SemaDecl.cpp revision 551f7087786d1a5e257f4e2a0999da8c709437fd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42#include <queue>
43using namespace clang;
44
45/// getDeclName - Return a pretty name for the specified decl if possible, or
46/// an empty string if not.  This is used for pretty crash reporting.
47std::string Sema::getDeclName(DeclPtrTy d) {
48  Decl *D = d.getAs<Decl>();
49  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
50    return DN->getQualifiedNameAsString();
51  return "";
52}
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                                Scope *S, const CXXScopeSpec *SS,
71                                bool isClassName,
72                                TypeTy *ObjectTypePtr) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isSet()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return 0;
95
96        // We know from the grammar that this name refers to a type, so build a
97        // TypenameType node to describe the type.
98        // FIXME: Record somewhere that this TypenameType node has no "typename"
99        // keyword associated with it.
100        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
101                                 II, SS->getRange()).getAsOpaquePtr();
102      }
103
104      return 0;
105    }
106
107    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
108      return 0;
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::FoundOverloaded:
141  case LookupResult::FoundUnresolvedValue:
142    return 0;
143
144  case LookupResult::Ambiguous:
145    // Recover from type-hiding ambiguities by hiding the type.  We'll
146    // do the lookup again when looking for an object, and we can
147    // diagnose the error then.  If we don't do this, then the error
148    // about hiding the type will be immediately followed by an error
149    // that only makes sense if the identifier was treated like a type.
150    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
151      Result.suppressDiagnostics();
152      return 0;
153    }
154
155    // Look to see if we have a type anywhere in the list of results.
156    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
157         Res != ResEnd; ++Res) {
158      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
159        if (!IIDecl ||
160            (*Res)->getLocation().getRawEncoding() <
161              IIDecl->getLocation().getRawEncoding())
162          IIDecl = *Res;
163      }
164    }
165
166    if (!IIDecl) {
167      // None of the entities we found is a type, so there is no way
168      // to even assume that the result is a type. In this case, don't
169      // complain about the ambiguity. The parser will either try to
170      // perform this lookup again (e.g., as an object name), which
171      // will produce the ambiguity, or will complain that it expected
172      // a type name.
173      Result.suppressDiagnostics();
174      return 0;
175    }
176
177    // We found a type within the ambiguous lookup; diagnose the
178    // ambiguity and then return that type. This might be the right
179    // answer, or it might not be, but it suppresses any attempt to
180    // perform the name lookup again.
181    break;
182
183  case LookupResult::Found:
184    IIDecl = Result.getFoundDecl();
185    break;
186  }
187
188  assert(IIDecl && "Didn't find decl");
189
190  QualType T;
191  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
192    DiagnoseUseOfDecl(IIDecl, NameLoc);
193
194    // C++ [temp.local]p2:
195    //   Within the scope of a class template specialization or
196    //   partial specialization, when the injected-class-name is
197    //   not followed by a <, it is equivalent to the
198    //   injected-class-name followed by the template-argument s
199    //   of the class template specialization or partial
200    //   specialization enclosed in <>.
201    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
202      if (RD->isInjectedClassName())
203        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
204          T = Template->getInjectedClassNameType(Context);
205
206    if (T.isNull())
207      T = Context.getTypeDeclType(TD);
208
209    if (SS)
210      T = getQualifiedNameType(*SS, T);
211
212  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
213    T = Context.getObjCInterfaceType(IDecl);
214  } else if (UnresolvedUsingTypenameDecl *UUDecl =
215               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
216    // FIXME: preserve source structure information.
217    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
218  } else {
219    // If it's not plausibly a type, suppress diagnostics.
220    Result.suppressDiagnostics();
221    return 0;
222  }
223
224  return T.getAsOpaquePtr();
225}
226
227/// isTagName() - This method is called *for error recovery purposes only*
228/// to determine if the specified name is a valid tag name ("struct foo").  If
229/// so, this returns the TST for the tag corresponding to it (TST_enum,
230/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
231/// where the user forgot to specify the tag.
232DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
233  // Do a tag name lookup in this scope.
234  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
235  LookupName(R, S, false);
236  R.suppressDiagnostics();
237  if (R.getResultKind() == LookupResult::Found)
238    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
239      switch (TD->getTagKind()) {
240      case TagDecl::TK_struct: return DeclSpec::TST_struct;
241      case TagDecl::TK_union:  return DeclSpec::TST_union;
242      case TagDecl::TK_class:  return DeclSpec::TST_class;
243      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
244      }
245    }
246
247  return DeclSpec::TST_unspecified;
248}
249
250bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
251                                   SourceLocation IILoc,
252                                   Scope *S,
253                                   const CXXScopeSpec *SS,
254                                   TypeTy *&SuggestedType) {
255  // We don't have anything to suggest (yet).
256  SuggestedType = 0;
257
258  // There may have been a typo in the name of the type. Look up typo
259  // results, in case we have something that we can suggest.
260  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
261                      NotForRedeclaration);
262
263  // FIXME: It would be nice if we could correct for typos in built-in
264  // names, such as "itn" for "int".
265
266  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
267    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
268    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
269        !Result->isInvalidDecl()) {
270      // We found a similarly-named type or interface; suggest that.
271      if (!SS || !SS->isSet())
272        Diag(IILoc, diag::err_unknown_typename_suggest)
273          << &II << Lookup.getLookupName()
274          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
275                                                     Result->getNameAsString());
276      else if (DeclContext *DC = computeDeclContext(*SS, false))
277        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
278          << &II << DC << Lookup.getLookupName() << SS->getRange()
279          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
280                                                     Result->getNameAsString());
281      else
282        llvm_unreachable("could not have corrected a typo here");
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isUsed() || D->hasAttr<UnusedAttr>())
514    return false;
515
516  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
517    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
518      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
519        if (!RD->hasTrivialConstructor())
520          return false;
521        if (!RD->hasTrivialDestructor())
522          return false;
523      }
524    }
525  }
526
527  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
528          !isa<ImplicitParamDecl>(D) &&
529          D->getDeclContext()->isFunctionOrMethod());
530}
531
532void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
533  if (S->decl_empty()) return;
534  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
535         "Scope shouldn't contain decls!");
536
537  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
538       I != E; ++I) {
539    Decl *TmpD = (*I).getAs<Decl>();
540    assert(TmpD && "This decl didn't get pushed??");
541
542    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
543    NamedDecl *D = cast<NamedDecl>(TmpD);
544
545    if (!D->getDeclName()) continue;
546
547    // Diagnose unused variables in this scope.
548    if (ShouldDiagnoseUnusedDecl(D))
549      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
550
551    // Remove this name from our lexical scope.
552    IdResolver.RemoveDecl(D);
553  }
554}
555
556/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
557/// return 0 if one not found.
558ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
559  // The third "scope" argument is 0 since we aren't enabling lazy built-in
560  // creation from this context.
561  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
562
563  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
564}
565
566/// getNonFieldDeclScope - Retrieves the innermost scope, starting
567/// from S, where a non-field would be declared. This routine copes
568/// with the difference between C and C++ scoping rules in structs and
569/// unions. For example, the following code is well-formed in C but
570/// ill-formed in C++:
571/// @code
572/// struct S6 {
573///   enum { BAR } e;
574/// };
575///
576/// void test_S6() {
577///   struct S6 a;
578///   a.e = BAR;
579/// }
580/// @endcode
581/// For the declaration of BAR, this routine will return a different
582/// scope. The scope S will be the scope of the unnamed enumeration
583/// within S6. In C++, this routine will return the scope associated
584/// with S6, because the enumeration's scope is a transparent
585/// context but structures can contain non-field names. In C, this
586/// routine will return the translation unit scope, since the
587/// enumeration's scope is a transparent context and structures cannot
588/// contain non-field names.
589Scope *Sema::getNonFieldDeclScope(Scope *S) {
590  while (((S->getFlags() & Scope::DeclScope) == 0) ||
591         (S->getEntity() &&
592          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
593         (S->isClassScope() && !getLangOptions().CPlusPlus))
594    S = S->getParent();
595  return S;
596}
597
598void Sema::InitBuiltinVaListType() {
599  if (!Context.getBuiltinVaListType().isNull())
600    return;
601
602  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
603  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
604  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
605  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
606}
607
608/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
609/// file scope.  lazily create a decl for it. ForRedeclaration is true
610/// if we're creating this built-in in anticipation of redeclaring the
611/// built-in.
612NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
613                                     Scope *S, bool ForRedeclaration,
614                                     SourceLocation Loc) {
615  Builtin::ID BID = (Builtin::ID)bid;
616
617  if (Context.BuiltinInfo.hasVAListUse(BID))
618    InitBuiltinVaListType();
619
620  ASTContext::GetBuiltinTypeError Error;
621  QualType R = Context.GetBuiltinType(BID, Error);
622  switch (Error) {
623  case ASTContext::GE_None:
624    // Okay
625    break;
626
627  case ASTContext::GE_Missing_stdio:
628    if (ForRedeclaration)
629      Diag(Loc, diag::err_implicit_decl_requires_stdio)
630        << Context.BuiltinInfo.GetName(BID);
631    return 0;
632
633  case ASTContext::GE_Missing_setjmp:
634    if (ForRedeclaration)
635      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
636        << Context.BuiltinInfo.GetName(BID);
637    return 0;
638  }
639
640  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
641    Diag(Loc, diag::ext_implicit_lib_function_decl)
642      << Context.BuiltinInfo.GetName(BID)
643      << R;
644    if (Context.BuiltinInfo.getHeaderName(BID) &&
645        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
646          != Diagnostic::Ignored)
647      Diag(Loc, diag::note_please_include_header)
648        << Context.BuiltinInfo.getHeaderName(BID)
649        << Context.BuiltinInfo.GetName(BID);
650  }
651
652  FunctionDecl *New = FunctionDecl::Create(Context,
653                                           Context.getTranslationUnitDecl(),
654                                           Loc, II, R, /*TInfo=*/0,
655                                           FunctionDecl::Extern, false,
656                                           /*hasPrototype=*/true);
657  New->setImplicit();
658
659  // Create Decl objects for each parameter, adding them to the
660  // FunctionDecl.
661  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
662    llvm::SmallVector<ParmVarDecl*, 16> Params;
663    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
664      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
665                                           FT->getArgType(i), /*TInfo=*/0,
666                                           VarDecl::None, 0));
667    New->setParams(Context, Params.data(), Params.size());
668  }
669
670  AddKnownFunctionAttributes(New);
671
672  // TUScope is the translation-unit scope to insert this function into.
673  // FIXME: This is hideous. We need to teach PushOnScopeChains to
674  // relate Scopes to DeclContexts, and probably eliminate CurContext
675  // entirely, but we're not there yet.
676  DeclContext *SavedContext = CurContext;
677  CurContext = Context.getTranslationUnitDecl();
678  PushOnScopeChains(New, TUScope);
679  CurContext = SavedContext;
680  return New;
681}
682
683/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
684/// same name and scope as a previous declaration 'Old'.  Figure out
685/// how to resolve this situation, merging decls or emitting
686/// diagnostics as appropriate. If there was an error, set New to be invalid.
687///
688void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
689  // If the new decl is known invalid already, don't bother doing any
690  // merging checks.
691  if (New->isInvalidDecl()) return;
692
693  // Allow multiple definitions for ObjC built-in typedefs.
694  // FIXME: Verify the underlying types are equivalent!
695  if (getLangOptions().ObjC1) {
696    const IdentifierInfo *TypeID = New->getIdentifier();
697    switch (TypeID->getLength()) {
698    default: break;
699    case 2:
700      if (!TypeID->isStr("id"))
701        break;
702      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
703      // Install the built-in type for 'id', ignoring the current definition.
704      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
705      return;
706    case 5:
707      if (!TypeID->isStr("Class"))
708        break;
709      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
710      // Install the built-in type for 'Class', ignoring the current definition.
711      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
712      return;
713    case 3:
714      if (!TypeID->isStr("SEL"))
715        break;
716      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
717      // Install the built-in type for 'SEL', ignoring the current definition.
718      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
719      return;
720    case 8:
721      if (!TypeID->isStr("Protocol"))
722        break;
723      Context.setObjCProtoType(New->getUnderlyingType());
724      return;
725    }
726    // Fall through - the typedef name was not a builtin type.
727  }
728
729  // Verify the old decl was also a type.
730  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
731  if (!Old) {
732    Diag(New->getLocation(), diag::err_redefinition_different_kind)
733      << New->getDeclName();
734
735    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
736    if (OldD->getLocation().isValid())
737      Diag(OldD->getLocation(), diag::note_previous_definition);
738
739    return New->setInvalidDecl();
740  }
741
742  // If the old declaration is invalid, just give up here.
743  if (Old->isInvalidDecl())
744    return New->setInvalidDecl();
745
746  // Determine the "old" type we'll use for checking and diagnostics.
747  QualType OldType;
748  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
749    OldType = OldTypedef->getUnderlyingType();
750  else
751    OldType = Context.getTypeDeclType(Old);
752
753  // If the typedef types are not identical, reject them in all languages and
754  // with any extensions enabled.
755
756  if (OldType != New->getUnderlyingType() &&
757      Context.getCanonicalType(OldType) !=
758      Context.getCanonicalType(New->getUnderlyingType())) {
759    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
760      << New->getUnderlyingType() << OldType;
761    if (Old->getLocation().isValid())
762      Diag(Old->getLocation(), diag::note_previous_definition);
763    return New->setInvalidDecl();
764  }
765
766  // The types match.  Link up the redeclaration chain if the old
767  // declaration was a typedef.
768  // FIXME: this is a potential source of wierdness if the type
769  // spellings don't match exactly.
770  if (isa<TypedefDecl>(Old))
771    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
772
773  if (getLangOptions().Microsoft)
774    return;
775
776  // C++ [dcl.typedef]p2:
777  //   In a given non-class scope, a typedef specifier can be used to
778  //   redefine the name of any type declared in that scope to refer
779  //   to the type to which it already refers.
