SemaDecl.cpp revision 48a83b5e7ae4051c7c11680ac00c1fa02d610a62
1c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
20a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//
30a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//                     The LLVM Compiler Infrastructure
40a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//
50a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang// This file is distributed under the University of Illinois Open Source
60a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang// License. See LICENSE.TXT for details.
70a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//
80a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//===----------------------------------------------------------------------===//
90a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//
100a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//  This file implements semantic analysis for declarations.
110a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//
120a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang//===----------------------------------------------------------------------===//
130a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
140a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "Sema.h"
150a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "SemaInherit.h"
160a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/APValue.h"
170a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/ASTConsumer.h"
180a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/ASTContext.h"
190a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Analysis/CFG.h"
200a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/DeclObjC.h"
210a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/DeclTemplate.h"
220a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/ExprCXX.h"
230a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/StmtCXX.h"
240a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/AST/StmtObjC.h"
250a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Parse/DeclSpec.h"
260a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Basic/PartialDiagnostic.h"
270a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Basic/SourceManager.h"
280a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Basic/TargetInfo.h"
290a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
300a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Lex/Preprocessor.h"
310a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "clang/Lex/HeaderSearch.h"
320a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "llvm/ADT/BitVector.h"
330a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include "llvm/ADT/STLExtras.h"
340a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include <algorithm>
350a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include <functional>
360a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang#include <queue>
370a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wangusing namespace clang;
380a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
390a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// getDeclName - Return a pretty name for the specified decl if possible, or
400a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// an empty string if not.  This is used for pretty crash reporting.
410a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wangstd::string Sema::getDeclName(DeclPtrTy d) {
420a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  Decl *D = d.getAs<Decl>();
430a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
440a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    return DN->getQualifiedNameAsString();
450a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  return "";
460a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang}
470a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
480a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih WangSema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
490a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
500a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang}
510a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
520a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// \brief If the identifier refers to a type name within this scope,
530a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// return the declaration of that type.
540a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang///
550a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// This routine performs ordinary name lookup of the identifier II
560a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// within the given scope, with optional C++ scope specifier SS, to
570a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// determine whether the name refers to a type. If so, returns an
580a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// opaque pointer (actually a QualType) corresponding to that
590a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// type. Otherwise, returns NULL.
600a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang///
610a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// If name lookup results in an ambiguity, this routine will complain
620a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// and then return NULL.
630a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih WangSema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
640a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang                                Scope *S, const CXXScopeSpec *SS,
650a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang                                bool isClassName) {
660a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // C++ [temp.res]p3:
670a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //   A qualified-id that refers to a type and in which the
680a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //   nested-name-specifier depends on a template-parameter (14.6.2)
690a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //   shall be prefixed by the keyword typename to indicate that the
700a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //   qualified-id denotes a type, forming an
710a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //   elaborated-type-specifier (7.1.5.3).
720a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  //
730a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // We therefore do not perform any name lookup if the result would
740a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // refer to a member of an unknown specialization.
750a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  if (SS && isUnknownSpecialization(*SS)) {
760a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    if (!isClassName)
770a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      return 0;
780a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
790a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // We know from the grammar that this name refers to a type, so build a
800a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // TypenameType node to describe the type.
810a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // FIXME: Record somewhere that this TypenameType node has no "typename"
820a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // keyword associated with it.
830a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
840a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang                             II, SS->getRange()).getAsOpaquePtr();
85c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh  }
860a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
870a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  LookupResult Result
880a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
890a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
900a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  NamedDecl *IIDecl = 0;
910a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  switch (Result.getKind()) {
920a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  case LookupResult::NotFound:
930a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  case LookupResult::FoundOverloaded:
940a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    return 0;
950a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
960a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  case LookupResult::AmbiguousBaseSubobjectTypes:
970a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  case LookupResult::AmbiguousBaseSubobjects:
980a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  case LookupResult::AmbiguousReference: {
990a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // Look to see if we have a type anywhere in the list of results.
1000a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
1010a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang         Res != ResEnd; ++Res) {
1020a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
1030a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        if (!IIDecl ||
1040a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang            (*Res)->getLocation().getRawEncoding() <
1050a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang              IIDecl->getLocation().getRawEncoding())
1060a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang          IIDecl = *Res;
1070a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      }
1080a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    }
1090a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1100a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    if (!IIDecl) {
1110a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // None of the entities we found is a type, so there is no way
1120a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // to even assume that the result is a type. In this case, don't
1130a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // complain about the ambiguity. The parser will either try to
1140a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // perform this lookup again (e.g., as an object name), which
1150a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // will produce the ambiguity, or will complain that it expected
1160a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      // a type name.
1170a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      Result.Destroy();
1180a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      return 0;
119c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    }
1200a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
121c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    // We found a type within the ambiguous lookup; diagnose the
1220a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // ambiguity and then return that type. This might be the right
1230a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // answer, or it might not be, but it suppresses any attempt to
124c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    // perform the name lookup again.
125c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    break;
127c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh  }
128c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh
129c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh  case LookupResult::Found:
1300a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    IIDecl = Result.getAsDecl();
1310a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    break;
1320a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  }
1330a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1340a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  if (IIDecl) {
1350a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    QualType T;
1360a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1370a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh      // Check whether we can use this type
1390a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
1400a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1410a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      if (getLangOptions().CPlusPlus) {
1420a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        // C++ [temp.local]p2:
1430a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   Within the scope of a class template specialization or
1440a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   partial specialization, when the injected-class-name is
1450a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   not followed by a <, it is equivalent to the
1460a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   injected-class-name followed by the template-argument s
1470a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   of the class template specialization or partial
1480a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        //   specialization enclosed in <>.
1490a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
1500a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang          if (RD->isInjectedClassName())
1510a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
1520a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang              T = Template->getInjectedClassNameType(Context);
1530a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      }
1540a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1550a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      if (T.isNull())
1560a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang        T = Context.getTypeDeclType(TD);
1570a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh      // Check whether we can use this interface.
1590a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
1600a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1610a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      T = Context.getObjCInterfaceType(IDecl);
1620a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    } else
1630a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      return 0;
164c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh
165c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh    if (SS)
1660a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      T = getQualifiedNameType(*SS, T);
167c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh
1680a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    return T.getAsOpaquePtr();
1690a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  }
1700a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1710a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  return 0;
1720a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang}
1730a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
1740a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// isTagName() - This method is called *for error recovery purposes only*
1750a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// to determine if the specified name is a valid tag name ("struct foo").  If
1760a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// so, this returns the TST for the tag corresponding to it (TST_enum,
1770a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
1780a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang/// where the user forgot to specify the tag.
1790a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih WangDeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
1800a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // Do a tag name lookup in this scope.
1810a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
1820a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  if (R.getKind() == LookupResult::Found)
1830a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
1840a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      switch (TD->getTagKind()) {
1850a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      case TagDecl::TK_struct: return DeclSpec::TST_struct;
1860a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      case TagDecl::TK_union:  return DeclSpec::TST_union;
187c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh      case TagDecl::TK_class:  return DeclSpec::TST_class;
188c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
1890a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang      }
1900a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    }
1910a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
192c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh  return DeclSpec::TST_unspecified;
193c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh}
194c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh
195f8a6a7636d53a5730c58ae041e4e09ae12e1657cChia-chi Yeh
196f8a6a7636d53a5730c58ae041e4e09ae12e1657cChia-chi Yeh// Determines the context to return to after temporarily entering a
197f8a6a7636d53a5730c58ae041e4e09ae12e1657cChia-chi Yeh// context.  This depends in an unnecessarily complicated way on the
198f8a6a7636d53a5730c58ae041e4e09ae12e1657cChia-chi Yeh// exact ordering of callbacks from the parser.
199f8a6a7636d53a5730c58ae041e4e09ae12e1657cChia-chi YehDeclContext *Sema::getContainingDC(DeclContext *DC) {
2000a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
2010a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // Functions defined inline within classes aren't parsed until we've
2020a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  // finished parsing the top-level class, so the top-level class is
203c91307af2622f6625525f3c1f9c954376df950adChia-chi Yeh  // the context we'll need to return to.
2040a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang  if (isa<FunctionDecl>(DC)) {
2050a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    DC = DC->getLexicalParent();
2060a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang
2070a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // A function not defined within a class will always return to its
2080a1907d434839af6a9cb6329bbde60b237bf53dcChung-yih Wang    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  if (AddToContext)
297    CurContext->addDecl(D);
298
299  // C++ [basic.scope]p4:
300  //   -- exactly one declaration shall declare a class name or
301  //   enumeration name that is not a typedef name and the other
302  //   declarations shall all refer to the same object or
303  //   enumerator, or all refer to functions and function templates;
304  //   in this case the class name or enumeration name is hidden.
305  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
306    // We are pushing the name of a tag (enum or class).
307    if (CurContext->getLookupContext()
308          == TD->getDeclContext()->getLookupContext()) {
309      // We're pushing the tag into the current context, which might
310      // require some reshuffling in the identifier resolver.
311      IdentifierResolver::iterator
312        I = IdResolver.begin(TD->getDeclName()),
313        IEnd = IdResolver.end();
314      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
315        NamedDecl *PrevDecl = *I;
316        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
317             PrevDecl = *I, ++I) {
318          if (TD->declarationReplaces(*I)) {
319            // This is a redeclaration. Remove it from the chain and
320            // break out, so that we'll add in the shadowed
321            // declaration.
322            S->RemoveDecl(DeclPtrTy::make(*I));
323            if (PrevDecl == *I) {
324              IdResolver.RemoveDecl(*I);
325              IdResolver.AddDecl(TD);
326              return;
327            } else {
328              IdResolver.RemoveDecl(*I);
329              break;
330            }
331          }
332        }
333
334        // There is already a declaration with the same name in the same
335        // scope, which is not a tag declaration. It must be found
336        // before we find the new declaration, so insert the new
337        // declaration at the end of the chain.
338        IdResolver.AddShadowedDecl(TD, PrevDecl);
339
340        return;
341      }
342    }
343  } else if ((isa<FunctionDecl>(D) &&
344              AllowOverloadingOfFunction(D, Context)) ||
345             isa<FunctionTemplateDecl>(D)) {
346    // We are pushing the name of a function or function template,
347    // which might be an overloaded name.
348    IdentifierResolver::iterator Redecl
349      = std::find_if(IdResolver.begin(D->getDeclName()),
350                     IdResolver.end(),
351                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
352                                  D));
353    if (Redecl != IdResolver.end() &&
354        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
355      // There is already a declaration of a function on our
356      // IdResolver chain. Replace it with this declaration.
357      S->RemoveDecl(DeclPtrTy::make(*Redecl));
358      IdResolver.RemoveDecl(*Redecl);
359    }
360  } else if (isa<ObjCInterfaceDecl>(D)) {
361    // We're pushing an Objective-C interface into the current
362    // context. If there is already an alias declaration, remove it first.
363    for (IdentifierResolver::iterator
364           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
365         I != IEnd; ++I) {
366      if (isa<ObjCCompatibleAliasDecl>(*I)) {
367        S->RemoveDecl(DeclPtrTy::make(*I));
368        IdResolver.RemoveDecl(*I);
369        break;
370      }
371    }
372  }
373
374  IdResolver.AddDecl(D);
375}
376
377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
378  if (S->decl_empty()) return;
379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
380         "Scope shouldn't contain decls!");
381
382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
383       I != E; ++I) {
384    Decl *TmpD = (*I).getAs<Decl>();
385    assert(TmpD && "This decl didn't get pushed??");
386
387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
388    NamedDecl *D = cast<NamedDecl>(TmpD);
389
390    if (!D->getDeclName()) continue;
391
392    // Remove this name from our lexical scope.
393    IdResolver.RemoveDecl(D);
394  }
395}
396
397/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
398/// return 0 if one not found.
399ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
401  // creation from this context.
402  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
403
404  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
405}
406
407/// getNonFieldDeclScope - Retrieves the innermost scope, starting
408/// from S, where a non-field would be declared. This routine copes
409/// with the difference between C and C++ scoping rules in structs and
410/// unions. For example, the following code is well-formed in C but
411/// ill-formed in C++:
412/// @code
413/// struct S6 {
414///   enum { BAR } e;
415/// };
416///
417/// void test_S6() {
418///   struct S6 a;
419///   a.e = BAR;
420/// }
421/// @endcode
422/// For the declaration of BAR, this routine will return a different
423/// scope. The scope S will be the scope of the unnamed enumeration
424/// within S6. In C++, this routine will return the scope associated
425/// with S6, because the enumeration's scope is a transparent
426/// context but structures can contain non-field names. In C, this
427/// routine will return the translation unit scope, since the
428/// enumeration's scope is a transparent context and structures cannot
429/// contain non-field names.
430Scope *Sema::getNonFieldDeclScope(Scope *S) {
431  while (((S->getFlags() & Scope::DeclScope) == 0) ||
432         (S->getEntity() &&
433          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
434         (S->isClassScope() && !getLangOptions().CPlusPlus))
435    S = S->getParent();
436  return S;
437}
438
439void Sema::InitBuiltinVaListType() {
440  if (!Context.getBuiltinVaListType().isNull())
441    return;
442
443  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
444  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
445  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
446  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
447}
448
449/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
450/// file scope.  lazily create a decl for it. ForRedeclaration is true
451/// if we're creating this built-in in anticipation of redeclaring the
452/// built-in.
453NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
454                                     Scope *S, bool ForRedeclaration,
455                                     SourceLocation Loc) {
456  Builtin::ID BID = (Builtin::ID)bid;
457
458  if (Context.BuiltinInfo.hasVAListUse(BID))
459    InitBuiltinVaListType();
460
461  ASTContext::GetBuiltinTypeError Error;
462  QualType R = Context.GetBuiltinType(BID, Error);
463  switch (Error) {
464  case ASTContext::GE_None:
465    // Okay
466    break;
467
468  case ASTContext::GE_Missing_stdio:
469    if (ForRedeclaration)
470      Diag(Loc, diag::err_implicit_decl_requires_stdio)
471        << Context.BuiltinInfo.GetName(BID);
472    return 0;
473
474  case ASTContext::GE_Missing_setjmp:
475    if (ForRedeclaration)
476      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
477        << Context.BuiltinInfo.GetName(BID);
478    return 0;
479  }
480
481  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
482    Diag(Loc, diag::ext_implicit_lib_function_decl)
483      << Context.BuiltinInfo.GetName(BID)
484      << R;
485    if (Context.BuiltinInfo.getHeaderName(BID) &&
486        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
487          != Diagnostic::Ignored)
488      Diag(Loc, diag::note_please_include_header)
489        << Context.BuiltinInfo.getHeaderName(BID)
490        << Context.BuiltinInfo.GetName(BID);
491  }
492
493  FunctionDecl *New = FunctionDecl::Create(Context,
494                                           Context.getTranslationUnitDecl(),
495                                           Loc, II, R, /*DInfo=*/0,
496                                           FunctionDecl::Extern, false,
497                                           /*hasPrototype=*/true);
498  New->setImplicit();
499
500  // Create Decl objects for each parameter, adding them to the
501  // FunctionDecl.
502  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
503    llvm::SmallVector<ParmVarDecl*, 16> Params;
504    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
505      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
506                                           FT->getArgType(i), /*DInfo=*/0,
507                                           VarDecl::None, 0));
508    New->setParams(Context, Params.data(), Params.size());
509  }
510
511  AddKnownFunctionAttributes(New);
512
513  // TUScope is the translation-unit scope to insert this function into.
514  // FIXME: This is hideous. We need to teach PushOnScopeChains to
515  // relate Scopes to DeclContexts, and probably eliminate CurContext
516  // entirely, but we're not there yet.
517  DeclContext *SavedContext = CurContext;
518  CurContext = Context.getTranslationUnitDecl();
519  PushOnScopeChains(New, TUScope);
520  CurContext = SavedContext;
521  return New;
522}
523
524/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
525/// everything from the standard library is defined.
526NamespaceDecl *Sema::GetStdNamespace() {
527  if (!StdNamespace) {
528    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
529    DeclContext *Global = Context.getTranslationUnitDecl();
530    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
531    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
532  }
533  return StdNamespace;
534}
535
536/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
537/// same name and scope as a previous declaration 'Old'.  Figure out
538/// how to resolve this situation, merging decls or emitting
539/// diagnostics as appropriate. If there was an error, set New to be invalid.
540///
541void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
542  // If either decl is known invalid already, set the new one to be invalid and
543  // don't bother doing any merging checks.
544  if (New->isInvalidDecl() || OldD->isInvalidDecl())
545    return New->setInvalidDecl();
546
547  // Allow multiple definitions for ObjC built-in typedefs.
548  // FIXME: Verify the underlying types are equivalent!
549  if (getLangOptions().ObjC1) {
550    const IdentifierInfo *TypeID = New->getIdentifier();
551    switch (TypeID->getLength()) {
552    default: break;
553    case 2:
554      if (!TypeID->isStr("id"))
555        break;
556      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
557      // Install the built-in type for 'id', ignoring the current definition.
558      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
559      return;
560    case 5:
561      if (!TypeID->isStr("Class"))
562        break;
563      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
564      // Install the built-in type for 'Class', ignoring the current definition.
565      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
566      return;
567    case 3:
568      if (!TypeID->isStr("SEL"))
569        break;
570      Context.setObjCSelType(Context.getTypeDeclType(New));
571      return;
572    case 8:
573      if (!TypeID->isStr("Protocol"))
574        break;
575      Context.setObjCProtoType(New->getUnderlyingType());
576      return;
577    }
578    // Fall through - the typedef name was not a builtin type.
579  }
580  // Verify the old decl was also a type.
581  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
582  if (!Old) {
583    Diag(New->getLocation(), diag::err_redefinition_different_kind)
584      << New->getDeclName();
585    if (OldD->getLocation().isValid())
586      Diag(OldD->getLocation(), diag::note_previous_definition);
587    return New->setInvalidDecl();
588  }
589
590  // Determine the "old" type we'll use for checking and diagnostics.
591  QualType OldType;
592  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
593    OldType = OldTypedef->getUnderlyingType();
594  else
595    OldType = Context.getTypeDeclType(Old);
596
597  // If the typedef types are not identical, reject them in all languages and
598  // with any extensions enabled.
599
600  if (OldType != New->getUnderlyingType() &&
601      Context.getCanonicalType(OldType) !=
602      Context.getCanonicalType(New->getUnderlyingType())) {
603    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
604      << New->getUnderlyingType() << OldType;
605    if (Old->getLocation().isValid())
606      Diag(Old->getLocation(), diag::note_previous_definition);
607    return New->setInvalidDecl();
608  }
609
610  if (getLangOptions().Microsoft)
611    return;
612
613  // C++ [dcl.typedef]p2:
614  //   In a given non-class scope, a typedef specifier can be used to
615  //   redefine the name of any type declared in that scope to refer
616  //   to the type to which it already refers.
617  if (getLangOptions().CPlusPlus) {
618    if (!isa<CXXRecordDecl>(CurContext))
619      return;
620    Diag(New->getLocation(), diag::err_redefinition)
621      << New->getDeclName();
622    Diag(Old->getLocation(), diag::note_previous_definition);
623    return New->setInvalidDecl();
624  }
625
626  // If we have a redefinition of a typedef in C, emit a warning.  This warning
627  // is normally mapped to an error, but can be controlled with
628  // -Wtypedef-redefinition.  If either the original or the redefinition is
629  // in a system header, don't emit this for compatibility with GCC.
630  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
631      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
632       Context.getSourceManager().isInSystemHeader(New->getLocation())))
633    return;
634
635  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
636    << New->getDeclName();
637  Diag(Old->getLocation(), diag::note_previous_definition);
638  return;
639}
640
641/// DeclhasAttr - returns true if decl Declaration already has the target
642/// attribute.
643static bool
644DeclHasAttr(const Decl *decl, const Attr *target) {
645  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
646    if (attr->getKind() == target->getKind())
647      return true;
648
649  return false;
650}
651
652/// MergeAttributes - append attributes from the Old decl to the New one.
653static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
654  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
655    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
656      Attr *NewAttr = attr->clone(C);
657      NewAttr->setInherited(true);
658      New->addAttr(NewAttr);
659    }
660  }
661}
662
663/// Used in MergeFunctionDecl to keep track of function parameters in
664/// C.
665struct GNUCompatibleParamWarning {
666  ParmVarDecl *OldParm;
667  ParmVarDecl *NewParm;
668  QualType PromotedType;
669};
670
671/// MergeFunctionDecl - We just parsed a function 'New' from
672/// declarator D which has the same name and scope as a previous
673/// declaration 'Old'.  Figure out how to resolve this situation,
674/// merging decls or emitting diagnostics as appropriate.
675///
676/// In C++, New and Old must be declarations that are not
677/// overloaded. Use IsOverload to determine whether New and Old are
678/// overloaded, and to select the Old declaration that New should be
679/// merged with.
680///
681/// Returns true if there was an error, false otherwise.
682bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
683  assert(!isa<OverloadedFunctionDecl>(OldD) &&
684         "Cannot merge with an overloaded function declaration");
685
686  // Verify the old decl was also a function.
687  FunctionDecl *Old = 0;
688  if (FunctionTemplateDecl *OldFunctionTemplate
689        = dyn_cast<FunctionTemplateDecl>(OldD))
690    Old = OldFunctionTemplate->getTemplatedDecl();
691  else
692    Old = dyn_cast<FunctionDecl>(OldD);
693  if (!Old) {
694    Diag(New->getLocation(), diag::err_redefinition_different_kind)
695      << New->getDeclName();
696    Diag(OldD->getLocation(), diag::note_previous_definition);
697    return true;
698  }
699
700  // Determine whether the previous declaration was a definition,
701  // implicit declaration, or a declaration.
702  diag::kind PrevDiag;
703  if (Old->isThisDeclarationADefinition())
704    PrevDiag = diag::note_previous_definition;
705  else if (Old->isImplicit())
706    PrevDiag = diag::note_previous_implicit_declaration;
707  else
708    PrevDiag = diag::note_previous_declaration;
709
710  QualType OldQType = Context.getCanonicalType(Old->getType());
711  QualType NewQType = Context.getCanonicalType(New->getType());
712
713  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
714      New->getStorageClass() == FunctionDecl::Static &&
715      Old->getStorageClass() != FunctionDecl::Static) {
716    Diag(New->getLocation(), diag::err_static_non_static)
717      << New;
718    Diag(Old->getLocation(), PrevDiag);
719    return true;
720  }
721
722  if (getLangOptions().CPlusPlus) {
723    // (C++98 13.1p2):
724    //   Certain function declarations cannot be overloaded:
725    //     -- Function declarations that differ only in the return type
726    //        cannot be overloaded.
