass: {
891    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
892    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
893
894    Expr *PExp = Exp->getLHS();
895    Expr *IExp = Exp->getRHS();
896    if (IExp->getType()->isPointerType())
897      std::swap(PExp, IExp);
898
899    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
900    return CheckAddressConstantExpression(PExp) ||
901           CheckArithmeticConstantExpression(IExp);
902  }
903  case Expr::ImplicitCastExprClass:
904  case Expr::ExplicitCastExprClass: {
905    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
906    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
907      // Check for implicit promotion
908      if (SubExpr->getType()->isFunctionType() ||
909          SubExpr->getType()->isArrayType())
910        return CheckAddressConstantExpressionLValue(SubExpr);
911    }
912
913    // Check for pointer->pointer cast
914    if (SubExpr->getType()->isPointerType())
915      return CheckAddressConstantExpression(SubExpr);
916
917    if (SubExpr->getType()->isIntegralType()) {
918      // Check for the special-case of a pointer->int->pointer cast;
919      // this isn't standard, but some code requires it. See
920      // PR2720 for an example.
921      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
922        if (SubCast->getSubExpr()->getType()->isPointerType()) {
923          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
924          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
925          if (IntWidth >= PointerWidth) {
926            return CheckAddressConstantExpression(SubCast->getSubExpr());
927          }
928        }
929      }
930    }
931    if (SubExpr->getType()->isArithmeticType()) {
932      return CheckArithmeticConstantExpression(SubExpr);
933    }
934
935    Diag(Init->getExprLoc(),
936         diag::err_init_element_not_constant, Init->getSourceRange());
937    return true;
938  }
939  case Expr::ConditionalOperatorClass: {
940    // FIXME: Should we pedwarn here?
941    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
942    if (!Exp->getCond()->getType()->isArithmeticType()) {
943      Diag(Init->getExprLoc(),
944           diag::err_init_element_not_constant, Init->getSourceRange());
945      return true;
946    }
947    if (CheckArithmeticConstantExpression(Exp->getCond()))
948      return true;
949    if (Exp->getLHS() &&
950        CheckAddressConstantExpression(Exp->getLHS()))
951      return true;
952    return CheckAddressConstantExpression(Exp->getRHS());
953  }
954  case Expr::AddrLabelExprClass:
955    return false;
956  }
957}
958
959static const Expr* FindExpressionBaseAddress(const Expr* E);
960
961static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
962  switch (E->getStmtClass()) {
963  default:
964    return E;
965  case Expr::ParenExprClass: {
966    const ParenExpr* PE = cast<ParenExpr>(E);
967    return FindExpressionBaseAddressLValue(PE->getSubExpr());
968  }
969  case Expr::MemberExprClass: {
970    const MemberExpr *M = cast<MemberExpr>(E);
971    if (M->isArrow())
972      return FindExpressionBaseAddress(M->getBase());
973    return FindExpressionBaseAddressLValue(M->getBase());
974  }
975  case Expr::ArraySubscriptExprClass: {
976    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
977    return FindExpressionBaseAddress(ASE->getBase());
978  }
979  case Expr::UnaryOperatorClass: {
980    const UnaryOperator *Exp = cast<UnaryOperator>(E);
981
982    if (Exp->getOpcode() == UnaryOperator::Deref)
983      return FindExpressionBaseAddress(Exp->getSubExpr());
984
985    return E;
986  }
987  }
988}
989
990static const Expr* FindExpressionBaseAddress(const Expr* E) {
991  switch (E->getStmtClass()) {
992  default:
993    return E;
994  case Expr::ParenExprClass: {
995    const ParenExpr* PE = cast<ParenExpr>(E);
996    return FindExpressionBaseAddress(PE->getSubExpr());
997  }
998  case Expr::UnaryOperatorClass: {
999    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1000
1001    // C99 6.6p9
1002    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1003      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1004
1005    if (Exp->getOpcode() == UnaryOperator::Extension)
1006      return FindExpressionBaseAddress(Exp->getSubExpr());
1007
1008    return E;
1009  }
1010  case Expr::BinaryOperatorClass: {
1011    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1012
1013    Expr *PExp = Exp->getLHS();
1014    Expr *IExp = Exp->getRHS();
1015    if (IExp->getType()->isPointerType())
1016      std::swap(PExp, IExp);
1017
1018    return FindExpressionBaseAddress(PExp);
1019  }
1020  case Expr::ImplicitCastExprClass: {
1021    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1022
1023    // Check for implicit promotion
1024    if (SubExpr->getType()->isFunctionType() ||
1025        SubExpr->getType()->isArrayType())
1026      return FindExpressionBaseAddressLValue(SubExpr);
1027
1028    // Check for pointer->pointer cast
1029    if (SubExpr->getType()->isPointerType())
1030      return FindExpressionBaseAddress(SubExpr);
1031
1032    // We assume that we have an arithmetic expression here;
1033    // if we don't, we'll figure it out later
1034    return 0;
1035  }
1036  case Expr::ExplicitCastExprClass: {
1037    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1038
1039    // Check for pointer->pointer cast
1040    if (SubExpr->getType()->isPointerType())
1041      return FindExpressionBaseAddress(SubExpr);
1042
1043    // We assume that we have an arithmetic expression here;
1044    // if we don't, we'll figure it out later
1045    return 0;
1046  }
1047  }
1048}
1049
1050bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1051  switch (Init->getStmtClass()) {
1052  default:
1053    Diag(Init->getExprLoc(),
1054         diag::err_init_element_not_constant, Init->getSourceRange());
1055    return true;
1056  case Expr::ParenExprClass: {
1057    const ParenExpr* PE = cast<ParenExpr>(Init);
1058    return CheckArithmeticConstantExpression(PE->getSubExpr());
1059  }
1060  case Expr::FloatingLiteralClass:
1061  case Expr::IntegerLiteralClass:
1062  case Expr::CharacterLiteralClass:
1063  case Expr::ImaginaryLiteralClass:
1064  case Expr::TypesCompatibleExprClass:
1065  case Expr::CXXBoolLiteralExprClass:
1066    return false;
1067  case Expr::CallExprClass: {
1068    const CallExpr *CE = cast<CallExpr>(Init);
1069    if (CE->isBuiltinConstantExpr())
1070      return false;
1071    Diag(Init->getExprLoc(),
1072         diag::err_init_element_not_constant, Init->getSourceRange());
1073    return true;
1074  }
1075  case Expr::DeclRefExprClass: {
1076    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1077    if (isa<EnumConstantDecl>(D))
1078      return false;
1079    Diag(Init->getExprLoc(),
1080         diag::err_init_element_not_constant, Init->getSourceRange());
1081    return true;
1082  }
1083  case Expr::CompoundLiteralExprClass:
1084    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1085    // but vectors are allowed to be magic.
