SemaDecl.cpp revision 2bac0f6b3724734d7bb7bf8231bd8511cb49570f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
31                               const CXXScopeSpec *SS) {
32  DeclContext *DC = 0;
33  if (SS) {
34    if (SS->isInvalid())
35      return 0;
36    DC = static_cast<DeclContext*>(SS->getScopeRep());
37  }
38  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
39
40  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
41                 isa<ObjCInterfaceDecl>(IIDecl) ||
42                 isa<TagDecl>(IIDecl)))
43    return IIDecl;
44  return 0;
45}
46
47DeclContext *Sema::getContainingDC(DeclContext *DC) {
48  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
49    // A C++ out-of-line method will return to the file declaration context.
50    if (MD->isOutOfLineDefinition())
51      return MD->getLexicalDeclContext();
52
53    // A C++ inline method is parsed *after* the topmost class it was declared in
54    // is fully parsed (it's "complete").
55    // The parsing of a C++ inline method happens at the declaration context of
56    // the topmost (non-nested) class it is lexically declared in.
57    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
58    DC = MD->getParent();
59    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
60      DC = RD;
61
62    // Return the declaration context of the topmost class the inline method is
63    // declared in.
64    return DC;
65  }
66
67  if (isa<ObjCMethodDecl>(DC))
68    return Context.getTranslationUnitDecl();
69
70  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
71    return SD->getLexicalDeclContext();
72
73  return DC->getLexicalParent();
74}
75
76void Sema::PushDeclContext(DeclContext *DC) {
77  assert(getContainingDC(DC) == CurContext &&
78       "The next DeclContext should be lexically contained in the current one.");
79  CurContext = DC;
80}
81
82void Sema::PopDeclContext() {
83  assert(CurContext && "DeclContext imbalance!");
84  CurContext = getContainingDC(CurContext);
85}
86
87/// Add this decl to the scope shadowed decl chains.
88void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
89  S->AddDecl(D);
90
91  // C++ [basic.scope]p4:
92  //   -- exactly one declaration shall declare a class name or
93  //   enumeration name that is not a typedef name and the other
94  //   declarations shall all refer to the same object or
95  //   enumerator, or all refer to functions and function templates;
96  //   in this case the class name or enumeration name is hidden.
97  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
98    // We are pushing the name of a tag (enum or class).
99    IdentifierResolver::iterator
100        I = IdResolver.begin(TD->getIdentifier(),
101                             TD->getDeclContext(), false/*LookInParentCtx*/);
102    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
103      // There is already a declaration with the same name in the same
104      // scope. It must be found before we find the new declaration,
105      // so swap the order on the shadowed declaration chain.
106
107      IdResolver.AddShadowedDecl(TD, *I);
108      return;
109    }
110  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
111    FunctionDecl *FD = cast<FunctionDecl>(D);
112    // We are pushing the name of a function, which might be an
113    // overloaded name.
114    IdentifierResolver::iterator
115        I = IdResolver.begin(FD->getDeclName(),
116                             FD->getDeclContext(), false/*LookInParentCtx*/);
117    if (I != IdResolver.end() &&
118        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
119        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
120      // There is already a declaration with the same name in the same
121      // scope. It must be a function or an overloaded function.
122      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
123      if (!Ovl) {
124        // We haven't yet overloaded this function. Take the existing
125        // FunctionDecl and put it into an OverloadedFunctionDecl.
126        Ovl = OverloadedFunctionDecl::Create(Context,
127                                             FD->getDeclContext(),
128                                             FD->getDeclName());
129        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
130
131        // Remove the name binding to the existing FunctionDecl...
132        IdResolver.RemoveDecl(*I);
133
134        // ... and put the OverloadedFunctionDecl in its place.
135        IdResolver.AddDecl(Ovl);
136      }
137
138      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
139      // to its list of overloads.
140      Ovl->addOverload(FD);
141
142      return;
143    }
144  }
145
146  IdResolver.AddDecl(D);
147}
148
149void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
150  if (S->decl_empty()) return;
151  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
152
153  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
154       I != E; ++I) {
155    Decl *TmpD = static_cast<Decl*>(*I);
156    assert(TmpD && "This decl didn't get pushed??");
157
158    if (isa<CXXFieldDecl>(TmpD)) continue;
159
160    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
161    ScopedDecl *D = cast<ScopedDecl>(TmpD);
162
163    IdentifierInfo *II = D->getIdentifier();
164    if (!II) continue;
165
166    // We only want to remove the decls from the identifier decl chains for
167    // local scopes, when inside a function/method.
168    if (S->getFnParent() != 0)
169      IdResolver.RemoveDecl(D);
170
171    // Chain this decl to the containing DeclContext.
172    D->setNext(CurContext->getDeclChain());
173    CurContext->setDeclChain(D);
174  }
175}
176
177/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
178/// return 0 if one not found.
179ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
180  // The third "scope" argument is 0 since we aren't enabling lazy built-in
181  // creation from this context.
182  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
183
184  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
185}
186
187/// LookupDecl - Look up the inner-most declaration in the specified
188/// namespace.
189Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
190                       const DeclContext *LookupCtx,
191                       bool enableLazyBuiltinCreation) {
192  if (!Name) return 0;
193  unsigned NS = NSI;
194  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
195    NS |= Decl::IDNS_Tag;
196
197  IdentifierResolver::iterator
198    I = LookupCtx ? IdResolver.begin(Name, LookupCtx, false/*LookInParentCtx*/)
199                  : IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/);
200  // Scan up the scope chain looking for a decl that matches this identifier
201  // that is in the appropriate namespace.  This search should not take long, as
202  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
203  for (; I != IdResolver.end(); ++I)
204    if ((*I)->getIdentifierNamespace() & NS)
205      return *I;
206
207  // If we didn't find a use of this identifier, and if the identifier
208  // corresponds to a compiler builtin, create the decl object for the builtin
209  // now, injecting it into translation unit scope, and return it.
210  if (NS & Decl::IDNS_Ordinary) {
211    IdentifierInfo *II = Name.getAsIdentifierInfo();
212    if (enableLazyBuiltinCreation && II &&
213        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
214      // If this is a builtin on this (or all) targets, create the decl.
215      if (unsigned BuiltinID = II->getBuiltinID())
216        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
217    }
218    if (getLangOptions().ObjC1 && II) {
219      // @interface and @compatibility_alias introduce typedef-like names.
220      // Unlike typedef's, they can only be introduced at file-scope (and are
221      // therefore not scoped decls). They can, however, be shadowed by
222      // other names in IDNS_Ordinary.
223      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
224      if (IDI != ObjCInterfaceDecls.end())
225        return IDI->second;
226      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
227      if (I != ObjCAliasDecls.end())
228        return I->second->getClassInterface();
229    }
230  }
231  return 0;
232}
233
234void Sema::InitBuiltinVaListType() {
235  if (!Context.getBuiltinVaListType().isNull())
236    return;
237
238  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
239  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
240  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
241  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
242}
243
244/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
245/// lazily create a decl for it.
246ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
247                                      Scope *S) {
248  Builtin::ID BID = (Builtin::ID)bid;
249
250  if (Context.BuiltinInfo.hasVAListUse(BID))
251    InitBuiltinVaListType();
252
253  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
254  FunctionDecl *New = FunctionDecl::Create(Context,
255                                           Context.getTranslationUnitDecl(),
256                                           SourceLocation(), II, R,
257                                           FunctionDecl::Extern, false, 0);
258
259  // Create Decl objects for each parameter, adding them to the
260  // FunctionDecl.
261  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
262    llvm::SmallVector<ParmVarDecl*, 16> Params;
263    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
264      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
265                                           FT->getArgType(i), VarDecl::None, 0,
266                                           0));
267    New->setParams(&Params[0], Params.size());
268  }
269
270
271
272  // TUScope is the translation-unit scope to insert this function into.
273  PushOnScopeChains(New, TUScope);
274  return New;
275}
276
277/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
278/// everything from the standard library is defined.
279NamespaceDecl *Sema::GetStdNamespace() {
280  if (!StdNamespace) {
281    DeclContext *Global = Context.getTranslationUnitDecl();
282    Decl *Std = LookupDecl(Ident_StdNs, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
283                           0, Global, /*enableLazyBuiltinCreation=*/false);
284    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
285  }
286  return StdNamespace;
287}
288
289/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
290/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
291/// situation, merging decls or emitting diagnostics as appropriate.
292///
293TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
294  // Allow multiple definitions for ObjC built-in typedefs.
295  // FIXME: Verify the underlying types are equivalent!
296  if (getLangOptions().ObjC1) {
297    const IdentifierInfo *TypeID = New->getIdentifier();
298    switch (TypeID->getLength()) {
299    default: break;
300    case 2:
301      if (!TypeID->isStr("id"))
302        break;
303      Context.setObjCIdType(New);
304      return New;
305    case 5:
306      if (!TypeID->isStr("Class"))
307        break;
308      Context.setObjCClassType(New);
309      return New;
310    case 3:
311      if (!TypeID->isStr("SEL"))
312        break;
313      Context.setObjCSelType(New);
314      return New;
315    case 8:
316      if (!TypeID->isStr("Protocol"))
317        break;
318      Context.setObjCProtoType(New->getUnderlyingType());
319      return New;
320    }
321    // Fall through - the typedef name was not a builtin type.
322  }
323  // Verify the old decl was also a typedef.
324  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
325  if (!Old) {
326    Diag(New->getLocation(), diag::err_redefinition_different_kind,
327         New->getName());
328    Diag(OldD->getLocation(), diag::err_previous_definition);
329    return New;
330  }
331
332  // If the typedef types are not identical, reject them in all languages and
333  // with any extensions enabled.
334  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
335      Context.getCanonicalType(Old->getUnderlyingType()) !=
336      Context.getCanonicalType(New->getUnderlyingType())) {
337    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
338         New->getUnderlyingType().getAsString(),
339         Old->getUnderlyingType().getAsString());
340    Diag(Old->getLocation(), diag::err_previous_definition);
341    return Old;
342  }
343
344  if (getLangOptions().Microsoft) return New;
345
346  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
347  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
348  // *either* declaration is in a system header. The code below implements
349  // this adhoc compatibility rule. FIXME: The following code will not
350  // work properly when compiling ".i" files (containing preprocessed output).
351  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
352    SourceManager &SrcMgr = Context.getSourceManager();
353    if (SrcMgr.isInSystemHeader(Old->getLocation()))
354      return New;
355    if (SrcMgr.isInSystemHeader(New->getLocation()))
356      return New;
357  }
358
359  Diag(New->getLocation(), diag::err_redefinition, New->getName());
360  Diag(Old->getLocation(), diag::err_previous_definition);
361  return New;
362}
363
364/// DeclhasAttr - returns true if decl Declaration already has the target
365/// attribute.
366static bool DeclHasAttr(const Decl *decl, const Attr *target) {
367  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
368    if (attr->getKind() == target->getKind())
369      return true;
370
371  return false;
372}
373
374/// MergeAttributes - append attributes from the Old decl to the New one.
375static void MergeAttributes(Decl *New, Decl *Old) {
376  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
377
378  while (attr) {
379     tmp = attr;
380     attr = attr->getNext();
381
382    if (!DeclHasAttr(New, tmp)) {
383       New->addAttr(tmp);
384    } else {
385       tmp->setNext(0);
386       delete(tmp);
387    }
388  }
389
390  Old->invalidateAttrs();
391}
392
393/// MergeFunctionDecl - We just parsed a function 'New' from
394/// declarator D which has the same name and scope as a previous
395/// declaration 'Old'.  Figure out how to resolve this situation,
396/// merging decls or emitting diagnostics as appropriate.
397/// Redeclaration will be set true if this New is a redeclaration OldD.
398///
399/// In C++, New and Old must be declarations that are not
400/// overloaded. Use IsOverload to determine whether New and Old are
401/// overloaded, and to select the Old declaration that New should be
402/// merged with.
403FunctionDecl *
404Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
405  assert(!isa<OverloadedFunctionDecl>(OldD) &&
406         "Cannot merge with an overloaded function declaration");
407
408  Redeclaration = false;
409  // Verify the old decl was also a function.
410  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
411  if (!Old) {
412    Diag(New->getLocation(), diag::err_redefinition_different_kind,
413         New->getName());
414    Diag(OldD->getLocation(), diag::err_previous_definition);
415    return New;
416  }
417
418  // Determine whether the previous declaration was a definition,
419  // implicit declaration, or a declaration.
420  diag::kind PrevDiag;
421  if (Old->isThisDeclarationADefinition())
422    PrevDiag = diag::err_previous_definition;
423  else if (Old->isImplicit())
424    PrevDiag = diag::err_previous_implicit_declaration;
425  else
426    PrevDiag = diag::err_previous_declaration;
427
428  QualType OldQType = Context.getCanonicalType(Old->getType());
429  QualType NewQType = Context.getCanonicalType(New->getType());
430
431  if (getLangOptions().CPlusPlus) {
432    // (C++98 13.1p2):
433    //   Certain function declarations cannot be overloaded:
434    //     -- Function declarations that differ only in the return type
435    //        cannot be overloaded.