780  if (getLangOptions().CPlusPlus) {
781    if (!isa<CXXRecordDecl>(CurContext))
782      return;
783    Diag(New->getLocation(), diag::err_redefinition)
784      << New->getDeclName();
785    Diag(Old->getLocation(), diag::note_previous_definition);
786    return New->setInvalidDecl();
787  }
788
789  // If we have a redefinition of a typedef in C, emit a warning.  This warning
790  // is normally mapped to an error, but can be controlled with
791  // -Wtypedef-redefinition.  If either the original or the redefinition is
792  // in a system header, don't emit this for compatibility with GCC.
793  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
794      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
795       Context.getSourceManager().isInSystemHeader(New->getLocation())))
796    return;
797
798  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
799    << New->getDeclName();
800  Diag(Old->getLocation(), diag::note_previous_definition);
801  return;
802}
803
804/// DeclhasAttr - returns true if decl Declaration already has the target
805/// attribute.
806static bool
807DeclHasAttr(const Decl *decl, const Attr *target) {
808  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
809    if (attr->getKind() == target->getKind())
810      return true;
811
812  return false;
813}
814
815/// MergeAttributes - append attributes from the Old decl to the New one.
816static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
817  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
818    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
819      Attr *NewAttr = attr->clone(C);
820      NewAttr->setInherited(true);
821      New->addAttr(NewAttr);
822    }
823  }
824}
825
826/// Used in MergeFunctionDecl to keep track of function parameters in
827/// C.
828struct GNUCompatibleParamWarning {
829  ParmVarDecl *OldParm;
830  ParmVarDecl *NewParm;
831  QualType PromotedType;
832};
833
834
835/// getSpecialMember - get the special member enum for a method.
836static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
837                                               const CXXMethodDecl *MD) {
838  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
839    if (Ctor->isDefaultConstructor())
840      return Sema::CXXDefaultConstructor;
841    if (Ctor->isCopyConstructor())
842      return Sema::CXXCopyConstructor;
843  }
844
845  if (isa<CXXDestructorDecl>(MD))
846    return Sema::CXXDestructor;
847
848  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
849  return Sema::CXXCopyAssignment;
850}
851
852/// MergeFunctionDecl - We just parsed a function 'New' from
853/// declarator D which has the same name and scope as a previous
854/// declaration 'Old'.  Figure out how to resolve this situation,
855/// merging decls or emitting diagnostics as appropriate.
856///
857/// In C++, New and Old must be declarations that are not
858/// overloaded. Use IsOverload to determine whether New and Old are
859/// overloaded, and to select the Old declaration that New should be
860/// merged with.
861///
862/// Returns true if there was an error, false otherwise.
863bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
864  // Verify the old decl was also a function.
865  FunctionDecl *Old = 0;
866  if (FunctionTemplateDecl *OldFunctionTemplate
867        = dyn_cast<FunctionTemplateDecl>(OldD))
868    Old = OldFunctionTemplate->getTemplatedDecl();
869  else
870    Old = dyn_cast<FunctionDecl>(OldD);
871  if (!Old) {
872    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
873      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
874      Diag(Shadow->getTargetDecl()->getLocation(),
875           diag::note_using_decl_target);
876      Diag(Shadow->getUsingDecl()->getLocation(),
877           diag::note_using_decl) << 0;
878      return true;
879    }
880
881    Diag(New->getLocation(), diag::err_redefinition_different_kind)
882      << New->getDeclName();
883    Diag(OldD->getLocation(), diag::note_previous_definition);
884    return true;
885  }
886
887  // Determine whether the previous declaration was a definition,
888  // implicit declaration, or a declaration.
889  diag::kind PrevDiag;
890  if (Old->isThisDeclarationADefinition())
891    PrevDiag = diag::note_previous_definition;
892  else if (Old->isImplicit())
893    PrevDiag = diag::note_previous_implicit_declaration;
894  else
895    PrevDiag = diag::note_previous_declaration;
896
897  QualType OldQType = Context.getCanonicalType(Old->getType());
898  QualType NewQType = Context.getCanonicalType(New->getType());
899
900  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
901      New->getStorageClass() == FunctionDecl::Static &&
902      Old->getStorageClass() != FunctionDecl::Static) {
903    Diag(New->getLocation(), diag::err_static_non_static)
904      << New;
905    Diag(Old->getLocation(), PrevDiag);
906    return true;
907  }
908
909  if (getLangOptions().CPlusPlus) {
910    // (C++98 13.1p2):
911    //   Certain function declarations cannot be overloaded:
912    //     -- Function declarations that differ only in the return type
913    //        cannot be overloaded.
914    QualType OldReturnType
915      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
916    QualType NewReturnType
917      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
918    if (OldReturnType != NewReturnType) {
919      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
920      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
921      return true;
922    }
923
924    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
925    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
926    if (OldMethod && NewMethod) {
927      if (!NewMethod->getFriendObjectKind() &&
928          NewMethod->getLexicalDeclContext()->isRecord()) {
929        //    -- Member function declarations with the same name and the
930        //       same parameter types cannot be overloaded if any of them
931        //       is a static member function declaration.
932        if (OldMethod->isStatic() || NewMethod->isStatic()) {
933          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
934          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
935          return true;
936        }
937
938        // C++ [class.mem]p1:
939        //   [...] A member shall not be declared twice in the
940        //   member-specification, except that a nested class or member
941        //   class template can be declared and then later defined.
942        unsigned NewDiag;
943        if (isa<CXXConstructorDecl>(OldMethod))
944          NewDiag = diag::err_constructor_redeclared;
945        else if (isa<CXXDestructorDecl>(NewMethod))
946          NewDiag = diag::err_destructor_redeclared;
947        else if (isa<CXXConversionDecl>(NewMethod))
948          NewDiag = diag::err_conv_function_redeclared;
949        else
950          NewDiag = diag::err_member_redeclared;
951
952        Diag(New->getLocation(), NewDiag);
953        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
954      } else {
955        if (OldMethod->isImplicit()) {
956          Diag(NewMethod->getLocation(),
957               diag::err_definition_of_implicitly_declared_member)
958          << New << getSpecialMember(Context, OldMethod);
959
960          Diag(OldMethod->getLocation(),
961               diag::note_previous_implicit_declaration);
962          return true;
963        }
964      }
965    }
966
967    // (C++98 8.3.5p3):
968    //   All declarations for a function shall agree exactly in both the
969    //   return type and the parameter-type-list.
970    // attributes should be ignored when comparing.
971    if (Context.getNoReturnType(OldQType, false) ==
972        Context.getNoReturnType(NewQType, false))
973      return MergeCompatibleFunctionDecls(New, Old);
974
975    // Fall through for conflicting redeclarations and redefinitions.
976  }
977
978  // C: Function types need to be compatible, not identical. This handles
979  // duplicate function decls like "void f(int); void f(enum X);" properly.
980  if (!getLangOptions().CPlusPlus &&
981      Context.typesAreCompatible(OldQType, NewQType)) {
982    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
983    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
984    const FunctionProtoType *OldProto = 0;
985    if (isa<FunctionNoProtoType>(NewFuncType) &&
986        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
987      // The old declaration provided a function prototype, but the
988      // new declaration does not. Merge in the prototype.
989      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
990      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
991                                                 OldProto->arg_type_end());
992      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
993                                         ParamTypes.data(), ParamTypes.size(),
994                                         OldProto->isVariadic(),
995                                         OldProto->getTypeQuals());
996      New->setType(NewQType);
997      New->setHasInheritedPrototype();
998
999      // Synthesize a parameter for each argument type.
1000      llvm::SmallVector<ParmVarDecl*, 16> Params;
1001      for (FunctionProtoType::arg_type_iterator
1002             ParamType = OldProto->arg_type_begin(),
1003             ParamEnd = OldProto->arg_type_end();
1004           ParamType != ParamEnd; ++ParamType) {
1005        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1006                                                 SourceLocation(), 0,
1007                                                 *ParamType, /*TInfo=*/0,
1008                                                 VarDecl::None, 0);
1009        Param->setImplicit();
1010        Params.push_back(Param);
1011      }
1012
1013      New->setParams(Context, Params.data(), Params.size());
1014    }
1015
1016    return MergeCompatibleFunctionDecls(New, Old);
1017  }
1018
1019  // GNU C permits a K&R definition to follow a prototype declaration
1020  // if the declared types of the parameters in the K&R definition
1021  // match the types in the prototype declaration, even when the
1022  // promoted types of the parameters from the K&R definition differ
1023  // from the types in the prototype. GCC then keeps the types from
1024  // the prototype.
1025  //
1026  // If a variadic prototype is followed by a non-variadic K&R definition,
1027  // the K&R definition becomes variadic.  This is sort of an edge case, but
1028  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1029  // C99 6.9.1p8.
1030  if (!getLangOptions().CPlusPlus &&
1031      Old->hasPrototype() && !New->hasPrototype() &&
1032      New->getType()->getAs<FunctionProtoType>() &&
1033      Old->getNumParams() == New->getNumParams()) {
1034    llvm::SmallVector<QualType, 16> ArgTypes;
1035    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1036    const FunctionProtoType *OldProto
1037      = Old->getType()->getAs<FunctionProtoType>();
1038    const FunctionProtoType *NewProto
1039      = New->getType()->getAs<FunctionProtoType>();
1040
1041    // Determine whether this is the GNU C extension.
1042    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1043                                               NewProto->getResultType());
1044    bool LooseCompatible = !MergedReturn.isNull();
1045    for (unsigned Idx = 0, End = Old->getNumParams();
1046         LooseCompatible && Idx != End; ++Idx) {
1047      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1048      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1049      if (Context.typesAreCompatible(OldParm->getType(),
1050                                     NewProto->getArgType(Idx))) {
1051        ArgTypes.push_back(NewParm->getType());
1052      } else if (Context.typesAreCompatible(OldParm->getType(),
1053                                            NewParm->getType())) {
1054        GNUCompatibleParamWarning Warn
1055          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1056        Warnings.push_back(Warn);
1057        ArgTypes.push_back(NewParm->getType());
1058      } else
1059        LooseCompatible = false;
1060    }
1061
1062    if (LooseCompatible) {
1063      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1064        Diag(Warnings[Warn].NewParm->getLocation(),
1065             diag::ext_param_promoted_not_compatible_with_prototype)
1066          << Warnings[Warn].PromotedType
1067          << Warnings[Warn].OldParm->getType();
1068        Diag(Warnings[Warn].OldParm->getLocation(),
1069             diag::note_previous_declaration);
1070      }
1071
1072      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1073                                           ArgTypes.size(),
1074                                           OldProto->isVariadic(), 0));
1075      return MergeCompatibleFunctionDecls(New, Old);
1076    }
1077
1078    // Fall through to diagnose conflicting types.
1079  }
1080
1081  // A function that has already been declared has been redeclared or defined
1082  // with a different type- show appropriate diagnostic
1083  if (unsigned BuiltinID = Old->getBuiltinID()) {
1084    // The user has declared a builtin function with an incompatible
1085    // signature.
1086    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1087      // The function the user is redeclaring is a library-defined
1088      // function like 'malloc' or 'printf'. Warn about the
1089      // redeclaration, then pretend that we don't know about this
1090      // library built-in.
1091      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1092      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1093        << Old << Old->getType();
1094      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1095      Old->setInvalidDecl();
1096      return false;
1097    }
1098
1099    PrevDiag = diag::note_previous_builtin_declaration;
1100  }
1101
1102  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1103  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1104  return true;
1105}
1106
1107/// \brief Completes the merge of two function declarations that are
1108/// known to be compatible.
1109///
1110/// This routine handles the merging of attributes and other
1111/// properties of function declarations form the old declaration to
1112/// the new declaration, once we know that New is in fact a
1113/// redeclaration of Old.
1114///
1115/// \returns false
1116bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1117  // Merge the attributes
1118  MergeAttributes(New, Old, Context);
1119
1120  // Merge the storage class.
1121  if (Old->getStorageClass() != FunctionDecl::Extern &&
1122      Old->getStorageClass() != FunctionDecl::None)
1123    New->setStorageClass(Old->getStorageClass());
1124
1125  // Merge "pure" flag.
1126  if (Old->isPure())
1127    New->setPure();
1128
1129  // Merge the "deleted" flag.
1130  if (Old->isDeleted())
1131    New->setDeleted();
1132
1133  if (getLangOptions().CPlusPlus)
1134    return MergeCXXFunctionDecl(New, Old);
1135
1136  return false;
1137}
1138
1139/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1140/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1141/// situation, merging decls or emitting diagnostics as appropriate.
1142///
1143/// Tentative definition rules (C99 6.9.2p2) are checked by
1144/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1145/// definitions here, since the initializer hasn't been attached.
1146///
1147void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1148  // If the new decl is already invalid, don't do any other checking.
1149  if (New->isInvalidDecl())
1150    return;
1151
1152  // Verify the old decl was also a variable.
1153  VarDecl *Old = 0;
1154  if (!Previous.isSingleResult() ||
1155      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1156    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1157      << New->getDeclName();
1158    Diag(Previous.getRepresentativeDecl()->getLocation(),
1159         diag::note_previous_definition);
1160    return New->setInvalidDecl();
1161  }
1162
1163  MergeAttributes(New, Old, Context);
1164
1165  // Merge the types
1166  QualType MergedT;
1167  if (getLangOptions().CPlusPlus) {
1168    if (Context.hasSameType(New->getType(), Old->getType()))
1169      MergedT = New->getType();
1170    // C++ [basic.link]p10:
1171    //   [...] the types specified by all declarations referring to a given
1172    //   object or function shall be identical, except that declarations for an
1173    //   array object can specify array types that differ by the presence or
1174    //   absence of a major array bound (8.3.4).