1086    if (Init->getType()->isVectorType())
1087      return false;
1088    Diag(Init->getExprLoc(),
1089         diag::err_init_element_not_constant, Init->getSourceRange());
1090    return true;
1091  case Expr::UnaryOperatorClass: {
1092    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1093
1094    switch (Exp->getOpcode()) {
1095    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1096    // See C99 6.6p3.
1097    default:
1098      Diag(Init->getExprLoc(),
1099           diag::err_init_element_not_constant, Init->getSourceRange());
1100      return true;
1101    case UnaryOperator::SizeOf:
1102    case UnaryOperator::AlignOf:
1103    case UnaryOperator::OffsetOf:
1104      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1105      // See C99 6.5.3.4p2 and 6.6p3.
1106      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1107        return false;
1108      Diag(Init->getExprLoc(),
1109           diag::err_init_element_not_constant, Init->getSourceRange());
1110      return true;
1111    case UnaryOperator::Extension:
1112    case UnaryOperator::LNot:
1113    case UnaryOperator::Plus:
1114    case UnaryOperator::Minus:
1115    case UnaryOperator::Not:
1116      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1117    }
1118  }
1119  case Expr::SizeOfAlignOfTypeExprClass: {
1120    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1121    // Special check for void types, which are allowed as an extension
1122    if (Exp->getArgumentType()->isVoidType())
1123      return false;
1124    // alignof always evaluates to a constant.
1125    // FIXME: is sizeof(int[3.0]) a constant expression?
1126    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1127      Diag(Init->getExprLoc(),
1128           diag::err_init_element_not_constant, Init->getSourceRange());
1129      return true;
1130    }
1131    return false;
1132  }
1133  case Expr::BinaryOperatorClass: {
1134    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1135
1136    if (Exp->getLHS()->getType()->isArithmeticType() &&
1137        Exp->getRHS()->getType()->isArithmeticType()) {
1138      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1139             CheckArithmeticConstantExpression(Exp->getRHS());
1140    }
1141
1142    if (Exp->getLHS()->getType()->isPointerType() &&
1143        Exp->getRHS()->getType()->isPointerType()) {
1144      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1145      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1146
1147      // Only allow a null (constant integer) base; we could
1148      // allow some additional cases if necessary, but this
1149      // is sufficient to cover offsetof-like constructs.
1150      if (!LHSBase && !RHSBase) {
1151        return CheckAddressConstantExpression(Exp->getLHS()) ||
1152               CheckAddressConstantExpression(Exp->getRHS());
1153      }
1154    }
1155
1156    Diag(Init->getExprLoc(),
1157         diag::err_init_element_not_constant, Init->getSourceRange());
1158    return true;
1159  }
1160  case Expr::ImplicitCastExprClass:
1161  case Expr::ExplicitCastExprClass: {
1162    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1163    if (SubExpr->getType()->isArithmeticType())
1164      return CheckArithmeticConstantExpression(SubExpr);
1165
1166    if (SubExpr->getType()->isPointerType()) {
1167      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1168      // If the pointer has a null base, this is an offsetof-like construct
1169      if (!Base)
1170        return CheckAddressConstantExpression(SubExpr);
1171    }
1172
1173    Diag(Init->getExprLoc(),
1174         diag::err_init_element_not_constant, Init->getSourceRange());
1175    return true;
1176  }
1177  case Expr::ConditionalOperatorClass: {
1178    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1179    if (CheckArithmeticConstantExpression(Exp->getCond()))
1180      return true;
1181    if (Exp->getLHS() &&
1182        CheckArithmeticConstantExpression(Exp->getLHS()))
1183      return true;
1184    return CheckArithmeticConstantExpression(Exp->getRHS());
1185  }
1186  }
1187}
1188
1189bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1190  Init = Init->IgnoreParens();
1191
1192  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1193  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1194    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1195
1196  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1197    return CheckForConstantInitializer(e->getInitializer(), DclT);
1198
1199  if (Init->getType()->isReferenceType()) {
1200    // FIXME: Work out how the heck reference types work
1201    return false;
1202#if 0
1203    // A reference is constant if the address of the expression
1204    // is constant
1205    // We look through initlists here to simplify
1206    // CheckAddressConstantExpressionLValue.
1207    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1208      assert(Exp->getNumInits() > 0 &&
1209             "Refernce initializer cannot be empty");
1210      Init = Exp->getInit(0);
1211    }
1212    return CheckAddressConstantExpressionLValue(Init);
1213#endif
1214  }
1215
1216  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1217    unsigned numInits = Exp->getNumInits();
1218    for (unsigned i = 0; i < numInits; i++) {
1219      // FIXME: Need to get the type of the declaration for C++,
1220      // because it could be a reference?
1221      if (CheckForConstantInitializer(Exp->getInit(i),
1222                                      Exp->getInit(i)->getType()))
1223        return true;
1224    }
1225    return false;
1226  }
1227
1228  if (Init->isNullPointerConstant(Context))
1229    return false;
1230  if (Init->getType()->isArithmeticType()) {
1231    QualType InitTy = Context.getCanonicalType(Init->getType())
1232                             .getUnqualifiedType();
1233    if (InitTy == Context.BoolTy) {
1234      // Special handling for pointers implicitly cast to bool;
1235      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1236      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1237        Expr* SubE = ICE->getSubExpr();
1238        if (SubE->getType()->isPointerType() ||
1239            SubE->getType()->isArrayType() ||
1240            SubE->getType()->isFunctionType()) {
1241          return CheckAddressConstantExpression(Init);
1242        }
1243      }
1244    } else if (InitTy->isIntegralType()) {
1245      Expr* SubE = 0;
1246      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1247        SubE = CE->getSubExpr();
1248      // Special check for pointer cast to int; we allow as an extension
1249      // an address constant cast to an integer if the integer
1250      // is of an appropriate width (this sort of code is apparently used
1251      // in some places).
1252      // FIXME: Add pedwarn?
1253      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1254      if (SubE && (SubE->getType()->isPointerType() ||
1255                   SubE->getType()->isArrayType() ||
1256                   SubE->getType()->isFunctionType())) {
1257        unsigned IntWidth = Context.getTypeSize(Init->getType());
1258        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1259        if (IntWidth >= PointerWidth)
1260          return CheckAddressConstantExpression(Init);
1261      }
1262    }
1263
1264    return CheckArithmeticConstantExpression(Init);
1265  }
1266
1267  if (Init->getType()->isPointerType())
1268    return CheckAddressConstantExpression(Init);
1269
1270  // An array type at the top level that isn't an init-list must
1271  // be a string literal
1272  if (Init->getType()->isArrayType())
1273    return false;
1274
1275  if (Init->getType()->isFunctionType())
1276    return false;
1277
1278  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1279       Init->getSourceRange());
1280  return true;
1281}
1282
1283void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1284  Decl *RealDecl = static_cast<Decl *>(dcl);
1285  Expr *Init = static_cast<Expr *>(init);
1286  assert(Init && "missing initializer");
1287
1288  // If there is no declaration, there was an error parsing it.  Just ignore
1289  // the initializer.