436    QualType OldReturnType
437      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
438    QualType NewReturnType
439      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
440    if (OldReturnType != NewReturnType) {
441      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
442      Diag(Old->getLocation(), PrevDiag);
443      return New;
444    }
445
446    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
447    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
448    if (OldMethod && NewMethod) {
449      //    -- Member function declarations with the same name and the
450      //       same parameter types cannot be overloaded if any of them
451      //       is a static member function declaration.
452      if (OldMethod->isStatic() || NewMethod->isStatic()) {
453        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
454        Diag(Old->getLocation(), PrevDiag);
455        return New;
456      }
457    }
458
459    // (C++98 8.3.5p3):
460    //   All declarations for a function shall agree exactly in both the
461    //   return type and the parameter-type-list.
462    if (OldQType == NewQType) {
463      // We have a redeclaration.
464      MergeAttributes(New, Old);
465      Redeclaration = true;
466      return MergeCXXFunctionDecl(New, Old);
467    }
468
469    // Fall through for conflicting redeclarations and redefinitions.
470  }
471
472  // C: Function types need to be compatible, not identical. This handles
473  // duplicate function decls like "void f(int); void f(enum X);" properly.
474  if (!getLangOptions().CPlusPlus &&
475      Context.typesAreCompatible(OldQType, NewQType)) {
476    MergeAttributes(New, Old);
477    Redeclaration = true;
478    return New;
479  }
480
481  // A function that has already been declared has been redeclared or defined
482  // with a different type- show appropriate diagnostic
483
484  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
485  // TODO: This is totally simplistic.  It should handle merging functions
486  // together etc, merging extern int X; int X; ...
487  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
488  Diag(Old->getLocation(), PrevDiag);
489  return New;
490}
491
492/// Predicate for C "tentative" external object definitions (C99 6.9.2).
493static bool isTentativeDefinition(VarDecl *VD) {
494  if (VD->isFileVarDecl())
495    return (!VD->getInit() &&
496            (VD->getStorageClass() == VarDecl::None ||
497             VD->getStorageClass() == VarDecl::Static));
498  return false;
499}
500
501/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
502/// when dealing with C "tentative" external object definitions (C99 6.9.2).
503void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
504  bool VDIsTentative = isTentativeDefinition(VD);
505  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
506
507  for (IdentifierResolver::iterator
508       I = IdResolver.begin(VD->getIdentifier(),
509                            VD->getDeclContext(), false/*LookInParentCtx*/),
510       E = IdResolver.end(); I != E; ++I) {
511    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
512      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
513
514      // Handle the following case:
515      //   int a[10];
516      //   int a[];   - the code below makes sure we set the correct type.
517      //   int a[11]; - this is an error, size isn't 10.
518      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
519          OldDecl->getType()->isConstantArrayType())
520        VD->setType(OldDecl->getType());
521
522      // Check for "tentative" definitions. We can't accomplish this in
523      // MergeVarDecl since the initializer hasn't been attached.
524      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
525        continue;
526
527      // Handle __private_extern__ just like extern.
528      if (OldDecl->getStorageClass() != VarDecl::Extern &&
529          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
530          VD->getStorageClass() != VarDecl::Extern &&
531          VD->getStorageClass() != VarDecl::PrivateExtern) {
532        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
533        Diag(OldDecl->getLocation(), diag::err_previous_definition);
534      }
535    }
536  }
537}
538
539/// MergeVarDecl - We just parsed a variable 'New' which has the same name
540/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
541/// situation, merging decls or emitting diagnostics as appropriate.
542///
543/// Tentative definition rules (C99 6.9.2p2) are checked by
544/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
545/// definitions here, since the initializer hasn't been attached.
546///
547VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
548  // Verify the old decl was also a variable.
549  VarDecl *Old = dyn_cast<VarDecl>(OldD);
550  if (!Old) {
551    Diag(New->getLocation(), diag::err_redefinition_different_kind,
552         New->getName());
553    Diag(OldD->getLocation(), diag::err_previous_definition);
554    return New;
555  }
556
557  MergeAttributes(New, Old);
558
559  // Verify the types match.
560  QualType OldCType = Context.getCanonicalType(Old->getType());
561  QualType NewCType = Context.getCanonicalType(New->getType());
562  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
563    Diag(New->getLocation(), diag::err_redefinition, New->getName());
564    Diag(Old->getLocation(), diag::err_previous_definition);
565    return New;
566  }
567  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
568  if (New->getStorageClass() == VarDecl::Static &&
569      (Old->getStorageClass() == VarDecl::None ||
570       Old->getStorageClass() == VarDecl::Extern)) {
571    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
572    Diag(Old->getLocation(), diag::err_previous_definition);
573    return New;
574  }
575  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
576  if (New->getStorageClass() != VarDecl::Static &&
577      Old->getStorageClass() == VarDecl::Static) {
578    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
579    Diag(Old->getLocation(), diag::err_previous_definition);
580    return New;
581  }
582  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
583  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
584    Diag(New->getLocation(), diag::err_redefinition, New->getName());
585    Diag(Old->getLocation(), diag::err_previous_definition);
586  }
587  return New;
588}
589
590/// CheckParmsForFunctionDef - Check that the parameters of the given
591/// function are appropriate for the definition of a function. This
592/// takes care of any checks that cannot be performed on the
593/// declaration itself, e.g., that the types of each of the function
594/// parameters are complete.
595bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
596  bool HasInvalidParm = false;
597  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
598    ParmVarDecl *Param = FD->getParamDecl(p);
599
600    // C99 6.7.5.3p4: the parameters in a parameter type list in a
601    // function declarator that is part of a function definition of
602    // that function shall not have incomplete type.
603    if (Param->getType()->isIncompleteType() &&
604        !Param->isInvalidDecl()) {
605      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
606           Param->getType().getAsString());
607      Param->setInvalidDecl();
608      HasInvalidParm = true;
609    }
610  }
611
612  return HasInvalidParm;
613}
614
615/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
616/// no declarator (e.g. "struct foo;") is parsed.
617Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
618  // TODO: emit error on 'int;' or 'const enum foo;'.
619  // TODO: emit error on 'typedef int;'
620  // if (!DS.isMissingDeclaratorOk()) Diag(...);
621
622  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
623}
624
625bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
626  // Get the type before calling CheckSingleAssignmentConstraints(), since
627  // it can promote the expression.
628  QualType InitType = Init->getType();
629
630  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
631  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
632                                  InitType, Init, "initializing");
633}
634
635bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
636  const ArrayType *AT = Context.getAsArrayType(DeclT);
637
638  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
639    // C99 6.7.8p14. We have an array of character type with unknown size
640    // being initialized to a string literal.
641    llvm::APSInt ConstVal(32);
642    ConstVal = strLiteral->getByteLength() + 1;
643    // Return a new array type (C99 6.7.8p22).
644    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
645                                         ArrayType::Normal, 0);
646  } else {
647    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
648    // C99 6.7.8p14. We have an array of character type with known size.
649    // FIXME: Avoid truncation for 64-bit length strings.
650    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
651      Diag(strLiteral->getSourceRange().getBegin(),
652           diag::warn_initializer_string_for_char_array_too_long)
653        << strLiteral->getSourceRange();
654  }
655  // Set type from "char *" to "constant array of char".
656  strLiteral->setType(DeclT);
657  // For now, we always return false (meaning success).
658  return false;
659}
660
661StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
662  const ArrayType *AT = Context.getAsArrayType(DeclType);
663  if (AT && AT->getElementType()->isCharType()) {
664    return dyn_cast<StringLiteral>(Init);
665  }
666  return 0;
667}
668
669bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
670                                 SourceLocation InitLoc,
671                                 std::string InitEntity) {
672  // C++ [dcl.init.ref]p1:
673  //   A variable declared to be a T&, that is “reference to type T”
674  //   (8.3.2), shall be initialized by an object, or function, of
675  //   type T or by an object that can be converted into a T.
676  if (DeclType->isReferenceType())
677    return CheckReferenceInit(Init, DeclType);
678
679  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
680  // of unknown size ("[]") or an object type that is not a variable array type.
681  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
682    return Diag(InitLoc,  diag::err_variable_object_no_init)
683      << VAT->getSizeExpr()->getSourceRange();
684
685  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
686  if (!InitList) {
687    // FIXME: Handle wide strings
688    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
689      return CheckStringLiteralInit(strLiteral, DeclType);
690
691    // C++ [dcl.init]p14:
692    //   -- If the destination type is a (possibly cv-qualified) class
693    //      type:
694    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
695      QualType DeclTypeC = Context.getCanonicalType(DeclType);
696      QualType InitTypeC = Context.getCanonicalType(Init->getType());
697
698      //   -- If the initialization is direct-initialization, or if it is
699      //      copy-initialization where the cv-unqualified version of the
700      //      source type is the same class as, or a derived class of, the
701      //      class of the destination, constructors are considered.
702      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
703          IsDerivedFrom(InitTypeC, DeclTypeC)) {
704        CXXConstructorDecl *Constructor
705          = PerformInitializationByConstructor(DeclType, &Init, 1,
706                                               InitLoc, Init->getSourceRange(),
707                                               InitEntity, IK_Copy);
708        return Constructor == 0;
709      }
710
711      //   -- Otherwise (i.e., for the remaining copy-initialization
712      //      cases), user-defined conversion sequences that can
713      //      convert from the source type to the destination type or
714      //      (when a conversion function is used) to a derived class
715      //      thereof are enumerated as described in 13.3.1.4, and the
716      //      best one is chosen through overload resolution
717      //      (13.3). If the conversion cannot be done or is
718      //      ambiguous, the initialization is ill-formed. The
719      //      function selected is called with the initializer
720      //      expression as its argument; if the function is a
721      //      constructor, the call initializes a temporary of the
722      //      destination type.
723      // FIXME: We're pretending to do copy elision here; return to
724      // this when we have ASTs for such things.
725      if (!PerformImplicitConversion(Init, DeclType))
726        return false;
727
728      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
729        << DeclType.getAsString() << InitEntity << "initializing"
730        << Init->getSourceRange();
731    }
732
733    // C99 6.7.8p16.
734    if (DeclType->isArrayType())
735      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
736        << Init->getSourceRange();
737
738    return CheckSingleInitializer(Init, DeclType);
739  } else if (getLangOptions().CPlusPlus) {
740    // C++ [dcl.init]p14:
741    //   [...] If the class is an aggregate (8.5.1), and the initializer
742    //   is a brace-enclosed list, see 8.5.1.
743    //
744    // Note: 8.5.1 is handled below; here, we diagnose the case where
745    // we have an initializer list and a destination type that is not
746    // an aggregate.
747    // FIXME: In C++0x, this is yet another form of initialization.
748    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
749      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
750      if (!ClassDecl->isAggregate())
751        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
752           << DeclType.getAsString() << Init->getSourceRange();
753    }
754  }
755
756  InitListChecker CheckInitList(this, InitList, DeclType);
757  return CheckInitList.HadError();
758}
759
760/// GetNameForDeclarator - Determine the full declaration name for the
761/// given Declarator.
762DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
763  switch (D.getKind()) {
764  case Declarator::DK_Abstract:
765    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
766    return DeclarationName();
767
768  case Declarator::DK_Normal:
769    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
770    return DeclarationName(D.getIdentifier());
771
772  case Declarator::DK_Constructor: {
773    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
774    Ty = Context.getCanonicalType(Ty);
775    return Context.DeclarationNames.getCXXConstructorName(Ty);
776  }
777
778  case Declarator::DK_Destructor: {
779    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
780    Ty = Context.getCanonicalType(Ty);
781    return Context.DeclarationNames.getCXXDestructorName(Ty);
782  }
783
784  case Declarator::DK_Conversion: {
785    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
786    Ty = Context.getCanonicalType(Ty);
787    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
788  }
789
790  case Declarator::DK_Operator:
791    assert(D.getIdentifier() == 0 && "operator names have no identifier");
792    return Context.DeclarationNames.getCXXOperatorName(
793                                                D.getOverloadedOperator());
794  }
795
796  assert(false && "Unknown name kind");
797  return DeclarationName();
798}
799
800Sema::DeclTy *
801Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
802  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
803  DeclarationName Name = GetNameForDeclarator(D);
804
805  // All of these full declarators require an identifier.  If it doesn't have
806  // one, the ParsedFreeStandingDeclSpec action should be used.
807  if (!Name) {
808    if (!D.getInvalidType())  // Reject this if we think it is valid.
809      Diag(D.getDeclSpec().getSourceRange().getBegin(),
810           diag::err_declarator_need_ident)
811        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
812    return 0;
813  }
814
815  // The scope passed in may not be a decl scope.  Zip up the scope tree until
816  // we find one that is.
817  while ((S->getFlags() & Scope::DeclScope) == 0)
818    S = S->getParent();
819
820  DeclContext *DC;
821  Decl *PrevDecl;
822  ScopedDecl *New;
823  bool InvalidDecl = false;
824
825  // See if this is a redefinition of a variable in the same scope.