1175    else if (Old->getType()->isIncompleteArrayType() &&
1176             New->getType()->isArrayType()) {
1177      CanQual<ArrayType> OldArray
1178        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1179      CanQual<ArrayType> NewArray
1180        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1181      if (OldArray->getElementType() == NewArray->getElementType())
1182        MergedT = New->getType();
1183    } else if (Old->getType()->isArrayType() &&
1184             New->getType()->isIncompleteArrayType()) {
1185      CanQual<ArrayType> OldArray
1186        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1187      CanQual<ArrayType> NewArray
1188        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1189      if (OldArray->getElementType() == NewArray->getElementType())
1190        MergedT = Old->getType();
1191    }
1192  } else {
1193    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1194  }
1195  if (MergedT.isNull()) {
1196    Diag(New->getLocation(), diag::err_redefinition_different_type)
1197      << New->getDeclName();
1198    Diag(Old->getLocation(), diag::note_previous_definition);
1199    return New->setInvalidDecl();
1200  }
1201  New->setType(MergedT);
1202
1203  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1204  if (New->getStorageClass() == VarDecl::Static &&
1205      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1206    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1207    Diag(Old->getLocation(), diag::note_previous_definition);
1208    return New->setInvalidDecl();
1209  }
1210  // C99 6.2.2p4:
1211  //   For an identifier declared with the storage-class specifier
1212  //   extern in a scope in which a prior declaration of that
1213  //   identifier is visible,23) if the prior declaration specifies
1214  //   internal or external linkage, the linkage of the identifier at
1215  //   the later declaration is the same as the linkage specified at
1216  //   the prior declaration. If no prior declaration is visible, or
1217  //   if the prior declaration specifies no linkage, then the
1218  //   identifier has external linkage.
1219  if (New->hasExternalStorage() && Old->hasLinkage())
1220    /* Okay */;
1221  else if (New->getStorageClass() != VarDecl::Static &&
1222           Old->getStorageClass() == VarDecl::Static) {
1223    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1224    Diag(Old->getLocation(), diag::note_previous_definition);
1225    return New->setInvalidDecl();
1226  }
1227
1228  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1229
1230  // FIXME: The test for external storage here seems wrong? We still
1231  // need to check for mismatches.
1232  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1233      // Don't complain about out-of-line definitions of static members.
1234      !(Old->getLexicalDeclContext()->isRecord() &&
1235        !New->getLexicalDeclContext()->isRecord())) {
1236    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1237    Diag(Old->getLocation(), diag::note_previous_definition);
1238    return New->setInvalidDecl();
1239  }
1240
1241  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1242    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1243    Diag(Old->getLocation(), diag::note_previous_definition);
1244  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1245    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1246    Diag(Old->getLocation(), diag::note_previous_definition);
1247  }
1248
1249  // Keep a chain of previous declarations.
1250  New->setPreviousDeclaration(Old);
1251}
1252
1253/// CheckFallThrough - Check that we don't fall off the end of a
1254/// Statement that should return a value.
1255///
1256/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1257/// MaybeFallThrough iff we might or might not fall off the end,
1258/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1259/// return.  We assume NeverFallThrough iff we never fall off the end of the
1260/// statement but we may return.  We assume that functions not marked noreturn
1261/// will return.
1262Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1263  // FIXME: Eventually share this CFG object when we have other warnings based
1264  // of the CFG.  This can be done using AnalysisContext.
1265  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1266
1267  // FIXME: They should never return 0, fix that, delete this code.
1268  if (cfg == 0)
1269    // FIXME: This should be NeverFallThrough
1270    return NeverFallThroughOrReturn;
1271  // The CFG leaves in dead things, and we don't want to dead code paths to
1272  // confuse us, so we mark all live things first.
1273  std::queue<CFGBlock*> workq;
1274  llvm::BitVector live(cfg->getNumBlockIDs());
1275  // Prep work queue
1276  workq.push(&cfg->getEntry());
1277  // Solve
1278  while (!workq.empty()) {
1279    CFGBlock *item = workq.front();
1280    workq.pop();
1281    live.set(item->getBlockID());
1282    for (CFGBlock::succ_iterator I=item->succ_begin(),
1283           E=item->succ_end();
1284         I != E;
1285         ++I) {
1286      if ((*I) && !live[(*I)->getBlockID()]) {
1287        live.set((*I)->getBlockID());
1288        workq.push(*I);
1289      }
1290    }
1291  }
1292
1293  // Now we know what is live, we check the live precessors of the exit block
1294  // and look for fall through paths, being careful to ignore normal returns,
1295  // and exceptional paths.
1296  bool HasLiveReturn = false;
1297  bool HasFakeEdge = false;
1298  bool HasPlainEdge = false;
1299  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1300         E = cfg->getExit().pred_end();
1301       I != E;
1302       ++I) {
1303    CFGBlock& B = **I;
1304    if (!live[B.getBlockID()])
1305      continue;
1306    if (B.size() == 0) {
1307      // A labeled empty statement, or the entry block...
1308      HasPlainEdge = true;
1309      continue;
1310    }
1311    Stmt *S = B[B.size()-1];
1312    if (isa<ReturnStmt>(S)) {
1313      HasLiveReturn = true;
1314      continue;
1315    }
1316    if (isa<ObjCAtThrowStmt>(S)) {
1317      HasFakeEdge = true;
1318      continue;
1319    }
1320    if (isa<CXXThrowExpr>(S)) {
1321      HasFakeEdge = true;
1322      continue;
1323    }
1324    bool NoReturnEdge = false;
1325    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1326      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1327      if (CEE->getType().getNoReturnAttr()) {
1328        NoReturnEdge = true;
1329        HasFakeEdge = true;
1330      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1331        ValueDecl *VD = DRE->getDecl();
1332        if (VD->hasAttr<NoReturnAttr>()) {
1333          NoReturnEdge = true;
1334          HasFakeEdge = true;
1335        }
1336      }
1337    }
1338    // FIXME: Add noreturn message sends.
1339    if (NoReturnEdge == false)
1340      HasPlainEdge = true;
1341  }
1342  if (!HasPlainEdge) {
1343    if (HasLiveReturn)
1344      return NeverFallThrough;
1345    return NeverFallThroughOrReturn;
1346  }
1347  if (HasFakeEdge || HasLiveReturn)
1348    return MaybeFallThrough;
1349  // This says AlwaysFallThrough for calls to functions that are not marked
1350  // noreturn, that don't return.  If people would like this warning to be more
1351  // accurate, such functions should be marked as noreturn.
1352  return AlwaysFallThrough;
1353}
1354
1355/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1356/// function that should return a value.  Check that we don't fall off the end
1357/// of a noreturn function.  We assume that functions and blocks not marked
1358/// noreturn will return.
1359void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1360  // FIXME: Would be nice if we had a better way to control cascading errors,
1361  // but for now, avoid them.  The problem is that when Parse sees:
1362  //   int foo() { return a; }
1363  // The return is eaten and the Sema code sees just:
1364  //   int foo() { }
1365  // which this code would then warn about.
1366  if (getDiagnostics().hasErrorOccurred())
1367    return;
1368
1369  bool ReturnsVoid = false;
1370  bool HasNoReturn = false;
1371  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1372    // If the result type of the function is a dependent type, we don't know
1373    // whether it will be void or not, so don't
1374    if (FD->getResultType()->isDependentType())
1375      return;
1376    if (FD->getResultType()->isVoidType())
1377      ReturnsVoid = true;
1378    if (FD->hasAttr<NoReturnAttr>())
1379      HasNoReturn = true;
1380  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1381    if (MD->getResultType()->isVoidType())
1382      ReturnsVoid = true;
1383    if (MD->hasAttr<NoReturnAttr>())
1384      HasNoReturn = true;
1385  }
1386
1387  // Short circuit for compilation speed.
1388  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1389       == Diagnostic::Ignored || ReturnsVoid)
1390      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1391          == Diagnostic::Ignored || !HasNoReturn)
1392      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1393          == Diagnostic::Ignored || !ReturnsVoid))
1394    return;
1395  // FIXME: Function try block
1396  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1397    switch (CheckFallThrough(Body)) {
1398    case MaybeFallThrough:
1399      if (HasNoReturn)
1400        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1401      else if (!ReturnsVoid)
1402        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1403      break;
1404    case AlwaysFallThrough:
1405      if (HasNoReturn)
1406        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1407      else if (!ReturnsVoid)
1408        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1409      break;
1410    case NeverFallThroughOrReturn:
1411      if (ReturnsVoid && !HasNoReturn)
1412        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1413      break;
1414    case NeverFallThrough:
1415      break;
1416    }
1417  }
1418}
1419
1420/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1421/// that should return a value.  Check that we don't fall off the end of a
1422/// noreturn block.  We assume that functions and blocks not marked noreturn
1423/// will return.
1424void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1425  // FIXME: Would be nice if we had a better way to control cascading errors,
1426  // but for now, avoid them.  The problem is that when Parse sees:
1427  //   int foo() { return a; }
1428  // The return is eaten and the Sema code sees just:
1429  //   int foo() { }
1430  // which this code would then warn about.
1431  if (getDiagnostics().hasErrorOccurred())
1432    return;
1433  bool ReturnsVoid = false;
1434  bool HasNoReturn = false;
1435  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1436    if (FT->getResultType()->isVoidType())
1437      ReturnsVoid = true;
1438    if (FT->getNoReturnAttr())
1439      HasNoReturn = true;
1440  }
1441
1442  // Short circuit for compilation speed.
1443  if (ReturnsVoid
1444      && !HasNoReturn
1445      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1446          == Diagnostic::Ignored || !ReturnsVoid))
1447    return;
1448  // FIXME: Funtion try block
1449  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1450    switch (CheckFallThrough(Body)) {
1451    case MaybeFallThrough:
1452      if (HasNoReturn)
1453        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1454      else if (!ReturnsVoid)
1455        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1456      break;
1457    case AlwaysFallThrough:
1458      if (HasNoReturn)
1459        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1460      else if (!ReturnsVoid)
1461        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1462      break;
1463    case NeverFallThroughOrReturn:
1464      if (ReturnsVoid)
1465        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1466      break;
1467    case NeverFallThrough:
1468      break;
1469    }
1470  }
1471}
1472
1473/// CheckParmsForFunctionDef - Check that the parameters of the given
1474/// function are appropriate for the definition of a function. This
1475/// takes care of any checks that cannot be performed on the
1476/// declaration itself, e.g., that the types of each of the function
1477/// parameters are complete.
1478bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1479  bool HasInvalidParm = false;
1480  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1481    ParmVarDecl *Param = FD->getParamDecl(p);
1482
1483    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1484    // function declarator that is part of a function definition of
1485    // that function shall not have incomplete type.
1486    //
1487    // This is also C++ [dcl.fct]p6.
1488    if (!Param->isInvalidDecl() &&
1489        RequireCompleteType(Param->getLocation(), Param->getType(),
1490                               diag::err_typecheck_decl_incomplete_type)) {
1491      Param->setInvalidDecl();
1492      HasInvalidParm = true;
1493    }
1494
1495    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1496    // declaration of each parameter shall include an identifier.
1497    if (Param->getIdentifier() == 0 &&
1498        !Param->isImplicit() &&
1499        !getLangOptions().CPlusPlus)
1500      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1501  }
1502
1503  return HasInvalidParm;
1504}
1505
1506/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1507/// no declarator (e.g. "struct foo;") is parsed.
1508Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1509  // FIXME: Error on auto/register at file scope
1510  // FIXME: Error on inline/virtual/explicit
1511  // FIXME: Warn on useless __thread
1512  // FIXME: Warn on useless const/volatile
1513  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1514  // FIXME: Warn on useless attributes
1515  Decl *TagD = 0;
1516  TagDecl *Tag = 0;
1517  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1518      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1519      DS.getTypeSpecType() == DeclSpec::TST_union ||
1520      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1521    TagD = static_cast<Decl *>(DS.getTypeRep());
1522
1523    if (!TagD) // We probably had an error
1524      return DeclPtrTy();
1525
1526    // Note that the above type specs guarantee that the
1527    // type rep is a Decl, whereas in many of the others
1528    // it's a Type.
1529    Tag = dyn_cast<TagDecl>(TagD);
1530  }
1531
1532  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1533    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1534    // or incomplete types shall not be restrict-qualified."
1535    if (TypeQuals & DeclSpec::TQ_restrict)
1536      Diag(DS.getRestrictSpecLoc(),
1537           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1538           << DS.getSourceRange();
1539  }
1540
1541  if (DS.isFriendSpecified()) {
1542    // If we're dealing with a class template decl, assume that the
1543    // template routines are handling it.
1544    if (TagD && isa<ClassTemplateDecl>(TagD))
1545      return DeclPtrTy();
1546    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1547  }
1548
1549  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1550    // If there are attributes in the DeclSpec, apply them to the record.
1551    if (const AttributeList *AL = DS.getAttributes())
1552      ProcessDeclAttributeList(S, Record, AL);
1553
1554    if (!Record->getDeclName() && Record->isDefinition() &&
1555        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1556      if (getLangOptions().CPlusPlus ||
1557          Record->getDeclContext()->isRecord())
1558        return BuildAnonymousStructOrUnion(S, DS, Record);
1559
1560      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1561        << DS.getSourceRange();
1562    }
1563
1564    // Microsoft allows unnamed struct/union fields. Don't complain
1565    // about them.
1566    // FIXME: Should we support Microsoft's extensions in this area?
1567    if (Record->getDeclName() && getLangOptions().Microsoft)
1568      return DeclPtrTy::make(Tag);
1569  }
1570
1571  if (!DS.isMissingDeclaratorOk() &&
1572      DS.getTypeSpecType() != DeclSpec::TST_error) {
1573    // Warn about typedefs of enums without names, since this is an
1574    // extension in both Microsoft an GNU.
1575    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1576        Tag && isa<EnumDecl>(Tag)) {
1577      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1578        << DS.getSourceRange();
1579      return DeclPtrTy::make(Tag);
1580    }
1581
1582    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1583      << DS.getSourceRange();
1584    return DeclPtrTy();
1585  }
1586
1587  return DeclPtrTy::make(Tag);
1588}
1589
1590/// We are trying to inject an anonymous member into the given scope;
1591/// check if there's an existing declaration that can't be overloaded.
1592///
1593/// \return true if this is a forbidden redeclaration
1594static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1595                                         Scope *S,
1596                                         DeclarationName Name,
1597                                         SourceLocation NameLoc,
1598                                         unsigned diagnostic) {
1599  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1600                 Sema::ForRedeclaration);
1601  if (!SemaRef.LookupName(R, S)) return false;
1602
1603  if (R.getAsSingle<TagDecl>())
1604    return false;
1605
1606  // Pick a representative declaration.