1290  if (RealDecl == 0) {
1291    delete Init;
1292    return;
1293  }
1294
1295  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1296  if (!VDecl) {
1297    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1298         diag::err_illegal_initializer);
1299    RealDecl->setInvalidDecl();
1300    return;
1301  }
1302  // Get the decls type and save a reference for later, since
1303  // CheckInitializerTypes may change it.
1304  QualType DclT = VDecl->getType(), SavT = DclT;
1305  if (VDecl->isBlockVarDecl()) {
1306    VarDecl::StorageClass SC = VDecl->getStorageClass();
1307    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1308      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1309      VDecl->setInvalidDecl();
1310    } else if (!VDecl->isInvalidDecl()) {
1311      if (CheckInitializerTypes(Init, DclT))
1312        VDecl->setInvalidDecl();
1313
1314      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1315      if (!getLangOptions().CPlusPlus) {
1316        if (SC == VarDecl::Static) // C99 6.7.8p4.
1317          CheckForConstantInitializer(Init, DclT);
1318      }
1319    }
1320  } else if (VDecl->isFileVarDecl()) {
1321    if (VDecl->getStorageClass() == VarDecl::Extern)
1322      Diag(VDecl->getLocation(), diag::warn_extern_init);
1323    if (!VDecl->isInvalidDecl())
1324      if (CheckInitializerTypes(Init, DclT))
1325        VDecl->setInvalidDecl();
1326
1327    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1328    if (!getLangOptions().CPlusPlus) {
1329      // C99 6.7.8p4. All file scoped initializers need to be constant.
1330      CheckForConstantInitializer(Init, DclT);
1331    }
1332  }
1333  // If the type changed, it means we had an incomplete type that was
1334  // completed by the initializer. For example:
1335  //   int ary[] = { 1, 3, 5 };
1336  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1337  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1338    VDecl->setType(DclT);
1339    Init->setType(DclT);
1340  }
1341
1342  // Attach the initializer to the decl.
1343  VDecl->setInit(Init);
1344  return;
1345}
1346
1347/// The declarators are chained together backwards, reverse the list.
1348Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1349  // Often we have single declarators, handle them quickly.
1350  Decl *GroupDecl = static_cast<Decl*>(group);
1351  if (GroupDecl == 0)
1352    return 0;
1353
1354  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1355  ScopedDecl *NewGroup = 0;
1356  if (Group->getNextDeclarator() == 0)
1357    NewGroup = Group;
1358  else { // reverse the list.
1359    while (Group) {
1360      ScopedDecl *Next = Group->getNextDeclarator();
1361      Group->setNextDeclarator(NewGroup);
1362      NewGroup = Group;
1363      Group = Next;
1364    }
1365  }
1366  // Perform semantic analysis that depends on having fully processed both
1367  // the declarator and initializer.
1368  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1369    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1370    if (!IDecl)
1371      continue;
1372    QualType T = IDecl->getType();
1373
1374    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1375    // static storage duration, it shall not have a variable length array.
1376    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1377        IDecl->getStorageClass() == VarDecl::Static) {
1378      if (T->isVariableArrayType()) {
1379        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1380        IDecl->setInvalidDecl();
1381      }
1382    }
1383    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1384    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1385    if (IDecl->isBlockVarDecl() &&
1386        IDecl->getStorageClass() != VarDecl::Extern) {
1387      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1388        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1389             T.getAsString());
1390        IDecl->setInvalidDecl();
1391      }
1392    }
1393    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1394    // object that has file scope without an initializer, and without a
1395    // storage-class specifier or with the storage-class specifier "static",
1396    // constitutes a tentative definition. Note: A tentative definition with
1397    // external linkage is valid (C99 6.2.2p5).
1398    if (isTentativeDefinition(IDecl)) {
1399      if (T->isIncompleteArrayType()) {
1400        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1401        // array to be completed. Don't issue a diagnostic.
1402      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1403        // C99 6.9.2p3: If the declaration of an identifier for an object is
1404        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1405        // declared type shall not be an incomplete type.
1406        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1407             T.getAsString());
1408        IDecl->setInvalidDecl();
1409      }
1410    }
1411    if (IDecl->isFileVarDecl())
1412      CheckForFileScopedRedefinitions(S, IDecl);
1413  }
1414  return NewGroup;
1415}
1416
1417/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1418/// to introduce parameters into function prototype scope.
1419Sema::DeclTy *
1420Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1421  const DeclSpec &DS = D.getDeclSpec();
1422
1423  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1424  VarDecl::StorageClass StorageClass = VarDecl::None;
1425  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1426    StorageClass = VarDecl::Register;
1427  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1428    Diag(DS.getStorageClassSpecLoc(),
1429         diag::err_invalid_storage_class_in_func_decl);
1430    D.getMutableDeclSpec().ClearStorageClassSpecs();
1431  }
1432  if (DS.isThreadSpecified()) {
1433    Diag(DS.getThreadSpecLoc(),
1434         diag::err_invalid_storage_class_in_func_decl);
1435    D.getMutableDeclSpec().ClearStorageClassSpecs();
1436  }
1437
1438  // Check that there are no default arguments inside the type of this
1439  // parameter (C++ only).
1440  if (getLangOptions().CPlusPlus)
1441    CheckExtraCXXDefaultArguments(D);
1442
1443  // In this context, we *do not* check D.getInvalidType(). If the declarator
1444  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1445  // though it will not reflect the user specified type.
1446  QualType parmDeclType = GetTypeForDeclarator(D, S);
1447
1448  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1449
1450  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1451  // Can this happen for params?  We already checked that they don't conflict
1452  // among each other.  Here they can only shadow globals, which is ok.
1453  IdentifierInfo *II = D.getIdentifier();
1454  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1455    if (S->isDeclScope(PrevDecl)) {
1456      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1457           dyn_cast<NamedDecl>(PrevDecl)->getName());
1458
1459      // Recover by removing the name
1460      II = 0;
1461      D.SetIdentifier(0, D.getIdentifierLoc());
1462    }
1463  }
1464
1465  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1466  // Doing the promotion here has a win and a loss. The win is the type for
1467  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1468  // code generator). The loss is the orginal type isn't preserved. For example:
1469  //
1470  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1471  //    int blockvardecl[5];
1472  //    sizeof(parmvardecl);  // size == 4
1473  //    sizeof(blockvardecl); // size == 20
1474  // }
1475  //
1476  // For expressions, all implicit conversions are captured using the
1477  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1478  //
1479  // FIXME: If a source translation tool needs to see the original type, then
1480  // we need to consider storing both types (in ParmVarDecl)...