727    QualType OldReturnType
728      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
729    QualType NewReturnType
730      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
731    if (OldReturnType != NewReturnType) {
732      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
733      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
734      return true;
735    }
736
737    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
738    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
739    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
740        NewMethod->getLexicalDeclContext()->isRecord()) {
741      //    -- Member function declarations with the same name and the
742      //       same parameter types cannot be overloaded if any of them
743      //       is a static member function declaration.
744      if (OldMethod->isStatic() || NewMethod->isStatic()) {
745        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
746        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747        return true;
748      }
749
750      // C++ [class.mem]p1:
751      //   [...] A member shall not be declared twice in the
752      //   member-specification, except that a nested class or member
753      //   class template can be declared and then later defined.
754      unsigned NewDiag;
755      if (isa<CXXConstructorDecl>(OldMethod))
756        NewDiag = diag::err_constructor_redeclared;
757      else if (isa<CXXDestructorDecl>(NewMethod))
758        NewDiag = diag::err_destructor_redeclared;
759      else if (isa<CXXConversionDecl>(NewMethod))
760        NewDiag = diag::err_conv_function_redeclared;
761      else
762        NewDiag = diag::err_member_redeclared;
763
764      Diag(New->getLocation(), NewDiag);
765      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
766    }
767
768    // (C++98 8.3.5p3):
769    //   All declarations for a function shall agree exactly in both the
770    //   return type and the parameter-type-list.
771    if (OldQType == NewQType)
772      return MergeCompatibleFunctionDecls(New, Old);
773
774    // Fall through for conflicting redeclarations and redefinitions.
775  }
776
777  // C: Function types need to be compatible, not identical. This handles
778  // duplicate function decls like "void f(int); void f(enum X);" properly.
779  if (!getLangOptions().CPlusPlus &&
780      Context.typesAreCompatible(OldQType, NewQType)) {
781    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
782    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
783    const FunctionProtoType *OldProto = 0;
784    if (isa<FunctionNoProtoType>(NewFuncType) &&
785        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
786      // The old declaration provided a function prototype, but the
787      // new declaration does not. Merge in the prototype.
788      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
789      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
790                                                 OldProto->arg_type_end());
791      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
792                                         ParamTypes.data(), ParamTypes.size(),
793                                         OldProto->isVariadic(),
794                                         OldProto->getTypeQuals());
795      New->setType(NewQType);
796      New->setHasInheritedPrototype();
797
798      // Synthesize a parameter for each argument type.
799      llvm::SmallVector<ParmVarDecl*, 16> Params;
800      for (FunctionProtoType::arg_type_iterator
801             ParamType = OldProto->arg_type_begin(),
802             ParamEnd = OldProto->arg_type_end();
803           ParamType != ParamEnd; ++ParamType) {
804        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
805                                                 SourceLocation(), 0,
806                                                 *ParamType, /*DInfo=*/0,
807                                                 VarDecl::None, 0);
808        Param->setImplicit();
809        Params.push_back(Param);
810      }
811
812      New->setParams(Context, Params.data(), Params.size());
813    }
814
815    return MergeCompatibleFunctionDecls(New, Old);
816  }
817
818  // GNU C permits a K&R definition to follow a prototype declaration
819  // if the declared types of the parameters in the K&R definition
820  // match the types in the prototype declaration, even when the
821  // promoted types of the parameters from the K&R definition differ
822  // from the types in the prototype. GCC then keeps the types from
823  // the prototype.
824  //
825  // If a variadic prototype is followed by a non-variadic K&R definition,
826  // the K&R definition becomes variadic.  This is sort of an edge case, but
827  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
828  // C99 6.9.1p8.
829  if (!getLangOptions().CPlusPlus &&
830      Old->hasPrototype() && !New->hasPrototype() &&
831      New->getType()->getAsFunctionProtoType() &&
832      Old->getNumParams() == New->getNumParams()) {
833    llvm::SmallVector<QualType, 16> ArgTypes;
834    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
835    const FunctionProtoType *OldProto
836      = Old->getType()->getAsFunctionProtoType();
837    const FunctionProtoType *NewProto
838      = New->getType()->getAsFunctionProtoType();
839
840    // Determine whether this is the GNU C extension.
841    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
842                                               NewProto->getResultType());
843    bool LooseCompatible = !MergedReturn.isNull();
844    for (unsigned Idx = 0, End = Old->getNumParams();
845         LooseCompatible && Idx != End; ++Idx) {
846      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
847      ParmVarDecl *NewParm = New->getParamDecl(Idx);
848      if (Context.typesAreCompatible(OldParm->getType(),
849                                     NewProto->getArgType(Idx))) {
850        ArgTypes.push_back(NewParm->getType());
851      } else if (Context.typesAreCompatible(OldParm->getType(),
852                                            NewParm->getType())) {
853        GNUCompatibleParamWarning Warn
854          = { OldParm, NewParm, NewProto->getArgType(Idx) };
855        Warnings.push_back(Warn);
856        ArgTypes.push_back(NewParm->getType());
857      } else
858        LooseCompatible = false;
859    }
860
861    if (LooseCompatible) {
862      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
863        Diag(Warnings[Warn].NewParm->getLocation(),
864             diag::ext_param_promoted_not_compatible_with_prototype)
865          << Warnings[Warn].PromotedType
866          << Warnings[Warn].OldParm->getType();
867        Diag(Warnings[Warn].OldParm->getLocation(),
868             diag::note_previous_declaration);
869      }
870
871      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
872                                           ArgTypes.size(),
873                                           OldProto->isVariadic(), 0));
874      return MergeCompatibleFunctionDecls(New, Old);
875    }
876
877    // Fall through to diagnose conflicting types.
878  }
879
880  // A function that has already been declared has been redeclared or defined
881  // with a different type- show appropriate diagnostic
882  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
883    // The user has declared a builtin function with an incompatible
884    // signature.
885    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
886      // The function the user is redeclaring is a library-defined
887      // function like 'malloc' or 'printf'. Warn about the
888      // redeclaration, then pretend that we don't know about this
889      // library built-in.
890      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
891      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
892        << Old << Old->getType();
893      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
894      Old->setInvalidDecl();
895      return false;
896    }
897
898    PrevDiag = diag::note_previous_builtin_declaration;
899  }
900
901  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
902  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
903  return true;
904}
905
906/// \brief Completes the merge of two function declarations that are
907/// known to be compatible.
908///
909/// This routine handles the merging of attributes and other
910/// properties of function declarations form the old declaration to
911/// the new declaration, once we know that New is in fact a
912/// redeclaration of Old.
913///
914/// \returns false
915bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
916  // Merge the attributes
917  MergeAttributes(New, Old, Context);
918
919  // Merge the storage class.
920  if (Old->getStorageClass() != FunctionDecl::Extern)
921    New->setStorageClass(Old->getStorageClass());
922
923  // Merge "inline"
924  if (Old->isInline())
925    New->setInline(true);
926
927  // If this function declaration by itself qualifies as a C99 inline
928  // definition (C99 6.7.4p6), but the previous definition did not,
929  // then the function is not a C99 inline definition.
930  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
931    New->setC99InlineDefinition(false);
932  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
933    // Mark all preceding definitions as not being C99 inline definitions.
934    for (const FunctionDecl *Prev = Old; Prev;
935         Prev = Prev->getPreviousDeclaration())
936      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
937  }
938
939  // Merge "pure" flag.
940  if (Old->isPure())
941    New->setPure();
942
943  // Merge the "deleted" flag.
944  if (Old->isDeleted())
945    New->setDeleted();
946
947  if (getLangOptions().CPlusPlus)
948    return MergeCXXFunctionDecl(New, Old);
949
950  return false;
951}
952
953/// MergeVarDecl - We just parsed a variable 'New' which has the same name
954/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
955/// situation, merging decls or emitting diagnostics as appropriate.
956///
957/// Tentative definition rules (C99 6.9.2p2) are checked by
958/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
959/// definitions here, since the initializer hasn't been attached.
960///
961void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
962  // If either decl is invalid, make sure the new one is marked invalid and
963  // don't do any other checking.
964  if (New->isInvalidDecl() || OldD->isInvalidDecl())
965    return New->setInvalidDecl();
966
967  // Verify the old decl was also a variable.
968  VarDecl *Old = dyn_cast<VarDecl>(OldD);
969  if (!Old) {
970    Diag(New->getLocation(), diag::err_redefinition_different_kind)
971      << New->getDeclName();
972    Diag(OldD->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975
976  MergeAttributes(New, Old, Context);
977
978  // Merge the types
979  QualType MergedT;
980  if (getLangOptions().CPlusPlus) {
981    if (Context.hasSameType(New->getType(), Old->getType()))
982      MergedT = New->getType();
983    // C++ [basic.types]p7:
984    //   [...] The declared type of an array object might be an array of
985    //   unknown size and therefore be incomplete at one point in a
986    //   translation unit and complete later on; [...]
987    else if (Old->getType()->isIncompleteArrayType() &&
988             New->getType()->isArrayType()) {
989      CanQual<ArrayType> OldArray
990        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
991      CanQual<ArrayType> NewArray
992        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
993      if (OldArray->getElementType() == NewArray->getElementType())
994        MergedT = New->getType();
995    }
996  } else {
997    MergedT = Context.mergeTypes(New->getType(), Old->getType());
998  }
999  if (MergedT.isNull()) {
1000    Diag(New->getLocation(), diag::err_redefinition_different_type)
1001      << New->getDeclName();
1002    Diag(Old->getLocation(), diag::note_previous_definition);
1003    return New->setInvalidDecl();
1004  }
1005  New->setType(MergedT);
1006
1007  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1008  if (New->getStorageClass() == VarDecl::Static &&
1009      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1010    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1011    Diag(Old->getLocation(), diag::note_previous_definition);
1012    return New->setInvalidDecl();
1013  }
1014  // C99 6.2.2p4:
1015  //   For an identifier declared with the storage-class specifier
1016  //   extern in a scope in which a prior declaration of that
1017  //   identifier is visible,23) if the prior declaration specifies
1018  //   internal or external linkage, the linkage of the identifier at
1019  //   the later declaration is the same as the linkage specified at
1020  //   the prior declaration. If no prior declaration is visible, or
1021  //   if the prior declaration specifies no linkage, then the
1022  //   identifier has external linkage.
1023  if (New->hasExternalStorage() && Old->hasLinkage())
1024    /* Okay */;
1025  else if (New->getStorageClass() != VarDecl::Static &&
1026           Old->getStorageClass() == VarDecl::Static) {
1027    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1028    Diag(Old->getLocation(), diag::note_previous_definition);
1029    return New->setInvalidDecl();
1030  }
1031
1032  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1033
1034  // FIXME: The test for external storage here seems wrong? We still
1035  // need to check for mismatches.
1036  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1037      // Don't complain about out-of-line definitions of static members.
1038      !(Old->getLexicalDeclContext()->isRecord() &&
1039        !New->getLexicalDeclContext()->isRecord())) {
1040    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1041    Diag(Old->getLocation(), diag::note_previous_definition);
1042    return New->setInvalidDecl();
1043  }
1044
1045  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1046    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1047    Diag(Old->getLocation(), diag::note_previous_definition);
1048  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1049    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1050    Diag(Old->getLocation(), diag::note_previous_definition);
1051  }
1052
1053  // Keep a chain of previous declarations.
1054  New->setPreviousDeclaration(Old);
1055}
1056
1057/// CheckFallThrough - Check that we don't fall off the end of a
1058/// Statement that should return a value.
1059///
1060/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1061/// MaybeFallThrough iff we might or might not fall off the end and
1062/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1063/// that functions not marked noreturn will return.
1064Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1065  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1066
1067  // FIXME: They should never return 0, fix that, delete this code.
1068  if (cfg == 0)
1069    return NeverFallThrough;
1070  // The CFG leaves in dead things, and we don't want to dead code paths to
1071  // confuse us, so we mark all live things first.
1072  std::queue<CFGBlock*> workq;
1073  llvm::BitVector live(cfg->getNumBlockIDs());
1074  // Prep work queue
1075  workq.push(&cfg->getEntry());
1076  // Solve
1077  while (!workq.empty()) {
1078    CFGBlock *item = workq.front();
1079    workq.pop();
1080    live.set(item->getBlockID());
1081    for (CFGBlock::succ_iterator I=item->succ_begin(),
1082           E=item->succ_end();
1083         I != E;
1084         ++I) {
1085      if ((*I) && !live[(*I)->getBlockID()]) {
1086        live.set((*I)->getBlockID());
1087        workq.push(*I);
1088      }
1089    }
1090  }
1091
1092  // Now we know what is live, we check the live precessors of the exit block
1093  // and look for fall through paths, being careful to ignore normal returns,
1094  // and exceptional paths.
1095  bool HasLiveReturn = false;
1096  bool HasFakeEdge = false;
1097  bool HasPlainEdge = false;
1098  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1099         E = cfg->getExit().pred_end();
1100       I != E;
1101       ++I) {
1102    CFGBlock& B = **I;
1103    if (!live[B.getBlockID()])
1104      continue;
1105    if (B.size() == 0) {
1106      // A labeled empty statement, or the entry block...
1107      HasPlainEdge = true;
1108      continue;
1109    }
1110    Stmt *S = B[B.size()-1];
1111    if (isa<ReturnStmt>(S)) {
1112      HasLiveReturn = true;
1113      continue;
1114    }
1115    if (isa<ObjCAtThrowStmt>(S)) {
1116      HasFakeEdge = true;
1117      continue;
1118    }
1119    if (isa<CXXThrowExpr>(S)) {
1120      HasFakeEdge = true;
1121      continue;
1122    }
1123    bool NoReturnEdge = false;
1124    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1125      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1126      if (CEE->getType().getNoReturnAttr()) {
1127        NoReturnEdge = true;
1128        HasFakeEdge = true;
1129      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1130        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1131          if (FD->hasAttr<NoReturnAttr>()) {
1132            NoReturnEdge = true;
1133            HasFakeEdge = true;
1134          }
1135        }
1136      }
1137    }
1138    // FIXME: Add noreturn message sends.
1139    if (NoReturnEdge == false)
1140      HasPlainEdge = true;
1141  }
1142  if (!HasPlainEdge)
1143    return NeverFallThrough;
1144  if (HasFakeEdge || HasLiveReturn)
1145    return MaybeFallThrough;
1146  // This says AlwaysFallThrough for calls to functions that are not marked
1147  // noreturn, that don't return.  If people would like this warning to be more
1148  // accurate, such functions should be marked as noreturn.
1149  return AlwaysFallThrough;
1150}
1151
1152/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1153/// function that should return a value.  Check that we don't fall off the end
1154/// of a noreturn function.  We assume that functions and blocks not marked
1155/// noreturn will return.
1156void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1157  // FIXME: Would be nice if we had a better way to control cascading errors,
1158  // but for now, avoid them.  The problem is that when Parse sees:
1159  //   int foo() { return a; }
1160  // The return is eaten and the Sema code sees just:
1161  //   int foo() { }
1162  // which this code would then warn about.
1163  if (getDiagnostics().hasErrorOccurred())
1164    return;
1165  bool ReturnsVoid = false;
1166  bool HasNoReturn = false;
1167  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1168    if (FD->getResultType()->isVoidType())
1169      ReturnsVoid = true;
1170    if (FD->hasAttr<NoReturnAttr>())
1171      HasNoReturn = true;
1172  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1173    if (MD->getResultType()->isVoidType())
1174      ReturnsVoid = true;
1175    if (MD->hasAttr<NoReturnAttr>())
1176      HasNoReturn = true;
1177  }
1178
1179  // Short circuit for compilation speed.
1180  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1181       == Diagnostic::Ignored || ReturnsVoid)
1182      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1183          == Diagnostic::Ignored || !HasNoReturn)
1184      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1185          == Diagnostic::Ignored || !ReturnsVoid))
1186    return;
1187  // FIXME: Funtion try block
1188  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1189    switch (CheckFallThrough(Body)) {
1190    case MaybeFallThrough:
1191      if (HasNoReturn)
1192        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1193      else if (!ReturnsVoid)
1194        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1195      break;
1196    case AlwaysFallThrough:
1197      if (HasNoReturn)
1198        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1199      else if (!ReturnsVoid)
1200        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1201      break;
1202    case NeverFallThrough:
1203      if (ReturnsVoid)
1204        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1205      break;
1206    }
1207  }
1208}
1209
1210/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1211/// that should return a value.  Check that we don't fall off the end of a
1212/// noreturn block.  We assume that functions and blocks not marked noreturn
1213/// will return.
1214void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1215  // FIXME: Would be nice if we had a better way to control cascading errors,
1216  // but for now, avoid them.  The problem is that when Parse sees:
1217  //   int foo() { return a; }
1218  // The return is eaten and the Sema code sees just:
1219  //   int foo() { }
1220  // which this code would then warn about.
1221  if (getDiagnostics().hasErrorOccurred())
1222    return;
1223  bool ReturnsVoid = false;
1224  bool HasNoReturn = false;
1225  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1226    if (FT->getResultType()->isVoidType())
1227      ReturnsVoid = true;
1228    if (FT->getNoReturnAttr())
1229      HasNoReturn = true;
1230  }
1231
1232  // Short circuit for compilation speed.
1233  if (ReturnsVoid
1234      && !HasNoReturn
1235      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1236          == Diagnostic::Ignored || !ReturnsVoid))
1237    return;
1238  // FIXME: Funtion try block
1239  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1240    switch (CheckFallThrough(Body)) {
1241    case MaybeFallThrough:
1242      if (HasNoReturn)
1243        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1244      else if (!ReturnsVoid)
1245        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1246      break;
1247    case AlwaysFallThrough:
1248      if (HasNoReturn)
1249        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1250      else if (!ReturnsVoid)
1251        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1252      break;
1253    case NeverFallThrough:
1254      if (ReturnsVoid)
1255        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1256      break;
1257    }
1258  }
1259}
1260
1261/// CheckParmsForFunctionDef - Check that the parameters of the given
1262/// function are appropriate for the definition of a function. This
1263/// takes care of any checks that cannot be performed on the
1264/// declaration itself, e.g., that the types of each of the function
1265/// parameters are complete.
1266bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1267  bool HasInvalidParm = false;
1268  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1269    ParmVarDecl *Param = FD->getParamDecl(p);
1270
1271    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1272    // function declarator that is part of a function definition of
1273    // that function shall not have incomplete type.
1274    //
1275    // This is also C++ [dcl.fct]p6.
1276    if (!Param->isInvalidDecl() &&
1277        RequireCompleteType(Param->getLocation(), Param->getType(),
1278                               diag::err_typecheck_decl_incomplete_type)) {
1279      Param->setInvalidDecl();
1280      HasInvalidParm = true;
1281    }
1282
1283    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1284    // declaration of each parameter shall include an identifier.
1285    if (Param->getIdentifier() == 0 &&
1286        !Param->isImplicit() &&
1287        !getLangOptions().CPlusPlus)
1288      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1289  }
1290
1291  return HasInvalidParm;
1292}
1293
1294/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1295/// no declarator (e.g. "struct foo;") is parsed.
1296Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1297  // FIXME: Error on auto/register at file scope
1298  // FIXME: Error on inline/virtual/explicit
1299  // FIXME: Error on invalid restrict
1300  // FIXME: Warn on useless __thread
1301  // FIXME: Warn on useless const/volatile
1302  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1303  // FIXME: Warn on useless attributes
1304  TagDecl *Tag = 0;
1305  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1306      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1307      DS.getTypeSpecType() == DeclSpec::TST_union ||
1308      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1309    if (!DS.getTypeRep()) // We probably had an error
1310      return DeclPtrTy();
1311
1312    // Note that the above type specs guarantee that the
1313    // type rep is a Decl, whereas in many of the others
1314    // it's a Type.
1315    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1316  }
1317
1318  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1319    if (!Record->getDeclName() && Record->isDefinition() &&
1320        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1321      if (getLangOptions().CPlusPlus ||
1322          Record->getDeclContext()->isRecord())
1323        return BuildAnonymousStructOrUnion(S, DS, Record);
1324
1325      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1326        << DS.getSourceRange();
1327    }
1328
1329    // Microsoft allows unnamed struct/union fields. Don't complain
1330    // about them.
1331    // FIXME: Should we support Microsoft's extensions in this area?
1332    if (Record->getDeclName() && getLangOptions().Microsoft)
1333      return DeclPtrTy::make(Tag);
1334  }
1335
1336  if (!DS.isMissingDeclaratorOk() &&
1337      DS.getTypeSpecType() != DeclSpec::TST_error) {
1338    // Warn about typedefs of enums without names, since this is an
1339    // extension in both Microsoft an GNU.
1340    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1341        Tag && isa<EnumDecl>(Tag)) {
1342      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1343        << DS.getSourceRange();
1344      return DeclPtrTy::make(Tag);
1345    }
1346
1347    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1348      << DS.getSourceRange();
1349    return DeclPtrTy();
1350  }
1351
1352  return DeclPtrTy::make(Tag);
1353}
1354
1355/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1356/// anonymous struct or union AnonRecord into the owning context Owner
1357/// and scope S. This routine will be invoked just after we realize
1358/// that an unnamed union or struct is actually an anonymous union or
1359/// struct, e.g.,
1360///
1361/// @code
1362/// union {
1363///   int i;
1364///   float f;
1365/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1366///    // f into the surrounding scope.x
1367/// @endcode
1368///
1369/// This routine is recursive, injecting the names of nested anonymous
1370/// structs/unions into the owning context and scope as well.
1371bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1372                                               RecordDecl *AnonRecord) {
1373  bool Invalid = false;
1374  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1375                               FEnd = AnonRecord->field_end();
1376       F != FEnd; ++F) {
1377    if ((*F)->getDeclName()) {
1378      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1379                                                LookupOrdinaryName, true);
1380      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1381        // C++ [class.union]p2:
1382        //   The names of the members of an anonymous union shall be
1383        //   distinct from the names of any other entity in the
1384        //   scope in which the anonymous union is declared.