1607  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1608
1609  SemaRef.Diag(NameLoc, diagnostic) << Name;
1610  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1611
1612  return true;
1613}
1614
1615/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1616/// anonymous struct or union AnonRecord into the owning context Owner
1617/// and scope S. This routine will be invoked just after we realize
1618/// that an unnamed union or struct is actually an anonymous union or
1619/// struct, e.g.,
1620///
1621/// @code
1622/// union {
1623///   int i;
1624///   float f;
1625/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1626///    // f into the surrounding scope.x
1627/// @endcode
1628///
1629/// This routine is recursive, injecting the names of nested anonymous
1630/// structs/unions into the owning context and scope as well.
1631bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1632                                               RecordDecl *AnonRecord) {
1633  unsigned diagKind
1634    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1635                            : diag::err_anonymous_struct_member_redecl;
1636
1637  bool Invalid = false;
1638  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1639                               FEnd = AnonRecord->field_end();
1640       F != FEnd; ++F) {
1641    if ((*F)->getDeclName()) {
1642      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1643                                       (*F)->getLocation(), diagKind)) {
1644        // C++ [class.union]p2:
1645        //   The names of the members of an anonymous union shall be
1646        //   distinct from the names of any other entity in the
1647        //   scope in which the anonymous union is declared.
1648        Invalid = true;
1649      } else {
1650        // C++ [class.union]p2:
1651        //   For the purpose of name lookup, after the anonymous union
1652        //   definition, the members of the anonymous union are
1653        //   considered to have been defined in the scope in which the
1654        //   anonymous union is declared.
1655        Owner->makeDeclVisibleInContext(*F);
1656        S->AddDecl(DeclPtrTy::make(*F));
1657        IdResolver.AddDecl(*F);
1658      }
1659    } else if (const RecordType *InnerRecordType
1660                 = (*F)->getType()->getAs<RecordType>()) {
1661      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1662      if (InnerRecord->isAnonymousStructOrUnion())
1663        Invalid = Invalid ||
1664          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1665    }
1666  }
1667
1668  return Invalid;
1669}
1670
1671/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1672/// anonymous structure or union. Anonymous unions are a C++ feature
1673/// (C++ [class.union]) and a GNU C extension; anonymous structures
1674/// are a GNU C and GNU C++ extension.
1675Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1676                                                  RecordDecl *Record) {
1677  DeclContext *Owner = Record->getDeclContext();
1678
1679  // Diagnose whether this anonymous struct/union is an extension.
1680  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1681    Diag(Record->getLocation(), diag::ext_anonymous_union);
1682  else if (!Record->isUnion())
1683    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1684
1685  // C and C++ require different kinds of checks for anonymous
1686  // structs/unions.
1687  bool Invalid = false;
1688  if (getLangOptions().CPlusPlus) {
1689    const char* PrevSpec = 0;
1690    unsigned DiagID;
1691    // C++ [class.union]p3:
1692    //   Anonymous unions declared in a named namespace or in the
1693    //   global namespace shall be declared static.
1694    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1695        (isa<TranslationUnitDecl>(Owner) ||
1696         (isa<NamespaceDecl>(Owner) &&
1697          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1698      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1699      Invalid = true;
1700
1701      // Recover by adding 'static'.
1702      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1703                             PrevSpec, DiagID);
1704    }
1705    // C++ [class.union]p3:
1706    //   A storage class is not allowed in a declaration of an
1707    //   anonymous union in a class scope.
1708    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1709             isa<RecordDecl>(Owner)) {
1710      Diag(DS.getStorageClassSpecLoc(),
1711           diag::err_anonymous_union_with_storage_spec);
1712      Invalid = true;
1713
1714      // Recover by removing the storage specifier.
1715      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1716                             PrevSpec, DiagID);
1717    }
1718
1719    // C++ [class.union]p2:
1720    //   The member-specification of an anonymous union shall only
1721    //   define non-static data members. [Note: nested types and
1722    //   functions cannot be declared within an anonymous union. ]
1723    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1724                                 MemEnd = Record->decls_end();
1725         Mem != MemEnd; ++Mem) {
1726      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1727        // C++ [class.union]p3:
1728        //   An anonymous union shall not have private or protected
1729        //   members (clause 11).
1730        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1731          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1732            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1733          Invalid = true;
1734        }
1735      } else if ((*Mem)->isImplicit()) {
1736        // Any implicit members are fine.
1737      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1738        // This is a type that showed up in an
1739        // elaborated-type-specifier inside the anonymous struct or
1740        // union, but which actually declares a type outside of the
1741        // anonymous struct or union. It's okay.
1742      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1743        if (!MemRecord->isAnonymousStructOrUnion() &&
1744            MemRecord->getDeclName()) {
1745          // This is a nested type declaration.
1746          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1747            << (int)Record->isUnion();
1748          Invalid = true;
1749        }
1750      } else {
1751        // We have something that isn't a non-static data
1752        // member. Complain about it.
1753        unsigned DK = diag::err_anonymous_record_bad_member;
1754        if (isa<TypeDecl>(*Mem))
1755          DK = diag::err_anonymous_record_with_type;
1756        else if (isa<FunctionDecl>(*Mem))
1757          DK = diag::err_anonymous_record_with_function;
1758        else if (isa<VarDecl>(*Mem))
1759          DK = diag::err_anonymous_record_with_static;
1760        Diag((*Mem)->getLocation(), DK)
1761            << (int)Record->isUnion();
1762          Invalid = true;
1763      }
1764    }
1765  }
1766
1767  if (!Record->isUnion() && !Owner->isRecord()) {
1768    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1769      << (int)getLangOptions().CPlusPlus;
1770    Invalid = true;
1771  }
1772
1773  // Mock up a declarator.
1774  Declarator Dc(DS, Declarator::TypeNameContext);
1775  TypeSourceInfo *TInfo = 0;
1776  GetTypeForDeclarator(Dc, S, &TInfo);
1777  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1778
1779  // Create a declaration for this anonymous struct/union.
1780  NamedDecl *Anon = 0;
1781  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1782    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1783                             /*IdentifierInfo=*/0,
1784                             Context.getTypeDeclType(Record),
1785                             TInfo,
1786                             /*BitWidth=*/0, /*Mutable=*/false);
1787    Anon->setAccess(AS_public);
1788    if (getLangOptions().CPlusPlus)
1789      FieldCollector->Add(cast<FieldDecl>(Anon));
1790  } else {
1791    VarDecl::StorageClass SC;
1792    switch (DS.getStorageClassSpec()) {
1793    default: assert(0 && "Unknown storage class!");
1794    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1795    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1796    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1797    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1798    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1799    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1800    case DeclSpec::SCS_mutable:
1801      // mutable can only appear on non-static class members, so it's always
1802      // an error here
1803      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1804      Invalid = true;
1805      SC = VarDecl::None;
1806      break;
1807    }
1808
1809    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1810                           /*IdentifierInfo=*/0,
1811                           Context.getTypeDeclType(Record),
1812                           TInfo,
1813                           SC);
1814  }
1815  Anon->setImplicit();
1816
1817  // Add the anonymous struct/union object to the current
1818  // context. We'll be referencing this object when we refer to one of
1819  // its members.
1820  Owner->addDecl(Anon);
1821
1822  // Inject the members of the anonymous struct/union into the owning
1823  // context and into the identifier resolver chain for name lookup
1824  // purposes.
1825  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1826    Invalid = true;
1827
1828  // Mark this as an anonymous struct/union type. Note that we do not
1829  // do this until after we have already checked and injected the
1830  // members of this anonymous struct/union type, because otherwise
1831  // the members could be injected twice: once by DeclContext when it
1832  // builds its lookup table, and once by
1833  // InjectAnonymousStructOrUnionMembers.
1834  Record->setAnonymousStructOrUnion(true);
1835
1836  if (Invalid)
1837    Anon->setInvalidDecl();
1838
1839  return DeclPtrTy::make(Anon);
1840}
1841
1842
1843/// GetNameForDeclarator - Determine the full declaration name for the
1844/// given Declarator.
1845DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1846  return GetNameFromUnqualifiedId(D.getName());
1847}
1848
1849/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1850DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1851  switch (Name.getKind()) {
1852    case UnqualifiedId::IK_Identifier:
1853      return DeclarationName(Name.Identifier);
1854
1855    case UnqualifiedId::IK_OperatorFunctionId:
1856      return Context.DeclarationNames.getCXXOperatorName(
1857                                              Name.OperatorFunctionId.Operator);
1858
1859    case UnqualifiedId::IK_LiteralOperatorId:
1860      return Context.DeclarationNames.getCXXLiteralOperatorName(
1861                                                               Name.Identifier);
1862
1863    case UnqualifiedId::IK_ConversionFunctionId: {
1864      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1865      if (Ty.isNull())
1866        return DeclarationName();
1867
1868      return Context.DeclarationNames.getCXXConversionFunctionName(
1869                                                  Context.getCanonicalType(Ty));
1870    }
1871
1872    case UnqualifiedId::IK_ConstructorName: {
1873      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1874      if (Ty.isNull())
1875        return DeclarationName();
1876
1877      return Context.DeclarationNames.getCXXConstructorName(
1878                                                  Context.getCanonicalType(Ty));
1879    }
1880
1881    case UnqualifiedId::IK_DestructorName: {
1882      QualType Ty = GetTypeFromParser(Name.DestructorName);
1883      if (Ty.isNull())
1884        return DeclarationName();
1885
1886      return Context.DeclarationNames.getCXXDestructorName(
1887                                                           Context.getCanonicalType(Ty));
1888    }
1889
1890    case UnqualifiedId::IK_TemplateId: {
1891      TemplateName TName
1892        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1893      return Context.getNameForTemplate(TName);
1894    }
1895  }
1896
1897  assert(false && "Unknown name kind");
1898  return DeclarationName();
1899}
1900
1901/// isNearlyMatchingFunction - Determine whether the C++ functions
1902/// Declaration and Definition are "nearly" matching. This heuristic
1903/// is used to improve diagnostics in the case where an out-of-line
1904/// function definition doesn't match any declaration within
1905/// the class or namespace.
1906static bool isNearlyMatchingFunction(ASTContext &Context,
1907                                     FunctionDecl *Declaration,
1908                                     FunctionDecl *Definition) {
1909  if (Declaration->param_size() != Definition->param_size())
1910    return false;
1911  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1912    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1913    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1914
1915    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1916                                        DefParamTy.getNonReferenceType()))
1917      return false;
1918  }
1919
1920  return true;
1921}
1922
1923Sema::DeclPtrTy
1924Sema::HandleDeclarator(Scope *S, Declarator &D,
1925                       MultiTemplateParamsArg TemplateParamLists,
1926                       bool IsFunctionDefinition) {
1927  DeclarationName Name = GetNameForDeclarator(D);
1928
1929  // All of these full declarators require an identifier.  If it doesn't have
1930  // one, the ParsedFreeStandingDeclSpec action should be used.
1931  if (!Name) {
1932    if (!D.isInvalidType())  // Reject this if we think it is valid.
1933      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1934           diag::err_declarator_need_ident)
1935        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1936    return DeclPtrTy();
1937  }
1938
1939  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1940  // we find one that is.
1941  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1942         (S->getFlags() & Scope::TemplateParamScope) != 0)
1943    S = S->getParent();
1944
1945  // If this is an out-of-line definition of a member of a class template
1946  // or class template partial specialization, we may need to rebuild the
1947  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1948  // for more information.
1949  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1950  // handle expressions properly.
1951  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1952  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1953      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1954      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1955       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1956       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1957       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1958    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1959      // FIXME: Preserve type source info.
1960      QualType T = GetTypeFromParser(DS.getTypeRep());
1961
1962      DeclContext *SavedContext = CurContext;
1963      CurContext = DC;
1964      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1965      CurContext = SavedContext;
1966
1967      if (T.isNull())
1968        return DeclPtrTy();
1969      DS.UpdateTypeRep(T.getAsOpaquePtr());
1970    }
1971  }
1972
1973  DeclContext *DC;
1974  NamedDecl *New;
1975
1976  TypeSourceInfo *TInfo = 0;
1977  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1978
1979  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1980                        ForRedeclaration);
1981
1982  // See if this is a redefinition of a variable in the same scope.
1983  if (D.getCXXScopeSpec().isInvalid()) {
1984    DC = CurContext;
1985    D.setInvalidType();
1986  } else if (!D.getCXXScopeSpec().isSet()) {
1987    bool IsLinkageLookup = false;
1988
1989    // If the declaration we're planning to build will be a function
1990    // or object with linkage, then look for another declaration with
1991    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1992    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1993      /* Do nothing*/;
1994    else if (R->isFunctionType()) {
1995      if (CurContext->isFunctionOrMethod() ||
1996          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1997        IsLinkageLookup = true;
1998    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1999      IsLinkageLookup = true;
2000    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2001             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2002      IsLinkageLookup = true;
2003
2004    if (IsLinkageLookup)
2005      Previous.clear(LookupRedeclarationWithLinkage);
2006
2007    DC = CurContext;
2008    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2009  } else { // Something like "int foo::x;"
2010    DC = computeDeclContext(D.getCXXScopeSpec(), true);
2011
2012    if (!DC) {
2013      // If we could not compute the declaration context, it's because the
2014      // declaration context is dependent but does not refer to a class,
2015      // class template, or class template partial specialization. Complain
2016      // and return early, to avoid the coming semantic disaster.
2017      Diag(D.getIdentifierLoc(),
2018           diag::err_template_qualified_declarator_no_match)
2019        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2020        << D.getCXXScopeSpec().getRange();
2021      return DeclPtrTy();
2022    }
2023
2024    if (!DC->isDependentContext() &&
2025        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2026      return DeclPtrTy();
2027
2028    LookupQualifiedName(Previous, DC);
2029
2030    // Don't consider using declarations as previous declarations for
2031    // out-of-line members.
2032    RemoveUsingDecls(Previous);
2033
2034    // C++ 7.3.1.2p2:
2035    // Members (including explicit specializations of templates) of a named
2036    // namespace can also be defined outside that namespace by explicit
2037    // qualification of the name being defined, provided that the entity being
2038    // defined was already declared in the namespace and the definition appears
2039    // after the point of declaration in a namespace that encloses the
2040    // declarations namespace.
