SemaDecl.cpp revision 2c59d3c19715cb318a0a5939c735b8345d14d281
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  if (AddToContext)
297    CurContext->addDecl(D);
298
299  // C++ [basic.scope]p4:
300  //   -- exactly one declaration shall declare a class name or
301  //   enumeration name that is not a typedef name and the other
302  //   declarations shall all refer to the same object or
303  //   enumerator, or all refer to functions and function templates;
304  //   in this case the class name or enumeration name is hidden.
305  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
306    // We are pushing the name of a tag (enum or class).
307    if (CurContext->getLookupContext()
308          == TD->getDeclContext()->getLookupContext()) {
309      // We're pushing the tag into the current context, which might
310      // require some reshuffling in the identifier resolver.
311      IdentifierResolver::iterator
312        I = IdResolver.begin(TD->getDeclName()),
313        IEnd = IdResolver.end();
314      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
315        NamedDecl *PrevDecl = *I;
316        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
317             PrevDecl = *I, ++I) {
318          if (TD->declarationReplaces(*I)) {
319            // This is a redeclaration. Remove it from the chain and
320            // break out, so that we'll add in the shadowed
321            // declaration.
322            S->RemoveDecl(DeclPtrTy::make(*I));
323            if (PrevDecl == *I) {
324              IdResolver.RemoveDecl(*I);
325              IdResolver.AddDecl(TD);
326              return;
327            } else {
328              IdResolver.RemoveDecl(*I);
329              break;
330            }
331          }
332        }
333
334        // There is already a declaration with the same name in the same
335        // scope, which is not a tag declaration. It must be found
336        // before we find the new declaration, so insert the new
337        // declaration at the end of the chain.
338        IdResolver.AddShadowedDecl(TD, PrevDecl);
339
340        return;
341      }
342    }
343  } else if ((isa<FunctionDecl>(D) &&
344              AllowOverloadingOfFunction(D, Context)) ||
345             isa<FunctionTemplateDecl>(D)) {
346    // We are pushing the name of a function or function template,
347    // which might be an overloaded name.
348    IdentifierResolver::iterator Redecl
349      = std::find_if(IdResolver.begin(D->getDeclName()),
350                     IdResolver.end(),
351                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
352                                  D));
353    if (Redecl != IdResolver.end() &&
354        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
355      // There is already a declaration of a function on our
356      // IdResolver chain. Replace it with this declaration.
357      S->RemoveDecl(DeclPtrTy::make(*Redecl));
358      IdResolver.RemoveDecl(*Redecl);
359    }
360  } else if (isa<ObjCInterfaceDecl>(D)) {
361    // We're pushing an Objective-C interface into the current
362    // context. If there is already an alias declaration, remove it first.
363    for (IdentifierResolver::iterator
364           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
365         I != IEnd; ++I) {
366      if (isa<ObjCCompatibleAliasDecl>(*I)) {
367        S->RemoveDecl(DeclPtrTy::make(*I));
368        IdResolver.RemoveDecl(*I);
369        break;
370      }
371    }
372  }
373
374  IdResolver.AddDecl(D);
375}
376
377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
378  if (S->decl_empty()) return;
379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
380         "Scope shouldn't contain decls!");
381
382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
383       I != E; ++I) {
384    Decl *TmpD = (*I).getAs<Decl>();
385    assert(TmpD && "This decl didn't get pushed??");
386
387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
388    NamedDecl *D = cast<NamedDecl>(TmpD);
389
390    if (!D->getDeclName()) continue;
391
392    // Remove this name from our lexical scope.
393    IdResolver.RemoveDecl(D);
394  }
395}
396
397/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
398/// return 0 if one not found.
399ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
401  // creation from this context.
402  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
403
404  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
405}
406
407/// getNonFieldDeclScope - Retrieves the innermost scope, starting
408/// from S, where a non-field would be declared. This routine copes
409/// with the difference between C and C++ scoping rules in structs and
410/// unions. For example, the following code is well-formed in C but
411/// ill-formed in C++:
412/// @code
413/// struct S6 {
414///   enum { BAR } e;
415/// };
416///
417/// void test_S6() {
418///   struct S6 a;
419///   a.e = BAR;
420/// }
421/// @endcode
422/// For the declaration of BAR, this routine will return a different
423/// scope. The scope S will be the scope of the unnamed enumeration
424/// within S6. In C++, this routine will return the scope associated
425/// with S6, because the enumeration's scope is a transparent
426/// context but structures can contain non-field names. In C, this
427/// routine will return the translation unit scope, since the
428/// enumeration's scope is a transparent context and structures cannot
429/// contain non-field names.
430Scope *Sema::getNonFieldDeclScope(Scope *S) {
431  while (((S->getFlags() & Scope::DeclScope) == 0) ||
432         (S->getEntity() &&
433          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
434         (S->isClassScope() && !getLangOptions().CPlusPlus))
435    S = S->getParent();
436  return S;
437}
438
439void Sema::InitBuiltinVaListType() {
440  if (!Context.getBuiltinVaListType().isNull())
441    return;
442
443  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
444  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
445  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
446  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
447}
448
449/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
450/// file scope.  lazily create a decl for it. ForRedeclaration is true
451/// if we're creating this built-in in anticipation of redeclaring the
452/// built-in.
453NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
454                                     Scope *S, bool ForRedeclaration,
455                                     SourceLocation Loc) {
456  Builtin::ID BID = (Builtin::ID)bid;
457
458  if (Context.BuiltinInfo.hasVAListUse(BID))
459    InitBuiltinVaListType();
460
461  ASTContext::GetBuiltinTypeError Error;
462  QualType R = Context.GetBuiltinType(BID, Error);
463  switch (Error) {
464  case ASTContext::GE_None:
465    // Okay
466    break;
467
468  case ASTContext::GE_Missing_stdio:
469    if (ForRedeclaration)
470      Diag(Loc, diag::err_implicit_decl_requires_stdio)
471        << Context.BuiltinInfo.GetName(BID);
472    return 0;
473
474  case ASTContext::GE_Missing_setjmp:
475    if (ForRedeclaration)
476      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
477        << Context.BuiltinInfo.GetName(BID);
478    return 0;
479  }
480
481  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
482    Diag(Loc, diag::ext_implicit_lib_function_decl)
483      << Context.BuiltinInfo.GetName(BID)
484      << R;
485    if (Context.BuiltinInfo.getHeaderName(BID) &&
486        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
487          != Diagnostic::Ignored)
488      Diag(Loc, diag::note_please_include_header)
489        << Context.BuiltinInfo.getHeaderName(BID)
490        << Context.BuiltinInfo.GetName(BID);
491  }
492
493  FunctionDecl *New = FunctionDecl::Create(Context,
494                                           Context.getTranslationUnitDecl(),
495                                           Loc, II, R, /*DInfo=*/0,
496                                           FunctionDecl::Extern, false,
497                                           /*hasPrototype=*/true);
498  New->setImplicit();
499
500  // Create Decl objects for each parameter, adding them to the
501  // FunctionDecl.
502  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
503    llvm::SmallVector<ParmVarDecl*, 16> Params;
504    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
505      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
506                                           FT->getArgType(i), /*DInfo=*/0,
507                                           VarDecl::None, 0));
508    New->setParams(Context, Params.data(), Params.size());
509  }
510
511  AddKnownFunctionAttributes(New);
512
513  // TUScope is the translation-unit scope to insert this function into.
514  // FIXME: This is hideous. We need to teach PushOnScopeChains to
515  // relate Scopes to DeclContexts, and probably eliminate CurContext
516  // entirely, but we're not there yet.
517  DeclContext *SavedContext = CurContext;
518  CurContext = Context.getTranslationUnitDecl();
519  PushOnScopeChains(New, TUScope);
520  CurContext = SavedContext;
521  return New;
522}
523
524/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
525/// everything from the standard library is defined.
526NamespaceDecl *Sema::GetStdNamespace() {
527  if (!StdNamespace) {
528    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
529    DeclContext *Global = Context.getTranslationUnitDecl();
530    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
531    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
532  }
533  return StdNamespace;
534}
535
536/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
537/// same name and scope as a previous declaration 'Old'.  Figure out
538/// how to resolve this situation, merging decls or emitting
539/// diagnostics as appropriate. If there was an error, set New to be invalid.
540///
541void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
542  // If either decl is known invalid already, set the new one to be invalid and
543  // don't bother doing any merging checks.
544  if (New->isInvalidDecl() || OldD->isInvalidDecl())
545    return New->setInvalidDecl();
546
547  // Allow multiple definitions for ObjC built-in typedefs.
548  // FIXME: Verify the underlying types are equivalent!
549  if (getLangOptions().ObjC1) {
550    const IdentifierInfo *TypeID = New->getIdentifier();
551    switch (TypeID->getLength()) {
552    default: break;
553    case 2:
554      if (!TypeID->isStr("id"))
555        break;
556      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
557      // Install the built-in type for 'id', ignoring the current definition.
558      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
559      return;
560    case 5:
561      if (!TypeID->isStr("Class"))
562        break;
563      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
564      // Install the built-in type for 'Class', ignoring the current definition.
565      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
566      return;
567    case 3:
568      if (!TypeID->isStr("SEL"))
569        break;
570      Context.setObjCSelType(Context.getTypeDeclType(New));
571      return;
572    case 8:
573      if (!TypeID->isStr("Protocol"))
574        break;
575      Context.setObjCProtoType(New->getUnderlyingType());
576      return;
577    }
578    // Fall through - the typedef name was not a builtin type.
579  }
580  // Verify the old decl was also a type.
581  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
582  if (!Old) {
583    Diag(New->getLocation(), diag::err_redefinition_different_kind)
584      << New->getDeclName();
585    if (OldD->getLocation().isValid())
586      Diag(OldD->getLocation(), diag::note_previous_definition);
587    return New->setInvalidDecl();
588  }
589
590  // Determine the "old" type we'll use for checking and diagnostics.
591  QualType OldType;
592  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
593    OldType = OldTypedef->getUnderlyingType();
594  else
595    OldType = Context.getTypeDeclType(Old);
596
597  // If the typedef types are not identical, reject them in all languages and
598  // with any extensions enabled.
599
600  if (OldType != New->getUnderlyingType() &&
601      Context.getCanonicalType(OldType) !=
602      Context.getCanonicalType(New->getUnderlyingType())) {
603    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
604      << New->getUnderlyingType() << OldType;
605    if (Old->getLocation().isValid())
606      Diag(Old->getLocation(), diag::note_previous_definition);
607    return New->setInvalidDecl();
608  }
609
610  if (getLangOptions().Microsoft)
611    return;
612
613  // C++ [dcl.typedef]p2:
614  //   In a given non-class scope, a typedef specifier can be used to
615  //   redefine the name of any type declared in that scope to refer
616  //   to the type to which it already refers.
617  if (getLangOptions().CPlusPlus) {
618    if (!isa<CXXRecordDecl>(CurContext))
619      return;
620    Diag(New->getLocation(), diag::err_redefinition)
621      << New->getDeclName();
622    Diag(Old->getLocation(), diag::note_previous_definition);
623    return New->setInvalidDecl();
624  }
625
626  // If we have a redefinition of a typedef in C, emit a warning.  This warning
627  // is normally mapped to an error, but can be controlled with
628  // -Wtypedef-redefinition.  If either the original or the redefinition is
629  // in a system header, don't emit this for compatibility with GCC.
630  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
631      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
632       Context.getSourceManager().isInSystemHeader(New->getLocation())))
633    return;
634
635  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
636    << New->getDeclName();
637  Diag(Old->getLocation(), diag::note_previous_definition);
638  return;
639}
640
641/// DeclhasAttr - returns true if decl Declaration already has the target
642/// attribute.
643static bool
644DeclHasAttr(const Decl *decl, const Attr *target) {
645  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
646    if (attr->getKind() == target->getKind())
647      return true;
648
649  return false;
650}
651
652/// MergeAttributes - append attributes from the Old decl to the New one.
653static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
654  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
655    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
656      Attr *NewAttr = attr->clone(C);
657      NewAttr->setInherited(true);
658      New->addAttr(NewAttr);
659    }
660  }
661}
662
663/// Used in MergeFunctionDecl to keep track of function parameters in
664/// C.
665struct GNUCompatibleParamWarning {
666  ParmVarDecl *OldParm;
667  ParmVarDecl *NewParm;
668  QualType PromotedType;
669};
670
671/// MergeFunctionDecl - We just parsed a function 'New' from
672/// declarator D which has the same name and scope as a previous
673/// declaration 'Old'.  Figure out how to resolve this situation,
674/// merging decls or emitting diagnostics as appropriate.
675///
676/// In C++, New and Old must be declarations that are not
677/// overloaded. Use IsOverload to determine whether New and Old are
678/// overloaded, and to select the Old declaration that New should be
679/// merged with.
680///
681/// Returns true if there was an error, false otherwise.
682bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
683  assert(!isa<OverloadedFunctionDecl>(OldD) &&
684         "Cannot merge with an overloaded function declaration");
685
686  // Verify the old decl was also a function.
687  FunctionDecl *Old = 0;
688  if (FunctionTemplateDecl *OldFunctionTemplate
689        = dyn_cast<FunctionTemplateDecl>(OldD))
690    Old = OldFunctionTemplate->getTemplatedDecl();
691  else
692    Old = dyn_cast<FunctionDecl>(OldD);
693  if (!Old) {
694    Diag(New->getLocation(), diag::err_redefinition_different_kind)
695      << New->getDeclName();
696    Diag(OldD->getLocation(), diag::note_previous_definition);
697    return true;
698  }
699
700  // Determine whether the previous declaration was a definition,
701  // implicit declaration, or a declaration.
702  diag::kind PrevDiag;
703  if (Old->isThisDeclarationADefinition())
704    PrevDiag = diag::note_previous_definition;
705  else if (Old->isImplicit())
706    PrevDiag = diag::note_previous_implicit_declaration;
707  else
708    PrevDiag = diag::note_previous_declaration;
709
710  QualType OldQType = Context.getCanonicalType(Old->getType());
711  QualType NewQType = Context.getCanonicalType(New->getType());
712
713  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
714      New->getStorageClass() == FunctionDecl::Static &&
715      Old->getStorageClass() != FunctionDecl::Static) {
716    Diag(New->getLocation(), diag::err_static_non_static)
717      << New;
718    Diag(Old->getLocation(), PrevDiag);
719    return true;
720  }
721
722  if (getLangOptions().CPlusPlus) {
723    // (C++98 13.1p2):
724    //   Certain function declarations cannot be overloaded:
725    //     -- Function declarations that differ only in the return type
726    //        cannot be overloaded.
727    QualType OldReturnType
728      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
729    QualType NewReturnType
730      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
731    if (OldReturnType != NewReturnType) {
732      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
733      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
734      return true;
735    }
736
737    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
738    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
739    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
740        NewMethod->getLexicalDeclContext()->isRecord()) {
741      //    -- Member function declarations with the same name and the
742      //       same parameter types cannot be overloaded if any of them
743      //       is a static member function declaration.
744      if (OldMethod->isStatic() || NewMethod->isStatic()) {
745        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
746        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747        return true;
748      }
749
750      // C++ [class.mem]p1:
751      //   [...] A member shall not be declared twice in the
752      //   member-specification, except that a nested class or member
753      //   class template can be declared and then later defined.
754      unsigned NewDiag;
755      if (isa<CXXConstructorDecl>(OldMethod))
756        NewDiag = diag::err_constructor_redeclared;
757      else if (isa<CXXDestructorDecl>(NewMethod))
758        NewDiag = diag::err_destructor_redeclared;
759      else if (isa<CXXConversionDecl>(NewMethod))
760        NewDiag = diag::err_conv_function_redeclared;
761      else
762        NewDiag = diag::err_member_redeclared;
763
764      Diag(New->getLocation(), NewDiag);
765      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
766    }
767
768    // (C++98 8.3.5p3):
769    //   All declarations for a function shall agree exactly in both the
770    //   return type and the parameter-type-list.
771    if (OldQType == NewQType)
772      return MergeCompatibleFunctionDecls(New, Old);
773
774    // Fall through for conflicting redeclarations and redefinitions.
775  }
776
777  // C: Function types need to be compatible, not identical. This handles
778  // duplicate function decls like "void f(int); void f(enum X);" properly.
779  if (!getLangOptions().CPlusPlus &&
780      Context.typesAreCompatible(OldQType, NewQType)) {
781    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
782    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
783    const FunctionProtoType *OldProto = 0;
784    if (isa<FunctionNoProtoType>(NewFuncType) &&
785        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
786      // The old declaration provided a function prototype, but the
787      // new declaration does not. Merge in the prototype.
788      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
789      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
790                                                 OldProto->arg_type_end());
791      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
792                                         ParamTypes.data(), ParamTypes.size(),
793                                         OldProto->isVariadic(),
794                                         OldProto->getTypeQuals());
795      New->setType(NewQType);
796      New->setHasInheritedPrototype();
797
798      // Synthesize a parameter for each argument type.
799      llvm::SmallVector<ParmVarDecl*, 16> Params;
800      for (FunctionProtoType::arg_type_iterator
801             ParamType = OldProto->arg_type_begin(),
802             ParamEnd = OldProto->arg_type_end();
803           ParamType != ParamEnd; ++ParamType) {
804        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
805                                                 SourceLocation(), 0,
806                                                 *ParamType, /*DInfo=*/0,
807                                                 VarDecl::None, 0);
808        Param->setImplicit();
809        Params.push_back(Param);
810      }
811
812      New->setParams(Context, Params.data(), Params.size());
813    }
814
815    return MergeCompatibleFunctionDecls(New, Old);
816  }
817
818  // GNU C permits a K&R definition to follow a prototype declaration
819  // if the declared types of the parameters in the K&R definition
820  // match the types in the prototype declaration, even when the
821  // promoted types of the parameters from the K&R definition differ
822  // from the types in the prototype. GCC then keeps the types from
823  // the prototype.
824  //
825  // If a variadic prototype is followed by a non-variadic K&R definition,
826  // the K&R definition becomes variadic.  This is sort of an edge case, but
827  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
828  // C99 6.9.1p8.
829  if (!getLangOptions().CPlusPlus &&
830      Old->hasPrototype() && !New->hasPrototype() &&
831      New->getType()->getAsFunctionProtoType() &&
832      Old->getNumParams() == New->getNumParams()) {
833    llvm::SmallVector<QualType, 16> ArgTypes;
834    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
835    const FunctionProtoType *OldProto
836      = Old->getType()->getAsFunctionProtoType();
837    const FunctionProtoType *NewProto
838      = New->getType()->getAsFunctionProtoType();
839
840    // Determine whether this is the GNU C extension.
841    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
842                                               NewProto->getResultType());
843    bool LooseCompatible = !MergedReturn.isNull();
844    for (unsigned Idx = 0, End = Old->getNumParams();
845         LooseCompatible && Idx != End; ++Idx) {
846      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
847      ParmVarDecl *NewParm = New->getParamDecl(Idx);
848      if (Context.typesAreCompatible(OldParm->getType(),
849                                     NewProto->getArgType(Idx))) {
850        ArgTypes.push_back(NewParm->getType());
851      } else if (Context.typesAreCompatible(OldParm->getType(),
852                                            NewParm->getType())) {
853        GNUCompatibleParamWarning Warn
854          = { OldParm, NewParm, NewProto->getArgType(Idx) };
855        Warnings.push_back(Warn);
856        ArgTypes.push_back(NewParm->getType());
857      } else
858        LooseCompatible = false;
859    }
860
861    if (LooseCompatible) {
862      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
863        Diag(Warnings[Warn].NewParm->getLocation(),
864             diag::ext_param_promoted_not_compatible_with_prototype)
865          << Warnings[Warn].PromotedType
866          << Warnings[Warn].OldParm->getType();
867        Diag(Warnings[Warn].OldParm->getLocation(),
868             diag::note_previous_declaration);
869      }
870
871      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
872                                           ArgTypes.size(),
873                                           OldProto->isVariadic(), 0));
874      return MergeCompatibleFunctionDecls(New, Old);
875    }
876
877    // Fall through to diagnose conflicting types.
878  }
879
880  // A function that has already been declared has been redeclared or defined
881  // with a different type- show appropriate diagnostic
882  if (unsigned BuiltinID = Old->getBuiltinID()) {
883    // The user has declared a builtin function with an incompatible
884    // signature.
885    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
886      // The function the user is redeclaring is a library-defined
887      // function like 'malloc' or 'printf'. Warn about the
888      // redeclaration, then pretend that we don't know about this
889      // library built-in.
890      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
891      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
892        << Old << Old->getType();
893      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
894      Old->setInvalidDecl();
895      return false;
896    }
897
898    PrevDiag = diag::note_previous_builtin_declaration;
899  }
900
901  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
902  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
903  return true;
904}
905
906/// \brief Completes the merge of two function declarations that are
907/// known to be compatible.
908///
909/// This routine handles the merging of attributes and other
910/// properties of function declarations form the old declaration to
911/// the new declaration, once we know that New is in fact a
912/// redeclaration of Old.
913///
914/// \returns false
915bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
916  // Merge the attributes
917  MergeAttributes(New, Old, Context);
918
919  // Merge the storage class.