1385        unsigned diagKind
1386          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1387                                 : diag::err_anonymous_struct_member_redecl;
1388        Diag((*F)->getLocation(), diagKind)
1389          << (*F)->getDeclName();
1390        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1391        Invalid = true;
1392      } else {
1393        // C++ [class.union]p2:
1394        //   For the purpose of name lookup, after the anonymous union
1395        //   definition, the members of the anonymous union are
1396        //   considered to have been defined in the scope in which the
1397        //   anonymous union is declared.
1398        Owner->makeDeclVisibleInContext(*F);
1399        S->AddDecl(DeclPtrTy::make(*F));
1400        IdResolver.AddDecl(*F);
1401      }
1402    } else if (const RecordType *InnerRecordType
1403                 = (*F)->getType()->getAs<RecordType>()) {
1404      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1405      if (InnerRecord->isAnonymousStructOrUnion())
1406        Invalid = Invalid ||
1407          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1408    }
1409  }
1410
1411  return Invalid;
1412}
1413
1414/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1415/// anonymous structure or union. Anonymous unions are a C++ feature
1416/// (C++ [class.union]) and a GNU C extension; anonymous structures
1417/// are a GNU C and GNU C++ extension.
1418Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1419                                                  RecordDecl *Record) {
1420  DeclContext *Owner = Record->getDeclContext();
1421
1422  // Diagnose whether this anonymous struct/union is an extension.
1423  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1424    Diag(Record->getLocation(), diag::ext_anonymous_union);
1425  else if (!Record->isUnion())
1426    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1427
1428  // C and C++ require different kinds of checks for anonymous
1429  // structs/unions.
1430  bool Invalid = false;
1431  if (getLangOptions().CPlusPlus) {
1432    const char* PrevSpec = 0;
1433    unsigned DiagID;
1434    // C++ [class.union]p3:
1435    //   Anonymous unions declared in a named namespace or in the
1436    //   global namespace shall be declared static.
1437    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1438        (isa<TranslationUnitDecl>(Owner) ||
1439         (isa<NamespaceDecl>(Owner) &&
1440          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1441      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1442      Invalid = true;
1443
1444      // Recover by adding 'static'.
1445      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1446                             PrevSpec, DiagID);
1447    }
1448    // C++ [class.union]p3:
1449    //   A storage class is not allowed in a declaration of an
1450    //   anonymous union in a class scope.
1451    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1452             isa<RecordDecl>(Owner)) {
1453      Diag(DS.getStorageClassSpecLoc(),
1454           diag::err_anonymous_union_with_storage_spec);
1455      Invalid = true;
1456
1457      // Recover by removing the storage specifier.
1458      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1459                             PrevSpec, DiagID);
1460    }
1461
1462    // C++ [class.union]p2:
1463    //   The member-specification of an anonymous union shall only
1464    //   define non-static data members. [Note: nested types and
1465    //   functions cannot be declared within an anonymous union. ]
1466    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1467                                 MemEnd = Record->decls_end();
1468         Mem != MemEnd; ++Mem) {
1469      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1470        // C++ [class.union]p3:
1471        //   An anonymous union shall not have private or protected
1472        //   members (clause 11).
1473        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1474          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1475            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1476          Invalid = true;
1477        }
1478      } else if ((*Mem)->isImplicit()) {
1479        // Any implicit members are fine.
1480      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1481        // This is a type that showed up in an
1482        // elaborated-type-specifier inside the anonymous struct or
1483        // union, but which actually declares a type outside of the
1484        // anonymous struct or union. It's okay.
1485      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1486        if (!MemRecord->isAnonymousStructOrUnion() &&
1487            MemRecord->getDeclName()) {
1488          // This is a nested type declaration.
1489          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1490            << (int)Record->isUnion();
1491          Invalid = true;
1492        }
1493      } else {
1494        // We have something that isn't a non-static data
1495        // member. Complain about it.
1496        unsigned DK = diag::err_anonymous_record_bad_member;
1497        if (isa<TypeDecl>(*Mem))
1498          DK = diag::err_anonymous_record_with_type;
1499        else if (isa<FunctionDecl>(*Mem))
1500          DK = diag::err_anonymous_record_with_function;
1501        else if (isa<VarDecl>(*Mem))
1502          DK = diag::err_anonymous_record_with_static;
1503        Diag((*Mem)->getLocation(), DK)
1504            << (int)Record->isUnion();
1505          Invalid = true;
1506      }
1507    }
1508  }
1509
1510  if (!Record->isUnion() && !Owner->isRecord()) {
1511    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1512      << (int)getLangOptions().CPlusPlus;
1513    Invalid = true;
1514  }
1515
1516  // Create a declaration for this anonymous struct/union.
1517  NamedDecl *Anon = 0;
1518  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1519    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1520                             /*IdentifierInfo=*/0,
1521                             Context.getTypeDeclType(Record),
1522                             // FIXME: Type source info.
1523                             /*DInfo=*/0,
1524                             /*BitWidth=*/0, /*Mutable=*/false);
1525    Anon->setAccess(AS_public);
1526    if (getLangOptions().CPlusPlus)
1527      FieldCollector->Add(cast<FieldDecl>(Anon));
1528  } else {
1529    VarDecl::StorageClass SC;
1530    switch (DS.getStorageClassSpec()) {
1531    default: assert(0 && "Unknown storage class!");
1532    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1533    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1534    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1535    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1536    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1537    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1538    case DeclSpec::SCS_mutable:
1539      // mutable can only appear on non-static class members, so it's always
1540      // an error here
1541      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1542      Invalid = true;
1543      SC = VarDecl::None;
1544      break;
1545    }
1546
1547    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1548                           /*IdentifierInfo=*/0,
1549                           Context.getTypeDeclType(Record),
1550                           // FIXME: Type source info.
1551                           /*DInfo=*/0,
1552                           SC);
1553  }
1554  Anon->setImplicit();
1555
1556  // Add the anonymous struct/union object to the current
1557  // context. We'll be referencing this object when we refer to one of
1558  // its members.
1559  Owner->addDecl(Anon);
1560
1561  // Inject the members of the anonymous struct/union into the owning
1562  // context and into the identifier resolver chain for name lookup
1563  // purposes.
1564  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1565    Invalid = true;
1566
1567  // Mark this as an anonymous struct/union type. Note that we do not
1568  // do this until after we have already checked and injected the
1569  // members of this anonymous struct/union type, because otherwise
1570  // the members could be injected twice: once by DeclContext when it
1571  // builds its lookup table, and once by
1572  // InjectAnonymousStructOrUnionMembers.
1573  Record->setAnonymousStructOrUnion(true);
1574
1575  if (Invalid)
1576    Anon->setInvalidDecl();
1577
1578  return DeclPtrTy::make(Anon);
1579}
1580
1581
1582/// GetNameForDeclarator - Determine the full declaration name for the
1583/// given Declarator.
1584DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1585  switch (D.getKind()) {
1586  case Declarator::DK_Abstract:
1587    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1588    return DeclarationName();
1589
1590  case Declarator::DK_Normal:
1591    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1592    return DeclarationName(D.getIdentifier());
1593
1594  case Declarator::DK_Constructor: {
1595    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1596    return Context.DeclarationNames.getCXXConstructorName(
1597                                                Context.getCanonicalType(Ty));
1598  }
1599
1600  case Declarator::DK_Destructor: {
1601    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1602    return Context.DeclarationNames.getCXXDestructorName(
1603                                                Context.getCanonicalType(Ty));
1604  }
1605
1606  case Declarator::DK_Conversion: {
1607    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1608    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1609    return Context.DeclarationNames.getCXXConversionFunctionName(
1610                                                Context.getCanonicalType(Ty));
1611  }
1612
1613  case Declarator::DK_Operator:
1614    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1615    return Context.DeclarationNames.getCXXOperatorName(
1616                                                D.getOverloadedOperator());
1617  }
1618
1619  assert(false && "Unknown name kind");
1620  return DeclarationName();
1621}
1622
1623/// isNearlyMatchingFunction - Determine whether the C++ functions
1624/// Declaration and Definition are "nearly" matching. This heuristic
1625/// is used to improve diagnostics in the case where an out-of-line
1626/// function definition doesn't match any declaration within
1627/// the class or namespace.
1628static bool isNearlyMatchingFunction(ASTContext &Context,
1629                                     FunctionDecl *Declaration,
1630                                     FunctionDecl *Definition) {
1631  if (Declaration->param_size() != Definition->param_size())
1632    return false;
1633  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1634    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1635    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1636
1637    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1638    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1639    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1640      return false;
1641  }
1642
1643  return true;
1644}
1645
1646Sema::DeclPtrTy
1647Sema::HandleDeclarator(Scope *S, Declarator &D,
1648                       MultiTemplateParamsArg TemplateParamLists,
1649                       bool IsFunctionDefinition) {
1650  DeclarationName Name = GetNameForDeclarator(D);
1651
1652  // All of these full declarators require an identifier.  If it doesn't have
1653  // one, the ParsedFreeStandingDeclSpec action should be used.
1654  if (!Name) {
1655    if (!D.isInvalidType())  // Reject this if we think it is valid.
1656      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1657           diag::err_declarator_need_ident)
1658        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1659    return DeclPtrTy();
1660  }
1661
1662  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1663  // we find one that is.
1664  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1665         (S->getFlags() & Scope::TemplateParamScope) != 0)
1666    S = S->getParent();
1667
1668  // If this is an out-of-line definition of a member of a class template
1669  // or class template partial specialization, we may need to rebuild the
1670  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1671  // for more information.
1672  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1673  // handle expressions properly.
1674  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1675  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1676      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1677      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1678       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1679       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1680       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1681    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1682      // FIXME: Preserve type source info.
1683      QualType T = GetTypeFromParser(DS.getTypeRep());
1684      EnterDeclaratorContext(S, DC);
1685      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1686      ExitDeclaratorContext(S);
1687      if (T.isNull())
1688        return DeclPtrTy();
1689      DS.UpdateTypeRep(T.getAsOpaquePtr());
1690    }
1691  }
1692
1693  DeclContext *DC;
1694  NamedDecl *PrevDecl;
1695  NamedDecl *New;
1696
1697  DeclaratorInfo *DInfo = 0;
1698  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1699
1700  // See if this is a redefinition of a variable in the same scope.
1701  if (D.getCXXScopeSpec().isInvalid()) {
1702    DC = CurContext;
1703    PrevDecl = 0;
1704    D.setInvalidType();
1705  } else if (!D.getCXXScopeSpec().isSet()) {
1706    LookupNameKind NameKind = LookupOrdinaryName;
1707
1708    // If the declaration we're planning to build will be a function
1709    // or object with linkage, then look for another declaration with
1710    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1711    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1712      /* Do nothing*/;
1713    else if (R->isFunctionType()) {
1714      if (CurContext->isFunctionOrMethod() ||
1715          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1716        NameKind = LookupRedeclarationWithLinkage;
1717    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1718      NameKind = LookupRedeclarationWithLinkage;
1719    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1720             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1721      NameKind = LookupRedeclarationWithLinkage;
1722
1723    DC = CurContext;
1724    PrevDecl = LookupName(S, Name, NameKind, true,
1725                          NameKind == LookupRedeclarationWithLinkage,
1726                          D.getIdentifierLoc());
1727  } else { // Something like "int foo::x;"
1728    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1729
1730    if (!DC) {
1731      // If we could not compute the declaration context, it's because the
1732      // declaration context is dependent but does not refer to a class,
1733      // class template, or class template partial specialization. Complain
1734      // and return early, to avoid the coming semantic disaster.
1735      Diag(D.getIdentifierLoc(),
1736           diag::err_template_qualified_declarator_no_match)
1737        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1738        << D.getCXXScopeSpec().getRange();
1739      return DeclPtrTy();
1740    }
1741
1742    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1743
1744    // C++ 7.3.1.2p2:
1745    // Members (including explicit specializations of templates) of a named
1746    // namespace can also be defined outside that namespace by explicit
1747    // qualification of the name being defined, provided that the entity being
1748    // defined was already declared in the namespace and the definition appears
1749    // after the point of declaration in a namespace that encloses the
1750    // declarations namespace.
1751    //
1752    // Note that we only check the context at this point. We don't yet
1753    // have enough information to make sure that PrevDecl is actually
1754    // the declaration we want to match. For example, given:
1755    //
1756    //   class X {
1757    //     void f();
1758    //     void f(float);
1759    //   };
1760    //
1761    //   void X::f(int) { } // ill-formed
1762    //
1763    // In this case, PrevDecl will point to the overload set
1764    // containing the two f's declared in X, but neither of them
1765    // matches.
1766
1767    // First check whether we named the global scope.
1768    if (isa<TranslationUnitDecl>(DC)) {
1769      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1770        << Name << D.getCXXScopeSpec().getRange();
1771    } else if (!CurContext->Encloses(DC)) {
1772      // The qualifying scope doesn't enclose the original declaration.
1773      // Emit diagnostic based on current scope.
1774      SourceLocation L = D.getIdentifierLoc();
1775      SourceRange R = D.getCXXScopeSpec().getRange();
1776      if (isa<FunctionDecl>(CurContext))
1777        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1778      else
1779        Diag(L, diag::err_invalid_declarator_scope)
1780          << Name << cast<NamedDecl>(DC) << R;
1781      D.setInvalidType();
1782    }
1783  }
1784
1785  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1786    // Maybe we will complain about the shadowed template parameter.
1787    if (!D.isInvalidType())
1788      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1789        D.setInvalidType();
1790
1791    // Just pretend that we didn't see the previous declaration.
1792    PrevDecl = 0;
1793  }
1794
1795  // In C++, the previous declaration we find might be a tag type
1796  // (class or enum). In this case, the new declaration will hide the
1797  // tag type. Note that this does does not apply if we're declaring a
1798  // typedef (C++ [dcl.typedef]p4).
1799  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1800      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1801    PrevDecl = 0;
1802
1803  bool Redeclaration = false;
1804  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1805    if (TemplateParamLists.size()) {
1806      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1807      return DeclPtrTy();
1808    }
1809
1810    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1811  } else if (R->isFunctionType()) {
1812    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1813                                  move(TemplateParamLists),
1814                                  IsFunctionDefinition, Redeclaration);
1815  } else {
1816    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1817                                  move(TemplateParamLists),
1818                                  Redeclaration);
1819  }
1820
1821  if (New == 0)
1822    return DeclPtrTy();
1823
1824  // If this has an identifier and is not an invalid redeclaration,
1825  // add it to the scope stack.
1826  if (Name && !(Redeclaration && New->isInvalidDecl()))
1827    PushOnScopeChains(New, S);
1828
1829  return DeclPtrTy::make(New);
1830}
1831
1832/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1833/// types into constant array types in certain situations which would otherwise
1834/// be errors (for GCC compatibility).
1835static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1836                                                    ASTContext &Context,
1837                                                    bool &SizeIsNegative) {
1838  // This method tries to turn a variable array into a constant
1839  // array even when the size isn't an ICE.  This is necessary
1840  // for compatibility with code that depends on gcc's buggy
1841  // constant expression folding, like struct {char x[(int)(char*)2];}
1842  SizeIsNegative = false;
1843
1844  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1845    QualType Pointee = PTy->getPointeeType();
1846    QualType FixedType =
1847        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1848    if (FixedType.isNull()) return FixedType;
1849    FixedType = Context.getPointerType(FixedType);
1850    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1851    return FixedType;
1852  }
1853
1854  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1855  if (!VLATy)
1856    return QualType();
1857  // FIXME: We should probably handle this case
1858  if (VLATy->getElementType()->isVariablyModifiedType())
1859    return QualType();
1860
1861  Expr::EvalResult EvalResult;
1862  if (!VLATy->getSizeExpr() ||
1863      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1864      !EvalResult.Val.isInt())
1865    return QualType();
1866
1867  llvm::APSInt &Res = EvalResult.Val.getInt();
1868  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1869    Expr* ArySizeExpr = VLATy->getSizeExpr();
1870    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1871    // so as to transfer ownership to the ConstantArrayWithExpr.
1872    // Alternatively, we could "clone" it (how?).
1873    // Since we don't know how to do things above, we just use the
1874    // very same Expr*.
1875    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1876                                                Res, ArySizeExpr,
1877                                                ArrayType::Normal, 0,
1878                                                VLATy->getBracketsRange());
1879  }
1880
1881  SizeIsNegative = true;
1882  return QualType();
1883}
1884
1885/// \brief Register the given locally-scoped external C declaration so
1886/// that it can be found later for redeclarations
1887void
1888Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1889                                       Scope *S) {
1890  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1891         "Decl is not a locally-scoped decl!");
1892  // Note that we have a locally-scoped external with this name.
1893  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1894
1895  if (!PrevDecl)
1896    return;
1897
1898  // If there was a previous declaration of this variable, it may be
1899  // in our identifier chain. Update the identifier chain with the new
1900  // declaration.
1901  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1902    // The previous declaration was found on the identifer resolver
1903    // chain, so remove it from its scope.
1904    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1905      S = S->getParent();
1906
1907    if (S)
1908      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1909  }
1910}
1911
1912/// \brief Diagnose function specifiers on a declaration of an identifier that
1913/// does not identify a function.
1914void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1915  // FIXME: We should probably indicate the identifier in question to avoid
1916  // confusion for constructs like "inline int a(), b;"
1917  if (D.getDeclSpec().isInlineSpecified())
1918    Diag(D.getDeclSpec().getInlineSpecLoc(),
1919         diag::err_inline_non_function);
1920
1921  if (D.getDeclSpec().isVirtualSpecified())
1922    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1923         diag::err_virtual_non_function);
1924
1925  if (D.getDeclSpec().isExplicitSpecified())
1926    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1927         diag::err_explicit_non_function);
1928}
1929
1930NamedDecl*
1931Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1932                             QualType R,  DeclaratorInfo *DInfo,
1933                             Decl* PrevDecl, bool &Redeclaration) {
1934  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1935  if (D.getCXXScopeSpec().isSet()) {
1936    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1937      << D.getCXXScopeSpec().getRange();
1938    D.setInvalidType();
1939    // Pretend we didn't see the scope specifier.
1940    DC = 0;
1941  }
1942
1943  if (getLangOptions().CPlusPlus) {
1944    // Check that there are no default arguments (C++ only).
1945    CheckExtraCXXDefaultArguments(D);
1946  }
1947
1948  DiagnoseFunctionSpecifiers(D);
1949
1950  if (D.getDeclSpec().isThreadSpecified())
1951    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1952
1953  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1954  if (!NewTD) return 0;
1955
1956  if (D.isInvalidType())
1957    NewTD->setInvalidDecl();
1958
1959  // Handle attributes prior to checking for duplicates in MergeVarDecl
1960  ProcessDeclAttributes(S, NewTD, D);
1961  // Merge the decl with the existing one if appropriate. If the decl is
1962  // in an outer scope, it isn't the same thing.
1963  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1964    Redeclaration = true;
1965    MergeTypeDefDecl(NewTD, PrevDecl);
1966  }
1967
1968  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1969  // then it shall have block scope.
1970  QualType T = NewTD->getUnderlyingType();
1971  if (T->isVariablyModifiedType()) {
1972    CurFunctionNeedsScopeChecking = true;
1973
1974    if (S->getFnParent() == 0) {
1975      bool SizeIsNegative;
1976      QualType FixedTy =
1977          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1978      if (!FixedTy.isNull()) {
1979        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1980        NewTD->setUnderlyingType(FixedTy);
1981      } else {
1982        if (SizeIsNegative)
1983          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1984        else if (T->isVariableArrayType())
1985          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1986        else
1987          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1988        NewTD->setInvalidDecl();
1989      }
1990    }
1991  }
1992
1993  // If this is the C FILE type, notify the AST context.
1994  if (IdentifierInfo *II = NewTD->getIdentifier())
1995    if (!NewTD->isInvalidDecl() &&
1996        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1997      if (II->isStr("FILE"))
1998        Context.setFILEDecl(NewTD);
1999      else if (II->isStr("jmp_buf"))
2000        Context.setjmp_bufDecl(NewTD);
2001      else if (II->isStr("sigjmp_buf"))
2002        Context.setsigjmp_bufDecl(NewTD);
2003    }
2004
2005  return NewTD;
2006}
2007
2008/// \brief Determines whether the given declaration is an out-of-scope
2009/// previous declaration.
2010///
2011/// This routine should be invoked when name lookup has found a
2012/// previous declaration (PrevDecl) that is not in the scope where a
2013/// new declaration by the same name is being introduced. If the new
2014/// declaration occurs in a local scope, previous declarations with
2015/// linkage may still be considered previous declarations (C99
2016/// 6.2.2p4-5, C++ [basic.link]p6).
2017///
2018/// \param PrevDecl the previous declaration found by name
2019/// lookup
2020///
2021/// \param DC the context in which the new declaration is being
2022/// declared.
2023///
2024/// \returns true if PrevDecl is an out-of-scope previous declaration
2025/// for a new delcaration with the same name.
2026static bool
2027isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2028                                ASTContext &Context) {
2029  if (!PrevDecl)
2030    return 0;
2031
2032  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2033  // case we need to check each of the overloaded functions.
2034  if (!PrevDecl->hasLinkage())
2035    return false;
2036
2037  if (Context.getLangOptions().CPlusPlus) {
2038    // C++ [basic.link]p6:
2039    //   If there is a visible declaration of an entity with linkage
2040    //   having the same name and type, ignoring entities declared
2041    //   outside the innermost enclosing namespace scope, the block
2042    //   scope declaration declares that same entity and receives the
2043    //   linkage of the previous declaration.
2044    DeclContext *OuterContext = DC->getLookupContext();
2045    if (!OuterContext->isFunctionOrMethod())
2046      // This rule only applies to block-scope declarations.
2047      return false;
2048    else {
2049      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2050      if (PrevOuterContext->isRecord())
2051        // We found a member function: ignore it.
2052        return false;
2053      else {
2054        // Find the innermost enclosing namespace for the new and
2055        // previous declarations.
2056        while (!OuterContext->isFileContext())
2057          OuterContext = OuterContext->getParent();
2058        while (!PrevOuterContext->isFileContext())
2059          PrevOuterContext = PrevOuterContext->getParent();
2060
2061        // The previous declaration is in a different namespace, so it
2062        // isn't the same function.
