SemaDecl.cpp revision 450da9832b31d9b2e90af7708d197e5b9e1af8c8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50    case LookupResult::NotFound:
51    case LookupResult::FoundOverloaded:
52      return 0;
53
54    case LookupResult::AmbiguousBaseSubobjectTypes:
55    case LookupResult::AmbiguousBaseSubobjects:
56    case LookupResult::AmbiguousReference:
57      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58      return 0;
59
60    case LookupResult::Found:
61      IIDecl = Result.getAsDecl();
62      break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
67      return Context.getTypeDeclType(TD).getAsOpaquePtr();
68    else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
69      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared
81    // in is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// \brief Determine whether we allow overloading of the function
117/// PrevDecl with another declaration.
118///
119/// This routine determines whether overloading is possible, not
120/// whether some new function is actually an overload. It will return
121/// true in C++ (where we can always provide overloads) or, as an
122/// extension, in C when the previous function is already an
123/// overloaded function declaration or has the "overloadable"
124/// attribute.
125static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
126  if (Context.getLangOptions().CPlusPlus)
127    return true;
128
129  if (isa<OverloadedFunctionDecl>(PrevDecl))
130    return true;
131
132  return PrevDecl->getAttr<OverloadableAttr>() != 0;
133}
134
135/// Add this decl to the scope shadowed decl chains.
136void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
137  // Move up the scope chain until we find the nearest enclosing
138  // non-transparent context. The declaration will be introduced into this
139  // scope.
140  while (S->getEntity() &&
141         ((DeclContext *)S->getEntity())->isTransparentContext())
142    S = S->getParent();
143
144  S->AddDecl(D);
145
146  // Add scoped declarations into their context, so that they can be
147  // found later. Declarations without a context won't be inserted
148  // into any context.
149  CurContext->addDecl(D);
150
151  // C++ [basic.scope]p4:
152  //   -- exactly one declaration shall declare a class name or
153  //   enumeration name that is not a typedef name and the other
154  //   declarations shall all refer to the same object or
155  //   enumerator, or all refer to functions and function templates;
156  //   in this case the class name or enumeration name is hidden.
157  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
158    // We are pushing the name of a tag (enum or class).
159    if (CurContext->getLookupContext()
160          == TD->getDeclContext()->getLookupContext()) {
161      // We're pushing the tag into the current context, which might
162      // require some reshuffling in the identifier resolver.
163      IdentifierResolver::iterator
164        I = IdResolver.begin(TD->getDeclName()),
165        IEnd = IdResolver.end();
166      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
167        NamedDecl *PrevDecl = *I;
168        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
169             PrevDecl = *I, ++I) {
170          if (TD->declarationReplaces(*I)) {
171            // This is a redeclaration. Remove it from the chain and
172            // break out, so that we'll add in the shadowed
173            // declaration.
174            S->RemoveDecl(*I);
175            if (PrevDecl == *I) {
176              IdResolver.RemoveDecl(*I);
177              IdResolver.AddDecl(TD);
178              return;
179            } else {
180              IdResolver.RemoveDecl(*I);
181              break;
182            }
183          }
184        }
185
186        // There is already a declaration with the same name in the same
187        // scope, which is not a tag declaration. It must be found
188        // before we find the new declaration, so insert the new
189        // declaration at the end of the chain.
190        IdResolver.AddShadowedDecl(TD, PrevDecl);
191
192        return;
193      }
194    }
195  } else if (isa<FunctionDecl>(D) &&
196             AllowOverloadingOfFunction(D, Context)) {
197    // We are pushing the name of a function, which might be an
198    // overloaded name.
199    FunctionDecl *FD = cast<FunctionDecl>(D);
200    IdentifierResolver::iterator Redecl
201      = std::find_if(IdResolver.begin(FD->getDeclName()),
202                     IdResolver.end(),
203                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
204                                  FD));
205    if (Redecl != IdResolver.end()) {
206      // There is already a declaration of a function on our
207      // IdResolver chain. Replace it with this declaration.
208      S->RemoveDecl(*Redecl);
209      IdResolver.RemoveDecl(*Redecl);
210    }
211  }
212
213  IdResolver.AddDecl(D);
214}
215
216void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
217  if (S->decl_empty()) return;
218  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
219	 "Scope shouldn't contain decls!");
220
221  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
222       I != E; ++I) {
223    Decl *TmpD = static_cast<Decl*>(*I);
224    assert(TmpD && "This decl didn't get pushed??");
225
226    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
227    NamedDecl *D = cast<NamedDecl>(TmpD);
228
229    if (!D->getDeclName()) continue;
230
231    // Remove this name from our lexical scope.
232    IdResolver.RemoveDecl(D);
233  }
234}
235
236/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
237/// return 0 if one not found.
238ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
239  // The third "scope" argument is 0 since we aren't enabling lazy built-in
240  // creation from this context.
241  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
242
243  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
244}
245
246/// getNonFieldDeclScope - Retrieves the innermost scope, starting
247/// from S, where a non-field would be declared. This routine copes
248/// with the difference between C and C++ scoping rules in structs and
249/// unions. For example, the following code is well-formed in C but
250/// ill-formed in C++:
251/// @code
252/// struct S6 {
253///   enum { BAR } e;
254/// };
255///
256/// void test_S6() {
257///   struct S6 a;
258///   a.e = BAR;
259/// }
260/// @endcode
261/// For the declaration of BAR, this routine will return a different
262/// scope. The scope S will be the scope of the unnamed enumeration
263/// within S6. In C++, this routine will return the scope associated
264/// with S6, because the enumeration's scope is a transparent
265/// context but structures can contain non-field names. In C, this
266/// routine will return the translation unit scope, since the
267/// enumeration's scope is a transparent context and structures cannot
268/// contain non-field names.
269Scope *Sema::getNonFieldDeclScope(Scope *S) {
270  while (((S->getFlags() & Scope::DeclScope) == 0) ||
271         (S->getEntity() &&
272          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
273         (S->isClassScope() && !getLangOptions().CPlusPlus))
274    S = S->getParent();
275  return S;
276}
277
278void Sema::InitBuiltinVaListType() {
279  if (!Context.getBuiltinVaListType().isNull())
280    return;
281
282  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
283  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
284  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
285  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
286}
287
288/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
289/// file scope.  lazily create a decl for it. ForRedeclaration is true
290/// if we're creating this built-in in anticipation of redeclaring the
291/// built-in.
292NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
293                                     Scope *S, bool ForRedeclaration,
294                                     SourceLocation Loc) {
295  Builtin::ID BID = (Builtin::ID)bid;
296
297  if (Context.BuiltinInfo.hasVAListUse(BID))
298    InitBuiltinVaListType();
299
300  Builtin::Context::GetBuiltinTypeError Error;
301  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
302  switch (Error) {
303  case Builtin::Context::GE_None:
304    // Okay
305    break;
306
307  case Builtin::Context::GE_Missing_FILE:
308    if (ForRedeclaration)
309      Diag(Loc, diag::err_implicit_decl_requires_stdio)
310        << Context.BuiltinInfo.GetName(BID);
311    return 0;
312  }
313
314  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
315    Diag(Loc, diag::ext_implicit_lib_function_decl)
316      << Context.BuiltinInfo.GetName(BID)
317      << R;
318    if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
319        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
320          != diag::MAP_IGNORE)
321      Diag(Loc, diag::note_please_include_header)
322        << Context.BuiltinInfo.getHeaderName(BID)
323        << Context.BuiltinInfo.GetName(BID);
324  }
325
326  FunctionDecl *New = FunctionDecl::Create(Context,
327                                           Context.getTranslationUnitDecl(),
328                                           Loc, II, R,
329                                           FunctionDecl::Extern, false);
330  New->setImplicit();
331
332  // Create Decl objects for each parameter, adding them to the
333  // FunctionDecl.
334  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
335    llvm::SmallVector<ParmVarDecl*, 16> Params;
336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
337      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
338                                           FT->getArgType(i), VarDecl::None, 0));
339    New->setParams(Context, &Params[0], Params.size());
340  }
341
342  AddKnownFunctionAttributes(New);
343
344  // TUScope is the translation-unit scope to insert this function into.
345  // FIXME: This is hideous. We need to teach PushOnScopeChains to
346  // relate Scopes to DeclContexts, and probably eliminate CurContext
347  // entirely, but we're not there yet.
348  DeclContext *SavedContext = CurContext;
349  CurContext = Context.getTranslationUnitDecl();
350  PushOnScopeChains(New, TUScope);
351  CurContext = SavedContext;
352  return New;
353}
354
355/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
356/// everything from the standard library is defined.
357NamespaceDecl *Sema::GetStdNamespace() {
358  if (!StdNamespace) {
359    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
360    DeclContext *Global = Context.getTranslationUnitDecl();
361    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
362    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
363  }
364  return StdNamespace;
365}
366
367/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
368/// same name and scope as a previous declaration 'Old'.  Figure out
369/// how to resolve this situation, merging decls or emitting
370/// diagnostics as appropriate. Returns true if there was an error,
371/// false otherwise.
372///
373bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
374  bool objc_types = false;
375  // Allow multiple definitions for ObjC built-in typedefs.
376  // FIXME: Verify the underlying types are equivalent!
377  if (getLangOptions().ObjC1) {
378    const IdentifierInfo *TypeID = New->getIdentifier();
379    switch (TypeID->getLength()) {
380    default: break;
381    case 2:
382      if (!TypeID->isStr("id"))
383        break;
384      Context.setObjCIdType(New);
385      objc_types = true;
386      break;
387    case 5:
388      if (!TypeID->isStr("Class"))
389        break;
390      Context.setObjCClassType(New);
391      objc_types = true;
392      return false;
393    case 3:
394      if (!TypeID->isStr("SEL"))
395        break;
396      Context.setObjCSelType(New);
397      objc_types = true;
398      return false;
399    case 8:
400      if (!TypeID->isStr("Protocol"))
401        break;
402      Context.setObjCProtoType(New->getUnderlyingType());
403      objc_types = true;
404      return false;
405    }
406    // Fall through - the typedef name was not a builtin type.
407  }
408  // Verify the old decl was also a type.
409  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
410  if (!Old) {
411    Diag(New->getLocation(), diag::err_redefinition_different_kind)
412      << New->getDeclName();
413    if (!objc_types)
414      Diag(OldD->getLocation(), diag::note_previous_definition);
415    return true;
416  }
417
418  // Determine the "old" type we'll use for checking and diagnostics.
419  QualType OldType;
420  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
421    OldType = OldTypedef->getUnderlyingType();
422  else
423    OldType = Context.getTypeDeclType(Old);
424
425  // If the typedef types are not identical, reject them in all languages and
426  // with any extensions enabled.
427
428  if (OldType != New->getUnderlyingType() &&
429      Context.getCanonicalType(OldType) !=
430      Context.getCanonicalType(New->getUnderlyingType())) {
431    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
432      << New->getUnderlyingType() << OldType;
433    if (!objc_types)
434      Diag(Old->getLocation(), diag::note_previous_definition);
435    return true;
436  }
437  if (objc_types) return false;
438  if (getLangOptions().Microsoft) return false;
439
440  // C++ [dcl.typedef]p2:
441  //   In a given non-class scope, a typedef specifier can be used to
442  //   redefine the name of any type declared in that scope to refer
443  //   to the type to which it already refers.
444  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
445    return false;
446
447  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
448  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
449  // *either* declaration is in a system header. The code below implements
450  // this adhoc compatibility rule. FIXME: The following code will not
451  // work properly when compiling ".i" files (containing preprocessed output).
452  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
453    SourceManager &SrcMgr = Context.getSourceManager();
454    if (SrcMgr.isInSystemHeader(Old->getLocation()))
455      return false;
456    if (SrcMgr.isInSystemHeader(New->getLocation()))
457      return false;
458  }
459
460  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
461  Diag(Old->getLocation(), diag::note_previous_definition);
462  return true;
463}
464
465/// DeclhasAttr - returns true if decl Declaration already has the target
466/// attribute.
467static bool DeclHasAttr(const Decl *decl, const Attr *target) {
468  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
469    if (attr->getKind() == target->getKind())
470      return true;
471
472  return false;
473}
474
475/// MergeAttributes - append attributes from the Old decl to the New one.
476static void MergeAttributes(Decl *New, Decl *Old) {
477  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
478
479  while (attr) {
480    tmp = attr;
481    attr = attr->getNext();
482
483    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
484      tmp->setInherited(true);
485      New->addAttr(tmp);
486    } else {
487      tmp->setNext(0);
488      delete(tmp);
489    }
490  }
491
492  Old->invalidateAttrs();
493}
494
495/// MergeFunctionDecl - We just parsed a function 'New' from
496/// declarator D which has the same name and scope as a previous
497/// declaration 'Old'.  Figure out how to resolve this situation,
498/// merging decls or emitting diagnostics as appropriate.
499///
500/// In C++, New and Old must be declarations that are not
501/// overloaded. Use IsOverload to determine whether New and Old are
502/// overloaded, and to select the Old declaration that New should be
503/// merged with.
504///
505/// Returns true if there was an error, false otherwise.
506bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
507  assert(!isa<OverloadedFunctionDecl>(OldD) &&
508         "Cannot merge with an overloaded function declaration");
509
510  // Verify the old decl was also a function.
511  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
512  if (!Old) {
513    Diag(New->getLocation(), diag::err_redefinition_different_kind)
514      << New->getDeclName();
515    Diag(OldD->getLocation(), diag::note_previous_definition);
516    return true;
517  }
518
519  // Determine whether the previous declaration was a definition,
520  // implicit declaration, or a declaration.
521  diag::kind PrevDiag;
522  if (Old->isThisDeclarationADefinition())
523    PrevDiag = diag::note_previous_definition;
524  else if (Old->isImplicit())
525    PrevDiag = diag::note_previous_implicit_declaration;
526  else
527    PrevDiag = diag::note_previous_declaration;
528
529  QualType OldQType = Context.getCanonicalType(Old->getType());
530  QualType NewQType = Context.getCanonicalType(New->getType());
531
532  if (getLangOptions().CPlusPlus) {
533    // (C++98 13.1p2):
534    //   Certain function declarations cannot be overloaded:
535    //     -- Function declarations that differ only in the return type
536    //        cannot be overloaded.
537    QualType OldReturnType
538      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
539    QualType NewReturnType
540      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
541    if (OldReturnType != NewReturnType) {
542      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
543      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
544      return true;
545    }
546
547    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
548    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
549    if (OldMethod && NewMethod) {
550      //    -- Member function declarations with the same name and the
551      //       same parameter types cannot be overloaded if any of them
552      //       is a static member function declaration.
553      if (OldMethod->isStatic() || NewMethod->isStatic()) {
554        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
555        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
556        return true;
557      }
558
559      // C++ [class.mem]p1:
560      //   [...] A member shall not be declared twice in the
561      //   member-specification, except that a nested class or member
562      //   class template can be declared and then later defined.
563      if (OldMethod->getLexicalDeclContext() ==
564            NewMethod->getLexicalDeclContext()) {
565        unsigned NewDiag;
566        if (isa<CXXConstructorDecl>(OldMethod))
567          NewDiag = diag::err_constructor_redeclared;
568        else if (isa<CXXDestructorDecl>(NewMethod))
569          NewDiag = diag::err_destructor_redeclared;
570        else if (isa<CXXConversionDecl>(NewMethod))
571          NewDiag = diag::err_conv_function_redeclared;
572        else
573          NewDiag = diag::err_member_redeclared;
574
575        Diag(New->getLocation(), NewDiag);
576        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
577      }
578    }
579
580    // (C++98 8.3.5p3):
581    //   All declarations for a function shall agree exactly in both the
582    //   return type and the parameter-type-list.
583    if (OldQType == NewQType) {
584      // We have a redeclaration.
585      MergeAttributes(New, Old);
586      return MergeCXXFunctionDecl(New, Old);
587    }
588
589    // Fall through for conflicting redeclarations and redefinitions.
590  }
591
592  // C: Function types need to be compatible, not identical. This handles
593  // duplicate function decls like "void f(int); void f(enum X);" properly.