1481  //
1482  if (parmDeclType->isArrayType()) {
1483    // int x[restrict 4] ->  int *restrict
1484    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1485  } else if (parmDeclType->isFunctionType())
1486    parmDeclType = Context.getPointerType(parmDeclType);
1487
1488  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1489                                         D.getIdentifierLoc(), II,
1490                                         parmDeclType, StorageClass,
1491                                         0, 0);
1492
1493  if (D.getInvalidType())
1494    New->setInvalidDecl();
1495
1496  if (II)
1497    PushOnScopeChains(New, S);
1498
1499  ProcessDeclAttributes(New, D);
1500  return New;
1501
1502}
1503
1504Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1505  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1506  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1507         "Not a function declarator!");
1508  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1509
1510  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1511  // for a K&R function.
1512  if (!FTI.hasPrototype) {
1513    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1514      if (FTI.ArgInfo[i].Param == 0) {
1515        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1516             FTI.ArgInfo[i].Ident->getName());
1517        // Implicitly declare the argument as type 'int' for lack of a better
1518        // type.
1519        DeclSpec DS;
1520        const char* PrevSpec; // unused
1521        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1522                           PrevSpec);
1523        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1524        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1525        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1526      }
1527    }
1528  } else {
1529    // FIXME: Diagnose arguments without names in C.
1530  }
1531
1532  Scope *GlobalScope = FnBodyScope->getParent();
1533
1534  // See if this is a redefinition.
1535  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1536                             GlobalScope);
1537  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1538    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1539      const FunctionDecl *Definition;
1540      if (FD->getBody(Definition)) {
1541        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1542             D.getIdentifier()->getName());
1543        Diag(Definition->getLocation(), diag::err_previous_definition);
1544      }
1545    }
1546  }
1547
1548  return ActOnStartOfFunctionDef(FnBodyScope,
1549                                 ActOnDeclarator(GlobalScope, D, 0));
1550}
1551
1552Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1553  Decl *decl = static_cast<Decl*>(D);
1554  FunctionDecl *FD = cast<FunctionDecl>(decl);
1555  PushDeclContext(FD);
1556
1557  // Check the validity of our function parameters
1558  CheckParmsForFunctionDef(FD);
1559
1560  // Introduce our parameters into the function scope
1561  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1562    ParmVarDecl *Param = FD->getParamDecl(p);
1563    // If this has an identifier, add it to the scope stack.
1564    if (Param->getIdentifier())
1565      PushOnScopeChains(Param, FnBodyScope);
1566  }
1567
1568  return FD;
1569}
1570
1571Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1572  Decl *dcl = static_cast<Decl *>(D);
1573  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1574    FD->setBody((Stmt*)Body);
1575    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1576  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1577    MD->setBody((Stmt*)Body);
1578  } else
1579    return 0;
1580  PopDeclContext();
1581  // Verify and clean out per-function state.
1582
1583  // Check goto/label use.
1584  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1585       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1586    // Verify that we have no forward references left.  If so, there was a goto
1587    // or address of a label taken, but no definition of it.  Label fwd
1588    // definitions are indicated with a null substmt.
1589    if (I->second->getSubStmt() == 0) {
1590      LabelStmt *L = I->second;
1591      // Emit error.
1592      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1593
1594      // At this point, we have gotos that use the bogus label.  Stitch it into
1595      // the function body so that they aren't leaked and that the AST is well
1596      // formed.
1597      if (Body) {
1598        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1599        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1600      } else {
1601        // The whole function wasn't parsed correctly, just delete this.
1602        delete L;
1603      }
1604    }
1605  }
1606  LabelMap.clear();
1607
1608  return D;
1609}
1610
1611/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1612/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1613ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1614                                           IdentifierInfo &II, Scope *S) {
1615  // Extension in C99.  Legal in C90, but warn about it.
1616  if (getLangOptions().C99)
1617    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1618  else
1619    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1620
1621  // FIXME: handle stuff like:
1622  // void foo() { extern float X(); }
1623  // void bar() { X(); }  <-- implicit decl for X in another scope.
1624
1625  // Set a Declarator for the implicit definition: int foo();
1626  const char *Dummy;
1627  DeclSpec DS;
1628  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1629  Error = Error; // Silence warning.
1630  assert(!Error && "Error setting up implicit decl!");
1631  Declarator D(DS, Declarator::BlockContext);
1632  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1633  D.SetIdentifier(&II, Loc);
1634
1635  // Insert this function into translation-unit scope.
1636
1637  DeclContext *PrevDC = CurContext;
1638  CurContext = Context.getTranslationUnitDecl();
1639
1640  FunctionDecl *FD =
1641    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1642  FD->setImplicit();
1643
1644  CurContext = PrevDC;
1645
1646  return FD;
1647}
1648
1649
1650TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1651                                    ScopedDecl *LastDeclarator) {
1652  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1653  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1654
1655  // Scope manipulation handled by caller.
1656  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1657                                           D.getIdentifierLoc(),
1658                                           D.getIdentifier(),
1659                                           T, LastDeclarator);
1660  if (D.getInvalidType())
1661    NewTD->setInvalidDecl();
1662  return NewTD;
1663}
1664
1665/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1666/// former case, Name will be non-null.  In the later case, Name will be null.
1667/// TagType indicates what kind of tag this is. TK indicates whether this is a
1668/// reference/declaration/definition of a tag.
1669Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1670                             SourceLocation KWLoc, IdentifierInfo *Name,
1671                             SourceLocation NameLoc, AttributeList *Attr) {
1672  // If this is a use of an existing tag, it must have a name.
1673  assert((Name != 0 || TK == TK_Definition) &&
1674         "Nameless record must be a definition!");
1675
1676  TagDecl::TagKind Kind;
1677  switch (TagType) {
1678  default: assert(0 && "Unknown tag type!");
1679  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1680  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1681  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1682  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1683  }
1684
1685  // Two code paths: a new one for structs/unions/classes where we create
1686  //   separate decls for forward declarations, and an old (eventually to
1687  //   be removed) code path for enums.
1688  if (Kind != TagDecl::TK_enum)
1689    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1690
1691  // If this is a named struct, check to see if there was a previous forward
1692  // declaration or definition.