826  if (!D.getCXXScopeSpec().isSet()) {
827    DC = CurContext;
828    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
829  } else { // Something like "int foo::x;"
830    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
831    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
832
833    // C++ 7.3.1.2p2:
834    // Members (including explicit specializations of templates) of a named
835    // namespace can also be defined outside that namespace by explicit
836    // qualification of the name being defined, provided that the entity being
837    // defined was already declared in the namespace and the definition appears
838    // after the point of declaration in a namespace that encloses the
839    // declarations namespace.
840    //
841    if (PrevDecl == 0) {
842      // No previous declaration in the qualifying scope.
843      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
844           Name.getAsString(), D.getCXXScopeSpec().getRange());
845    } else if (!CurContext->Encloses(DC)) {
846      // The qualifying scope doesn't enclose the original declaration.
847      // Emit diagnostic based on current scope.
848      SourceLocation L = D.getIdentifierLoc();
849      SourceRange R = D.getCXXScopeSpec().getRange();
850      if (isa<FunctionDecl>(CurContext)) {
851        Diag(L, diag::err_invalid_declarator_in_function, Name.getAsString(),
852             R);
853      } else {
854      Diag(L, diag::err_invalid_declarator_scope)
855          << Name.getAsString() << cast<NamedDecl>(DC)->getName() << R;
856      }
857    }
858  }
859
860  // In C++, the previous declaration we find might be a tag type
861  // (class or enum). In this case, the new declaration will hide the
862  // tag type.
863  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
864    PrevDecl = 0;
865
866  QualType R = GetTypeForDeclarator(D, S);
867  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
868
869  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
870    // Check that there are no default arguments (C++ only).
871    if (getLangOptions().CPlusPlus)
872      CheckExtraCXXDefaultArguments(D);
873
874    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
875    if (!NewTD) return 0;
876
877    // Handle attributes prior to checking for duplicates in MergeVarDecl
878    ProcessDeclAttributes(NewTD, D);
879    // Merge the decl with the existing one if appropriate. If the decl is
880    // in an outer scope, it isn't the same thing.
881    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
882      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
883      if (NewTD == 0) return 0;
884    }
885    New = NewTD;
886    if (S->getFnParent() == 0) {
887      // C99 6.7.7p2: If a typedef name specifies a variably modified type
888      // then it shall have block scope.
889      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
890        // FIXME: Diagnostic needs to be fixed.
891        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
892        InvalidDecl = true;
893      }
894    }
895  } else if (R.getTypePtr()->isFunctionType()) {
896    FunctionDecl::StorageClass SC = FunctionDecl::None;
897    switch (D.getDeclSpec().getStorageClassSpec()) {
898      default: assert(0 && "Unknown storage class!");
899      case DeclSpec::SCS_auto:
900      case DeclSpec::SCS_register:
901      case DeclSpec::SCS_mutable:
902        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
903             R.getAsString());
904        InvalidDecl = true;
905        break;
906      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
907      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
908      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
909      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
910    }
911
912    bool isInline = D.getDeclSpec().isInlineSpecified();
913    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
914    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
915
916    FunctionDecl *NewFD;
917    if (D.getKind() == Declarator::DK_Constructor) {
918      // This is a C++ constructor declaration.
919      assert(DC->isCXXRecord() &&
920             "Constructors can only be declared in a member context");
921
922      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
923
924      // Create the new declaration
925      NewFD = CXXConstructorDecl::Create(Context,
926                                         cast<CXXRecordDecl>(DC),
927                                         D.getIdentifierLoc(), Name, R,
928                                         isExplicit, isInline,
929                                         /*isImplicitlyDeclared=*/false);
930
931      if (isInvalidDecl)
932        NewFD->setInvalidDecl();
933    } else if (D.getKind() == Declarator::DK_Destructor) {
934      // This is a C++ destructor declaration.
935      if (DC->isCXXRecord()) {
936        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
937
938        NewFD = CXXDestructorDecl::Create(Context,
939                                          cast<CXXRecordDecl>(DC),
940                                          D.getIdentifierLoc(), Name, R,
941                                          isInline,
942                                          /*isImplicitlyDeclared=*/false);
943
944        if (isInvalidDecl)
945          NewFD->setInvalidDecl();
946      } else {
947        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
948        // Create a FunctionDecl to satisfy the function definition parsing
949        // code path.
950        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
951                                     Name, R, SC, isInline, LastDeclarator,
952                                     // FIXME: Move to DeclGroup...
953                                   D.getDeclSpec().getSourceRange().getBegin());
954        NewFD->setInvalidDecl();
955      }
956    } else if (D.getKind() == Declarator::DK_Conversion) {
957      if (!DC->isCXXRecord()) {
958        Diag(D.getIdentifierLoc(),
959             diag::err_conv_function_not_member);
960        return 0;
961      } else {
962        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
963
964        NewFD = CXXConversionDecl::Create(Context,
965                                          cast<CXXRecordDecl>(DC),
966                                          D.getIdentifierLoc(), Name, R,
967                                          isInline, isExplicit);
968
969        if (isInvalidDecl)
970          NewFD->setInvalidDecl();
971      }
972    } else if (DC->isCXXRecord()) {
973      // This is a C++ method declaration.
974      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
975                                    D.getIdentifierLoc(), Name, R,
976                                    (SC == FunctionDecl::Static), isInline,
977                                    LastDeclarator);
978    } else {
979      NewFD = FunctionDecl::Create(Context, DC,
980                                   D.getIdentifierLoc(),
981                                   Name, R, SC, isInline, LastDeclarator,
982                                   // FIXME: Move to DeclGroup...
983                                   D.getDeclSpec().getSourceRange().getBegin());
984    }
985    // Handle attributes.
986    ProcessDeclAttributes(NewFD, D);
987
988    // Handle GNU asm-label extension (encoded as an attribute).
989    if (Expr *E = (Expr*) D.getAsmLabel()) {
990      // The parser guarantees this is a string.
991      StringLiteral *SE = cast<StringLiteral>(E);
992      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
993                                                  SE->getByteLength())));
994    }
995
996    // Copy the parameter declarations from the declarator D to
997    // the function declaration NewFD, if they are available.
998    if (D.getNumTypeObjects() > 0) {
999      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1000
1001      // Create Decl objects for each parameter, adding them to the
1002      // FunctionDecl.
1003      llvm::SmallVector<ParmVarDecl*, 16> Params;
1004
1005      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1006      // function that takes no arguments, not a function that takes a
1007      // single void argument.
1008      // We let through "const void" here because Sema::GetTypeForDeclarator
1009      // already checks for that case.
1010      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1011          FTI.ArgInfo[0].Param &&
1012          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1013        // empty arg list, don't push any params.
1014        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1015
1016        // In C++, the empty parameter-type-list must be spelled "void"; a
1017        // typedef of void is not permitted.
1018        if (getLangOptions().CPlusPlus &&
1019            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1020          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1021        }
1022      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1023        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1024          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1025      }
1026
1027      NewFD->setParams(&Params[0], Params.size());
1028    } else if (R->getAsTypedefType()) {
1029      // When we're declaring a function with a typedef, as in the
1030      // following example, we'll need to synthesize (unnamed)
1031      // parameters for use in the declaration.
1032      //
1033      // @code
1034      // typedef void fn(int);
1035      // fn f;
1036      // @endcode
1037      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1038      if (!FT) {
1039        // This is a typedef of a function with no prototype, so we
1040        // don't need to do anything.
1041      } else if ((FT->getNumArgs() == 0) ||
1042          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1043           FT->getArgType(0)->isVoidType())) {
1044        // This is a zero-argument function. We don't need to do anything.
1045      } else {
1046        // Synthesize a parameter for each argument type.
1047        llvm::SmallVector<ParmVarDecl*, 16> Params;
1048        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1049             ArgType != FT->arg_type_end(); ++ArgType) {
1050          Params.push_back(ParmVarDecl::Create(Context, DC,
1051                                               SourceLocation(), 0,
1052                                               *ArgType, VarDecl::None,
1053                                               0, 0));
1054        }
1055
1056        NewFD->setParams(&Params[0], Params.size());
1057      }
1058    }
1059
1060    // C++ constructors and destructors are handled by separate
1061    // routines, since they don't require any declaration merging (C++
1062    // [class.mfct]p2) and they aren't ever pushed into scope, because
1063    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1064    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1065      return ActOnConstructorDeclarator(Constructor);
1066    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1067      return ActOnDestructorDeclarator(Destructor);
1068
1069    // Extra checking for conversion functions, including recording
1070    // the conversion function in its class.
1071    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1072      ActOnConversionDeclarator(Conversion);
1073
1074    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1075    if (NewFD->isOverloadedOperator() &&
1076        CheckOverloadedOperatorDeclaration(NewFD))
1077      NewFD->setInvalidDecl();
1078
1079    // Merge the decl with the existing one if appropriate. Since C functions
1080    // are in a flat namespace, make sure we consider decls in outer scopes.
1081    if (PrevDecl &&
1082        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1083      bool Redeclaration = false;
1084
1085      // If C++, determine whether NewFD is an overload of PrevDecl or
1086      // a declaration that requires merging. If it's an overload,
1087      // there's no more work to do here; we'll just add the new
1088      // function to the scope.
1089      OverloadedFunctionDecl::function_iterator MatchedDecl;
1090      if (!getLangOptions().CPlusPlus ||
1091          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1092        Decl *OldDecl = PrevDecl;
1093
1094        // If PrevDecl was an overloaded function, extract the
1095        // FunctionDecl that matched.
1096        if (isa<OverloadedFunctionDecl>(PrevDecl))
1097          OldDecl = *MatchedDecl;
1098
1099        // NewFD and PrevDecl represent declarations that need to be
1100        // merged.
1101        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1102
1103        if (NewFD == 0) return 0;
1104        if (Redeclaration) {
1105          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1106
1107          if (OldDecl == PrevDecl) {
1108            // Remove the name binding for the previous
1109            // declaration. We'll add the binding back later, but then
1110            // it will refer to the new declaration (which will
1111            // contain more information).
1112            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1113          } else {
1114            // We need to update the OverloadedFunctionDecl with the
1115            // latest declaration of this function, so that name
1116            // lookup will always refer to the latest declaration of
1117            // this function.
1118            *MatchedDecl = NewFD;
1119
1120            // Add the redeclaration to the current scope, since we'll
1121            // be skipping PushOnScopeChains.
1122            S->AddDecl(NewFD);
1123
1124            return NewFD;
1125          }
1126        }
1127      }
1128    }
1129    New = NewFD;
1130
1131    // In C++, check default arguments now that we have merged decls.
1132    if (getLangOptions().CPlusPlus)
1133      CheckCXXDefaultArguments(NewFD);
1134  } else {
1135    // Check that there are no default arguments (C++ only).
1136    if (getLangOptions().CPlusPlus)
1137      CheckExtraCXXDefaultArguments(D);
1138
1139    if (R.getTypePtr()->isObjCInterfaceType()) {
1140      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1141        << D.getIdentifier();
1142      InvalidDecl = true;
1143    }
1144
1145    VarDecl *NewVD;
1146    VarDecl::StorageClass SC;
1147    switch (D.getDeclSpec().getStorageClassSpec()) {
1148    default: assert(0 && "Unknown storage class!");
1149    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1150    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1151    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1152    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1153    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1154    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1155    case DeclSpec::SCS_mutable:
1156      // mutable can only appear on non-static class members, so it's always
1157      // an error here
1158      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1159      InvalidDecl = true;
1160      break;
1161    }
1162
1163    IdentifierInfo *II = Name.getAsIdentifierInfo();
1164    if (!II) {
1165      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name,
1166           Name.getAsString());
1167      return 0;
1168    }
1169
1170    if (DC->isCXXRecord()) {
1171      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1172      // This is a static data member for a C++ class.
1173      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1174                                      D.getIdentifierLoc(), II,
1175                                      R, LastDeclarator);
1176    } else {
1177      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1178      if (S->getFnParent() == 0) {
1179        // C99 6.9p2: The storage-class specifiers auto and register shall not
1180        // appear in the declaration specifiers in an external declaration.
1181        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1182          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1183               R.getAsString());
1184          InvalidDecl = true;
1185        }
1186      }
1187      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1188                              II, R, SC, LastDeclarator,
1189                              // FIXME: Move to DeclGroup...
1190                              D.getDeclSpec().getSourceRange().getBegin());
1191      NewVD->setThreadSpecified(ThreadSpecified);
1192    }
1193    // Handle attributes prior to checking for duplicates in MergeVarDecl
1194    ProcessDeclAttributes(NewVD, D);
1195
1196    // Handle GNU asm-label extension (encoded as an attribute).
1197    if (Expr *E = (Expr*) D.getAsmLabel()) {
1198      // The parser guarantees this is a string.
1199      StringLiteral *SE = cast<StringLiteral>(E);
1200      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1201                                                  SE->getByteLength())));
1202    }
1203
1204    // Emit an error if an address space was applied to decl with local storage.
1205    // This includes arrays of objects with address space qualifiers, but not
1206    // automatic variables that point to other address spaces.
1207    // ISO/IEC TR 18037 S5.1.2
1208    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1209      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1210      InvalidDecl = true;
1211    }
1212    // Merge the decl with the existing one if appropriate. If the decl is
1213    // in an outer scope, it isn't the same thing.