594  if (!getLangOptions().CPlusPlus &&
595      Context.typesAreCompatible(OldQType, NewQType)) {
596    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
597    const FunctionTypeProto *OldProto = 0;
598    if (isa<FunctionTypeNoProto>(NewFuncType) &&
599        (OldProto = OldQType->getAsFunctionTypeProto())) {
600      // The old declaration provided a function prototype, but the
601      // new declaration does not. Merge in the prototype.
602      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
603                                                 OldProto->arg_type_end());
604      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
605                                         &ParamTypes[0], ParamTypes.size(),
606                                         OldProto->isVariadic(),
607                                         OldProto->getTypeQuals());
608      New->setType(NewQType);
609      New->setInheritedPrototype();
610
611      // Synthesize a parameter for each argument type.
612      llvm::SmallVector<ParmVarDecl*, 16> Params;
613      for (FunctionTypeProto::arg_type_iterator
614             ParamType = OldProto->arg_type_begin(),
615             ParamEnd = OldProto->arg_type_end();
616           ParamType != ParamEnd; ++ParamType) {
617        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
618                                                 SourceLocation(), 0,
619                                                 *ParamType, VarDecl::None,
620                                                 0);
621        Param->setImplicit();
622        Params.push_back(Param);
623      }
624
625      New->setParams(Context, &Params[0], Params.size());
626
627    }
628
629    MergeAttributes(New, Old);
630
631    return false;
632  }
633
634  // A function that has already been declared has been redeclared or defined
635  // with a different type- show appropriate diagnostic
636  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
637    // The user has declared a builtin function with an incompatible
638    // signature.
639    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
640      // The function the user is redeclaring is a library-defined
641      // function like 'malloc' or 'printf'. Warn about the
642      // redeclaration, then ignore it.
643      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
644      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
645        << Old << Old->getType();
646      return false;
647    }
648
649    PrevDiag = diag::note_previous_builtin_declaration;
650  }
651
652  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
653  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
654  return true;
655}
656
657/// Predicate for C "tentative" external object definitions (C99 6.9.2).
658static bool isTentativeDefinition(VarDecl *VD) {
659  if (VD->isFileVarDecl())
660    return (!VD->getInit() &&
661            (VD->getStorageClass() == VarDecl::None ||
662             VD->getStorageClass() == VarDecl::Static));
663  return false;
664}
665
666/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
667/// when dealing with C "tentative" external object definitions (C99 6.9.2).
668void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
669  bool VDIsTentative = isTentativeDefinition(VD);
670  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
671
672  // FIXME: I don't think this will actually see all of the
673  // redefinitions. Can't we check this property on-the-fly?
674  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
675                                    E = IdResolver.end();
676       I != E; ++I) {
677    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
678      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
679
680      // Handle the following case:
681      //   int a[10];
682      //   int a[];   - the code below makes sure we set the correct type.
683      //   int a[11]; - this is an error, size isn't 10.
684      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
685          OldDecl->getType()->isConstantArrayType())
686        VD->setType(OldDecl->getType());
687
688      // Check for "tentative" definitions. We can't accomplish this in
689      // MergeVarDecl since the initializer hasn't been attached.
690      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
691        continue;
692
693      // Handle __private_extern__ just like extern.
694      if (OldDecl->getStorageClass() != VarDecl::Extern &&
695          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
696          VD->getStorageClass() != VarDecl::Extern &&
697          VD->getStorageClass() != VarDecl::PrivateExtern) {
698        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
699        Diag(OldDecl->getLocation(), diag::note_previous_definition);
700        // One redefinition error is enough.
701        break;
702      }
703    }
704  }
705}
706
707/// MergeVarDecl - We just parsed a variable 'New' which has the same name
708/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
709/// situation, merging decls or emitting diagnostics as appropriate.
710///
711/// Tentative definition rules (C99 6.9.2p2) are checked by
712/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
713/// definitions here, since the initializer hasn't been attached.
714///
715bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
716  // Verify the old decl was also a variable.
717  VarDecl *Old = dyn_cast<VarDecl>(OldD);
718  if (!Old) {
719    Diag(New->getLocation(), diag::err_redefinition_different_kind)
720      << New->getDeclName();
721    Diag(OldD->getLocation(), diag::note_previous_definition);
722    return true;
723  }
724
725  MergeAttributes(New, Old);
726
727  // Merge the types
728  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
729  if (MergedT.isNull()) {
730    Diag(New->getLocation(), diag::err_redefinition_different_type)
731      << New->getDeclName();
732    Diag(Old->getLocation(), diag::note_previous_definition);
733    return true;
734  }
735  New->setType(MergedT);
736  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
737  if (New->getStorageClass() == VarDecl::Static &&
738      (Old->getStorageClass() == VarDecl::None ||
739       Old->getStorageClass() == VarDecl::Extern)) {
740    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
741    Diag(Old->getLocation(), diag::note_previous_definition);
742    return true;
743  }
744  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
745  if (New->getStorageClass() != VarDecl::Static &&
746      Old->getStorageClass() == VarDecl::Static) {
747    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
748    Diag(Old->getLocation(), diag::note_previous_definition);
749    return true;
750  }
751  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
752  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
753    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
754    Diag(Old->getLocation(), diag::note_previous_definition);
755    return true;
756  }
757  return false;
758}
759
760/// CheckParmsForFunctionDef - Check that the parameters of the given
761/// function are appropriate for the definition of a function. This
762/// takes care of any checks that cannot be performed on the
763/// declaration itself, e.g., that the types of each of the function
764/// parameters are complete.
765bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
766  bool HasInvalidParm = false;
767  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
768    ParmVarDecl *Param = FD->getParamDecl(p);
769
770    // C99 6.7.5.3p4: the parameters in a parameter type list in a
771    // function declarator that is part of a function definition of
772    // that function shall not have incomplete type.
773    if (!Param->isInvalidDecl() &&
774        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
775                               diag::err_typecheck_decl_incomplete_type)) {
776      Param->setInvalidDecl();
777      HasInvalidParm = true;
778    }
779
780    // C99 6.9.1p5: If the declarator includes a parameter type list, the
781    // declaration of each parameter shall include an identifier.
782    if (Param->getIdentifier() == 0 &&
783        !Param->isImplicit() &&
784        !getLangOptions().CPlusPlus)
785      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
786  }
787
788  return HasInvalidParm;
789}
790
791/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
792/// no declarator (e.g. "struct foo;") is parsed.
793Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
794  TagDecl *Tag = 0;
795  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
796      DS.getTypeSpecType() == DeclSpec::TST_struct ||
797      DS.getTypeSpecType() == DeclSpec::TST_union ||
798      DS.getTypeSpecType() == DeclSpec::TST_enum)
799    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
800
801  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
802    if (!Record->getDeclName() && Record->isDefinition() &&
803        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
804      return BuildAnonymousStructOrUnion(S, DS, Record);
805
806    // Microsoft allows unnamed struct/union fields. Don't complain
807    // about them.
808    // FIXME: Should we support Microsoft's extensions in this area?
809    if (Record->getDeclName() && getLangOptions().Microsoft)
810      return Tag;
811  }
812
813  if (!DS.isMissingDeclaratorOk() &&
814      DS.getTypeSpecType() != DeclSpec::TST_error) {
815    // Warn about typedefs of enums without names, since this is an
816    // extension in both Microsoft an GNU.
817    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
818        Tag && isa<EnumDecl>(Tag)) {
819      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
820        << DS.getSourceRange();
821      return Tag;
822    }
823
824    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
825      << DS.getSourceRange();
826    return 0;
827  }
828
829  return Tag;
830}
831
832/// InjectAnonymousStructOrUnionMembers - Inject the members of the
833/// anonymous struct or union AnonRecord into the owning context Owner
834/// and scope S. This routine will be invoked just after we realize
835/// that an unnamed union or struct is actually an anonymous union or
836/// struct, e.g.,
837///
838/// @code
839/// union {
840///   int i;
841///   float f;
842/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
843///    // f into the surrounding scope.x
844/// @endcode
845///
846/// This routine is recursive, injecting the names of nested anonymous
847/// structs/unions into the owning context and scope as well.
848bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
849                                               RecordDecl *AnonRecord) {
850  bool Invalid = false;
851  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
852                               FEnd = AnonRecord->field_end();
853       F != FEnd; ++F) {
854    if ((*F)->getDeclName()) {
855      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
856                                                LookupOrdinaryName, true);
857      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
858        // C++ [class.union]p2:
859        //   The names of the members of an anonymous union shall be
860        //   distinct from the names of any other entity in the
861        //   scope in which the anonymous union is declared.
862        unsigned diagKind
863          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
864                                 : diag::err_anonymous_struct_member_redecl;
865        Diag((*F)->getLocation(), diagKind)
866          << (*F)->getDeclName();
867        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
868        Invalid = true;
869      } else {
870        // C++ [class.union]p2:
871        //   For the purpose of name lookup, after the anonymous union
872        //   definition, the members of the anonymous union are
873        //   considered to have been defined in the scope in which the
874        //   anonymous union is declared.
875        Owner->makeDeclVisibleInContext(*F);
876        S->AddDecl(*F);
877        IdResolver.AddDecl(*F);
878      }
879    } else if (const RecordType *InnerRecordType
880                 = (*F)->getType()->getAsRecordType()) {
881      RecordDecl *InnerRecord = InnerRecordType->getDecl();
882      if (InnerRecord->isAnonymousStructOrUnion())
883        Invalid = Invalid ||
884          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
885    }
886  }
887
888  return Invalid;
889}
890
891/// ActOnAnonymousStructOrUnion - Handle the declaration of an
892/// anonymous structure or union. Anonymous unions are a C++ feature
893/// (C++ [class.union]) and a GNU C extension; anonymous structures
894/// are a GNU C and GNU C++ extension.
895Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
896                                                RecordDecl *Record) {
897  DeclContext *Owner = Record->getDeclContext();
898
899  // Diagnose whether this anonymous struct/union is an extension.
900  if (Record->isUnion() && !getLangOptions().CPlusPlus)
901    Diag(Record->getLocation(), diag::ext_anonymous_union);
902  else if (!Record->isUnion())
903    Diag(Record->getLocation(), diag::ext_anonymous_struct);
904
905  // C and C++ require different kinds of checks for anonymous
906  // structs/unions.
907  bool Invalid = false;
908  if (getLangOptions().CPlusPlus) {
909    const char* PrevSpec = 0;
910    // C++ [class.union]p3:
911    //   Anonymous unions declared in a named namespace or in the
912    //   global namespace shall be declared static.
913    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
914        (isa<TranslationUnitDecl>(Owner) ||
915         (isa<NamespaceDecl>(Owner) &&
916          cast<NamespaceDecl>(Owner)->getDeclName()))) {
917      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
918      Invalid = true;
919
920      // Recover by adding 'static'.
921      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
922    }
923    // C++ [class.union]p3:
924    //   A storage class is not allowed in a declaration of an
925    //   anonymous union in a class scope.
926    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
927             isa<RecordDecl>(Owner)) {
928      Diag(DS.getStorageClassSpecLoc(),
929           diag::err_anonymous_union_with_storage_spec);
930      Invalid = true;
931
932      // Recover by removing the storage specifier.
933      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
934                             PrevSpec);
935    }
936
937    // C++ [class.union]p2:
938    //   The member-specification of an anonymous union shall only
939    //   define non-static data members. [Note: nested types and
940    //   functions cannot be declared within an anonymous union. ]
941    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
942                                 MemEnd = Record->decls_end();
943         Mem != MemEnd; ++Mem) {
944      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
945        // C++ [class.union]p3:
946        //   An anonymous union shall not have private or protected
947        //   members (clause 11).
948        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
949          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
950            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
951          Invalid = true;
952        }
953      } else if ((*Mem)->isImplicit()) {
954        // Any implicit members are fine.
955      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
956        // This is a type that showed up in an
957        // elaborated-type-specifier inside the anonymous struct or
958        // union, but which actually declares a type outside of the
959        // anonymous struct or union. It's okay.
960      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
961        if (!MemRecord->isAnonymousStructOrUnion() &&
962            MemRecord->getDeclName()) {
963          // This is a nested type declaration.
964          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
965            << (int)Record->isUnion();
966          Invalid = true;
967        }
968      } else {
969        // We have something that isn't a non-static data
970        // member. Complain about it.
971        unsigned DK = diag::err_anonymous_record_bad_member;
972        if (isa<TypeDecl>(*Mem))
973          DK = diag::err_anonymous_record_with_type;
974        else if (isa<FunctionDecl>(*Mem))
975          DK = diag::err_anonymous_record_with_function;
976        else if (isa<VarDecl>(*Mem))
977          DK = diag::err_anonymous_record_with_static;
978        Diag((*Mem)->getLocation(), DK)
979            << (int)Record->isUnion();
980          Invalid = true;
981      }
982    }
983  } else {
984    // FIXME: Check GNU C semantics
985    if (Record->isUnion() && !Owner->isRecord()) {
986      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
987        << (int)getLangOptions().CPlusPlus;
988      Invalid = true;
989    }
990  }
991
992  if (!Record->isUnion() && !Owner->isRecord()) {
993    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
994      << (int)getLangOptions().CPlusPlus;
995    Invalid = true;
996  }
997
998  // Create a declaration for this anonymous struct/union.
999  NamedDecl *Anon = 0;
1000  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1001    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1002                             /*IdentifierInfo=*/0,
1003                             Context.getTypeDeclType(Record),
1004                             /*BitWidth=*/0, /*Mutable=*/false);
1005    Anon->setAccess(AS_public);
1006    if (getLangOptions().CPlusPlus)
1007      FieldCollector->Add(cast<FieldDecl>(Anon));
1008  } else {
1009    VarDecl::StorageClass SC;
1010    switch (DS.getStorageClassSpec()) {
1011    default: assert(0 && "Unknown storage class!");
1012    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1013    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1014    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1015    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1016    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1017    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1018    case DeclSpec::SCS_mutable:
1019      // mutable can only appear on non-static class members, so it's always
1020      // an error here
1021      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1022      Invalid = true;
1023      SC = VarDecl::None;
1024      break;
1025    }
1026
1027    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1028                           /*IdentifierInfo=*/0,
1029                           Context.getTypeDeclType(Record),
1030                           SC, DS.getSourceRange().getBegin());
1031  }
1032  Anon->setImplicit();
1033
1034  // Add the anonymous struct/union object to the current
1035  // context. We'll be referencing this object when we refer to one of
1036  // its members.
1037  Owner->addDecl(Anon);
1038
1039  // Inject the members of the anonymous struct/union into the owning
1040  // context and into the identifier resolver chain for name lookup
1041  // purposes.
1042  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1043    Invalid = true;
1044
1045  // Mark this as an anonymous struct/union type. Note that we do not
1046  // do this until after we have already checked and injected the
1047  // members of this anonymous struct/union type, because otherwise
1048  // the members could be injected twice: once by DeclContext when it
1049  // builds its lookup table, and once by
1050  // InjectAnonymousStructOrUnionMembers.
1051  Record->setAnonymousStructOrUnion(true);
1052
1053  if (Invalid)
1054    Anon->setInvalidDecl();
1055
1056  return Anon;
1057}
1058
1059bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1060                                  bool DirectInit) {
1061  // Get the type before calling CheckSingleAssignmentConstraints(), since
1062  // it can promote the expression.
1063  QualType InitType = Init->getType();
1064
1065  if (getLangOptions().CPlusPlus) {
1066    // FIXME: I dislike this error message. A lot.
1067    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1068      return Diag(Init->getSourceRange().getBegin(),
1069                  diag::err_typecheck_convert_incompatible)
1070        << DeclType << Init->getType() << "initializing"
1071        << Init->getSourceRange();
1072
1073    return false;
1074  }
1075
1076  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1077  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1078                                  InitType, Init, "initializing");
1079}
1080
1081bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1082  const ArrayType *AT = Context.getAsArrayType(DeclT);
1083
1084  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1085    // C99 6.7.8p14. We have an array of character type with unknown size
1086    // being initialized to a string literal.
1087    llvm::APSInt ConstVal(32);
1088    ConstVal = strLiteral->getByteLength() + 1;
1089    // Return a new array type (C99 6.7.8p22).
1090    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1091                                         ArrayType::Normal, 0);
1092  } else {
1093    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1094    // C99 6.7.8p14. We have an array of character type with known size.