1693  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1694  ScopedDecl *PrevDecl =
1695    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1696
1697  if (PrevDecl) {
1698    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1699            "unexpected Decl type");
1700    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1701      // If this is a use of a previous tag, or if the tag is already declared
1702      // in the same scope (so that the definition/declaration completes or
1703      // rementions the tag), reuse the decl.
1704      if (TK == TK_Reference ||
1705          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1706        // Make sure that this wasn't declared as an enum and now used as a
1707        // struct or something similar.
1708        if (PrevTagDecl->getTagKind() != Kind) {
1709          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1710          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1711          // Recover by making this an anonymous redefinition.
1712          Name = 0;
1713          PrevDecl = 0;
1714        } else {
1715          // If this is a use or a forward declaration, we're good.
1716          if (TK != TK_Definition)
1717            return PrevDecl;
1718
1719          // Diagnose attempts to redefine a tag.
1720          if (PrevTagDecl->isDefinition()) {
1721            Diag(NameLoc, diag::err_redefinition, Name->getName());
1722            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1723            // If this is a redefinition, recover by making this struct be
1724            // anonymous, which will make any later references get the previous
1725            // definition.
1726            Name = 0;
1727          } else {
1728            // Okay, this is definition of a previously declared or referenced
1729            // tag. Move the location of the decl to be the definition site.
1730            PrevDecl->setLocation(NameLoc);
1731            return PrevDecl;
1732          }
1733        }
1734      }
1735      // If we get here, this is a definition of a new struct type in a nested
1736      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1737      // type.
1738    } else {
1739      // PrevDecl is a namespace.
1740      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1741        // The tag name clashes with a namespace name, issue an error and
1742        // recover by making this tag be anonymous.
1743        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1744        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1745        Name = 0;
1746      }
1747    }
1748  }
1749
1750  // If there is an identifier, use the location of the identifier as the
1751  // location of the decl, otherwise use the location of the struct/union
1752  // keyword.
1753  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1754
1755  // Otherwise, if this is the first time we've seen this tag, create the decl.
1756  TagDecl *New;
1757  if (Kind == TagDecl::TK_enum) {
1758    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1759    // enum X { A, B, C } D;    D should chain to X.
1760    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1761    // If this is an undefined enum, warn.
1762    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1763  } else {
1764    // struct/union/class
1765
1766    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1767    // struct X { int A; } D;    D should chain to X.
1768    if (getLangOptions().CPlusPlus)
1769      // FIXME: Look for a way to use RecordDecl for simple structs.
1770      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1771    else
1772      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1773  }
1774
1775  // If this has an identifier, add it to the scope stack.
1776  if (Name) {
1777    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1778    // we find one that is.
1779    while ((S->getFlags() & Scope::DeclScope) == 0)
1780      S = S->getParent();
1781
1782    // Add it to the decl chain.
1783    PushOnScopeChains(New, S);
1784  }
1785
1786  if (Attr)
1787    ProcessDeclAttributeList(New, Attr);
1788  return New;
1789}
1790
1791/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1792///  the logic for enums, we create separate decls for forward declarations.
1793///  This is called by ActOnTag, but eventually will replace its logic.
1794Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1795                             SourceLocation KWLoc, IdentifierInfo *Name,
1796                             SourceLocation NameLoc, AttributeList *Attr) {
1797
1798  // If this is a named struct, check to see if there was a previous forward
1799  // declaration or definition.
1800  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1801  ScopedDecl *PrevDecl =
1802    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1803
1804  if (PrevDecl) {
1805    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1806           "unexpected Decl type");
1807
1808    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1809      // If this is a use of a previous tag, or if the tag is already declared
1810      // in the same scope (so that the definition/declaration completes or
1811      // rementions the tag), reuse the decl.
1812      if (TK == TK_Reference ||
1813          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1814        // Make sure that this wasn't declared as an enum and now used as a
1815        // struct or something similar.
1816        if (PrevTagDecl->getTagKind() != Kind) {
1817          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1818          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1819          // Recover by making this an anonymous redefinition.
1820          Name = 0;
1821          PrevDecl = 0;
1822        } else {
1823          // If this is a use, return the original decl.
1824
1825          // FIXME: In the future, return a variant or some other clue
1826          //  for the consumer of this Decl to know it doesn't own it.
1827          //  For our current ASTs this shouldn't be a problem, but will
1828          //  need to be changed with DeclGroups.
1829          if (TK == TK_Reference)
1830            return PrevDecl;
1831
1832          // The new decl is a definition?
1833          if (TK == TK_Definition) {
1834            // Diagnose attempts to redefine a tag.
1835            if (RecordDecl* DefRecord =
1836                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1837              Diag(NameLoc, diag::err_redefinition, Name->getName());
1838              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1839              // If this is a redefinition, recover by making this struct be
1840              // anonymous, which will make any later references get the previous
1841              // definition.
1842              Name = 0;
1843              PrevDecl = 0;
1844            }
1845            // Okay, this is definition of a previously declared or referenced
1846            // tag.  We're going to create a new Decl.
1847          }
1848        }
1849        // If we get here we have (another) forward declaration.  Just create
1850        // a new decl.
1851      }
1852      else {
1853        // If we get here, this is a definition of a new struct type in a nested
1854        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1855        // new decl/type.  We set PrevDecl to NULL so that the Records
1856        // have distinct types.
1857        PrevDecl = 0;
1858      }
1859    } else {
1860      // PrevDecl is a namespace.
1861      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1862        // The tag name clashes with a namespace name, issue an error and
1863        // recover by making this tag be anonymous.
1864        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1865        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1866        Name = 0;
1867      }
1868    }
1869  }
1870
1871  // If there is an identifier, use the location of the identifier as the
1872  // location of the decl, otherwise use the location of the struct/union
1873  // keyword.
1874  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1875
1876  // Otherwise, if this is the first time we've seen this tag, create the decl.
1877  TagDecl *New;
1878
1879  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1880  // struct X { int A; } D;    D should chain to X.
1881  if (getLangOptions().CPlusPlus)
1882    // FIXME: Look for a way to use RecordDecl for simple structs.
1883    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1884                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1885  else
1886    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1887                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1888
1889  // If this has an identifier, add it to the scope stack.
1890  if ((TK == TK_Definition || !PrevDecl) && Name) {
1891    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1892    // we find one that is.
1893    while ((S->getFlags() & Scope::DeclScope) == 0)
1894      S = S->getParent();
1895
1896    // Add it to the decl chain.
1897    PushOnScopeChains(New, S);
1898  }
1899
1900  if (Attr)
1901    ProcessDeclAttributeList(New, Attr);
1902
1903  return New;
1904}
1905
1906
1907/// Collect the instance variables declared in an Objective-C object.  Used in
1908/// the creation of structures from objects using the @defs directive.