2041    //
2042    // Note that we only check the context at this point. We don't yet
2043    // have enough information to make sure that PrevDecl is actually
2044    // the declaration we want to match. For example, given:
2045    //
2046    //   class X {
2047    //     void f();
2048    //     void f(float);
2049    //   };
2050    //
2051    //   void X::f(int) { } // ill-formed
2052    //
2053    // In this case, PrevDecl will point to the overload set
2054    // containing the two f's declared in X, but neither of them
2055    // matches.
2056
2057    // First check whether we named the global scope.
2058    if (isa<TranslationUnitDecl>(DC)) {
2059      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2060        << Name << D.getCXXScopeSpec().getRange();
2061    } else {
2062      DeclContext *Cur = CurContext;
2063      while (isa<LinkageSpecDecl>(Cur))
2064        Cur = Cur->getParent();
2065      if (!Cur->Encloses(DC)) {
2066        // The qualifying scope doesn't enclose the original declaration.
2067        // Emit diagnostic based on current scope.
2068        SourceLocation L = D.getIdentifierLoc();
2069        SourceRange R = D.getCXXScopeSpec().getRange();
2070        if (isa<FunctionDecl>(Cur))
2071          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2072        else
2073          Diag(L, diag::err_invalid_declarator_scope)
2074            << Name << cast<NamedDecl>(DC) << R;
2075        D.setInvalidType();
2076      }
2077    }
2078  }
2079
2080  if (Previous.isSingleResult() &&
2081      Previous.getFoundDecl()->isTemplateParameter()) {
2082    // Maybe we will complain about the shadowed template parameter.
2083    if (!D.isInvalidType())
2084      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2085                                          Previous.getFoundDecl()))
2086        D.setInvalidType();
2087
2088    // Just pretend that we didn't see the previous declaration.
2089    Previous.clear();
2090  }
2091
2092  // In C++, the previous declaration we find might be a tag type
2093  // (class or enum). In this case, the new declaration will hide the
2094  // tag type. Note that this does does not apply if we're declaring a
2095  // typedef (C++ [dcl.typedef]p4).
2096  if (Previous.isSingleTagDecl() &&
2097      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2098    Previous.clear();
2099
2100  bool Redeclaration = false;
2101  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2102    if (TemplateParamLists.size()) {
2103      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2104      return DeclPtrTy();
2105    }
2106
2107    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2108  } else if (R->isFunctionType()) {
2109    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2110                                  move(TemplateParamLists),
2111                                  IsFunctionDefinition, Redeclaration);
2112  } else {
2113    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2114                                  move(TemplateParamLists),
2115                                  Redeclaration);
2116  }
2117
2118  if (New == 0)
2119    return DeclPtrTy();
2120
2121  // If this has an identifier and is not an invalid redeclaration or
2122  // function template specialization, add it to the scope stack.
2123  if (Name && !(Redeclaration && New->isInvalidDecl()))
2124    PushOnScopeChains(New, S);
2125
2126  return DeclPtrTy::make(New);
2127}
2128
2129/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2130/// types into constant array types in certain situations which would otherwise
2131/// be errors (for GCC compatibility).
2132static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2133                                                    ASTContext &Context,
2134                                                    bool &SizeIsNegative) {
2135  // This method tries to turn a variable array into a constant
2136  // array even when the size isn't an ICE.  This is necessary
2137  // for compatibility with code that depends on gcc's buggy
2138  // constant expression folding, like struct {char x[(int)(char*)2];}
2139  SizeIsNegative = false;
2140
2141  QualifierCollector Qs;
2142  const Type *Ty = Qs.strip(T);
2143
2144  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2145    QualType Pointee = PTy->getPointeeType();
2146    QualType FixedType =
2147        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2148    if (FixedType.isNull()) return FixedType;
2149    FixedType = Context.getPointerType(FixedType);
2150    return Qs.apply(FixedType);
2151  }
2152
2153  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2154  if (!VLATy)
2155    return QualType();
2156  // FIXME: We should probably handle this case
2157  if (VLATy->getElementType()->isVariablyModifiedType())
2158    return QualType();
2159
2160  Expr::EvalResult EvalResult;
2161  if (!VLATy->getSizeExpr() ||
2162      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2163      !EvalResult.Val.isInt())
2164    return QualType();
2165
2166  llvm::APSInt &Res = EvalResult.Val.getInt();
2167  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2168    // TODO: preserve the size expression in declarator info
2169    return Context.getConstantArrayType(VLATy->getElementType(),
2170                                        Res, ArrayType::Normal, 0);
2171  }
2172
2173  SizeIsNegative = true;
2174  return QualType();
2175}
2176
2177/// \brief Register the given locally-scoped external C declaration so
2178/// that it can be found later for redeclarations
2179void
2180Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2181                                       const LookupResult &Previous,
2182                                       Scope *S) {
2183  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2184         "Decl is not a locally-scoped decl!");
2185  // Note that we have a locally-scoped external with this name.
2186  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2187
2188  if (!Previous.isSingleResult())
2189    return;
2190
2191  NamedDecl *PrevDecl = Previous.getFoundDecl();
2192
2193  // If there was a previous declaration of this variable, it may be
2194  // in our identifier chain. Update the identifier chain with the new
2195  // declaration.
2196  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2197    // The previous declaration was found on the identifer resolver
2198    // chain, so remove it from its scope.
2199    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2200      S = S->getParent();
2201
2202    if (S)
2203      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2204  }
2205}
2206
2207/// \brief Diagnose function specifiers on a declaration of an identifier that
2208/// does not identify a function.
2209void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2210  // FIXME: We should probably indicate the identifier in question to avoid
2211  // confusion for constructs like "inline int a(), b;"
2212  if (D.getDeclSpec().isInlineSpecified())
2213    Diag(D.getDeclSpec().getInlineSpecLoc(),
2214         diag::err_inline_non_function);
2215
2216  if (D.getDeclSpec().isVirtualSpecified())
2217    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2218         diag::err_virtual_non_function);
2219
2220  if (D.getDeclSpec().isExplicitSpecified())
2221    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2222         diag::err_explicit_non_function);
2223}
2224
2225NamedDecl*
2226Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2227                             QualType R,  TypeSourceInfo *TInfo,
2228                             LookupResult &Previous, bool &Redeclaration) {
2229  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2230  if (D.getCXXScopeSpec().isSet()) {
2231    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2232      << D.getCXXScopeSpec().getRange();
2233    D.setInvalidType();
2234    // Pretend we didn't see the scope specifier.
2235    DC = 0;
2236  }
2237
2238  if (getLangOptions().CPlusPlus) {
2239    // Check that there are no default arguments (C++ only).
2240    CheckExtraCXXDefaultArguments(D);
2241  }
2242
2243  DiagnoseFunctionSpecifiers(D);
2244
2245  if (D.getDeclSpec().isThreadSpecified())
2246    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2247
2248  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2249  if (!NewTD) return 0;
2250
2251  // Handle attributes prior to checking for duplicates in MergeVarDecl
2252  ProcessDeclAttributes(S, NewTD, D);
2253
2254  // Merge the decl with the existing one if appropriate. If the decl is
2255  // in an outer scope, it isn't the same thing.
2256  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2257  if (!Previous.empty()) {
2258    Redeclaration = true;
2259    MergeTypeDefDecl(NewTD, Previous);
2260  }
2261
2262  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2263  // then it shall have block scope.
2264  QualType T = NewTD->getUnderlyingType();
2265  if (T->isVariablyModifiedType()) {
2266    CurFunctionNeedsScopeChecking = true;
2267
2268    if (S->getFnParent() == 0) {
2269      bool SizeIsNegative;
2270      QualType FixedTy =
2271          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2272      if (!FixedTy.isNull()) {
2273        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2274        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2275      } else {
2276        if (SizeIsNegative)
2277          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2278        else if (T->isVariableArrayType())
2279          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2280        else
2281          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2282        NewTD->setInvalidDecl();
2283      }
2284    }
2285  }
2286
2287  // If this is the C FILE type, notify the AST context.
2288  if (IdentifierInfo *II = NewTD->getIdentifier())
2289    if (!NewTD->isInvalidDecl() &&
2290        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2291      if (II->isStr("FILE"))
2292        Context.setFILEDecl(NewTD);
2293      else if (II->isStr("jmp_buf"))
2294        Context.setjmp_bufDecl(NewTD);
2295      else if (II->isStr("sigjmp_buf"))
2296        Context.setsigjmp_bufDecl(NewTD);
2297    }
2298
2299  return NewTD;
2300}
2301
2302/// \brief Determines whether the given declaration is an out-of-scope
2303/// previous declaration.
2304///
2305/// This routine should be invoked when name lookup has found a
2306/// previous declaration (PrevDecl) that is not in the scope where a
2307/// new declaration by the same name is being introduced. If the new
2308/// declaration occurs in a local scope, previous declarations with
2309/// linkage may still be considered previous declarations (C99
2310/// 6.2.2p4-5, C++ [basic.link]p6).
2311///
2312/// \param PrevDecl the previous declaration found by name
2313/// lookup
2314///
2315/// \param DC the context in which the new declaration is being
2316/// declared.
2317///
2318/// \returns true if PrevDecl is an out-of-scope previous declaration
2319/// for a new delcaration with the same name.
2320static bool
2321isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2322                                ASTContext &Context) {
2323  if (!PrevDecl)
2324    return 0;
2325
2326  if (!PrevDecl->hasLinkage())
2327    return false;
2328
2329  if (Context.getLangOptions().CPlusPlus) {
2330    // C++ [basic.link]p6:
2331    //   If there is a visible declaration of an entity with linkage
2332    //   having the same name and type, ignoring entities declared
2333    //   outside the innermost enclosing namespace scope, the block
2334    //   scope declaration declares that same entity and receives the
2335    //   linkage of the previous declaration.
2336    DeclContext *OuterContext = DC->getLookupContext();
2337    if (!OuterContext->isFunctionOrMethod())
2338      // This rule only applies to block-scope declarations.
2339      return false;
2340    else {
2341      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2342      if (PrevOuterContext->isRecord())
2343        // We found a member function: ignore it.
2344        return false;
2345      else {
2346        // Find the innermost enclosing namespace for the new and
2347        // previous declarations.
2348        while (!OuterContext->isFileContext())
2349          OuterContext = OuterContext->getParent();
2350        while (!PrevOuterContext->isFileContext())
2351          PrevOuterContext = PrevOuterContext->getParent();
2352
2353        // The previous declaration is in a different namespace, so it
2354        // isn't the same function.
2355        if (OuterContext->getPrimaryContext() !=
2356            PrevOuterContext->getPrimaryContext())
2357          return false;
2358      }
2359    }
2360  }
2361
2362  return true;
2363}
2364
2365NamedDecl*
2366Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2367                              QualType R, TypeSourceInfo *TInfo,
2368                              LookupResult &Previous,
2369                              MultiTemplateParamsArg TemplateParamLists,
2370                              bool &Redeclaration) {
2371  DeclarationName Name = GetNameForDeclarator(D);
2372
2373  // Check that there are no default arguments (C++ only).
2374  if (getLangOptions().CPlusPlus)
2375    CheckExtraCXXDefaultArguments(D);
2376
2377  VarDecl *NewVD;
2378  VarDecl::StorageClass SC;
2379  switch (D.getDeclSpec().getStorageClassSpec()) {
2380  default: assert(0 && "Unknown storage class!");
2381  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2382  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2383  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2384  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2385  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2386  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2387  case DeclSpec::SCS_mutable:
2388    // mutable can only appear on non-static class members, so it's always
2389    // an error here
2390    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2391    D.setInvalidType();
2392    SC = VarDecl::None;
2393    break;
2394  }
2395
2396  IdentifierInfo *II = Name.getAsIdentifierInfo();
2397  if (!II) {
2398    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2399      << Name.getAsString();
2400    return 0;
2401  }
2402
2403  DiagnoseFunctionSpecifiers(D);
2404
2405  if (!DC->isRecord() && S->getFnParent() == 0) {
2406    // C99 6.9p2: The storage-class specifiers auto and register shall not
2407    // appear in the declaration specifiers in an external declaration.
2408    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2409
2410      // If this is a register variable with an asm label specified, then this
2411      // is a GNU extension.
2412      if (SC == VarDecl::Register && D.getAsmLabel())
2413        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2414      else
2415        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2416      D.setInvalidType();
2417    }
2418  }
2419  if (DC->isRecord() && !CurContext->isRecord()) {
2420    // This is an out-of-line definition of a static data member.
2421    if (SC == VarDecl::Static) {
2422      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2423           diag::err_static_out_of_line)
2424        << CodeModificationHint::CreateRemoval(
2425                                      D.getDeclSpec().getStorageClassSpecLoc());
2426    } else if (SC == VarDecl::None)
2427      SC = VarDecl::Static;
2428  }
2429  if (SC == VarDecl::Static) {
2430    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2431      if (RD->isLocalClass())
2432        Diag(D.getIdentifierLoc(),
2433             diag::err_static_data_member_not_allowed_in_local_class)
2434          << Name << RD->getDeclName();
2435    }
2436  }
2437
2438  // Match up the template parameter lists with the scope specifier, then
2439  // determine whether we have a template or a template specialization.
2440  bool isExplicitSpecialization = false;
2441  if (TemplateParameterList *TemplateParams
2442        = MatchTemplateParametersToScopeSpecifier(
2443                                  D.getDeclSpec().getSourceRange().getBegin(),
2444                                                  D.getCXXScopeSpec(),
2445                        (TemplateParameterList**)TemplateParamLists.get(),
2446                                                   TemplateParamLists.size(),
2447                                                  isExplicitSpecialization)) {
2448    if (TemplateParams->size() > 0) {
2449      // There is no such thing as a variable template.
2450      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2451        << II
2452        << SourceRange(TemplateParams->getTemplateLoc(),
2453                       TemplateParams->getRAngleLoc());
2454      return 0;
2455    } else {
2456      // There is an extraneous 'template<>' for this variable. Complain
2457      // about it, but allow the declaration of the variable.