920  if (Old->getStorageClass() != FunctionDecl::Extern &&
921      Old->getStorageClass() != FunctionDecl::None)
922    New->setStorageClass(Old->getStorageClass());
923
924  // Merge "pure" flag.
925  if (Old->isPure())
926    New->setPure();
927
928  // Merge the "deleted" flag.
929  if (Old->isDeleted())
930    New->setDeleted();
931
932  if (getLangOptions().CPlusPlus)
933    return MergeCXXFunctionDecl(New, Old);
934
935  return false;
936}
937
938/// MergeVarDecl - We just parsed a variable 'New' which has the same name
939/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
940/// situation, merging decls or emitting diagnostics as appropriate.
941///
942/// Tentative definition rules (C99 6.9.2p2) are checked by
943/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
944/// definitions here, since the initializer hasn't been attached.
945///
946void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
947  // If either decl is invalid, make sure the new one is marked invalid and
948  // don't do any other checking.
949  if (New->isInvalidDecl() || OldD->isInvalidDecl())
950    return New->setInvalidDecl();
951
952  // Verify the old decl was also a variable.
953  VarDecl *Old = dyn_cast<VarDecl>(OldD);
954  if (!Old) {
955    Diag(New->getLocation(), diag::err_redefinition_different_kind)
956      << New->getDeclName();
957    Diag(OldD->getLocation(), diag::note_previous_definition);
958    return New->setInvalidDecl();
959  }
960
961  MergeAttributes(New, Old, Context);
962
963  // Merge the types
964  QualType MergedT;
965  if (getLangOptions().CPlusPlus) {
966    if (Context.hasSameType(New->getType(), Old->getType()))
967      MergedT = New->getType();
968    // C++ [basic.types]p7:
969    //   [...] The declared type of an array object might be an array of
970    //   unknown size and therefore be incomplete at one point in a
971    //   translation unit and complete later on; [...]
972    else if (Old->getType()->isIncompleteArrayType() &&
973             New->getType()->isArrayType()) {
974      CanQual<ArrayType> OldArray
975        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
976      CanQual<ArrayType> NewArray
977        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
978      if (OldArray->getElementType() == NewArray->getElementType())
979        MergedT = New->getType();
980    }
981  } else {
982    MergedT = Context.mergeTypes(New->getType(), Old->getType());
983  }
984  if (MergedT.isNull()) {
985    Diag(New->getLocation(), diag::err_redefinition_different_type)
986      << New->getDeclName();
987    Diag(Old->getLocation(), diag::note_previous_definition);
988    return New->setInvalidDecl();
989  }
990  New->setType(MergedT);
991
992  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
993  if (New->getStorageClass() == VarDecl::Static &&
994      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
995    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
996    Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999  // C99 6.2.2p4:
1000  //   For an identifier declared with the storage-class specifier
1001  //   extern in a scope in which a prior declaration of that
1002  //   identifier is visible,23) if the prior declaration specifies
1003  //   internal or external linkage, the linkage of the identifier at
1004  //   the later declaration is the same as the linkage specified at
1005  //   the prior declaration. If no prior declaration is visible, or
1006  //   if the prior declaration specifies no linkage, then the
1007  //   identifier has external linkage.
1008  if (New->hasExternalStorage() && Old->hasLinkage())
1009    /* Okay */;
1010  else if (New->getStorageClass() != VarDecl::Static &&
1011           Old->getStorageClass() == VarDecl::Static) {
1012    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014    return New->setInvalidDecl();
1015  }
1016
1017  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1018
1019  // FIXME: The test for external storage here seems wrong? We still
1020  // need to check for mismatches.
1021  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1022      // Don't complain about out-of-line definitions of static members.
1023      !(Old->getLexicalDeclContext()->isRecord() &&
1024        !New->getLexicalDeclContext()->isRecord())) {
1025    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1026    Diag(Old->getLocation(), diag::note_previous_definition);
1027    return New->setInvalidDecl();
1028  }
1029
1030  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1031    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1032    Diag(Old->getLocation(), diag::note_previous_definition);
1033  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1034    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1035    Diag(Old->getLocation(), diag::note_previous_definition);
1036  }
1037
1038  // Keep a chain of previous declarations.
1039  New->setPreviousDeclaration(Old);
1040}
1041
1042/// CheckFallThrough - Check that we don't fall off the end of a
1043/// Statement that should return a value.
1044///
1045/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1046/// MaybeFallThrough iff we might or might not fall off the end and
1047/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1048/// that functions not marked noreturn will return.
1049Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1050  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1051
1052  // FIXME: They should never return 0, fix that, delete this code.
1053  if (cfg == 0)
1054    return NeverFallThrough;
1055  // The CFG leaves in dead things, and we don't want to dead code paths to
1056  // confuse us, so we mark all live things first.
1057  std::queue<CFGBlock*> workq;
1058  llvm::BitVector live(cfg->getNumBlockIDs());
1059  // Prep work queue
1060  workq.push(&cfg->getEntry());
1061  // Solve
1062  while (!workq.empty()) {
1063    CFGBlock *item = workq.front();
1064    workq.pop();
1065    live.set(item->getBlockID());
1066    for (CFGBlock::succ_iterator I=item->succ_begin(),
1067           E=item->succ_end();
1068         I != E;
1069         ++I) {
1070      if ((*I) && !live[(*I)->getBlockID()]) {
1071        live.set((*I)->getBlockID());
1072        workq.push(*I);
1073      }
1074    }
1075  }
1076
1077  // Now we know what is live, we check the live precessors of the exit block
1078  // and look for fall through paths, being careful to ignore normal returns,
1079  // and exceptional paths.
1080  bool HasLiveReturn = false;
1081  bool HasFakeEdge = false;
1082  bool HasPlainEdge = false;
1083  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1084         E = cfg->getExit().pred_end();
1085       I != E;
1086       ++I) {
1087    CFGBlock& B = **I;
1088    if (!live[B.getBlockID()])
1089      continue;
1090    if (B.size() == 0) {
1091      // A labeled empty statement, or the entry block...
1092      HasPlainEdge = true;
1093      continue;
1094    }
1095    Stmt *S = B[B.size()-1];
1096    if (isa<ReturnStmt>(S)) {
1097      HasLiveReturn = true;
1098      continue;
1099    }
1100    if (isa<ObjCAtThrowStmt>(S)) {
1101      HasFakeEdge = true;
1102      continue;
1103    }
1104    if (isa<CXXThrowExpr>(S)) {
1105      HasFakeEdge = true;
1106      continue;
1107    }
1108    bool NoReturnEdge = false;
1109    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1110      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1111      if (CEE->getType().getNoReturnAttr()) {
1112        NoReturnEdge = true;
1113        HasFakeEdge = true;
1114      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1115        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1116          if (FD->hasAttr<NoReturnAttr>()) {
1117            NoReturnEdge = true;
1118            HasFakeEdge = true;
1119          }
1120        }
1121      }
1122    }
1123    // FIXME: Add noreturn message sends.
1124    if (NoReturnEdge == false)
1125      HasPlainEdge = true;
1126  }
1127  if (!HasPlainEdge)
1128    return NeverFallThrough;
1129  if (HasFakeEdge || HasLiveReturn)
1130    return MaybeFallThrough;
1131  // This says AlwaysFallThrough for calls to functions that are not marked
1132  // noreturn, that don't return.  If people would like this warning to be more
1133  // accurate, such functions should be marked as noreturn.
1134  return AlwaysFallThrough;
1135}
1136
1137/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1138/// function that should return a value.  Check that we don't fall off the end
1139/// of a noreturn function.  We assume that functions and blocks not marked
1140/// noreturn will return.
1141void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1142  // FIXME: Would be nice if we had a better way to control cascading errors,
1143  // but for now, avoid them.  The problem is that when Parse sees:
1144  //   int foo() { return a; }
1145  // The return is eaten and the Sema code sees just:
1146  //   int foo() { }
1147  // which this code would then warn about.
1148  if (getDiagnostics().hasErrorOccurred())
1149    return;
1150  bool ReturnsVoid = false;
1151  bool HasNoReturn = false;
1152  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1153    if (FD->getResultType()->isVoidType())
1154      ReturnsVoid = true;
1155    if (FD->hasAttr<NoReturnAttr>())
1156      HasNoReturn = true;
1157  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1158    if (MD->getResultType()->isVoidType())
1159      ReturnsVoid = true;
1160    if (MD->hasAttr<NoReturnAttr>())
1161      HasNoReturn = true;
1162  }
1163
1164  // Short circuit for compilation speed.
1165  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1166       == Diagnostic::Ignored || ReturnsVoid)
1167      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1168          == Diagnostic::Ignored || !HasNoReturn)
1169      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1170          == Diagnostic::Ignored || !ReturnsVoid))
1171    return;
1172  // FIXME: Funtion try block
1173  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1174    switch (CheckFallThrough(Body)) {
1175    case MaybeFallThrough:
1176      if (HasNoReturn)
1177        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1178      else if (!ReturnsVoid)
1179        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1180      break;
1181    case AlwaysFallThrough:
1182      if (HasNoReturn)
1183        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1184      else if (!ReturnsVoid)
1185        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1186      break;
1187    case NeverFallThrough:
1188      if (ReturnsVoid)
1189        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1190      break;
1191    }
1192  }
1193}
1194
1195/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1196/// that should return a value.  Check that we don't fall off the end of a
1197/// noreturn block.  We assume that functions and blocks not marked noreturn
1198/// will return.
1199void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1200  // FIXME: Would be nice if we had a better way to control cascading errors,
1201  // but for now, avoid them.  The problem is that when Parse sees:
1202  //   int foo() { return a; }
1203  // The return is eaten and the Sema code sees just:
1204  //   int foo() { }
1205  // which this code would then warn about.
1206  if (getDiagnostics().hasErrorOccurred())
1207    return;
1208  bool ReturnsVoid = false;
1209  bool HasNoReturn = false;
1210  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1211    if (FT->getResultType()->isVoidType())
1212      ReturnsVoid = true;
1213    if (FT->getNoReturnAttr())
1214      HasNoReturn = true;
1215  }
1216
1217  // Short circuit for compilation speed.
1218  if (ReturnsVoid
1219      && !HasNoReturn
1220      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1221          == Diagnostic::Ignored || !ReturnsVoid))
1222    return;
1223  // FIXME: Funtion try block
1224  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1225    switch (CheckFallThrough(Body)) {
1226    case MaybeFallThrough:
1227      if (HasNoReturn)
1228        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1229      else if (!ReturnsVoid)
1230        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1231      break;
1232    case AlwaysFallThrough:
1233      if (HasNoReturn)
1234        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1235      else if (!ReturnsVoid)
1236        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1237      break;
1238    case NeverFallThrough:
1239      if (ReturnsVoid)
1240        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1241      break;
1242    }
1243  }
1244}
1245
1246/// CheckParmsForFunctionDef - Check that the parameters of the given
1247/// function are appropriate for the definition of a function. This
1248/// takes care of any checks that cannot be performed on the
1249/// declaration itself, e.g., that the types of each of the function
1250/// parameters are complete.
1251bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1252  bool HasInvalidParm = false;
1253  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1254    ParmVarDecl *Param = FD->getParamDecl(p);
1255
1256    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1257    // function declarator that is part of a function definition of
1258    // that function shall not have incomplete type.
1259    //
1260    // This is also C++ [dcl.fct]p6.
1261    if (!Param->isInvalidDecl() &&
1262        RequireCompleteType(Param->getLocation(), Param->getType(),
1263                               diag::err_typecheck_decl_incomplete_type)) {
1264      Param->setInvalidDecl();
1265      HasInvalidParm = true;
1266    }
1267
1268    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1269    // declaration of each parameter shall include an identifier.
1270    if (Param->getIdentifier() == 0 &&
1271        !Param->isImplicit() &&
1272        !getLangOptions().CPlusPlus)
1273      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1274  }
1275
1276  return HasInvalidParm;
1277}
1278
1279/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1280/// no declarator (e.g. "struct foo;") is parsed.
1281Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1282  // FIXME: Error on auto/register at file scope
1283  // FIXME: Error on inline/virtual/explicit
1284  // FIXME: Error on invalid restrict
1285  // FIXME: Warn on useless __thread
1286  // FIXME: Warn on useless const/volatile
1287  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1288  // FIXME: Warn on useless attributes
1289  TagDecl *Tag = 0;
1290  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1291      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1292      DS.getTypeSpecType() == DeclSpec::TST_union ||
1293      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1294    if (!DS.getTypeRep()) // We probably had an error
1295      return DeclPtrTy();
1296
1297    // Note that the above type specs guarantee that the
1298    // type rep is a Decl, whereas in many of the others
1299    // it's a Type.
1300    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1301  }
1302
1303  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1304    if (!Record->getDeclName() && Record->isDefinition() &&
1305        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1306      if (getLangOptions().CPlusPlus ||
1307          Record->getDeclContext()->isRecord())
1308        return BuildAnonymousStructOrUnion(S, DS, Record);
1309
1310      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1311        << DS.getSourceRange();
1312    }
1313
1314    // Microsoft allows unnamed struct/union fields. Don't complain
1315    // about them.
1316    // FIXME: Should we support Microsoft's extensions in this area?
1317    if (Record->getDeclName() && getLangOptions().Microsoft)
1318      return DeclPtrTy::make(Tag);
1319  }
1320
1321  if (!DS.isMissingDeclaratorOk() &&
1322      DS.getTypeSpecType() != DeclSpec::TST_error) {
1323    // Warn about typedefs of enums without names, since this is an
1324    // extension in both Microsoft an GNU.
1325    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1326        Tag && isa<EnumDecl>(Tag)) {
1327      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1328        << DS.getSourceRange();
1329      return DeclPtrTy::make(Tag);
1330    }
1331
1332    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1333      << DS.getSourceRange();
1334    return DeclPtrTy();
1335  }
1336
1337  return DeclPtrTy::make(Tag);
1338}
1339
1340/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1341/// anonymous struct or union AnonRecord into the owning context Owner
1342/// and scope S. This routine will be invoked just after we realize
1343/// that an unnamed union or struct is actually an anonymous union or
1344/// struct, e.g.,
1345///
1346/// @code
1347/// union {
1348///   int i;
1349///   float f;
1350/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1351///    // f into the surrounding scope.x
1352/// @endcode
1353///
1354/// This routine is recursive, injecting the names of nested anonymous
1355/// structs/unions into the owning context and scope as well.
1356bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1357                                               RecordDecl *AnonRecord) {
1358  bool Invalid = false;
1359  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1360                               FEnd = AnonRecord->field_end();
1361       F != FEnd; ++F) {
1362    if ((*F)->getDeclName()) {
1363      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1364                                                LookupOrdinaryName, true);
1365      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1366        // C++ [class.union]p2:
1367        //   The names of the members of an anonymous union shall be
1368        //   distinct from the names of any other entity in the
1369        //   scope in which the anonymous union is declared.
1370        unsigned diagKind
1371          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1372                                 : diag::err_anonymous_struct_member_redecl;
1373        Diag((*F)->getLocation(), diagKind)
1374          << (*F)->getDeclName();
1375        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1376        Invalid = true;
1377      } else {
1378        // C++ [class.union]p2:
1379        //   For the purpose of name lookup, after the anonymous union
1380        //   definition, the members of the anonymous union are
1381        //   considered to have been defined in the scope in which the
1382        //   anonymous union is declared.
1383        Owner->makeDeclVisibleInContext(*F);
1384        S->AddDecl(DeclPtrTy::make(*F));
1385        IdResolver.AddDecl(*F);
1386      }
1387    } else if (const RecordType *InnerRecordType
1388                 = (*F)->getType()->getAs<RecordType>()) {
1389      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1390      if (InnerRecord->isAnonymousStructOrUnion())
1391        Invalid = Invalid ||
1392          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1393    }
1394  }
1395
1396  return Invalid;
1397}
1398
1399/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1400/// anonymous structure or union. Anonymous unions are a C++ feature
1401/// (C++ [class.union]) and a GNU C extension; anonymous structures
1402/// are a GNU C and GNU C++ extension.
1403Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1404                                                  RecordDecl *Record) {
1405  DeclContext *Owner = Record->getDeclContext();
1406
1407  // Diagnose whether this anonymous struct/union is an extension.
1408  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1409    Diag(Record->getLocation(), diag::ext_anonymous_union);
1410  else if (!Record->isUnion())
1411    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1412
1413  // C and C++ require different kinds of checks for anonymous
1414  // structs/unions.
1415  bool Invalid = false;
1416  if (getLangOptions().CPlusPlus) {
1417    const char* PrevSpec = 0;
1418    unsigned DiagID;
1419    // C++ [class.union]p3:
1420    //   Anonymous unions declared in a named namespace or in the
1421    //   global namespace shall be declared static.
1422    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1423        (isa<TranslationUnitDecl>(Owner) ||
1424         (isa<NamespaceDecl>(Owner) &&
1425          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1426      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1427      Invalid = true;
1428
1429      // Recover by adding 'static'.
1430      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1431                             PrevSpec, DiagID);
1432    }
1433    // C++ [class.union]p3:
1434    //   A storage class is not allowed in a declaration of an
1435    //   anonymous union in a class scope.
1436    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1437             isa<RecordDecl>(Owner)) {
1438      Diag(DS.getStorageClassSpecLoc(),
1439           diag::err_anonymous_union_with_storage_spec);
1440      Invalid = true;
1441
1442      // Recover by removing the storage specifier.
1443      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1444                             PrevSpec, DiagID);
1445    }
1446
1447    // C++ [class.union]p2:
1448    //   The member-specification of an anonymous union shall only
1449    //   define non-static data members. [Note: nested types and
1450    //   functions cannot be declared within an anonymous union. ]
1451    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1452                                 MemEnd = Record->decls_end();
1453         Mem != MemEnd; ++Mem) {
1454      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1455        // C++ [class.union]p3:
1456        //   An anonymous union shall not have private or protected
1457        //   members (clause 11).
1458        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1459          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1460            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1461          Invalid = true;
1462        }
1463      } else if ((*Mem)->isImplicit()) {
1464        // Any implicit members are fine.
1465      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1466        // This is a type that showed up in an
1467        // elaborated-type-specifier inside the anonymous struct or
1468        // union, but which actually declares a type outside of the
1469        // anonymous struct or union. It's okay.
1470      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1471        if (!MemRecord->isAnonymousStructOrUnion() &&
1472            MemRecord->getDeclName()) {
1473          // This is a nested type declaration.
1474          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1475            << (int)Record->isUnion();
1476          Invalid = true;
1477        }
1478      } else {
1479        // We have something that isn't a non-static data
1480        // member. Complain about it.
1481        unsigned DK = diag::err_anonymous_record_bad_member;
1482        if (isa<TypeDecl>(*Mem))
1483          DK = diag::err_anonymous_record_with_type;
1484        else if (isa<FunctionDecl>(*Mem))
1485          DK = diag::err_anonymous_record_with_function;
1486        else if (isa<VarDecl>(*Mem))
1487          DK = diag::err_anonymous_record_with_static;
1488        Diag((*Mem)->getLocation(), DK)
1489            << (int)Record->isUnion();
1490          Invalid = true;
1491      }
1492    }
1493  }
1494
1495  if (!Record->isUnion() && !Owner->isRecord()) {
1496    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1497      << (int)getLangOptions().CPlusPlus;
1498    Invalid = true;
1499  }
1500
1501  // Create a declaration for this anonymous struct/union.
1502  NamedDecl *Anon = 0;
1503  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1504    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1505                             /*IdentifierInfo=*/0,
1506                             Context.getTypeDeclType(Record),
1507                             // FIXME: Type source info.
1508                             /*DInfo=*/0,
1509                             /*BitWidth=*/0, /*Mutable=*/false);
1510    Anon->setAccess(AS_public);
1511    if (getLangOptions().CPlusPlus)
1512      FieldCollector->Add(cast<FieldDecl>(Anon));
1513  } else {
1514    VarDecl::StorageClass SC;
1515    switch (DS.getStorageClassSpec()) {
1516    default: assert(0 && "Unknown storage class!");
1517    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1518    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1519    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1520    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1521    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1522    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1523    case DeclSpec::SCS_mutable:
1524      // mutable can only appear on non-static class members, so it's always
1525      // an error here
1526      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1527      Invalid = true;
1528      SC = VarDecl::None;
1529      break;
1530    }
1531
1532    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1533                           /*IdentifierInfo=*/0,
1534                           Context.getTypeDeclType(Record),
1535                           // FIXME: Type source info.
1536                           /*DInfo=*/0,
1537                           SC);
1538  }
1539  Anon->setImplicit();
1540
1541  // Add the anonymous struct/union object to the current
1542  // context. We'll be referencing this object when we refer to one of
1543  // its members.
1544  Owner->addDecl(Anon);
1545
1546  // Inject the members of the anonymous struct/union into the owning
1547  // context and into the identifier resolver chain for name lookup
1548  // purposes.
1549  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1550    Invalid = true;
1551
1552  // Mark this as an anonymous struct/union type. Note that we do not
1553  // do this until after we have already checked and injected the
1554  // members of this anonymous struct/union type, because otherwise
1555  // the members could be injected twice: once by DeclContext when it
1556  // builds its lookup table, and once by
1557  // InjectAnonymousStructOrUnionMembers.