1909static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1910                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1911  if (Class->getSuperClass())
1912    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1913
1914  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1915  for (ObjCInterfaceDecl::ivar_iterator
1916        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1917
1918    ObjCIvarDecl* ID = *I;
1919    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1920                                                ID->getIdentifier(),
1921                                                ID->getType(),
1922                                                ID->getBitWidth()));
1923  }
1924}
1925
1926/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1927/// instance variables of ClassName into Decls.
1928void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1929                     IdentifierInfo *ClassName,
1930                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1931  // Check that ClassName is a valid class
1932  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1933  if (!Class) {
1934    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1935    return;
1936  }
1937  // Collect the instance variables
1938  CollectIvars(Class, Context, Decls);
1939}
1940
1941QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1942  // This method tries to turn a variable array into a constant
1943  // array even when the size isn't an ICE.  This is necessary
1944  // for compatibility with code that depends on gcc's buggy
1945  // constant expression folding, like struct {char x[(int)(char*)2];}
1946  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1947    APValue Result;
1948    if (VLATy->getSizeExpr() &&
1949        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1950      llvm::APSInt &Res = Result.getInt();
1951      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1952        return Context.getConstantArrayType(VLATy->getElementType(),
1953                                            Res, ArrayType::Normal, 0);
1954    }
1955  }
1956  return QualType();
1957}
1958
1959/// ActOnField - Each field of a struct/union/class is passed into this in order
1960/// to create a FieldDecl object for it.
1961Sema::DeclTy *Sema::ActOnField(Scope *S,
1962                               SourceLocation DeclStart,
1963                               Declarator &D, ExprTy *BitfieldWidth) {
1964  IdentifierInfo *II = D.getIdentifier();
1965  Expr *BitWidth = (Expr*)BitfieldWidth;
1966  SourceLocation Loc = DeclStart;
1967  if (II) Loc = D.getIdentifierLoc();
1968
1969  // FIXME: Unnamed fields can be handled in various different ways, for
1970  // example, unnamed unions inject all members into the struct namespace!
1971
1972  if (BitWidth) {
1973    // TODO: Validate.
1974    //printf("WARNING: BITFIELDS IGNORED!\n");
1975
1976    // 6.7.2.1p3
1977    // 6.7.2.1p4
1978
1979  } else {
1980    // Not a bitfield.
1981
1982    // validate II.
1983
1984  }
1985
1986  QualType T = GetTypeForDeclarator(D, S);
1987  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1988  bool InvalidDecl = false;
1989
1990  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1991  // than a variably modified type.
1992  if (T->isVariablyModifiedType()) {
1993    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
1994    if (!FixedTy.isNull()) {
1995      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
1996      T = FixedTy;
1997    } else {
1998      // FIXME: This diagnostic needs work
1999      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2000      InvalidDecl = true;
2001    }
2002  }
2003  // FIXME: Chain fielddecls together.
2004  FieldDecl *NewFD;
2005
2006  if (getLangOptions().CPlusPlus) {
2007    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2008    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2009                                 Loc, II, T, BitWidth);
2010    if (II)
2011      PushOnScopeChains(NewFD, S);
2012  }
2013  else
2014    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2015
2016  ProcessDeclAttributes(NewFD, D);
2017
2018  if (D.getInvalidType() || InvalidDecl)
2019    NewFD->setInvalidDecl();
2020  return NewFD;
2021}
2022
2023/// TranslateIvarVisibility - Translate visibility from a token ID to an
2024///  AST enum value.
2025static ObjCIvarDecl::AccessControl
2026TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2027  switch (ivarVisibility) {
2028    case tok::objc_private: return ObjCIvarDecl::Private;
2029    case tok::objc_public: return ObjCIvarDecl::Public;
2030    case tok::objc_protected: return ObjCIvarDecl::Protected;
2031    case tok::objc_package: return ObjCIvarDecl::Package;
2032    default: assert(false && "Unknown visitibility kind");
2033  }
2034}
2035
2036/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2037/// in order to create an IvarDecl object for it.
2038Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2039                              SourceLocation DeclStart,
2040                              Declarator &D, ExprTy *BitfieldWidth,
2041                              tok::ObjCKeywordKind Visibility) {
2042  IdentifierInfo *II = D.getIdentifier();
2043  Expr *BitWidth = (Expr*)BitfieldWidth;
2044  SourceLocation Loc = DeclStart;
2045  if (II) Loc = D.getIdentifierLoc();
2046
2047  // FIXME: Unnamed fields can be handled in various different ways, for
2048  // example, unnamed unions inject all members into the struct namespace!
2049
2050
2051  if (BitWidth) {
2052    // TODO: Validate.
2053    //printf("WARNING: BITFIELDS IGNORED!\n");
2054
2055    // 6.7.2.1p3
2056    // 6.7.2.1p4
2057
2058  } else {
2059    // Not a bitfield.
2060
2061    // validate II.
2062
2063  }
2064
2065  QualType T = GetTypeForDeclarator(D, S);
2066  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2067  bool InvalidDecl = false;
2068
2069  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2070  // than a variably modified type.
2071  if (T->isVariablyModifiedType()) {
2072    // FIXME: This diagnostic needs work
2073    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2074    InvalidDecl = true;
2075  }
2076
2077  // Get the visibility (access control) for this ivar.
2078  ObjCIvarDecl::AccessControl ac =
2079    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2080                                        : ObjCIvarDecl::None;
2081
2082  // Construct the decl.
2083  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2084                                             (Expr *)BitfieldWidth);
2085
2086  // Process attributes attached to the ivar.
2087  ProcessDeclAttributes(NewID, D);
2088
2089  if (D.getInvalidType() || InvalidDecl)
2090    NewID->setInvalidDecl();
2091
2092  return NewID;
2093}
2094
2095void Sema::ActOnFields(Scope* S,
2096                       SourceLocation RecLoc, DeclTy *RecDecl,
2097                       DeclTy **Fields, unsigned NumFields,
2098                       SourceLocation LBrac, SourceLocation RBrac) {
2099  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2100  assert(EnclosingDecl && "missing record or interface decl");
2101  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2102
2103  if (Record)
2104    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2105      // Diagnose code like:
2106      //     struct S { struct S {} X; };
2107      // We discover this when we complete the outer S.  Reject and ignore the
2108      // outer S.
2109      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2110           DefRecord->getKindName());
2111      Diag(RecLoc, diag::err_previous_definition);
2112      Record->setInvalidDecl();
2113      return;
2114    }
2115
2116  // Verify that all the fields are okay.