2063        if (OuterContext->getPrimaryContext() !=
2064            PrevOuterContext->getPrimaryContext())
2065          return false;
2066      }
2067    }
2068  }
2069
2070  return true;
2071}
2072
2073NamedDecl*
2074Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2075                              QualType R, DeclaratorInfo *DInfo,
2076                              NamedDecl* PrevDecl,
2077                              MultiTemplateParamsArg TemplateParamLists,
2078                              bool &Redeclaration) {
2079  DeclarationName Name = GetNameForDeclarator(D);
2080
2081  // Check that there are no default arguments (C++ only).
2082  if (getLangOptions().CPlusPlus)
2083    CheckExtraCXXDefaultArguments(D);
2084
2085  VarDecl *NewVD;
2086  VarDecl::StorageClass SC;
2087  switch (D.getDeclSpec().getStorageClassSpec()) {
2088  default: assert(0 && "Unknown storage class!");
2089  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2090  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2091  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2092  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2093  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2094  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2095  case DeclSpec::SCS_mutable:
2096    // mutable can only appear on non-static class members, so it's always
2097    // an error here
2098    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2099    D.setInvalidType();
2100    SC = VarDecl::None;
2101    break;
2102  }
2103
2104  IdentifierInfo *II = Name.getAsIdentifierInfo();
2105  if (!II) {
2106    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2107      << Name.getAsString();
2108    return 0;
2109  }
2110
2111  DiagnoseFunctionSpecifiers(D);
2112
2113  if (!DC->isRecord() && S->getFnParent() == 0) {
2114    // C99 6.9p2: The storage-class specifiers auto and register shall not
2115    // appear in the declaration specifiers in an external declaration.
2116    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2117
2118      // If this is a register variable with an asm label specified, then this
2119      // is a GNU extension.
2120      if (SC == VarDecl::Register && D.getAsmLabel())
2121        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2122      else
2123        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2124      D.setInvalidType();
2125    }
2126  }
2127  if (DC->isRecord() && !CurContext->isRecord()) {
2128    // This is an out-of-line definition of a static data member.
2129    if (SC == VarDecl::Static) {
2130      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2131           diag::err_static_out_of_line)
2132        << CodeModificationHint::CreateRemoval(
2133                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2134    } else if (SC == VarDecl::None)
2135      SC = VarDecl::Static;
2136  }
2137  if (SC == VarDecl::Static) {
2138    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2139      if (RD->isLocalClass())
2140        Diag(D.getIdentifierLoc(),
2141             diag::err_static_data_member_not_allowed_in_local_class)
2142          << Name << RD->getDeclName();
2143    }
2144  }
2145
2146  // Match up the template parameter lists with the scope specifier, then
2147  // determine whether we have a template or a template specialization.
2148  if (TemplateParameterList *TemplateParams
2149      = MatchTemplateParametersToScopeSpecifier(
2150                                  D.getDeclSpec().getSourceRange().getBegin(),
2151                                                D.getCXXScopeSpec(),
2152                        (TemplateParameterList**)TemplateParamLists.get(),
2153                                                 TemplateParamLists.size())) {
2154    if (TemplateParams->size() > 0) {
2155      // There is no such thing as a variable template.
2156      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2157        << II
2158        << SourceRange(TemplateParams->getTemplateLoc(),
2159                       TemplateParams->getRAngleLoc());
2160      return 0;
2161    } else {
2162      // There is an extraneous 'template<>' for this variable. Complain
2163      // about it, but allow the declaration of the variable.
2164      Diag(TemplateParams->getTemplateLoc(),
2165           diag::err_template_variable_noparams)
2166        << II
2167        << SourceRange(TemplateParams->getTemplateLoc(),
2168                       TemplateParams->getRAngleLoc());
2169    }
2170  }
2171
2172  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2173                          II, R, DInfo, SC);
2174
2175  if (D.isInvalidType())
2176    NewVD->setInvalidDecl();
2177
2178  if (D.getDeclSpec().isThreadSpecified()) {
2179    if (NewVD->hasLocalStorage())
2180      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2181    else if (!Context.Target.isTLSSupported())
2182      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2183    else
2184      NewVD->setThreadSpecified(true);
2185  }
2186
2187  // Set the lexical context. If the declarator has a C++ scope specifier, the
2188  // lexical context will be different from the semantic context.
2189  NewVD->setLexicalDeclContext(CurContext);
2190
2191  // Handle attributes prior to checking for duplicates in MergeVarDecl
2192  ProcessDeclAttributes(S, NewVD, D);
2193
2194  // Handle GNU asm-label extension (encoded as an attribute).
2195  if (Expr *E = (Expr*) D.getAsmLabel()) {
2196    // The parser guarantees this is a string.
2197    StringLiteral *SE = cast<StringLiteral>(E);
2198    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2199                                                        SE->getByteLength())));
2200  }
2201
2202  // If name lookup finds a previous declaration that is not in the
2203  // same scope as the new declaration, this may still be an
2204  // acceptable redeclaration.
2205  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2206      !(NewVD->hasLinkage() &&
2207        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2208    PrevDecl = 0;
2209
2210  // Merge the decl with the existing one if appropriate.
2211  if (PrevDecl) {
2212    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2213      // The user tried to define a non-static data member
2214      // out-of-line (C++ [dcl.meaning]p1).
2215      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2216        << D.getCXXScopeSpec().getRange();
2217      PrevDecl = 0;
2218      NewVD->setInvalidDecl();
2219    }
2220  } else if (D.getCXXScopeSpec().isSet()) {
2221    // No previous declaration in the qualifying scope.
2222    NestedNameSpecifier *NNS =
2223      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2224    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2225                          D.getCXXScopeSpec().getRange());
2226    NewVD->setInvalidDecl();
2227  }
2228
2229  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2230
2231  // attributes declared post-definition are currently ignored
2232  if (PrevDecl) {
2233    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2234    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2235      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2236      Diag(Def->getLocation(), diag::note_previous_definition);
2237    }
2238  }
2239
2240  // If this is a locally-scoped extern C variable, update the map of
2241  // such variables.
2242  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2243      !NewVD->isInvalidDecl())
2244    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2245
2246  return NewVD;
2247}
2248
2249/// \brief Perform semantic checking on a newly-created variable
2250/// declaration.
2251///
2252/// This routine performs all of the type-checking required for a
2253/// variable declaration once it has been built. It is used both to
2254/// check variables after they have been parsed and their declarators
2255/// have been translated into a declaration, and to check variables
2256/// that have been instantiated from a template.
2257///
2258/// Sets NewVD->isInvalidDecl() if an error was encountered.
2259void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2260                                    bool &Redeclaration) {
2261  // If the decl is already known invalid, don't check it.
2262  if (NewVD->isInvalidDecl())
2263    return;
2264
2265  QualType T = NewVD->getType();
2266
2267  if (T->isObjCInterfaceType()) {
2268    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2269    return NewVD->setInvalidDecl();
2270  }
2271
2272  // The variable can not have an abstract class type.
2273  if (RequireNonAbstractType(NewVD->getLocation(), T,
2274                             diag::err_abstract_type_in_decl,
2275                             AbstractVariableType))
2276    return NewVD->setInvalidDecl();
2277
2278  // Emit an error if an address space was applied to decl with local storage.
2279  // This includes arrays of objects with address space qualifiers, but not
2280  // automatic variables that point to other address spaces.
2281  // ISO/IEC TR 18037 S5.1.2
2282  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2283    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2284    return NewVD->setInvalidDecl();
2285  }
2286
2287  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2288      && !NewVD->hasAttr<BlocksAttr>())
2289    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2290
2291  bool isVM = T->isVariablyModifiedType();
2292  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2293      NewVD->hasAttr<BlocksAttr>())
2294    CurFunctionNeedsScopeChecking = true;
2295
2296  if ((isVM && NewVD->hasLinkage()) ||
2297      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2298    bool SizeIsNegative;
2299    QualType FixedTy =
2300        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2301
2302    if (FixedTy.isNull() && T->isVariableArrayType()) {
2303      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2304      // FIXME: This won't give the correct result for
2305      // int a[10][n];
2306      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2307
2308      if (NewVD->isFileVarDecl())
2309        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2310        << SizeRange;
2311      else if (NewVD->getStorageClass() == VarDecl::Static)
2312        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2313        << SizeRange;
2314      else
2315        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2316        << SizeRange;
2317      return NewVD->setInvalidDecl();
2318    }
2319
2320    if (FixedTy.isNull()) {
2321      if (NewVD->isFileVarDecl())
2322        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2323      else
2324        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2325      return NewVD->setInvalidDecl();
2326    }
2327
2328    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2329    NewVD->setType(FixedTy);
2330  }
2331
2332  if (!PrevDecl && NewVD->isExternC()) {
2333    // Since we did not find anything by this name and we're declaring
2334    // an extern "C" variable, look for a non-visible extern "C"
2335    // declaration with the same name.
2336    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2337      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2338    if (Pos != LocallyScopedExternalDecls.end())
2339      PrevDecl = Pos->second;
2340  }
2341
2342  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2343    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2344      << T;
2345    return NewVD->setInvalidDecl();
2346  }
2347
2348  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2349    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2350    return NewVD->setInvalidDecl();
2351  }
2352
2353  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2354    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2355    return NewVD->setInvalidDecl();
2356  }
2357
2358  if (PrevDecl) {
2359    Redeclaration = true;
2360    MergeVarDecl(NewVD, PrevDecl);
2361  }
2362}
2363
2364static bool isUsingDecl(Decl *D) {
2365  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2366}
2367
2368NamedDecl*
2369Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2370                              QualType R, DeclaratorInfo *DInfo,
2371                              NamedDecl* PrevDecl,
2372                              MultiTemplateParamsArg TemplateParamLists,
2373                              bool IsFunctionDefinition, bool &Redeclaration) {
2374  assert(R.getTypePtr()->isFunctionType());
2375
2376  DeclarationName Name = GetNameForDeclarator(D);
2377  FunctionDecl::StorageClass SC = FunctionDecl::None;
2378  switch (D.getDeclSpec().getStorageClassSpec()) {
2379  default: assert(0 && "Unknown storage class!");
2380  case DeclSpec::SCS_auto:
2381  case DeclSpec::SCS_register:
2382  case DeclSpec::SCS_mutable:
2383    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2384         diag::err_typecheck_sclass_func);
2385    D.setInvalidType();
2386    break;
2387  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2388  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2389  case DeclSpec::SCS_static: {
2390    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2391      // C99 6.7.1p5:
2392      //   The declaration of an identifier for a function that has
2393      //   block scope shall have no explicit storage-class specifier
2394      //   other than extern
2395      // See also (C++ [dcl.stc]p4).
2396      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2397           diag::err_static_block_func);
2398      SC = FunctionDecl::None;
2399    } else
2400      SC = FunctionDecl::Static;
2401    break;
2402  }
2403  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2404  }
2405
2406  if (D.getDeclSpec().isThreadSpecified())
2407    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2408
2409  bool isFriend = D.getDeclSpec().isFriendSpecified();
2410  bool isInline = D.getDeclSpec().isInlineSpecified();
2411  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2412  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2413
2414  // Check that the return type is not an abstract class type.
2415  // For record types, this is done by the AbstractClassUsageDiagnoser once
2416  // the class has been completely parsed.
2417  if (!DC->isRecord() &&
2418      RequireNonAbstractType(D.getIdentifierLoc(),
2419                             R->getAsFunctionType()->getResultType(),
2420                             diag::err_abstract_type_in_decl,
2421                             AbstractReturnType))
2422    D.setInvalidType();
2423
2424  // Do not allow returning a objc interface by-value.
2425  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2426    Diag(D.getIdentifierLoc(),
2427         diag::err_object_cannot_be_passed_returned_by_value) << 0
2428      << R->getAsFunctionType()->getResultType();
2429    D.setInvalidType();
2430  }
2431
2432  bool isVirtualOkay = false;
2433  FunctionDecl *NewFD;
2434
2435  if (isFriend) {
2436    // DC is the namespace in which the function is being declared.
2437    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2438           "friend function being created in a non-namespace context");
2439
2440    // C++ [class.friend]p5
2441    //   A function can be defined in a friend declaration of a
2442    //   class . . . . Such a function is implicitly inline.
2443    isInline |= IsFunctionDefinition;
2444  }
2445
2446  if (D.getKind() == Declarator::DK_Constructor) {
2447    // This is a C++ constructor declaration.
2448    assert(DC->isRecord() &&
2449           "Constructors can only be declared in a member context");
2450
2451    R = CheckConstructorDeclarator(D, R, SC);
2452
2453    // Create the new declaration
2454    NewFD = CXXConstructorDecl::Create(Context,
2455                                       cast<CXXRecordDecl>(DC),
2456                                       D.getIdentifierLoc(), Name, R, DInfo,
2457                                       isExplicit, isInline,
2458                                       /*isImplicitlyDeclared=*/false);
2459  } else if (D.getKind() == Declarator::DK_Destructor) {
2460    // This is a C++ destructor declaration.
2461    if (DC->isRecord()) {
2462      R = CheckDestructorDeclarator(D, SC);
2463
2464      NewFD = CXXDestructorDecl::Create(Context,
2465                                        cast<CXXRecordDecl>(DC),
2466                                        D.getIdentifierLoc(), Name, R,
2467                                        isInline,
2468                                        /*isImplicitlyDeclared=*/false);
2469
2470      isVirtualOkay = true;
2471    } else {
2472      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2473
2474      // Create a FunctionDecl to satisfy the function definition parsing
2475      // code path.
2476      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2477                                   Name, R, DInfo, SC, isInline,
2478                                   /*hasPrototype=*/true);
2479      D.setInvalidType();
2480    }
2481  } else if (D.getKind() == Declarator::DK_Conversion) {
2482    if (!DC->isRecord()) {
2483      Diag(D.getIdentifierLoc(),
2484           diag::err_conv_function_not_member);
2485      return 0;
2486    }
2487
2488    CheckConversionDeclarator(D, R, SC);
2489    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2490                                      D.getIdentifierLoc(), Name, R, DInfo,
2491                                      isInline, isExplicit);
2492
2493    isVirtualOkay = true;
2494  } else if (DC->isRecord()) {
2495    // If the of the function is the same as the name of the record, then this
2496    // must be an invalid constructor that has a return type.
2497    // (The parser checks for a return type and makes the declarator a
2498    // constructor if it has no return type).
2499    // must have an invalid constructor that has a return type
2500    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2501      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2502        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2503        << SourceRange(D.getIdentifierLoc());
2504      return 0;
2505    }
2506
2507    // This is a C++ method declaration.
2508    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2509                                  D.getIdentifierLoc(), Name, R, DInfo,
2510                                  (SC == FunctionDecl::Static), isInline);
2511
2512    isVirtualOkay = (SC != FunctionDecl::Static);
2513  } else {
2514    // Determine whether the function was written with a
2515    // prototype. This true when:
2516    //   - we're in C++ (where every function has a prototype),
2517    //   - there is a prototype in the declarator, or
2518    //   - the type R of the function is some kind of typedef or other reference
2519    //     to a type name (which eventually refers to a function type).
2520    bool HasPrototype =
2521       getLangOptions().CPlusPlus ||
2522       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2523       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2524
2525    NewFD = FunctionDecl::Create(Context, DC,
2526                                 D.getIdentifierLoc(),
2527                                 Name, R, DInfo, SC, isInline, HasPrototype);
2528  }
2529
2530  if (D.isInvalidType())
2531    NewFD->setInvalidDecl();
2532
2533  // Set the lexical context. If the declarator has a C++
2534  // scope specifier, or is the object of a friend declaration, the
2535  // lexical context will be different from the semantic context.
2536  NewFD->setLexicalDeclContext(CurContext);
2537
2538  if (isFriend)
2539    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2540
2541  // Match up the template parameter lists with the scope specifier, then
2542  // determine whether we have a template or a template specialization.
2543  FunctionTemplateDecl *FunctionTemplate = 0;
2544  if (TemplateParameterList *TemplateParams
2545        = MatchTemplateParametersToScopeSpecifier(
2546                                  D.getDeclSpec().getSourceRange().getBegin(),
2547                                  D.getCXXScopeSpec(),
2548                           (TemplateParameterList**)TemplateParamLists.get(),
2549                                                  TemplateParamLists.size())) {
2550    if (TemplateParams->size() > 0) {
2551      // This is a function template
2552
2553      // Check that we can declare a template here.
2554      if (CheckTemplateDeclScope(S, TemplateParams))
2555        return 0;
2556
2557      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2558                                                      NewFD->getLocation(),
2559                                                      Name, TemplateParams,
2560                                                      NewFD);
2561      FunctionTemplate->setLexicalDeclContext(CurContext);
2562      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2563    } else {
2564      // FIXME: Handle function template specializations
2565    }
2566
2567    // FIXME: Free this memory properly.
2568    TemplateParamLists.release();
2569  }
2570
2571  // C++ [dcl.fct.spec]p5:
2572  //   The virtual specifier shall only be used in declarations of
2573  //   nonstatic class member functions that appear within a
2574  //   member-specification of a class declaration; see 10.3.
2575  //
2576  if (isVirtual && !NewFD->isInvalidDecl()) {
2577    if (!isVirtualOkay) {
2578       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2579           diag::err_virtual_non_function);
2580    } else if (!CurContext->isRecord()) {
2581      // 'virtual' was specified outside of the class.
2582      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2583        << CodeModificationHint::CreateRemoval(
2584                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2585    } else {
2586      // Okay: Add virtual to the method.
2587      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2588      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2589      CurClass->setAggregate(false);
2590      CurClass->setPOD(false);
2591      CurClass->setEmpty(false);
2592      CurClass->setPolymorphic(true);
2593      CurClass->setHasTrivialConstructor(false);
2594      CurClass->setHasTrivialCopyConstructor(false);
2595      CurClass->setHasTrivialCopyAssignment(false);
2596    }
2597  }
2598
2599  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2600    // Look for virtual methods in base classes that this method might override.
2601
2602    BasePaths Paths;
2603    if (LookupInBases(cast<CXXRecordDecl>(DC),
2604                      MemberLookupCriteria(NewMD), Paths)) {
2605      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2606           E = Paths.found_decls_end(); I != E; ++I) {
2607        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2608          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2609              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2610            NewMD->addOverriddenMethod(OldMD);
2611        }
2612      }
2613    }
2614  }
2615
2616  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2617      !CurContext->isRecord()) {
2618    // C++ [class.static]p1:
2619    //   A data or function member of a class may be declared static
2620    //   in a class definition, in which case it is a static member of
2621    //   the class.
2622
2623    // Complain about the 'static' specifier if it's on an out-of-line
2624    // member function definition.
2625    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2626         diag::err_static_out_of_line)
2627      << CodeModificationHint::CreateRemoval(
2628                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2629  }
2630
2631  // Handle GNU asm-label extension (encoded as an attribute).
2632  if (Expr *E = (Expr*) D.getAsmLabel()) {
2633    // The parser guarantees this is a string.
2634    StringLiteral *SE = cast<StringLiteral>(E);
2635    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2636                                                        SE->getByteLength())));
2637  }
2638
2639  // Copy the parameter declarations from the declarator D to the function
2640  // declaration NewFD, if they are available.  First scavenge them into Params.
2641  llvm::SmallVector<ParmVarDecl*, 16> Params;
2642  if (D.getNumTypeObjects() > 0) {
2643    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2644
2645    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2646    // function that takes no arguments, not a function that takes a
2647    // single void argument.
2648    // We let through "const void" here because Sema::GetTypeForDeclarator
2649    // already checks for that case.
2650    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2651        FTI.ArgInfo[0].Param &&
2652        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2653      // Empty arg list, don't push any params.
2654      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2655
2656      // In C++, the empty parameter-type-list must be spelled "void"; a
2657      // typedef of void is not permitted.
2658      if (getLangOptions().CPlusPlus &&
2659          Param->getType().getUnqualifiedType() != Context.VoidTy)
2660        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2661      // FIXME: Leaks decl?
2662    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2663      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2664        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2665        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2666        Param->setDeclContext(NewFD);
2667        Params.push_back(Param);
2668      }
2669    }
2670
2671  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2672    // When we're declaring a function with a typedef, typeof, etc as in the
2673    // following example, we'll need to synthesize (unnamed)
2674    // parameters for use in the declaration.
2675    //
2676    // @code
2677    // typedef void fn(int);
2678    // fn f;
2679    // @endcode
2680
2681    // Synthesize a parameter for each argument type.
2682    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2683         AE = FT->arg_type_end(); AI != AE; ++AI) {
2684      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2685                                               SourceLocation(), 0,
2686                                               *AI, /*DInfo=*/0,
2687                                               VarDecl::None, 0);
2688      Param->setImplicit();
2689      Params.push_back(Param);
2690    }
2691  } else {
2692    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2693           "Should not need args for typedef of non-prototype fn");
2694  }
2695  // Finally, we know we have the right number of parameters, install them.
2696  NewFD->setParams(Context, Params.data(), Params.size());
2697
2698  // If name lookup finds a previous declaration that is not in the
2699  // same scope as the new declaration, this may still be an
2700  // acceptable redeclaration.
2701  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2702      !(NewFD->hasLinkage() &&
2703        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2704    PrevDecl = 0;
2705
2706  // Perform semantic checking on the function declaration.
2707  bool OverloadableAttrRequired = false; // FIXME: HACK!
2708  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2709                           /*FIXME:*/OverloadableAttrRequired);
2710
2711  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2712    // An out-of-line member function declaration must also be a
2713    // definition (C++ [dcl.meaning]p1).
2714    if (!IsFunctionDefinition && !isFriend) {
2715      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2716        << D.getCXXScopeSpec().getRange();
2717      NewFD->setInvalidDecl();
2718    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2719      // The user tried to provide an out-of-line definition for a
2720      // function that is a member of a class or namespace, but there
2721      // was no such member function declared (C++ [class.mfct]p2,
2722      // C++ [namespace.memdef]p2). For example:
2723      //
2724      // class X {
2725      //   void f() const;
2726      // };
2727      //
2728      // void X::f() { } // ill-formed
2729      //
2730      // Complain about this problem, and attempt to suggest close
2731      // matches (e.g., those that differ only in cv-qualifiers and
2732      // whether the parameter types are references).