1214    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1215      NewVD = MergeVarDecl(NewVD, PrevDecl);
1216      if (NewVD == 0) return 0;
1217    }
1218    New = NewVD;
1219  }
1220
1221  // Set the lexical context. If the declarator has a C++ scope specifier, the
1222  // lexical context will be different from the semantic context.
1223  New->setLexicalDeclContext(CurContext);
1224
1225  // If this has an identifier, add it to the scope stack.
1226  if (Name)
1227    PushOnScopeChains(New, S);
1228  // If any semantic error occurred, mark the decl as invalid.
1229  if (D.getInvalidType() || InvalidDecl)
1230    New->setInvalidDecl();
1231
1232  return New;
1233}
1234
1235void Sema::InitializerElementNotConstant(const Expr *Init) {
1236  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1237    << Init->getSourceRange();
1238}
1239
1240bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1241  switch (Init->getStmtClass()) {
1242  default:
1243    InitializerElementNotConstant(Init);
1244    return true;
1245  case Expr::ParenExprClass: {
1246    const ParenExpr* PE = cast<ParenExpr>(Init);
1247    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1248  }
1249  case Expr::CompoundLiteralExprClass:
1250    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1251  case Expr::DeclRefExprClass: {
1252    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1253    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1254      if (VD->hasGlobalStorage())
1255        return false;
1256      InitializerElementNotConstant(Init);
1257      return true;
1258    }
1259    if (isa<FunctionDecl>(D))
1260      return false;
1261    InitializerElementNotConstant(Init);
1262    return true;
1263  }
1264  case Expr::MemberExprClass: {
1265    const MemberExpr *M = cast<MemberExpr>(Init);
1266    if (M->isArrow())
1267      return CheckAddressConstantExpression(M->getBase());
1268    return CheckAddressConstantExpressionLValue(M->getBase());
1269  }
1270  case Expr::ArraySubscriptExprClass: {
1271    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1272    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1273    return CheckAddressConstantExpression(ASE->getBase()) ||
1274           CheckArithmeticConstantExpression(ASE->getIdx());
1275  }
1276  case Expr::StringLiteralClass:
1277  case Expr::PredefinedExprClass:
1278    return false;
1279  case Expr::UnaryOperatorClass: {
1280    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1281
1282    // C99 6.6p9
1283    if (Exp->getOpcode() == UnaryOperator::Deref)
1284      return CheckAddressConstantExpression(Exp->getSubExpr());
1285
1286    InitializerElementNotConstant(Init);
1287    return true;
1288  }
1289  }
1290}
1291
1292bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1293  switch (Init->getStmtClass()) {
1294  default:
1295    InitializerElementNotConstant(Init);
1296    return true;
1297  case Expr::ParenExprClass:
1298    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1299  case Expr::StringLiteralClass:
1300  case Expr::ObjCStringLiteralClass:
1301    return false;
1302  case Expr::CallExprClass:
1303  case Expr::CXXOperatorCallExprClass:
1304    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1305    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1306           Builtin::BI__builtin___CFStringMakeConstantString)
1307      return false;
1308
1309    InitializerElementNotConstant(Init);
1310    return true;
1311
1312  case Expr::UnaryOperatorClass: {
1313    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1314
1315    // C99 6.6p9
1316    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1317      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1318
1319    if (Exp->getOpcode() == UnaryOperator::Extension)
1320      return CheckAddressConstantExpression(Exp->getSubExpr());
1321
1322    InitializerElementNotConstant(Init);
1323    return true;
1324  }
1325  case Expr::BinaryOperatorClass: {
1326    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1327    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1328
1329    Expr *PExp = Exp->getLHS();
1330    Expr *IExp = Exp->getRHS();
1331    if (IExp->getType()->isPointerType())
1332      std::swap(PExp, IExp);
1333
1334    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1335    return CheckAddressConstantExpression(PExp) ||
1336           CheckArithmeticConstantExpression(IExp);
1337  }
1338  case Expr::ImplicitCastExprClass:
1339  case Expr::CStyleCastExprClass: {
1340    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1341    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1342      // Check for implicit promotion
1343      if (SubExpr->getType()->isFunctionType() ||
1344          SubExpr->getType()->isArrayType())
1345        return CheckAddressConstantExpressionLValue(SubExpr);
1346    }
1347
1348    // Check for pointer->pointer cast
1349    if (SubExpr->getType()->isPointerType())
1350      return CheckAddressConstantExpression(SubExpr);
1351
1352    if (SubExpr->getType()->isIntegralType()) {
1353      // Check for the special-case of a pointer->int->pointer cast;
1354      // this isn't standard, but some code requires it. See
1355      // PR2720 for an example.
1356      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1357        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1358          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1359          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1360          if (IntWidth >= PointerWidth) {
1361            return CheckAddressConstantExpression(SubCast->getSubExpr());
1362          }
1363        }
1364      }
1365    }
1366    if (SubExpr->getType()->isArithmeticType()) {
1367      return CheckArithmeticConstantExpression(SubExpr);
1368    }
1369
1370    InitializerElementNotConstant(Init);
1371    return true;
1372  }
1373  case Expr::ConditionalOperatorClass: {
1374    // FIXME: Should we pedwarn here?
1375    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1376    if (!Exp->getCond()->getType()->isArithmeticType()) {
1377      InitializerElementNotConstant(Init);
1378      return true;
1379    }
1380    if (CheckArithmeticConstantExpression(Exp->getCond()))
1381      return true;
1382    if (Exp->getLHS() &&
1383        CheckAddressConstantExpression(Exp->getLHS()))
1384      return true;
1385    return CheckAddressConstantExpression(Exp->getRHS());
1386  }
1387  case Expr::AddrLabelExprClass:
1388    return false;
1389  }
1390}
1391
1392static const Expr* FindExpressionBaseAddress(const Expr* E);
1393
1394static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1395  switch (E->getStmtClass()) {
1396  default:
1397    return E;
1398  case Expr::ParenExprClass: {
1399    const ParenExpr* PE = cast<ParenExpr>(E);
1400    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1401  }
1402  case Expr::MemberExprClass: {
1403    const MemberExpr *M = cast<MemberExpr>(E);
1404    if (M->isArrow())
1405      return FindExpressionBaseAddress(M->getBase());
1406    return FindExpressionBaseAddressLValue(M->getBase());
1407  }
1408  case Expr::ArraySubscriptExprClass: {
1409    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1410    return FindExpressionBaseAddress(ASE->getBase());
1411  }
1412  case Expr::UnaryOperatorClass: {
1413    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1414
1415    if (Exp->getOpcode() == UnaryOperator::Deref)
1416      return FindExpressionBaseAddress(Exp->getSubExpr());
1417
1418    return E;
1419  }
1420  }
1421}
1422
1423static const Expr* FindExpressionBaseAddress(const Expr* E) {
1424  switch (E->getStmtClass()) {
1425  default:
1426    return E;
1427  case Expr::ParenExprClass: {
1428    const ParenExpr* PE = cast<ParenExpr>(E);
1429    return FindExpressionBaseAddress(PE->getSubExpr());
1430  }
1431  case Expr::UnaryOperatorClass: {
1432    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1433
1434    // C99 6.6p9
1435    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1436      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1437
1438    if (Exp->getOpcode() == UnaryOperator::Extension)
1439      return FindExpressionBaseAddress(Exp->getSubExpr());
1440
1441    return E;
1442  }
1443  case Expr::BinaryOperatorClass: {
1444    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1445
1446    Expr *PExp = Exp->getLHS();
1447    Expr *IExp = Exp->getRHS();
1448    if (IExp->getType()->isPointerType())
1449      std::swap(PExp, IExp);
1450
1451    return FindExpressionBaseAddress(PExp);
1452  }
1453  case Expr::ImplicitCastExprClass: {
1454    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1455
1456    // Check for implicit promotion
1457    if (SubExpr->getType()->isFunctionType() ||
1458        SubExpr->getType()->isArrayType())
1459      return FindExpressionBaseAddressLValue(SubExpr);
1460
1461    // Check for pointer->pointer cast
1462    if (SubExpr->getType()->isPointerType())
1463      return FindExpressionBaseAddress(SubExpr);
1464
1465    // We assume that we have an arithmetic expression here;
1466    // if we don't, we'll figure it out later
1467    return 0;
1468  }
1469  case Expr::CStyleCastExprClass: {
1470    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1471
1472    // Check for pointer->pointer cast
1473    if (SubExpr->getType()->isPointerType())
1474      return FindExpressionBaseAddress(SubExpr);
1475
1476    // We assume that we have an arithmetic expression here;
1477    // if we don't, we'll figure it out later
1478    return 0;
1479  }
1480  }
1481}
1482
1483bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1484  switch (Init->getStmtClass()) {
1485  default:
1486    InitializerElementNotConstant(Init);
1487    return true;
1488  case Expr::ParenExprClass: {
1489    const ParenExpr* PE = cast<ParenExpr>(Init);
1490    return CheckArithmeticConstantExpression(PE->getSubExpr());
1491  }
1492  case Expr::FloatingLiteralClass:
1493  case Expr::IntegerLiteralClass:
1494  case Expr::CharacterLiteralClass:
1495  case Expr::ImaginaryLiteralClass:
1496  case Expr::TypesCompatibleExprClass:
1497  case Expr::CXXBoolLiteralExprClass:
1498    return false;
1499  case Expr::CallExprClass:
1500  case Expr::CXXOperatorCallExprClass: {
1501    const CallExpr *CE = cast<CallExpr>(Init);
1502
1503    // Allow any constant foldable calls to builtins.
1504    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1505      return false;
1506
1507    InitializerElementNotConstant(Init);
1508    return true;
1509  }
1510  case Expr::DeclRefExprClass: {
1511    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1512    if (isa<EnumConstantDecl>(D))
1513      return false;
1514    InitializerElementNotConstant(Init);
1515    return true;
1516  }
1517  case Expr::CompoundLiteralExprClass:
1518    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1519    // but vectors are allowed to be magic.
1520    if (Init->getType()->isVectorType())
1521      return false;
1522    InitializerElementNotConstant(Init);
1523    return true;
1524  case Expr::UnaryOperatorClass: {
1525    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1526
1527    switch (Exp->getOpcode()) {
1528    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1529    // See C99 6.6p3.
1530    default:
1531      InitializerElementNotConstant(Init);
1532      return true;
1533    case UnaryOperator::OffsetOf:
1534      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1535        return false;
1536      InitializerElementNotConstant(Init);
1537      return true;
1538    case UnaryOperator::Extension:
1539    case UnaryOperator::LNot:
1540    case UnaryOperator::Plus:
1541    case UnaryOperator::Minus:
1542    case UnaryOperator::Not:
1543      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1544    }
1545  }
1546  case Expr::SizeOfAlignOfExprClass: {
1547    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1548    // Special check for void types, which are allowed as an extension
1549    if (Exp->getTypeOfArgument()->isVoidType())
1550      return false;
1551    // alignof always evaluates to a constant.
1552    // FIXME: is sizeof(int[3.0]) a constant expression?
1553    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1554      InitializerElementNotConstant(Init);
1555      return true;
1556    }
1557    return false;
1558  }
1559  case Expr::BinaryOperatorClass: {
1560    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1561
1562    if (Exp->getLHS()->getType()->isArithmeticType() &&
1563        Exp->getRHS()->getType()->isArithmeticType()) {
1564      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1565             CheckArithmeticConstantExpression(Exp->getRHS());
1566    }
1567
1568    if (Exp->getLHS()->getType()->isPointerType() &&
1569        Exp->getRHS()->getType()->isPointerType()) {
1570      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1571      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1572
1573      // Only allow a null (constant integer) base; we could
1574      // allow some additional cases if necessary, but this
1575      // is sufficient to cover offsetof-like constructs.
1576      if (!LHSBase && !RHSBase) {
1577        return CheckAddressConstantExpression(Exp->getLHS()) ||
1578               CheckAddressConstantExpression(Exp->getRHS());
1579      }
1580    }
1581
1582    InitializerElementNotConstant(Init);
1583    return true;
1584  }
1585  case Expr::ImplicitCastExprClass:
1586  case Expr::CStyleCastExprClass: {
1587    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1588    if (SubExpr->getType()->isArithmeticType())
1589      return CheckArithmeticConstantExpression(SubExpr);
1590
1591    if (SubExpr->getType()->isPointerType()) {
1592      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1593      // If the pointer has a null base, this is an offsetof-like construct
1594      if (!Base)
1595        return CheckAddressConstantExpression(SubExpr);
1596    }
1597
1598    InitializerElementNotConstant(Init);
1599    return true;
1600  }
1601  case Expr::ConditionalOperatorClass: {
1602    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1603
1604    // If GNU extensions are disabled, we require all operands to be arithmetic
1605    // constant expressions.
1606    if (getLangOptions().NoExtensions) {
1607      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1608          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1609             CheckArithmeticConstantExpression(Exp->getRHS());
1610    }
1611
1612    // Otherwise, we have to emulate some of the behavior of fold here.