1095    // FIXME: Avoid truncation for 64-bit length strings.
1096    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1097      Diag(strLiteral->getSourceRange().getBegin(),
1098           diag::warn_initializer_string_for_char_array_too_long)
1099        << strLiteral->getSourceRange();
1100  }
1101  // Set type from "char *" to "constant array of char".
1102  strLiteral->setType(DeclT);
1103  // For now, we always return false (meaning success).
1104  return false;
1105}
1106
1107StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1108  const ArrayType *AT = Context.getAsArrayType(DeclType);
1109  if (AT && AT->getElementType()->isCharType()) {
1110    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1111  }
1112  return 0;
1113}
1114
1115bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1116                                 SourceLocation InitLoc,
1117                                 DeclarationName InitEntity,
1118                                 bool DirectInit) {
1119  if (DeclType->isDependentType() || Init->isTypeDependent())
1120    return false;
1121
1122  // C++ [dcl.init.ref]p1:
1123  //   A variable declared to be a T&, that is "reference to type T"
1124  //   (8.3.2), shall be initialized by an object, or function, of
1125  //   type T or by an object that can be converted into a T.
1126  if (DeclType->isReferenceType())
1127    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1128
1129  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1130  // of unknown size ("[]") or an object type that is not a variable array type.
1131  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1132    return Diag(InitLoc,  diag::err_variable_object_no_init)
1133      << VAT->getSizeExpr()->getSourceRange();
1134
1135  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1136  if (!InitList) {
1137    // FIXME: Handle wide strings
1138    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1139      return CheckStringLiteralInit(strLiteral, DeclType);
1140
1141    // C++ [dcl.init]p14:
1142    //   -- If the destination type is a (possibly cv-qualified) class
1143    //      type:
1144    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1145      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1146      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1147
1148      //   -- If the initialization is direct-initialization, or if it is
1149      //      copy-initialization where the cv-unqualified version of the
1150      //      source type is the same class as, or a derived class of, the
1151      //      class of the destination, constructors are considered.
1152      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1153          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1154        CXXConstructorDecl *Constructor
1155          = PerformInitializationByConstructor(DeclType, &Init, 1,
1156                                               InitLoc, Init->getSourceRange(),
1157                                               InitEntity,
1158                                               DirectInit? IK_Direct : IK_Copy);
1159        return Constructor == 0;
1160      }
1161
1162      //   -- Otherwise (i.e., for the remaining copy-initialization
1163      //      cases), user-defined conversion sequences that can
1164      //      convert from the source type to the destination type or
1165      //      (when a conversion function is used) to a derived class
1166      //      thereof are enumerated as described in 13.3.1.4, and the
1167      //      best one is chosen through overload resolution
1168      //      (13.3). If the conversion cannot be done or is
1169      //      ambiguous, the initialization is ill-formed. The
1170      //      function selected is called with the initializer
1171      //      expression as its argument; if the function is a
1172      //      constructor, the call initializes a temporary of the
1173      //      destination type.
1174      // FIXME: We're pretending to do copy elision here; return to
1175      // this when we have ASTs for such things.
1176      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1177        return false;
1178
1179      if (InitEntity)
1180        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1181          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1182          << Init->getType() << Init->getSourceRange();
1183      else
1184        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1185          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1186          << Init->getType() << Init->getSourceRange();
1187    }
1188
1189    // C99 6.7.8p16.
1190    if (DeclType->isArrayType())
1191      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1192        << Init->getSourceRange();
1193
1194    return CheckSingleInitializer(Init, DeclType, DirectInit);
1195  }
1196
1197  bool hadError = CheckInitList(InitList, DeclType);
1198  Init = InitList;
1199  return hadError;
1200}
1201
1202/// GetNameForDeclarator - Determine the full declaration name for the
1203/// given Declarator.
1204DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1205  switch (D.getKind()) {
1206  case Declarator::DK_Abstract:
1207    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1208    return DeclarationName();
1209
1210  case Declarator::DK_Normal:
1211    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1212    return DeclarationName(D.getIdentifier());
1213
1214  case Declarator::DK_Constructor: {
1215    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1216    Ty = Context.getCanonicalType(Ty);
1217    return Context.DeclarationNames.getCXXConstructorName(Ty);
1218  }
1219
1220  case Declarator::DK_Destructor: {
1221    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1222    Ty = Context.getCanonicalType(Ty);
1223    return Context.DeclarationNames.getCXXDestructorName(Ty);
1224  }
1225
1226  case Declarator::DK_Conversion: {
1227    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1228    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1229    Ty = Context.getCanonicalType(Ty);
1230    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1231  }
1232
1233  case Declarator::DK_Operator:
1234    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1235    return Context.DeclarationNames.getCXXOperatorName(
1236                                                D.getOverloadedOperator());
1237  }
1238
1239  assert(false && "Unknown name kind");
1240  return DeclarationName();
1241}
1242
1243/// isNearlyMatchingFunction - Determine whether the C++ functions
1244/// Declaration and Definition are "nearly" matching. This heuristic
1245/// is used to improve diagnostics in the case where an out-of-line
1246/// function definition doesn't match any declaration within
1247/// the class or namespace.
1248static bool isNearlyMatchingFunction(ASTContext &Context,
1249                                     FunctionDecl *Declaration,
1250                                     FunctionDecl *Definition) {
1251  if (Declaration->param_size() != Definition->param_size())
1252    return false;
1253  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1254    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1255    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1256
1257    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1258    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1259    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1260      return false;
1261  }
1262
1263  return true;
1264}
1265
1266Sema::DeclTy *
1267Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1268                      bool IsFunctionDefinition) {
1269  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1270  DeclarationName Name = GetNameForDeclarator(D);
1271
1272  // All of these full declarators require an identifier.  If it doesn't have
1273  // one, the ParsedFreeStandingDeclSpec action should be used.
1274  if (!Name) {
1275    if (!D.getInvalidType())  // Reject this if we think it is valid.
1276      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1277           diag::err_declarator_need_ident)
1278        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1279    return 0;
1280  }
1281
1282  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1283  // we find one that is.
1284  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1285         (S->getFlags() & Scope::TemplateParamScope) != 0)
1286    S = S->getParent();
1287
1288  DeclContext *DC;
1289  NamedDecl *PrevDecl;
1290  NamedDecl *New;
1291  bool InvalidDecl = false;
1292
1293  // See if this is a redefinition of a variable in the same scope.
1294  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1295    DC = CurContext;
1296    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1297                          D.getIdentifierLoc());
1298  } else { // Something like "int foo::x;"
1299    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1300    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1301
1302    // C++ 7.3.1.2p2:
1303    // Members (including explicit specializations of templates) of a named
1304    // namespace can also be defined outside that namespace by explicit
1305    // qualification of the name being defined, provided that the entity being
1306    // defined was already declared in the namespace and the definition appears
1307    // after the point of declaration in a namespace that encloses the
1308    // declarations namespace.
1309    //
1310    // Note that we only check the context at this point. We don't yet
1311    // have enough information to make sure that PrevDecl is actually
1312    // the declaration we want to match. For example, given:
1313    //
1314    //   class X {
1315    //     void f();
1316    //     void f(float);
1317    //   };
1318    //
1319    //   void X::f(int) { } // ill-formed
1320    //
1321    // In this case, PrevDecl will point to the overload set
1322    // containing the two f's declared in X, but neither of them
1323    // matches.
1324
1325    // First check whether we named the global scope.
1326    if (isa<TranslationUnitDecl>(DC)) {
1327      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1328        << Name << D.getCXXScopeSpec().getRange();
1329    } else if (!CurContext->Encloses(DC)) {
1330      // The qualifying scope doesn't enclose the original declaration.
1331      // Emit diagnostic based on current scope.
1332      SourceLocation L = D.getIdentifierLoc();
1333      SourceRange R = D.getCXXScopeSpec().getRange();
1334      if (isa<FunctionDecl>(CurContext))
1335        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1336      else
1337        Diag(L, diag::err_invalid_declarator_scope)
1338          << Name << cast<NamedDecl>(DC) << R;
1339      InvalidDecl = true;
1340    }
1341  }
1342
1343  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1344    // Maybe we will complain about the shadowed template parameter.
1345    InvalidDecl = InvalidDecl
1346      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1347    // Just pretend that we didn't see the previous declaration.
1348    PrevDecl = 0;
1349  }
1350
1351  // In C++, the previous declaration we find might be a tag type
1352  // (class or enum). In this case, the new declaration will hide the
1353  // tag type. Note that this does does not apply if we're declaring a
1354  // typedef (C++ [dcl.typedef]p4).
1355  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1356      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1357    PrevDecl = 0;
1358
1359  QualType R = GetTypeForDeclarator(D, S);
1360  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1361
1362  bool Redeclaration = false;
1363  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1364    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1365                                 InvalidDecl, Redeclaration);
1366  } else if (R.getTypePtr()->isFunctionType()) {
1367    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1368                                  IsFunctionDefinition, InvalidDecl,
1369                                  Redeclaration);
1370  } else {
1371    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1372                                  InvalidDecl, Redeclaration);
1373  }
1374
1375  if (New == 0)
1376    return 0;
1377
1378  // Set the lexical context. If the declarator has a C++ scope specifier, the
1379  // lexical context will be different from the semantic context.
1380  New->setLexicalDeclContext(CurContext);
1381
1382  // If this has an identifier and is not an invalid redeclaration,
1383  // add it to the scope stack.
1384  if (Name && !(Redeclaration && InvalidDecl))
1385    PushOnScopeChains(New, S);
1386  // If any semantic error occurred, mark the decl as invalid.
1387  if (D.getInvalidType() || InvalidDecl)
1388    New->setInvalidDecl();
1389
1390  return New;
1391}
1392
1393NamedDecl*
1394Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1395                             QualType R, Decl* LastDeclarator,
1396                             Decl* PrevDecl, bool& InvalidDecl,
1397                             bool &Redeclaration) {
1398  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1399  if (D.getCXXScopeSpec().isSet()) {
1400    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1401      << D.getCXXScopeSpec().getRange();
1402    InvalidDecl = true;
1403    // Pretend we didn't see the scope specifier.
1404    DC = 0;
1405  }
1406
1407  // Check that there are no default arguments (C++ only).
1408  if (getLangOptions().CPlusPlus)
1409    CheckExtraCXXDefaultArguments(D);
1410
1411  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1412  if (!NewTD) return 0;
1413
1414  // Handle attributes prior to checking for duplicates in MergeVarDecl
1415  ProcessDeclAttributes(NewTD, D);
1416  // Merge the decl with the existing one if appropriate. If the decl is
1417  // in an outer scope, it isn't the same thing.
1418  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1419    Redeclaration = true;
1420    if (MergeTypeDefDecl(NewTD, PrevDecl))
1421      InvalidDecl = true;
1422  }
1423
1424  if (S->getFnParent() == 0) {
1425    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1426    // then it shall have block scope.
1427    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1428      if (NewTD->getUnderlyingType()->isVariableArrayType())
1429        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1430      else
1431        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1432
1433      InvalidDecl = true;
1434    }
1435  }
1436  return NewTD;
1437}
1438
1439NamedDecl*
1440Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1441                              QualType R, Decl* LastDeclarator,
1442                              Decl* PrevDecl, bool& InvalidDecl,
1443                              bool &Redeclaration) {
1444  DeclarationName Name = GetNameForDeclarator(D);
1445
1446  // Check that there are no default arguments (C++ only).
1447  if (getLangOptions().CPlusPlus)
1448    CheckExtraCXXDefaultArguments(D);
1449
1450  if (R.getTypePtr()->isObjCInterfaceType()) {
1451    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1452      << D.getIdentifier();
1453    InvalidDecl = true;
1454  }
1455
1456  VarDecl *NewVD;
1457  VarDecl::StorageClass SC;
1458  switch (D.getDeclSpec().getStorageClassSpec()) {
1459  default: assert(0 && "Unknown storage class!");
1460  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1461  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1462  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1463  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1464  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1465  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1466  case DeclSpec::SCS_mutable:
1467    // mutable can only appear on non-static class members, so it's always
1468    // an error here
1469    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1470    InvalidDecl = true;
1471    SC = VarDecl::None;
1472    break;
1473  }
1474
1475  IdentifierInfo *II = Name.getAsIdentifierInfo();
1476  if (!II) {
1477    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1478      << Name.getAsString();
1479    return 0;
1480  }
1481
1482  if (DC->isRecord()) {
1483    // This is a static data member for a C++ class.
1484    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1485                                    D.getIdentifierLoc(), II,
1486                                    R);
1487  } else {
1488    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1489    if (S->getFnParent() == 0) {
1490      // C99 6.9p2: The storage-class specifiers auto and register shall not
1491      // appear in the declaration specifiers in an external declaration.
1492      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1493        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1494        InvalidDecl = true;
1495      }
1496    }
1497    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1498                            II, R, SC,
1499                            // FIXME: Move to DeclGroup...
1500                            D.getDeclSpec().getSourceRange().getBegin());
1501    NewVD->setThreadSpecified(ThreadSpecified);
1502  }
1503  NewVD->setNextDeclarator(LastDeclarator);
1504
1505  // Handle attributes prior to checking for duplicates in MergeVarDecl
1506  ProcessDeclAttributes(NewVD, D);
1507
1508  // Handle GNU asm-label extension (encoded as an attribute).
1509  if (Expr *E = (Expr*) D.getAsmLabel()) {
1510    // The parser guarantees this is a string.
1511    StringLiteral *SE = cast<StringLiteral>(E);
1512    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1513                                                SE->getByteLength())));
1514  }
1515
1516  // Emit an error if an address space was applied to decl with local storage.
1517  // This includes arrays of objects with address space qualifiers, but not
1518  // automatic variables that point to other address spaces.
1519  // ISO/IEC TR 18037 S5.1.2
1520  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1521    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1522    InvalidDecl = true;
1523  }
1524  // Merge the decl with the existing one if appropriate. If the decl is
1525  // in an outer scope, it isn't the same thing.
1526  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1527    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1528      // The user tried to define a non-static data member
1529      // out-of-line (C++ [dcl.meaning]p1).
1530      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1531        << D.getCXXScopeSpec().getRange();
1532      NewVD->Destroy(Context);
1533      return 0;
1534    }
1535
1536    Redeclaration = true;
1537    if (MergeVarDecl(NewVD, PrevDecl))
1538      InvalidDecl = true;
1539
1540    if (D.getCXXScopeSpec().isSet()) {
1541      // No previous declaration in the qualifying scope.
1542      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1543        << Name << D.getCXXScopeSpec().getRange();
1544      InvalidDecl = true;
1545    }
1546  }
1547  return NewVD;
1548}
1549
1550NamedDecl*
1551Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1552                              QualType R, Decl *LastDeclarator,
1553                              Decl* PrevDecl, bool IsFunctionDefinition,
1554                              bool& InvalidDecl, bool &Redeclaration) {
1555  assert(R.getTypePtr()->isFunctionType());
1556
1557  DeclarationName Name = GetNameForDeclarator(D);
1558  FunctionDecl::StorageClass SC = FunctionDecl::None;
1559  switch (D.getDeclSpec().getStorageClassSpec()) {
1560  default: assert(0 && "Unknown storage class!");
1561  case DeclSpec::SCS_auto:
1562  case DeclSpec::SCS_register:
1563  case DeclSpec::SCS_mutable:
1564    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1565    InvalidDecl = true;
1566    break;
1567  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1568  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1569  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1570  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1571  }
1572
1573  bool isInline = D.getDeclSpec().isInlineSpecified();
1574  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1575  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1576
1577  FunctionDecl *NewFD;
1578  if (D.getKind() == Declarator::DK_Constructor) {
1579    // This is a C++ constructor declaration.
1580    assert(DC->isRecord() &&
1581           "Constructors can only be declared in a member context");
1582
1583    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1584
1585    // Create the new declaration
1586    NewFD = CXXConstructorDecl::Create(Context,
1587                                       cast<CXXRecordDecl>(DC),
1588                                       D.getIdentifierLoc(), Name, R,
1589                                       isExplicit, isInline,
1590                                       /*isImplicitlyDeclared=*/false);
1591
1592    if (InvalidDecl)
1593      NewFD->setInvalidDecl();
1594  } else if (D.getKind() == Declarator::DK_Destructor) {
1595    // This is a C++ destructor declaration.