2117  unsigned NumNamedMembers = 0;
2118  llvm::SmallVector<FieldDecl*, 32> RecFields;
2119  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2120
2121  for (unsigned i = 0; i != NumFields; ++i) {
2122
2123    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2124    assert(FD && "missing field decl");
2125
2126    // Remember all fields.
2127    RecFields.push_back(FD);
2128
2129    // Get the type for the field.
2130    Type *FDTy = FD->getType().getTypePtr();
2131
2132    // C99 6.7.2.1p2 - A field may not be a function type.
2133    if (FDTy->isFunctionType()) {
2134      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2135           FD->getName());
2136      FD->setInvalidDecl();
2137      EnclosingDecl->setInvalidDecl();
2138      continue;
2139    }
2140    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2141    if (FDTy->isIncompleteType()) {
2142      if (!Record) {  // Incomplete ivar type is always an error.
2143        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2144        FD->setInvalidDecl();
2145        EnclosingDecl->setInvalidDecl();
2146        continue;
2147      }
2148      if (i != NumFields-1 ||                   // ... that the last member ...
2149          !Record->isStruct() ||  // ... of a structure ...
2150          !FDTy->isArrayType()) {         //... may have incomplete array type.
2151        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2152        FD->setInvalidDecl();
2153        EnclosingDecl->setInvalidDecl();
2154        continue;
2155      }
2156      if (NumNamedMembers < 1) {  //... must have more than named member ...
2157        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2158             FD->getName());
2159        FD->setInvalidDecl();
2160        EnclosingDecl->setInvalidDecl();
2161        continue;
2162      }
2163      // Okay, we have a legal flexible array member at the end of the struct.
2164      if (Record)
2165        Record->setHasFlexibleArrayMember(true);
2166    }
2167    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2168    /// field of another structure or the element of an array.
2169    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2170      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2171        // If this is a member of a union, then entire union becomes "flexible".
2172        if (Record && Record->isUnion()) {
2173          Record->setHasFlexibleArrayMember(true);
2174        } else {
2175          // If this is a struct/class and this is not the last element, reject
2176          // it.  Note that GCC supports variable sized arrays in the middle of
2177          // structures.
2178          if (i != NumFields-1) {
2179            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2180                 FD->getName());
2181            FD->setInvalidDecl();
2182            EnclosingDecl->setInvalidDecl();
2183            continue;
2184          }
2185          // We support flexible arrays at the end of structs in other structs
2186          // as an extension.
2187          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2188               FD->getName());
2189          if (Record)
2190            Record->setHasFlexibleArrayMember(true);
2191        }
2192      }
2193    }
2194    /// A field cannot be an Objective-c object
2195    if (FDTy->isObjCInterfaceType()) {
2196      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2197           FD->getName());
2198      FD->setInvalidDecl();
2199      EnclosingDecl->setInvalidDecl();
2200      continue;
2201    }
2202    // Keep track of the number of named members.
2203    if (IdentifierInfo *II = FD->getIdentifier()) {
2204      // Detect duplicate member names.
2205      if (!FieldIDs.insert(II)) {
2206        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2207        // Find the previous decl.
2208        SourceLocation PrevLoc;
2209        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2210          assert(i != e && "Didn't find previous def!");
2211          if (RecFields[i]->getIdentifier() == II) {
2212            PrevLoc = RecFields[i]->getLocation();
2213            break;
2214          }
2215        }
2216        Diag(PrevLoc, diag::err_previous_definition);
2217        FD->setInvalidDecl();
2218        EnclosingDecl->setInvalidDecl();
2219        continue;
2220      }
2221      ++NumNamedMembers;
2222    }
2223  }
2224
2225  // Okay, we successfully defined 'Record'.
2226  if (Record) {
2227    Record->defineBody(Context, &RecFields[0], RecFields.size());
2228    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2229    // Sema::ActOnFinishCXXClassDef.
2230    if (!isa<CXXRecordDecl>(Record))
2231      Consumer.HandleTagDeclDefinition(Record);
2232  } else {
2233    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2234    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2235      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2236    else if (ObjCImplementationDecl *IMPDecl =
2237               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2238      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2239      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2240      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2241    }
2242  }
2243}
2244
2245Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2246                                      DeclTy *lastEnumConst,
2247                                      SourceLocation IdLoc, IdentifierInfo *Id,
2248                                      SourceLocation EqualLoc, ExprTy *val) {
2249  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2250  EnumConstantDecl *LastEnumConst =
2251    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2252  Expr *Val = static_cast<Expr*>(val);
2253
2254  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2255  // we find one that is.
2256  while ((S->getFlags() & Scope::DeclScope) == 0)
2257    S = S->getParent();
2258
2259  // Verify that there isn't already something declared with this name in this
2260  // scope.
2261  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2262    // When in C++, we may get a TagDecl with the same name; in this case the
2263    // enum constant will 'hide' the tag.
2264    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2265           "Received TagDecl when not in C++!");
2266    if (!isa<TagDecl>(PrevDecl) &&
2267        IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2268      if (isa<EnumConstantDecl>(PrevDecl))
2269        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2270      else
2271        Diag(IdLoc, diag::err_redefinition, Id->getName());
2272      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2273      delete Val;
2274      return 0;
2275    }
2276  }
2277
2278  llvm::APSInt EnumVal(32);
2279  QualType EltTy;
2280  if (Val) {
2281    // Make sure to promote the operand type to int.
2282    UsualUnaryConversions(Val);
2283
2284    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2285    SourceLocation ExpLoc;
2286    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2287      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2288           Id->getName());
2289      delete Val;
2290      Val = 0;  // Just forget about it.
2291    } else {
2292      EltTy = Val->getType();
2293    }
2294  }
2295
2296  if (!Val) {
2297    if (LastEnumConst) {
2298      // Assign the last value + 1.
2299      EnumVal = LastEnumConst->getInitVal();
2300      ++EnumVal;
2301
2302      // Check for overflow on increment.
2303      if (EnumVal < LastEnumConst->getInitVal())
2304        Diag(IdLoc, diag::warn_enum_value_overflow);
2305
2306      EltTy = LastEnumConst->getType();
2307    } else {
2308      // First value, set to zero.
2309      EltTy = Context.IntTy;
2310      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2311    }
2312  }
2313
2314  EnumConstantDecl *New =
2315    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2316                             Val, EnumVal,
2317                             LastEnumConst);
2318
2319  // Register this decl in the current scope stack.
2320  PushOnScopeChains(New, S);
2321  return New;
2322}
2323
2324// FIXME: For consistency with ActOnFields(), we should have the parser
2325// pass in the source location for the left/right braces.