1558  Record->setAnonymousStructOrUnion(true);
1559
1560  if (Invalid)
1561    Anon->setInvalidDecl();
1562
1563  return DeclPtrTy::make(Anon);
1564}
1565
1566
1567/// GetNameForDeclarator - Determine the full declaration name for the
1568/// given Declarator.
1569DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1570  switch (D.getKind()) {
1571  case Declarator::DK_Abstract:
1572    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1573    return DeclarationName();
1574
1575  case Declarator::DK_Normal:
1576    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1577    return DeclarationName(D.getIdentifier());
1578
1579  case Declarator::DK_Constructor: {
1580    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1581    return Context.DeclarationNames.getCXXConstructorName(
1582                                                Context.getCanonicalType(Ty));
1583  }
1584
1585  case Declarator::DK_Destructor: {
1586    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1587    return Context.DeclarationNames.getCXXDestructorName(
1588                                                Context.getCanonicalType(Ty));
1589  }
1590
1591  case Declarator::DK_Conversion: {
1592    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1593    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1594    return Context.DeclarationNames.getCXXConversionFunctionName(
1595                                                Context.getCanonicalType(Ty));
1596  }
1597
1598  case Declarator::DK_Operator:
1599    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1600    return Context.DeclarationNames.getCXXOperatorName(
1601                                                D.getOverloadedOperator());
1602  }
1603
1604  assert(false && "Unknown name kind");
1605  return DeclarationName();
1606}
1607
1608/// isNearlyMatchingFunction - Determine whether the C++ functions
1609/// Declaration and Definition are "nearly" matching. This heuristic
1610/// is used to improve diagnostics in the case where an out-of-line
1611/// function definition doesn't match any declaration within
1612/// the class or namespace.
1613static bool isNearlyMatchingFunction(ASTContext &Context,
1614                                     FunctionDecl *Declaration,
1615                                     FunctionDecl *Definition) {
1616  if (Declaration->param_size() != Definition->param_size())
1617    return false;
1618  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1619    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1620    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1621
1622    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1623    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1624    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1625      return false;
1626  }
1627
1628  return true;
1629}
1630
1631Sema::DeclPtrTy
1632Sema::HandleDeclarator(Scope *S, Declarator &D,
1633                       MultiTemplateParamsArg TemplateParamLists,
1634                       bool IsFunctionDefinition) {
1635  DeclarationName Name = GetNameForDeclarator(D);
1636
1637  // All of these full declarators require an identifier.  If it doesn't have
1638  // one, the ParsedFreeStandingDeclSpec action should be used.
1639  if (!Name) {
1640    if (!D.isInvalidType())  // Reject this if we think it is valid.
1641      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1642           diag::err_declarator_need_ident)
1643        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1644    return DeclPtrTy();
1645  }
1646
1647  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1648  // we find one that is.
1649  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1650         (S->getFlags() & Scope::TemplateParamScope) != 0)
1651    S = S->getParent();
1652
1653  // If this is an out-of-line definition of a member of a class template
1654  // or class template partial specialization, we may need to rebuild the
1655  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1656  // for more information.
1657  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1658  // handle expressions properly.
1659  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1660  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1661      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1662      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1663       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1664       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1665       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1666    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1667      // FIXME: Preserve type source info.
1668      QualType T = GetTypeFromParser(DS.getTypeRep());
1669      EnterDeclaratorContext(S, DC);
1670      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1671      ExitDeclaratorContext(S);
1672      if (T.isNull())
1673        return DeclPtrTy();
1674      DS.UpdateTypeRep(T.getAsOpaquePtr());
1675    }
1676  }
1677
1678  DeclContext *DC;
1679  NamedDecl *PrevDecl;
1680  NamedDecl *New;
1681
1682  DeclaratorInfo *DInfo = 0;
1683  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1684
1685  // See if this is a redefinition of a variable in the same scope.
1686  if (D.getCXXScopeSpec().isInvalid()) {
1687    DC = CurContext;
1688    PrevDecl = 0;
1689    D.setInvalidType();
1690  } else if (!D.getCXXScopeSpec().isSet()) {
1691    LookupNameKind NameKind = LookupOrdinaryName;
1692
1693    // If the declaration we're planning to build will be a function
1694    // or object with linkage, then look for another declaration with
1695    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1696    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1697      /* Do nothing*/;
1698    else if (R->isFunctionType()) {
1699      if (CurContext->isFunctionOrMethod() ||
1700          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1701        NameKind = LookupRedeclarationWithLinkage;
1702    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1703      NameKind = LookupRedeclarationWithLinkage;
1704    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1705             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1706      NameKind = LookupRedeclarationWithLinkage;
1707
1708    DC = CurContext;
1709    PrevDecl = LookupName(S, Name, NameKind, true,
1710                          NameKind == LookupRedeclarationWithLinkage,
1711                          D.getIdentifierLoc());
1712  } else { // Something like "int foo::x;"
1713    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1714
1715    if (!DC) {
1716      // If we could not compute the declaration context, it's because the
1717      // declaration context is dependent but does not refer to a class,
1718      // class template, or class template partial specialization. Complain
1719      // and return early, to avoid the coming semantic disaster.
1720      Diag(D.getIdentifierLoc(),
1721           diag::err_template_qualified_declarator_no_match)
1722        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1723        << D.getCXXScopeSpec().getRange();
1724      return DeclPtrTy();
1725    }
1726
1727    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1728
1729    // C++ 7.3.1.2p2:
1730    // Members (including explicit specializations of templates) of a named
1731    // namespace can also be defined outside that namespace by explicit
1732    // qualification of the name being defined, provided that the entity being
1733    // defined was already declared in the namespace and the definition appears
1734    // after the point of declaration in a namespace that encloses the
1735    // declarations namespace.
1736    //
1737    // Note that we only check the context at this point. We don't yet
1738    // have enough information to make sure that PrevDecl is actually
1739    // the declaration we want to match. For example, given:
1740    //
1741    //   class X {
1742    //     void f();
1743    //     void f(float);
1744    //   };
1745    //
1746    //   void X::f(int) { } // ill-formed
1747    //
1748    // In this case, PrevDecl will point to the overload set
1749    // containing the two f's declared in X, but neither of them
1750    // matches.
1751
1752    // First check whether we named the global scope.
1753    if (isa<TranslationUnitDecl>(DC)) {
1754      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1755        << Name << D.getCXXScopeSpec().getRange();
1756    } else if (!CurContext->Encloses(DC)) {
1757      // The qualifying scope doesn't enclose the original declaration.
1758      // Emit diagnostic based on current scope.
1759      SourceLocation L = D.getIdentifierLoc();
1760      SourceRange R = D.getCXXScopeSpec().getRange();
1761      if (isa<FunctionDecl>(CurContext))
1762        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1763      else
1764        Diag(L, diag::err_invalid_declarator_scope)
1765          << Name << cast<NamedDecl>(DC) << R;
1766      D.setInvalidType();
1767    }
1768  }
1769
1770  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1771    // Maybe we will complain about the shadowed template parameter.
1772    if (!D.isInvalidType())
1773      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1774        D.setInvalidType();
1775
1776    // Just pretend that we didn't see the previous declaration.
1777    PrevDecl = 0;
1778  }
1779
1780  // In C++, the previous declaration we find might be a tag type
1781  // (class or enum). In this case, the new declaration will hide the
1782  // tag type. Note that this does does not apply if we're declaring a
1783  // typedef (C++ [dcl.typedef]p4).
1784  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1785      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1786    PrevDecl = 0;
1787
1788  bool Redeclaration = false;
1789  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1790    if (TemplateParamLists.size()) {
1791      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1792      return DeclPtrTy();
1793    }
1794
1795    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1796  } else if (R->isFunctionType()) {
1797    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1798                                  move(TemplateParamLists),
1799                                  IsFunctionDefinition, Redeclaration);
1800  } else {
1801    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1802                                  move(TemplateParamLists),
1803                                  Redeclaration);
1804  }
1805
1806  if (New == 0)
1807    return DeclPtrTy();
1808
1809  // If this has an identifier and is not an invalid redeclaration,
1810  // add it to the scope stack.
1811  if (Name && !(Redeclaration && New->isInvalidDecl()))
1812    PushOnScopeChains(New, S);
1813
1814  return DeclPtrTy::make(New);
1815}
1816
1817/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1818/// types into constant array types in certain situations which would otherwise
1819/// be errors (for GCC compatibility).
1820static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1821                                                    ASTContext &Context,
1822                                                    bool &SizeIsNegative) {
1823  // This method tries to turn a variable array into a constant
1824  // array even when the size isn't an ICE.  This is necessary
1825  // for compatibility with code that depends on gcc's buggy
1826  // constant expression folding, like struct {char x[(int)(char*)2];}
1827  SizeIsNegative = false;
1828
1829  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1830    QualType Pointee = PTy->getPointeeType();
1831    QualType FixedType =
1832        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1833    if (FixedType.isNull()) return FixedType;
1834    FixedType = Context.getPointerType(FixedType);
1835    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1836    return FixedType;
1837  }
1838
1839  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1840  if (!VLATy)
1841    return QualType();
1842  // FIXME: We should probably handle this case
1843  if (VLATy->getElementType()->isVariablyModifiedType())
1844    return QualType();
1845
1846  Expr::EvalResult EvalResult;
1847  if (!VLATy->getSizeExpr() ||
1848      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1849      !EvalResult.Val.isInt())
1850    return QualType();
1851
1852  llvm::APSInt &Res = EvalResult.Val.getInt();
1853  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1854    Expr* ArySizeExpr = VLATy->getSizeExpr();
1855    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1856    // so as to transfer ownership to the ConstantArrayWithExpr.
1857    // Alternatively, we could "clone" it (how?).
1858    // Since we don't know how to do things above, we just use the
1859    // very same Expr*.
1860    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1861                                                Res, ArySizeExpr,
1862                                                ArrayType::Normal, 0,
1863                                                VLATy->getBracketsRange());
1864  }
1865
1866  SizeIsNegative = true;
1867  return QualType();
1868}
1869
1870/// \brief Register the given locally-scoped external C declaration so
1871/// that it can be found later for redeclarations
1872void
1873Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1874                                       Scope *S) {
1875  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1876         "Decl is not a locally-scoped decl!");
1877  // Note that we have a locally-scoped external with this name.
1878  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1879
1880  if (!PrevDecl)
1881    return;
1882
1883  // If there was a previous declaration of this variable, it may be
1884  // in our identifier chain. Update the identifier chain with the new
1885  // declaration.
1886  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1887    // The previous declaration was found on the identifer resolver
1888    // chain, so remove it from its scope.
1889    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1890      S = S->getParent();
1891
1892    if (S)
1893      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1894  }
1895}
1896
1897/// \brief Diagnose function specifiers on a declaration of an identifier that
1898/// does not identify a function.
1899void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1900  // FIXME: We should probably indicate the identifier in question to avoid
1901  // confusion for constructs like "inline int a(), b;"
1902  if (D.getDeclSpec().isInlineSpecified())
1903    Diag(D.getDeclSpec().getInlineSpecLoc(),
1904         diag::err_inline_non_function);
1905
1906  if (D.getDeclSpec().isVirtualSpecified())
1907    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1908         diag::err_virtual_non_function);
1909
1910  if (D.getDeclSpec().isExplicitSpecified())
1911    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1912         diag::err_explicit_non_function);
1913}
1914
1915NamedDecl*
1916Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1917                             QualType R,  DeclaratorInfo *DInfo,
1918                             Decl* PrevDecl, bool &Redeclaration) {
1919  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1920  if (D.getCXXScopeSpec().isSet()) {
1921    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1922      << D.getCXXScopeSpec().getRange();
1923    D.setInvalidType();
1924    // Pretend we didn't see the scope specifier.
1925    DC = 0;
1926  }
1927
1928  if (getLangOptions().CPlusPlus) {
1929    // Check that there are no default arguments (C++ only).
1930    CheckExtraCXXDefaultArguments(D);
1931  }
1932
1933  DiagnoseFunctionSpecifiers(D);
1934
1935  if (D.getDeclSpec().isThreadSpecified())
1936    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1937
1938  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1939  if (!NewTD) return 0;
1940
1941  if (D.isInvalidType())
1942    NewTD->setInvalidDecl();
1943
1944  // Handle attributes prior to checking for duplicates in MergeVarDecl
1945  ProcessDeclAttributes(S, NewTD, D);
1946  // Merge the decl with the existing one if appropriate. If the decl is
1947  // in an outer scope, it isn't the same thing.
1948  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1949    Redeclaration = true;
1950    MergeTypeDefDecl(NewTD, PrevDecl);
1951  }
1952
1953  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1954  // then it shall have block scope.
1955  QualType T = NewTD->getUnderlyingType();
1956  if (T->isVariablyModifiedType()) {
1957    CurFunctionNeedsScopeChecking = true;
1958
1959    if (S->getFnParent() == 0) {
1960      bool SizeIsNegative;
1961      QualType FixedTy =
1962          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1963      if (!FixedTy.isNull()) {
1964        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1965        NewTD->setUnderlyingType(FixedTy);
1966      } else {
1967        if (SizeIsNegative)
1968          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1969        else if (T->isVariableArrayType())
1970          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1971        else
1972          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1973        NewTD->setInvalidDecl();
1974      }
1975    }
1976  }
1977
1978  // If this is the C FILE type, notify the AST context.
1979  if (IdentifierInfo *II = NewTD->getIdentifier())
1980    if (!NewTD->isInvalidDecl() &&
1981        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1982      if (II->isStr("FILE"))
1983        Context.setFILEDecl(NewTD);
1984      else if (II->isStr("jmp_buf"))
1985        Context.setjmp_bufDecl(NewTD);
1986      else if (II->isStr("sigjmp_buf"))
1987        Context.setsigjmp_bufDecl(NewTD);
1988    }
1989
1990  return NewTD;
1991}
1992
1993/// \brief Determines whether the given declaration is an out-of-scope
1994/// previous declaration.
1995///
1996/// This routine should be invoked when name lookup has found a
1997/// previous declaration (PrevDecl) that is not in the scope where a
1998/// new declaration by the same name is being introduced. If the new
1999/// declaration occurs in a local scope, previous declarations with
2000/// linkage may still be considered previous declarations (C99
2001/// 6.2.2p4-5, C++ [basic.link]p6).
2002///
2003/// \param PrevDecl the previous declaration found by name
2004/// lookup
2005///
2006/// \param DC the context in which the new declaration is being
2007/// declared.
2008///
2009/// \returns true if PrevDecl is an out-of-scope previous declaration
2010/// for a new delcaration with the same name.
2011static bool
2012isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2013                                ASTContext &Context) {
2014  if (!PrevDecl)
2015    return 0;
2016
2017  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2018  // case we need to check each of the overloaded functions.
2019  if (!PrevDecl->hasLinkage())
2020    return false;
2021
2022  if (Context.getLangOptions().CPlusPlus) {
2023    // C++ [basic.link]p6:
2024    //   If there is a visible declaration of an entity with linkage
2025    //   having the same name and type, ignoring entities declared
2026    //   outside the innermost enclosing namespace scope, the block
2027    //   scope declaration declares that same entity and receives the
2028    //   linkage of the previous declaration.
2029    DeclContext *OuterContext = DC->getLookupContext();
2030    if (!OuterContext->isFunctionOrMethod())
2031      // This rule only applies to block-scope declarations.
2032      return false;
2033    else {
2034      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2035      if (PrevOuterContext->isRecord())
2036        // We found a member function: ignore it.
2037        return false;
2038      else {
2039        // Find the innermost enclosing namespace for the new and
2040        // previous declarations.
2041        while (!OuterContext->isFileContext())
2042          OuterContext = OuterContext->getParent();
2043        while (!PrevOuterContext->isFileContext())
2044          PrevOuterContext = PrevOuterContext->getParent();
2045
2046        // The previous declaration is in a different namespace, so it
2047        // isn't the same function.
2048        if (OuterContext->getPrimaryContext() !=
2049            PrevOuterContext->getPrimaryContext())
2050          return false;
2051      }
2052    }
2053  }
2054
2055  return true;
2056}
2057
2058NamedDecl*
2059Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2060                              QualType R, DeclaratorInfo *DInfo,
2061                              NamedDecl* PrevDecl,
2062                              MultiTemplateParamsArg TemplateParamLists,
2063                              bool &Redeclaration) {
2064  DeclarationName Name = GetNameForDeclarator(D);
2065
2066  // Check that there are no default arguments (C++ only).
2067  if (getLangOptions().CPlusPlus)
2068    CheckExtraCXXDefaultArguments(D);
2069
2070  VarDecl *NewVD;
2071  VarDecl::StorageClass SC;
2072  switch (D.getDeclSpec().getStorageClassSpec()) {
2073  default: assert(0 && "Unknown storage class!");
2074  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2075  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2076  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2077  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2078  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2079  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2080  case DeclSpec::SCS_mutable:
2081    // mutable can only appear on non-static class members, so it's always
2082    // an error here
2083    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2084    D.setInvalidType();
2085    SC = VarDecl::None;
2086    break;
2087  }
2088
2089  IdentifierInfo *II = Name.getAsIdentifierInfo();
2090  if (!II) {
2091    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2092      << Name.getAsString();
2093    return 0;
2094  }
2095
2096  DiagnoseFunctionSpecifiers(D);
2097
2098  if (!DC->isRecord() && S->getFnParent() == 0) {
2099    // C99 6.9p2: The storage-class specifiers auto and register shall not
2100    // appear in the declaration specifiers in an external declaration.
2101    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2102
2103      // If this is a register variable with an asm label specified, then this
2104      // is a GNU extension.
2105      if (SC == VarDecl::Register && D.getAsmLabel())
2106        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2107      else
2108        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2109      D.setInvalidType();
2110    }
2111  }
2112  if (DC->isRecord() && !CurContext->isRecord()) {
2113    // This is an out-of-line definition of a static data member.
2114    if (SC == VarDecl::Static) {
2115      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2116           diag::err_static_out_of_line)
2117        << CodeModificationHint::CreateRemoval(
2118                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2119    } else if (SC == VarDecl::None)
2120      SC = VarDecl::Static;
2121  }
2122  if (SC == VarDecl::Static) {
2123    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2124      if (RD->isLocalClass())
2125        Diag(D.getIdentifierLoc(),
2126             diag::err_static_data_member_not_allowed_in_local_class)
2127          << Name << RD->getDeclName();
2128    }
2129  }
2130
2131  // Match up the template parameter lists with the scope specifier, then
2132  // determine whether we have a template or a template specialization.
2133  if (TemplateParameterList *TemplateParams
2134      = MatchTemplateParametersToScopeSpecifier(
2135                                  D.getDeclSpec().getSourceRange().getBegin(),
2136                                                D.getCXXScopeSpec(),
2137                        (TemplateParameterList**)TemplateParamLists.get(),
2138                                                 TemplateParamLists.size())) {
2139    if (TemplateParams->size() > 0) {
2140      // There is no such thing as a variable template.
2141      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2142        << II
2143        << SourceRange(TemplateParams->getTemplateLoc(),
2144                       TemplateParams->getRAngleLoc());
2145      return 0;
2146    } else {
2147      // There is an extraneous 'template<>' for this variable. Complain
2148      // about it, but allow the declaration of the variable.
2149      Diag(TemplateParams->getTemplateLoc(),
2150           diag::err_template_variable_noparams)
2151        << II
2152        << SourceRange(TemplateParams->getTemplateLoc(),
2153                       TemplateParams->getRAngleLoc());
2154    }
2155  }
2156
2157  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2158                          II, R, DInfo, SC);
2159
2160  if (D.isInvalidType())
2161    NewVD->setInvalidDecl();
2162
2163  if (D.getDeclSpec().isThreadSpecified()) {
2164    if (NewVD->hasLocalStorage())
2165      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2166    else if (!Context.Target.isTLSSupported())
2167      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2168    else
2169      NewVD->setThreadSpecified(true);
2170  }
2171
2172  // Set the lexical context. If the declarator has a C++ scope specifier, the
2173  // lexical context will be different from the semantic context.
2174  NewVD->setLexicalDeclContext(CurContext);
2175
2176  // Handle attributes prior to checking for duplicates in MergeVarDecl
2177  ProcessDeclAttributes(S, NewVD, D);
2178
2179  // Handle GNU asm-label extension (encoded as an attribute).
2180  if (Expr *E = (Expr*) D.getAsmLabel()) {
2181    // The parser guarantees this is a string.
2182    StringLiteral *SE = cast<StringLiteral>(E);
2183    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2184                                                        SE->getByteLength())));
2185  }
2186
2187  // If name lookup finds a previous declaration that is not in the
2188  // same scope as the new declaration, this may still be an
2189  // acceptable redeclaration.
2190  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2191      !(NewVD->hasLinkage() &&
2192        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2193    PrevDecl = 0;
2194
2195  // Merge the decl with the existing one if appropriate.
2196  if (PrevDecl) {
2197    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2198      // The user tried to define a non-static data member
2199      // out-of-line (C++ [dcl.meaning]p1).