1613    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1614    // because it can constant fold things away.  To retain compatibility with
1615    // GCC code, we see if we can fold the condition to a constant (which we
1616    // should always be able to do in theory).  If so, we only require the
1617    // specified arm of the conditional to be a constant.  This is a horrible
1618    // hack, but is require by real world code that uses __builtin_constant_p.
1619    APValue Val;
1620    if (!Exp->getCond()->Evaluate(Val, Context)) {
1621      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1622      // won't be able to either.  Use it to emit the diagnostic though.
1623      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1624      assert(Res && "Evaluate couldn't evaluate this constant?");
1625      return Res;
1626    }
1627
1628    // Verify that the side following the condition is also a constant.
1629    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1630    if (Val.getInt() == 0)
1631      std::swap(TrueSide, FalseSide);
1632
1633    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1634      return true;
1635
1636    // Okay, the evaluated side evaluates to a constant, so we accept this.
1637    // Check to see if the other side is obviously not a constant.  If so,
1638    // emit a warning that this is a GNU extension.
1639    if (FalseSide && !FalseSide->isEvaluatable(Context))
1640      Diag(Init->getExprLoc(),
1641           diag::ext_typecheck_expression_not_constant_but_accepted)
1642        << FalseSide->getSourceRange();
1643    return false;
1644  }
1645  }
1646}
1647
1648bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1649  Init = Init->IgnoreParens();
1650
1651  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1652  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1653    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1654
1655  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1656    return CheckForConstantInitializer(e->getInitializer(), DclT);
1657
1658  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1659    unsigned numInits = Exp->getNumInits();
1660    for (unsigned i = 0; i < numInits; i++) {
1661      // FIXME: Need to get the type of the declaration for C++,
1662      // because it could be a reference?
1663      if (CheckForConstantInitializer(Exp->getInit(i),
1664                                      Exp->getInit(i)->getType()))
1665        return true;
1666    }
1667    return false;
1668  }
1669
1670  if (Init->isNullPointerConstant(Context))
1671    return false;
1672  if (Init->getType()->isArithmeticType()) {
1673    QualType InitTy = Context.getCanonicalType(Init->getType())
1674                             .getUnqualifiedType();
1675    if (InitTy == Context.BoolTy) {
1676      // Special handling for pointers implicitly cast to bool;
1677      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1678      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1679        Expr* SubE = ICE->getSubExpr();
1680        if (SubE->getType()->isPointerType() ||
1681            SubE->getType()->isArrayType() ||
1682            SubE->getType()->isFunctionType()) {
1683          return CheckAddressConstantExpression(Init);
1684        }
1685      }
1686    } else if (InitTy->isIntegralType()) {
1687      Expr* SubE = 0;
1688      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1689        SubE = CE->getSubExpr();
1690      // Special check for pointer cast to int; we allow as an extension
1691      // an address constant cast to an integer if the integer
1692      // is of an appropriate width (this sort of code is apparently used
1693      // in some places).
1694      // FIXME: Add pedwarn?
1695      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1696      if (SubE && (SubE->getType()->isPointerType() ||
1697                   SubE->getType()->isArrayType() ||
1698                   SubE->getType()->isFunctionType())) {
1699        unsigned IntWidth = Context.getTypeSize(Init->getType());
1700        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1701        if (IntWidth >= PointerWidth)
1702          return CheckAddressConstantExpression(Init);
1703      }
1704    }
1705
1706    return CheckArithmeticConstantExpression(Init);
1707  }
1708
1709  if (Init->getType()->isPointerType())
1710    return CheckAddressConstantExpression(Init);
1711
1712  // An array type at the top level that isn't an init-list must
1713  // be a string literal
1714  if (Init->getType()->isArrayType())
1715    return false;
1716
1717  if (Init->getType()->isFunctionType())
1718    return false;
1719
1720  // Allow block exprs at top level.
1721  if (Init->getType()->isBlockPointerType())
1722    return false;
1723
1724  InitializerElementNotConstant(Init);
1725  return true;
1726}
1727
1728void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1729  Decl *RealDecl = static_cast<Decl *>(dcl);
1730  Expr *Init = static_cast<Expr *>(init);
1731  assert(Init && "missing initializer");
1732
1733  // If there is no declaration, there was an error parsing it.  Just ignore
1734  // the initializer.
1735  if (RealDecl == 0) {
1736    delete Init;
1737    return;
1738  }
1739
1740  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1741  if (!VDecl) {
1742    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1743         diag::err_illegal_initializer);
1744    RealDecl->setInvalidDecl();
1745    return;
1746  }
1747  // Get the decls type and save a reference for later, since
1748  // CheckInitializerTypes may change it.
1749  QualType DclT = VDecl->getType(), SavT = DclT;
1750  if (VDecl->isBlockVarDecl()) {
1751    VarDecl::StorageClass SC = VDecl->getStorageClass();
1752    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1753      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1754      VDecl->setInvalidDecl();
1755    } else if (!VDecl->isInvalidDecl()) {
1756      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1757                                VDecl->getName()))
1758        VDecl->setInvalidDecl();
1759
1760      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1761      if (!getLangOptions().CPlusPlus) {
1762        if (SC == VarDecl::Static) // C99 6.7.8p4.
1763          CheckForConstantInitializer(Init, DclT);
1764      }
1765    }
1766  } else if (VDecl->isFileVarDecl()) {
1767    if (VDecl->getStorageClass() == VarDecl::Extern)
1768      Diag(VDecl->getLocation(), diag::warn_extern_init);
1769    if (!VDecl->isInvalidDecl())
1770      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1771                                VDecl->getName()))
1772        VDecl->setInvalidDecl();
1773
1774    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1775    if (!getLangOptions().CPlusPlus) {
1776      // C99 6.7.8p4. All file scoped initializers need to be constant.
1777      CheckForConstantInitializer(Init, DclT);
1778    }
1779  }
1780  // If the type changed, it means we had an incomplete type that was
1781  // completed by the initializer. For example:
1782  //   int ary[] = { 1, 3, 5 };
1783  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1784  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1785    VDecl->setType(DclT);
1786    Init->setType(DclT);
1787  }
1788
1789  // Attach the initializer to the decl.
1790  VDecl->setInit(Init);
1791  return;
1792}
1793
1794void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1795  Decl *RealDecl = static_cast<Decl *>(dcl);
1796
1797  // If there is no declaration, there was an error parsing it. Just ignore it.
1798  if (RealDecl == 0)
1799    return;
1800
1801  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1802    QualType Type = Var->getType();
1803    // C++ [dcl.init.ref]p3:
1804    //   The initializer can be omitted for a reference only in a
1805    //   parameter declaration (8.3.5), in the declaration of a
1806    //   function return type, in the declaration of a class member
1807    //   within its class declaration (9.2), and where the extern
1808    //   specifier is explicitly used.
1809    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1810      Diag(Var->getLocation(),
1811           diag::err_reference_var_requires_init,
1812           Var->getName(),
1813           SourceRange(Var->getLocation(), Var->getLocation()));
1814      Var->setInvalidDecl();
1815      return;
1816    }
1817
1818    // C++ [dcl.init]p9:
1819    //
1820    //   If no initializer is specified for an object, and the object
1821    //   is of (possibly cv-qualified) non-POD class type (or array
1822    //   thereof), the object shall be default-initialized; if the
1823    //   object is of const-qualified type, the underlying class type
1824    //   shall have a user-declared default constructor.
1825    if (getLangOptions().CPlusPlus) {
1826      QualType InitType = Type;
1827      if (const ArrayType *Array = Context.getAsArrayType(Type))
1828        InitType = Array->getElementType();
1829      if (InitType->isRecordType()) {
1830        const CXXConstructorDecl *Constructor
1831          = PerformInitializationByConstructor(InitType, 0, 0,
1832                                               Var->getLocation(),
1833                                               SourceRange(Var->getLocation(),
1834                                                           Var->getLocation()),
1835                                               Var->getName(),
1836                                               IK_Default);
1837        if (!Constructor)
1838          Var->setInvalidDecl();
1839      }
1840    }
1841
1842#if 0
1843    // FIXME: Temporarily disabled because we are not properly parsing
1844    // linkage specifications on declarations, e.g.,
1845    //
1846    //   extern "C" const CGPoint CGPointerZero;
1847    //
1848    // C++ [dcl.init]p9:
1849    //
1850    //     If no initializer is specified for an object, and the
1851    //     object is of (possibly cv-qualified) non-POD class type (or
1852    //     array thereof), the object shall be default-initialized; if
1853    //     the object is of const-qualified type, the underlying class
1854    //     type shall have a user-declared default
1855    //     constructor. Otherwise, if no initializer is specified for
1856    //     an object, the object and its subobjects, if any, have an
1857    //     indeterminate initial value; if the object or any of its
1858    //     subobjects are of const-qualified type, the program is
1859    //     ill-formed.
1860    //
1861    // This isn't technically an error in C, so we don't diagnose it.
1862    //
1863    // FIXME: Actually perform the POD/user-defined default
1864    // constructor check.
1865    if (getLangOptions().CPlusPlus &&
1866        Context.getCanonicalType(Type).isConstQualified() &&
1867        Var->getStorageClass() != VarDecl::Extern)
1868      Diag(Var->getLocation(),
1869           diag::err_const_var_requires_init,
1870           Var->getName(),
1871           SourceRange(Var->getLocation(), Var->getLocation()));
1872#endif
1873  }
1874}
1875
1876/// The declarators are chained together backwards, reverse the list.
1877Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1878  // Often we have single declarators, handle them quickly.
1879  Decl *GroupDecl = static_cast<Decl*>(group);
1880  if (GroupDecl == 0)
1881    return 0;
1882
1883  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1884  ScopedDecl *NewGroup = 0;
1885  if (Group->getNextDeclarator() == 0)
1886    NewGroup = Group;
1887  else { // reverse the list.
1888    while (Group) {
1889      ScopedDecl *Next = Group->getNextDeclarator();
1890      Group->setNextDeclarator(NewGroup);
1891      NewGroup = Group;
1892      Group = Next;
1893    }
1894  }
1895  // Perform semantic analysis that depends on having fully processed both
1896  // the declarator and initializer.
1897  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1898    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1899    if (!IDecl)
1900      continue;
1901    QualType T = IDecl->getType();
1902
1903    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1904    // static storage duration, it shall not have a variable length array.
1905    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1906        IDecl->getStorageClass() == VarDecl::Static) {
1907      if (T->isVariableArrayType()) {
1908        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1909        IDecl->setInvalidDecl();
1910      }
1911    }
1912    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1913    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1914    if (IDecl->isBlockVarDecl() &&
1915        IDecl->getStorageClass() != VarDecl::Extern) {
1916      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1917        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1918             T.getAsString());
1919        IDecl->setInvalidDecl();
1920      }
1921    }
1922    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1923    // object that has file scope without an initializer, and without a
1924    // storage-class specifier or with the storage-class specifier "static",
1925    // constitutes a tentative definition. Note: A tentative definition with
1926    // external linkage is valid (C99 6.2.2p5).
1927    if (isTentativeDefinition(IDecl)) {
1928      if (T->isIncompleteArrayType()) {
1929        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1930        // array to be completed. Don't issue a diagnostic.
1931      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1932        // C99 6.9.2p3: If the declaration of an identifier for an object is
1933        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1934        // declared type shall not be an incomplete type.
1935        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1936             T.getAsString());
1937        IDecl->setInvalidDecl();
1938      }
1939    }
1940    if (IDecl->isFileVarDecl())
1941      CheckForFileScopedRedefinitions(S, IDecl);
1942  }
1943  return NewGroup;
1944}
1945
1946/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1947/// to introduce parameters into function prototype scope.
1948Sema::DeclTy *
1949Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1950  // FIXME: disallow CXXScopeSpec for param declarators.
1951  const DeclSpec &DS = D.getDeclSpec();
1952
1953  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1954  VarDecl::StorageClass StorageClass = VarDecl::None;
1955  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1956    StorageClass = VarDecl::Register;
1957  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1958    Diag(DS.getStorageClassSpecLoc(),
1959         diag::err_invalid_storage_class_in_func_decl);
1960    D.getMutableDeclSpec().ClearStorageClassSpecs();
1961  }
1962  if (DS.isThreadSpecified()) {
1963    Diag(DS.getThreadSpecLoc(),
1964         diag::err_invalid_storage_class_in_func_decl);
1965    D.getMutableDeclSpec().ClearStorageClassSpecs();
1966  }
1967
1968  // Check that there are no default arguments inside the type of this
1969  // parameter (C++ only).
1970  if (getLangOptions().CPlusPlus)
1971    CheckExtraCXXDefaultArguments(D);
1972
1973  // In this context, we *do not* check D.getInvalidType(). If the declarator
1974  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1975  // though it will not reflect the user specified type.
1976  QualType parmDeclType = GetTypeForDeclarator(D, S);
1977
1978  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1979
1980  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1981  // Can this happen for params?  We already checked that they don't conflict
1982  // among each other.  Here they can only shadow globals, which is ok.