2733      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2734        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2735      NewFD->setInvalidDecl();
2736
2737      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2738                                              true);
2739      assert(!Prev.isAmbiguous() &&
2740             "Cannot have an ambiguity in previous-declaration lookup");
2741      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2742           Func != FuncEnd; ++Func) {
2743        if (isa<FunctionDecl>(*Func) &&
2744            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2745          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2746      }
2747
2748      PrevDecl = 0;
2749    }
2750  }
2751
2752  // Handle attributes. We need to have merged decls when handling attributes
2753  // (for example to check for conflicts, etc).
2754  // FIXME: This needs to happen before we merge declarations. Then,
2755  // let attribute merging cope with attribute conflicts.
2756  ProcessDeclAttributes(S, NewFD, D);
2757
2758  // attributes declared post-definition are currently ignored
2759  if (Redeclaration && PrevDecl) {
2760    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2761    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2762      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2763      Diag(Def->getLocation(), diag::note_previous_definition);
2764    }
2765  }
2766
2767  AddKnownFunctionAttributes(NewFD);
2768
2769  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2770    // If a function name is overloadable in C, then every function
2771    // with that name must be marked "overloadable".
2772    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2773      << Redeclaration << NewFD;
2774    if (PrevDecl)
2775      Diag(PrevDecl->getLocation(),
2776           diag::note_attribute_overloadable_prev_overload);
2777    NewFD->addAttr(::new (Context) OverloadableAttr());
2778  }
2779
2780  // If this is a locally-scoped extern C function, update the
2781  // map of such names.
2782  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2783      && !NewFD->isInvalidDecl())
2784    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2785
2786  // Set this FunctionDecl's range up to the right paren.
2787  NewFD->setLocEnd(D.getSourceRange().getEnd());
2788
2789  if (FunctionTemplate && NewFD->isInvalidDecl())
2790    FunctionTemplate->setInvalidDecl();
2791
2792  if (FunctionTemplate)
2793    return FunctionTemplate;
2794
2795  return NewFD;
2796}
2797
2798/// \brief Perform semantic checking of a new function declaration.
2799///
2800/// Performs semantic analysis of the new function declaration
2801/// NewFD. This routine performs all semantic checking that does not
2802/// require the actual declarator involved in the declaration, and is
2803/// used both for the declaration of functions as they are parsed
2804/// (called via ActOnDeclarator) and for the declaration of functions
2805/// that have been instantiated via C++ template instantiation (called
2806/// via InstantiateDecl).
2807///
2808/// This sets NewFD->isInvalidDecl() to true if there was an error.
2809void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2810                                    bool &Redeclaration,
2811                                    bool &OverloadableAttrRequired) {
2812  // If NewFD is already known erroneous, don't do any of this checking.
2813  if (NewFD->isInvalidDecl())
2814    return;
2815
2816  if (NewFD->getResultType()->isVariablyModifiedType()) {
2817    // Functions returning a variably modified type violate C99 6.7.5.2p2
2818    // because all functions have linkage.
2819    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2820    return NewFD->setInvalidDecl();
2821  }
2822
2823  if (NewFD->isMain())
2824    CheckMain(NewFD);
2825
2826  // Semantic checking for this function declaration (in isolation).
2827  if (getLangOptions().CPlusPlus) {
2828    // C++-specific checks.
2829    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2830      CheckConstructor(Constructor);
2831    } else if (isa<CXXDestructorDecl>(NewFD)) {
2832      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2833      QualType ClassType = Context.getTypeDeclType(Record);
2834      if (!ClassType->isDependentType()) {
2835        DeclarationName Name
2836          = Context.DeclarationNames.getCXXDestructorName(
2837                                        Context.getCanonicalType(ClassType));
2838        if (NewFD->getDeclName() != Name) {
2839          Diag(NewFD->getLocation(), diag::err_destructor_name);
2840          return NewFD->setInvalidDecl();
2841        }
2842      }
2843      Record->setUserDeclaredDestructor(true);
2844      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2845      // user-defined destructor.
2846      Record->setPOD(false);
2847
2848      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2849      // declared destructor.
2850      // FIXME: C++0x: don't do this for "= default" destructors
2851      Record->setHasTrivialDestructor(false);
2852    } else if (CXXConversionDecl *Conversion
2853               = dyn_cast<CXXConversionDecl>(NewFD))
2854      ActOnConversionDeclarator(Conversion);
2855
2856    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2857    if (NewFD->isOverloadedOperator() &&
2858        CheckOverloadedOperatorDeclaration(NewFD))
2859      return NewFD->setInvalidDecl();
2860  }
2861
2862  // C99 6.7.4p6:
2863  //   [... ] For a function with external linkage, the following
2864  //   restrictions apply: [...] If all of the file scope declarations
2865  //   for a function in a translation unit include the inline
2866  //   function specifier without extern, then the definition in that
2867  //   translation unit is an inline definition. An inline definition
2868  //   does not provide an external definition for the function, and
2869  //   does not forbid an external definition in another translation
2870  //   unit.
2871  //
2872  // Here we determine whether this function, in isolation, would be a
2873  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2874  // previous declarations.
2875  if (NewFD->isInline() && getLangOptions().C99 &&
2876      NewFD->getStorageClass() == FunctionDecl::None &&
2877      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2878    NewFD->setC99InlineDefinition(true);
2879
2880  // Check for a previous declaration of this name.
2881  if (!PrevDecl && NewFD->isExternC()) {
2882    // Since we did not find anything by this name and we're declaring
2883    // an extern "C" function, look for a non-visible extern "C"
2884    // declaration with the same name.
2885    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2886      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2887    if (Pos != LocallyScopedExternalDecls.end())
2888      PrevDecl = Pos->second;
2889  }
2890
2891  // Merge or overload the declaration with an existing declaration of
2892  // the same name, if appropriate.
2893  if (PrevDecl) {
2894    // Determine whether NewFD is an overload of PrevDecl or
2895    // a declaration that requires merging. If it's an overload,
2896    // there's no more work to do here; we'll just add the new
2897    // function to the scope.
2898    OverloadedFunctionDecl::function_iterator MatchedDecl;
2899
2900    if (!getLangOptions().CPlusPlus &&
2901        AllowOverloadingOfFunction(PrevDecl, Context)) {
2902      OverloadableAttrRequired = true;
2903
2904      // Functions marked "overloadable" must have a prototype (that
2905      // we can't get through declaration merging).
2906      if (!NewFD->getType()->getAsFunctionProtoType()) {
2907        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2908          << NewFD;
2909        Redeclaration = true;
2910
2911        // Turn this into a variadic function with no parameters.
2912        QualType R = Context.getFunctionType(
2913                       NewFD->getType()->getAsFunctionType()->getResultType(),
2914                       0, 0, true, 0);
2915        NewFD->setType(R);
2916        return NewFD->setInvalidDecl();
2917      }
2918    }
2919
2920    if (PrevDecl &&
2921        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2922         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2923      Redeclaration = true;
2924      Decl *OldDecl = PrevDecl;
2925
2926      // If PrevDecl was an overloaded function, extract the
2927      // FunctionDecl that matched.
2928      if (isa<OverloadedFunctionDecl>(PrevDecl))
2929        OldDecl = *MatchedDecl;
2930
2931      // NewFD and OldDecl represent declarations that need to be
2932      // merged.
2933      if (MergeFunctionDecl(NewFD, OldDecl))
2934        return NewFD->setInvalidDecl();
2935
2936      if (FunctionTemplateDecl *OldTemplateDecl
2937            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2938        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2939      else {
2940        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2941          NewFD->setAccess(OldDecl->getAccess());
2942        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2943      }
2944    }
2945  }
2946
2947  // In C++, check default arguments now that we have merged decls. Unless
2948  // the lexical context is the class, because in this case this is done
2949  // during delayed parsing anyway.
2950  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2951    CheckCXXDefaultArguments(NewFD);
2952}
2953
2954void Sema::CheckMain(FunctionDecl* FD) {
2955  // C++ [basic.start.main]p3:  A program that declares main to be inline
2956  //   or static is ill-formed.
2957  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2958  //   shall not appear in a declaration of main.
2959  // static main is not an error under C99, but we should warn about it.
2960  bool isInline = FD->isInline();
2961  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2962  if (isInline || isStatic) {
2963    unsigned diagID = diag::warn_unusual_main_decl;
2964    if (isInline || getLangOptions().CPlusPlus)
2965      diagID = diag::err_unusual_main_decl;
2966
2967    int which = isStatic + (isInline << 1) - 1;
2968    Diag(FD->getLocation(), diagID) << which;
2969  }
2970
2971  QualType T = FD->getType();
2972  assert(T->isFunctionType() && "function decl is not of function type");
2973  const FunctionType* FT = T->getAsFunctionType();
2974
2975  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2976    // TODO: add a replacement fixit to turn the return type into 'int'.
2977    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2978    FD->setInvalidDecl(true);
2979  }
2980
2981  // Treat protoless main() as nullary.
2982  if (isa<FunctionNoProtoType>(FT)) return;
2983
2984  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2985  unsigned nparams = FTP->getNumArgs();
2986  assert(FD->getNumParams() == nparams);
2987
2988  if (nparams > 3) {
2989    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2990    FD->setInvalidDecl(true);
2991    nparams = 3;
2992  }
2993
2994  // FIXME: a lot of the following diagnostics would be improved
2995  // if we had some location information about types.
2996
2997  QualType CharPP =
2998    Context.getPointerType(Context.getPointerType(Context.CharTy));
2999  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3000
3001  for (unsigned i = 0; i < nparams; ++i) {
3002    QualType AT = FTP->getArgType(i);
3003
3004    bool mismatch = true;
3005
3006    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3007      mismatch = false;
3008    else if (Expected[i] == CharPP) {
3009      // As an extension, the following forms are okay:
3010      //   char const **
3011      //   char const * const *
3012      //   char * const *
3013
3014      QualifierSet qs;
3015      const PointerType* PT;
3016      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3017          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3018          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3019        qs.removeConst();
3020        mismatch = !qs.empty();
3021      }
3022    }
3023
3024    if (mismatch) {
3025      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3026      // TODO: suggest replacing given type with expected type
3027      FD->setInvalidDecl(true);
3028    }
3029  }
3030
3031  if (nparams == 1 && !FD->isInvalidDecl()) {
3032    Diag(FD->getLocation(), diag::warn_main_one_arg);
3033  }
3034}
3035
3036bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3037  // FIXME: Need strict checking.  In C89, we need to check for
3038  // any assignment, increment, decrement, function-calls, or
3039  // commas outside of a sizeof.  In C99, it's the same list,
3040  // except that the aforementioned are allowed in unevaluated
3041  // expressions.  Everything else falls under the
3042  // "may accept other forms of constant expressions" exception.
3043  // (We never end up here for C++, so the constant expression
3044  // rules there don't matter.)
3045  if (Init->isConstantInitializer(Context))
3046    return false;
3047  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3048    << Init->getSourceRange();
3049  return true;
3050}
3051
3052void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3053  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3054}
3055
3056/// AddInitializerToDecl - Adds the initializer Init to the
3057/// declaration dcl. If DirectInit is true, this is C++ direct
3058/// initialization rather than copy initialization.
3059void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3060  Decl *RealDecl = dcl.getAs<Decl>();
3061  // If there is no declaration, there was an error parsing it.  Just ignore
3062  // the initializer.
3063  if (RealDecl == 0)
3064    return;
3065
3066  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3067    // With declarators parsed the way they are, the parser cannot
3068    // distinguish between a normal initializer and a pure-specifier.
3069    // Thus this grotesque test.
3070    IntegerLiteral *IL;
3071    Expr *Init = static_cast<Expr *>(init.get());
3072    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3073        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3074      if (Method->isVirtualAsWritten()) {
3075        Method->setPure();
3076
3077        // A class is abstract if at least one function is pure virtual.
3078        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3079      } else if (!Method->isInvalidDecl()) {
3080        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3081          << Method->getDeclName() << Init->getSourceRange();
3082        Method->setInvalidDecl();
3083      }
3084    } else {
3085      Diag(Method->getLocation(), diag::err_member_function_initialization)
3086        << Method->getDeclName() << Init->getSourceRange();
3087      Method->setInvalidDecl();
3088    }
3089    return;
3090  }
3091
3092  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3093  if (!VDecl) {
3094    if (getLangOptions().CPlusPlus &&
3095        RealDecl->getLexicalDeclContext()->isRecord() &&
3096        isa<NamedDecl>(RealDecl))
3097      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3098        << cast<NamedDecl>(RealDecl)->getDeclName();
3099    else
3100      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3101    RealDecl->setInvalidDecl();
3102    return;
3103  }
3104
3105  if (!VDecl->getType()->isArrayType() &&
3106      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3107                          diag::err_typecheck_decl_incomplete_type)) {
3108    RealDecl->setInvalidDecl();
3109    return;
3110  }
3111
3112  const VarDecl *Def = 0;
3113  if (VDecl->getDefinition(Def)) {
3114    Diag(VDecl->getLocation(), diag::err_redefinition)
3115      << VDecl->getDeclName();
3116    Diag(Def->getLocation(), diag::note_previous_definition);
3117    VDecl->setInvalidDecl();
3118    return;
3119  }
3120
3121  // Take ownership of the expression, now that we're sure we have somewhere
3122  // to put it.
3123  Expr *Init = init.takeAs<Expr>();
3124  assert(Init && "missing initializer");
3125
3126  // Get the decls type and save a reference for later, since
3127  // CheckInitializerTypes may change it.
3128  QualType DclT = VDecl->getType(), SavT = DclT;
3129  if (VDecl->isBlockVarDecl()) {
3130    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3131      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3132      VDecl->setInvalidDecl();
3133    } else if (!VDecl->isInvalidDecl()) {
3134      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3135                                VDecl->getDeclName(), DirectInit))
3136        VDecl->setInvalidDecl();
3137
3138      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3139      // Don't check invalid declarations to avoid emitting useless diagnostics.
3140      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3141        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3142          CheckForConstantInitializer(Init, DclT);
3143      }
3144    }
3145  } else if (VDecl->isStaticDataMember() &&
3146             VDecl->getLexicalDeclContext()->isRecord()) {
3147    // This is an in-class initialization for a static data member, e.g.,
3148    //
3149    // struct S {
3150    //   static const int value = 17;
3151    // };
3152
3153    // Attach the initializer
3154    VDecl->setInit(Context, Init);
3155
3156    // C++ [class.mem]p4:
3157    //   A member-declarator can contain a constant-initializer only
3158    //   if it declares a static member (9.4) of const integral or
3159    //   const enumeration type, see 9.4.2.
3160    QualType T = VDecl->getType();
3161    if (!T->isDependentType() &&
3162        (!Context.getCanonicalType(T).isConstQualified() ||
3163         !T->isIntegralType())) {
3164      Diag(VDecl->getLocation(), diag::err_member_initialization)
3165        << VDecl->getDeclName() << Init->getSourceRange();
3166      VDecl->setInvalidDecl();
3167    } else {
3168      // C++ [class.static.data]p4:
3169      //   If a static data member is of const integral or const
3170      //   enumeration type, its declaration in the class definition
3171      //   can specify a constant-initializer which shall be an
3172      //   integral constant expression (5.19).
3173      if (!Init->isTypeDependent() &&
3174          !Init->getType()->isIntegralType()) {
3175        // We have a non-dependent, non-integral or enumeration type.
3176        Diag(Init->getSourceRange().getBegin(),
3177             diag::err_in_class_initializer_non_integral_type)
3178          << Init->getType() << Init->getSourceRange();
3179        VDecl->setInvalidDecl();
3180      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3181        // Check whether the expression is a constant expression.
3182        llvm::APSInt Value;
3183        SourceLocation Loc;
3184        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3185          Diag(Loc, diag::err_in_class_initializer_non_constant)
3186            << Init->getSourceRange();
3187          VDecl->setInvalidDecl();
3188        } else if (!VDecl->getType()->isDependentType())
3189          ImpCastExprToType(Init, VDecl->getType());
3190      }
3191    }
3192  } else if (VDecl->isFileVarDecl()) {
3193    if (VDecl->getStorageClass() == VarDecl::Extern)
3194      Diag(VDecl->getLocation(), diag::warn_extern_init);
3195    if (!VDecl->isInvalidDecl())
3196      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3197                                VDecl->getDeclName(), DirectInit))
3198        VDecl->setInvalidDecl();
3199
3200    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3201    // Don't check invalid declarations to avoid emitting useless diagnostics.
3202    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3203      // C99 6.7.8p4. All file scoped initializers need to be constant.
3204      CheckForConstantInitializer(Init, DclT);
3205    }
3206  }
3207  // If the type changed, it means we had an incomplete type that was
3208  // completed by the initializer. For example:
3209  //   int ary[] = { 1, 3, 5 };
3210  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3211  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3212    VDecl->setType(DclT);
3213    Init->setType(DclT);
3214  }
3215
3216  Init = MaybeCreateCXXExprWithTemporaries(Init,
3217                                           /*ShouldDestroyTemporaries=*/true);
3218  // Attach the initializer to the decl.
3219  VDecl->setInit(Context, Init);
3220
3221  // If the previous declaration of VDecl was a tentative definition,
3222  // remove it from the set of tentative definitions.
3223  if (VDecl->getPreviousDeclaration() &&
3224      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3225    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3226    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3227  }
3228
3229  return;
3230}
3231
3232void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3233                                  bool TypeContainsUndeducedAuto) {
3234  Decl *RealDecl = dcl.getAs<Decl>();
3235
3236  // If there is no declaration, there was an error parsing it. Just ignore it.
3237  if (RealDecl == 0)
3238    return;
3239
3240  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3241    QualType Type = Var->getType();
3242
3243    // Record tentative definitions.
3244    if (Var->isTentativeDefinition(Context)) {
3245      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3246        InsertPair =
3247           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3248
3249      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3250      // want the second one in the map.
3251      InsertPair.first->second = Var;
3252
3253      // However, for the list, we don't care about the order, just make sure
3254      // that there are no dupes for a given declaration name.
3255      if (InsertPair.second)
3256        TentativeDefinitionList.push_back(Var->getDeclName());
3257    }
3258
3259    // C++ [dcl.init.ref]p3:
3260    //   The initializer can be omitted for a reference only in a
3261    //   parameter declaration (8.3.5), in the declaration of a
3262    //   function return type, in the declaration of a class member
3263    //   within its class declaration (9.2), and where the extern
3264    //   specifier is explicitly used.
3265    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3266      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3267        << Var->getDeclName()
3268        << SourceRange(Var->getLocation(), Var->getLocation());
3269      Var->setInvalidDecl();
3270      return;
3271    }
3272
3273    // C++0x [dcl.spec.auto]p3
3274    if (TypeContainsUndeducedAuto) {
3275      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3276        << Var->getDeclName() << Type;
3277      Var->setInvalidDecl();
3278      return;
3279    }
3280
3281    // C++ [dcl.init]p9:
3282    //   If no initializer is specified for an object, and the object
3283    //   is of (possibly cv-qualified) non-POD class type (or array
3284    //   thereof), the object shall be default-initialized; if the
3285    //   object is of const-qualified type, the underlying class type
3286    //   shall have a user-declared default constructor.
3287    //
3288    // FIXME: Diagnose the "user-declared default constructor" bit.
3289    if (getLangOptions().CPlusPlus) {
3290      QualType InitType = Type;
3291      if (const ArrayType *Array = Context.getAsArrayType(Type))
3292        InitType = Array->getElementType();
3293      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3294          InitType->isRecordType() && !InitType->isDependentType()) {
3295        if (!RequireCompleteType(Var->getLocation(), InitType,
3296                                 diag::err_invalid_incomplete_type_use)) {
3297          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3298
3299          CXXConstructorDecl *Constructor
3300            = PerformInitializationByConstructor(InitType,
3301                                                 MultiExprArg(*this, 0, 0),
3302                                                 Var->getLocation(),
3303                                               SourceRange(Var->getLocation(),
3304                                                           Var->getLocation()),
3305                                                 Var->getDeclName(),
3306                                                 IK_Default,
3307                                                 ConstructorArgs);
3308
3309          // FIXME: Location info for the variable initialization?
3310          if (!Constructor)
3311            Var->setInvalidDecl();
3312          else {
3313            // FIXME: Cope with initialization of arrays
3314            if (!Constructor->isTrivial() &&
3315                InitializeVarWithConstructor(Var, Constructor, InitType,
3316                                             move_arg(ConstructorArgs)))
3317              Var->setInvalidDecl();
3318
3319            FinalizeVarWithDestructor(Var, InitType);
3320          }
3321        }
3322      }
3323    }
3324
3325#if 0
3326    // FIXME: Temporarily disabled because we are not properly parsing
3327    // linkage specifications on declarations, e.g.,
3328    //
3329    //   extern "C" const CGPoint CGPointerZero;
3330    //
3331    // C++ [dcl.init]p9:
3332    //
3333    //     If no initializer is specified for an object, and the
3334    //     object is of (possibly cv-qualified) non-POD class type (or
3335    //     array thereof), the object shall be default-initialized; if
3336    //     the object is of const-qualified type, the underlying class
3337    //     type shall have a user-declared default
3338    //     constructor. Otherwise, if no initializer is specified for
3339    //     an object, the object and its subobjects, if any, have an
3340    //     indeterminate initial value; if the object or any of its
3341    //     subobjects are of const-qualified type, the program is
3342    //     ill-formed.
3343    //
3344    // This isn't technically an error in C, so we don't diagnose it.
3345    //
3346    // FIXME: Actually perform the POD/user-defined default
3347    // constructor check.
3348    if (getLangOptions().CPlusPlus &&
3349        Context.getCanonicalType(Type).isConstQualified() &&
3350        !Var->hasExternalStorage())
3351      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3352        << Var->getName()
3353        << SourceRange(Var->getLocation(), Var->getLocation());
3354#endif
3355  }
3356}
3357
3358Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3359                                                   DeclPtrTy *Group,
3360                                                   unsigned NumDecls) {
3361  llvm::SmallVector<Decl*, 8> Decls;
3362
3363  if (DS.isTypeSpecOwned())
3364    Decls.push_back((Decl*)DS.getTypeRep());
3365
3366  for (unsigned i = 0; i != NumDecls; ++i)
3367    if (Decl *D = Group[i].getAs<Decl>())
3368      Decls.push_back(D);
3369
3370  // Perform semantic analysis that depends on having fully processed both
3371  // the declarator and initializer.