2200      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2201        << D.getCXXScopeSpec().getRange();
2202      PrevDecl = 0;
2203      NewVD->setInvalidDecl();
2204    }
2205  } else if (D.getCXXScopeSpec().isSet()) {
2206    // No previous declaration in the qualifying scope.
2207    NestedNameSpecifier *NNS =
2208      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2209    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2210                          D.getCXXScopeSpec().getRange());
2211    NewVD->setInvalidDecl();
2212  }
2213
2214  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2215
2216  // attributes declared post-definition are currently ignored
2217  if (PrevDecl) {
2218    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2219    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2220      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2221      Diag(Def->getLocation(), diag::note_previous_definition);
2222    }
2223  }
2224
2225  // If this is a locally-scoped extern C variable, update the map of
2226  // such variables.
2227  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2228      !NewVD->isInvalidDecl())
2229    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2230
2231  return NewVD;
2232}
2233
2234/// \brief Perform semantic checking on a newly-created variable
2235/// declaration.
2236///
2237/// This routine performs all of the type-checking required for a
2238/// variable declaration once it has been built. It is used both to
2239/// check variables after they have been parsed and their declarators
2240/// have been translated into a declaration, and to check variables
2241/// that have been instantiated from a template.
2242///
2243/// Sets NewVD->isInvalidDecl() if an error was encountered.
2244void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2245                                    bool &Redeclaration) {
2246  // If the decl is already known invalid, don't check it.
2247  if (NewVD->isInvalidDecl())
2248    return;
2249
2250  QualType T = NewVD->getType();
2251
2252  if (T->isObjCInterfaceType()) {
2253    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2254    return NewVD->setInvalidDecl();
2255  }
2256
2257  // The variable can not have an abstract class type.
2258  if (RequireNonAbstractType(NewVD->getLocation(), T,
2259                             diag::err_abstract_type_in_decl,
2260                             AbstractVariableType))
2261    return NewVD->setInvalidDecl();
2262
2263  // Emit an error if an address space was applied to decl with local storage.
2264  // This includes arrays of objects with address space qualifiers, but not
2265  // automatic variables that point to other address spaces.
2266  // ISO/IEC TR 18037 S5.1.2
2267  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2268    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2269    return NewVD->setInvalidDecl();
2270  }
2271
2272  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2273      && !NewVD->hasAttr<BlocksAttr>())
2274    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2275
2276  bool isVM = T->isVariablyModifiedType();
2277  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2278      NewVD->hasAttr<BlocksAttr>())
2279    CurFunctionNeedsScopeChecking = true;
2280
2281  if ((isVM && NewVD->hasLinkage()) ||
2282      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2283    bool SizeIsNegative;
2284    QualType FixedTy =
2285        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2286
2287    if (FixedTy.isNull() && T->isVariableArrayType()) {
2288      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2289      // FIXME: This won't give the correct result for
2290      // int a[10][n];
2291      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2292
2293      if (NewVD->isFileVarDecl())
2294        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2295        << SizeRange;
2296      else if (NewVD->getStorageClass() == VarDecl::Static)
2297        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2298        << SizeRange;
2299      else
2300        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2301        << SizeRange;
2302      return NewVD->setInvalidDecl();
2303    }
2304
2305    if (FixedTy.isNull()) {
2306      if (NewVD->isFileVarDecl())
2307        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2308      else
2309        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2310      return NewVD->setInvalidDecl();
2311    }
2312
2313    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2314    NewVD->setType(FixedTy);
2315  }
2316
2317  if (!PrevDecl && NewVD->isExternC()) {
2318    // Since we did not find anything by this name and we're declaring
2319    // an extern "C" variable, look for a non-visible extern "C"
2320    // declaration with the same name.
2321    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2322      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2323    if (Pos != LocallyScopedExternalDecls.end())
2324      PrevDecl = Pos->second;
2325  }
2326
2327  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2328    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2329      << T;
2330    return NewVD->setInvalidDecl();
2331  }
2332
2333  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2334    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2335    return NewVD->setInvalidDecl();
2336  }
2337
2338  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2339    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2340    return NewVD->setInvalidDecl();
2341  }
2342
2343  if (PrevDecl) {
2344    Redeclaration = true;
2345    MergeVarDecl(NewVD, PrevDecl);
2346  }
2347}
2348
2349static bool isUsingDecl(Decl *D) {
2350  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2351}
2352
2353NamedDecl*
2354Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2355                              QualType R, DeclaratorInfo *DInfo,
2356                              NamedDecl* PrevDecl,
2357                              MultiTemplateParamsArg TemplateParamLists,
2358                              bool IsFunctionDefinition, bool &Redeclaration) {
2359  assert(R.getTypePtr()->isFunctionType());
2360
2361  DeclarationName Name = GetNameForDeclarator(D);
2362  FunctionDecl::StorageClass SC = FunctionDecl::None;
2363  switch (D.getDeclSpec().getStorageClassSpec()) {
2364  default: assert(0 && "Unknown storage class!");
2365  case DeclSpec::SCS_auto:
2366  case DeclSpec::SCS_register:
2367  case DeclSpec::SCS_mutable:
2368    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2369         diag::err_typecheck_sclass_func);
2370    D.setInvalidType();
2371    break;
2372  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2373  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2374  case DeclSpec::SCS_static: {
2375    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2376      // C99 6.7.1p5:
2377      //   The declaration of an identifier for a function that has
2378      //   block scope shall have no explicit storage-class specifier
2379      //   other than extern
2380      // See also (C++ [dcl.stc]p4).
2381      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2382           diag::err_static_block_func);
2383      SC = FunctionDecl::None;
2384    } else
2385      SC = FunctionDecl::Static;
2386    break;
2387  }
2388  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2389  }
2390
2391  if (D.getDeclSpec().isThreadSpecified())
2392    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2393
2394  bool isFriend = D.getDeclSpec().isFriendSpecified();
2395  bool isInline = D.getDeclSpec().isInlineSpecified();
2396  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2397  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2398
2399  // Check that the return type is not an abstract class type.
2400  // For record types, this is done by the AbstractClassUsageDiagnoser once
2401  // the class has been completely parsed.
2402  if (!DC->isRecord() &&
2403      RequireNonAbstractType(D.getIdentifierLoc(),
2404                             R->getAsFunctionType()->getResultType(),
2405                             diag::err_abstract_type_in_decl,
2406                             AbstractReturnType))
2407    D.setInvalidType();
2408
2409  // Do not allow returning a objc interface by-value.
2410  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2411    Diag(D.getIdentifierLoc(),
2412         diag::err_object_cannot_be_passed_returned_by_value) << 0
2413      << R->getAsFunctionType()->getResultType();
2414    D.setInvalidType();
2415  }
2416
2417  bool isVirtualOkay = false;
2418  FunctionDecl *NewFD;
2419
2420  if (isFriend) {
2421    // DC is the namespace in which the function is being declared.
2422    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2423           "friend function being created in a non-namespace context");
2424
2425    // C++ [class.friend]p5
2426    //   A function can be defined in a friend declaration of a
2427    //   class . . . . Such a function is implicitly inline.
2428    isInline |= IsFunctionDefinition;
2429  }
2430
2431  if (D.getKind() == Declarator::DK_Constructor) {
2432    // This is a C++ constructor declaration.
2433    assert(DC->isRecord() &&
2434           "Constructors can only be declared in a member context");
2435
2436    R = CheckConstructorDeclarator(D, R, SC);
2437
2438    // Create the new declaration
2439    NewFD = CXXConstructorDecl::Create(Context,
2440                                       cast<CXXRecordDecl>(DC),
2441                                       D.getIdentifierLoc(), Name, R, DInfo,
2442                                       isExplicit, isInline,
2443                                       /*isImplicitlyDeclared=*/false);
2444  } else if (D.getKind() == Declarator::DK_Destructor) {
2445    // This is a C++ destructor declaration.
2446    if (DC->isRecord()) {
2447      R = CheckDestructorDeclarator(D, SC);
2448
2449      NewFD = CXXDestructorDecl::Create(Context,
2450                                        cast<CXXRecordDecl>(DC),
2451                                        D.getIdentifierLoc(), Name, R,
2452                                        isInline,
2453                                        /*isImplicitlyDeclared=*/false);
2454
2455      isVirtualOkay = true;
2456    } else {
2457      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2458
2459      // Create a FunctionDecl to satisfy the function definition parsing
2460      // code path.
2461      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2462                                   Name, R, DInfo, SC, isInline,
2463                                   /*hasPrototype=*/true);
2464      D.setInvalidType();
2465    }
2466  } else if (D.getKind() == Declarator::DK_Conversion) {
2467    if (!DC->isRecord()) {
2468      Diag(D.getIdentifierLoc(),
2469           diag::err_conv_function_not_member);
2470      return 0;
2471    }
2472
2473    CheckConversionDeclarator(D, R, SC);
2474    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2475                                      D.getIdentifierLoc(), Name, R, DInfo,
2476                                      isInline, isExplicit);
2477
2478    isVirtualOkay = true;
2479  } else if (DC->isRecord()) {
2480    // If the of the function is the same as the name of the record, then this
2481    // must be an invalid constructor that has a return type.
2482    // (The parser checks for a return type and makes the declarator a
2483    // constructor if it has no return type).
2484    // must have an invalid constructor that has a return type
2485    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2486      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2487        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2488        << SourceRange(D.getIdentifierLoc());
2489      return 0;
2490    }
2491
2492    // This is a C++ method declaration.
2493    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2494                                  D.getIdentifierLoc(), Name, R, DInfo,
2495                                  (SC == FunctionDecl::Static), isInline);
2496
2497    isVirtualOkay = (SC != FunctionDecl::Static);
2498  } else {
2499    // Determine whether the function was written with a
2500    // prototype. This true when:
2501    //   - we're in C++ (where every function has a prototype),
2502    //   - there is a prototype in the declarator, or
2503    //   - the type R of the function is some kind of typedef or other reference
2504    //     to a type name (which eventually refers to a function type).
2505    bool HasPrototype =
2506       getLangOptions().CPlusPlus ||
2507       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2508       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2509
2510    NewFD = FunctionDecl::Create(Context, DC,
2511                                 D.getIdentifierLoc(),
2512                                 Name, R, DInfo, SC, isInline, HasPrototype);
2513  }
2514
2515  if (D.isInvalidType())
2516    NewFD->setInvalidDecl();
2517
2518  // Set the lexical context. If the declarator has a C++
2519  // scope specifier, or is the object of a friend declaration, the
2520  // lexical context will be different from the semantic context.
2521  NewFD->setLexicalDeclContext(CurContext);
2522
2523  if (isFriend)
2524    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2525
2526  // Match up the template parameter lists with the scope specifier, then
2527  // determine whether we have a template or a template specialization.
2528  FunctionTemplateDecl *FunctionTemplate = 0;
2529  if (TemplateParameterList *TemplateParams
2530        = MatchTemplateParametersToScopeSpecifier(
2531                                  D.getDeclSpec().getSourceRange().getBegin(),
2532                                  D.getCXXScopeSpec(),
2533                           (TemplateParameterList**)TemplateParamLists.get(),
2534                                                  TemplateParamLists.size())) {
2535    if (TemplateParams->size() > 0) {
2536      // This is a function template
2537
2538      // Check that we can declare a template here.
2539      if (CheckTemplateDeclScope(S, TemplateParams))
2540        return 0;
2541
2542      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2543                                                      NewFD->getLocation(),
2544                                                      Name, TemplateParams,
2545                                                      NewFD);
2546      FunctionTemplate->setLexicalDeclContext(CurContext);
2547      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2548    } else {
2549      // FIXME: Handle function template specializations
2550    }
2551
2552    // FIXME: Free this memory properly.
2553    TemplateParamLists.release();
2554  }
2555
2556  // C++ [dcl.fct.spec]p5:
2557  //   The virtual specifier shall only be used in declarations of
2558  //   nonstatic class member functions that appear within a
2559  //   member-specification of a class declaration; see 10.3.
2560  //
2561  if (isVirtual && !NewFD->isInvalidDecl()) {
2562    if (!isVirtualOkay) {
2563       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2564           diag::err_virtual_non_function);
2565    } else if (!CurContext->isRecord()) {
2566      // 'virtual' was specified outside of the class.
2567      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2568        << CodeModificationHint::CreateRemoval(
2569                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2570    } else {
2571      // Okay: Add virtual to the method.
2572      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2573      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2574      CurClass->setAggregate(false);
2575      CurClass->setPOD(false);
2576      CurClass->setEmpty(false);
2577      CurClass->setPolymorphic(true);
2578      CurClass->setHasTrivialConstructor(false);
2579      CurClass->setHasTrivialCopyConstructor(false);
2580      CurClass->setHasTrivialCopyAssignment(false);
2581    }
2582  }
2583
2584  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2585    // Look for virtual methods in base classes that this method might override.
2586
2587    BasePaths Paths;
2588    if (LookupInBases(cast<CXXRecordDecl>(DC),
2589                      MemberLookupCriteria(NewMD), Paths)) {
2590      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2591           E = Paths.found_decls_end(); I != E; ++I) {
2592        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2593          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2594              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2595            NewMD->addOverriddenMethod(OldMD);
2596        }
2597      }
2598    }
2599  }
2600
2601  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2602      !CurContext->isRecord()) {
2603    // C++ [class.static]p1:
2604    //   A data or function member of a class may be declared static
2605    //   in a class definition, in which case it is a static member of
2606    //   the class.
2607
2608    // Complain about the 'static' specifier if it's on an out-of-line
2609    // member function definition.
2610    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2611         diag::err_static_out_of_line)
2612      << CodeModificationHint::CreateRemoval(
2613                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2614  }
2615
2616  // Handle GNU asm-label extension (encoded as an attribute).
2617  if (Expr *E = (Expr*) D.getAsmLabel()) {
2618    // The parser guarantees this is a string.
2619    StringLiteral *SE = cast<StringLiteral>(E);
2620    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2621                                                        SE->getByteLength())));
2622  }
2623
2624  // Copy the parameter declarations from the declarator D to the function
2625  // declaration NewFD, if they are available.  First scavenge them into Params.
2626  llvm::SmallVector<ParmVarDecl*, 16> Params;
2627  if (D.getNumTypeObjects() > 0) {
2628    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2629
2630    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2631    // function that takes no arguments, not a function that takes a
2632    // single void argument.
2633    // We let through "const void" here because Sema::GetTypeForDeclarator
2634    // already checks for that case.
2635    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2636        FTI.ArgInfo[0].Param &&
2637        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2638      // Empty arg list, don't push any params.
2639      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2640
2641      // In C++, the empty parameter-type-list must be spelled "void"; a
2642      // typedef of void is not permitted.
2643      if (getLangOptions().CPlusPlus &&
2644          Param->getType().getUnqualifiedType() != Context.VoidTy)
2645        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2646      // FIXME: Leaks decl?
2647    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2648      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2649        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2650        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2651        Param->setDeclContext(NewFD);
2652        Params.push_back(Param);
2653      }
2654    }
2655
2656  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2657    // When we're declaring a function with a typedef, typeof, etc as in the
2658    // following example, we'll need to synthesize (unnamed)
2659    // parameters for use in the declaration.
2660    //
2661    // @code
2662    // typedef void fn(int);
2663    // fn f;
2664    // @endcode
2665
2666    // Synthesize a parameter for each argument type.
2667    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2668         AE = FT->arg_type_end(); AI != AE; ++AI) {
2669      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2670                                               SourceLocation(), 0,
2671                                               *AI, /*DInfo=*/0,
2672                                               VarDecl::None, 0);
2673      Param->setImplicit();
2674      Params.push_back(Param);
2675    }
2676  } else {
2677    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2678           "Should not need args for typedef of non-prototype fn");
2679  }
2680  // Finally, we know we have the right number of parameters, install them.
2681  NewFD->setParams(Context, Params.data(), Params.size());
2682
2683  // If name lookup finds a previous declaration that is not in the
2684  // same scope as the new declaration, this may still be an
2685  // acceptable redeclaration.
2686  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2687      !(NewFD->hasLinkage() &&
2688        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2689    PrevDecl = 0;
2690
2691  // Perform semantic checking on the function declaration.
2692  bool OverloadableAttrRequired = false; // FIXME: HACK!
2693  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2694                           /*FIXME:*/OverloadableAttrRequired);
2695
2696  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2697    // An out-of-line member function declaration must also be a
2698    // definition (C++ [dcl.meaning]p1).
2699    if (!IsFunctionDefinition && !isFriend) {
2700      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2701        << D.getCXXScopeSpec().getRange();
2702      NewFD->setInvalidDecl();
2703    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2704      // The user tried to provide an out-of-line definition for a
2705      // function that is a member of a class or namespace, but there
2706      // was no such member function declared (C++ [class.mfct]p2,
2707      // C++ [namespace.memdef]p2). For example:
2708      //
2709      // class X {
2710      //   void f() const;
2711      // };
2712      //
2713      // void X::f() { } // ill-formed
2714      //
2715      // Complain about this problem, and attempt to suggest close
2716      // matches (e.g., those that differ only in cv-qualifiers and
2717      // whether the parameter types are references).
2718      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2719        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2720      NewFD->setInvalidDecl();
2721
2722      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2723                                              true);
2724      assert(!Prev.isAmbiguous() &&
2725             "Cannot have an ambiguity in previous-declaration lookup");
2726      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2727           Func != FuncEnd; ++Func) {
2728        if (isa<FunctionDecl>(*Func) &&
2729            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2730          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2731      }
2732
2733      PrevDecl = 0;
2734    }
2735  }
2736
2737  // Handle attributes. We need to have merged decls when handling attributes
2738  // (for example to check for conflicts, etc).
2739  // FIXME: This needs to happen before we merge declarations. Then,
2740  // let attribute merging cope with attribute conflicts.
2741  ProcessDeclAttributes(S, NewFD, D);
2742
2743  // attributes declared post-definition are currently ignored
2744  if (Redeclaration && PrevDecl) {
2745    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2746    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2747      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2748      Diag(Def->getLocation(), diag::note_previous_definition);
2749    }
2750  }
2751
2752  AddKnownFunctionAttributes(NewFD);
2753
2754  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2755    // If a function name is overloadable in C, then every function
2756    // with that name must be marked "overloadable".
2757    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2758      << Redeclaration << NewFD;
2759    if (PrevDecl)
2760      Diag(PrevDecl->getLocation(),
2761           diag::note_attribute_overloadable_prev_overload);
2762    NewFD->addAttr(::new (Context) OverloadableAttr());
2763  }
2764
2765  // If this is a locally-scoped extern C function, update the
2766  // map of such names.
2767  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2768      && !NewFD->isInvalidDecl())
2769    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2770
2771  // Set this FunctionDecl's range up to the right paren.
2772  NewFD->setLocEnd(D.getSourceRange().getEnd());
2773
2774  if (FunctionTemplate && NewFD->isInvalidDecl())
2775    FunctionTemplate->setInvalidDecl();
2776
2777  if (FunctionTemplate)
2778    return FunctionTemplate;
2779
2780  return NewFD;
2781}
2782
2783/// \brief Perform semantic checking of a new function declaration.
2784///
2785/// Performs semantic analysis of the new function declaration
2786/// NewFD. This routine performs all semantic checking that does not
2787/// require the actual declarator involved in the declaration, and is
2788/// used both for the declaration of functions as they are parsed
2789/// (called via ActOnDeclarator) and for the declaration of functions
2790/// that have been instantiated via C++ template instantiation (called
2791/// via InstantiateDecl).
2792///
2793/// This sets NewFD->isInvalidDecl() to true if there was an error.
2794void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2795                                    bool &Redeclaration,
2796                                    bool &OverloadableAttrRequired) {
2797  // If NewFD is already known erroneous, don't do any of this checking.
2798  if (NewFD->isInvalidDecl())
2799    return;
2800
2801  if (NewFD->getResultType()->isVariablyModifiedType()) {
2802    // Functions returning a variably modified type violate C99 6.7.5.2p2
2803    // because all functions have linkage.
2804    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2805    return NewFD->setInvalidDecl();
2806  }
2807
2808  if (NewFD->isMain())
2809    CheckMain(NewFD);
2810
2811  // Check for a previous declaration of this name.
2812  if (!PrevDecl && NewFD->isExternC()) {
2813    // Since we did not find anything by this name and we're declaring
2814    // an extern "C" function, look for a non-visible extern "C"
2815    // declaration with the same name.
2816    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2817      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2818    if (Pos != LocallyScopedExternalDecls.end())
2819      PrevDecl = Pos->second;
2820  }
2821
2822  // Merge or overload the declaration with an existing declaration of
2823  // the same name, if appropriate.
2824  if (PrevDecl) {
2825    // Determine whether NewFD is an overload of PrevDecl or
2826    // a declaration that requires merging. If it's an overload,
2827    // there's no more work to do here; we'll just add the new
2828    // function to the scope.
2829    OverloadedFunctionDecl::function_iterator MatchedDecl;
2830
2831    if (!getLangOptions().CPlusPlus &&
2832        AllowOverloadingOfFunction(PrevDecl, Context)) {
2833      OverloadableAttrRequired = true;
2834
2835      // Functions marked "overloadable" must have a prototype (that
2836      // we can't get through declaration merging).
2837      if (!NewFD->getType()->getAsFunctionProtoType()) {
2838        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2839          << NewFD;
2840        Redeclaration = true;
2841
2842        // Turn this into a variadic function with no parameters.