2458      Diag(TemplateParams->getTemplateLoc(),
2459           diag::err_template_variable_noparams)
2460        << II
2461        << SourceRange(TemplateParams->getTemplateLoc(),
2462                       TemplateParams->getRAngleLoc());
2463
2464      isExplicitSpecialization = true;
2465    }
2466  }
2467
2468  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2469                          II, R, TInfo, SC);
2470
2471  if (D.isInvalidType())
2472    NewVD->setInvalidDecl();
2473
2474  if (D.getDeclSpec().isThreadSpecified()) {
2475    if (NewVD->hasLocalStorage())
2476      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2477    else if (!Context.Target.isTLSSupported())
2478      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2479    else
2480      NewVD->setThreadSpecified(true);
2481  }
2482
2483  // Set the lexical context. If the declarator has a C++ scope specifier, the
2484  // lexical context will be different from the semantic context.
2485  NewVD->setLexicalDeclContext(CurContext);
2486
2487  // Handle attributes prior to checking for duplicates in MergeVarDecl
2488  ProcessDeclAttributes(S, NewVD, D);
2489
2490  // Handle GNU asm-label extension (encoded as an attribute).
2491  if (Expr *E = (Expr*) D.getAsmLabel()) {
2492    // The parser guarantees this is a string.
2493    StringLiteral *SE = cast<StringLiteral>(E);
2494    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2495  }
2496
2497  // Don't consider existing declarations that are in a different
2498  // scope and are out-of-semantic-context declarations (if the new
2499  // declaration has linkage).
2500  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2501
2502  // Merge the decl with the existing one if appropriate.
2503  if (!Previous.empty()) {
2504    if (Previous.isSingleResult() &&
2505        isa<FieldDecl>(Previous.getFoundDecl()) &&
2506        D.getCXXScopeSpec().isSet()) {
2507      // The user tried to define a non-static data member
2508      // out-of-line (C++ [dcl.meaning]p1).
2509      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2510        << D.getCXXScopeSpec().getRange();
2511      Previous.clear();
2512      NewVD->setInvalidDecl();
2513    }
2514  } else if (D.getCXXScopeSpec().isSet()) {
2515    // No previous declaration in the qualifying scope.
2516    Diag(D.getIdentifierLoc(), diag::err_no_member)
2517      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2518      << D.getCXXScopeSpec().getRange();
2519    NewVD->setInvalidDecl();
2520  }
2521
2522  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2523
2524  // This is an explicit specialization of a static data member. Check it.
2525  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2526      CheckMemberSpecialization(NewVD, Previous))
2527    NewVD->setInvalidDecl();
2528
2529  // attributes declared post-definition are currently ignored
2530  if (Previous.isSingleResult()) {
2531    const VarDecl *Def = 0;
2532    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2533    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2534      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2535      Diag(Def->getLocation(), diag::note_previous_definition);
2536    }
2537  }
2538
2539  // If this is a locally-scoped extern C variable, update the map of
2540  // such variables.
2541  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2542      !NewVD->isInvalidDecl())
2543    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2544
2545  return NewVD;
2546}
2547
2548/// \brief Perform semantic checking on a newly-created variable
2549/// declaration.
2550///
2551/// This routine performs all of the type-checking required for a
2552/// variable declaration once it has been built. It is used both to
2553/// check variables after they have been parsed and their declarators
2554/// have been translated into a declaration, and to check variables
2555/// that have been instantiated from a template.
2556///
2557/// Sets NewVD->isInvalidDecl() if an error was encountered.
2558void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2559                                    LookupResult &Previous,
2560                                    bool &Redeclaration) {
2561  // If the decl is already known invalid, don't check it.
2562  if (NewVD->isInvalidDecl())
2563    return;
2564
2565  QualType T = NewVD->getType();
2566
2567  if (T->isObjCInterfaceType()) {
2568    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2569    return NewVD->setInvalidDecl();
2570  }
2571
2572  // Emit an error if an address space was applied to decl with local storage.
2573  // This includes arrays of objects with address space qualifiers, but not
2574  // automatic variables that point to other address spaces.
2575  // ISO/IEC TR 18037 S5.1.2
2576  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2577    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2578    return NewVD->setInvalidDecl();
2579  }
2580
2581  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2582      && !NewVD->hasAttr<BlocksAttr>())
2583    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2584
2585  bool isVM = T->isVariablyModifiedType();
2586  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2587      NewVD->hasAttr<BlocksAttr>())
2588    CurFunctionNeedsScopeChecking = true;
2589
2590  if ((isVM && NewVD->hasLinkage()) ||
2591      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2592    bool SizeIsNegative;
2593    QualType FixedTy =
2594        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2595
2596    if (FixedTy.isNull() && T->isVariableArrayType()) {
2597      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2598      // FIXME: This won't give the correct result for
2599      // int a[10][n];
2600      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2601
2602      if (NewVD->isFileVarDecl())
2603        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2604        << SizeRange;
2605      else if (NewVD->getStorageClass() == VarDecl::Static)
2606        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2607        << SizeRange;
2608      else
2609        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2610        << SizeRange;
2611      return NewVD->setInvalidDecl();
2612    }
2613
2614    if (FixedTy.isNull()) {
2615      if (NewVD->isFileVarDecl())
2616        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2617      else
2618        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2619      return NewVD->setInvalidDecl();
2620    }
2621
2622    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2623    NewVD->setType(FixedTy);
2624  }
2625
2626  if (Previous.empty() && NewVD->isExternC()) {
2627    // Since we did not find anything by this name and we're declaring
2628    // an extern "C" variable, look for a non-visible extern "C"
2629    // declaration with the same name.
2630    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2631      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2632    if (Pos != LocallyScopedExternalDecls.end())
2633      Previous.addDecl(Pos->second);
2634  }
2635
2636  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2637    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2638      << T;
2639    return NewVD->setInvalidDecl();
2640  }
2641
2642  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2643    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2644    return NewVD->setInvalidDecl();
2645  }
2646
2647  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2648    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2649    return NewVD->setInvalidDecl();
2650  }
2651
2652  if (!Previous.empty()) {
2653    Redeclaration = true;
2654    MergeVarDecl(NewVD, Previous);
2655  }
2656}
2657
2658/// \brief Data used with FindOverriddenMethod
2659struct FindOverriddenMethodData {
2660  Sema *S;
2661  CXXMethodDecl *Method;
2662};
2663
2664/// \brief Member lookup function that determines whether a given C++
2665/// method overrides a method in a base class, to be used with
2666/// CXXRecordDecl::lookupInBases().
2667static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2668                                 CXXBasePath &Path,
2669                                 void *UserData) {
2670  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2671
2672  FindOverriddenMethodData *Data
2673    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2674
2675  DeclarationName Name = Data->Method->getDeclName();
2676
2677  // FIXME: Do we care about other names here too?
2678  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2679    // We really want to find the base class constructor here.
2680    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2681    CanQualType CT = Data->S->Context.getCanonicalType(T);
2682
2683    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2684  }
2685
2686  for (Path.Decls = BaseRecord->lookup(Name);
2687       Path.Decls.first != Path.Decls.second;
2688       ++Path.Decls.first) {
2689    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2690      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2691        return true;
2692    }
2693  }
2694
2695  return false;
2696}
2697
2698/// AddOverriddenMethods - See if a method overrides any in the base classes,
2699/// and if so, check that it's a valid override and remember it.
2700void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2701  // Look for virtual methods in base classes that this method might override.
2702  CXXBasePaths Paths;
2703  FindOverriddenMethodData Data;
2704  Data.Method = MD;
2705  Data.S = this;
2706  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2707    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2708         E = Paths.found_decls_end(); I != E; ++I) {
2709      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2710        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2711            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2712            !CheckOverridingFunctionAttributes(MD, OldMD))
2713          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2714      }
2715    }
2716  }
2717}
2718
2719NamedDecl*
2720Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2721                              QualType R, TypeSourceInfo *TInfo,
2722                              LookupResult &Previous,
2723                              MultiTemplateParamsArg TemplateParamLists,
2724                              bool IsFunctionDefinition, bool &Redeclaration) {
2725  assert(R.getTypePtr()->isFunctionType());
2726
2727  DeclarationName Name = GetNameForDeclarator(D);
2728  FunctionDecl::StorageClass SC = FunctionDecl::None;
2729  switch (D.getDeclSpec().getStorageClassSpec()) {
2730  default: assert(0 && "Unknown storage class!");
2731  case DeclSpec::SCS_auto:
2732  case DeclSpec::SCS_register:
2733  case DeclSpec::SCS_mutable:
2734    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2735         diag::err_typecheck_sclass_func);
2736    D.setInvalidType();
2737    break;
2738  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2739  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2740  case DeclSpec::SCS_static: {
2741    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2742      // C99 6.7.1p5:
2743      //   The declaration of an identifier for a function that has
2744      //   block scope shall have no explicit storage-class specifier
2745      //   other than extern
2746      // See also (C++ [dcl.stc]p4).
2747      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2748           diag::err_static_block_func);
2749      SC = FunctionDecl::None;
2750    } else
2751      SC = FunctionDecl::Static;
2752    break;
2753  }
2754  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2755  }
2756
2757  if (D.getDeclSpec().isThreadSpecified())
2758    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2759
2760  bool isFriend = D.getDeclSpec().isFriendSpecified();
2761  bool isInline = D.getDeclSpec().isInlineSpecified();
2762  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2763  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2764
2765  // Check that the return type is not an abstract class type.
2766  // For record types, this is done by the AbstractClassUsageDiagnoser once
2767  // the class has been completely parsed.
2768  if (!DC->isRecord() &&
2769      RequireNonAbstractType(D.getIdentifierLoc(),
2770                             R->getAs<FunctionType>()->getResultType(),
2771                             diag::err_abstract_type_in_decl,
2772                             AbstractReturnType))
2773    D.setInvalidType();
2774
2775  // Do not allow returning a objc interface by-value.
2776  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2777    Diag(D.getIdentifierLoc(),
2778         diag::err_object_cannot_be_passed_returned_by_value) << 0
2779      << R->getAs<FunctionType>()->getResultType();
2780    D.setInvalidType();
2781  }
2782
2783  bool isVirtualOkay = false;
2784  FunctionDecl *NewFD;
2785
2786  if (isFriend) {
2787    // C++ [class.friend]p5
2788    //   A function can be defined in a friend declaration of a
2789    //   class . . . . Such a function is implicitly inline.
2790    isInline |= IsFunctionDefinition;
2791  }
2792
2793  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2794    // This is a C++ constructor declaration.
2795    assert(DC->isRecord() &&
2796           "Constructors can only be declared in a member context");
2797
2798    R = CheckConstructorDeclarator(D, R, SC);
2799
2800    // Create the new declaration
2801    NewFD = CXXConstructorDecl::Create(Context,
2802                                       cast<CXXRecordDecl>(DC),
2803                                       D.getIdentifierLoc(), Name, R, TInfo,
2804                                       isExplicit, isInline,
2805                                       /*isImplicitlyDeclared=*/false);
2806  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2807    // This is a C++ destructor declaration.
2808    if (DC->isRecord()) {
2809      R = CheckDestructorDeclarator(D, SC);
2810
2811      NewFD = CXXDestructorDecl::Create(Context,
2812                                        cast<CXXRecordDecl>(DC),
2813                                        D.getIdentifierLoc(), Name, R,
2814                                        isInline,
2815                                        /*isImplicitlyDeclared=*/false);
2816
2817      isVirtualOkay = true;
2818    } else {
2819      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2820
2821      // Create a FunctionDecl to satisfy the function definition parsing
2822      // code path.
2823      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2824                                   Name, R, TInfo, SC, isInline,
2825                                   /*hasPrototype=*/true);
2826      D.setInvalidType();
2827    }
2828  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2829    if (!DC->isRecord()) {
2830      Diag(D.getIdentifierLoc(),
2831           diag::err_conv_function_not_member);
2832      return 0;
2833    }
2834
2835    CheckConversionDeclarator(D, R, SC);
2836    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2837                                      D.getIdentifierLoc(), Name, R, TInfo,
2838                                      isInline, isExplicit);
2839
2840    isVirtualOkay = true;
2841  } else if (DC->isRecord()) {
2842    // If the of the function is the same as the name of the record, then this
2843    // must be an invalid constructor that has a return type.
2844    // (The parser checks for a return type and makes the declarator a
2845    // constructor if it has no return type).
2846    // must have an invalid constructor that has a return type
2847    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2848      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2849        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2850        << SourceRange(D.getIdentifierLoc());
2851      return 0;
2852    }
2853
2854    bool isStatic = SC == FunctionDecl::Static;
2855
2856    // [class.free]p1:
2857    // Any allocation function for a class T is a static member
2858    // (even if not explicitly declared static).
2859    if (Name.getCXXOverloadedOperator() == OO_New ||
2860        Name.getCXXOverloadedOperator() == OO_Array_New)
2861      isStatic = true;
2862
2863    // [class.free]p6 Any deallocation function for a class X is a static member
2864    // (even if not explicitly declared static).
2865    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2866        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2867      isStatic = true;
2868
2869    // This is a C++ method declaration.
2870    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2871                                  D.getIdentifierLoc(), Name, R, TInfo,
2872                                  isStatic, isInline);
2873
2874    isVirtualOkay = !isStatic;
2875  } else {
2876    // Determine whether the function was written with a
2877    // prototype. This true when:
2878    //   - we're in C++ (where every function has a prototype),
2879    //   - there is a prototype in the declarator, or
2880    //   - the type R of the function is some kind of typedef or other reference
2881    //     to a type name (which eventually refers to a function type).
2882    bool HasPrototype =
2883       getLangOptions().CPlusPlus ||
2884       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2885       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2886
2887    NewFD = FunctionDecl::Create(Context, DC,
2888                                 D.getIdentifierLoc(),
2889                                 Name, R, TInfo, SC, isInline, HasPrototype);
2890  }
2891
2892  if (D.isInvalidType())
2893    NewFD->setInvalidDecl();
2894
2895  // Set the lexical context. If the declarator has a C++
2896  // scope specifier, or is the object of a friend declaration, the
2897  // lexical context will be different from the semantic context.