1596    if (DC->isRecord()) {
1597      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1598
1599      NewFD = CXXDestructorDecl::Create(Context,
1600                                        cast<CXXRecordDecl>(DC),
1601                                        D.getIdentifierLoc(), Name, R,
1602                                        isInline,
1603                                        /*isImplicitlyDeclared=*/false);
1604
1605      if (InvalidDecl)
1606        NewFD->setInvalidDecl();
1607    } else {
1608      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1609
1610      // Create a FunctionDecl to satisfy the function definition parsing
1611      // code path.
1612      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1613                                   Name, R, SC, isInline,
1614                                   // FIXME: Move to DeclGroup...
1615                                   D.getDeclSpec().getSourceRange().getBegin());
1616      InvalidDecl = true;
1617      NewFD->setInvalidDecl();
1618    }
1619  } else if (D.getKind() == Declarator::DK_Conversion) {
1620    if (!DC->isRecord()) {
1621      Diag(D.getIdentifierLoc(),
1622           diag::err_conv_function_not_member);
1623      return 0;
1624    } else {
1625      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1626
1627      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1628                                        D.getIdentifierLoc(), Name, R,
1629                                        isInline, isExplicit);
1630
1631      if (InvalidDecl)
1632        NewFD->setInvalidDecl();
1633    }
1634  } else if (DC->isRecord()) {
1635    // This is a C++ method declaration.
1636    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1637                                  D.getIdentifierLoc(), Name, R,
1638                                  (SC == FunctionDecl::Static), isInline);
1639  } else {
1640    NewFD = FunctionDecl::Create(Context, DC,
1641                                 D.getIdentifierLoc(),
1642                                 Name, R, SC, isInline,
1643                                 // FIXME: Move to DeclGroup...
1644                                 D.getDeclSpec().getSourceRange().getBegin());
1645  }
1646  NewFD->setNextDeclarator(LastDeclarator);
1647
1648  // Set the lexical context. If the declarator has a C++
1649  // scope specifier, the lexical context will be different
1650  // from the semantic context.
1651  NewFD->setLexicalDeclContext(CurContext);
1652
1653  // Handle GNU asm-label extension (encoded as an attribute).
1654  if (Expr *E = (Expr*) D.getAsmLabel()) {
1655    // The parser guarantees this is a string.
1656    StringLiteral *SE = cast<StringLiteral>(E);
1657    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1658                                                SE->getByteLength())));
1659  }
1660
1661  // Copy the parameter declarations from the declarator D to
1662  // the function declaration NewFD, if they are available.
1663  if (D.getNumTypeObjects() > 0) {
1664    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1665
1666    // Create Decl objects for each parameter, adding them to the
1667    // FunctionDecl.
1668    llvm::SmallVector<ParmVarDecl*, 16> Params;
1669
1670    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1671    // function that takes no arguments, not a function that takes a
1672    // single void argument.
1673    // We let through "const void" here because Sema::GetTypeForDeclarator
1674    // already checks for that case.
1675    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1676        FTI.ArgInfo[0].Param &&
1677        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1678      // empty arg list, don't push any params.
1679      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1680
1681      // In C++, the empty parameter-type-list must be spelled "void"; a
1682      // typedef of void is not permitted.
1683      if (getLangOptions().CPlusPlus &&
1684          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1685        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1686      }
1687    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1688      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1689        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1690    }
1691
1692    NewFD->setParams(Context, &Params[0], Params.size());
1693  } else if (R->getAsTypedefType()) {
1694    // When we're declaring a function with a typedef, as in the
1695    // following example, we'll need to synthesize (unnamed)
1696    // parameters for use in the declaration.
1697    //
1698    // @code
1699    // typedef void fn(int);
1700    // fn f;
1701    // @endcode
1702    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1703    if (!FT) {
1704      // This is a typedef of a function with no prototype, so we
1705      // don't need to do anything.
1706    } else if ((FT->getNumArgs() == 0) ||
1707               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1708                FT->getArgType(0)->isVoidType())) {
1709      // This is a zero-argument function. We don't need to do anything.
1710    } else {
1711      // Synthesize a parameter for each argument type.
1712      llvm::SmallVector<ParmVarDecl*, 16> Params;
1713      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1714           ArgType != FT->arg_type_end(); ++ArgType) {
1715        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1716                                                 SourceLocation(), 0,
1717                                                 *ArgType, VarDecl::None,
1718                                                 0);
1719        Param->setImplicit();
1720        Params.push_back(Param);
1721      }
1722
1723      NewFD->setParams(Context, &Params[0], Params.size());
1724    }
1725  }
1726
1727  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1728    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1729  else if (isa<CXXDestructorDecl>(NewFD)) {
1730    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1731    Record->setUserDeclaredDestructor(true);
1732    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1733    // user-defined destructor.
1734    Record->setPOD(false);
1735  } else if (CXXConversionDecl *Conversion =
1736             dyn_cast<CXXConversionDecl>(NewFD))
1737    ActOnConversionDeclarator(Conversion);
1738
1739  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1740  if (NewFD->isOverloadedOperator() &&
1741      CheckOverloadedOperatorDeclaration(NewFD))
1742    NewFD->setInvalidDecl();
1743
1744  // Merge the decl with the existing one if appropriate. Since C functions
1745  // are in a flat namespace, make sure we consider decls in outer scopes.
1746  bool OverloadableAttrRequired = false;
1747  if (PrevDecl &&
1748      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1749    // Determine whether NewFD is an overload of PrevDecl or
1750    // a declaration that requires merging. If it's an overload,
1751    // there's no more work to do here; we'll just add the new
1752    // function to the scope.
1753    OverloadedFunctionDecl::function_iterator MatchedDecl;
1754
1755    if (!getLangOptions().CPlusPlus &&
1756        AllowOverloadingOfFunction(PrevDecl, Context))
1757      OverloadableAttrRequired = true;
1758
1759    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1760        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1761      Redeclaration = true;
1762      Decl *OldDecl = PrevDecl;
1763
1764      // If PrevDecl was an overloaded function, extract the
1765      // FunctionDecl that matched.
1766      if (isa<OverloadedFunctionDecl>(PrevDecl))
1767        OldDecl = *MatchedDecl;
1768
1769      // NewFD and PrevDecl represent declarations that need to be
1770      // merged.
1771      if (MergeFunctionDecl(NewFD, OldDecl))
1772        InvalidDecl = true;
1773
1774      if (!InvalidDecl) {
1775        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1776
1777        // An out-of-line member function declaration must also be a
1778        // definition (C++ [dcl.meaning]p1).
1779        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1780            !InvalidDecl) {
1781          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1782            << D.getCXXScopeSpec().getRange();
1783          NewFD->setInvalidDecl();
1784        }
1785      }
1786    }
1787  }
1788
1789  if (D.getCXXScopeSpec().isSet() &&
1790      (!PrevDecl || !Redeclaration)) {
1791    // The user tried to provide an out-of-line definition for a
1792    // function that is a member of a class or namespace, but there
1793    // was no such member function declared (C++ [class.mfct]p2,
1794    // C++ [namespace.memdef]p2). For example:
1795    //
1796    // class X {
1797    //   void f() const;
1798    // };
1799    //
1800    // void X::f() { } // ill-formed
1801    //
1802    // Complain about this problem, and attempt to suggest close
1803    // matches (e.g., those that differ only in cv-qualifiers and
1804    // whether the parameter types are references).
1805    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1806      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1807    InvalidDecl = true;
1808
1809    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1810                                            true);
1811    assert(!Prev.isAmbiguous() &&
1812           "Cannot have an ambiguity in previous-declaration lookup");
1813    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1814         Func != FuncEnd; ++Func) {
1815      if (isa<FunctionDecl>(*Func) &&
1816          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1817        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1818    }
1819
1820    PrevDecl = 0;
1821  }
1822
1823  // Handle attributes. We need to have merged decls when handling attributes
1824  // (for example to check for conflicts, etc).
1825  ProcessDeclAttributes(NewFD, D);
1826  AddKnownFunctionAttributes(NewFD);
1827
1828  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1829    // If a function name is overloadable in C, then every function
1830    // with that name must be marked "overloadable".
1831    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1832      << Redeclaration << NewFD;
1833    if (PrevDecl)
1834      Diag(PrevDecl->getLocation(),
1835           diag::note_attribute_overloadable_prev_overload);
1836    NewFD->addAttr(new OverloadableAttr);
1837  }
1838
1839  if (getLangOptions().CPlusPlus) {
1840    // In C++, check default arguments now that we have merged decls. Unless
1841    // the lexical context is the class, because in this case this is done
1842    // during delayed parsing anyway.
1843    if (!CurContext->isRecord())
1844      CheckCXXDefaultArguments(NewFD);
1845
1846    // An out-of-line member function declaration must also be a
1847    // definition (C++ [dcl.meaning]p1).
1848    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1849      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1850        << D.getCXXScopeSpec().getRange();
1851      InvalidDecl = true;
1852    }
1853  }
1854  return NewFD;
1855}
1856
1857void Sema::InitializerElementNotConstant(const Expr *Init) {
1858  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1859    << Init->getSourceRange();
1860}
1861
1862bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1863  switch (Init->getStmtClass()) {
1864  default:
1865    InitializerElementNotConstant(Init);
1866    return true;
1867  case Expr::ParenExprClass: {
1868    const ParenExpr* PE = cast<ParenExpr>(Init);
1869    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1870  }
1871  case Expr::CompoundLiteralExprClass:
1872    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1873  case Expr::DeclRefExprClass:
1874  case Expr::QualifiedDeclRefExprClass: {
1875    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1876    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1877      if (VD->hasGlobalStorage())
1878        return false;
1879      InitializerElementNotConstant(Init);
1880      return true;
1881    }
1882    if (isa<FunctionDecl>(D))
1883      return false;
1884    InitializerElementNotConstant(Init);
1885    return true;
1886  }
1887  case Expr::MemberExprClass: {
1888    const MemberExpr *M = cast<MemberExpr>(Init);
1889    if (M->isArrow())
1890      return CheckAddressConstantExpression(M->getBase());
1891    return CheckAddressConstantExpressionLValue(M->getBase());
1892  }
1893  case Expr::ArraySubscriptExprClass: {
1894    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1895    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1896    return CheckAddressConstantExpression(ASE->getBase()) ||
1897           CheckArithmeticConstantExpression(ASE->getIdx());
1898  }
1899  case Expr::StringLiteralClass:
1900  case Expr::PredefinedExprClass:
1901    return false;
1902  case Expr::UnaryOperatorClass: {
1903    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1904
1905    // C99 6.6p9
1906    if (Exp->getOpcode() == UnaryOperator::Deref)
1907      return CheckAddressConstantExpression(Exp->getSubExpr());
1908
1909    InitializerElementNotConstant(Init);
1910    return true;
1911  }
1912  }
1913}
1914
1915bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1916  switch (Init->getStmtClass()) {
1917  default:
1918    InitializerElementNotConstant(Init);
1919    return true;
1920  case Expr::ParenExprClass:
1921    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1922  case Expr::StringLiteralClass:
1923  case Expr::ObjCStringLiteralClass:
1924    return false;
1925  case Expr::CallExprClass:
1926  case Expr::CXXOperatorCallExprClass:
1927    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1928    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1929           Builtin::BI__builtin___CFStringMakeConstantString)
1930      return false;
1931
1932    InitializerElementNotConstant(Init);
1933    return true;
1934
1935  case Expr::UnaryOperatorClass: {
1936    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1937
1938    // C99 6.6p9
1939    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1940      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1941
1942    if (Exp->getOpcode() == UnaryOperator::Extension)
1943      return CheckAddressConstantExpression(Exp->getSubExpr());
1944
1945    InitializerElementNotConstant(Init);
1946    return true;
1947  }
1948  case Expr::BinaryOperatorClass: {
1949    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1950    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1951
1952    Expr *PExp = Exp->getLHS();
1953    Expr *IExp = Exp->getRHS();
1954    if (IExp->getType()->isPointerType())
1955      std::swap(PExp, IExp);
1956
1957    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1958    return CheckAddressConstantExpression(PExp) ||
1959           CheckArithmeticConstantExpression(IExp);
1960  }
1961  case Expr::ImplicitCastExprClass:
1962  case Expr::CStyleCastExprClass: {
1963    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1964    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1965      // Check for implicit promotion
1966      if (SubExpr->getType()->isFunctionType() ||
1967          SubExpr->getType()->isArrayType())
1968        return CheckAddressConstantExpressionLValue(SubExpr);
1969    }
1970
1971    // Check for pointer->pointer cast
1972    if (SubExpr->getType()->isPointerType())
1973      return CheckAddressConstantExpression(SubExpr);
1974
1975    if (SubExpr->getType()->isIntegralType()) {
1976      // Check for the special-case of a pointer->int->pointer cast;
1977      // this isn't standard, but some code requires it. See
1978      // PR2720 for an example.
1979      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1980        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1981          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1982          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1983          if (IntWidth >= PointerWidth) {
1984            return CheckAddressConstantExpression(SubCast->getSubExpr());
1985          }
1986        }
1987      }
1988    }
1989    if (SubExpr->getType()->isArithmeticType()) {
1990      return CheckArithmeticConstantExpression(SubExpr);
1991    }
1992
1993    InitializerElementNotConstant(Init);
1994    return true;
1995  }
1996  case Expr::ConditionalOperatorClass: {
1997    // FIXME: Should we pedwarn here?
1998    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1999    if (!Exp->getCond()->getType()->isArithmeticType()) {
2000      InitializerElementNotConstant(Init);
2001      return true;
2002    }
2003    if (CheckArithmeticConstantExpression(Exp->getCond()))
2004      return true;
2005    if (Exp->getLHS() &&
2006        CheckAddressConstantExpression(Exp->getLHS()))
2007      return true;
2008    return CheckAddressConstantExpression(Exp->getRHS());
2009  }
2010  case Expr::AddrLabelExprClass:
2011    return false;
2012  }
2013}
2014
2015static const Expr* FindExpressionBaseAddress(const Expr* E);
2016
2017static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2018  switch (E->getStmtClass()) {
2019  default:
2020    return E;
2021  case Expr::ParenExprClass: {
2022    const ParenExpr* PE = cast<ParenExpr>(E);
2023    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2024  }
2025  case Expr::MemberExprClass: {
2026    const MemberExpr *M = cast<MemberExpr>(E);
2027    if (M->isArrow())
2028      return FindExpressionBaseAddress(M->getBase());
2029    return FindExpressionBaseAddressLValue(M->getBase());
2030  }
2031  case Expr::ArraySubscriptExprClass: {
2032    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2033    return FindExpressionBaseAddress(ASE->getBase());
2034  }
2035  case Expr::UnaryOperatorClass: {
2036    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2037
2038    if (Exp->getOpcode() == UnaryOperator::Deref)
2039      return FindExpressionBaseAddress(Exp->getSubExpr());
2040
2041    return E;
2042  }
2043  }
2044}
2045
2046static const Expr* FindExpressionBaseAddress(const Expr* E) {
2047  switch (E->getStmtClass()) {
2048  default:
2049    return E;
2050  case Expr::ParenExprClass: {
2051    const ParenExpr* PE = cast<ParenExpr>(E);
2052    return FindExpressionBaseAddress(PE->getSubExpr());
2053  }
2054  case Expr::UnaryOperatorClass: {
2055    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2056
2057    // C99 6.6p9
2058    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2059      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2060
2061    if (Exp->getOpcode() == UnaryOperator::Extension)
2062      return FindExpressionBaseAddress(Exp->getSubExpr());
2063
2064    return E;
2065  }
2066  case Expr::BinaryOperatorClass: {
2067    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2068
2069    Expr *PExp = Exp->getLHS();
2070    Expr *IExp = Exp->getRHS();
2071    if (IExp->getType()->isPointerType())
2072      std::swap(PExp, IExp);
2073
2074    return FindExpressionBaseAddress(PExp);
2075  }
2076  case Expr::ImplicitCastExprClass: {
2077    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2078
2079    // Check for implicit promotion
2080    if (SubExpr->getType()->isFunctionType() ||
2081        SubExpr->getType()->isArrayType())
2082      return FindExpressionBaseAddressLValue(SubExpr);
2083
2084    // Check for pointer->pointer cast
2085    if (SubExpr->getType()->isPointerType())
2086      return FindExpressionBaseAddress(SubExpr);
2087
2088    // We assume that we have an arithmetic expression here;
2089    // if we don't, we'll figure it out later
2090    return 0;
2091  }
2092  case Expr::CStyleCastExprClass: {
2093    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2094
2095    // Check for pointer->pointer cast
2096    if (SubExpr->getType()->isPointerType())
2097      return FindExpressionBaseAddress(SubExpr);
2098
2099    // We assume that we have an arithmetic expression here;
2100    // if we don't, we'll figure it out later
2101    return 0;
2102  }
2103  }
2104}
2105
2106bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2107  switch (Init->getStmtClass()) {
2108  default:
2109    InitializerElementNotConstant(Init);
2110    return true;
2111  case Expr::ParenExprClass: {
2112    const ParenExpr* PE = cast<ParenExpr>(Init);
2113    return CheckArithmeticConstantExpression(PE->getSubExpr());
2114  }
2115  case Expr::FloatingLiteralClass:
2116  case Expr::IntegerLiteralClass:
2117  case Expr::CharacterLiteralClass:
2118  case Expr::ImaginaryLiteralClass:
2119  case Expr::TypesCompatibleExprClass:
2120  case Expr::CXXBoolLiteralExprClass:
2121    return false;
2122  case Expr::CallExprClass:
2123  case Expr::CXXOperatorCallExprClass: {
2124    const CallExpr *CE = cast<CallExpr>(Init);
2125
2126    // Allow any constant foldable calls to builtins.