1983  IdentifierInfo *II = D.getIdentifier();
1984  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1985    if (S->isDeclScope(PrevDecl)) {
1986      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1987           dyn_cast<NamedDecl>(PrevDecl)->getName());
1988
1989      // Recover by removing the name
1990      II = 0;
1991      D.SetIdentifier(0, D.getIdentifierLoc());
1992    }
1993  }
1994
1995  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1996  // Doing the promotion here has a win and a loss. The win is the type for
1997  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1998  // code generator). The loss is the orginal type isn't preserved. For example:
1999  //
2000  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2001  //    int blockvardecl[5];
2002  //    sizeof(parmvardecl);  // size == 4
2003  //    sizeof(blockvardecl); // size == 20
2004  // }
2005  //
2006  // For expressions, all implicit conversions are captured using the
2007  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2008  //
2009  // FIXME: If a source translation tool needs to see the original type, then
2010  // we need to consider storing both types (in ParmVarDecl)...
2011  //
2012  if (parmDeclType->isArrayType()) {
2013    // int x[restrict 4] ->  int *restrict
2014    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2015  } else if (parmDeclType->isFunctionType())
2016    parmDeclType = Context.getPointerType(parmDeclType);
2017
2018  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2019                                         D.getIdentifierLoc(), II,
2020                                         parmDeclType, StorageClass,
2021                                         0, 0);
2022
2023  if (D.getInvalidType())
2024    New->setInvalidDecl();
2025
2026  if (II)
2027    PushOnScopeChains(New, S);
2028
2029  ProcessDeclAttributes(New, D);
2030  return New;
2031
2032}
2033
2034Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2035  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2036  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2037         "Not a function declarator!");
2038  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2039
2040  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2041  // for a K&R function.
2042  if (!FTI.hasPrototype) {
2043    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2044      if (FTI.ArgInfo[i].Param == 0) {
2045        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2046          << FTI.ArgInfo[i].Ident;
2047        // Implicitly declare the argument as type 'int' for lack of a better
2048        // type.
2049        DeclSpec DS;
2050        const char* PrevSpec; // unused
2051        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2052                           PrevSpec);
2053        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2054        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2055        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2056      }
2057    }
2058  } else {
2059    // FIXME: Diagnose arguments without names in C.
2060  }
2061
2062  Scope *GlobalScope = FnBodyScope->getParent();
2063
2064  return ActOnStartOfFunctionDef(FnBodyScope,
2065                                 ActOnDeclarator(GlobalScope, D, 0));
2066}
2067
2068Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2069  Decl *decl = static_cast<Decl*>(D);
2070  FunctionDecl *FD = cast<FunctionDecl>(decl);
2071
2072  // See if this is a redefinition.
2073  const FunctionDecl *Definition;
2074  if (FD->getBody(Definition)) {
2075    Diag(FD->getLocation(), diag::err_redefinition,
2076         FD->getName());
2077    Diag(Definition->getLocation(), diag::err_previous_definition);
2078  }
2079
2080  PushDeclContext(FD);
2081
2082  // Check the validity of our function parameters
2083  CheckParmsForFunctionDef(FD);
2084
2085  // Introduce our parameters into the function scope
2086  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2087    ParmVarDecl *Param = FD->getParamDecl(p);
2088    // If this has an identifier, add it to the scope stack.
2089    if (Param->getIdentifier())
2090      PushOnScopeChains(Param, FnBodyScope);
2091  }
2092
2093  return FD;
2094}
2095
2096Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2097  Decl *dcl = static_cast<Decl *>(D);
2098  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2099    FD->setBody((Stmt*)Body);
2100    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2101  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2102    MD->setBody((Stmt*)Body);
2103  } else
2104    return 0;
2105  PopDeclContext();
2106  // Verify and clean out per-function state.
2107
2108  // Check goto/label use.
2109  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2110       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2111    // Verify that we have no forward references left.  If so, there was a goto
2112    // or address of a label taken, but no definition of it.  Label fwd
2113    // definitions are indicated with a null substmt.
2114    if (I->second->getSubStmt() == 0) {
2115      LabelStmt *L = I->second;
2116      // Emit error.
2117      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2118
2119      // At this point, we have gotos that use the bogus label.  Stitch it into
2120      // the function body so that they aren't leaked and that the AST is well
2121      // formed.
2122      if (Body) {
2123        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2124        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2125      } else {
2126        // The whole function wasn't parsed correctly, just delete this.
2127        delete L;
2128      }
2129    }
2130  }
2131  LabelMap.clear();
2132
2133  return D;
2134}
2135
2136/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2137/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2138ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2139                                           IdentifierInfo &II, Scope *S) {
2140  // Extension in C99.  Legal in C90, but warn about it.
2141  if (getLangOptions().C99)
2142    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2143  else
2144    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2145
2146  // FIXME: handle stuff like:
2147  // void foo() { extern float X(); }
2148  // void bar() { X(); }  <-- implicit decl for X in another scope.
2149
2150  // Set a Declarator for the implicit definition: int foo();
2151  const char *Dummy;
2152  DeclSpec DS;
2153  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2154  Error = Error; // Silence warning.
2155  assert(!Error && "Error setting up implicit decl!");
2156  Declarator D(DS, Declarator::BlockContext);
2157  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2158  D.SetIdentifier(&II, Loc);
2159
2160  // Insert this function into translation-unit scope.
2161
2162  DeclContext *PrevDC = CurContext;
2163  CurContext = Context.getTranslationUnitDecl();
2164
2165  FunctionDecl *FD =
2166    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2167  FD->setImplicit();
2168
2169  CurContext = PrevDC;
2170
2171  return FD;
2172}
2173
2174
2175TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2176                                    ScopedDecl *LastDeclarator) {
2177  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2178  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2179
2180  // Scope manipulation handled by caller.
2181  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2182                                           D.getIdentifierLoc(),
2183                                           D.getIdentifier(),
2184                                           T, LastDeclarator);
2185  if (D.getInvalidType())
2186    NewTD->setInvalidDecl();
2187  return NewTD;
2188}
2189
2190/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2191/// former case, Name will be non-null.  In the later case, Name will be null.
2192/// TagType indicates what kind of tag this is. TK indicates whether this is a
2193/// reference/declaration/definition of a tag.
2194Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2195                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2196                             IdentifierInfo *Name, SourceLocation NameLoc,
2197                             AttributeList *Attr) {
2198  // If this is a use of an existing tag, it must have a name.
2199  assert((Name != 0 || TK == TK_Definition) &&
2200         "Nameless record must be a definition!");
2201
2202  TagDecl::TagKind Kind;
2203  switch (TagType) {
2204  default: assert(0 && "Unknown tag type!");
2205  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2206  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2207  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2208  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2209  }
2210
2211  // Two code paths: a new one for structs/unions/classes where we create
2212  //   separate decls for forward declarations, and an old (eventually to
2213  //   be removed) code path for enums.
2214  if (Kind != TagDecl::TK_enum)
2215    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2216
2217  DeclContext *DC = CurContext;
2218  ScopedDecl *PrevDecl = 0;
2219
2220  if (Name && SS.isNotEmpty()) {
2221    // We have a nested-name tag ('struct foo::bar').
2222
2223    // Check for invalid 'foo::'.
2224    if (SS.isInvalid()) {
2225      Name = 0;
2226      goto CreateNewDecl;
2227    }
2228
2229    DC = static_cast<DeclContext*>(SS.getScopeRep());
2230    // Look-up name inside 'foo::'.
2231    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2232
2233    // A tag 'foo::bar' must already exist.
2234    if (PrevDecl == 0) {
2235      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2236      Name = 0;
2237      goto CreateNewDecl;
2238    }
2239  } else {
2240    // If this is a named struct, check to see if there was a previous forward
2241    // declaration or definition.
2242    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2243    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2244  }
2245
2246  if (PrevDecl) {
2247    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2248            "unexpected Decl type");
2249    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2250      // If this is a use of a previous tag, or if the tag is already declared
2251      // in the same scope (so that the definition/declaration completes or
2252      // rementions the tag), reuse the decl.
2253      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2254        // Make sure that this wasn't declared as an enum and now used as a
2255        // struct or something similar.
2256        if (PrevTagDecl->getTagKind() != Kind) {
2257          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2258          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2259          // Recover by making this an anonymous redefinition.
2260          Name = 0;
2261          PrevDecl = 0;
2262        } else {
2263          // If this is a use or a forward declaration, we're good.
2264          if (TK != TK_Definition)
2265            return PrevDecl;
2266
2267          // Diagnose attempts to redefine a tag.
2268          if (PrevTagDecl->isDefinition()) {
2269            Diag(NameLoc, diag::err_redefinition) << Name;
2270            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2271            // If this is a redefinition, recover by making this struct be
2272            // anonymous, which will make any later references get the previous
2273            // definition.
2274            Name = 0;
2275          } else {
2276            // Okay, this is definition of a previously declared or referenced
2277            // tag. Move the location of the decl to be the definition site.
2278            PrevDecl->setLocation(NameLoc);
2279            return PrevDecl;
2280          }
2281        }
2282      }
2283      // If we get here, this is a definition of a new struct type in a nested
2284      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2285      // type.
2286    } else {
2287      // PrevDecl is a namespace.
2288      if (isDeclInScope(PrevDecl, DC, S)) {
2289        // The tag name clashes with a namespace name, issue an error and
2290        // recover by making this tag be anonymous.
2291        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2292        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2293        Name = 0;
2294      }
2295    }
2296  }
2297
2298  CreateNewDecl:
2299
2300  // If there is an identifier, use the location of the identifier as the
2301  // location of the decl, otherwise use the location of the struct/union
2302  // keyword.
2303  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2304
2305  // Otherwise, if this is the first time we've seen this tag, create the decl.
2306  TagDecl *New;
2307  if (Kind == TagDecl::TK_enum) {
2308    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2309    // enum X { A, B, C } D;    D should chain to X.
2310    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2311    // If this is an undefined enum, warn.
2312    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2313  } else {
2314    // struct/union/class
2315
2316    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2317    // struct X { int A; } D;    D should chain to X.
2318    if (getLangOptions().CPlusPlus)
2319      // FIXME: Look for a way to use RecordDecl for simple structs.
2320      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2321    else
2322      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2323  }
2324
2325  // If this has an identifier, add it to the scope stack.
2326  if (Name) {
2327    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2328    // we find one that is.
2329    while ((S->getFlags() & Scope::DeclScope) == 0)
2330      S = S->getParent();
2331
2332    // Add it to the decl chain.
2333    PushOnScopeChains(New, S);
2334  }
2335
2336  if (Attr)
2337    ProcessDeclAttributeList(New, Attr);
2338
2339  // Set the lexical context. If the tag has a C++ scope specifier, the
2340  // lexical context will be different from the semantic context.
2341  New->setLexicalDeclContext(CurContext);
2342
2343  return New;
2344}
2345
2346/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2347///  the logic for enums, we create separate decls for forward declarations.
2348///  This is called by ActOnTag, but eventually will replace its logic.
2349Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2350                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2351                             IdentifierInfo *Name, SourceLocation NameLoc,
2352                             AttributeList *Attr) {
2353  DeclContext *DC = CurContext;
2354  ScopedDecl *PrevDecl = 0;
2355
2356  if (Name && SS.isNotEmpty()) {
2357    // We have a nested-name tag ('struct foo::bar').
2358
2359    // Check for invalid 'foo::'.
2360    if (SS.isInvalid()) {
2361      Name = 0;
2362      goto CreateNewDecl;
2363    }
2364
2365    DC = static_cast<DeclContext*>(SS.getScopeRep());
2366    // Look-up name inside 'foo::'.
2367    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2368
2369    // A tag 'foo::bar' must already exist.
2370    if (PrevDecl == 0) {
2371      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2372      Name = 0;
2373      goto CreateNewDecl;
2374    }
2375  } else {
2376    // If this is a named struct, check to see if there was a previous forward
2377    // declaration or definition.
2378    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2379    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2380  }
2381
2382  if (PrevDecl) {
2383    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2384           "unexpected Decl type");
2385
2386    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2387      // If this is a use of a previous tag, or if the tag is already declared
2388      // in the same scope (so that the definition/declaration completes or
2389      // rementions the tag), reuse the decl.
2390      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2391        // Make sure that this wasn't declared as an enum and now used as a
2392        // struct or something similar.
2393        if (PrevTagDecl->getTagKind() != Kind) {
2394          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2395          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2396          // Recover by making this an anonymous redefinition.
2397          Name = 0;
2398          PrevDecl = 0;
2399        } else {
2400          // If this is a use, return the original decl.
2401
2402          // FIXME: In the future, return a variant or some other clue
2403          //  for the consumer of this Decl to know it doesn't own it.
2404          //  For our current ASTs this shouldn't be a problem, but will
2405          //  need to be changed with DeclGroups.
2406          if (TK == TK_Reference)
2407            return PrevDecl;
2408
2409          // The new decl is a definition?
2410          if (TK == TK_Definition) {
2411            // Diagnose attempts to redefine a tag.
2412            if (RecordDecl* DefRecord =
2413                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2414              Diag(NameLoc, diag::err_redefinition) << Name;
2415              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2416              // If this is a redefinition, recover by making this struct be
2417              // anonymous, which will make any later references get the previous
2418              // definition.