3372  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3373    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3374    if (!IDecl)
3375      continue;
3376    QualType T = IDecl->getType();
3377
3378    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3379    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3380    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3381      if (!IDecl->isInvalidDecl() &&
3382          RequireCompleteType(IDecl->getLocation(), T,
3383                              diag::err_typecheck_decl_incomplete_type))
3384        IDecl->setInvalidDecl();
3385    }
3386    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3387    // object that has file scope without an initializer, and without a
3388    // storage-class specifier or with the storage-class specifier "static",
3389    // constitutes a tentative definition. Note: A tentative definition with
3390    // external linkage is valid (C99 6.2.2p5).
3391    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3392      if (const IncompleteArrayType *ArrayT
3393          = Context.getAsIncompleteArrayType(T)) {
3394        if (RequireCompleteType(IDecl->getLocation(),
3395                                ArrayT->getElementType(),
3396                                diag::err_illegal_decl_array_incomplete_type))
3397          IDecl->setInvalidDecl();
3398      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3399        // C99 6.9.2p3: If the declaration of an identifier for an object is
3400        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3401        // declared type shall not be an incomplete type.
3402        // NOTE: code such as the following
3403        //     static struct s;
3404        //     struct s { int a; };
3405        // is accepted by gcc. Hence here we issue a warning instead of
3406        // an error and we do not invalidate the static declaration.
3407        // NOTE: to avoid multiple warnings, only check the first declaration.
3408        if (IDecl->getPreviousDeclaration() == 0)
3409          RequireCompleteType(IDecl->getLocation(), T,
3410                              diag::ext_typecheck_decl_incomplete_type);
3411      }
3412    }
3413  }
3414  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3415                                                   Decls.data(), Decls.size()));
3416}
3417
3418
3419/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3420/// to introduce parameters into function prototype scope.
3421Sema::DeclPtrTy
3422Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3423  const DeclSpec &DS = D.getDeclSpec();
3424
3425  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3426  VarDecl::StorageClass StorageClass = VarDecl::None;
3427  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3428    StorageClass = VarDecl::Register;
3429  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3430    Diag(DS.getStorageClassSpecLoc(),
3431         diag::err_invalid_storage_class_in_func_decl);
3432    D.getMutableDeclSpec().ClearStorageClassSpecs();
3433  }
3434
3435  if (D.getDeclSpec().isThreadSpecified())
3436    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3437
3438  DiagnoseFunctionSpecifiers(D);
3439
3440  // Check that there are no default arguments inside the type of this
3441  // parameter (C++ only).
3442  if (getLangOptions().CPlusPlus)
3443    CheckExtraCXXDefaultArguments(D);
3444
3445  DeclaratorInfo *DInfo = 0;
3446  TagDecl *OwnedDecl = 0;
3447  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3448                                               &OwnedDecl);
3449
3450  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3451    // C++ [dcl.fct]p6:
3452    //   Types shall not be defined in return or parameter types.
3453    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3454      << Context.getTypeDeclType(OwnedDecl);
3455  }
3456
3457  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3458  // Can this happen for params?  We already checked that they don't conflict
3459  // among each other.  Here they can only shadow globals, which is ok.
3460  IdentifierInfo *II = D.getIdentifier();
3461  if (II) {
3462    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3463      if (PrevDecl->isTemplateParameter()) {
3464        // Maybe we will complain about the shadowed template parameter.
3465        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3466        // Just pretend that we didn't see the previous declaration.
3467        PrevDecl = 0;
3468      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3469        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3470
3471        // Recover by removing the name
3472        II = 0;
3473        D.SetIdentifier(0, D.getIdentifierLoc());
3474      }
3475    }
3476  }
3477
3478  // Parameters can not be abstract class types.
3479  // For record types, this is done by the AbstractClassUsageDiagnoser once
3480  // the class has been completely parsed.
3481  if (!CurContext->isRecord() &&
3482      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3483                             diag::err_abstract_type_in_decl,
3484                             AbstractParamType))
3485    D.setInvalidType(true);
3486
3487  QualType T = adjustParameterType(parmDeclType);
3488
3489  ParmVarDecl *New;
3490  if (T == parmDeclType) // parameter type did not need adjustment
3491    New = ParmVarDecl::Create(Context, CurContext,
3492                              D.getIdentifierLoc(), II,
3493                              parmDeclType, DInfo, StorageClass,
3494                              0);
3495  else // keep track of both the adjusted and unadjusted types
3496    New = OriginalParmVarDecl::Create(Context, CurContext,
3497                                      D.getIdentifierLoc(), II, T, DInfo,
3498                                      parmDeclType, StorageClass, 0);
3499
3500  if (D.isInvalidType())
3501    New->setInvalidDecl();
3502
3503  // Parameter declarators cannot be interface types. All ObjC objects are
3504  // passed by reference.
3505  if (T->isObjCInterfaceType()) {
3506    Diag(D.getIdentifierLoc(),
3507         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3508    New->setInvalidDecl();
3509  }
3510
3511  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3512  if (D.getCXXScopeSpec().isSet()) {
3513    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3514      << D.getCXXScopeSpec().getRange();
3515    New->setInvalidDecl();
3516  }
3517
3518  // Add the parameter declaration into this scope.
3519  S->AddDecl(DeclPtrTy::make(New));
3520  if (II)
3521    IdResolver.AddDecl(New);
3522
3523  ProcessDeclAttributes(S, New, D);
3524
3525  if (New->hasAttr<BlocksAttr>()) {
3526    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3527  }
3528  return DeclPtrTy::make(New);
3529}
3530
3531void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3532                                           SourceLocation LocAfterDecls) {
3533  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3534         "Not a function declarator!");
3535  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3536
3537  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3538  // for a K&R function.
3539  if (!FTI.hasPrototype) {
3540    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3541      --i;
3542      if (FTI.ArgInfo[i].Param == 0) {
3543        std::string Code = "  int ";
3544        Code += FTI.ArgInfo[i].Ident->getName();
3545        Code += ";\n";
3546        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3547          << FTI.ArgInfo[i].Ident
3548          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3549
3550        // Implicitly declare the argument as type 'int' for lack of a better
3551        // type.
3552        DeclSpec DS;
3553        const char* PrevSpec; // unused
3554        unsigned DiagID; // unused
3555        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3556                           PrevSpec, DiagID);
3557        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3558        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3559        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3560      }
3561    }
3562  }
3563}
3564
3565Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3566                                              Declarator &D) {
3567  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3568  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3569         "Not a function declarator!");
3570  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3571
3572  if (FTI.hasPrototype) {
3573    // FIXME: Diagnose arguments without names in C.
3574  }
3575
3576  Scope *ParentScope = FnBodyScope->getParent();
3577
3578  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3579                                  MultiTemplateParamsArg(*this),
3580                                  /*IsFunctionDefinition=*/true);
3581  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3582}
3583
3584Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3585  if (!D)
3586    return D;
3587  FunctionDecl *FD = 0;
3588
3589  if (FunctionTemplateDecl *FunTmpl
3590        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3591    FD = FunTmpl->getTemplatedDecl();
3592  else
3593    FD = cast<FunctionDecl>(D.getAs<Decl>());
3594
3595  CurFunctionNeedsScopeChecking = false;
3596
3597  // See if this is a redefinition.
3598  const FunctionDecl *Definition;
3599  if (FD->getBody(Definition)) {
3600    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3601    Diag(Definition->getLocation(), diag::note_previous_definition);
3602  }
3603
3604  // Builtin functions cannot be defined.
3605  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3606    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3607      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3608      FD->setInvalidDecl();
3609    }
3610  }
3611
3612  // The return type of a function definition must be complete
3613  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3614  QualType ResultType = FD->getResultType();
3615  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3616      !FD->isInvalidDecl() &&
3617      RequireCompleteType(FD->getLocation(), ResultType,
3618                          diag::err_func_def_incomplete_result))
3619    FD->setInvalidDecl();
3620
3621  // GNU warning -Wmissing-prototypes:
3622  //   Warn if a global function is defined without a previous
3623  //   prototype declaration. This warning is issued even if the
3624  //   definition itself provides a prototype. The aim is to detect
3625  //   global functions that fail to be declared in header files.
3626  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3627      !FD->isMain()) {
3628    bool MissingPrototype = true;
3629    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3630         Prev; Prev = Prev->getPreviousDeclaration()) {
3631      // Ignore any declarations that occur in function or method
3632      // scope, because they aren't visible from the header.
3633      if (Prev->getDeclContext()->isFunctionOrMethod())
3634        continue;
3635
3636      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3637      break;
3638    }
3639
3640    if (MissingPrototype)
3641      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3642  }
3643
3644  if (FnBodyScope)
3645    PushDeclContext(FnBodyScope, FD);
3646
3647  // Check the validity of our function parameters
3648  CheckParmsForFunctionDef(FD);
3649
3650  // Introduce our parameters into the function scope
3651  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3652    ParmVarDecl *Param = FD->getParamDecl(p);
3653    Param->setOwningFunction(FD);
3654
3655    // If this has an identifier, add it to the scope stack.
3656    if (Param->getIdentifier() && FnBodyScope)
3657      PushOnScopeChains(Param, FnBodyScope);
3658  }
3659
3660  // Checking attributes of current function definition
3661  // dllimport attribute.
3662  if (FD->getAttr<DLLImportAttr>() &&
3663      (!FD->getAttr<DLLExportAttr>())) {
3664    // dllimport attribute cannot be applied to definition.
3665    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3666      Diag(FD->getLocation(),
3667           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3668        << "dllimport";
3669      FD->setInvalidDecl();
3670      return DeclPtrTy::make(FD);
3671    } else {
3672      // If a symbol previously declared dllimport is later defined, the
3673      // attribute is ignored in subsequent references, and a warning is
3674      // emitted.
3675      Diag(FD->getLocation(),
3676           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3677        << FD->getNameAsCString() << "dllimport";
3678    }
3679  }
3680  return DeclPtrTy::make(FD);
3681}
3682
3683Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3684  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3685}
3686
3687Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3688                                              bool IsInstantiation) {
3689  Decl *dcl = D.getAs<Decl>();
3690  Stmt *Body = BodyArg.takeAs<Stmt>();
3691
3692  FunctionDecl *FD = 0;
3693  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3694  if (FunTmpl)
3695    FD = FunTmpl->getTemplatedDecl();
3696  else
3697    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3698
3699  if (FD) {
3700    FD->setBody(Body);
3701    if (FD->isMain())
3702      // C and C++ allow for main to automagically return 0.
3703      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3704      FD->setHasImplicitReturnZero(true);
3705    else
3706      CheckFallThroughForFunctionDef(FD, Body);
3707
3708    if (!FD->isInvalidDecl())
3709      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3710
3711    // C++ [basic.def.odr]p2:
3712    //   [...] A virtual member function is used if it is not pure. [...]
3713    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3714      if (Method->isVirtual() && !Method->isPure())
3715        MarkDeclarationReferenced(Method->getLocation(), Method);
3716
3717    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3718  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3719    assert(MD == getCurMethodDecl() && "Method parsing confused");
3720    MD->setBody(Body);
3721    CheckFallThroughForFunctionDef(MD, Body);
3722    MD->setEndLoc(Body->getLocEnd());
3723
3724    if (!MD->isInvalidDecl())
3725      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3726  } else {
3727    Body->Destroy(Context);
3728    return DeclPtrTy();
3729  }
3730  if (!IsInstantiation)
3731    PopDeclContext();
3732
3733  // Verify and clean out per-function state.
3734
3735  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3736
3737  // Check goto/label use.
3738  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3739       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3740    LabelStmt *L = I->second;
3741
3742    // Verify that we have no forward references left.  If so, there was a goto
3743    // or address of a label taken, but no definition of it.  Label fwd
3744    // definitions are indicated with a null substmt.
3745    if (L->getSubStmt() != 0)
3746      continue;
3747
3748    // Emit error.
3749    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3750
3751    // At this point, we have gotos that use the bogus label.  Stitch it into
3752    // the function body so that they aren't leaked and that the AST is well
3753    // formed.
3754    if (Body == 0) {
3755      // The whole function wasn't parsed correctly, just delete this.
3756      L->Destroy(Context);
3757      continue;
3758    }
3759
3760    // Otherwise, the body is valid: we want to stitch the label decl into the
3761    // function somewhere so that it is properly owned and so that the goto
3762    // has a valid target.  Do this by creating a new compound stmt with the
3763    // label in it.
3764
3765    // Give the label a sub-statement.
3766    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3767
3768    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3769                               cast<CXXTryStmt>(Body)->getTryBlock() :
3770                               cast<CompoundStmt>(Body);
3771    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3772    Elements.push_back(L);
3773    Compound->setStmts(Context, &Elements[0], Elements.size());
3774  }
3775  FunctionLabelMap.clear();
3776
3777  if (!Body) return D;
3778
3779  // Verify that that gotos and switch cases don't jump into scopes illegally.
3780  if (CurFunctionNeedsScopeChecking)
3781    DiagnoseInvalidJumps(Body);
3782
3783  // C++ constructors that have function-try-blocks can't have return
3784  // statements in the handlers of that block. (C++ [except.handle]p14)
3785  // Verify this.
3786  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3787    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3788
3789  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3790    computeBaseOrMembersToDestroy(Destructor);
3791  return D;
3792}
3793
3794/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3795/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3796NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3797                                          IdentifierInfo &II, Scope *S) {
3798  // Before we produce a declaration for an implicitly defined
3799  // function, see whether there was a locally-scoped declaration of
3800  // this name as a function or variable. If so, use that
3801  // (non-visible) declaration, and complain about it.
3802  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3803    = LocallyScopedExternalDecls.find(&II);
3804  if (Pos != LocallyScopedExternalDecls.end()) {
3805    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3806    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3807    return Pos->second;
3808  }
3809
3810  // Extension in C99.  Legal in C90, but warn about it.
3811  if (getLangOptions().C99)
3812    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3813  else
3814    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3815
3816  // FIXME: handle stuff like:
3817  // void foo() { extern float X(); }
3818  // void bar() { X(); }  <-- implicit decl for X in another scope.
3819
3820  // Set a Declarator for the implicit definition: int foo();
3821  const char *Dummy;
3822  DeclSpec DS;
3823  unsigned DiagID;
3824  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3825  Error = Error; // Silence warning.
3826  assert(!Error && "Error setting up implicit decl!");
3827  Declarator D(DS, Declarator::BlockContext);
3828  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3829                                             0, 0, false, SourceLocation(),
3830                                             false, 0,0,0, Loc, Loc, D),
3831                SourceLocation());
3832  D.SetIdentifier(&II, Loc);
3833
3834  // Insert this function into translation-unit scope.
3835
3836  DeclContext *PrevDC = CurContext;
3837  CurContext = Context.getTranslationUnitDecl();
3838
3839  FunctionDecl *FD =
3840 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3841  FD->setImplicit();
3842
3843  CurContext = PrevDC;
3844
3845  AddKnownFunctionAttributes(FD);
3846
3847  return FD;
3848}
3849
3850/// \brief Adds any function attributes that we know a priori based on
3851/// the declaration of this function.
3852///
3853/// These attributes can apply both to implicitly-declared builtins
3854/// (like __builtin___printf_chk) or to library-declared functions
3855/// like NSLog or printf.
3856void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3857  if (FD->isInvalidDecl())
3858    return;
3859
3860  // If this is a built-in function, map its builtin attributes to
3861  // actual attributes.
3862  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3863    // Handle printf-formatting attributes.
3864    unsigned FormatIdx;
3865    bool HasVAListArg;
3866    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3867      if (!FD->getAttr<FormatAttr>())
3868        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3869                                             HasVAListArg ? 0 : FormatIdx + 2));
3870    }
3871
3872    // Mark const if we don't care about errno and that is the only
3873    // thing preventing the function from being const. This allows
3874    // IRgen to use LLVM intrinsics for such functions.
3875    if (!getLangOptions().MathErrno &&
3876        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3877      if (!FD->getAttr<ConstAttr>())
3878        FD->addAttr(::new (Context) ConstAttr());
3879    }
3880
3881    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3882      FD->addAttr(::new (Context) NoReturnAttr());
3883  }
3884
3885  IdentifierInfo *Name = FD->getIdentifier();
3886  if (!Name)
3887    return;
3888  if ((!getLangOptions().CPlusPlus &&
3889       FD->getDeclContext()->isTranslationUnit()) ||
3890      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3891       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3892       LinkageSpecDecl::lang_c)) {
3893    // Okay: this could be a libc/libm/Objective-C function we know
3894    // about.
3895  } else
3896    return;
3897
3898  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3899    // FIXME: NSLog and NSLogv should be target specific
3900    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3901      // FIXME: We known better than our headers.
3902      const_cast<FormatAttr *>(Format)->setType("printf");
3903    } else
3904      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3905                                             Name->isStr("NSLogv") ? 0 : 2));
3906  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3907    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3908    // target-specific builtins, perhaps?
3909    if (!FD->getAttr<FormatAttr>())
3910      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3911                                             Name->isStr("vasprintf") ? 0 : 3));
3912  }
3913}
3914
3915TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3916  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3917  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3918
3919  // Scope manipulation handled by caller.
3920  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3921                                           D.getIdentifierLoc(),
3922                                           D.getIdentifier(),
3923                                           T);
3924
3925  if (const TagType *TT = T->getAs<TagType>()) {
3926    TagDecl *TD = TT->getDecl();
3927
3928    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3929    // keep track of the TypedefDecl.
3930    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3931      TD->setTypedefForAnonDecl(NewTD);
3932  }
3933
3934  if (D.isInvalidType())
3935    NewTD->setInvalidDecl();
3936  return NewTD;
3937}
3938
3939
3940/// \brief Determine whether a tag with a given kind is acceptable
3941/// as a redeclaration of the given tag declaration.
3942///
3943/// \returns true if the new tag kind is acceptable, false otherwise.
3944bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3945                                        TagDecl::TagKind NewTag,
3946                                        SourceLocation NewTagLoc,
3947                                        const IdentifierInfo &Name) {
3948  // C++ [dcl.type.elab]p3:
3949  //   The class-key or enum keyword present in the
3950  //   elaborated-type-specifier shall agree in kind with the
3951  //   declaration to which the name in theelaborated-type-specifier
3952  //   refers. This rule also applies to the form of
3953  //   elaborated-type-specifier that declares a class-name or
3954  //   friend class since it can be construed as referring to the
3955  //   definition of the class. Thus, in any
3956  //   elaborated-type-specifier, the enum keyword shall be used to
3957  //   refer to an enumeration (7.2), the union class-keyshall be
3958  //   used to refer to a union (clause 9), and either the class or
3959  //   struct class-key shall be used to refer to a class (clause 9)
3960  //   declared using the class or struct class-key.
3961  TagDecl::TagKind OldTag = Previous->getTagKind();
3962  if (OldTag == NewTag)
3963    return true;
3964
3965  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3966      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3967    // Warn about the struct/class tag mismatch.
3968    bool isTemplate = false;
3969    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3970      isTemplate = Record->getDescribedClassTemplate();
3971
3972    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3973      << (NewTag == TagDecl::TK_class)
3974      << isTemplate << &Name
3975      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3976                              OldTag == TagDecl::TK_class? "class" : "struct");
3977    Diag(Previous->getLocation(), diag::note_previous_use);
3978    return true;
3979  }
3980  return false;
3981}
3982
3983/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3984/// former case, Name will be non-null.  In the later case, Name will be null.
3985/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3986/// reference/declaration/definition of a tag.
3987Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3988                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3989                               IdentifierInfo *Name, SourceLocation NameLoc,
3990                               AttributeList *Attr, AccessSpecifier AS,
3991                               MultiTemplateParamsArg TemplateParameterLists,
3992                               bool &OwnedDecl, bool &IsDependent) {
3993  // If this is not a definition, it must have a name.
3994  assert((Name != 0 || TUK == TUK_Definition) &&
3995         "Nameless record must be a definition!");
3996
3997  OwnedDecl = false;
3998  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
3999
4000  if (TUK != TUK_Reference) {
4001    if (TemplateParameterList *TemplateParams
4002          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4003                        (TemplateParameterList**)TemplateParameterLists.get(),
4004                                              TemplateParameterLists.size())) {
4005      if (TemplateParams->size() > 0) {
4006        // This is a declaration or definition of a class template (which may
4007        // be a member of another template).
4008        OwnedDecl = false;
4009        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4010                                               SS, Name, NameLoc, Attr,
4011                                               TemplateParams,
4012                                               AS);
4013        TemplateParameterLists.release();
4014        return Result.get();
4015      } else {
4016        // FIXME: diagnose the extraneous 'template<>', once we recover
4017        // slightly better in ParseTemplate.cpp from bogus template
4018        // parameters.
4019      }
4020    }
4021  }
4022
4023  DeclContext *SearchDC = CurContext;
4024  DeclContext *DC = CurContext;
4025  NamedDecl *PrevDecl = 0;
4026
4027  bool Invalid = false;
4028
4029  if (Name && SS.isNotEmpty()) {
4030    // We have a nested-name tag ('struct foo::bar').
4031
4032    // Check for invalid 'foo::'.
4033    if (SS.isInvalid()) {
4034      Name = 0;
4035      goto CreateNewDecl;
4036    }
4037
4038    // If this is a friend or a reference to a class in a dependent
4039    // context, don't try to make a decl for it.
4040    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4041      DC = computeDeclContext(SS, false);
4042      if (!DC) {
4043        IsDependent = true;
4044        return DeclPtrTy();
4045      }
4046    }
4047
4048    if (RequireCompleteDeclContext(SS))
4049      return DeclPtrTy::make((Decl *)0);
4050
4051    DC = computeDeclContext(SS, true);
4052    SearchDC = DC;
4053    // Look-up name inside 'foo::'.
4054    PrevDecl
4055      = dyn_cast_or_null<TagDecl>(
4056               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4057
4058    // A tag 'foo::bar' must already exist.
4059    if (PrevDecl == 0) {
4060      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4061      Name = 0;
4062      Invalid = true;
4063      goto CreateNewDecl;
4064    }
4065  } else if (Name) {
4066    // If this is a named struct, check to see if there was a previous forward
4067    // declaration or definition.
4068    // FIXME: We're looking into outer scopes here, even when we
4069    // shouldn't be. Doing so can result in ambiguities that we
4070    // shouldn't be diagnosing.