2326void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2327                         DeclTy **Elements, unsigned NumElements) {
2328  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2329
2330  if (Enum && Enum->isDefinition()) {
2331    // Diagnose code like:
2332    //   enum e0 {
2333    //     E0 = sizeof(enum e0 { E1 })
2334    //   };
2335    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2336         Enum->getName());
2337    Diag(EnumLoc, diag::err_previous_definition);
2338    Enum->setInvalidDecl();
2339    return;
2340  }
2341  // TODO: If the result value doesn't fit in an int, it must be a long or long
2342  // long value.  ISO C does not support this, but GCC does as an extension,
2343  // emit a warning.
2344  unsigned IntWidth = Context.Target.getIntWidth();
2345
2346  // Verify that all the values are okay, compute the size of the values, and
2347  // reverse the list.
2348  unsigned NumNegativeBits = 0;
2349  unsigned NumPositiveBits = 0;
2350
2351  // Keep track of whether all elements have type int.
2352  bool AllElementsInt = true;
2353
2354  EnumConstantDecl *EltList = 0;
2355  for (unsigned i = 0; i != NumElements; ++i) {
2356    EnumConstantDecl *ECD =
2357      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2358    if (!ECD) continue;  // Already issued a diagnostic.
2359
2360    // If the enum value doesn't fit in an int, emit an extension warning.
2361    const llvm::APSInt &InitVal = ECD->getInitVal();
2362    assert(InitVal.getBitWidth() >= IntWidth &&
2363           "Should have promoted value to int");
2364    if (InitVal.getBitWidth() > IntWidth) {
2365      llvm::APSInt V(InitVal);
2366      V.trunc(IntWidth);
2367      V.extend(InitVal.getBitWidth());
2368      if (V != InitVal)
2369        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2370             InitVal.toString(10));
2371    }
2372
2373    // Keep track of the size of positive and negative values.
2374    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2375      NumPositiveBits = std::max(NumPositiveBits,
2376                                 (unsigned)InitVal.getActiveBits());
2377    else
2378      NumNegativeBits = std::max(NumNegativeBits,
2379                                 (unsigned)InitVal.getMinSignedBits());
2380
2381    // Keep track of whether every enum element has type int (very commmon).
2382    if (AllElementsInt)
2383      AllElementsInt = ECD->getType() == Context.IntTy;
2384
2385    ECD->setNextDeclarator(EltList);
2386    EltList = ECD;
2387  }
2388
2389  // Figure out the type that should be used for this enum.
2390  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2391  QualType BestType;
2392  unsigned BestWidth;
2393
2394  if (NumNegativeBits) {
2395    // If there is a negative value, figure out the smallest integer type (of
2396    // int/long/longlong) that fits.
2397    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2398      BestType = Context.IntTy;
2399      BestWidth = IntWidth;
2400    } else {
2401      BestWidth = Context.Target.getLongWidth();
2402
2403      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2404        BestType = Context.LongTy;
2405      else {
2406        BestWidth = Context.Target.getLongLongWidth();
2407
2408        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2409          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2410        BestType = Context.LongLongTy;
2411      }
2412    }
2413  } else {
2414    // If there is no negative value, figure out which of uint, ulong, ulonglong
2415    // fits.
2416    if (NumPositiveBits <= IntWidth) {
2417      BestType = Context.UnsignedIntTy;
2418      BestWidth = IntWidth;
2419    } else if (NumPositiveBits <=
2420               (BestWidth = Context.Target.getLongWidth())) {
2421      BestType = Context.UnsignedLongTy;
2422    } else {
2423      BestWidth = Context.Target.getLongLongWidth();
2424      assert(NumPositiveBits <= BestWidth &&
2425             "How could an initializer get larger than ULL?");
2426      BestType = Context.UnsignedLongLongTy;
2427    }
2428  }
2429
2430  // Loop over all of the enumerator constants, changing their types to match
2431  // the type of the enum if needed.
2432  for (unsigned i = 0; i != NumElements; ++i) {
2433    EnumConstantDecl *ECD =
2434      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2435    if (!ECD) continue;  // Already issued a diagnostic.
2436
2437    // Standard C says the enumerators have int type, but we allow, as an
2438    // extension, the enumerators to be larger than int size.  If each
2439    // enumerator value fits in an int, type it as an int, otherwise type it the
2440    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2441    // that X has type 'int', not 'unsigned'.
2442    if (ECD->getType() == Context.IntTy) {
2443      // Make sure the init value is signed.
2444      llvm::APSInt IV = ECD->getInitVal();
2445      IV.setIsSigned(true);
2446      ECD->setInitVal(IV);
2447      continue;  // Already int type.
2448    }
2449
2450    // Determine whether the value fits into an int.
2451    llvm::APSInt InitVal = ECD->getInitVal();
2452    bool FitsInInt;
2453    if (InitVal.isUnsigned() || !InitVal.isNegative())
2454      FitsInInt = InitVal.getActiveBits() < IntWidth;
2455    else
2456      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2457
2458    // If it fits into an integer type, force it.  Otherwise force it to match
2459    // the enum decl type.
2460    QualType NewTy;
2461    unsigned NewWidth;
2462    bool NewSign;
2463    if (FitsInInt) {
2464      NewTy = Context.IntTy;
2465      NewWidth = IntWidth;
2466      NewSign = true;
2467    } else if (ECD->getType() == BestType) {
2468      // Already the right type!
2469      continue;
2470    } else {
2471      NewTy = BestType;
2472      NewWidth = BestWidth;
2473      NewSign = BestType->isSignedIntegerType();
2474    }
2475
2476    // Adjust the APSInt value.
2477    InitVal.extOrTrunc(NewWidth);
2478    InitVal.setIsSigned(NewSign);
2479    ECD->setInitVal(InitVal);
2480
2481    // Adjust the Expr initializer and type.
2482    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2483    ECD->setType(NewTy);
2484  }
2485
2486  Enum->defineElements(EltList, BestType);
2487  Consumer.HandleTagDeclDefinition(Enum);
2488}
2489
2490Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2491                                          ExprTy *expr) {
2492  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2493
2494  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2495}
2496
2497Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2498                                     SourceLocation LBrace,
2499                                     SourceLocation RBrace,
2500                                     const char *Lang,
2501                                     unsigned StrSize,
2502                                     DeclTy *D) {
2503  LinkageSpecDecl::LanguageIDs Language;
2504  Decl *dcl = static_cast<Decl *>(D);
2505  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2506    Language = LinkageSpecDecl::lang_c;
2507  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2508    Language = LinkageSpecDecl::lang_cxx;
2509  else {
2510    Diag(Loc, diag::err_bad_language);
2511    return 0;
2512  }
2513
2514  // FIXME: Add all the various semantics of linkage specifications
2515  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2516}
2517