2419              Name = 0;
2420              PrevDecl = 0;
2421            }
2422            // Okay, this is definition of a previously declared or referenced
2423            // tag.  We're going to create a new Decl.
2424          }
2425        }
2426        // If we get here we have (another) forward declaration.  Just create
2427        // a new decl.
2428      }
2429      else {
2430        // If we get here, this is a definition of a new struct type in a nested
2431        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2432        // new decl/type.  We set PrevDecl to NULL so that the Records
2433        // have distinct types.
2434        PrevDecl = 0;
2435      }
2436    } else {
2437      // PrevDecl is a namespace.
2438      if (isDeclInScope(PrevDecl, DC, S)) {
2439        // The tag name clashes with a namespace name, issue an error and
2440        // recover by making this tag be anonymous.
2441        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2442        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2443        Name = 0;
2444      }
2445    }
2446  }
2447
2448  CreateNewDecl:
2449
2450  // If there is an identifier, use the location of the identifier as the
2451  // location of the decl, otherwise use the location of the struct/union
2452  // keyword.
2453  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2454
2455  // Otherwise, if this is the first time we've seen this tag, create the decl.
2456  TagDecl *New;
2457
2458  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2459  // struct X { int A; } D;    D should chain to X.
2460  if (getLangOptions().CPlusPlus)
2461    // FIXME: Look for a way to use RecordDecl for simple structs.
2462    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2463                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2464  else
2465    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2466                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2467
2468  // If this has an identifier, add it to the scope stack.
2469  if ((TK == TK_Definition || !PrevDecl) && Name) {
2470    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2471    // we find one that is.
2472    while ((S->getFlags() & Scope::DeclScope) == 0)
2473      S = S->getParent();
2474
2475    // Add it to the decl chain.
2476    PushOnScopeChains(New, S);
2477  }
2478
2479  // Handle #pragma pack: if the #pragma pack stack has non-default
2480  // alignment, make up a packed attribute for this decl. These
2481  // attributes are checked when the ASTContext lays out the
2482  // structure.
2483  //
2484  // It is important for implementing the correct semantics that this
2485  // happen here (in act on tag decl). The #pragma pack stack is
2486  // maintained as a result of parser callbacks which can occur at
2487  // many points during the parsing of a struct declaration (because
2488  // the #pragma tokens are effectively skipped over during the
2489  // parsing of the struct).
2490  if (unsigned Alignment = PackContext.getAlignment())
2491    New->addAttr(new PackedAttr(Alignment * 8));
2492
2493  if (Attr)
2494    ProcessDeclAttributeList(New, Attr);
2495
2496  // Set the lexical context. If the tag has a C++ scope specifier, the
2497  // lexical context will be different from the semantic context.
2498  New->setLexicalDeclContext(CurContext);
2499
2500  return New;
2501}
2502
2503
2504/// Collect the instance variables declared in an Objective-C object.  Used in
2505/// the creation of structures from objects using the @defs directive.
2506static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2507                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2508  if (Class->getSuperClass())
2509    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2510
2511  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2512  for (ObjCInterfaceDecl::ivar_iterator
2513        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2514
2515    ObjCIvarDecl* ID = *I;
2516    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2517                                                ID->getIdentifier(),
2518                                                ID->getType(),
2519                                                ID->getBitWidth()));
2520  }
2521}
2522
2523/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2524/// instance variables of ClassName into Decls.
2525void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2526                     IdentifierInfo *ClassName,
2527                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2528  // Check that ClassName is a valid class
2529  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2530  if (!Class) {
2531    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2532    return;
2533  }
2534  // Collect the instance variables
2535  CollectIvars(Class, Context, Decls);
2536}
2537
2538/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2539/// types into constant array types in certain situations which would otherwise
2540/// be errors (for GCC compatibility).
2541static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2542                                                    ASTContext &Context) {
2543  // This method tries to turn a variable array into a constant
2544  // array even when the size isn't an ICE.  This is necessary
2545  // for compatibility with code that depends on gcc's buggy
2546  // constant expression folding, like struct {char x[(int)(char*)2];}
2547  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2548  if (!VLATy) return QualType();
2549
2550  APValue Result;
2551  if (!VLATy->getSizeExpr() ||
2552      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2553    return QualType();
2554
2555  assert(Result.isInt() && "Size expressions must be integers!");
2556  llvm::APSInt &Res = Result.getInt();
2557  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2558    return Context.getConstantArrayType(VLATy->getElementType(),
2559                                        Res, ArrayType::Normal, 0);
2560  return QualType();
2561}
2562
2563/// ActOnField - Each field of a struct/union/class is passed into this in order
2564/// to create a FieldDecl object for it.
2565Sema::DeclTy *Sema::ActOnField(Scope *S,
2566                               SourceLocation DeclStart,
2567                               Declarator &D, ExprTy *BitfieldWidth) {
2568  IdentifierInfo *II = D.getIdentifier();
2569  Expr *BitWidth = (Expr*)BitfieldWidth;
2570  SourceLocation Loc = DeclStart;
2571  if (II) Loc = D.getIdentifierLoc();
2572
2573  // FIXME: Unnamed fields can be handled in various different ways, for
2574  // example, unnamed unions inject all members into the struct namespace!
2575
2576  if (BitWidth) {
2577    // TODO: Validate.
2578    //printf("WARNING: BITFIELDS IGNORED!\n");
2579
2580    // 6.7.2.1p3
2581    // 6.7.2.1p4
2582
2583  } else {
2584    // Not a bitfield.
2585
2586    // validate II.
2587
2588  }
2589
2590  QualType T = GetTypeForDeclarator(D, S);
2591  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2592  bool InvalidDecl = false;
2593
2594  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2595  // than a variably modified type.
2596  if (T->isVariablyModifiedType()) {
2597    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2598    if (!FixedTy.isNull()) {
2599      Diag(Loc, diag::warn_illegal_constant_array_size);
2600      T = FixedTy;
2601    } else {
2602      Diag(Loc, diag::err_typecheck_field_variable_size);
2603      T = Context.IntTy;
2604      InvalidDecl = true;
2605    }
2606  }
2607  // FIXME: Chain fielddecls together.
2608  FieldDecl *NewFD;
2609
2610  if (getLangOptions().CPlusPlus) {
2611    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2612    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2613                                 Loc, II, T,
2614                                 D.getDeclSpec().getStorageClassSpec() ==
2615                                   DeclSpec::SCS_mutable, BitWidth);
2616    if (II)
2617      PushOnScopeChains(NewFD, S);
2618  }
2619  else
2620    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2621
2622  ProcessDeclAttributes(NewFD, D);
2623
2624  if (D.getInvalidType() || InvalidDecl)
2625    NewFD->setInvalidDecl();
2626  return NewFD;
2627}
2628
2629/// TranslateIvarVisibility - Translate visibility from a token ID to an
2630///  AST enum value.
2631static ObjCIvarDecl::AccessControl
2632TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2633  switch (ivarVisibility) {
2634  default: assert(0 && "Unknown visitibility kind");
2635  case tok::objc_private: return ObjCIvarDecl::Private;
2636  case tok::objc_public: return ObjCIvarDecl::Public;
2637  case tok::objc_protected: return ObjCIvarDecl::Protected;
2638  case tok::objc_package: return ObjCIvarDecl::Package;
2639  }
2640}
2641
2642/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2643/// in order to create an IvarDecl object for it.
2644Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2645                              SourceLocation DeclStart,
2646                              Declarator &D, ExprTy *BitfieldWidth,
2647                              tok::ObjCKeywordKind Visibility) {
2648  IdentifierInfo *II = D.getIdentifier();
2649  Expr *BitWidth = (Expr*)BitfieldWidth;
2650  SourceLocation Loc = DeclStart;
2651  if (II) Loc = D.getIdentifierLoc();
2652
2653  // FIXME: Unnamed fields can be handled in various different ways, for
2654  // example, unnamed unions inject all members into the struct namespace!
2655
2656
2657  if (BitWidth) {
2658    // TODO: Validate.
2659    //printf("WARNING: BITFIELDS IGNORED!\n");
2660
2661    // 6.7.2.1p3
2662    // 6.7.2.1p4
2663
2664  } else {
2665    // Not a bitfield.
2666
2667    // validate II.
2668
2669  }
2670
2671  QualType T = GetTypeForDeclarator(D, S);
2672  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2673  bool InvalidDecl = false;
2674
2675  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2676  // than a variably modified type.
2677  if (T->isVariablyModifiedType()) {
2678    // FIXME: This diagnostic needs work
2679    Diag(Loc, diag::err_typecheck_illegal_vla) << SourceRange(Loc);
2680    InvalidDecl = true;
2681  }
2682
2683  // Get the visibility (access control) for this ivar.
2684  ObjCIvarDecl::AccessControl ac =
2685    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2686                                        : ObjCIvarDecl::None;
2687
2688  // Construct the decl.
2689  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2690                                             (Expr *)BitfieldWidth);
2691
2692  // Process attributes attached to the ivar.
2693  ProcessDeclAttributes(NewID, D);
2694
2695  if (D.getInvalidType() || InvalidDecl)
2696    NewID->setInvalidDecl();
2697
2698  return NewID;
2699}
2700
2701void Sema::ActOnFields(Scope* S,
2702                       SourceLocation RecLoc, DeclTy *RecDecl,
2703                       DeclTy **Fields, unsigned NumFields,
2704                       SourceLocation LBrac, SourceLocation RBrac,
2705                       AttributeList *Attr) {
2706  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2707  assert(EnclosingDecl && "missing record or interface decl");
2708  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2709
2710  if (Record)
2711    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2712      // Diagnose code like:
2713      //     struct S { struct S {} X; };
2714      // We discover this when we complete the outer S.  Reject and ignore the
2715      // outer S.
2716      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2717           DefRecord->getKindName());
2718      Diag(RecLoc, diag::err_previous_definition);
2719      Record->setInvalidDecl();
2720      return;
2721    }
2722
2723  // Verify that all the fields are okay.
2724  unsigned NumNamedMembers = 0;
2725  llvm::SmallVector<FieldDecl*, 32> RecFields;
2726  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2727
2728  for (unsigned i = 0; i != NumFields; ++i) {
2729
2730    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2731    assert(FD && "missing field decl");
2732
2733    // Remember all fields.
2734    RecFields.push_back(FD);
2735
2736    // Get the type for the field.
2737    Type *FDTy = FD->getType().getTypePtr();
2738
2739    // C99 6.7.2.1p2 - A field may not be a function type.
2740    if (FDTy->isFunctionType()) {
2741      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2742           FD->getName());
2743      FD->setInvalidDecl();
2744      EnclosingDecl->setInvalidDecl();
2745      continue;
2746    }
2747    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2748    if (FDTy->isIncompleteType()) {
2749      if (!Record) {  // Incomplete ivar type is always an error.
2750        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2751        FD->setInvalidDecl();
2752        EnclosingDecl->setInvalidDecl();
2753        continue;
2754      }
2755      if (i != NumFields-1 ||                   // ... that the last member ...
2756          !Record->isStruct() ||  // ... of a structure ...
2757          !FDTy->isArrayType()) {         //... may have incomplete array type.
2758        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2759        FD->setInvalidDecl();
2760        EnclosingDecl->setInvalidDecl();
2761        continue;
2762      }
2763      if (NumNamedMembers < 1) {  //... must have more than named member ...
2764        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2765             FD->getName());
2766        FD->setInvalidDecl();
2767        EnclosingDecl->setInvalidDecl();
2768        continue;
2769      }
2770      // Okay, we have a legal flexible array member at the end of the struct.
2771      if (Record)
2772        Record->setHasFlexibleArrayMember(true);
2773    }
2774    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2775    /// field of another structure or the element of an array.
2776    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2777      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2778        // If this is a member of a union, then entire union becomes "flexible".
2779        if (Record && Record->isUnion()) {
2780          Record->setHasFlexibleArrayMember(true);
2781        } else {
2782          // If this is a struct/class and this is not the last element, reject
2783          // it.  Note that GCC supports variable sized arrays in the middle of
2784          // structures.
2785          if (i != NumFields-1) {
2786            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2787                 FD->getName());
2788            FD->setInvalidDecl();
2789            EnclosingDecl->setInvalidDecl();
2790            continue;
2791          }
2792          // We support flexible arrays at the end of structs in other structs
2793          // as an extension.
2794          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2795               FD->getName());
2796          if (Record)
2797            Record->setHasFlexibleArrayMember(true);
2798        }
2799      }
2800    }
2801    /// A field cannot be an Objective-c object
2802    if (FDTy->isObjCInterfaceType()) {
2803      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2804           FD->getName());
2805      FD->setInvalidDecl();
2806      EnclosingDecl->setInvalidDecl();
2807      continue;
2808    }
2809    // Keep track of the number of named members.
2810    if (IdentifierInfo *II = FD->getIdentifier()) {
2811      // Detect duplicate member names.
2812      if (!FieldIDs.insert(II)) {
2813        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
2814        // Find the previous decl.