2898  NewFD->setLexicalDeclContext(CurContext);
2899
2900  // Match up the template parameter lists with the scope specifier, then
2901  // determine whether we have a template or a template specialization.
2902  FunctionTemplateDecl *FunctionTemplate = 0;
2903  bool isExplicitSpecialization = false;
2904  bool isFunctionTemplateSpecialization = false;
2905  if (TemplateParameterList *TemplateParams
2906        = MatchTemplateParametersToScopeSpecifier(
2907                                  D.getDeclSpec().getSourceRange().getBegin(),
2908                                  D.getCXXScopeSpec(),
2909                           (TemplateParameterList**)TemplateParamLists.get(),
2910                                                  TemplateParamLists.size(),
2911                                                  isExplicitSpecialization)) {
2912    if (TemplateParams->size() > 0) {
2913      // This is a function template
2914
2915      // Check that we can declare a template here.
2916      if (CheckTemplateDeclScope(S, TemplateParams))
2917        return 0;
2918
2919      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2920                                                      NewFD->getLocation(),
2921                                                      Name, TemplateParams,
2922                                                      NewFD);
2923      FunctionTemplate->setLexicalDeclContext(CurContext);
2924      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2925    } else {
2926      // This is a function template specialization.
2927      isFunctionTemplateSpecialization = true;
2928    }
2929
2930    // FIXME: Free this memory properly.
2931    TemplateParamLists.release();
2932  }
2933
2934  // C++ [dcl.fct.spec]p5:
2935  //   The virtual specifier shall only be used in declarations of
2936  //   nonstatic class member functions that appear within a
2937  //   member-specification of a class declaration; see 10.3.
2938  //
2939  if (isVirtual && !NewFD->isInvalidDecl()) {
2940    if (!isVirtualOkay) {
2941       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2942           diag::err_virtual_non_function);
2943    } else if (!CurContext->isRecord()) {
2944      // 'virtual' was specified outside of the class.
2945      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2946        << CodeModificationHint::CreateRemoval(
2947                                           D.getDeclSpec().getVirtualSpecLoc());
2948    } else {
2949      // Okay: Add virtual to the method.
2950      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2951      CurClass->setMethodAsVirtual(NewFD);
2952    }
2953  }
2954
2955  // Filter out previous declarations that don't match the scope.
2956  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2957
2958  if (isFriend) {
2959    // DC is the namespace in which the function is being declared.
2960    assert((DC->isFileContext() || !Previous.empty()) &&
2961           "previously-undeclared friend function being created "
2962           "in a non-namespace context");
2963
2964    if (FunctionTemplate) {
2965      FunctionTemplate->setObjectOfFriendDecl(
2966                                   /* PreviouslyDeclared= */ !Previous.empty());
2967      FunctionTemplate->setAccess(AS_public);
2968    }
2969    else
2970      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2971
2972    NewFD->setAccess(AS_public);
2973  }
2974
2975  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2976      !CurContext->isRecord()) {
2977    // C++ [class.static]p1:
2978    //   A data or function member of a class may be declared static
2979    //   in a class definition, in which case it is a static member of
2980    //   the class.
2981
2982    // Complain about the 'static' specifier if it's on an out-of-line
2983    // member function definition.
2984    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2985         diag::err_static_out_of_line)
2986      << CodeModificationHint::CreateRemoval(
2987                                      D.getDeclSpec().getStorageClassSpecLoc());
2988  }
2989
2990  // Handle GNU asm-label extension (encoded as an attribute).
2991  if (Expr *E = (Expr*) D.getAsmLabel()) {
2992    // The parser guarantees this is a string.
2993    StringLiteral *SE = cast<StringLiteral>(E);
2994    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2995  }
2996
2997  // Copy the parameter declarations from the declarator D to the function
2998  // declaration NewFD, if they are available.  First scavenge them into Params.
2999  llvm::SmallVector<ParmVarDecl*, 16> Params;
3000  if (D.getNumTypeObjects() > 0) {
3001    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3002
3003    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3004    // function that takes no arguments, not a function that takes a
3005    // single void argument.
3006    // We let through "const void" here because Sema::GetTypeForDeclarator
3007    // already checks for that case.
3008    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3009        FTI.ArgInfo[0].Param &&
3010        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3011      // Empty arg list, don't push any params.
3012      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3013
3014      // In C++, the empty parameter-type-list must be spelled "void"; a
3015      // typedef of void is not permitted.
3016      if (getLangOptions().CPlusPlus &&
3017          Param->getType().getUnqualifiedType() != Context.VoidTy)
3018        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3019      // FIXME: Leaks decl?
3020    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3021      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3022        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3023        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3024        Param->setDeclContext(NewFD);
3025        Params.push_back(Param);
3026      }
3027    }
3028
3029  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3030    // When we're declaring a function with a typedef, typeof, etc as in the
3031    // following example, we'll need to synthesize (unnamed)
3032    // parameters for use in the declaration.
3033    //
3034    // @code
3035    // typedef void fn(int);
3036    // fn f;
3037    // @endcode
3038
3039    // Synthesize a parameter for each argument type.
3040    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3041         AE = FT->arg_type_end(); AI != AE; ++AI) {
3042      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3043                                               SourceLocation(), 0,
3044                                               *AI, /*TInfo=*/0,
3045                                               VarDecl::None, 0);
3046      Param->setImplicit();
3047      Params.push_back(Param);
3048    }
3049  } else {
3050    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3051           "Should not need args for typedef of non-prototype fn");
3052  }
3053  // Finally, we know we have the right number of parameters, install them.
3054  NewFD->setParams(Context, Params.data(), Params.size());
3055
3056  // If the declarator is a template-id, translate the parser's template
3057  // argument list into our AST format.
3058  bool HasExplicitTemplateArgs = false;
3059  TemplateArgumentListInfo TemplateArgs;
3060  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3061    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3062    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3063    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3064    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3065                                       TemplateId->getTemplateArgs(),
3066                                       TemplateId->NumArgs);
3067    translateTemplateArguments(TemplateArgsPtr,
3068                               TemplateArgs);
3069    TemplateArgsPtr.release();
3070
3071    HasExplicitTemplateArgs = true;
3072
3073    if (FunctionTemplate) {
3074      // FIXME: Diagnose function template with explicit template
3075      // arguments.
3076      HasExplicitTemplateArgs = false;
3077    } else if (!isFunctionTemplateSpecialization &&
3078               !D.getDeclSpec().isFriendSpecified()) {
3079      // We have encountered something that the user meant to be a
3080      // specialization (because it has explicitly-specified template
3081      // arguments) but that was not introduced with a "template<>" (or had
3082      // too few of them).
3083      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3084        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3085        << CodeModificationHint::CreateInsertion(
3086                                   D.getDeclSpec().getSourceRange().getBegin(),
3087                                                 "template<> ");
3088      isFunctionTemplateSpecialization = true;
3089    }
3090  }
3091
3092  if (isFunctionTemplateSpecialization) {
3093      if (CheckFunctionTemplateSpecialization(NewFD,
3094                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3095                                              Previous))
3096        NewFD->setInvalidDecl();
3097  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3098             CheckMemberSpecialization(NewFD, Previous))
3099    NewFD->setInvalidDecl();
3100
3101  // Perform semantic checking on the function declaration.
3102  bool OverloadableAttrRequired = false; // FIXME: HACK!
3103  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3104                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3105
3106  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3107          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3108         "previous declaration set still overloaded");
3109
3110  // If we have a function template, check the template parameter
3111  // list. This will check and merge default template arguments.
3112  if (FunctionTemplate) {
3113    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3114    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3115                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3116             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3117                                                : TPC_FunctionTemplate);
3118  }
3119
3120  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3121    // An out-of-line member function declaration must also be a
3122    // definition (C++ [dcl.meaning]p1).
3123    // Note that this is not the case for explicit specializations of
3124    // function templates or member functions of class templates, per
3125    // C++ [temp.expl.spec]p2.
3126    if (!IsFunctionDefinition && !isFriend &&
3127        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3128      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3129        << D.getCXXScopeSpec().getRange();
3130      NewFD->setInvalidDecl();
3131    } else if (!Redeclaration) {
3132      // The user tried to provide an out-of-line definition for a
3133      // function that is a member of a class or namespace, but there
3134      // was no such member function declared (C++ [class.mfct]p2,
3135      // C++ [namespace.memdef]p2). For example:
3136      //
3137      // class X {
3138      //   void f() const;
3139      // };
3140      //
3141      // void X::f() { } // ill-formed
3142      //
3143      // Complain about this problem, and attempt to suggest close
3144      // matches (e.g., those that differ only in cv-qualifiers and
3145      // whether the parameter types are references).
3146      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3147        << Name << DC << D.getCXXScopeSpec().getRange();
3148      NewFD->setInvalidDecl();
3149
3150      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3151                        ForRedeclaration);
3152      LookupQualifiedName(Prev, DC);
3153      assert(!Prev.isAmbiguous() &&
3154             "Cannot have an ambiguity in previous-declaration lookup");
3155      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3156           Func != FuncEnd; ++Func) {
3157        if (isa<FunctionDecl>(*Func) &&
3158            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3159          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3160      }
3161    }
3162  }
3163
3164  // Handle attributes. We need to have merged decls when handling attributes
3165  // (for example to check for conflicts, etc).
3166  // FIXME: This needs to happen before we merge declarations. Then,
3167  // let attribute merging cope with attribute conflicts.
3168  ProcessDeclAttributes(S, NewFD, D);
3169
3170  // attributes declared post-definition are currently ignored
3171  if (Redeclaration && Previous.isSingleResult()) {
3172    const FunctionDecl *Def;
3173    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3174    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3175      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3176      Diag(Def->getLocation(), diag::note_previous_definition);
3177    }
3178  }
3179
3180  AddKnownFunctionAttributes(NewFD);
3181
3182  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3183    // If a function name is overloadable in C, then every function
3184    // with that name must be marked "overloadable".
3185    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3186      << Redeclaration << NewFD;
3187    if (!Previous.empty())
3188      Diag(Previous.getRepresentativeDecl()->getLocation(),
3189           diag::note_attribute_overloadable_prev_overload);
3190    NewFD->addAttr(::new (Context) OverloadableAttr());
3191  }
3192
3193  // If this is a locally-scoped extern C function, update the
3194  // map of such names.
3195  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3196      && !NewFD->isInvalidDecl())
3197    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3198
3199  // Set this FunctionDecl's range up to the right paren.
3200  NewFD->setLocEnd(D.getSourceRange().getEnd());
3201
3202  if (FunctionTemplate && NewFD->isInvalidDecl())
3203    FunctionTemplate->setInvalidDecl();
3204
3205  if (FunctionTemplate)
3206    return FunctionTemplate;
3207
3208  return NewFD;
3209}
3210
3211/// \brief Perform semantic checking of a new function declaration.
3212///
3213/// Performs semantic analysis of the new function declaration
3214/// NewFD. This routine performs all semantic checking that does not
3215/// require the actual declarator involved in the declaration, and is
3216/// used both for the declaration of functions as they are parsed
3217/// (called via ActOnDeclarator) and for the declaration of functions
3218/// that have been instantiated via C++ template instantiation (called
3219/// via InstantiateDecl).
3220///
3221/// \param IsExplicitSpecialiation whether this new function declaration is
3222/// an explicit specialization of the previous declaration.
3223///
3224/// This sets NewFD->isInvalidDecl() to true if there was an error.
3225void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3226                                    LookupResult &Previous,
3227                                    bool IsExplicitSpecialization,
3228                                    bool &Redeclaration,
3229                                    bool &OverloadableAttrRequired) {
3230  // If NewFD is already known erroneous, don't do any of this checking.
3231  if (NewFD->isInvalidDecl())
3232    return;
3233
3234  if (NewFD->getResultType()->isVariablyModifiedType()) {
3235    // Functions returning a variably modified type violate C99 6.7.5.2p2
3236    // because all functions have linkage.
3237    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3238    return NewFD->setInvalidDecl();
3239  }
3240
3241  if (NewFD->isMain())
3242    CheckMain(NewFD);
3243
3244  // Check for a previous declaration of this name.
3245  if (Previous.empty() && NewFD->isExternC()) {
3246    // Since we did not find anything by this name and we're declaring
3247    // an extern "C" function, look for a non-visible extern "C"
3248    // declaration with the same name.
3249    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3250      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3251    if (Pos != LocallyScopedExternalDecls.end())
3252      Previous.addDecl(Pos->second);
3253  }
3254
3255  // Merge or overload the declaration with an existing declaration of
3256  // the same name, if appropriate.
3257  if (!Previous.empty()) {
3258    // Determine whether NewFD is an overload of PrevDecl or
3259    // a declaration that requires merging. If it's an overload,
3260    // there's no more work to do here; we'll just add the new
3261    // function to the scope.
3262
3263    NamedDecl *OldDecl = 0;
3264    if (!AllowOverloadingOfFunction(Previous, Context)) {
3265      Redeclaration = true;
3266      OldDecl = Previous.getFoundDecl();
3267    } else {
3268      if (!getLangOptions().CPlusPlus) {
3269        OverloadableAttrRequired = true;
3270
3271        // Functions marked "overloadable" must have a prototype (that
3272        // we can't get through declaration merging).
3273        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3274          Diag(NewFD->getLocation(),
3275               diag::err_attribute_overloadable_no_prototype)
3276            << NewFD;
3277          Redeclaration = true;
3278
3279          // Turn this into a variadic function with no parameters.
3280          QualType R = Context.getFunctionType(
3281                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3282                     0, 0, true, 0);
3283          NewFD->setType(R);
3284          return NewFD->setInvalidDecl();
3285        }
3286      }
3287
3288      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3289      case Ovl_Match:
3290        Redeclaration = true;
3291        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3292          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3293          Redeclaration = false;
3294        }
3295        break;
3296
3297      case Ovl_NonFunction:
3298        Redeclaration = true;
3299        break;
3300
3301      case Ovl_Overload:
3302        Redeclaration = false;
3303        break;
3304      }
3305    }
3306
3307    if (Redeclaration) {
3308      // NewFD and OldDecl represent declarations that need to be
3309      // merged.