2843        QualType R = Context.getFunctionType(
2844                       NewFD->getType()->getAsFunctionType()->getResultType(),
2845                       0, 0, true, 0);
2846        NewFD->setType(R);
2847        return NewFD->setInvalidDecl();
2848      }
2849    }
2850
2851    if (PrevDecl &&
2852        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2853         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2854      Redeclaration = true;
2855      Decl *OldDecl = PrevDecl;
2856
2857      // If PrevDecl was an overloaded function, extract the
2858      // FunctionDecl that matched.
2859      if (isa<OverloadedFunctionDecl>(PrevDecl))
2860        OldDecl = *MatchedDecl;
2861
2862      // NewFD and OldDecl represent declarations that need to be
2863      // merged.
2864      if (MergeFunctionDecl(NewFD, OldDecl))
2865        return NewFD->setInvalidDecl();
2866
2867      if (FunctionTemplateDecl *OldTemplateDecl
2868            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2869        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2870      else {
2871        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2872          NewFD->setAccess(OldDecl->getAccess());
2873        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2874      }
2875    }
2876  }
2877
2878  // Semantic checking for this function declaration (in isolation).
2879  if (getLangOptions().CPlusPlus) {
2880    // C++-specific checks.
2881    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2882      CheckConstructor(Constructor);
2883    } else if (isa<CXXDestructorDecl>(NewFD)) {
2884      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2885      QualType ClassType = Context.getTypeDeclType(Record);
2886      if (!ClassType->isDependentType()) {
2887        DeclarationName Name
2888          = Context.DeclarationNames.getCXXDestructorName(
2889                                        Context.getCanonicalType(ClassType));
2890        if (NewFD->getDeclName() != Name) {
2891          Diag(NewFD->getLocation(), diag::err_destructor_name);
2892          return NewFD->setInvalidDecl();
2893        }
2894      }
2895      Record->setUserDeclaredDestructor(true);
2896      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2897      // user-defined destructor.
2898      Record->setPOD(false);
2899
2900      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2901      // declared destructor.
2902      // FIXME: C++0x: don't do this for "= default" destructors
2903      Record->setHasTrivialDestructor(false);
2904    } else if (CXXConversionDecl *Conversion
2905               = dyn_cast<CXXConversionDecl>(NewFD))
2906      ActOnConversionDeclarator(Conversion);
2907
2908    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2909    if (NewFD->isOverloadedOperator() &&
2910        CheckOverloadedOperatorDeclaration(NewFD))
2911      return NewFD->setInvalidDecl();
2912
2913    // In C++, check default arguments now that we have merged decls. Unless
2914    // the lexical context is the class, because in this case this is done
2915    // during delayed parsing anyway.
2916    if (!CurContext->isRecord())
2917      CheckCXXDefaultArguments(NewFD);
2918  }
2919}
2920
2921void Sema::CheckMain(FunctionDecl* FD) {
2922  // C++ [basic.start.main]p3:  A program that declares main to be inline
2923  //   or static is ill-formed.
2924  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2925  //   shall not appear in a declaration of main.
2926  // static main is not an error under C99, but we should warn about it.
2927  bool isInline = FD->isInline();
2928  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2929  if (isInline || isStatic) {
2930    unsigned diagID = diag::warn_unusual_main_decl;
2931    if (isInline || getLangOptions().CPlusPlus)
2932      diagID = diag::err_unusual_main_decl;
2933
2934    int which = isStatic + (isInline << 1) - 1;
2935    Diag(FD->getLocation(), diagID) << which;
2936  }
2937
2938  QualType T = FD->getType();
2939  assert(T->isFunctionType() && "function decl is not of function type");
2940  const FunctionType* FT = T->getAsFunctionType();
2941
2942  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2943    // TODO: add a replacement fixit to turn the return type into 'int'.
2944    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2945    FD->setInvalidDecl(true);
2946  }
2947
2948  // Treat protoless main() as nullary.
2949  if (isa<FunctionNoProtoType>(FT)) return;
2950
2951  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2952  unsigned nparams = FTP->getNumArgs();
2953  assert(FD->getNumParams() == nparams);
2954
2955  if (nparams > 3) {
2956    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2957    FD->setInvalidDecl(true);
2958    nparams = 3;
2959  }
2960
2961  // FIXME: a lot of the following diagnostics would be improved
2962  // if we had some location information about types.
2963
2964  QualType CharPP =
2965    Context.getPointerType(Context.getPointerType(Context.CharTy));
2966  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2967
2968  for (unsigned i = 0; i < nparams; ++i) {
2969    QualType AT = FTP->getArgType(i);
2970
2971    bool mismatch = true;
2972
2973    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2974      mismatch = false;
2975    else if (Expected[i] == CharPP) {
2976      // As an extension, the following forms are okay:
2977      //   char const **
2978      //   char const * const *
2979      //   char * const *
2980
2981      QualifierSet qs;
2982      const PointerType* PT;
2983      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2984          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2985          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2986        qs.removeConst();
2987        mismatch = !qs.empty();
2988      }
2989    }
2990
2991    if (mismatch) {
2992      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2993      // TODO: suggest replacing given type with expected type
2994      FD->setInvalidDecl(true);
2995    }
2996  }
2997
2998  if (nparams == 1 && !FD->isInvalidDecl()) {
2999    Diag(FD->getLocation(), diag::warn_main_one_arg);
3000  }
3001}
3002
3003bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3004  // FIXME: Need strict checking.  In C89, we need to check for
3005  // any assignment, increment, decrement, function-calls, or
3006  // commas outside of a sizeof.  In C99, it's the same list,
3007  // except that the aforementioned are allowed in unevaluated
3008  // expressions.  Everything else falls under the
3009  // "may accept other forms of constant expressions" exception.
3010  // (We never end up here for C++, so the constant expression
3011  // rules there don't matter.)
3012  if (Init->isConstantInitializer(Context))
3013    return false;
3014  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3015    << Init->getSourceRange();
3016  return true;
3017}
3018
3019void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3020  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3021}
3022
3023/// AddInitializerToDecl - Adds the initializer Init to the
3024/// declaration dcl. If DirectInit is true, this is C++ direct
3025/// initialization rather than copy initialization.
3026void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3027  Decl *RealDecl = dcl.getAs<Decl>();
3028  // If there is no declaration, there was an error parsing it.  Just ignore
3029  // the initializer.
3030  if (RealDecl == 0)
3031    return;
3032
3033  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3034    // With declarators parsed the way they are, the parser cannot
3035    // distinguish between a normal initializer and a pure-specifier.
3036    // Thus this grotesque test.
3037    IntegerLiteral *IL;
3038    Expr *Init = static_cast<Expr *>(init.get());
3039    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3040        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3041      if (Method->isVirtualAsWritten()) {
3042        Method->setPure();
3043
3044        // A class is abstract if at least one function is pure virtual.
3045        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3046      } else if (!Method->isInvalidDecl()) {
3047        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3048          << Method->getDeclName() << Init->getSourceRange();
3049        Method->setInvalidDecl();
3050      }
3051    } else {
3052      Diag(Method->getLocation(), diag::err_member_function_initialization)
3053        << Method->getDeclName() << Init->getSourceRange();
3054      Method->setInvalidDecl();
3055    }
3056    return;
3057  }
3058
3059  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3060  if (!VDecl) {
3061    if (getLangOptions().CPlusPlus &&
3062        RealDecl->getLexicalDeclContext()->isRecord() &&
3063        isa<NamedDecl>(RealDecl))
3064      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3065        << cast<NamedDecl>(RealDecl)->getDeclName();
3066    else
3067      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3068    RealDecl->setInvalidDecl();
3069    return;
3070  }
3071
3072  if (!VDecl->getType()->isArrayType() &&
3073      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3074                          diag::err_typecheck_decl_incomplete_type)) {
3075    RealDecl->setInvalidDecl();
3076    return;
3077  }
3078
3079  const VarDecl *Def = 0;
3080  if (VDecl->getDefinition(Def)) {
3081    Diag(VDecl->getLocation(), diag::err_redefinition)
3082      << VDecl->getDeclName();
3083    Diag(Def->getLocation(), diag::note_previous_definition);
3084    VDecl->setInvalidDecl();
3085    return;
3086  }
3087
3088  // Take ownership of the expression, now that we're sure we have somewhere
3089  // to put it.
3090  Expr *Init = init.takeAs<Expr>();
3091  assert(Init && "missing initializer");
3092
3093  // Get the decls type and save a reference for later, since
3094  // CheckInitializerTypes may change it.
3095  QualType DclT = VDecl->getType(), SavT = DclT;
3096  if (VDecl->isBlockVarDecl()) {
3097    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3098      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3099      VDecl->setInvalidDecl();
3100    } else if (!VDecl->isInvalidDecl()) {
3101      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3102                                VDecl->getDeclName(), DirectInit))
3103        VDecl->setInvalidDecl();
3104
3105      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3106      // Don't check invalid declarations to avoid emitting useless diagnostics.
3107      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3108        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3109          CheckForConstantInitializer(Init, DclT);
3110      }
3111    }
3112  } else if (VDecl->isStaticDataMember() &&
3113             VDecl->getLexicalDeclContext()->isRecord()) {
3114    // This is an in-class initialization for a static data member, e.g.,
3115    //
3116    // struct S {
3117    //   static const int value = 17;
3118    // };
3119
3120    // Attach the initializer
3121    VDecl->setInit(Context, Init);
3122
3123    // C++ [class.mem]p4:
3124    //   A member-declarator can contain a constant-initializer only
3125    //   if it declares a static member (9.4) of const integral or
3126    //   const enumeration type, see 9.4.2.
3127    QualType T = VDecl->getType();
3128    if (!T->isDependentType() &&
3129        (!Context.getCanonicalType(T).isConstQualified() ||
3130         !T->isIntegralType())) {
3131      Diag(VDecl->getLocation(), diag::err_member_initialization)
3132        << VDecl->getDeclName() << Init->getSourceRange();
3133      VDecl->setInvalidDecl();
3134    } else {
3135      // C++ [class.static.data]p4:
3136      //   If a static data member is of const integral or const
3137      //   enumeration type, its declaration in the class definition
3138      //   can specify a constant-initializer which shall be an
3139      //   integral constant expression (5.19).
3140      if (!Init->isTypeDependent() &&
3141          !Init->getType()->isIntegralType()) {
3142        // We have a non-dependent, non-integral or enumeration type.
3143        Diag(Init->getSourceRange().getBegin(),
3144             diag::err_in_class_initializer_non_integral_type)
3145          << Init->getType() << Init->getSourceRange();
3146        VDecl->setInvalidDecl();
3147      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3148        // Check whether the expression is a constant expression.
3149        llvm::APSInt Value;
3150        SourceLocation Loc;
3151        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3152          Diag(Loc, diag::err_in_class_initializer_non_constant)
3153            << Init->getSourceRange();
3154          VDecl->setInvalidDecl();
3155        } else if (!VDecl->getType()->isDependentType())
3156          ImpCastExprToType(Init, VDecl->getType());
3157      }
3158    }
3159  } else if (VDecl->isFileVarDecl()) {
3160    if (VDecl->getStorageClass() == VarDecl::Extern)
3161      Diag(VDecl->getLocation(), diag::warn_extern_init);
3162    if (!VDecl->isInvalidDecl())
3163      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3164                                VDecl->getDeclName(), DirectInit))
3165        VDecl->setInvalidDecl();
3166
3167    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3168    // Don't check invalid declarations to avoid emitting useless diagnostics.
3169    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3170      // C99 6.7.8p4. All file scoped initializers need to be constant.
3171      CheckForConstantInitializer(Init, DclT);
3172    }
3173  }
3174  // If the type changed, it means we had an incomplete type that was
3175  // completed by the initializer. For example:
3176  //   int ary[] = { 1, 3, 5 };
3177  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3178  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3179    VDecl->setType(DclT);
3180    Init->setType(DclT);
3181  }
3182
3183  Init = MaybeCreateCXXExprWithTemporaries(Init,
3184                                           /*ShouldDestroyTemporaries=*/true);
3185  // Attach the initializer to the decl.
3186  VDecl->setInit(Context, Init);
3187
3188  // If the previous declaration of VDecl was a tentative definition,
3189  // remove it from the set of tentative definitions.
3190  if (VDecl->getPreviousDeclaration() &&
3191      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3192    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3193    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3194  }
3195
3196  return;
3197}
3198
3199void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3200                                  bool TypeContainsUndeducedAuto) {
3201  Decl *RealDecl = dcl.getAs<Decl>();
3202
3203  // If there is no declaration, there was an error parsing it. Just ignore it.
3204  if (RealDecl == 0)
3205    return;
3206
3207  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3208    QualType Type = Var->getType();
3209
3210    // Record tentative definitions.
3211    if (Var->isTentativeDefinition(Context)) {
3212      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3213        InsertPair =
3214           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3215
3216      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3217      // want the second one in the map.
3218      InsertPair.first->second = Var;
3219
3220      // However, for the list, we don't care about the order, just make sure
3221      // that there are no dupes for a given declaration name.
3222      if (InsertPair.second)
3223        TentativeDefinitionList.push_back(Var->getDeclName());
3224    }
3225
3226    // C++ [dcl.init.ref]p3:
3227    //   The initializer can be omitted for a reference only in a
3228    //   parameter declaration (8.3.5), in the declaration of a
3229    //   function return type, in the declaration of a class member
3230    //   within its class declaration (9.2), and where the extern
3231    //   specifier is explicitly used.
3232    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3233      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3234        << Var->getDeclName()
3235        << SourceRange(Var->getLocation(), Var->getLocation());
3236      Var->setInvalidDecl();
3237      return;
3238    }
3239
3240    // C++0x [dcl.spec.auto]p3
3241    if (TypeContainsUndeducedAuto) {
3242      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3243        << Var->getDeclName() << Type;
3244      Var->setInvalidDecl();
3245      return;
3246    }
3247
3248    // C++ [dcl.init]p9:
3249    //   If no initializer is specified for an object, and the object
3250    //   is of (possibly cv-qualified) non-POD class type (or array
3251    //   thereof), the object shall be default-initialized; if the
3252    //   object is of const-qualified type, the underlying class type
3253    //   shall have a user-declared default constructor.
3254    //
3255    // FIXME: Diagnose the "user-declared default constructor" bit.
3256    if (getLangOptions().CPlusPlus) {
3257      QualType InitType = Type;
3258      if (const ArrayType *Array = Context.getAsArrayType(Type))
3259        InitType = Array->getElementType();
3260      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3261          InitType->isRecordType() && !InitType->isDependentType()) {
3262        if (!RequireCompleteType(Var->getLocation(), InitType,
3263                                 diag::err_invalid_incomplete_type_use)) {
3264          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3265
3266          CXXConstructorDecl *Constructor
3267            = PerformInitializationByConstructor(InitType,
3268                                                 MultiExprArg(*this, 0, 0),
3269                                                 Var->getLocation(),
3270                                               SourceRange(Var->getLocation(),
3271                                                           Var->getLocation()),
3272                                                 Var->getDeclName(),
3273                                                 IK_Default,
3274                                                 ConstructorArgs);
3275
3276          // FIXME: Location info for the variable initialization?
3277          if (!Constructor)
3278            Var->setInvalidDecl();
3279          else {
3280            // FIXME: Cope with initialization of arrays
3281            if (!Constructor->isTrivial() &&
3282                InitializeVarWithConstructor(Var, Constructor, InitType,
3283                                             move_arg(ConstructorArgs)))
3284              Var->setInvalidDecl();
3285
3286            FinalizeVarWithDestructor(Var, InitType);
3287          }
3288        }
3289      }
3290    }
3291
3292#if 0
3293    // FIXME: Temporarily disabled because we are not properly parsing
3294    // linkage specifications on declarations, e.g.,
3295    //
3296    //   extern "C" const CGPoint CGPointerZero;
3297    //
3298    // C++ [dcl.init]p9:
3299    //
3300    //     If no initializer is specified for an object, and the
3301    //     object is of (possibly cv-qualified) non-POD class type (or
3302    //     array thereof), the object shall be default-initialized; if
3303    //     the object is of const-qualified type, the underlying class
3304    //     type shall have a user-declared default
3305    //     constructor. Otherwise, if no initializer is specified for
3306    //     an object, the object and its subobjects, if any, have an
3307    //     indeterminate initial value; if the object or any of its
3308    //     subobjects are of const-qualified type, the program is
3309    //     ill-formed.
3310    //
3311    // This isn't technically an error in C, so we don't diagnose it.
3312    //
3313    // FIXME: Actually perform the POD/user-defined default
3314    // constructor check.
3315    if (getLangOptions().CPlusPlus &&
3316        Context.getCanonicalType(Type).isConstQualified() &&
3317        !Var->hasExternalStorage())
3318      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3319        << Var->getName()
3320        << SourceRange(Var->getLocation(), Var->getLocation());
3321#endif
3322  }
3323}
3324
3325Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3326                                                   DeclPtrTy *Group,
3327                                                   unsigned NumDecls) {
3328  llvm::SmallVector<Decl*, 8> Decls;
3329
3330  if (DS.isTypeSpecOwned())
3331    Decls.push_back((Decl*)DS.getTypeRep());
3332
3333  for (unsigned i = 0; i != NumDecls; ++i)
3334    if (Decl *D = Group[i].getAs<Decl>())
3335      Decls.push_back(D);
3336
3337  // Perform semantic analysis that depends on having fully processed both
3338  // the declarator and initializer.
3339  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3340    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3341    if (!IDecl)
3342      continue;
3343    QualType T = IDecl->getType();
3344
3345    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3346    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3347    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3348      if (!IDecl->isInvalidDecl() &&
3349          RequireCompleteType(IDecl->getLocation(), T,
3350                              diag::err_typecheck_decl_incomplete_type))
3351        IDecl->setInvalidDecl();
3352    }
3353    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3354    // object that has file scope without an initializer, and without a
3355    // storage-class specifier or with the storage-class specifier "static",
3356    // constitutes a tentative definition. Note: A tentative definition with
3357    // external linkage is valid (C99 6.2.2p5).
3358    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3359      if (const IncompleteArrayType *ArrayT
3360          = Context.getAsIncompleteArrayType(T)) {
3361        if (RequireCompleteType(IDecl->getLocation(),
3362                                ArrayT->getElementType(),
3363                                diag::err_illegal_decl_array_incomplete_type))
3364          IDecl->setInvalidDecl();
3365      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3366        // C99 6.9.2p3: If the declaration of an identifier for an object is
3367        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3368        // declared type shall not be an incomplete type.
3369        // NOTE: code such as the following
3370        //     static struct s;
3371        //     struct s { int a; };
3372        // is accepted by gcc. Hence here we issue a warning instead of
3373        // an error and we do not invalidate the static declaration.
3374        // NOTE: to avoid multiple warnings, only check the first declaration.
3375        if (IDecl->getPreviousDeclaration() == 0)
3376          RequireCompleteType(IDecl->getLocation(), T,
3377                              diag::ext_typecheck_decl_incomplete_type);
3378      }
3379    }
3380  }
3381  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3382                                                   Decls.data(), Decls.size()));
3383}
3384
3385
3386/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3387/// to introduce parameters into function prototype scope.
3388Sema::DeclPtrTy
3389Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3390  const DeclSpec &DS = D.getDeclSpec();
3391
3392  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3393  VarDecl::StorageClass StorageClass = VarDecl::None;
3394  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3395    StorageClass = VarDecl::Register;
3396  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3397    Diag(DS.getStorageClassSpecLoc(),
3398         diag::err_invalid_storage_class_in_func_decl);
3399    D.getMutableDeclSpec().ClearStorageClassSpecs();
3400  }
3401
3402  if (D.getDeclSpec().isThreadSpecified())
3403    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3404
3405  DiagnoseFunctionSpecifiers(D);
3406
3407  // Check that there are no default arguments inside the type of this
3408  // parameter (C++ only).
3409  if (getLangOptions().CPlusPlus)
3410    CheckExtraCXXDefaultArguments(D);
3411
3412  DeclaratorInfo *DInfo = 0;
3413  TagDecl *OwnedDecl = 0;
3414  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3415                                               &OwnedDecl);
3416
3417  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3418    // C++ [dcl.fct]p6:
3419    //   Types shall not be defined in return or parameter types.
3420    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3421      << Context.getTypeDeclType(OwnedDecl);
3422  }
3423
3424  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3425  // Can this happen for params?  We already checked that they don't conflict
3426  // among each other.  Here they can only shadow globals, which is ok.
3427  IdentifierInfo *II = D.getIdentifier();
3428  if (II) {
3429    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3430      if (PrevDecl->isTemplateParameter()) {
3431        // Maybe we will complain about the shadowed template parameter.
3432        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3433        // Just pretend that we didn't see the previous declaration.
3434        PrevDecl = 0;
3435      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3436        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3437
3438        // Recover by removing the name
3439        II = 0;
3440        D.SetIdentifier(0, D.getIdentifierLoc());
3441      }
3442    }
3443  }
3444
3445  // Parameters can not be abstract class types.
3446  // For record types, this is done by the AbstractClassUsageDiagnoser once
3447  // the class has been completely parsed.