2127    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2128      return false;
2129
2130    InitializerElementNotConstant(Init);
2131    return true;
2132  }
2133  case Expr::DeclRefExprClass:
2134  case Expr::QualifiedDeclRefExprClass: {
2135    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2136    if (isa<EnumConstantDecl>(D))
2137      return false;
2138    InitializerElementNotConstant(Init);
2139    return true;
2140  }
2141  case Expr::CompoundLiteralExprClass:
2142    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2143    // but vectors are allowed to be magic.
2144    if (Init->getType()->isVectorType())
2145      return false;
2146    InitializerElementNotConstant(Init);
2147    return true;
2148  case Expr::UnaryOperatorClass: {
2149    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2150
2151    switch (Exp->getOpcode()) {
2152    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2153    // See C99 6.6p3.
2154    default:
2155      InitializerElementNotConstant(Init);
2156      return true;
2157    case UnaryOperator::OffsetOf:
2158      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2159        return false;
2160      InitializerElementNotConstant(Init);
2161      return true;
2162    case UnaryOperator::Extension:
2163    case UnaryOperator::LNot:
2164    case UnaryOperator::Plus:
2165    case UnaryOperator::Minus:
2166    case UnaryOperator::Not:
2167      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2168    }
2169  }
2170  case Expr::SizeOfAlignOfExprClass: {
2171    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2172    // Special check for void types, which are allowed as an extension
2173    if (Exp->getTypeOfArgument()->isVoidType())
2174      return false;
2175    // alignof always evaluates to a constant.
2176    // FIXME: is sizeof(int[3.0]) a constant expression?
2177    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2178      InitializerElementNotConstant(Init);
2179      return true;
2180    }
2181    return false;
2182  }
2183  case Expr::BinaryOperatorClass: {
2184    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2185
2186    if (Exp->getLHS()->getType()->isArithmeticType() &&
2187        Exp->getRHS()->getType()->isArithmeticType()) {
2188      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2189             CheckArithmeticConstantExpression(Exp->getRHS());
2190    }
2191
2192    if (Exp->getLHS()->getType()->isPointerType() &&
2193        Exp->getRHS()->getType()->isPointerType()) {
2194      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2195      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2196
2197      // Only allow a null (constant integer) base; we could
2198      // allow some additional cases if necessary, but this
2199      // is sufficient to cover offsetof-like constructs.
2200      if (!LHSBase && !RHSBase) {
2201        return CheckAddressConstantExpression(Exp->getLHS()) ||
2202               CheckAddressConstantExpression(Exp->getRHS());
2203      }
2204    }
2205
2206    InitializerElementNotConstant(Init);
2207    return true;
2208  }
2209  case Expr::ImplicitCastExprClass:
2210  case Expr::CStyleCastExprClass: {
2211    const CastExpr *CE = cast<CastExpr>(Init);
2212    const Expr *SubExpr = CE->getSubExpr();
2213
2214    if (SubExpr->getType()->isArithmeticType())
2215      return CheckArithmeticConstantExpression(SubExpr);
2216
2217    if (SubExpr->getType()->isPointerType()) {
2218      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2219      if (Base) {
2220        // the cast is only valid if done to a wide enough type
2221        if (Context.getTypeSize(CE->getType()) >=
2222            Context.getTypeSize(SubExpr->getType()))
2223          return false;
2224      } else {
2225        // If the pointer has a null base, this is an offsetof-like construct
2226        return CheckAddressConstantExpression(SubExpr);
2227      }
2228    }
2229
2230    InitializerElementNotConstant(Init);
2231    return true;
2232  }
2233  case Expr::ConditionalOperatorClass: {
2234    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2235
2236    // If GNU extensions are disabled, we require all operands to be arithmetic
2237    // constant expressions.
2238    if (getLangOptions().NoExtensions) {
2239      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2240          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2241             CheckArithmeticConstantExpression(Exp->getRHS());
2242    }
2243
2244    // Otherwise, we have to emulate some of the behavior of fold here.
2245    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2246    // because it can constant fold things away.  To retain compatibility with
2247    // GCC code, we see if we can fold the condition to a constant (which we
2248    // should always be able to do in theory).  If so, we only require the
2249    // specified arm of the conditional to be a constant.  This is a horrible
2250    // hack, but is require by real world code that uses __builtin_constant_p.
2251    Expr::EvalResult EvalResult;
2252    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2253        EvalResult.HasSideEffects) {
2254      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2255      // won't be able to either.  Use it to emit the diagnostic though.
2256      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2257      assert(Res && "Evaluate couldn't evaluate this constant?");
2258      return Res;
2259    }
2260
2261    // Verify that the side following the condition is also a constant.
2262    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2263    if (EvalResult.Val.getInt() == 0)
2264      std::swap(TrueSide, FalseSide);
2265
2266    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2267      return true;
2268
2269    // Okay, the evaluated side evaluates to a constant, so we accept this.
2270    // Check to see if the other side is obviously not a constant.  If so,
2271    // emit a warning that this is a GNU extension.
2272    if (FalseSide && !FalseSide->isEvaluatable(Context))
2273      Diag(Init->getExprLoc(),
2274           diag::ext_typecheck_expression_not_constant_but_accepted)
2275        << FalseSide->getSourceRange();
2276    return false;
2277  }
2278  }
2279}
2280
2281bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2282  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2283    Init = DIE->getInit();
2284
2285  Init = Init->IgnoreParens();
2286
2287  if (Init->isEvaluatable(Context))
2288    return false;
2289
2290  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2291  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2292    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2293
2294  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2295    return CheckForConstantInitializer(e->getInitializer(), DclT);
2296
2297  if (isa<ImplicitValueInitExpr>(Init)) {
2298    // FIXME: In C++, check for non-POD types.
2299    return false;
2300  }
2301
2302  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2303    unsigned numInits = Exp->getNumInits();
2304    for (unsigned i = 0; i < numInits; i++) {
2305      // FIXME: Need to get the type of the declaration for C++,
2306      // because it could be a reference?
2307
2308      if (CheckForConstantInitializer(Exp->getInit(i),
2309                                      Exp->getInit(i)->getType()))
2310        return true;
2311    }
2312    return false;
2313  }
2314
2315  // FIXME: We can probably remove some of this code below, now that
2316  // Expr::Evaluate is doing the heavy lifting for scalars.
2317
2318  if (Init->isNullPointerConstant(Context))
2319    return false;
2320  if (Init->getType()->isArithmeticType()) {
2321    QualType InitTy = Context.getCanonicalType(Init->getType())
2322                             .getUnqualifiedType();
2323    if (InitTy == Context.BoolTy) {
2324      // Special handling for pointers implicitly cast to bool;
2325      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2326      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2327        Expr* SubE = ICE->getSubExpr();
2328        if (SubE->getType()->isPointerType() ||
2329            SubE->getType()->isArrayType() ||
2330            SubE->getType()->isFunctionType()) {
2331          return CheckAddressConstantExpression(Init);
2332        }
2333      }
2334    } else if (InitTy->isIntegralType()) {
2335      Expr* SubE = 0;
2336      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2337        SubE = CE->getSubExpr();
2338      // Special check for pointer cast to int; we allow as an extension
2339      // an address constant cast to an integer if the integer
2340      // is of an appropriate width (this sort of code is apparently used
2341      // in some places).
2342      // FIXME: Add pedwarn?
2343      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2344      if (SubE && (SubE->getType()->isPointerType() ||
2345                   SubE->getType()->isArrayType() ||
2346                   SubE->getType()->isFunctionType())) {
2347        unsigned IntWidth = Context.getTypeSize(Init->getType());
2348        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2349        if (IntWidth >= PointerWidth)
2350          return CheckAddressConstantExpression(Init);
2351      }
2352    }
2353
2354    return CheckArithmeticConstantExpression(Init);
2355  }
2356
2357  if (Init->getType()->isPointerType())
2358    return CheckAddressConstantExpression(Init);
2359
2360  // An array type at the top level that isn't an init-list must
2361  // be a string literal
2362  if (Init->getType()->isArrayType())
2363    return false;
2364
2365  if (Init->getType()->isFunctionType())
2366    return false;
2367
2368  // Allow block exprs at top level.
2369  if (Init->getType()->isBlockPointerType())
2370    return false;
2371
2372  // GCC cast to union extension
2373  // note: the validity of the cast expr is checked by CheckCastTypes()
2374  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2375    QualType T = C->getType();
2376    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2377  }
2378
2379  InitializerElementNotConstant(Init);
2380  return true;
2381}
2382
2383void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2384  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2385}
2386
2387/// AddInitializerToDecl - Adds the initializer Init to the
2388/// declaration dcl. If DirectInit is true, this is C++ direct
2389/// initialization rather than copy initialization.
2390void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2391  Decl *RealDecl = static_cast<Decl *>(dcl);
2392  Expr *Init = static_cast<Expr *>(init.release());
2393  assert(Init && "missing initializer");
2394
2395  // If there is no declaration, there was an error parsing it.  Just ignore
2396  // the initializer.
2397  if (RealDecl == 0) {
2398    Init->Destroy(Context);
2399    return;
2400  }
2401
2402  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2403  if (!VDecl) {
2404    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2405    RealDecl->setInvalidDecl();
2406    return;
2407  }
2408  // Get the decls type and save a reference for later, since
2409  // CheckInitializerTypes may change it.
2410  QualType DclT = VDecl->getType(), SavT = DclT;
2411  if (VDecl->isBlockVarDecl()) {
2412    VarDecl::StorageClass SC = VDecl->getStorageClass();
2413    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2414      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2415      VDecl->setInvalidDecl();
2416    } else if (!VDecl->isInvalidDecl()) {
2417      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2418                                VDecl->getDeclName(), DirectInit))
2419        VDecl->setInvalidDecl();
2420
2421      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2422      if (!getLangOptions().CPlusPlus) {
2423        if (SC == VarDecl::Static) // C99 6.7.8p4.
2424          CheckForConstantInitializer(Init, DclT);
2425      }
2426    }
2427  } else if (VDecl->isFileVarDecl()) {
2428    if (VDecl->getStorageClass() == VarDecl::Extern)
2429      Diag(VDecl->getLocation(), diag::warn_extern_init);
2430    if (!VDecl->isInvalidDecl())
2431      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2432                                VDecl->getDeclName(), DirectInit))
2433        VDecl->setInvalidDecl();
2434
2435    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2436    if (!getLangOptions().CPlusPlus) {
2437      // C99 6.7.8p4. All file scoped initializers need to be constant.
2438      CheckForConstantInitializer(Init, DclT);
2439    }
2440  }
2441  // If the type changed, it means we had an incomplete type that was
2442  // completed by the initializer. For example:
2443  //   int ary[] = { 1, 3, 5 };
2444  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2445  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2446    VDecl->setType(DclT);
2447    Init->setType(DclT);
2448  }
2449
2450  // Attach the initializer to the decl.
2451  VDecl->setInit(Init);
2452  return;
2453}
2454
2455void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2456  Decl *RealDecl = static_cast<Decl *>(dcl);
2457
2458  // If there is no declaration, there was an error parsing it. Just ignore it.
2459  if (RealDecl == 0)
2460    return;
2461
2462  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2463    QualType Type = Var->getType();
2464    // C++ [dcl.init.ref]p3:
2465    //   The initializer can be omitted for a reference only in a
2466    //   parameter declaration (8.3.5), in the declaration of a
2467    //   function return type, in the declaration of a class member
2468    //   within its class declaration (9.2), and where the extern
2469    //   specifier is explicitly used.
2470    if (Type->isReferenceType() &&
2471        Var->getStorageClass() != VarDecl::Extern &&
2472        Var->getStorageClass() != VarDecl::PrivateExtern) {
2473      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2474        << Var->getDeclName()
2475        << SourceRange(Var->getLocation(), Var->getLocation());
2476      Var->setInvalidDecl();
2477      return;
2478    }
2479
2480    // C++ [dcl.init]p9:
2481    //
2482    //   If no initializer is specified for an object, and the object
2483    //   is of (possibly cv-qualified) non-POD class type (or array
2484    //   thereof), the object shall be default-initialized; if the
2485    //   object is of const-qualified type, the underlying class type
2486    //   shall have a user-declared default constructor.
2487    if (getLangOptions().CPlusPlus) {
2488      QualType InitType = Type;
2489      if (const ArrayType *Array = Context.getAsArrayType(Type))
2490        InitType = Array->getElementType();
2491      if (Var->getStorageClass() != VarDecl::Extern &&
2492          Var->getStorageClass() != VarDecl::PrivateExtern &&
2493          InitType->isRecordType()) {
2494        const CXXConstructorDecl *Constructor
2495          = PerformInitializationByConstructor(InitType, 0, 0,
2496                                               Var->getLocation(),
2497                                               SourceRange(Var->getLocation(),
2498                                                           Var->getLocation()),
2499                                               Var->getDeclName(),
2500                                               IK_Default);
2501        if (!Constructor)
2502          Var->setInvalidDecl();
2503      }
2504    }
2505
2506#if 0
2507    // FIXME: Temporarily disabled because we are not properly parsing
2508    // linkage specifications on declarations, e.g.,
2509    //
2510    //   extern "C" const CGPoint CGPointerZero;
2511    //
2512    // C++ [dcl.init]p9:
2513    //
2514    //     If no initializer is specified for an object, and the
2515    //     object is of (possibly cv-qualified) non-POD class type (or
2516    //     array thereof), the object shall be default-initialized; if
2517    //     the object is of const-qualified type, the underlying class
2518    //     type shall have a user-declared default
2519    //     constructor. Otherwise, if no initializer is specified for
2520    //     an object, the object and its subobjects, if any, have an
2521    //     indeterminate initial value; if the object or any of its
2522    //     subobjects are of const-qualified type, the program is
2523    //     ill-formed.
2524    //
2525    // This isn't technically an error in C, so we don't diagnose it.
2526    //
2527    // FIXME: Actually perform the POD/user-defined default
2528    // constructor check.
2529    if (getLangOptions().CPlusPlus &&
2530        Context.getCanonicalType(Type).isConstQualified() &&
2531        Var->getStorageClass() != VarDecl::Extern)
2532      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2533        << Var->getName()
2534        << SourceRange(Var->getLocation(), Var->getLocation());
2535#endif
2536  }
2537}
2538
2539/// The declarators are chained together backwards, reverse the list.
2540Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2541  // Often we have single declarators, handle them quickly.