4071    LookupResult R = LookupName(S, Name, LookupTagName,
4072                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4073    if (R.isAmbiguous()) {
4074      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4075      // FIXME: This is not best way to recover from case like:
4076      //
4077      // struct S s;
4078      //
4079      // causes needless "incomplete type" error later.
4080      Name = 0;
4081      PrevDecl = 0;
4082      Invalid = true;
4083    } else
4084      PrevDecl = R;
4085
4086    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4087      // FIXME: This makes sure that we ignore the contexts associated
4088      // with C structs, unions, and enums when looking for a matching
4089      // tag declaration or definition. See the similar lookup tweak
4090      // in Sema::LookupName; is there a better way to deal with this?
4091      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4092        SearchDC = SearchDC->getParent();
4093    }
4094  }
4095
4096  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4097    // Maybe we will complain about the shadowed template parameter.
4098    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4099    // Just pretend that we didn't see the previous declaration.
4100    PrevDecl = 0;
4101  }
4102
4103  if (PrevDecl) {
4104    // Check whether the previous declaration is usable.
4105    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4106
4107    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4108      // If this is a use of a previous tag, or if the tag is already declared
4109      // in the same scope (so that the definition/declaration completes or
4110      // rementions the tag), reuse the decl.
4111      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4112          isDeclInScope(PrevDecl, SearchDC, S)) {
4113        // Make sure that this wasn't declared as an enum and now used as a
4114        // struct or something similar.
4115        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4116          bool SafeToContinue
4117            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4118               Kind != TagDecl::TK_enum);
4119          if (SafeToContinue)
4120            Diag(KWLoc, diag::err_use_with_wrong_tag)
4121              << Name
4122              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4123                                                  PrevTagDecl->getKindName());
4124          else
4125            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4126          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4127
4128          if (SafeToContinue)
4129            Kind = PrevTagDecl->getTagKind();
4130          else {
4131            // Recover by making this an anonymous redefinition.
4132            Name = 0;
4133            PrevDecl = 0;
4134            Invalid = true;
4135          }
4136        }
4137
4138        if (!Invalid) {
4139          // If this is a use, just return the declaration we found.
4140
4141          // FIXME: In the future, return a variant or some other clue
4142          // for the consumer of this Decl to know it doesn't own it.
4143          // For our current ASTs this shouldn't be a problem, but will
4144          // need to be changed with DeclGroups.
4145          if (TUK == TUK_Reference)
4146            return DeclPtrTy::make(PrevDecl);
4147
4148          // If this is a friend, make sure we create the new
4149          // declaration in the appropriate semantic context.
4150          if (TUK == TUK_Friend)
4151            SearchDC = PrevDecl->getDeclContext();
4152
4153          // Diagnose attempts to redefine a tag.
4154          if (TUK == TUK_Definition) {
4155            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4156              Diag(NameLoc, diag::err_redefinition) << Name;
4157              Diag(Def->getLocation(), diag::note_previous_definition);
4158              // If this is a redefinition, recover by making this
4159              // struct be anonymous, which will make any later
4160              // references get the previous definition.
4161              Name = 0;
4162              PrevDecl = 0;
4163              Invalid = true;
4164            } else {
4165              // If the type is currently being defined, complain
4166              // about a nested redefinition.
4167              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4168              if (Tag->isBeingDefined()) {
4169                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4170                Diag(PrevTagDecl->getLocation(),
4171                     diag::note_previous_definition);
4172                Name = 0;
4173                PrevDecl = 0;
4174                Invalid = true;
4175              }
4176            }
4177
4178            // Okay, this is definition of a previously declared or referenced
4179            // tag PrevDecl. We're going to create a new Decl for it.
4180          }
4181        }
4182        // If we get here we have (another) forward declaration or we
4183        // have a definition.  Just create a new decl.
4184
4185      } else {
4186        // If we get here, this is a definition of a new tag type in a nested
4187        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4188        // new decl/type.  We set PrevDecl to NULL so that the entities
4189        // have distinct types.
4190        PrevDecl = 0;
4191      }
4192      // If we get here, we're going to create a new Decl. If PrevDecl
4193      // is non-NULL, it's a definition of the tag declared by
4194      // PrevDecl. If it's NULL, we have a new definition.
4195    } else {
4196      // PrevDecl is a namespace, template, or anything else
4197      // that lives in the IDNS_Tag identifier namespace.
4198      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4199        // The tag name clashes with a namespace name, issue an error and
4200        // recover by making this tag be anonymous.
4201        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4202        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4203        Name = 0;
4204        PrevDecl = 0;
4205        Invalid = true;
4206      } else {
4207        // The existing declaration isn't relevant to us; we're in a
4208        // new scope, so clear out the previous declaration.
4209        PrevDecl = 0;
4210      }
4211    }
4212  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4213             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4214    // C++ [basic.scope.pdecl]p5:
4215    //   -- for an elaborated-type-specifier of the form
4216    //
4217    //          class-key identifier
4218    //
4219    //      if the elaborated-type-specifier is used in the
4220    //      decl-specifier-seq or parameter-declaration-clause of a
4221    //      function defined in namespace scope, the identifier is
4222    //      declared as a class-name in the namespace that contains
4223    //      the declaration; otherwise, except as a friend
4224    //      declaration, the identifier is declared in the smallest
4225    //      non-class, non-function-prototype scope that contains the
4226    //      declaration.
4227    //
4228    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4229    // C structs and unions.
4230    //
4231    // GNU C also supports this behavior as part of its incomplete
4232    // enum types extension, while GNU C++ does not.
4233    //
4234    // Find the context where we'll be declaring the tag.
4235    // FIXME: We would like to maintain the current DeclContext as the
4236    // lexical context,
4237    while (SearchDC->isRecord())
4238      SearchDC = SearchDC->getParent();
4239
4240    // Find the scope where we'll be declaring the tag.
4241    while (S->isClassScope() ||
4242           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4243           ((S->getFlags() & Scope::DeclScope) == 0) ||
4244           (S->getEntity() &&
4245            ((DeclContext *)S->getEntity())->isTransparentContext()))
4246      S = S->getParent();
4247
4248  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4249    // C++ [namespace.memdef]p3:
4250    //   If a friend declaration in a non-local class first declares a
4251    //   class or function, the friend class or function is a member of
4252    //   the innermost enclosing namespace.
4253    while (!SearchDC->isFileContext())
4254      SearchDC = SearchDC->getParent();
4255
4256    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4257    while (S->getEntity() != SearchDC)
4258      S = S->getParent();
4259  }
4260
4261CreateNewDecl:
4262
4263  // If there is an identifier, use the location of the identifier as the
4264  // location of the decl, otherwise use the location of the struct/union
4265  // keyword.
4266  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4267
4268  // Otherwise, create a new declaration. If there is a previous
4269  // declaration of the same entity, the two will be linked via
4270  // PrevDecl.
4271  TagDecl *New;
4272
4273  if (Kind == TagDecl::TK_enum) {
4274    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4275    // enum X { A, B, C } D;    D should chain to X.
4276    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4277                           cast_or_null<EnumDecl>(PrevDecl));
4278    // If this is an undefined enum, warn.
4279    if (TUK != TUK_Definition && !Invalid)  {
4280      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4281                                              : diag::ext_forward_ref_enum;
4282      Diag(Loc, DK);
4283    }
4284  } else {
4285    // struct/union/class
4286
4287    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4288    // struct X { int A; } D;    D should chain to X.
4289    if (getLangOptions().CPlusPlus)
4290      // FIXME: Look for a way to use RecordDecl for simple structs.
4291      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4292                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4293    else
4294      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4295                               cast_or_null<RecordDecl>(PrevDecl));
4296  }
4297
4298  if (Kind != TagDecl::TK_enum) {
4299    // Handle #pragma pack: if the #pragma pack stack has non-default
4300    // alignment, make up a packed attribute for this decl. These
4301    // attributes are checked when the ASTContext lays out the
4302    // structure.
4303    //
4304    // It is important for implementing the correct semantics that this
4305    // happen here (in act on tag decl). The #pragma pack stack is
4306    // maintained as a result of parser callbacks which can occur at
4307    // many points during the parsing of a struct declaration (because
4308    // the #pragma tokens are effectively skipped over during the
4309    // parsing of the struct).
4310    if (unsigned Alignment = getPragmaPackAlignment())
4311      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4312  }
4313
4314  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4315    // C++ [dcl.typedef]p3:
4316    //   [...] Similarly, in a given scope, a class or enumeration
4317    //   shall not be declared with the same name as a typedef-name
4318    //   that is declared in that scope and refers to a type other
4319    //   than the class or enumeration itself.
4320    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4321    TypedefDecl *PrevTypedef = 0;
4322    if (Lookup.getKind() == LookupResult::Found)
4323      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4324
4325    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4326        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4327          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4328      Diag(Loc, diag::err_tag_definition_of_typedef)
4329        << Context.getTypeDeclType(New)
4330        << PrevTypedef->getUnderlyingType();
4331      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4332      Invalid = true;
4333    }
4334  }
4335
4336  if (Invalid)
4337    New->setInvalidDecl();
4338
4339  if (Attr)
4340    ProcessDeclAttributeList(S, New, Attr);
4341
4342  // If we're declaring or defining a tag in function prototype scope
4343  // in C, note that this type can only be used within the function.
4344  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4345    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4346
4347  // Set the lexical context. If the tag has a C++ scope specifier, the
4348  // lexical context will be different from the semantic context.
4349  New->setLexicalDeclContext(CurContext);
4350
4351  // Mark this as a friend decl if applicable.
4352  if (TUK == TUK_Friend)
4353    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4354
4355  // Set the access specifier.
4356  if (!Invalid && TUK != TUK_Friend)
4357    SetMemberAccessSpecifier(New, PrevDecl, AS);
4358
4359  if (TUK == TUK_Definition)
4360    New->startDefinition();
4361
4362  // If this has an identifier, add it to the scope stack.
4363  if (TUK == TUK_Friend) {
4364    // We might be replacing an existing declaration in the lookup tables;
4365    // if so, borrow its access specifier.
4366    if (PrevDecl)
4367      New->setAccess(PrevDecl->getAccess());
4368
4369    // Friend tag decls are visible in fairly strange ways.
4370    if (!CurContext->isDependentContext()) {
4371      DeclContext *DC = New->getDeclContext()->getLookupContext();
4372      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4373      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4374        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4375    }
4376  } else if (Name) {
4377    S = getNonFieldDeclScope(S);
4378    PushOnScopeChains(New, S);
4379  } else {
4380    CurContext->addDecl(New);
4381  }
4382
4383  // If this is the C FILE type, notify the AST context.
4384  if (IdentifierInfo *II = New->getIdentifier())
4385    if (!New->isInvalidDecl() &&
4386        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4387        II->isStr("FILE"))
4388      Context.setFILEDecl(New);
4389
4390  OwnedDecl = true;
4391  return DeclPtrTy::make(New);
4392}
4393
4394void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4395  AdjustDeclIfTemplate(TagD);
4396  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4397
4398  // Enter the tag context.
4399  PushDeclContext(S, Tag);
4400
4401  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4402    FieldCollector->StartClass();
4403
4404    if (Record->getIdentifier()) {
4405      // C++ [class]p2:
4406      //   [...] The class-name is also inserted into the scope of the
4407      //   class itself; this is known as the injected-class-name. For
4408      //   purposes of access checking, the injected-class-name is treated
4409      //   as if it were a public member name.
4410      CXXRecordDecl *InjectedClassName
4411        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4412                                CurContext, Record->getLocation(),
4413                                Record->getIdentifier(),
4414                                Record->getTagKeywordLoc(),
4415                                Record);
4416      InjectedClassName->setImplicit();
4417      InjectedClassName->setAccess(AS_public);
4418      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4419        InjectedClassName->setDescribedClassTemplate(Template);
4420      PushOnScopeChains(InjectedClassName, S);
4421      assert(InjectedClassName->isInjectedClassName() &&
4422             "Broken injected-class-name");
4423    }
4424  }
4425}
4426
4427void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4428                                    SourceLocation RBraceLoc) {
4429  AdjustDeclIfTemplate(TagD);
4430  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4431  Tag->setRBraceLoc(RBraceLoc);
4432
4433  if (isa<CXXRecordDecl>(Tag))
4434    FieldCollector->FinishClass();
4435
4436  // Exit this scope of this tag's definition.
4437  PopDeclContext();
4438
4439  // Notify the consumer that we've defined a tag.
4440  Consumer.HandleTagDeclDefinition(Tag);
4441}
4442
4443// Note that FieldName may be null for anonymous bitfields.
4444bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4445                          QualType FieldTy, const Expr *BitWidth,
4446                          bool *ZeroWidth) {
4447  // Default to true; that shouldn't confuse checks for emptiness
4448  if (ZeroWidth)
4449    *ZeroWidth = true;
4450
4451  // C99 6.7.2.1p4 - verify the field type.
4452  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4453  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4454    // Handle incomplete types with specific error.
4455    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4456      return true;
4457    if (FieldName)
4458      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4459        << FieldName << FieldTy << BitWidth->getSourceRange();
4460    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4461      << FieldTy << BitWidth->getSourceRange();
4462  }
4463
4464  // If the bit-width is type- or value-dependent, don't try to check
4465  // it now.
4466  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4467    return false;
4468
4469  llvm::APSInt Value;
4470  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4471    return true;
4472
4473  if (Value != 0 && ZeroWidth)
4474    *ZeroWidth = false;
4475
4476  // Zero-width bitfield is ok for anonymous field.
4477  if (Value == 0 && FieldName)
4478    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4479
4480  if (Value.isSigned() && Value.isNegative()) {
4481    if (FieldName)
4482      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4483               << FieldName << Value.toString(10);
4484    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4485      << Value.toString(10);
4486  }
4487
4488  if (!FieldTy->isDependentType()) {
4489    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4490    if (Value.getZExtValue() > TypeSize) {
4491      if (FieldName)
4492        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4493          << FieldName << (unsigned)TypeSize;
4494      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4495        << (unsigned)TypeSize;
4496    }
4497  }
4498
4499  return false;
4500}
4501
4502/// ActOnField - Each field of a struct/union/class is passed into this in order
4503/// to create a FieldDecl object for it.
4504Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4505                                 SourceLocation DeclStart,
4506                                 Declarator &D, ExprTy *BitfieldWidth) {
4507  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4508                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4509                               AS_public);
4510  return DeclPtrTy::make(Res);
4511}
4512
4513/// HandleField - Analyze a field of a C struct or a C++ data member.
4514///
4515FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4516                             SourceLocation DeclStart,
4517                             Declarator &D, Expr *BitWidth,
4518                             AccessSpecifier AS) {
4519  IdentifierInfo *II = D.getIdentifier();
4520  SourceLocation Loc = DeclStart;
4521  if (II) Loc = D.getIdentifierLoc();
4522
4523  DeclaratorInfo *DInfo = 0;
4524  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4525  if (getLangOptions().CPlusPlus)
4526    CheckExtraCXXDefaultArguments(D);
4527
4528  DiagnoseFunctionSpecifiers(D);
4529
4530  if (D.getDeclSpec().isThreadSpecified())
4531    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4532
4533  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4534
4535  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4536    // Maybe we will complain about the shadowed template parameter.
4537    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4538    // Just pretend that we didn't see the previous declaration.
4539    PrevDecl = 0;
4540  }
4541
4542  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4543    PrevDecl = 0;
4544
4545  bool Mutable
4546    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4547  SourceLocation TSSL = D.getSourceRange().getBegin();
4548  FieldDecl *NewFD
4549    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4550                     AS, PrevDecl, &D);
4551  if (NewFD->isInvalidDecl() && PrevDecl) {
4552    // Don't introduce NewFD into scope; there's already something
4553    // with the same name in the same scope.
4554  } else if (II) {
4555    PushOnScopeChains(NewFD, S);
4556  } else
4557    Record->addDecl(NewFD);
4558
4559  return NewFD;
4560}
4561
4562/// \brief Build a new FieldDecl and check its well-formedness.
4563///
4564/// This routine builds a new FieldDecl given the fields name, type,
4565/// record, etc. \p PrevDecl should refer to any previous declaration
4566/// with the same name and in the same scope as the field to be
4567/// created.
4568///
4569/// \returns a new FieldDecl.
4570///
4571/// \todo The Declarator argument is a hack. It will be removed once
4572FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4573                                DeclaratorInfo *DInfo,
4574                                RecordDecl *Record, SourceLocation Loc,
4575                                bool Mutable, Expr *BitWidth,
4576                                SourceLocation TSSL,
4577                                AccessSpecifier AS, NamedDecl *PrevDecl,
4578                                Declarator *D) {
4579  IdentifierInfo *II = Name.getAsIdentifierInfo();
4580  bool InvalidDecl = false;
4581  if (D) InvalidDecl = D->isInvalidType();
4582
4583  // If we receive a broken type, recover by assuming 'int' and
4584  // marking this declaration as invalid.
4585  if (T.isNull()) {
4586    InvalidDecl = true;
4587    T = Context.IntTy;
4588  }
4589
4590  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4591  // than a variably modified type.
4592  if (T->isVariablyModifiedType()) {
4593    bool SizeIsNegative;
4594    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4595                                                           SizeIsNegative);
4596    if (!FixedTy.isNull()) {
4597      Diag(Loc, diag::warn_illegal_constant_array_size);
4598      T = FixedTy;
4599    } else {
4600      if (SizeIsNegative)
4601        Diag(Loc, diag::err_typecheck_negative_array_size);
4602      else
4603        Diag(Loc, diag::err_typecheck_field_variable_size);
4604      InvalidDecl = true;
4605    }
4606  }
4607
4608  // Fields can not have abstract class types
4609  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4610                             AbstractFieldType))
4611    InvalidDecl = true;
4612
4613  bool ZeroWidth = false;
4614  // If this is declared as a bit-field, check the bit-field.
4615  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4616    InvalidDecl = true;
4617    DeleteExpr(BitWidth);
4618    BitWidth = 0;
4619    ZeroWidth = false;
4620  }
4621
4622  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4623                                       BitWidth, Mutable);
4624  if (InvalidDecl)
4625    NewFD->setInvalidDecl();
4626
4627  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4628    Diag(Loc, diag::err_duplicate_member) << II;
4629    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4630    NewFD->setInvalidDecl();
4631  }
4632
4633  if (getLangOptions().CPlusPlus) {
4634    QualType EltTy = Context.getBaseElementType(T);
4635
4636    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4637
4638    if (!T->isPODType())
4639      CXXRecord->setPOD(false);
4640    if (!ZeroWidth)
4641      CXXRecord->setEmpty(false);
4642
4643    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4644      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4645
4646      if (!RDecl->hasTrivialConstructor())
4647        CXXRecord->setHasTrivialConstructor(false);
4648      if (!RDecl->hasTrivialCopyConstructor())
4649        CXXRecord->setHasTrivialCopyConstructor(false);
4650      if (!RDecl->hasTrivialCopyAssignment())
4651        CXXRecord->setHasTrivialCopyAssignment(false);
4652      if (!RDecl->hasTrivialDestructor())
4653        CXXRecord->setHasTrivialDestructor(false);
4654
4655      // C++ 9.5p1: An object of a class with a non-trivial
4656      // constructor, a non-trivial copy constructor, a non-trivial
4657      // destructor, or a non-trivial copy assignment operator
4658      // cannot be a member of a union, nor can an array of such
4659      // objects.
4660      // TODO: C++0x alters this restriction significantly.
4661      if (Record->isUnion()) {
4662        // We check for copy constructors before constructors
4663        // because otherwise we'll never get complaints about
4664        // copy constructors.
4665
4666        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4667
4668        CXXSpecialMember member;
4669        if (!RDecl->hasTrivialCopyConstructor())
4670          member = CXXCopyConstructor;
4671        else if (!RDecl->hasTrivialConstructor())
4672          member = CXXDefaultConstructor;
4673        else if (!RDecl->hasTrivialCopyAssignment())
4674          member = CXXCopyAssignment;
4675        else if (!RDecl->hasTrivialDestructor())
4676          member = CXXDestructor;
4677        else
4678          member = invalid;
4679
4680        if (member != invalid) {
4681          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4682          DiagnoseNontrivial(RT, member);
4683          NewFD->setInvalidDecl();
4684        }
4685      }
4686    }
4687  }
4688
4689  // FIXME: We need to pass in the attributes given an AST
4690  // representation, not a parser representation.
4691  if (D)
4692    // FIXME: What to pass instead of TUScope?
4693    ProcessDeclAttributes(TUScope, NewFD, *D);
4694
4695  if (T.isObjCGCWeak())
4696    Diag(Loc, diag::warn_attribute_weak_on_field);
4697
4698  NewFD->setAccess(AS);
4699
4700  // C++ [dcl.init.aggr]p1:
4701  //   An aggregate is an array or a class (clause 9) with [...] no
4702  //   private or protected non-static data members (clause 11).
4703  // A POD must be an aggregate.
4704  if (getLangOptions().CPlusPlus &&
4705      (AS == AS_private || AS == AS_protected)) {
4706    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4707    CXXRecord->setAggregate(false);
4708    CXXRecord->setPOD(false);
4709  }
4710
4711  return NewFD;
4712}
4713
4714/// DiagnoseNontrivial - Given that a class has a non-trivial
4715/// special member, figure out why.
4716void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4717  QualType QT(T, 0U);
4718  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4719
4720  // Check whether the member was user-declared.
4721  switch (member) {
4722  case CXXDefaultConstructor:
4723    if (RD->hasUserDeclaredConstructor()) {
4724      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4725      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4726        if (!ci->isImplicitlyDefined(Context)) {
4727          SourceLocation CtorLoc = ci->getLocation();
4728          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4729          return;
4730        }
4731
4732      assert(0 && "found no user-declared constructors");
4733      return;
4734    }
4735    break;
4736
4737  case CXXCopyConstructor:
4738    if (RD->hasUserDeclaredCopyConstructor()) {
4739      SourceLocation CtorLoc =
4740        RD->getCopyConstructor(Context, 0)->getLocation();
4741      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4742      return;
4743    }
4744    break;
4745
4746  case CXXCopyAssignment:
4747    if (RD->hasUserDeclaredCopyAssignment()) {
4748      // FIXME: this should use the location of the copy
4749      // assignment, not the type.