3448  if (!CurContext->isRecord() &&
3449      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3450                             diag::err_abstract_type_in_decl,
3451                             AbstractParamType))
3452    D.setInvalidType(true);
3453
3454  QualType T = adjustParameterType(parmDeclType);
3455
3456  ParmVarDecl *New;
3457  if (T == parmDeclType) // parameter type did not need adjustment
3458    New = ParmVarDecl::Create(Context, CurContext,
3459                              D.getIdentifierLoc(), II,
3460                              parmDeclType, DInfo, StorageClass,
3461                              0);
3462  else // keep track of both the adjusted and unadjusted types
3463    New = OriginalParmVarDecl::Create(Context, CurContext,
3464                                      D.getIdentifierLoc(), II, T, DInfo,
3465                                      parmDeclType, StorageClass, 0);
3466
3467  if (D.isInvalidType())
3468    New->setInvalidDecl();
3469
3470  // Parameter declarators cannot be interface types. All ObjC objects are
3471  // passed by reference.
3472  if (T->isObjCInterfaceType()) {
3473    Diag(D.getIdentifierLoc(),
3474         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3475    New->setInvalidDecl();
3476  }
3477
3478  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3479  if (D.getCXXScopeSpec().isSet()) {
3480    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3481      << D.getCXXScopeSpec().getRange();
3482    New->setInvalidDecl();
3483  }
3484
3485  // Add the parameter declaration into this scope.
3486  S->AddDecl(DeclPtrTy::make(New));
3487  if (II)
3488    IdResolver.AddDecl(New);
3489
3490  ProcessDeclAttributes(S, New, D);
3491
3492  if (New->hasAttr<BlocksAttr>()) {
3493    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3494  }
3495  return DeclPtrTy::make(New);
3496}
3497
3498void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3499                                           SourceLocation LocAfterDecls) {
3500  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3501         "Not a function declarator!");
3502  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3503
3504  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3505  // for a K&R function.
3506  if (!FTI.hasPrototype) {
3507    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3508      --i;
3509      if (FTI.ArgInfo[i].Param == 0) {
3510        std::string Code = "  int ";
3511        Code += FTI.ArgInfo[i].Ident->getName();
3512        Code += ";\n";
3513        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3514          << FTI.ArgInfo[i].Ident
3515          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3516
3517        // Implicitly declare the argument as type 'int' for lack of a better
3518        // type.
3519        DeclSpec DS;
3520        const char* PrevSpec; // unused
3521        unsigned DiagID; // unused
3522        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3523                           PrevSpec, DiagID);
3524        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3525        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3526        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3527      }
3528    }
3529  }
3530}
3531
3532Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3533                                              Declarator &D) {
3534  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3535  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3536         "Not a function declarator!");
3537  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3538
3539  if (FTI.hasPrototype) {
3540    // FIXME: Diagnose arguments without names in C.
3541  }
3542
3543  Scope *ParentScope = FnBodyScope->getParent();
3544
3545  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3546                                  MultiTemplateParamsArg(*this),
3547                                  /*IsFunctionDefinition=*/true);
3548  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3549}
3550
3551Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3552  if (!D)
3553    return D;
3554  FunctionDecl *FD = 0;
3555
3556  if (FunctionTemplateDecl *FunTmpl
3557        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3558    FD = FunTmpl->getTemplatedDecl();
3559  else
3560    FD = cast<FunctionDecl>(D.getAs<Decl>());
3561
3562  CurFunctionNeedsScopeChecking = false;
3563
3564  // See if this is a redefinition.
3565  const FunctionDecl *Definition;
3566  if (FD->getBody(Definition)) {
3567    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3568    Diag(Definition->getLocation(), diag::note_previous_definition);
3569  }
3570
3571  // Builtin functions cannot be defined.
3572  if (unsigned BuiltinID = FD->getBuiltinID()) {
3573    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3574      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3575      FD->setInvalidDecl();
3576    }
3577  }
3578
3579  // The return type of a function definition must be complete
3580  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3581  QualType ResultType = FD->getResultType();
3582  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3583      !FD->isInvalidDecl() &&
3584      RequireCompleteType(FD->getLocation(), ResultType,
3585                          diag::err_func_def_incomplete_result))
3586    FD->setInvalidDecl();
3587
3588  // GNU warning -Wmissing-prototypes:
3589  //   Warn if a global function is defined without a previous
3590  //   prototype declaration. This warning is issued even if the
3591  //   definition itself provides a prototype. The aim is to detect
3592  //   global functions that fail to be declared in header files.
3593  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3594      !FD->isMain()) {
3595    bool MissingPrototype = true;
3596    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3597         Prev; Prev = Prev->getPreviousDeclaration()) {
3598      // Ignore any declarations that occur in function or method
3599      // scope, because they aren't visible from the header.
3600      if (Prev->getDeclContext()->isFunctionOrMethod())
3601        continue;
3602
3603      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3604      break;
3605    }
3606
3607    if (MissingPrototype)
3608      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3609  }
3610
3611  if (FnBodyScope)
3612    PushDeclContext(FnBodyScope, FD);
3613
3614  // Check the validity of our function parameters
3615  CheckParmsForFunctionDef(FD);
3616
3617  // Introduce our parameters into the function scope
3618  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3619    ParmVarDecl *Param = FD->getParamDecl(p);
3620    Param->setOwningFunction(FD);
3621
3622    // If this has an identifier, add it to the scope stack.
3623    if (Param->getIdentifier() && FnBodyScope)
3624      PushOnScopeChains(Param, FnBodyScope);
3625  }
3626
3627  // Checking attributes of current function definition
3628  // dllimport attribute.
3629  if (FD->getAttr<DLLImportAttr>() &&
3630      (!FD->getAttr<DLLExportAttr>())) {
3631    // dllimport attribute cannot be applied to definition.
3632    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3633      Diag(FD->getLocation(),
3634           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3635        << "dllimport";
3636      FD->setInvalidDecl();
3637      return DeclPtrTy::make(FD);
3638    } else {
3639      // If a symbol previously declared dllimport is later defined, the
3640      // attribute is ignored in subsequent references, and a warning is
3641      // emitted.
3642      Diag(FD->getLocation(),
3643           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3644        << FD->getNameAsCString() << "dllimport";
3645    }
3646  }
3647  return DeclPtrTy::make(FD);
3648}
3649
3650Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3651  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3652}
3653
3654Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3655                                              bool IsInstantiation) {
3656  Decl *dcl = D.getAs<Decl>();
3657  Stmt *Body = BodyArg.takeAs<Stmt>();
3658
3659  FunctionDecl *FD = 0;
3660  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3661  if (FunTmpl)
3662    FD = FunTmpl->getTemplatedDecl();
3663  else
3664    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3665
3666  if (FD) {
3667    FD->setBody(Body);
3668    if (FD->isMain())
3669      // C and C++ allow for main to automagically return 0.
3670      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3671      FD->setHasImplicitReturnZero(true);
3672    else
3673      CheckFallThroughForFunctionDef(FD, Body);
3674
3675    if (!FD->isInvalidDecl())
3676      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3677
3678    // C++ [basic.def.odr]p2:
3679    //   [...] A virtual member function is used if it is not pure. [...]
3680    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3681      if (Method->isVirtual() && !Method->isPure())
3682        MarkDeclarationReferenced(Method->getLocation(), Method);
3683
3684    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3685  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3686    assert(MD == getCurMethodDecl() && "Method parsing confused");
3687    MD->setBody(Body);
3688    CheckFallThroughForFunctionDef(MD, Body);
3689    MD->setEndLoc(Body->getLocEnd());
3690
3691    if (!MD->isInvalidDecl())
3692      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3693  } else {
3694    Body->Destroy(Context);
3695    return DeclPtrTy();
3696  }
3697  if (!IsInstantiation)
3698    PopDeclContext();
3699
3700  // Verify and clean out per-function state.
3701
3702  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3703
3704  // Check goto/label use.
3705  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3706       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3707    LabelStmt *L = I->second;
3708
3709    // Verify that we have no forward references left.  If so, there was a goto
3710    // or address of a label taken, but no definition of it.  Label fwd
3711    // definitions are indicated with a null substmt.
3712    if (L->getSubStmt() != 0)
3713      continue;
3714
3715    // Emit error.
3716    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3717
3718    // At this point, we have gotos that use the bogus label.  Stitch it into
3719    // the function body so that they aren't leaked and that the AST is well
3720    // formed.
3721    if (Body == 0) {
3722      // The whole function wasn't parsed correctly, just delete this.
3723      L->Destroy(Context);
3724      continue;
3725    }
3726
3727    // Otherwise, the body is valid: we want to stitch the label decl into the
3728    // function somewhere so that it is properly owned and so that the goto
3729    // has a valid target.  Do this by creating a new compound stmt with the
3730    // label in it.
3731
3732    // Give the label a sub-statement.
3733    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3734
3735    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3736                               cast<CXXTryStmt>(Body)->getTryBlock() :
3737                               cast<CompoundStmt>(Body);
3738    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3739    Elements.push_back(L);
3740    Compound->setStmts(Context, &Elements[0], Elements.size());
3741  }
3742  FunctionLabelMap.clear();
3743
3744  if (!Body) return D;
3745
3746  // Verify that that gotos and switch cases don't jump into scopes illegally.
3747  if (CurFunctionNeedsScopeChecking)
3748    DiagnoseInvalidJumps(Body);
3749
3750  // C++ constructors that have function-try-blocks can't have return
3751  // statements in the handlers of that block. (C++ [except.handle]p14)
3752  // Verify this.
3753  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3754    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3755
3756  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3757    computeBaseOrMembersToDestroy(Destructor);
3758  return D;
3759}
3760
3761/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3762/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3763NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3764                                          IdentifierInfo &II, Scope *S) {
3765  // Before we produce a declaration for an implicitly defined
3766  // function, see whether there was a locally-scoped declaration of
3767  // this name as a function or variable. If so, use that
3768  // (non-visible) declaration, and complain about it.
3769  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3770    = LocallyScopedExternalDecls.find(&II);
3771  if (Pos != LocallyScopedExternalDecls.end()) {
3772    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3773    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3774    return Pos->second;
3775  }
3776
3777  // Extension in C99.  Legal in C90, but warn about it.
3778  if (getLangOptions().C99)
3779    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3780  else
3781    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3782
3783  // FIXME: handle stuff like:
3784  // void foo() { extern float X(); }
3785  // void bar() { X(); }  <-- implicit decl for X in another scope.
3786
3787  // Set a Declarator for the implicit definition: int foo();
3788  const char *Dummy;
3789  DeclSpec DS;
3790  unsigned DiagID;
3791  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3792  Error = Error; // Silence warning.
3793  assert(!Error && "Error setting up implicit decl!");
3794  Declarator D(DS, Declarator::BlockContext);
3795  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3796                                             0, 0, false, SourceLocation(),
3797                                             false, 0,0,0, Loc, Loc, D),
3798                SourceLocation());
3799  D.SetIdentifier(&II, Loc);
3800
3801  // Insert this function into translation-unit scope.
3802
3803  DeclContext *PrevDC = CurContext;
3804  CurContext = Context.getTranslationUnitDecl();
3805
3806  FunctionDecl *FD =
3807 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3808  FD->setImplicit();
3809
3810  CurContext = PrevDC;
3811
3812  AddKnownFunctionAttributes(FD);
3813
3814  return FD;
3815}
3816
3817/// \brief Adds any function attributes that we know a priori based on
3818/// the declaration of this function.
3819///
3820/// These attributes can apply both to implicitly-declared builtins
3821/// (like __builtin___printf_chk) or to library-declared functions
3822/// like NSLog or printf.
3823void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3824  if (FD->isInvalidDecl())
3825    return;
3826
3827  // If this is a built-in function, map its builtin attributes to
3828  // actual attributes.
3829  if (unsigned BuiltinID = FD->getBuiltinID()) {
3830    // Handle printf-formatting attributes.
3831    unsigned FormatIdx;
3832    bool HasVAListArg;
3833    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3834      if (!FD->getAttr<FormatAttr>())
3835        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3836                                             HasVAListArg ? 0 : FormatIdx + 2));
3837    }
3838
3839    // Mark const if we don't care about errno and that is the only
3840    // thing preventing the function from being const. This allows
3841    // IRgen to use LLVM intrinsics for such functions.
3842    if (!getLangOptions().MathErrno &&
3843        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3844      if (!FD->getAttr<ConstAttr>())
3845        FD->addAttr(::new (Context) ConstAttr());
3846    }
3847
3848    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3849      FD->addAttr(::new (Context) NoReturnAttr());
3850  }
3851
3852  IdentifierInfo *Name = FD->getIdentifier();
3853  if (!Name)
3854    return;
3855  if ((!getLangOptions().CPlusPlus &&
3856       FD->getDeclContext()->isTranslationUnit()) ||
3857      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3858       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3859       LinkageSpecDecl::lang_c)) {
3860    // Okay: this could be a libc/libm/Objective-C function we know
3861    // about.
3862  } else
3863    return;
3864
3865  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3866    // FIXME: NSLog and NSLogv should be target specific
3867    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3868      // FIXME: We known better than our headers.
3869      const_cast<FormatAttr *>(Format)->setType("printf");
3870    } else
3871      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3872                                             Name->isStr("NSLogv") ? 0 : 2));
3873  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3874    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3875    // target-specific builtins, perhaps?
3876    if (!FD->getAttr<FormatAttr>())
3877      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3878                                             Name->isStr("vasprintf") ? 0 : 3));
3879  }
3880}
3881
3882TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3883  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3884  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3885
3886  // Scope manipulation handled by caller.
3887  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3888                                           D.getIdentifierLoc(),
3889                                           D.getIdentifier(),
3890                                           T);
3891
3892  if (const TagType *TT = T->getAs<TagType>()) {
3893    TagDecl *TD = TT->getDecl();
3894
3895    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3896    // keep track of the TypedefDecl.
3897    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3898      TD->setTypedefForAnonDecl(NewTD);
3899  }
3900
3901  if (D.isInvalidType())
3902    NewTD->setInvalidDecl();
3903  return NewTD;
3904}
3905
3906
3907/// \brief Determine whether a tag with a given kind is acceptable
3908/// as a redeclaration of the given tag declaration.
3909///
3910/// \returns true if the new tag kind is acceptable, false otherwise.
3911bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3912                                        TagDecl::TagKind NewTag,
3913                                        SourceLocation NewTagLoc,
3914                                        const IdentifierInfo &Name) {
3915  // C++ [dcl.type.elab]p3:
3916  //   The class-key or enum keyword present in the
3917  //   elaborated-type-specifier shall agree in kind with the
3918  //   declaration to which the name in theelaborated-type-specifier
3919  //   refers. This rule also applies to the form of
3920  //   elaborated-type-specifier that declares a class-name or
3921  //   friend class since it can be construed as referring to the
3922  //   definition of the class. Thus, in any
3923  //   elaborated-type-specifier, the enum keyword shall be used to
3924  //   refer to an enumeration (7.2), the union class-keyshall be
3925  //   used to refer to a union (clause 9), and either the class or
3926  //   struct class-key shall be used to refer to a class (clause 9)
3927  //   declared using the class or struct class-key.
3928  TagDecl::TagKind OldTag = Previous->getTagKind();
3929  if (OldTag == NewTag)
3930    return true;
3931
3932  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3933      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3934    // Warn about the struct/class tag mismatch.
3935    bool isTemplate = false;
3936    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3937      isTemplate = Record->getDescribedClassTemplate();
3938
3939    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3940      << (NewTag == TagDecl::TK_class)
3941      << isTemplate << &Name
3942      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3943                              OldTag == TagDecl::TK_class? "class" : "struct");
3944    Diag(Previous->getLocation(), diag::note_previous_use);
3945    return true;
3946  }
3947  return false;
3948}
3949
3950/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3951/// former case, Name will be non-null.  In the later case, Name will be null.
3952/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3953/// reference/declaration/definition of a tag.
3954Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3955                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3956                               IdentifierInfo *Name, SourceLocation NameLoc,
3957                               AttributeList *Attr, AccessSpecifier AS,
3958                               MultiTemplateParamsArg TemplateParameterLists,
3959                               bool &OwnedDecl, bool &IsDependent) {
3960  // If this is not a definition, it must have a name.
3961  assert((Name != 0 || TUK == TUK_Definition) &&
3962         "Nameless record must be a definition!");
3963
3964  OwnedDecl = false;
3965  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
3966
3967  if (TUK != TUK_Reference) {
3968    if (TemplateParameterList *TemplateParams
3969          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3970                        (TemplateParameterList**)TemplateParameterLists.get(),
3971                                              TemplateParameterLists.size())) {
3972      if (TemplateParams->size() > 0) {
3973        // This is a declaration or definition of a class template (which may
3974        // be a member of another template).
3975        OwnedDecl = false;
3976        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3977                                               SS, Name, NameLoc, Attr,
3978                                               TemplateParams,
3979                                               AS);
3980        TemplateParameterLists.release();
3981        return Result.get();
3982      } else {
3983        // FIXME: diagnose the extraneous 'template<>', once we recover
3984        // slightly better in ParseTemplate.cpp from bogus template
3985        // parameters.
3986      }
3987    }
3988  }
3989
3990  DeclContext *SearchDC = CurContext;
3991  DeclContext *DC = CurContext;
3992  NamedDecl *PrevDecl = 0;
3993
3994  bool Invalid = false;
3995
3996  if (Name && SS.isNotEmpty()) {
3997    // We have a nested-name tag ('struct foo::bar').
3998
3999    // Check for invalid 'foo::'.
4000    if (SS.isInvalid()) {
4001      Name = 0;
4002      goto CreateNewDecl;
4003    }
4004
4005    // If this is a friend or a reference to a class in a dependent
4006    // context, don't try to make a decl for it.
4007    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4008      DC = computeDeclContext(SS, false);
4009      if (!DC) {
4010        IsDependent = true;
4011        return DeclPtrTy();
4012      }
4013    }
4014
4015    if (RequireCompleteDeclContext(SS))
4016      return DeclPtrTy::make((Decl *)0);
4017
4018    DC = computeDeclContext(SS, true);
4019    SearchDC = DC;
4020    // Look-up name inside 'foo::'.
4021    PrevDecl
4022      = dyn_cast_or_null<TagDecl>(
4023               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4024
4025    // A tag 'foo::bar' must already exist.
4026    if (PrevDecl == 0) {
4027      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4028      Name = 0;
4029      Invalid = true;
4030      goto CreateNewDecl;
4031    }
4032  } else if (Name) {
4033    // If this is a named struct, check to see if there was a previous forward
4034    // declaration or definition.
4035    // FIXME: We're looking into outer scopes here, even when we
4036    // shouldn't be. Doing so can result in ambiguities that we
4037    // shouldn't be diagnosing.
4038    LookupResult R = LookupName(S, Name, LookupTagName,
4039                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4040    if (R.isAmbiguous()) {
4041      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4042      // FIXME: This is not best way to recover from case like:
4043      //
4044      // struct S s;
4045      //
4046      // causes needless "incomplete type" error later.
4047      Name = 0;
4048      PrevDecl = 0;
4049      Invalid = true;
4050    } else
4051      PrevDecl = R;
4052
4053    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4054      // FIXME: This makes sure that we ignore the contexts associated
4055      // with C structs, unions, and enums when looking for a matching
4056      // tag declaration or definition. See the similar lookup tweak
4057      // in Sema::LookupName; is there a better way to deal with this?
4058      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4059        SearchDC = SearchDC->getParent();
4060    }
4061  }
4062
4063  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4064    // Maybe we will complain about the shadowed template parameter.
4065    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4066    // Just pretend that we didn't see the previous declaration.
4067    PrevDecl = 0;
4068  }
4069
4070  if (PrevDecl) {
4071    // Check whether the previous declaration is usable.
4072    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4073
4074    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4075      // If this is a use of a previous tag, or if the tag is already declared
4076      // in the same scope (so that the definition/declaration completes or
4077      // rementions the tag), reuse the decl.
4078      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4079          isDeclInScope(PrevDecl, SearchDC, S)) {
4080        // Make sure that this wasn't declared as an enum and now used as a
4081        // struct or something similar.
4082        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4083          bool SafeToContinue
4084            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4085               Kind != TagDecl::TK_enum);
4086          if (SafeToContinue)
4087            Diag(KWLoc, diag::err_use_with_wrong_tag)
4088              << Name
4089              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4090                                                  PrevTagDecl->getKindName());
4091          else
4092            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4093          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4094
4095          if (SafeToContinue)
4096            Kind = PrevTagDecl->getTagKind();
4097          else {
4098            // Recover by making this an anonymous redefinition.
4099            Name = 0;
4100            PrevDecl = 0;
4101            Invalid = true;
4102          }
4103        }
4104
4105        if (!Invalid) {
4106          // If this is a use, just return the declaration we found.
4107
4108          // FIXME: In the future, return a variant or some other clue
4109          // for the consumer of this Decl to know it doesn't own it.
4110          // For our current ASTs this shouldn't be a problem, but will
4111          // need to be changed with DeclGroups.
4112          if (TUK == TUK_Reference)
4113            return DeclPtrTy::make(PrevDecl);
4114
4115          // If this is a friend, make sure we create the new
4116          // declaration in the appropriate semantic context.