2542  Decl *GroupDecl = static_cast<Decl*>(group);
2543  if (GroupDecl == 0)
2544    return 0;
2545
2546  Decl *Group = dyn_cast<Decl>(GroupDecl);
2547  Decl *NewGroup = 0;
2548  if (Group->getNextDeclarator() == 0)
2549    NewGroup = Group;
2550  else { // reverse the list.
2551    while (Group) {
2552      Decl *Next = Group->getNextDeclarator();
2553      Group->setNextDeclarator(NewGroup);
2554      NewGroup = Group;
2555      Group = Next;
2556    }
2557  }
2558  // Perform semantic analysis that depends on having fully processed both
2559  // the declarator and initializer.
2560  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2561    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2562    if (!IDecl)
2563      continue;
2564    QualType T = IDecl->getType();
2565
2566    if (T->isVariableArrayType()) {
2567      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2568
2569      // FIXME: This won't give the correct result for
2570      // int a[10][n];
2571      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2572      if (IDecl->isFileVarDecl()) {
2573        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2574          SizeRange;
2575
2576        IDecl->setInvalidDecl();
2577      } else {
2578        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2579        // static storage duration, it shall not have a variable length array.
2580        if (IDecl->getStorageClass() == VarDecl::Static) {
2581          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2582            << SizeRange;
2583          IDecl->setInvalidDecl();
2584        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2585          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2586            << SizeRange;
2587          IDecl->setInvalidDecl();
2588        }
2589      }
2590    } else if (T->isVariablyModifiedType()) {
2591      if (IDecl->isFileVarDecl()) {
2592        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2593        IDecl->setInvalidDecl();
2594      } else {
2595        if (IDecl->getStorageClass() == VarDecl::Extern) {
2596          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2597          IDecl->setInvalidDecl();
2598        }
2599      }
2600    }
2601
2602    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2603    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2604    if (IDecl->isBlockVarDecl() &&
2605        IDecl->getStorageClass() != VarDecl::Extern) {
2606      if (!IDecl->isInvalidDecl() &&
2607          DiagnoseIncompleteType(IDecl->getLocation(), T,
2608                                 diag::err_typecheck_decl_incomplete_type))
2609        IDecl->setInvalidDecl();
2610    }
2611    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2612    // object that has file scope without an initializer, and without a
2613    // storage-class specifier or with the storage-class specifier "static",
2614    // constitutes a tentative definition. Note: A tentative definition with
2615    // external linkage is valid (C99 6.2.2p5).
2616    if (isTentativeDefinition(IDecl)) {
2617      if (T->isIncompleteArrayType()) {
2618        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2619        // array to be completed. Don't issue a diagnostic.
2620      } else if (!IDecl->isInvalidDecl() &&
2621                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2622                                        diag::err_typecheck_decl_incomplete_type))
2623        // C99 6.9.2p3: If the declaration of an identifier for an object is
2624        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2625        // declared type shall not be an incomplete type.
2626        IDecl->setInvalidDecl();
2627    }
2628    if (IDecl->isFileVarDecl())
2629      CheckForFileScopedRedefinitions(S, IDecl);
2630  }
2631  return NewGroup;
2632}
2633
2634/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2635/// to introduce parameters into function prototype scope.
2636Sema::DeclTy *
2637Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2638  const DeclSpec &DS = D.getDeclSpec();
2639
2640  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2641  VarDecl::StorageClass StorageClass = VarDecl::None;
2642  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2643    StorageClass = VarDecl::Register;
2644  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2645    Diag(DS.getStorageClassSpecLoc(),
2646         diag::err_invalid_storage_class_in_func_decl);
2647    D.getMutableDeclSpec().ClearStorageClassSpecs();
2648  }
2649  if (DS.isThreadSpecified()) {
2650    Diag(DS.getThreadSpecLoc(),
2651         diag::err_invalid_storage_class_in_func_decl);
2652    D.getMutableDeclSpec().ClearStorageClassSpecs();
2653  }
2654
2655  // Check that there are no default arguments inside the type of this
2656  // parameter (C++ only).
2657  if (getLangOptions().CPlusPlus)
2658    CheckExtraCXXDefaultArguments(D);
2659
2660  // In this context, we *do not* check D.getInvalidType(). If the declarator
2661  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2662  // though it will not reflect the user specified type.
2663  QualType parmDeclType = GetTypeForDeclarator(D, S);
2664
2665  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2666
2667  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2668  // Can this happen for params?  We already checked that they don't conflict
2669  // among each other.  Here they can only shadow globals, which is ok.
2670  IdentifierInfo *II = D.getIdentifier();
2671  if (II) {
2672    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2673      if (PrevDecl->isTemplateParameter()) {
2674        // Maybe we will complain about the shadowed template parameter.
2675        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2676        // Just pretend that we didn't see the previous declaration.
2677        PrevDecl = 0;
2678      } else if (S->isDeclScope(PrevDecl)) {
2679        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2680
2681        // Recover by removing the name
2682        II = 0;
2683        D.SetIdentifier(0, D.getIdentifierLoc());
2684      }
2685    }
2686  }
2687
2688  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2689  // Doing the promotion here has a win and a loss. The win is the type for
2690  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2691  // code generator). The loss is the orginal type isn't preserved. For example:
2692  //
2693  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2694  //    int blockvardecl[5];
2695  //    sizeof(parmvardecl);  // size == 4
2696  //    sizeof(blockvardecl); // size == 20
2697  // }
2698  //
2699  // For expressions, all implicit conversions are captured using the
2700  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2701  //
2702  // FIXME: If a source translation tool needs to see the original type, then
2703  // we need to consider storing both types (in ParmVarDecl)...
2704  //
2705  if (parmDeclType->isArrayType()) {
2706    // int x[restrict 4] ->  int *restrict
2707    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2708  } else if (parmDeclType->isFunctionType())
2709    parmDeclType = Context.getPointerType(parmDeclType);
2710
2711  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2712                                         D.getIdentifierLoc(), II,
2713                                         parmDeclType, StorageClass,
2714                                         0);
2715
2716  if (D.getInvalidType())
2717    New->setInvalidDecl();
2718
2719  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2720  if (D.getCXXScopeSpec().isSet()) {
2721    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2722      << D.getCXXScopeSpec().getRange();
2723    New->setInvalidDecl();
2724  }
2725
2726  // Add the parameter declaration into this scope.
2727  S->AddDecl(New);
2728  if (II)
2729    IdResolver.AddDecl(New);
2730
2731  ProcessDeclAttributes(New, D);
2732  return New;
2733
2734}
2735
2736void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2737  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2738         "Not a function declarator!");
2739  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2740
2741  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2742  // for a K&R function.
2743  if (!FTI.hasPrototype) {
2744    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2745      if (FTI.ArgInfo[i].Param == 0) {
2746        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2747          << FTI.ArgInfo[i].Ident;
2748        // Implicitly declare the argument as type 'int' for lack of a better
2749        // type.
2750        DeclSpec DS;
2751        const char* PrevSpec; // unused
2752        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2753                           PrevSpec);
2754        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2755        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2756        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2757      }
2758    }
2759  }
2760}
2761
2762Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2763  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2764  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2765         "Not a function declarator!");
2766  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2767
2768  if (FTI.hasPrototype) {
2769    // FIXME: Diagnose arguments without names in C.
2770  }
2771
2772  Scope *ParentScope = FnBodyScope->getParent();
2773
2774  return ActOnStartOfFunctionDef(FnBodyScope,
2775                                 ActOnDeclarator(ParentScope, D, 0,
2776                                                 /*IsFunctionDefinition=*/true));
2777}
2778
2779Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2780  Decl *decl = static_cast<Decl*>(D);
2781  FunctionDecl *FD = cast<FunctionDecl>(decl);
2782
2783  // See if this is a redefinition.
2784  const FunctionDecl *Definition;
2785  if (FD->getBody(Definition)) {
2786    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2787    Diag(Definition->getLocation(), diag::note_previous_definition);
2788  }
2789
2790  // Builtin functions cannot be defined.
2791  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2792    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2793      Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
2794      Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
2795    } else
2796      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2797    FD->setInvalidDecl();
2798  }
2799
2800  PushDeclContext(FnBodyScope, FD);
2801
2802  // Check the validity of our function parameters
2803  CheckParmsForFunctionDef(FD);
2804
2805  // Introduce our parameters into the function scope
2806  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2807    ParmVarDecl *Param = FD->getParamDecl(p);
2808    Param->setOwningFunction(FD);
2809
2810    // If this has an identifier, add it to the scope stack.
2811    if (Param->getIdentifier())
2812      PushOnScopeChains(Param, FnBodyScope);
2813  }
2814
2815  // Checking attributes of current function definition
2816  // dllimport attribute.
2817  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2818    // dllimport attribute cannot be applied to definition.
2819    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2820      Diag(FD->getLocation(),
2821           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2822        << "dllimport";
2823      FD->setInvalidDecl();
2824      return FD;
2825    } else {
2826      // If a symbol previously declared dllimport is later defined, the
2827      // attribute is ignored in subsequent references, and a warning is
2828      // emitted.
2829      Diag(FD->getLocation(),
2830           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2831        << FD->getNameAsCString() << "dllimport";
2832    }
2833  }
2834  return FD;
2835}
2836
2837Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2838  Decl *dcl = static_cast<Decl *>(D);
2839  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2840  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2841    FD->setBody(Body);
2842    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2843  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2844    assert(MD == getCurMethodDecl() && "Method parsing confused");
2845    MD->setBody((Stmt*)Body);
2846  } else {
2847    Body->Destroy(Context);
2848    return 0;
2849  }
2850  PopDeclContext();
2851  // Verify and clean out per-function state.
2852
2853  // Check goto/label use.
2854  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2855       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2856    // Verify that we have no forward references left.  If so, there was a goto
2857    // or address of a label taken, but no definition of it.  Label fwd
2858    // definitions are indicated with a null substmt.
2859    if (I->second->getSubStmt() == 0) {
2860      LabelStmt *L = I->second;
2861      // Emit error.
2862      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2863
2864      // At this point, we have gotos that use the bogus label.  Stitch it into
2865      // the function body so that they aren't leaked and that the AST is well
2866      // formed.
2867      if (Body) {
2868#if 0
2869        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2870        // and the AST is malformed anyway.  We should just blow away 'L'.
2871        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2872        cast<CompoundStmt>(Body)->push_back(L);
2873#else
2874        L->Destroy(Context);
2875#endif
2876      } else {
2877        // The whole function wasn't parsed correctly, just delete this.
2878        L->Destroy(Context);
2879      }
2880    }
2881  }
2882  LabelMap.clear();
2883
2884  return D;
2885}
2886
2887/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2888/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2889NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2890                                          IdentifierInfo &II, Scope *S) {
2891  // Extension in C99.  Legal in C90, but warn about it.
2892  if (getLangOptions().C99)
2893    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2894  else
2895    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2896
2897  // FIXME: handle stuff like:
2898  // void foo() { extern float X(); }
2899  // void bar() { X(); }  <-- implicit decl for X in another scope.
2900
2901  // Set a Declarator for the implicit definition: int foo();
2902  const char *Dummy;
2903  DeclSpec DS;
2904  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2905  Error = Error; // Silence warning.
2906  assert(!Error && "Error setting up implicit decl!");
2907  Declarator D(DS, Declarator::BlockContext);
2908  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2909                SourceLocation());
2910  D.SetIdentifier(&II, Loc);
2911
2912  // Insert this function into translation-unit scope.
2913
2914  DeclContext *PrevDC = CurContext;
2915  CurContext = Context.getTranslationUnitDecl();
2916
2917  FunctionDecl *FD =
2918    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2919  FD->setImplicit();
2920
2921  CurContext = PrevDC;
2922
2923  AddKnownFunctionAttributes(FD);
2924
2925  return FD;
2926}
2927
2928/// \brief Adds any function attributes that we know a priori based on
2929/// the declaration of this function.
2930///
2931/// These attributes can apply both to implicitly-declared builtins
2932/// (like __builtin___printf_chk) or to library-declared functions
2933/// like NSLog or printf.
2934void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2935  if (FD->isInvalidDecl())
2936    return;
2937
2938  // If this is a built-in function, map its builtin attributes to
2939  // actual attributes.
2940  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2941    // Handle printf-formatting attributes.
2942    unsigned FormatIdx;
2943    bool HasVAListArg;
2944    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2945      if (!FD->getAttr<FormatAttr>())
2946        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2947    }
2948  }
2949
2950  IdentifierInfo *Name = FD->getIdentifier();
2951  if (!Name)
2952    return;
2953  if ((!getLangOptions().CPlusPlus &&
2954       FD->getDeclContext()->isTranslationUnit()) ||
2955      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2956       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2957       LinkageSpecDecl::lang_c)) {
2958    // Okay: this could be a libc/libm/Objective-C function we know
2959    // about.
2960  } else
2961    return;
2962
2963  unsigned KnownID;
2964  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2965    if (KnownFunctionIDs[KnownID] == Name)
2966      break;
2967
2968  switch (KnownID) {
2969  case id_NSLog:
2970  case id_NSLogv:
2971    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2972      // FIXME: We known better than our headers.
2973      const_cast<FormatAttr *>(Format)->setType("printf");
2974    } else
2975      FD->addAttr(new FormatAttr("printf", 1, 2));
2976    break;
2977
2978  case id_asprintf:
2979  case id_vasprintf:
2980    if (!FD->getAttr<FormatAttr>())
2981      FD->addAttr(new FormatAttr("printf", 2, 3));
2982    break;
2983
2984  default:
2985    // Unknown function or known function without any attributes to
2986    // add. Do nothing.
2987    break;
2988  }
2989}
2990
2991TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2992                                    Decl *LastDeclarator) {
2993  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2994  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2995
2996  // Scope manipulation handled by caller.
2997  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2998                                           D.getIdentifierLoc(),
2999                                           D.getIdentifier(),
3000                                           T);
3001  NewTD->setNextDeclarator(LastDeclarator);
3002  if (D.getInvalidType())
3003    NewTD->setInvalidDecl();
3004  return NewTD;
3005}
3006
3007/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3008/// former case, Name will be non-null.  In the later case, Name will be null.
3009/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3010/// reference/declaration/definition of a tag.
3011Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3012                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3013                             IdentifierInfo *Name, SourceLocation NameLoc,
3014                             AttributeList *Attr) {
3015  // If this is not a definition, it must have a name.
3016  assert((Name != 0 || TK == TK_Definition) &&
3017         "Nameless record must be a definition!");
3018
3019  TagDecl::TagKind Kind;
3020  switch (TagSpec) {
3021  default: assert(0 && "Unknown tag type!");
3022  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3023  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3024  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3025  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3026  }
3027
3028  DeclContext *SearchDC = CurContext;
3029  DeclContext *DC = CurContext;
3030  NamedDecl *PrevDecl = 0;
3031
3032  bool Invalid = false;
3033
3034  if (Name && SS.isNotEmpty()) {
3035    // We have a nested-name tag ('struct foo::bar').
3036
3037    // Check for invalid 'foo::'.
3038    if (SS.isInvalid()) {
3039      Name = 0;
3040      goto CreateNewDecl;
3041    }
3042
3043    DC = static_cast<DeclContext*>(SS.getScopeRep());
3044    SearchDC = DC;
3045    // Look-up name inside 'foo::'.
3046    PrevDecl = dyn_cast_or_null<TagDecl>(
3047                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3048
3049    // A tag 'foo::bar' must already exist.
3050    if (PrevDecl == 0) {
3051      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3052      Name = 0;
3053      goto CreateNewDecl;
3054    }
3055  } else if (Name) {
3056    // If this is a named struct, check to see if there was a previous forward
3057    // declaration or definition.
3058    // FIXME: We're looking into outer scopes here, even when we
3059    // shouldn't be. Doing so can result in ambiguities that we
3060    // shouldn't be diagnosing.
3061    LookupResult R = LookupName(S, Name, LookupTagName,
3062                                /*RedeclarationOnly=*/(TK != TK_Reference));
3063    if (R.isAmbiguous()) {
3064      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3065      // FIXME: This is not best way to recover from case like:
3066      //
3067      // struct S s;
3068      //
3069      // causes needless err_ovl_no_viable_function_in_init latter.