2815        SourceLocation PrevLoc;
2816        for (unsigned i = 0; ; ++i) {
2817          assert(i != RecFields.size() && "Didn't find previous def!");
2818          if (RecFields[i]->getIdentifier() == II) {
2819            PrevLoc = RecFields[i]->getLocation();
2820            break;
2821          }
2822        }
2823        Diag(PrevLoc, diag::err_previous_definition);
2824        FD->setInvalidDecl();
2825        EnclosingDecl->setInvalidDecl();
2826        continue;
2827      }
2828      ++NumNamedMembers;
2829    }
2830  }
2831
2832  // Okay, we successfully defined 'Record'.
2833  if (Record) {
2834    Record->defineBody(Context, &RecFields[0], RecFields.size());
2835    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2836    // Sema::ActOnFinishCXXClassDef.
2837    if (!isa<CXXRecordDecl>(Record))
2838      Consumer.HandleTagDeclDefinition(Record);
2839  } else {
2840    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2841    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2842      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2843    else if (ObjCImplementationDecl *IMPDecl =
2844               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2845      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2846      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2847      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2848    }
2849  }
2850
2851  if (Attr)
2852    ProcessDeclAttributeList(Record, Attr);
2853}
2854
2855Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2856                                      DeclTy *lastEnumConst,
2857                                      SourceLocation IdLoc, IdentifierInfo *Id,
2858                                      SourceLocation EqualLoc, ExprTy *val) {
2859  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2860  EnumConstantDecl *LastEnumConst =
2861    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2862  Expr *Val = static_cast<Expr*>(val);
2863
2864  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2865  // we find one that is.
2866  while ((S->getFlags() & Scope::DeclScope) == 0)
2867    S = S->getParent();
2868
2869  // Verify that there isn't already something declared with this name in this
2870  // scope.
2871  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2872    // When in C++, we may get a TagDecl with the same name; in this case the
2873    // enum constant will 'hide' the tag.
2874    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2875           "Received TagDecl when not in C++!");
2876    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2877      if (isa<EnumConstantDecl>(PrevDecl))
2878        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
2879      else
2880        Diag(IdLoc, diag::err_redefinition) << Id;
2881      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2882      delete Val;
2883      return 0;
2884    }
2885  }
2886
2887  llvm::APSInt EnumVal(32);
2888  QualType EltTy;
2889  if (Val) {
2890    // Make sure to promote the operand type to int.
2891    UsualUnaryConversions(Val);
2892
2893    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2894    SourceLocation ExpLoc;
2895    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2896      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr) << Id;
2897      delete Val;
2898      Val = 0;  // Just forget about it.
2899    } else {
2900      EltTy = Val->getType();
2901    }
2902  }
2903
2904  if (!Val) {
2905    if (LastEnumConst) {
2906      // Assign the last value + 1.
2907      EnumVal = LastEnumConst->getInitVal();
2908      ++EnumVal;
2909
2910      // Check for overflow on increment.
2911      if (EnumVal < LastEnumConst->getInitVal())
2912        Diag(IdLoc, diag::warn_enum_value_overflow);
2913
2914      EltTy = LastEnumConst->getType();
2915    } else {
2916      // First value, set to zero.
2917      EltTy = Context.IntTy;
2918      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2919    }
2920  }
2921
2922  EnumConstantDecl *New =
2923    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2924                             Val, EnumVal,
2925                             LastEnumConst);
2926
2927  // Register this decl in the current scope stack.
2928  PushOnScopeChains(New, S);
2929  return New;
2930}
2931
2932// FIXME: For consistency with ActOnFields(), we should have the parser
2933// pass in the source location for the left/right braces.
2934void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2935                         DeclTy **Elements, unsigned NumElements) {
2936  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2937
2938  if (Enum && Enum->isDefinition()) {
2939    // Diagnose code like:
2940    //   enum e0 {
2941    //     E0 = sizeof(enum e0 { E1 })
2942    //   };
2943    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2944         Enum->getName());
2945    Diag(EnumLoc, diag::err_previous_definition);
2946    Enum->setInvalidDecl();
2947    return;
2948  }
2949  // TODO: If the result value doesn't fit in an int, it must be a long or long
2950  // long value.  ISO C does not support this, but GCC does as an extension,
2951  // emit a warning.
2952  unsigned IntWidth = Context.Target.getIntWidth();
2953
2954  // Verify that all the values are okay, compute the size of the values, and
2955  // reverse the list.
2956  unsigned NumNegativeBits = 0;
2957  unsigned NumPositiveBits = 0;
2958
2959  // Keep track of whether all elements have type int.
2960  bool AllElementsInt = true;
2961
2962  EnumConstantDecl *EltList = 0;
2963  for (unsigned i = 0; i != NumElements; ++i) {
2964    EnumConstantDecl *ECD =
2965      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2966    if (!ECD) continue;  // Already issued a diagnostic.
2967
2968    // If the enum value doesn't fit in an int, emit an extension warning.
2969    const llvm::APSInt &InitVal = ECD->getInitVal();
2970    assert(InitVal.getBitWidth() >= IntWidth &&
2971           "Should have promoted value to int");
2972    if (InitVal.getBitWidth() > IntWidth) {
2973      llvm::APSInt V(InitVal);
2974      V.trunc(IntWidth);
2975      V.extend(InitVal.getBitWidth());
2976      if (V != InitVal)
2977        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2978             InitVal.toString(10));
2979    }
2980
2981    // Keep track of the size of positive and negative values.
2982    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2983      NumPositiveBits = std::max(NumPositiveBits,
2984                                 (unsigned)InitVal.getActiveBits());
2985    else
2986      NumNegativeBits = std::max(NumNegativeBits,
2987                                 (unsigned)InitVal.getMinSignedBits());
2988
2989    // Keep track of whether every enum element has type int (very commmon).
2990    if (AllElementsInt)
2991      AllElementsInt = ECD->getType() == Context.IntTy;
2992
2993    ECD->setNextDeclarator(EltList);
2994    EltList = ECD;
2995  }
2996
2997  // Figure out the type that should be used for this enum.
2998  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2999  QualType BestType;
3000  unsigned BestWidth;
3001
3002  if (NumNegativeBits) {
3003    // If there is a negative value, figure out the smallest integer type (of
3004    // int/long/longlong) that fits.
3005    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3006      BestType = Context.IntTy;
3007      BestWidth = IntWidth;
3008    } else {
3009      BestWidth = Context.Target.getLongWidth();
3010
3011      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3012        BestType = Context.LongTy;
3013      else {
3014        BestWidth = Context.Target.getLongLongWidth();
3015
3016        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3017          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3018        BestType = Context.LongLongTy;
3019      }
3020    }
3021  } else {
3022    // If there is no negative value, figure out which of uint, ulong, ulonglong
3023    // fits.
3024    if (NumPositiveBits <= IntWidth) {
3025      BestType = Context.UnsignedIntTy;
3026      BestWidth = IntWidth;
3027    } else if (NumPositiveBits <=
3028               (BestWidth = Context.Target.getLongWidth())) {
3029      BestType = Context.UnsignedLongTy;
3030    } else {
3031      BestWidth = Context.Target.getLongLongWidth();
3032      assert(NumPositiveBits <= BestWidth &&
3033             "How could an initializer get larger than ULL?");
3034      BestType = Context.UnsignedLongLongTy;
3035    }
3036  }
3037
3038  // Loop over all of the enumerator constants, changing their types to match
3039  // the type of the enum if needed.
3040  for (unsigned i = 0; i != NumElements; ++i) {
3041    EnumConstantDecl *ECD =
3042      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3043    if (!ECD) continue;  // Already issued a diagnostic.
3044
3045    // Standard C says the enumerators have int type, but we allow, as an
3046    // extension, the enumerators to be larger than int size.  If each
3047    // enumerator value fits in an int, type it as an int, otherwise type it the
3048    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3049    // that X has type 'int', not 'unsigned'.
3050    if (ECD->getType() == Context.IntTy) {
3051      // Make sure the init value is signed.
3052      llvm::APSInt IV = ECD->getInitVal();
3053      IV.setIsSigned(true);
3054      ECD->setInitVal(IV);
3055      continue;  // Already int type.
3056    }
3057
3058    // Determine whether the value fits into an int.
3059    llvm::APSInt InitVal = ECD->getInitVal();
3060    bool FitsInInt;
3061    if (InitVal.isUnsigned() || !InitVal.isNegative())
3062      FitsInInt = InitVal.getActiveBits() < IntWidth;
3063    else
3064      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3065
3066    // If it fits into an integer type, force it.  Otherwise force it to match
3067    // the enum decl type.
3068    QualType NewTy;
3069    unsigned NewWidth;
3070    bool NewSign;
3071    if (FitsInInt) {
3072      NewTy = Context.IntTy;
3073      NewWidth = IntWidth;
3074      NewSign = true;
3075    } else if (ECD->getType() == BestType) {
3076      // Already the right type!
3077      continue;
3078    } else {
3079      NewTy = BestType;
3080      NewWidth = BestWidth;
3081      NewSign = BestType->isSignedIntegerType();
3082    }
3083
3084    // Adjust the APSInt value.
3085    InitVal.extOrTrunc(NewWidth);
3086    InitVal.setIsSigned(NewSign);
3087    ECD->setInitVal(InitVal);
3088
3089    // Adjust the Expr initializer and type.
3090    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3091                                          /*isLvalue=*/false));
3092    ECD->setType(NewTy);
3093  }
3094
3095  Enum->defineElements(EltList, BestType);
3096  Consumer.HandleTagDeclDefinition(Enum);
3097}
3098
3099Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3100                                          ExprTy *expr) {
3101  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3102
3103  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3104}
3105
3106Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3107                                     SourceLocation LBrace,
3108                                     SourceLocation RBrace,
3109                                     const char *Lang,
3110                                     unsigned StrSize,
3111                                     DeclTy *D) {
3112  LinkageSpecDecl::LanguageIDs Language;
3113  Decl *dcl = static_cast<Decl *>(D);
3114  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3115    Language = LinkageSpecDecl::lang_c;
3116  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3117    Language = LinkageSpecDecl::lang_cxx;
3118  else {
3119    Diag(Loc, diag::err_bad_language);
3120    return 0;
3121  }
3122
3123  // FIXME: Add all the various semantics of linkage specifications
3124  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3125}
3126
3127void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3128                           ExprTy *alignment, SourceLocation PragmaLoc,
3129                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3130  Expr *Alignment = static_cast<Expr *>(alignment);
3131
3132  // If specified then alignment must be a "small" power of two.
3133  unsigned AlignmentVal = 0;
3134  if (Alignment) {
3135    llvm::APSInt Val;
3136    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3137        !Val.isPowerOf2() ||
3138        Val.getZExtValue() > 16) {
3139      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3140      delete Alignment;
3141      return; // Ignore
3142    }
3143
3144    AlignmentVal = (unsigned) Val.getZExtValue();
3145  }
3146
3147  switch (Kind) {
3148  case Action::PPK_Default: // pack([n])
3149    PackContext.setAlignment(AlignmentVal);
3150    break;
3151
3152  case Action::PPK_Show: // pack(show)
3153    // Show the current alignment, making sure to show the right value
3154    // for the default.
3155    AlignmentVal = PackContext.getAlignment();
3156    // FIXME: This should come from the target.
3157    if (AlignmentVal == 0)
3158      AlignmentVal = 8;
3159    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3160    break;
3161
3162  case Action::PPK_Push: // pack(push [, id] [, [n])
3163    PackContext.push(Name);
3164    // Set the new alignment if specified.
3165    if (Alignment)
3166      PackContext.setAlignment(AlignmentVal);
3167    break;
3168
3169  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3170    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3171    // "#pragma pack(pop, identifier, n) is undefined"
3172    if (Alignment && Name)
3173      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3174
3175    // Do the pop.
3176    if (!PackContext.pop(Name)) {
3177      // If a name was specified then failure indicates the name
3178      // wasn't found. Otherwise failure indicates the stack was
3179      // empty.
3180      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3181           Name ? "no record matching name" : "stack empty");
3182
3183      // FIXME: Warn about popping named records as MSVC does.
3184    } else {
3185      // Pop succeeded, set the new alignment if specified.
3186      if (Alignment)
3187        PackContext.setAlignment(AlignmentVal);
3188    }
3189    break;
3190
3191  default:
3192    assert(0 && "Invalid #pragma pack kind.");
3193  }
3194}
3195
3196bool PragmaPackStack::pop(IdentifierInfo *Name) {
3197  if (Stack.empty())
3198    return false;
3199
3200  // If name is empty just pop top.
3201  if (!Name) {
3202    Alignment = Stack.back().first;
3203    Stack.pop_back();
3204    return true;
3205  }
3206
3207  // Otherwise, find the named record.
3208  for (unsigned i = Stack.size(); i != 0; ) {
3209    --i;
3210    if (Stack[i].second == Name) {
3211      // Found it, pop up to and including this record.
3212      Alignment = Stack[i].first;
3213      Stack.erase(Stack.begin() + i, Stack.end());
3214      return true;
3215    }
3216  }
3217
3218  return false;
3219}
3220