4117          if (TUK == TUK_Friend)
4118            SearchDC = PrevDecl->getDeclContext();
4119
4120          // Diagnose attempts to redefine a tag.
4121          if (TUK == TUK_Definition) {
4122            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4123              Diag(NameLoc, diag::err_redefinition) << Name;
4124              Diag(Def->getLocation(), diag::note_previous_definition);
4125              // If this is a redefinition, recover by making this
4126              // struct be anonymous, which will make any later
4127              // references get the previous definition.
4128              Name = 0;
4129              PrevDecl = 0;
4130              Invalid = true;
4131            } else {
4132              // If the type is currently being defined, complain
4133              // about a nested redefinition.
4134              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4135              if (Tag->isBeingDefined()) {
4136                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4137                Diag(PrevTagDecl->getLocation(),
4138                     diag::note_previous_definition);
4139                Name = 0;
4140                PrevDecl = 0;
4141                Invalid = true;
4142              }
4143            }
4144
4145            // Okay, this is definition of a previously declared or referenced
4146            // tag PrevDecl. We're going to create a new Decl for it.
4147          }
4148        }
4149        // If we get here we have (another) forward declaration or we
4150        // have a definition.  Just create a new decl.
4151
4152      } else {
4153        // If we get here, this is a definition of a new tag type in a nested
4154        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4155        // new decl/type.  We set PrevDecl to NULL so that the entities
4156        // have distinct types.
4157        PrevDecl = 0;
4158      }
4159      // If we get here, we're going to create a new Decl. If PrevDecl
4160      // is non-NULL, it's a definition of the tag declared by
4161      // PrevDecl. If it's NULL, we have a new definition.
4162    } else {
4163      // PrevDecl is a namespace, template, or anything else
4164      // that lives in the IDNS_Tag identifier namespace.
4165      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4166        // The tag name clashes with a namespace name, issue an error and
4167        // recover by making this tag be anonymous.
4168        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4169        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4170        Name = 0;
4171        PrevDecl = 0;
4172        Invalid = true;
4173      } else {
4174        // The existing declaration isn't relevant to us; we're in a
4175        // new scope, so clear out the previous declaration.
4176        PrevDecl = 0;
4177      }
4178    }
4179  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4180             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4181    // C++ [basic.scope.pdecl]p5:
4182    //   -- for an elaborated-type-specifier of the form
4183    //
4184    //          class-key identifier
4185    //
4186    //      if the elaborated-type-specifier is used in the
4187    //      decl-specifier-seq or parameter-declaration-clause of a
4188    //      function defined in namespace scope, the identifier is
4189    //      declared as a class-name in the namespace that contains
4190    //      the declaration; otherwise, except as a friend
4191    //      declaration, the identifier is declared in the smallest
4192    //      non-class, non-function-prototype scope that contains the
4193    //      declaration.
4194    //
4195    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4196    // C structs and unions.
4197    //
4198    // GNU C also supports this behavior as part of its incomplete
4199    // enum types extension, while GNU C++ does not.
4200    //
4201    // Find the context where we'll be declaring the tag.
4202    // FIXME: We would like to maintain the current DeclContext as the
4203    // lexical context,
4204    while (SearchDC->isRecord())
4205      SearchDC = SearchDC->getParent();
4206
4207    // Find the scope where we'll be declaring the tag.
4208    while (S->isClassScope() ||
4209           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4210           ((S->getFlags() & Scope::DeclScope) == 0) ||
4211           (S->getEntity() &&
4212            ((DeclContext *)S->getEntity())->isTransparentContext()))
4213      S = S->getParent();
4214
4215  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4216    // C++ [namespace.memdef]p3:
4217    //   If a friend declaration in a non-local class first declares a
4218    //   class or function, the friend class or function is a member of
4219    //   the innermost enclosing namespace.
4220    while (!SearchDC->isFileContext())
4221      SearchDC = SearchDC->getParent();
4222
4223    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4224    while (S->getEntity() != SearchDC)
4225      S = S->getParent();
4226  }
4227
4228CreateNewDecl:
4229
4230  // If there is an identifier, use the location of the identifier as the
4231  // location of the decl, otherwise use the location of the struct/union
4232  // keyword.
4233  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4234
4235  // Otherwise, create a new declaration. If there is a previous
4236  // declaration of the same entity, the two will be linked via
4237  // PrevDecl.
4238  TagDecl *New;
4239
4240  if (Kind == TagDecl::TK_enum) {
4241    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4242    // enum X { A, B, C } D;    D should chain to X.
4243    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4244                           cast_or_null<EnumDecl>(PrevDecl));
4245    // If this is an undefined enum, warn.
4246    if (TUK != TUK_Definition && !Invalid)  {
4247      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4248                                              : diag::ext_forward_ref_enum;
4249      Diag(Loc, DK);
4250    }
4251  } else {
4252    // struct/union/class
4253
4254    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4255    // struct X { int A; } D;    D should chain to X.
4256    if (getLangOptions().CPlusPlus)
4257      // FIXME: Look for a way to use RecordDecl for simple structs.
4258      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4259                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4260    else
4261      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4262                               cast_or_null<RecordDecl>(PrevDecl));
4263  }
4264
4265  if (Kind != TagDecl::TK_enum) {
4266    // Handle #pragma pack: if the #pragma pack stack has non-default
4267    // alignment, make up a packed attribute for this decl. These
4268    // attributes are checked when the ASTContext lays out the
4269    // structure.
4270    //
4271    // It is important for implementing the correct semantics that this
4272    // happen here (in act on tag decl). The #pragma pack stack is
4273    // maintained as a result of parser callbacks which can occur at
4274    // many points during the parsing of a struct declaration (because
4275    // the #pragma tokens are effectively skipped over during the
4276    // parsing of the struct).
4277    if (unsigned Alignment = getPragmaPackAlignment())
4278      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4279  }
4280
4281  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4282    // C++ [dcl.typedef]p3:
4283    //   [...] Similarly, in a given scope, a class or enumeration
4284    //   shall not be declared with the same name as a typedef-name
4285    //   that is declared in that scope and refers to a type other
4286    //   than the class or enumeration itself.
4287    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4288    TypedefDecl *PrevTypedef = 0;
4289    if (Lookup.getKind() == LookupResult::Found)
4290      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4291
4292    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4293        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4294          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4295      Diag(Loc, diag::err_tag_definition_of_typedef)
4296        << Context.getTypeDeclType(New)
4297        << PrevTypedef->getUnderlyingType();
4298      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4299      Invalid = true;
4300    }
4301  }
4302
4303  if (Invalid)
4304    New->setInvalidDecl();
4305
4306  if (Attr)
4307    ProcessDeclAttributeList(S, New, Attr);
4308
4309  // If we're declaring or defining a tag in function prototype scope
4310  // in C, note that this type can only be used within the function.
4311  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4312    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4313
4314  // Set the lexical context. If the tag has a C++ scope specifier, the
4315  // lexical context will be different from the semantic context.
4316  New->setLexicalDeclContext(CurContext);
4317
4318  // Mark this as a friend decl if applicable.
4319  if (TUK == TUK_Friend)
4320    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4321
4322  // Set the access specifier.
4323  if (!Invalid && TUK != TUK_Friend)
4324    SetMemberAccessSpecifier(New, PrevDecl, AS);
4325
4326  if (TUK == TUK_Definition)
4327    New->startDefinition();
4328
4329  // If this has an identifier, add it to the scope stack.
4330  if (TUK == TUK_Friend) {
4331    // We might be replacing an existing declaration in the lookup tables;
4332    // if so, borrow its access specifier.
4333    if (PrevDecl)
4334      New->setAccess(PrevDecl->getAccess());
4335
4336    // Friend tag decls are visible in fairly strange ways.
4337    if (!CurContext->isDependentContext()) {
4338      DeclContext *DC = New->getDeclContext()->getLookupContext();
4339      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4340      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4341        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4342    }
4343  } else if (Name) {
4344    S = getNonFieldDeclScope(S);
4345    PushOnScopeChains(New, S);
4346  } else {
4347    CurContext->addDecl(New);
4348  }
4349
4350  // If this is the C FILE type, notify the AST context.
4351  if (IdentifierInfo *II = New->getIdentifier())
4352    if (!New->isInvalidDecl() &&
4353        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4354        II->isStr("FILE"))
4355      Context.setFILEDecl(New);
4356
4357  OwnedDecl = true;
4358  return DeclPtrTy::make(New);
4359}
4360
4361void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4362  AdjustDeclIfTemplate(TagD);
4363  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4364
4365  // Enter the tag context.
4366  PushDeclContext(S, Tag);
4367
4368  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4369    FieldCollector->StartClass();
4370
4371    if (Record->getIdentifier()) {
4372      // C++ [class]p2:
4373      //   [...] The class-name is also inserted into the scope of the
4374      //   class itself; this is known as the injected-class-name. For
4375      //   purposes of access checking, the injected-class-name is treated
4376      //   as if it were a public member name.
4377      CXXRecordDecl *InjectedClassName
4378        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4379                                CurContext, Record->getLocation(),
4380                                Record->getIdentifier(),
4381                                Record->getTagKeywordLoc(),
4382                                Record);
4383      InjectedClassName->setImplicit();
4384      InjectedClassName->setAccess(AS_public);
4385      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4386        InjectedClassName->setDescribedClassTemplate(Template);
4387      PushOnScopeChains(InjectedClassName, S);
4388      assert(InjectedClassName->isInjectedClassName() &&
4389             "Broken injected-class-name");
4390    }
4391  }
4392}
4393
4394void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4395                                    SourceLocation RBraceLoc) {
4396  AdjustDeclIfTemplate(TagD);
4397  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4398  Tag->setRBraceLoc(RBraceLoc);
4399
4400  if (isa<CXXRecordDecl>(Tag))
4401    FieldCollector->FinishClass();
4402
4403  // Exit this scope of this tag's definition.
4404  PopDeclContext();
4405
4406  // Notify the consumer that we've defined a tag.
4407  Consumer.HandleTagDeclDefinition(Tag);
4408}
4409
4410// Note that FieldName may be null for anonymous bitfields.
4411bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4412                          QualType FieldTy, const Expr *BitWidth,
4413                          bool *ZeroWidth) {
4414  // Default to true; that shouldn't confuse checks for emptiness
4415  if (ZeroWidth)
4416    *ZeroWidth = true;
4417
4418  // C99 6.7.2.1p4 - verify the field type.
4419  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4420  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4421    // Handle incomplete types with specific error.
4422    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4423      return true;
4424    if (FieldName)
4425      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4426        << FieldName << FieldTy << BitWidth->getSourceRange();
4427    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4428      << FieldTy << BitWidth->getSourceRange();
4429  }
4430
4431  // If the bit-width is type- or value-dependent, don't try to check
4432  // it now.
4433  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4434    return false;
4435
4436  llvm::APSInt Value;
4437  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4438    return true;
4439
4440  if (Value != 0 && ZeroWidth)
4441    *ZeroWidth = false;
4442
4443  // Zero-width bitfield is ok for anonymous field.
4444  if (Value == 0 && FieldName)
4445    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4446
4447  if (Value.isSigned() && Value.isNegative()) {
4448    if (FieldName)
4449      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4450               << FieldName << Value.toString(10);
4451    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4452      << Value.toString(10);
4453  }
4454
4455  if (!FieldTy->isDependentType()) {
4456    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4457    if (Value.getZExtValue() > TypeSize) {
4458      if (FieldName)
4459        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4460          << FieldName << (unsigned)TypeSize;
4461      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4462        << (unsigned)TypeSize;
4463    }
4464  }
4465
4466  return false;
4467}
4468
4469/// ActOnField - Each field of a struct/union/class is passed into this in order
4470/// to create a FieldDecl object for it.
4471Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4472                                 SourceLocation DeclStart,
4473                                 Declarator &D, ExprTy *BitfieldWidth) {
4474  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4475                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4476                               AS_public);
4477  return DeclPtrTy::make(Res);
4478}
4479
4480/// HandleField - Analyze a field of a C struct or a C++ data member.
4481///
4482FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4483                             SourceLocation DeclStart,
4484                             Declarator &D, Expr *BitWidth,
4485                             AccessSpecifier AS) {
4486  IdentifierInfo *II = D.getIdentifier();
4487  SourceLocation Loc = DeclStart;
4488  if (II) Loc = D.getIdentifierLoc();
4489
4490  DeclaratorInfo *DInfo = 0;
4491  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4492  if (getLangOptions().CPlusPlus)
4493    CheckExtraCXXDefaultArguments(D);
4494
4495  DiagnoseFunctionSpecifiers(D);
4496
4497  if (D.getDeclSpec().isThreadSpecified())
4498    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4499
4500  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4501
4502  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4503    // Maybe we will complain about the shadowed template parameter.
4504    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4505    // Just pretend that we didn't see the previous declaration.
4506    PrevDecl = 0;
4507  }
4508
4509  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4510    PrevDecl = 0;
4511
4512  bool Mutable
4513    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4514  SourceLocation TSSL = D.getSourceRange().getBegin();
4515  FieldDecl *NewFD
4516    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4517                     AS, PrevDecl, &D);
4518  if (NewFD->isInvalidDecl() && PrevDecl) {
4519    // Don't introduce NewFD into scope; there's already something
4520    // with the same name in the same scope.
4521  } else if (II) {
4522    PushOnScopeChains(NewFD, S);
4523  } else
4524    Record->addDecl(NewFD);
4525
4526  return NewFD;
4527}
4528
4529/// \brief Build a new FieldDecl and check its well-formedness.
4530///
4531/// This routine builds a new FieldDecl given the fields name, type,
4532/// record, etc. \p PrevDecl should refer to any previous declaration
4533/// with the same name and in the same scope as the field to be
4534/// created.
4535///
4536/// \returns a new FieldDecl.
4537///
4538/// \todo The Declarator argument is a hack. It will be removed once
4539FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4540                                DeclaratorInfo *DInfo,
4541                                RecordDecl *Record, SourceLocation Loc,
4542                                bool Mutable, Expr *BitWidth,
4543                                SourceLocation TSSL,
4544                                AccessSpecifier AS, NamedDecl *PrevDecl,
4545                                Declarator *D) {
4546  IdentifierInfo *II = Name.getAsIdentifierInfo();
4547  bool InvalidDecl = false;
4548  if (D) InvalidDecl = D->isInvalidType();
4549
4550  // If we receive a broken type, recover by assuming 'int' and
4551  // marking this declaration as invalid.
4552  if (T.isNull()) {
4553    InvalidDecl = true;
4554    T = Context.IntTy;
4555  }
4556
4557  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4558  // than a variably modified type.
4559  if (T->isVariablyModifiedType()) {
4560    bool SizeIsNegative;
4561    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4562                                                           SizeIsNegative);
4563    if (!FixedTy.isNull()) {
4564      Diag(Loc, diag::warn_illegal_constant_array_size);
4565      T = FixedTy;
4566    } else {
4567      if (SizeIsNegative)
4568        Diag(Loc, diag::err_typecheck_negative_array_size);
4569      else
4570        Diag(Loc, diag::err_typecheck_field_variable_size);
4571      InvalidDecl = true;
4572    }
4573  }
4574
4575  // Fields can not have abstract class types
4576  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4577                             AbstractFieldType))
4578    InvalidDecl = true;
4579
4580  bool ZeroWidth = false;
4581  // If this is declared as a bit-field, check the bit-field.
4582  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4583    InvalidDecl = true;
4584    DeleteExpr(BitWidth);
4585    BitWidth = 0;
4586    ZeroWidth = false;
4587  }
4588
4589  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4590                                       BitWidth, Mutable);
4591  if (InvalidDecl)
4592    NewFD->setInvalidDecl();
4593
4594  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4595    Diag(Loc, diag::err_duplicate_member) << II;
4596    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4597    NewFD->setInvalidDecl();
4598  }
4599
4600  if (getLangOptions().CPlusPlus) {
4601    QualType EltTy = Context.getBaseElementType(T);
4602
4603    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4604
4605    if (!T->isPODType())
4606      CXXRecord->setPOD(false);
4607    if (!ZeroWidth)
4608      CXXRecord->setEmpty(false);
4609
4610    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4611      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4612
4613      if (!RDecl->hasTrivialConstructor())
4614        CXXRecord->setHasTrivialConstructor(false);
4615      if (!RDecl->hasTrivialCopyConstructor())
4616        CXXRecord->setHasTrivialCopyConstructor(false);
4617      if (!RDecl->hasTrivialCopyAssignment())
4618        CXXRecord->setHasTrivialCopyAssignment(false);
4619      if (!RDecl->hasTrivialDestructor())
4620        CXXRecord->setHasTrivialDestructor(false);
4621
4622      // C++ 9.5p1: An object of a class with a non-trivial
4623      // constructor, a non-trivial copy constructor, a non-trivial
4624      // destructor, or a non-trivial copy assignment operator
4625      // cannot be a member of a union, nor can an array of such
4626      // objects.
4627      // TODO: C++0x alters this restriction significantly.
4628      if (Record->isUnion()) {
4629        // We check for copy constructors before constructors
4630        // because otherwise we'll never get complaints about
4631        // copy constructors.
4632
4633        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4634
4635        CXXSpecialMember member;
4636        if (!RDecl->hasTrivialCopyConstructor())
4637          member = CXXCopyConstructor;
4638        else if (!RDecl->hasTrivialConstructor())
4639          member = CXXDefaultConstructor;
4640        else if (!RDecl->hasTrivialCopyAssignment())
4641          member = CXXCopyAssignment;
4642        else if (!RDecl->hasTrivialDestructor())
4643          member = CXXDestructor;
4644        else
4645          member = invalid;
4646
4647        if (member != invalid) {
4648          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4649          DiagnoseNontrivial(RT, member);
4650          NewFD->setInvalidDecl();
4651        }
4652      }
4653    }
4654  }
4655
4656  // FIXME: We need to pass in the attributes given an AST
4657  // representation, not a parser representation.
4658  if (D)
4659    // FIXME: What to pass instead of TUScope?
4660    ProcessDeclAttributes(TUScope, NewFD, *D);
4661
4662  if (T.isObjCGCWeak())
4663    Diag(Loc, diag::warn_attribute_weak_on_field);
4664
4665  NewFD->setAccess(AS);
4666
4667  // C++ [dcl.init.aggr]p1:
4668  //   An aggregate is an array or a class (clause 9) with [...] no
4669  //   private or protected non-static data members (clause 11).
4670  // A POD must be an aggregate.
4671  if (getLangOptions().CPlusPlus &&
4672      (AS == AS_private || AS == AS_protected)) {
4673    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4674    CXXRecord->setAggregate(false);
4675    CXXRecord->setPOD(false);
4676  }
4677
4678  return NewFD;
4679}
4680
4681/// DiagnoseNontrivial - Given that a class has a non-trivial
4682/// special member, figure out why.
4683void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4684  QualType QT(T, 0U);
4685  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4686
4687  // Check whether the member was user-declared.
4688  switch (member) {
4689  case CXXDefaultConstructor:
4690    if (RD->hasUserDeclaredConstructor()) {
4691      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4692      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4693        if (!ci->isImplicitlyDefined(Context)) {
4694          SourceLocation CtorLoc = ci->getLocation();
4695          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4696          return;
4697        }
4698
4699      assert(0 && "found no user-declared constructors");
4700      return;
4701    }
4702    break;
4703
4704  case CXXCopyConstructor:
4705    if (RD->hasUserDeclaredCopyConstructor()) {
4706      SourceLocation CtorLoc =
4707        RD->getCopyConstructor(Context, 0)->getLocation();
4708      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4709      return;
4710    }
4711    break;
4712
4713  case CXXCopyAssignment:
4714    if (RD->hasUserDeclaredCopyAssignment()) {
4715      // FIXME: this should use the location of the copy
4716      // assignment, not the type.
4717      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4718      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4719      return;
4720    }
4721    break;
4722
4723  case CXXDestructor:
4724    if (RD->hasUserDeclaredDestructor()) {
4725      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4726      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4727      return;
4728    }
4729    break;
4730  }
4731
4732  typedef CXXRecordDecl::base_class_iterator base_iter;
4733
4734  // Virtual bases and members inhibit trivial copying/construction,
4735  // but not trivial destruction.
4736  if (member != CXXDestructor) {
4737    // Check for virtual bases.  vbases includes indirect virtual bases,
4738    // so we just iterate through the direct bases.
4739    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4740      if (bi->isVirtual()) {
4741        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4742        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4743        return;
4744      }
4745
4746    // Check for virtual methods.
4747    typedef CXXRecordDecl::method_iterator meth_iter;
4748    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4749         ++mi) {
4750      if (mi->isVirtual()) {
4751        SourceLocation MLoc = mi->getSourceRange().getBegin();
4752        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4753        return;
4754      }
4755    }
4756  }
4757
4758  bool (CXXRecordDecl::*hasTrivial)() const;
4759  switch (member) {
4760  case CXXDefaultConstructor:
4761    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4762  case CXXCopyConstructor:
4763    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4764  case CXXCopyAssignment:
4765    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4766  case CXXDestructor:
4767    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4768  default:
4769    assert(0 && "unexpected special member"); return;
4770  }
4771
4772  // Check for nontrivial bases (and recurse).