3070      Name = 0;
3071      PrevDecl = 0;
3072      Invalid = true;
3073    }
3074    else
3075      PrevDecl = R;
3076
3077    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3078      // FIXME: This makes sure that we ignore the contexts associated
3079      // with C structs, unions, and enums when looking for a matching
3080      // tag declaration or definition. See the similar lookup tweak
3081      // in Sema::LookupName; is there a better way to deal with this?
3082      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3083        SearchDC = SearchDC->getParent();
3084    }
3085  }
3086
3087  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3088    // Maybe we will complain about the shadowed template parameter.
3089    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3090    // Just pretend that we didn't see the previous declaration.
3091    PrevDecl = 0;
3092  }
3093
3094  if (PrevDecl) {
3095    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3096      // If this is a use of a previous tag, or if the tag is already declared
3097      // in the same scope (so that the definition/declaration completes or
3098      // rementions the tag), reuse the decl.
3099      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3100        // Make sure that this wasn't declared as an enum and now used as a
3101        // struct or something similar.
3102        if (PrevTagDecl->getTagKind() != Kind) {
3103          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3104          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3105          // Recover by making this an anonymous redefinition.
3106          Name = 0;
3107          PrevDecl = 0;
3108          Invalid = true;
3109        } else {
3110          // If this is a use, just return the declaration we found.
3111
3112          // FIXME: In the future, return a variant or some other clue
3113          // for the consumer of this Decl to know it doesn't own it.
3114          // For our current ASTs this shouldn't be a problem, but will
3115          // need to be changed with DeclGroups.
3116          if (TK == TK_Reference)
3117            return PrevDecl;
3118
3119          // Diagnose attempts to redefine a tag.
3120          if (TK == TK_Definition) {
3121            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3122              Diag(NameLoc, diag::err_redefinition) << Name;
3123              Diag(Def->getLocation(), diag::note_previous_definition);
3124              // If this is a redefinition, recover by making this
3125              // struct be anonymous, which will make any later
3126              // references get the previous definition.
3127              Name = 0;
3128              PrevDecl = 0;
3129              Invalid = true;
3130            } else {
3131              // If the type is currently being defined, complain
3132              // about a nested redefinition.
3133              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3134              if (Tag->isBeingDefined()) {
3135                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3136                Diag(PrevTagDecl->getLocation(),
3137                     diag::note_previous_definition);
3138                Name = 0;
3139                PrevDecl = 0;
3140                Invalid = true;
3141              }
3142            }
3143
3144            // Okay, this is definition of a previously declared or referenced
3145            // tag PrevDecl. We're going to create a new Decl for it.
3146          }
3147        }
3148        // If we get here we have (another) forward declaration or we
3149        // have a definition.  Just create a new decl.
3150      } else {
3151        // If we get here, this is a definition of a new tag type in a nested
3152        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3153        // new decl/type.  We set PrevDecl to NULL so that the entities
3154        // have distinct types.
3155        PrevDecl = 0;
3156      }
3157      // If we get here, we're going to create a new Decl. If PrevDecl
3158      // is non-NULL, it's a definition of the tag declared by
3159      // PrevDecl. If it's NULL, we have a new definition.
3160    } else {
3161      // PrevDecl is a namespace, template, or anything else
3162      // that lives in the IDNS_Tag identifier namespace.
3163      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3164        // The tag name clashes with a namespace name, issue an error and
3165        // recover by making this tag be anonymous.
3166        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3167        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3168        Name = 0;
3169        PrevDecl = 0;
3170        Invalid = true;
3171      } else {
3172        // The existing declaration isn't relevant to us; we're in a
3173        // new scope, so clear out the previous declaration.
3174        PrevDecl = 0;
3175      }
3176    }
3177  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3178             (Kind != TagDecl::TK_enum))  {
3179    // C++ [basic.scope.pdecl]p5:
3180    //   -- for an elaborated-type-specifier of the form
3181    //
3182    //          class-key identifier
3183    //
3184    //      if the elaborated-type-specifier is used in the
3185    //      decl-specifier-seq or parameter-declaration-clause of a
3186    //      function defined in namespace scope, the identifier is
3187    //      declared as a class-name in the namespace that contains
3188    //      the declaration; otherwise, except as a friend
3189    //      declaration, the identifier is declared in the smallest
3190    //      non-class, non-function-prototype scope that contains the
3191    //      declaration.
3192    //
3193    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3194    // C structs and unions.
3195
3196    // Find the context where we'll be declaring the tag.
3197    // FIXME: We would like to maintain the current DeclContext as the
3198    // lexical context,
3199    while (SearchDC->isRecord())
3200      SearchDC = SearchDC->getParent();
3201
3202    // Find the scope where we'll be declaring the tag.
3203    while (S->isClassScope() ||
3204           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3205           ((S->getFlags() & Scope::DeclScope) == 0) ||
3206           (S->getEntity() &&
3207            ((DeclContext *)S->getEntity())->isTransparentContext()))
3208      S = S->getParent();
3209  }
3210
3211CreateNewDecl:
3212
3213  // If there is an identifier, use the location of the identifier as the
3214  // location of the decl, otherwise use the location of the struct/union
3215  // keyword.
3216  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3217
3218  // Otherwise, create a new declaration. If there is a previous
3219  // declaration of the same entity, the two will be linked via
3220  // PrevDecl.
3221  TagDecl *New;
3222
3223  if (Kind == TagDecl::TK_enum) {
3224    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3225    // enum X { A, B, C } D;    D should chain to X.
3226    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3227                           cast_or_null<EnumDecl>(PrevDecl));
3228    // If this is an undefined enum, warn.
3229    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3230  } else {
3231    // struct/union/class
3232
3233    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3234    // struct X { int A; } D;    D should chain to X.
3235    if (getLangOptions().CPlusPlus)
3236      // FIXME: Look for a way to use RecordDecl for simple structs.
3237      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3238                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3239    else
3240      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3241                               cast_or_null<RecordDecl>(PrevDecl));
3242  }
3243
3244  if (Kind != TagDecl::TK_enum) {
3245    // Handle #pragma pack: if the #pragma pack stack has non-default
3246    // alignment, make up a packed attribute for this decl. These
3247    // attributes are checked when the ASTContext lays out the
3248    // structure.
3249    //
3250    // It is important for implementing the correct semantics that this
3251    // happen here (in act on tag decl). The #pragma pack stack is
3252    // maintained as a result of parser callbacks which can occur at
3253    // many points during the parsing of a struct declaration (because
3254    // the #pragma tokens are effectively skipped over during the
3255    // parsing of the struct).
3256    if (unsigned Alignment = PackContext.getAlignment())
3257      New->addAttr(new PackedAttr(Alignment * 8));
3258  }
3259
3260  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3261    // C++ [dcl.typedef]p3:
3262    //   [...] Similarly, in a given scope, a class or enumeration
3263    //   shall not be declared with the same name as a typedef-name
3264    //   that is declared in that scope and refers to a type other
3265    //   than the class or enumeration itself.
3266    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3267    TypedefDecl *PrevTypedef = 0;
3268    if (Lookup.getKind() == LookupResult::Found)
3269      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3270
3271    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3272        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3273          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3274      Diag(Loc, diag::err_tag_definition_of_typedef)
3275        << Context.getTypeDeclType(New)
3276        << PrevTypedef->getUnderlyingType();
3277      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3278      Invalid = true;
3279    }
3280  }
3281
3282  if (Invalid)
3283    New->setInvalidDecl();
3284
3285  if (Attr)
3286    ProcessDeclAttributeList(New, Attr);
3287
3288  // If we're declaring or defining a tag in function prototype scope
3289  // in C, note that this type can only be used within the function.
3290  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3291    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3292
3293  // Set the lexical context. If the tag has a C++ scope specifier, the
3294  // lexical context will be different from the semantic context.
3295  New->setLexicalDeclContext(CurContext);
3296
3297  if (TK == TK_Definition)
3298    New->startDefinition();
3299
3300  // If this has an identifier, add it to the scope stack.
3301  if (Name) {
3302    S = getNonFieldDeclScope(S);
3303    PushOnScopeChains(New, S);
3304  } else {
3305    CurContext->addDecl(New);
3306  }
3307
3308  return New;
3309}
3310
3311void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3312  AdjustDeclIfTemplate(TagD);
3313  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3314
3315  // Enter the tag context.
3316  PushDeclContext(S, Tag);
3317
3318  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3319    FieldCollector->StartClass();
3320
3321    if (Record->getIdentifier()) {
3322      // C++ [class]p2:
3323      //   [...] The class-name is also inserted into the scope of the
3324      //   class itself; this is known as the injected-class-name. For
3325      //   purposes of access checking, the injected-class-name is treated
3326      //   as if it were a public member name.
3327      RecordDecl *InjectedClassName
3328        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3329                                CurContext, Record->getLocation(),
3330                                Record->getIdentifier(), Record);
3331      InjectedClassName->setImplicit();
3332      PushOnScopeChains(InjectedClassName, S);
3333    }
3334  }
3335}
3336
3337void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3338  AdjustDeclIfTemplate(TagD);
3339  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3340
3341  if (isa<CXXRecordDecl>(Tag))
3342    FieldCollector->FinishClass();
3343
3344  // Exit this scope of this tag's definition.
3345  PopDeclContext();
3346
3347  // Notify the consumer that we've defined a tag.
3348  Consumer.HandleTagDeclDefinition(Tag);
3349}
3350
3351/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3352/// types into constant array types in certain situations which would otherwise
3353/// be errors (for GCC compatibility).
3354static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3355                                                    ASTContext &Context) {
3356  // This method tries to turn a variable array into a constant
3357  // array even when the size isn't an ICE.  This is necessary
3358  // for compatibility with code that depends on gcc's buggy
3359  // constant expression folding, like struct {char x[(int)(char*)2];}
3360  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3361  if (!VLATy) return QualType();
3362
3363  Expr::EvalResult EvalResult;
3364  if (!VLATy->getSizeExpr() ||
3365      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3366    return QualType();
3367
3368  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3369  llvm::APSInt &Res = EvalResult.Val.getInt();
3370  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3371    return Context.getConstantArrayType(VLATy->getElementType(),
3372                                        Res, ArrayType::Normal, 0);
3373  return QualType();
3374}
3375
3376bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3377                          QualType FieldTy, const Expr *BitWidth) {
3378  // FIXME: 6.7.2.1p4 - verify the field type.
3379
3380  llvm::APSInt Value;
3381  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3382    return true;
3383
3384  // Zero-width bitfield is ok for anonymous field.
3385  if (Value == 0 && FieldName)
3386    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3387
3388  if (Value.isNegative())
3389    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3390
3391  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3392  // FIXME: We won't need the 0 size once we check that the field type is valid.
3393  if (TypeSize && Value.getZExtValue() > TypeSize)
3394    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3395       << FieldName << (unsigned)TypeSize;
3396
3397  return false;
3398}
3399
3400/// ActOnField - Each field of a struct/union/class is passed into this in order
3401/// to create a FieldDecl object for it.
3402Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3403                               SourceLocation DeclStart,
3404                               Declarator &D, ExprTy *BitfieldWidth) {
3405  IdentifierInfo *II = D.getIdentifier();
3406  Expr *BitWidth = (Expr*)BitfieldWidth;
3407  SourceLocation Loc = DeclStart;
3408  RecordDecl *Record = (RecordDecl *)TagD;
3409  if (II) Loc = D.getIdentifierLoc();
3410
3411  // FIXME: Unnamed fields can be handled in various different ways, for
3412  // example, unnamed unions inject all members into the struct namespace!
3413
3414  QualType T = GetTypeForDeclarator(D, S);
3415  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3416  bool InvalidDecl = false;
3417
3418  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3419  // than a variably modified type.
3420  if (T->isVariablyModifiedType()) {
3421    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3422    if (!FixedTy.isNull()) {
3423      Diag(Loc, diag::warn_illegal_constant_array_size);
3424      T = FixedTy;
3425    } else {
3426      Diag(Loc, diag::err_typecheck_field_variable_size);
3427      T = Context.IntTy;
3428      InvalidDecl = true;
3429    }
3430  }
3431
3432  if (BitWidth) {
3433    if (VerifyBitField(Loc, II, T, BitWidth))
3434      InvalidDecl = true;
3435  } else {
3436    // Not a bitfield.
3437
3438    // validate II.
3439
3440  }
3441
3442  // FIXME: Chain fielddecls together.
3443  FieldDecl *NewFD;
3444
3445  NewFD = FieldDecl::Create(Context, Record,
3446                            Loc, II, T, BitWidth,
3447                            D.getDeclSpec().getStorageClassSpec() ==
3448                              DeclSpec::SCS_mutable);
3449
3450  if (II) {
3451    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3452    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3453        && !isa<TagDecl>(PrevDecl)) {
3454      Diag(Loc, diag::err_duplicate_member) << II;
3455      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3456      NewFD->setInvalidDecl();
3457      Record->setInvalidDecl();
3458    }
3459  }
3460
3461  if (getLangOptions().CPlusPlus) {
3462    CheckExtraCXXDefaultArguments(D);
3463    if (!T->isPODType())
3464      cast<CXXRecordDecl>(Record)->setPOD(false);
3465  }
3466
3467  ProcessDeclAttributes(NewFD, D);
3468
3469  if (D.getInvalidType() || InvalidDecl)
3470    NewFD->setInvalidDecl();
3471
3472  if (II) {
3473    PushOnScopeChains(NewFD, S);
3474  } else
3475    Record->addDecl(NewFD);
3476
3477  return NewFD;
3478}
3479
3480/// TranslateIvarVisibility - Translate visibility from a token ID to an
3481///  AST enum value.
3482static ObjCIvarDecl::AccessControl
3483TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3484  switch (ivarVisibility) {
3485  default: assert(0 && "Unknown visitibility kind");
3486  case tok::objc_private: return ObjCIvarDecl::Private;
3487  case tok::objc_public: return ObjCIvarDecl::Public;
3488  case tok::objc_protected: return ObjCIvarDecl::Protected;
3489  case tok::objc_package: return ObjCIvarDecl::Package;
3490  }
3491}
3492
3493/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3494/// in order to create an IvarDecl object for it.
3495Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3496                              SourceLocation DeclStart,
3497                              Declarator &D, ExprTy *BitfieldWidth,
3498                              tok::ObjCKeywordKind Visibility) {
3499
3500  IdentifierInfo *II = D.getIdentifier();
3501  Expr *BitWidth = (Expr*)BitfieldWidth;
3502  SourceLocation Loc = DeclStart;
3503  if (II) Loc = D.getIdentifierLoc();
3504
3505  // FIXME: Unnamed fields can be handled in various different ways, for
3506  // example, unnamed unions inject all members into the struct namespace!
3507
3508  QualType T = GetTypeForDeclarator(D, S);
3509  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3510  bool InvalidDecl = false;
3511
3512  if (BitWidth) {
3513    // TODO: Validate.
3514    //printf("WARNING: BITFIELDS IGNORED!\n");
3515
3516    // 6.7.2.1p3
3517    // 6.7.2.1p4
3518
3519  } else {
3520    // Not a bitfield.
3521
3522    // validate II.
3523
3524  }
3525
3526  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3527  // than a variably modified type.
3528  if (T->isVariablyModifiedType()) {
3529    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3530    InvalidDecl = true;
3531  }
3532
3533  // Get the visibility (access control) for this ivar.
3534  ObjCIvarDecl::AccessControl ac =
3535    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3536                                        : ObjCIvarDecl::None;
3537
3538  // Construct the decl.
3539  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3540                                             (Expr *)BitfieldWidth);
3541
3542  if (II) {
3543    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3544    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3545        && !isa<TagDecl>(PrevDecl)) {
3546      Diag(Loc, diag::err_duplicate_member) << II;
3547      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3548      NewID->setInvalidDecl();
3549    }
3550  }
3551
3552  // Process attributes attached to the ivar.
3553  ProcessDeclAttributes(NewID, D);
3554
3555  if (D.getInvalidType() || InvalidDecl)
3556    NewID->setInvalidDecl();
3557
3558  if (II) {
3559    // FIXME: When interfaces are DeclContexts, we'll need to add
3560    // these to the interface.