4750      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4751      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4752      return;
4753    }
4754    break;
4755
4756  case CXXDestructor:
4757    if (RD->hasUserDeclaredDestructor()) {
4758      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4759      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4760      return;
4761    }
4762    break;
4763  }
4764
4765  typedef CXXRecordDecl::base_class_iterator base_iter;
4766
4767  // Virtual bases and members inhibit trivial copying/construction,
4768  // but not trivial destruction.
4769  if (member != CXXDestructor) {
4770    // Check for virtual bases.  vbases includes indirect virtual bases,
4771    // so we just iterate through the direct bases.
4772    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4773      if (bi->isVirtual()) {
4774        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4775        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4776        return;
4777      }
4778
4779    // Check for virtual methods.
4780    typedef CXXRecordDecl::method_iterator meth_iter;
4781    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4782         ++mi) {
4783      if (mi->isVirtual()) {
4784        SourceLocation MLoc = mi->getSourceRange().getBegin();
4785        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4786        return;
4787      }
4788    }
4789  }
4790
4791  bool (CXXRecordDecl::*hasTrivial)() const;
4792  switch (member) {
4793  case CXXDefaultConstructor:
4794    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4795  case CXXCopyConstructor:
4796    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4797  case CXXCopyAssignment:
4798    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4799  case CXXDestructor:
4800    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4801  default:
4802    assert(0 && "unexpected special member"); return;
4803  }
4804
4805  // Check for nontrivial bases (and recurse).
4806  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4807    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4808    assert(BaseRT);
4809    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4810    if (!(BaseRecTy->*hasTrivial)()) {
4811      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4812      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4813      DiagnoseNontrivial(BaseRT, member);
4814      return;
4815    }
4816  }
4817
4818  // Check for nontrivial members (and recurse).
4819  typedef RecordDecl::field_iterator field_iter;
4820  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4821       ++fi) {
4822    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4823    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4824      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4825
4826      if (!(EltRD->*hasTrivial)()) {
4827        SourceLocation FLoc = (*fi)->getLocation();
4828        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4829        DiagnoseNontrivial(EltRT, member);
4830        return;
4831      }
4832    }
4833  }
4834
4835  assert(0 && "found no explanation for non-trivial member");
4836}
4837
4838/// TranslateIvarVisibility - Translate visibility from a token ID to an
4839///  AST enum value.
4840static ObjCIvarDecl::AccessControl
4841TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4842  switch (ivarVisibility) {
4843  default: assert(0 && "Unknown visitibility kind");
4844  case tok::objc_private: return ObjCIvarDecl::Private;
4845  case tok::objc_public: return ObjCIvarDecl::Public;
4846  case tok::objc_protected: return ObjCIvarDecl::Protected;
4847  case tok::objc_package: return ObjCIvarDecl::Package;
4848  }
4849}
4850
4851/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4852/// in order to create an IvarDecl object for it.
4853Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4854                                SourceLocation DeclStart,
4855                                DeclPtrTy IntfDecl,
4856                                Declarator &D, ExprTy *BitfieldWidth,
4857                                tok::ObjCKeywordKind Visibility) {
4858
4859  IdentifierInfo *II = D.getIdentifier();
4860  Expr *BitWidth = (Expr*)BitfieldWidth;
4861  SourceLocation Loc = DeclStart;
4862  if (II) Loc = D.getIdentifierLoc();
4863
4864  // FIXME: Unnamed fields can be handled in various different ways, for
4865  // example, unnamed unions inject all members into the struct namespace!
4866
4867  DeclaratorInfo *DInfo = 0;
4868  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4869
4870  if (BitWidth) {
4871    // 6.7.2.1p3, 6.7.2.1p4
4872    if (VerifyBitField(Loc, II, T, BitWidth)) {
4873      D.setInvalidType();
4874      DeleteExpr(BitWidth);
4875      BitWidth = 0;
4876    }
4877  } else {
4878    // Not a bitfield.
4879
4880    // validate II.
4881
4882  }
4883
4884  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4885  // than a variably modified type.
4886  if (T->isVariablyModifiedType()) {
4887    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4888    D.setInvalidType();
4889  }
4890
4891  // Get the visibility (access control) for this ivar.
4892  ObjCIvarDecl::AccessControl ac =
4893    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4894                                        : ObjCIvarDecl::None;
4895  // Must set ivar's DeclContext to its enclosing interface.
4896  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4897  DeclContext *EnclosingContext;
4898  if (ObjCImplementationDecl *IMPDecl =
4899      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4900    // Case of ivar declared in an implementation. Context is that of its class.
4901    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4902    assert(IDecl && "No class- ActOnIvar");
4903    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4904  } else
4905    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4906  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4907
4908  // Construct the decl.
4909  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4910                                             EnclosingContext, Loc, II, T,
4911                                             DInfo, ac, (Expr *)BitfieldWidth);
4912
4913  if (II) {
4914    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4915    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4916        && !isa<TagDecl>(PrevDecl)) {
4917      Diag(Loc, diag::err_duplicate_member) << II;
4918      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4919      NewID->setInvalidDecl();
4920    }
4921  }
4922
4923  // Process attributes attached to the ivar.
4924  ProcessDeclAttributes(S, NewID, D);
4925
4926  if (D.isInvalidType())
4927    NewID->setInvalidDecl();
4928
4929  if (II) {
4930    // FIXME: When interfaces are DeclContexts, we'll need to add
4931    // these to the interface.
4932    S->AddDecl(DeclPtrTy::make(NewID));
4933    IdResolver.AddDecl(NewID);
4934  }
4935
4936  return DeclPtrTy::make(NewID);
4937}
4938
4939void Sema::ActOnFields(Scope* S,
4940                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4941                       DeclPtrTy *Fields, unsigned NumFields,
4942                       SourceLocation LBrac, SourceLocation RBrac,
4943                       AttributeList *Attr) {
4944  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4945  assert(EnclosingDecl && "missing record or interface decl");
4946
4947  // If the decl this is being inserted into is invalid, then it may be a
4948  // redeclaration or some other bogus case.  Don't try to add fields to it.
4949  if (EnclosingDecl->isInvalidDecl()) {
4950    // FIXME: Deallocate fields?
4951    return;
4952  }
4953
4954
4955  // Verify that all the fields are okay.
4956  unsigned NumNamedMembers = 0;
4957  llvm::SmallVector<FieldDecl*, 32> RecFields;
4958
4959  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4960  for (unsigned i = 0; i != NumFields; ++i) {
4961    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4962
4963    // Get the type for the field.
4964    Type *FDTy = FD->getType().getTypePtr();
4965
4966    if (!FD->isAnonymousStructOrUnion()) {
4967      // Remember all fields written by the user.
4968      RecFields.push_back(FD);
4969    }
4970
4971    // If the field is already invalid for some reason, don't emit more
4972    // diagnostics about it.
4973    if (FD->isInvalidDecl())
4974      continue;
4975
4976    // C99 6.7.2.1p2:
4977    //   A structure or union shall not contain a member with
4978    //   incomplete or function type (hence, a structure shall not
4979    //   contain an instance of itself, but may contain a pointer to
4980    //   an instance of itself), except that the last member of a
4981    //   structure with more than one named member may have incomplete
4982    //   array type; such a structure (and any union containing,
4983    //   possibly recursively, a member that is such a structure)
4984    //   shall not be a member of a structure or an element of an
4985    //   array.
4986    if (FDTy->isFunctionType()) {
4987      // Field declared as a function.
4988      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4989        << FD->getDeclName();
4990      FD->setInvalidDecl();
4991      EnclosingDecl->setInvalidDecl();
4992      continue;
4993    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4994               Record && Record->isStruct()) {
4995      // Flexible array member.
4996      if (NumNamedMembers < 1) {
4997        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4998          << FD->getDeclName();
4999        FD->setInvalidDecl();
5000        EnclosingDecl->setInvalidDecl();
5001        continue;
5002      }
5003      // Okay, we have a legal flexible array member at the end of the struct.
5004      if (Record)
5005        Record->setHasFlexibleArrayMember(true);
5006    } else if (!FDTy->isDependentType() &&
5007               RequireCompleteType(FD->getLocation(), FD->getType(),
5008                                   diag::err_field_incomplete)) {
5009      // Incomplete type
5010      FD->setInvalidDecl();
5011      EnclosingDecl->setInvalidDecl();
5012      continue;
5013    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5014      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5015        // If this is a member of a union, then entire union becomes "flexible".
5016        if (Record && Record->isUnion()) {
5017          Record->setHasFlexibleArrayMember(true);
5018        } else {
5019          // If this is a struct/class and this is not the last element, reject
5020          // it.  Note that GCC supports variable sized arrays in the middle of
5021          // structures.
5022          if (i != NumFields-1)
5023            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5024              << FD->getDeclName() << FD->getType();
5025          else {
5026            // We support flexible arrays at the end of structs in
5027            // other structs as an extension.
5028            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5029              << FD->getDeclName();
5030            if (Record)
5031              Record->setHasFlexibleArrayMember(true);
5032          }
5033        }
5034      }
5035      if (Record && FDTTy->getDecl()->hasObjectMember())
5036        Record->setHasObjectMember(true);
5037    } else if (FDTy->isObjCInterfaceType()) {
5038      /// A field cannot be an Objective-c object
5039      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5040      FD->setInvalidDecl();
5041      EnclosingDecl->setInvalidDecl();
5042      continue;
5043    } else if (getLangOptions().ObjC1 &&
5044               getLangOptions().getGCMode() != LangOptions::NonGC &&
5045               Record &&
5046               (FD->getType()->isObjCObjectPointerType() ||
5047                FD->getType().isObjCGCStrong()))
5048      Record->setHasObjectMember(true);
5049    // Keep track of the number of named members.
5050    if (FD->getIdentifier())
5051      ++NumNamedMembers;
5052  }
5053
5054  // Okay, we successfully defined 'Record'.
5055  if (Record) {
5056    Record->completeDefinition(Context);
5057  } else {
5058    ObjCIvarDecl **ClsFields =
5059      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5060    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5061      ID->setIVarList(ClsFields, RecFields.size(), Context);
5062      ID->setLocEnd(RBrac);
5063      // Add ivar's to class's DeclContext.
5064      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5065        ClsFields[i]->setLexicalDeclContext(ID);
5066        ID->addDecl(ClsFields[i]);
5067      }
5068      // Must enforce the rule that ivars in the base classes may not be
5069      // duplicates.
5070      if (ID->getSuperClass()) {
5071        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5072             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5073          ObjCIvarDecl* Ivar = (*IVI);
5074
5075          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5076            ObjCIvarDecl* prevIvar =
5077              ID->getSuperClass()->lookupInstanceVariable(II);
5078            if (prevIvar) {
5079              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5080              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5081            }
5082          }
5083        }
5084      }
5085    } else if (ObjCImplementationDecl *IMPDecl =
5086                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5087      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5088      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5089        // Ivar declared in @implementation never belongs to the implementation.
5090        // Only it is in implementation's lexical context.
5091        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5092      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5093    }
5094  }
5095
5096  if (Attr)
5097    ProcessDeclAttributeList(S, Record, Attr);
5098}
5099
5100EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5101                                          EnumConstantDecl *LastEnumConst,
5102                                          SourceLocation IdLoc,
5103                                          IdentifierInfo *Id,
5104                                          ExprArg val) {
5105  Expr *Val = (Expr *)val.get();
5106
5107  llvm::APSInt EnumVal(32);
5108  QualType EltTy;
5109  if (Val && !Val->isTypeDependent()) {
5110    // Make sure to promote the operand type to int.
5111    UsualUnaryConversions(Val);
5112    if (Val != val.get()) {
5113      val.release();
5114      val = Val;
5115    }
5116
5117    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5118    SourceLocation ExpLoc;
5119    if (!Val->isValueDependent() &&
5120        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5121      Val = 0;
5122    } else {
5123      EltTy = Val->getType();
5124    }
5125  }
5126
5127  if (!Val) {
5128    if (LastEnumConst) {
5129      // Assign the last value + 1.
5130      EnumVal = LastEnumConst->getInitVal();
5131      ++EnumVal;
5132
5133      // Check for overflow on increment.
5134      if (EnumVal < LastEnumConst->getInitVal())
5135        Diag(IdLoc, diag::warn_enum_value_overflow);
5136
5137      EltTy = LastEnumConst->getType();
5138    } else {
5139      // First value, set to zero.
5140      EltTy = Context.IntTy;
5141      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5142    }
5143  }
5144
5145  val.release();
5146  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5147                                  Val, EnumVal);
5148}
5149
5150
5151Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5152                                        DeclPtrTy lastEnumConst,
5153                                        SourceLocation IdLoc,
5154                                        IdentifierInfo *Id,
5155                                        SourceLocation EqualLoc, ExprTy *val) {
5156  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5157  EnumConstantDecl *LastEnumConst =
5158    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5159  Expr *Val = static_cast<Expr*>(val);
5160
5161  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5162  // we find one that is.
5163  S = getNonFieldDeclScope(S);
5164
5165  // Verify that there isn't already something declared with this name in this
5166  // scope.
5167  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5168  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5169    // Maybe we will complain about the shadowed template parameter.
5170    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5171    // Just pretend that we didn't see the previous declaration.
5172    PrevDecl = 0;
5173  }
5174
5175  if (PrevDecl) {
5176    // When in C++, we may get a TagDecl with the same name; in this case the
5177    // enum constant will 'hide' the tag.
5178    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5179           "Received TagDecl when not in C++!");
5180    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5181      if (isa<EnumConstantDecl>(PrevDecl))
5182        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5183      else
5184        Diag(IdLoc, diag::err_redefinition) << Id;
5185      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5186      if (Val) Val->Destroy(Context);
5187      return DeclPtrTy();
5188    }
5189  }
5190
5191  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5192                                            IdLoc, Id, Owned(Val));
5193
5194  // Register this decl in the current scope stack.
5195  if (New)
5196    PushOnScopeChains(New, S);
5197
5198  return DeclPtrTy::make(New);
5199}
5200
5201void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5202                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5203                         DeclPtrTy *Elements, unsigned NumElements,
5204                         Scope *S, AttributeList *Attr) {
5205  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5206  QualType EnumType = Context.getTypeDeclType(Enum);
5207
5208  if (Attr)
5209    ProcessDeclAttributeList(S, Enum, Attr);
5210
5211  // TODO: If the result value doesn't fit in an int, it must be a long or long
5212  // long value.  ISO C does not support this, but GCC does as an extension,
5213  // emit a warning.
5214  unsigned IntWidth = Context.Target.getIntWidth();
5215  unsigned CharWidth = Context.Target.getCharWidth();
5216  unsigned ShortWidth = Context.Target.getShortWidth();
5217
5218  // Verify that all the values are okay, compute the size of the values, and
5219  // reverse the list.
5220  unsigned NumNegativeBits = 0;
5221  unsigned NumPositiveBits = 0;
5222
5223  // Keep track of whether all elements have type int.
5224  bool AllElementsInt = true;
5225
5226  for (unsigned i = 0; i != NumElements; ++i) {
5227    EnumConstantDecl *ECD =
5228      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5229    if (!ECD) continue;  // Already issued a diagnostic.
5230
5231    // If the enum value doesn't fit in an int, emit an extension warning.
5232    const llvm::APSInt &InitVal = ECD->getInitVal();
5233    assert(InitVal.getBitWidth() >= IntWidth &&
5234           "Should have promoted value to int");
5235    if (InitVal.getBitWidth() > IntWidth) {
5236      llvm::APSInt V(InitVal);
5237      V.trunc(IntWidth);
5238      V.extend(InitVal.getBitWidth());
5239      if (V != InitVal)
5240        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5241          << InitVal.toString(10);
5242    }
5243
5244    // Keep track of the size of positive and negative values.
5245    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5246      NumPositiveBits = std::max(NumPositiveBits,
5247                                 (unsigned)InitVal.getActiveBits());
5248    else
5249      NumNegativeBits = std::max(NumNegativeBits,
5250                                 (unsigned)InitVal.getMinSignedBits());
5251
5252    // Keep track of whether every enum element has type int (very commmon).
5253    if (AllElementsInt)
5254      AllElementsInt = ECD->getType() == Context.IntTy;
5255  }
5256
5257  // Figure out the type that should be used for this enum.
5258  // FIXME: Support -fshort-enums.
5259  QualType BestType;
5260  unsigned BestWidth;
5261
5262  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5263
5264  if (NumNegativeBits) {
5265    // If there is a negative value, figure out the smallest integer type (of
5266    // int/long/longlong) that fits.
5267    // If it's packed, check also if it fits a char or a short.
5268    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5269        BestType = Context.SignedCharTy;
5270        BestWidth = CharWidth;
5271    } else if (Packed && NumNegativeBits <= ShortWidth &&
5272               NumPositiveBits < ShortWidth) {
5273        BestType = Context.ShortTy;
5274        BestWidth = ShortWidth;
5275    }
5276    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5277      BestType = Context.IntTy;
5278      BestWidth = IntWidth;
5279    } else {
5280      BestWidth = Context.Target.getLongWidth();
5281
5282      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5283        BestType = Context.LongTy;
5284      else {
5285        BestWidth = Context.Target.getLongLongWidth();
5286
5287        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5288          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5289        BestType = Context.LongLongTy;
5290      }
5291    }
5292  } else {
5293    // If there is no negative value, figure out which of uint, ulong, ulonglong
5294    // fits.
5295    // If it's packed, check also if it fits a char or a short.
5296    if (Packed && NumPositiveBits <= CharWidth) {
5297        BestType = Context.UnsignedCharTy;
5298        BestWidth = CharWidth;
5299    } else if (Packed && NumPositiveBits <= ShortWidth) {
5300        BestType = Context.UnsignedShortTy;
5301        BestWidth = ShortWidth;
5302    }
5303    else if (NumPositiveBits <= IntWidth) {
5304      BestType = Context.UnsignedIntTy;
5305      BestWidth = IntWidth;
5306    } else if (NumPositiveBits <=
5307               (BestWidth = Context.Target.getLongWidth())) {
5308      BestType = Context.UnsignedLongTy;
5309    } else {
5310      BestWidth = Context.Target.getLongLongWidth();
5311      assert(NumPositiveBits <= BestWidth &&
5312             "How could an initializer get larger than ULL?");
5313      BestType = Context.UnsignedLongLongTy;
5314    }
5315  }
5316
5317  // Loop over all of the enumerator constants, changing their types to match
5318  // the type of the enum if needed.
5319  for (unsigned i = 0; i != NumElements; ++i) {
5320    EnumConstantDecl *ECD =
5321      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5322    if (!ECD) continue;  // Already issued a diagnostic.
5323
5324    // Standard C says the enumerators have int type, but we allow, as an
5325    // extension, the enumerators to be larger than int size.  If each
5326    // enumerator value fits in an int, type it as an int, otherwise type it the
5327    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5328    // that X has type 'int', not 'unsigned'.
5329    if (ECD->getType() == Context.IntTy) {
5330      // Make sure the init value is signed.
5331      llvm::APSInt IV = ECD->getInitVal();
5332      IV.setIsSigned(true);
5333      ECD->setInitVal(IV);
5334
5335      if (getLangOptions().CPlusPlus)
5336        // C++ [dcl.enum]p4: Following the closing brace of an
5337        // enum-specifier, each enumerator has the type of its
5338        // enumeration.
5339        ECD->setType(EnumType);
5340      continue;  // Already int type.
5341    }
5342
5343    // Determine whether the value fits into an int.
5344    llvm::APSInt InitVal = ECD->getInitVal();
5345    bool FitsInInt;
5346    if (InitVal.isUnsigned() || !InitVal.isNegative())
5347      FitsInInt = InitVal.getActiveBits() < IntWidth;
5348    else
5349      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5350
5351    // If it fits into an integer type, force it.  Otherwise force it to match
5352    // the enum decl type.
5353    QualType NewTy;
5354    unsigned NewWidth;
5355    bool NewSign;
5356    if (FitsInInt) {
5357      NewTy = Context.IntTy;
5358      NewWidth = IntWidth;
5359      NewSign = true;
5360    } else if (ECD->getType() == BestType) {
5361      // Already the right type!
5362      if (getLangOptions().CPlusPlus)
5363        // C++ [dcl.enum]p4: Following the closing brace of an
5364        // enum-specifier, each enumerator has the type of its
5365        // enumeration.
5366        ECD->setType(EnumType);
5367      continue;
5368    } else {
5369      NewTy = BestType;
5370      NewWidth = BestWidth;
5371      NewSign = BestType->isSignedIntegerType();
5372    }
5373
5374    // Adjust the APSInt value.
5375    InitVal.extOrTrunc(NewWidth);
5376    InitVal.setIsSigned(NewSign);
5377    ECD->setInitVal(InitVal);
5378
5379    // Adjust the Expr initializer and type.
5380    if (ECD->getInitExpr())
5381      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5382                                                      CastExpr::CK_Unknown,
5383                                                      ECD->getInitExpr(),
5384                                                      /*isLvalue=*/false));
5385    if (getLangOptions().CPlusPlus)
5386      // C++ [dcl.enum]p4: Following the closing brace of an
5387      // enum-specifier, each enumerator has the type of its
5388      // enumeration.
5389      ECD->setType(EnumType);
5390    else
5391      ECD->setType(NewTy);
5392  }
5393
5394  Enum->completeDefinition(Context, BestType);
5395}
5396
5397Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5398                                            ExprArg expr) {
5399  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5400
5401  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5402                                                   Loc, AsmString);
5403  CurContext->addDecl(New);
5404  return DeclPtrTy::make(New);
5405}
5406
5407void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5408                             SourceLocation PragmaLoc,
5409                             SourceLocation NameLoc) {
5410  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5411
5412  if (PrevDecl) {
5413    PrevDecl->addAttr(::new (Context) WeakAttr());
5414  } else {
5415    (void)WeakUndeclaredIdentifiers.insert(
5416      std::pair<IdentifierInfo*,WeakInfo>
5417        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5418  }
5419}
5420
5421void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5422                                IdentifierInfo* AliasName,
5423                                SourceLocation PragmaLoc,
5424                                SourceLocation NameLoc,
5425                                SourceLocation AliasNameLoc) {
5426  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5427  WeakInfo W = WeakInfo(Name, NameLoc);
5428
5429  if (PrevDecl) {
5430    if (!PrevDecl->hasAttr<AliasAttr>())
5431      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5432        DeclApplyPragmaWeak(TUScope, ND, W);
5433  } else {
5434    (void)WeakUndeclaredIdentifiers.insert(
5435      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5436  }
5437}
5438