4773  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4774    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4775    assert(BaseRT);
4776    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4777    if (!(BaseRecTy->*hasTrivial)()) {
4778      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4779      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4780      DiagnoseNontrivial(BaseRT, member);
4781      return;
4782    }
4783  }
4784
4785  // Check for nontrivial members (and recurse).
4786  typedef RecordDecl::field_iterator field_iter;
4787  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4788       ++fi) {
4789    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4790    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4791      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4792
4793      if (!(EltRD->*hasTrivial)()) {
4794        SourceLocation FLoc = (*fi)->getLocation();
4795        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4796        DiagnoseNontrivial(EltRT, member);
4797        return;
4798      }
4799    }
4800  }
4801
4802  assert(0 && "found no explanation for non-trivial member");
4803}
4804
4805/// TranslateIvarVisibility - Translate visibility from a token ID to an
4806///  AST enum value.
4807static ObjCIvarDecl::AccessControl
4808TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4809  switch (ivarVisibility) {
4810  default: assert(0 && "Unknown visitibility kind");
4811  case tok::objc_private: return ObjCIvarDecl::Private;
4812  case tok::objc_public: return ObjCIvarDecl::Public;
4813  case tok::objc_protected: return ObjCIvarDecl::Protected;
4814  case tok::objc_package: return ObjCIvarDecl::Package;
4815  }
4816}
4817
4818/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4819/// in order to create an IvarDecl object for it.
4820Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4821                                SourceLocation DeclStart,
4822                                DeclPtrTy IntfDecl,
4823                                Declarator &D, ExprTy *BitfieldWidth,
4824                                tok::ObjCKeywordKind Visibility) {
4825
4826  IdentifierInfo *II = D.getIdentifier();
4827  Expr *BitWidth = (Expr*)BitfieldWidth;
4828  SourceLocation Loc = DeclStart;
4829  if (II) Loc = D.getIdentifierLoc();
4830
4831  // FIXME: Unnamed fields can be handled in various different ways, for
4832  // example, unnamed unions inject all members into the struct namespace!
4833
4834  DeclaratorInfo *DInfo = 0;
4835  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4836
4837  if (BitWidth) {
4838    // 6.7.2.1p3, 6.7.2.1p4
4839    if (VerifyBitField(Loc, II, T, BitWidth)) {
4840      D.setInvalidType();
4841      DeleteExpr(BitWidth);
4842      BitWidth = 0;
4843    }
4844  } else {
4845    // Not a bitfield.
4846
4847    // validate II.
4848
4849  }
4850
4851  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4852  // than a variably modified type.
4853  if (T->isVariablyModifiedType()) {
4854    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4855    D.setInvalidType();
4856  }
4857
4858  // Get the visibility (access control) for this ivar.
4859  ObjCIvarDecl::AccessControl ac =
4860    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4861                                        : ObjCIvarDecl::None;
4862  // Must set ivar's DeclContext to its enclosing interface.
4863  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4864  DeclContext *EnclosingContext;
4865  if (ObjCImplementationDecl *IMPDecl =
4866      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4867    // Case of ivar declared in an implementation. Context is that of its class.
4868    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4869    assert(IDecl && "No class- ActOnIvar");
4870    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4871  } else
4872    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4873  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4874
4875  // Construct the decl.
4876  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4877                                             EnclosingContext, Loc, II, T,
4878                                             DInfo, ac, (Expr *)BitfieldWidth);
4879
4880  if (II) {
4881    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4882    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4883        && !isa<TagDecl>(PrevDecl)) {
4884      Diag(Loc, diag::err_duplicate_member) << II;
4885      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4886      NewID->setInvalidDecl();
4887    }
4888  }
4889
4890  // Process attributes attached to the ivar.
4891  ProcessDeclAttributes(S, NewID, D);
4892
4893  if (D.isInvalidType())
4894    NewID->setInvalidDecl();
4895
4896  if (II) {
4897    // FIXME: When interfaces are DeclContexts, we'll need to add
4898    // these to the interface.
4899    S->AddDecl(DeclPtrTy::make(NewID));
4900    IdResolver.AddDecl(NewID);
4901  }
4902
4903  return DeclPtrTy::make(NewID);
4904}
4905
4906void Sema::ActOnFields(Scope* S,
4907                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4908                       DeclPtrTy *Fields, unsigned NumFields,
4909                       SourceLocation LBrac, SourceLocation RBrac,
4910                       AttributeList *Attr) {
4911  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4912  assert(EnclosingDecl && "missing record or interface decl");
4913
4914  // If the decl this is being inserted into is invalid, then it may be a
4915  // redeclaration or some other bogus case.  Don't try to add fields to it.
4916  if (EnclosingDecl->isInvalidDecl()) {
4917    // FIXME: Deallocate fields?
4918    return;
4919  }
4920
4921
4922  // Verify that all the fields are okay.
4923  unsigned NumNamedMembers = 0;
4924  llvm::SmallVector<FieldDecl*, 32> RecFields;
4925
4926  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4927  for (unsigned i = 0; i != NumFields; ++i) {
4928    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4929
4930    // Get the type for the field.
4931    Type *FDTy = FD->getType().getTypePtr();
4932
4933    if (!FD->isAnonymousStructOrUnion()) {
4934      // Remember all fields written by the user.
4935      RecFields.push_back(FD);
4936    }
4937
4938    // If the field is already invalid for some reason, don't emit more
4939    // diagnostics about it.
4940    if (FD->isInvalidDecl())
4941      continue;
4942
4943    // C99 6.7.2.1p2:
4944    //   A structure or union shall not contain a member with
4945    //   incomplete or function type (hence, a structure shall not
4946    //   contain an instance of itself, but may contain a pointer to
4947    //   an instance of itself), except that the last member of a
4948    //   structure with more than one named member may have incomplete
4949    //   array type; such a structure (and any union containing,
4950    //   possibly recursively, a member that is such a structure)
4951    //   shall not be a member of a structure or an element of an
4952    //   array.
4953    if (FDTy->isFunctionType()) {
4954      // Field declared as a function.
4955      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4956        << FD->getDeclName();
4957      FD->setInvalidDecl();
4958      EnclosingDecl->setInvalidDecl();
4959      continue;
4960    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4961               Record && Record->isStruct()) {
4962      // Flexible array member.
4963      if (NumNamedMembers < 1) {
4964        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4965          << FD->getDeclName();
4966        FD->setInvalidDecl();
4967        EnclosingDecl->setInvalidDecl();
4968        continue;
4969      }
4970      // Okay, we have a legal flexible array member at the end of the struct.
4971      if (Record)
4972        Record->setHasFlexibleArrayMember(true);
4973    } else if (!FDTy->isDependentType() &&
4974               RequireCompleteType(FD->getLocation(), FD->getType(),
4975                                   diag::err_field_incomplete)) {
4976      // Incomplete type
4977      FD->setInvalidDecl();
4978      EnclosingDecl->setInvalidDecl();
4979      continue;
4980    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4981      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4982        // If this is a member of a union, then entire union becomes "flexible".
4983        if (Record && Record->isUnion()) {
4984          Record->setHasFlexibleArrayMember(true);
4985        } else {
4986          // If this is a struct/class and this is not the last element, reject
4987          // it.  Note that GCC supports variable sized arrays in the middle of
4988          // structures.
4989          if (i != NumFields-1)
4990            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4991              << FD->getDeclName() << FD->getType();
4992          else {
4993            // We support flexible arrays at the end of structs in
4994            // other structs as an extension.
4995            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4996              << FD->getDeclName();
4997            if (Record)
4998              Record->setHasFlexibleArrayMember(true);
4999          }
5000        }
5001      }
5002      if (Record && FDTTy->getDecl()->hasObjectMember())
5003        Record->setHasObjectMember(true);
5004    } else if (FDTy->isObjCInterfaceType()) {
5005      /// A field cannot be an Objective-c object
5006      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5007      FD->setInvalidDecl();
5008      EnclosingDecl->setInvalidDecl();
5009      continue;
5010    } else if (getLangOptions().ObjC1 &&
5011               getLangOptions().getGCMode() != LangOptions::NonGC &&
5012               Record &&
5013               (FD->getType()->isObjCObjectPointerType() ||
5014                FD->getType().isObjCGCStrong()))
5015      Record->setHasObjectMember(true);
5016    // Keep track of the number of named members.
5017    if (FD->getIdentifier())
5018      ++NumNamedMembers;
5019  }
5020
5021  // Okay, we successfully defined 'Record'.
5022  if (Record) {
5023    Record->completeDefinition(Context);
5024  } else {
5025    ObjCIvarDecl **ClsFields =
5026      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5027    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5028      ID->setIVarList(ClsFields, RecFields.size(), Context);
5029      ID->setLocEnd(RBrac);
5030      // Add ivar's to class's DeclContext.
5031      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5032        ClsFields[i]->setLexicalDeclContext(ID);
5033        ID->addDecl(ClsFields[i]);
5034      }
5035      // Must enforce the rule that ivars in the base classes may not be
5036      // duplicates.
5037      if (ID->getSuperClass()) {
5038        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5039             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5040          ObjCIvarDecl* Ivar = (*IVI);
5041
5042          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5043            ObjCIvarDecl* prevIvar =
5044              ID->getSuperClass()->lookupInstanceVariable(II);
5045            if (prevIvar) {
5046              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5047              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5048            }
5049          }
5050        }
5051      }
5052    } else if (ObjCImplementationDecl *IMPDecl =
5053                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5054      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5055      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5056        // Ivar declared in @implementation never belongs to the implementation.
5057        // Only it is in implementation's lexical context.
5058        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5059      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5060    }
5061  }
5062
5063  if (Attr)
5064    ProcessDeclAttributeList(S, Record, Attr);
5065}
5066
5067EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5068                                          EnumConstantDecl *LastEnumConst,
5069                                          SourceLocation IdLoc,
5070                                          IdentifierInfo *Id,
5071                                          ExprArg val) {
5072  Expr *Val = (Expr *)val.get();
5073
5074  llvm::APSInt EnumVal(32);
5075  QualType EltTy;
5076  if (Val && !Val->isTypeDependent()) {
5077    // Make sure to promote the operand type to int.
5078    UsualUnaryConversions(Val);
5079    if (Val != val.get()) {
5080      val.release();
5081      val = Val;
5082    }
5083
5084    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5085    SourceLocation ExpLoc;
5086    if (!Val->isValueDependent() &&
5087        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5088      Val = 0;
5089    } else {
5090      EltTy = Val->getType();
5091    }
5092  }
5093
5094  if (!Val) {
5095    if (LastEnumConst) {
5096      // Assign the last value + 1.
5097      EnumVal = LastEnumConst->getInitVal();
5098      ++EnumVal;
5099
5100      // Check for overflow on increment.
5101      if (EnumVal < LastEnumConst->getInitVal())
5102        Diag(IdLoc, diag::warn_enum_value_overflow);
5103
5104      EltTy = LastEnumConst->getType();
5105    } else {
5106      // First value, set to zero.
5107      EltTy = Context.IntTy;
5108      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5109    }
5110  }
5111
5112  val.release();
5113  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5114                                  Val, EnumVal);
5115}
5116
5117
5118Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5119                                        DeclPtrTy lastEnumConst,
5120                                        SourceLocation IdLoc,
5121                                        IdentifierInfo *Id,
5122                                        SourceLocation EqualLoc, ExprTy *val) {
5123  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5124  EnumConstantDecl *LastEnumConst =
5125    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5126  Expr *Val = static_cast<Expr*>(val);
5127
5128  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5129  // we find one that is.
5130  S = getNonFieldDeclScope(S);
5131
5132  // Verify that there isn't already something declared with this name in this
5133  // scope.
5134  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5135  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5136    // Maybe we will complain about the shadowed template parameter.
5137    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5138    // Just pretend that we didn't see the previous declaration.
5139    PrevDecl = 0;
5140  }
5141
5142  if (PrevDecl) {
5143    // When in C++, we may get a TagDecl with the same name; in this case the
5144    // enum constant will 'hide' the tag.
5145    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5146           "Received TagDecl when not in C++!");
5147    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5148      if (isa<EnumConstantDecl>(PrevDecl))
5149        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5150      else
5151        Diag(IdLoc, diag::err_redefinition) << Id;
5152      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5153      if (Val) Val->Destroy(Context);
5154      return DeclPtrTy();
5155    }
5156  }
5157
5158  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5159                                            IdLoc, Id, Owned(Val));
5160
5161  // Register this decl in the current scope stack.
5162  if (New)
5163    PushOnScopeChains(New, S);
5164
5165  return DeclPtrTy::make(New);
5166}
5167
5168void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5169                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5170                         DeclPtrTy *Elements, unsigned NumElements,
5171                         Scope *S, AttributeList *Attr) {
5172  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5173  QualType EnumType = Context.getTypeDeclType(Enum);
5174
5175  if (Attr)
5176    ProcessDeclAttributeList(S, Enum, Attr);
5177
5178  // TODO: If the result value doesn't fit in an int, it must be a long or long
5179  // long value.  ISO C does not support this, but GCC does as an extension,
5180  // emit a warning.
5181  unsigned IntWidth = Context.Target.getIntWidth();
5182  unsigned CharWidth = Context.Target.getCharWidth();
5183  unsigned ShortWidth = Context.Target.getShortWidth();
5184
5185  // Verify that all the values are okay, compute the size of the values, and
5186  // reverse the list.
5187  unsigned NumNegativeBits = 0;
5188  unsigned NumPositiveBits = 0;
5189
5190  // Keep track of whether all elements have type int.
5191  bool AllElementsInt = true;
5192
5193  for (unsigned i = 0; i != NumElements; ++i) {
5194    EnumConstantDecl *ECD =
5195      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5196    if (!ECD) continue;  // Already issued a diagnostic.
5197
5198    // If the enum value doesn't fit in an int, emit an extension warning.
5199    const llvm::APSInt &InitVal = ECD->getInitVal();
5200    assert(InitVal.getBitWidth() >= IntWidth &&
5201           "Should have promoted value to int");
5202    if (InitVal.getBitWidth() > IntWidth) {
5203      llvm::APSInt V(InitVal);
5204      V.trunc(IntWidth);
5205      V.extend(InitVal.getBitWidth());
5206      if (V != InitVal)
5207        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5208          << InitVal.toString(10);
5209    }
5210
5211    // Keep track of the size of positive and negative values.
5212    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5213      NumPositiveBits = std::max(NumPositiveBits,
5214                                 (unsigned)InitVal.getActiveBits());
5215    else
5216      NumNegativeBits = std::max(NumNegativeBits,
5217                                 (unsigned)InitVal.getMinSignedBits());
5218
5219    // Keep track of whether every enum element has type int (very commmon).
5220    if (AllElementsInt)
5221      AllElementsInt = ECD->getType() == Context.IntTy;
5222  }
5223
5224  // Figure out the type that should be used for this enum.
5225  // FIXME: Support -fshort-enums.
5226  QualType BestType;
5227  unsigned BestWidth;
5228
5229  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5230
5231  if (NumNegativeBits) {
5232    // If there is a negative value, figure out the smallest integer type (of
5233    // int/long/longlong) that fits.
5234    // If it's packed, check also if it fits a char or a short.
5235    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5236        BestType = Context.SignedCharTy;
5237        BestWidth = CharWidth;
5238    } else if (Packed && NumNegativeBits <= ShortWidth &&
5239               NumPositiveBits < ShortWidth) {
5240        BestType = Context.ShortTy;
5241        BestWidth = ShortWidth;
5242    }
5243    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5244      BestType = Context.IntTy;
5245      BestWidth = IntWidth;
5246    } else {
5247      BestWidth = Context.Target.getLongWidth();
5248
5249      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5250        BestType = Context.LongTy;
5251      else {
5252        BestWidth = Context.Target.getLongLongWidth();
5253
5254        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5255          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5256        BestType = Context.LongLongTy;
5257      }
5258    }
5259  } else {
5260    // If there is no negative value, figure out which of uint, ulong, ulonglong
5261    // fits.
5262    // If it's packed, check also if it fits a char or a short.
5263    if (Packed && NumPositiveBits <= CharWidth) {
5264        BestType = Context.UnsignedCharTy;
5265        BestWidth = CharWidth;
5266    } else if (Packed && NumPositiveBits <= ShortWidth) {
5267        BestType = Context.UnsignedShortTy;
5268        BestWidth = ShortWidth;
5269    }
5270    else if (NumPositiveBits <= IntWidth) {
5271      BestType = Context.UnsignedIntTy;
5272      BestWidth = IntWidth;
5273    } else if (NumPositiveBits <=
5274               (BestWidth = Context.Target.getLongWidth())) {
5275      BestType = Context.UnsignedLongTy;
5276    } else {
5277      BestWidth = Context.Target.getLongLongWidth();
5278      assert(NumPositiveBits <= BestWidth &&
5279             "How could an initializer get larger than ULL?");
5280      BestType = Context.UnsignedLongLongTy;
5281    }
5282  }
5283
5284  // Loop over all of the enumerator constants, changing their types to match
5285  // the type of the enum if needed.
5286  for (unsigned i = 0; i != NumElements; ++i) {
5287    EnumConstantDecl *ECD =
5288      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5289    if (!ECD) continue;  // Already issued a diagnostic.
5290
5291    // Standard C says the enumerators have int type, but we allow, as an
5292    // extension, the enumerators to be larger than int size.  If each
5293    // enumerator value fits in an int, type it as an int, otherwise type it the
5294    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5295    // that X has type 'int', not 'unsigned'.
5296    if (ECD->getType() == Context.IntTy) {
5297      // Make sure the init value is signed.
5298      llvm::APSInt IV = ECD->getInitVal();
5299      IV.setIsSigned(true);
5300      ECD->setInitVal(IV);
5301
5302      if (getLangOptions().CPlusPlus)
5303        // C++ [dcl.enum]p4: Following the closing brace of an
5304        // enum-specifier, each enumerator has the type of its
5305        // enumeration.
5306        ECD->setType(EnumType);
5307      continue;  // Already int type.
5308    }
5309
5310    // Determine whether the value fits into an int.
5311    llvm::APSInt InitVal = ECD->getInitVal();
5312    bool FitsInInt;
5313    if (InitVal.isUnsigned() || !InitVal.isNegative())
5314      FitsInInt = InitVal.getActiveBits() < IntWidth;
5315    else
5316      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5317
5318    // If it fits into an integer type, force it.  Otherwise force it to match
5319    // the enum decl type.
5320    QualType NewTy;
5321    unsigned NewWidth;
5322    bool NewSign;
5323    if (FitsInInt) {
5324      NewTy = Context.IntTy;
5325      NewWidth = IntWidth;
5326      NewSign = true;
5327    } else if (ECD->getType() == BestType) {
5328      // Already the right type!
5329      if (getLangOptions().CPlusPlus)
5330        // C++ [dcl.enum]p4: Following the closing brace of an
5331        // enum-specifier, each enumerator has the type of its
5332        // enumeration.
5333        ECD->setType(EnumType);
5334      continue;
5335    } else {
5336      NewTy = BestType;
5337      NewWidth = BestWidth;
5338      NewSign = BestType->isSignedIntegerType();
5339    }
5340
5341    // Adjust the APSInt value.
5342    InitVal.extOrTrunc(NewWidth);
5343    InitVal.setIsSigned(NewSign);
5344    ECD->setInitVal(InitVal);
5345
5346    // Adjust the Expr initializer and type.
5347    if (ECD->getInitExpr())
5348      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5349                                                      CastExpr::CK_Unknown,
5350                                                      ECD->getInitExpr(),
5351                                                      /*isLvalue=*/false));
5352    if (getLangOptions().CPlusPlus)
5353      // C++ [dcl.enum]p4: Following the closing brace of an
5354      // enum-specifier, each enumerator has the type of its
5355      // enumeration.
5356      ECD->setType(EnumType);
5357    else
5358      ECD->setType(NewTy);
5359  }
5360
5361  Enum->completeDefinition(Context, BestType);
5362}
5363
5364Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5365                                            ExprArg expr) {
5366  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5367
5368  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5369                                                   Loc, AsmString);
5370  CurContext->addDecl(New);
5371  return DeclPtrTy::make(New);
5372}
5373
5374void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5375                             SourceLocation PragmaLoc,
5376                             SourceLocation NameLoc) {
5377  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5378
5379  if (PrevDecl) {
5380    PrevDecl->addAttr(::new (Context) WeakAttr());
5381  } else {
5382    (void)WeakUndeclaredIdentifiers.insert(
5383      std::pair<IdentifierInfo*,WeakInfo>
5384        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5385  }
5386}
5387
5388void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5389                                IdentifierInfo* AliasName,
5390                                SourceLocation PragmaLoc,
5391                                SourceLocation NameLoc,
5392                                SourceLocation AliasNameLoc) {
5393  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5394  WeakInfo W = WeakInfo(Name, NameLoc);
5395
5396  if (PrevDecl) {
5397    if (!PrevDecl->hasAttr<AliasAttr>())
5398      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5399        DeclApplyPragmaWeak(TUScope, ND, W);
5400  } else {
5401    (void)WeakUndeclaredIdentifiers.insert(
5402      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5403  }
5404}
5405