3561    S->AddDecl(NewID);
3562    IdResolver.AddDecl(NewID);
3563  }
3564
3565  return NewID;
3566}
3567
3568void Sema::ActOnFields(Scope* S,
3569                       SourceLocation RecLoc, DeclTy *RecDecl,
3570                       DeclTy **Fields, unsigned NumFields,
3571                       SourceLocation LBrac, SourceLocation RBrac,
3572                       AttributeList *Attr) {
3573  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3574  assert(EnclosingDecl && "missing record or interface decl");
3575  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3576
3577  // Verify that all the fields are okay.
3578  unsigned NumNamedMembers = 0;
3579  llvm::SmallVector<FieldDecl*, 32> RecFields;
3580
3581  for (unsigned i = 0; i != NumFields; ++i) {
3582    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3583    assert(FD && "missing field decl");
3584
3585    // Get the type for the field.
3586    Type *FDTy = FD->getType().getTypePtr();
3587
3588    if (!FD->isAnonymousStructOrUnion()) {
3589      // Remember all fields written by the user.
3590      RecFields.push_back(FD);
3591    }
3592
3593    // C99 6.7.2.1p2 - A field may not be a function type.
3594    if (FDTy->isFunctionType()) {
3595      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3596        << FD->getDeclName();
3597      FD->setInvalidDecl();
3598      EnclosingDecl->setInvalidDecl();
3599      continue;
3600    }
3601    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3602    if (FDTy->isIncompleteType()) {
3603      if (!Record) {  // Incomplete ivar type is always an error.
3604        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3605                               diag::err_field_incomplete);
3606        FD->setInvalidDecl();
3607        EnclosingDecl->setInvalidDecl();
3608        continue;
3609      }
3610      if (i != NumFields-1 ||                   // ... that the last member ...
3611          !Record->isStruct() ||  // ... of a structure ...
3612          !FDTy->isArrayType()) {         //... may have incomplete array type.
3613        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3614                               diag::err_field_incomplete);
3615        FD->setInvalidDecl();
3616        EnclosingDecl->setInvalidDecl();
3617        continue;
3618      }
3619      if (NumNamedMembers < 1) {  //... must have more than named member ...
3620        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3621          << FD->getDeclName();
3622        FD->setInvalidDecl();
3623        EnclosingDecl->setInvalidDecl();
3624        continue;
3625      }
3626      // Okay, we have a legal flexible array member at the end of the struct.
3627      if (Record)
3628        Record->setHasFlexibleArrayMember(true);
3629    }
3630    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3631    /// field of another structure or the element of an array.
3632    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3633      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3634        // If this is a member of a union, then entire union becomes "flexible".
3635        if (Record && Record->isUnion()) {
3636          Record->setHasFlexibleArrayMember(true);
3637        } else {
3638          // If this is a struct/class and this is not the last element, reject
3639          // it.  Note that GCC supports variable sized arrays in the middle of
3640          // structures.
3641          if (i != NumFields-1) {
3642            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3643              << FD->getDeclName();
3644            FD->setInvalidDecl();
3645            EnclosingDecl->setInvalidDecl();
3646            continue;
3647          }
3648          // We support flexible arrays at the end of structs in other structs
3649          // as an extension.
3650          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3651            << FD->getDeclName();
3652          if (Record)
3653            Record->setHasFlexibleArrayMember(true);
3654        }
3655      }
3656    }
3657    /// A field cannot be an Objective-c object
3658    if (FDTy->isObjCInterfaceType()) {
3659      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3660        << FD->getDeclName();
3661      FD->setInvalidDecl();
3662      EnclosingDecl->setInvalidDecl();
3663      continue;
3664    }
3665    // Keep track of the number of named members.
3666    if (FD->getIdentifier())
3667      ++NumNamedMembers;
3668  }
3669
3670  // Okay, we successfully defined 'Record'.
3671  if (Record) {
3672    Record->completeDefinition(Context);
3673  } else {
3674    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3675    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3676      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3677      // Must enforce the rule that ivars in the base classes may not be
3678      // duplicates.
3679      if (ID->getSuperClass()) {
3680        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3681             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3682          ObjCIvarDecl* Ivar = (*IVI);
3683          IdentifierInfo *II = Ivar->getIdentifier();
3684          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3685          if (prevIvar) {
3686            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3687            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3688          }
3689        }
3690      }
3691    }
3692    else if (ObjCImplementationDecl *IMPDecl =
3693               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3694      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3695      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3696      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3697    }
3698  }
3699
3700  if (Attr)
3701    ProcessDeclAttributeList(Record, Attr);
3702}
3703
3704Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3705                                      DeclTy *lastEnumConst,
3706                                      SourceLocation IdLoc, IdentifierInfo *Id,
3707                                      SourceLocation EqualLoc, ExprTy *val) {
3708  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3709  EnumConstantDecl *LastEnumConst =
3710    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3711  Expr *Val = static_cast<Expr*>(val);
3712
3713  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3714  // we find one that is.
3715  S = getNonFieldDeclScope(S);
3716
3717  // Verify that there isn't already something declared with this name in this
3718  // scope.
3719  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3720  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3721    // Maybe we will complain about the shadowed template parameter.
3722    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3723    // Just pretend that we didn't see the previous declaration.
3724    PrevDecl = 0;
3725  }
3726
3727  if (PrevDecl) {
3728    // When in C++, we may get a TagDecl with the same name; in this case the
3729    // enum constant will 'hide' the tag.
3730    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3731           "Received TagDecl when not in C++!");
3732    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3733      if (isa<EnumConstantDecl>(PrevDecl))
3734        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3735      else
3736        Diag(IdLoc, diag::err_redefinition) << Id;
3737      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3738      Val->Destroy(Context);
3739      return 0;
3740    }
3741  }
3742
3743  llvm::APSInt EnumVal(32);
3744  QualType EltTy;
3745  if (Val) {
3746    // Make sure to promote the operand type to int.
3747    UsualUnaryConversions(Val);
3748
3749    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3750    SourceLocation ExpLoc;
3751    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3752      Val->Destroy(Context);
3753      Val = 0;  // Just forget about it.
3754    } else {
3755      EltTy = Val->getType();
3756    }
3757  }
3758
3759  if (!Val) {
3760    if (LastEnumConst) {
3761      // Assign the last value + 1.
3762      EnumVal = LastEnumConst->getInitVal();
3763      ++EnumVal;
3764
3765      // Check for overflow on increment.
3766      if (EnumVal < LastEnumConst->getInitVal())
3767        Diag(IdLoc, diag::warn_enum_value_overflow);
3768
3769      EltTy = LastEnumConst->getType();
3770    } else {
3771      // First value, set to zero.
3772      EltTy = Context.IntTy;
3773      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3774    }
3775  }
3776
3777  EnumConstantDecl *New =
3778    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3779                             Val, EnumVal);
3780
3781  // Register this decl in the current scope stack.
3782  PushOnScopeChains(New, S);
3783
3784  return New;
3785}
3786
3787// FIXME: For consistency with ActOnFields(), we should have the parser
3788// pass in the source location for the left/right braces.
3789void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3790                         DeclTy **Elements, unsigned NumElements) {
3791  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3792  QualType EnumType = Context.getTypeDeclType(Enum);
3793
3794  // TODO: If the result value doesn't fit in an int, it must be a long or long
3795  // long value.  ISO C does not support this, but GCC does as an extension,
3796  // emit a warning.
3797  unsigned IntWidth = Context.Target.getIntWidth();
3798
3799  // Verify that all the values are okay, compute the size of the values, and
3800  // reverse the list.
3801  unsigned NumNegativeBits = 0;
3802  unsigned NumPositiveBits = 0;
3803
3804  // Keep track of whether all elements have type int.
3805  bool AllElementsInt = true;
3806
3807  for (unsigned i = 0; i != NumElements; ++i) {
3808    EnumConstantDecl *ECD =
3809      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3810    if (!ECD) continue;  // Already issued a diagnostic.
3811
3812    // If the enum value doesn't fit in an int, emit an extension warning.
3813    const llvm::APSInt &InitVal = ECD->getInitVal();
3814    assert(InitVal.getBitWidth() >= IntWidth &&
3815           "Should have promoted value to int");
3816    if (InitVal.getBitWidth() > IntWidth) {
3817      llvm::APSInt V(InitVal);
3818      V.trunc(IntWidth);
3819      V.extend(InitVal.getBitWidth());
3820      if (V != InitVal)
3821        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3822          << InitVal.toString(10);
3823    }
3824
3825    // Keep track of the size of positive and negative values.
3826    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3827      NumPositiveBits = std::max(NumPositiveBits,
3828                                 (unsigned)InitVal.getActiveBits());
3829    else
3830      NumNegativeBits = std::max(NumNegativeBits,
3831                                 (unsigned)InitVal.getMinSignedBits());
3832
3833    // Keep track of whether every enum element has type int (very commmon).
3834    if (AllElementsInt)
3835      AllElementsInt = ECD->getType() == Context.IntTy;
3836  }
3837
3838  // Figure out the type that should be used for this enum.
3839  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3840  QualType BestType;
3841  unsigned BestWidth;
3842
3843  if (NumNegativeBits) {
3844    // If there is a negative value, figure out the smallest integer type (of
3845    // int/long/longlong) that fits.
3846    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3847      BestType = Context.IntTy;
3848      BestWidth = IntWidth;
3849    } else {
3850      BestWidth = Context.Target.getLongWidth();
3851
3852      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3853        BestType = Context.LongTy;
3854      else {
3855        BestWidth = Context.Target.getLongLongWidth();
3856
3857        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3858          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3859        BestType = Context.LongLongTy;
3860      }
3861    }
3862  } else {
3863    // If there is no negative value, figure out which of uint, ulong, ulonglong
3864    // fits.
3865    if (NumPositiveBits <= IntWidth) {
3866      BestType = Context.UnsignedIntTy;
3867      BestWidth = IntWidth;
3868    } else if (NumPositiveBits <=
3869               (BestWidth = Context.Target.getLongWidth())) {
3870      BestType = Context.UnsignedLongTy;
3871    } else {
3872      BestWidth = Context.Target.getLongLongWidth();
3873      assert(NumPositiveBits <= BestWidth &&
3874             "How could an initializer get larger than ULL?");
3875      BestType = Context.UnsignedLongLongTy;
3876    }
3877  }
3878
3879  // Loop over all of the enumerator constants, changing their types to match
3880  // the type of the enum if needed.
3881  for (unsigned i = 0; i != NumElements; ++i) {
3882    EnumConstantDecl *ECD =
3883      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3884    if (!ECD) continue;  // Already issued a diagnostic.
3885
3886    // Standard C says the enumerators have int type, but we allow, as an
3887    // extension, the enumerators to be larger than int size.  If each
3888    // enumerator value fits in an int, type it as an int, otherwise type it the
3889    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3890    // that X has type 'int', not 'unsigned'.
3891    if (ECD->getType() == Context.IntTy) {
3892      // Make sure the init value is signed.
3893      llvm::APSInt IV = ECD->getInitVal();
3894      IV.setIsSigned(true);
3895      ECD->setInitVal(IV);
3896
3897      if (getLangOptions().CPlusPlus)
3898        // C++ [dcl.enum]p4: Following the closing brace of an
3899        // enum-specifier, each enumerator has the type of its
3900        // enumeration.
3901        ECD->setType(EnumType);
3902      continue;  // Already int type.
3903    }
3904
3905    // Determine whether the value fits into an int.
3906    llvm::APSInt InitVal = ECD->getInitVal();
3907    bool FitsInInt;
3908    if (InitVal.isUnsigned() || !InitVal.isNegative())
3909      FitsInInt = InitVal.getActiveBits() < IntWidth;
3910    else
3911      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3912
3913    // If it fits into an integer type, force it.  Otherwise force it to match
3914    // the enum decl type.
3915    QualType NewTy;
3916    unsigned NewWidth;
3917    bool NewSign;
3918    if (FitsInInt) {
3919      NewTy = Context.IntTy;
3920      NewWidth = IntWidth;
3921      NewSign = true;
3922    } else if (ECD->getType() == BestType) {
3923      // Already the right type!
3924      if (getLangOptions().CPlusPlus)
3925        // C++ [dcl.enum]p4: Following the closing brace of an
3926        // enum-specifier, each enumerator has the type of its
3927        // enumeration.
3928        ECD->setType(EnumType);
3929      continue;
3930    } else {
3931      NewTy = BestType;
3932      NewWidth = BestWidth;
3933      NewSign = BestType->isSignedIntegerType();
3934    }
3935
3936    // Adjust the APSInt value.
3937    InitVal.extOrTrunc(NewWidth);
3938    InitVal.setIsSigned(NewSign);
3939    ECD->setInitVal(InitVal);
3940
3941    // Adjust the Expr initializer and type.
3942    if (ECD->getInitExpr())
3943      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3944                                                      /*isLvalue=*/false));
3945    if (getLangOptions().CPlusPlus)
3946      // C++ [dcl.enum]p4: Following the closing brace of an
3947      // enum-specifier, each enumerator has the type of its
3948      // enumeration.
3949      ECD->setType(EnumType);
3950    else
3951      ECD->setType(NewTy);
3952  }
3953
3954  Enum->completeDefinition(Context, BestType);
3955}
3956
3957Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3958                                          ExprArg expr) {
3959  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3960
3961  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3962}
3963
3964
3965void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3966                           ExprTy *alignment, SourceLocation PragmaLoc,
3967                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3968  Expr *Alignment = static_cast<Expr *>(alignment);
3969
3970  // If specified then alignment must be a "small" power of two.
3971  unsigned AlignmentVal = 0;
3972  if (Alignment) {
3973    llvm::APSInt Val;
3974    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3975        !Val.isPowerOf2() ||
3976        Val.getZExtValue() > 16) {
3977      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3978      Alignment->Destroy(Context);
3979      return; // Ignore
3980    }
3981
3982    AlignmentVal = (unsigned) Val.getZExtValue();
3983  }
3984
3985  switch (Kind) {
3986  case Action::PPK_Default: // pack([n])
3987    PackContext.setAlignment(AlignmentVal);
3988    break;
3989
3990  case Action::PPK_Show: // pack(show)
3991    // Show the current alignment, making sure to show the right value
3992    // for the default.
3993    AlignmentVal = PackContext.getAlignment();
3994    // FIXME: This should come from the target.
3995    if (AlignmentVal == 0)
3996      AlignmentVal = 8;
3997    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3998    break;
3999
4000  case Action::PPK_Push: // pack(push [, id] [, [n])
4001    PackContext.push(Name);
4002    // Set the new alignment if specified.
4003    if (Alignment)
4004      PackContext.setAlignment(AlignmentVal);
4005    break;
4006
4007  case Action::PPK_Pop: // pack(pop [, id] [,  n])
4008    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
4009    // "#pragma pack(pop, identifier, n) is undefined"
4010    if (Alignment && Name)
4011      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
4012
4013    // Do the pop.
4014    if (!PackContext.pop(Name)) {
4015      // If a name was specified then failure indicates the name
4016      // wasn't found. Otherwise failure indicates the stack was
4017      // empty.
4018      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
4019        << (Name ? "no record matching name" : "stack empty");
4020
4021      // FIXME: Warn about popping named records as MSVC does.
4022    } else {
4023      // Pop succeeded, set the new alignment if specified.
4024      if (Alignment)
4025        PackContext.setAlignment(AlignmentVal);
4026    }
4027    break;
4028
4029  default:
4030    assert(0 && "Invalid #pragma pack kind.");
4031  }
4032}
4033
4034bool PragmaPackStack::pop(IdentifierInfo *Name) {
4035  if (Stack.empty())
4036    return false;
4037
4038  // If name is empty just pop top.
4039  if (!Name) {
4040    Alignment = Stack.back().first;
4041    Stack.pop_back();
4042    return true;
4043  }
4044
4045  // Otherwise, find the named record.
4046  for (unsigned i = Stack.size(); i != 0; ) {
4047    --i;
4048    if (Stack[i].second == Name) {
4049      // Found it, pop up to and including this record.
4050      Alignment = Stack[i].first;
4051      Stack.erase(Stack.begin() + i, Stack.end());
4052      return true;
4053    }
4054  }
4055
4056  return false;
4057}
4058