3310      if (MergeFunctionDecl(NewFD, OldDecl))
3311        return NewFD->setInvalidDecl();
3312
3313      Previous.clear();
3314      Previous.addDecl(OldDecl);
3315
3316      if (FunctionTemplateDecl *OldTemplateDecl
3317                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3318        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3319        FunctionTemplateDecl *NewTemplateDecl
3320          = NewFD->getDescribedFunctionTemplate();
3321        assert(NewTemplateDecl && "Template/non-template mismatch");
3322        if (CXXMethodDecl *Method
3323              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3324          Method->setAccess(OldTemplateDecl->getAccess());
3325          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3326        }
3327
3328        // If this is an explicit specialization of a member that is a function
3329        // template, mark it as a member specialization.
3330        if (IsExplicitSpecialization &&
3331            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3332          NewTemplateDecl->setMemberSpecialization();
3333          assert(OldTemplateDecl->isMemberSpecialization());
3334        }
3335      } else {
3336        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3337          NewFD->setAccess(OldDecl->getAccess());
3338        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3339      }
3340    }
3341  }
3342
3343  // Semantic checking for this function declaration (in isolation).
3344  if (getLangOptions().CPlusPlus) {
3345    // C++-specific checks.
3346    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3347      CheckConstructor(Constructor);
3348    } else if (CXXDestructorDecl *Destructor =
3349                dyn_cast<CXXDestructorDecl>(NewFD)) {
3350      CXXRecordDecl *Record = Destructor->getParent();
3351      QualType ClassType = Context.getTypeDeclType(Record);
3352
3353      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3354      // type is dependent? Both gcc and edg can handle that.
3355      if (!ClassType->isDependentType()) {
3356        DeclarationName Name
3357          = Context.DeclarationNames.getCXXDestructorName(
3358                                        Context.getCanonicalType(ClassType));
3359        if (NewFD->getDeclName() != Name) {
3360          Diag(NewFD->getLocation(), diag::err_destructor_name);
3361          return NewFD->setInvalidDecl();
3362        }
3363      }
3364
3365      Record->setUserDeclaredDestructor(true);
3366      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3367      // user-defined destructor.
3368      Record->setPOD(false);
3369
3370      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3371      // declared destructor.
3372      // FIXME: C++0x: don't do this for "= default" destructors
3373      Record->setHasTrivialDestructor(false);
3374    } else if (CXXConversionDecl *Conversion
3375               = dyn_cast<CXXConversionDecl>(NewFD)) {
3376      ActOnConversionDeclarator(Conversion);
3377    }
3378
3379    // Find any virtual functions that this function overrides.
3380    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3381      if (!Method->isFunctionTemplateSpecialization() &&
3382          !Method->getDescribedFunctionTemplate())
3383        AddOverriddenMethods(Method->getParent(), Method);
3384    }
3385
3386    // Additional checks for the destructor; make sure we do this after we
3387    // figure out whether the destructor is virtual.
3388    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3389      if (!Destructor->getParent()->isDependentType())
3390        CheckDestructor(Destructor);
3391
3392    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3393    if (NewFD->isOverloadedOperator() &&
3394        CheckOverloadedOperatorDeclaration(NewFD))
3395      return NewFD->setInvalidDecl();
3396
3397    // In C++, check default arguments now that we have merged decls. Unless
3398    // the lexical context is the class, because in this case this is done
3399    // during delayed parsing anyway.
3400    if (!CurContext->isRecord())
3401      CheckCXXDefaultArguments(NewFD);
3402  }
3403}
3404
3405void Sema::CheckMain(FunctionDecl* FD) {
3406  // C++ [basic.start.main]p3:  A program that declares main to be inline
3407  //   or static is ill-formed.
3408  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3409  //   shall not appear in a declaration of main.
3410  // static main is not an error under C99, but we should warn about it.
3411  bool isInline = FD->isInlineSpecified();
3412  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3413  if (isInline || isStatic) {
3414    unsigned diagID = diag::warn_unusual_main_decl;
3415    if (isInline || getLangOptions().CPlusPlus)
3416      diagID = diag::err_unusual_main_decl;
3417
3418    int which = isStatic + (isInline << 1) - 1;
3419    Diag(FD->getLocation(), diagID) << which;
3420  }
3421
3422  QualType T = FD->getType();
3423  assert(T->isFunctionType() && "function decl is not of function type");
3424  const FunctionType* FT = T->getAs<FunctionType>();
3425
3426  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3427    // TODO: add a replacement fixit to turn the return type into 'int'.
3428    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3429    FD->setInvalidDecl(true);
3430  }
3431
3432  // Treat protoless main() as nullary.
3433  if (isa<FunctionNoProtoType>(FT)) return;
3434
3435  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3436  unsigned nparams = FTP->getNumArgs();
3437  assert(FD->getNumParams() == nparams);
3438
3439  bool HasExtraParameters = (nparams > 3);
3440
3441  // Darwin passes an undocumented fourth argument of type char**.  If
3442  // other platforms start sprouting these, the logic below will start
3443  // getting shifty.
3444  if (nparams == 4 &&
3445      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3446    HasExtraParameters = false;
3447
3448  if (HasExtraParameters) {
3449    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3450    FD->setInvalidDecl(true);
3451    nparams = 3;
3452  }
3453
3454  // FIXME: a lot of the following diagnostics would be improved
3455  // if we had some location information about types.
3456
3457  QualType CharPP =
3458    Context.getPointerType(Context.getPointerType(Context.CharTy));
3459  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3460
3461  for (unsigned i = 0; i < nparams; ++i) {
3462    QualType AT = FTP->getArgType(i);
3463
3464    bool mismatch = true;
3465
3466    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3467      mismatch = false;
3468    else if (Expected[i] == CharPP) {
3469      // As an extension, the following forms are okay:
3470      //   char const **
3471      //   char const * const *
3472      //   char * const *
3473
3474      QualifierCollector qs;
3475      const PointerType* PT;
3476      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3477          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3478          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3479        qs.removeConst();
3480        mismatch = !qs.empty();
3481      }
3482    }
3483
3484    if (mismatch) {
3485      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3486      // TODO: suggest replacing given type with expected type
3487      FD->setInvalidDecl(true);
3488    }
3489  }
3490
3491  if (nparams == 1 && !FD->isInvalidDecl()) {
3492    Diag(FD->getLocation(), diag::warn_main_one_arg);
3493  }
3494}
3495
3496bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3497  // FIXME: Need strict checking.  In C89, we need to check for
3498  // any assignment, increment, decrement, function-calls, or
3499  // commas outside of a sizeof.  In C99, it's the same list,
3500  // except that the aforementioned are allowed in unevaluated
3501  // expressions.  Everything else falls under the
3502  // "may accept other forms of constant expressions" exception.
3503  // (We never end up here for C++, so the constant expression
3504  // rules there don't matter.)
3505  if (Init->isConstantInitializer(Context))
3506    return false;
3507  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3508    << Init->getSourceRange();
3509  return true;
3510}
3511
3512void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3513  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3514}
3515
3516/// AddInitializerToDecl - Adds the initializer Init to the
3517/// declaration dcl. If DirectInit is true, this is C++ direct
3518/// initialization rather than copy initialization.
3519void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3520  Decl *RealDecl = dcl.getAs<Decl>();
3521  // If there is no declaration, there was an error parsing it.  Just ignore
3522  // the initializer.
3523  if (RealDecl == 0)
3524    return;
3525
3526  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3527    // With declarators parsed the way they are, the parser cannot
3528    // distinguish between a normal initializer and a pure-specifier.
3529    // Thus this grotesque test.
3530    IntegerLiteral *IL;
3531    Expr *Init = static_cast<Expr *>(init.get());
3532    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3533        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3534      CheckPureMethod(Method, Init->getSourceRange());
3535    else {
3536      Diag(Method->getLocation(), diag::err_member_function_initialization)
3537        << Method->getDeclName() << Init->getSourceRange();
3538      Method->setInvalidDecl();
3539    }
3540    return;
3541  }
3542
3543  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3544  if (!VDecl) {
3545    if (getLangOptions().CPlusPlus &&
3546        RealDecl->getLexicalDeclContext()->isRecord() &&
3547        isa<NamedDecl>(RealDecl))
3548      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3549        << cast<NamedDecl>(RealDecl)->getDeclName();
3550    else
3551      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3552    RealDecl->setInvalidDecl();
3553    return;
3554  }
3555
3556  // A definition must end up with a complete type, which means it must be
3557  // complete with the restriction that an array type might be completed by the
3558  // initializer; note that later code assumes this restriction.
3559  QualType BaseDeclType = VDecl->getType();
3560  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3561    BaseDeclType = Array->getElementType();
3562  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3563                          diag::err_typecheck_decl_incomplete_type)) {
3564    RealDecl->setInvalidDecl();
3565    return;
3566  }
3567
3568  // The variable can not have an abstract class type.
3569  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3570                             diag::err_abstract_type_in_decl,
3571                             AbstractVariableType))
3572    VDecl->setInvalidDecl();
3573
3574  const VarDecl *Def = 0;
3575  if (VDecl->getDefinition(Def)) {
3576    Diag(VDecl->getLocation(), diag::err_redefinition)
3577      << VDecl->getDeclName();
3578    Diag(Def->getLocation(), diag::note_previous_definition);
3579    VDecl->setInvalidDecl();
3580    return;
3581  }
3582
3583  // Take ownership of the expression, now that we're sure we have somewhere
3584  // to put it.
3585  Expr *Init = init.takeAs<Expr>();
3586  assert(Init && "missing initializer");
3587
3588  // Capture the variable that is being initialized and the style of
3589  // initialization.
3590  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3591
3592  // FIXME: Poor source location information.
3593  InitializationKind Kind
3594    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3595                                                   Init->getLocStart(),
3596                                                   Init->getLocEnd())
3597                : InitializationKind::CreateCopy(VDecl->getLocation(),
3598                                                 Init->getLocStart());
3599
3600  // Get the decls type and save a reference for later, since
3601  // CheckInitializerTypes may change it.
3602  QualType DclT = VDecl->getType(), SavT = DclT;
3603  if (VDecl->isBlockVarDecl()) {
3604    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3605      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3606      VDecl->setInvalidDecl();
3607    } else if (!VDecl->isInvalidDecl()) {
3608      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3609      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3610                                          MultiExprArg(*this, (void**)&Init, 1),
3611                                                &DclT);
3612      if (Result.isInvalid()) {
3613        VDecl->setInvalidDecl();
3614        return;
3615      }
3616
3617      Init = Result.takeAs<Expr>();
3618
3619      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3620      // Don't check invalid declarations to avoid emitting useless diagnostics.
3621      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3622        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3623          CheckForConstantInitializer(Init, DclT);
3624      }
3625    }
3626  } else if (VDecl->isStaticDataMember() &&
3627             VDecl->getLexicalDeclContext()->isRecord()) {
3628    // This is an in-class initialization for a static data member, e.g.,
3629    //
3630    // struct S {
3631    //   static const int value = 17;
3632    // };
3633
3634    // Attach the initializer
3635    VDecl->setInit(Context, Init);
3636
3637    // C++ [class.mem]p4:
3638    //   A member-declarator can contain a constant-initializer only
3639    //   if it declares a static member (9.4) of const integral or
3640    //   const enumeration type, see 9.4.2.
3641    QualType T = VDecl->getType();
3642    if (!T->isDependentType() &&
3643        (!Context.getCanonicalType(T).isConstQualified() ||
3644         !T->isIntegralType())) {
3645      Diag(VDecl->getLocation(), diag::err_member_initialization)
3646        << VDecl->getDeclName() << Init->getSourceRange();
3647      VDecl->setInvalidDecl();
3648    } else {
3649      // C++ [class.static.data]p4:
3650      //   If a static data member is of const integral or const
3651      //   enumeration type, its declaration in the class definition
3652      //   can specify a constant-initializer which shall be an
3653      //   integral constant expression (5.19).
3654      if (!Init->isTypeDependent() &&
3655          !Init->getType()->isIntegralType()) {
3656        // We have a non-dependent, non-integral or enumeration type.
3657        Diag(Init->getSourceRange().getBegin(),
3658             diag::err_in_class_initializer_non_integral_type)
3659          << Init->getType() << Init->getSourceRange();
3660        VDecl->setInvalidDecl();
3661      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3662        // Check whether the expression is a constant expression.
3663        llvm::APSInt Value;
3664        SourceLocation Loc;
3665        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3666          Diag(Loc, diag::err_in_class_initializer_non_constant)
3667            << Init->getSourceRange();
3668          VDecl->setInvalidDecl();
3669        } else if (!VDecl->getType()->isDependentType())
3670          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3671      }
3672    }
3673  } else if (VDecl->isFileVarDecl()) {
3674    if (VDecl->getStorageClass() == VarDecl::Extern)
3675      Diag(VDecl->getLocation(), diag::warn_extern_init);
3676    if (!VDecl->isInvalidDecl()) {
3677      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3678      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3679                                          MultiExprArg(*this, (void**)&Init, 1),
3680                                                &DclT);
3681      if (Result.isInvalid()) {
3682        VDecl->setInvalidDecl();
3683        return;
3684      }
3685
3686      Init = Result.takeAs<Expr>();
3687    }
3688
3689    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3690    // Don't check invalid declarations to avoid emitting useless diagnostics.
3691    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3692      // C99 6.7.8p4. All file scoped initializers need to be constant.
3693      CheckForConstantInitializer(Init, DclT);
3694    }
3695  }
3696  // If the type changed, it means we had an incomplete type that was
3697  // completed by the initializer. For example:
3698  //   int ary[] = { 1, 3, 5 };
3699  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3700  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3701    VDecl->setType(DclT);
3702    Init->setType(DclT);
3703  }
3704
3705  Init = MaybeCreateCXXExprWithTemporaries(Init);
3706  // Attach the initializer to the decl.
3707  VDecl->setInit(Context, Init);
3708
3709  // If the previous declaration of VDecl was a tentative definition,
3710  // remove it from the set of tentative definitions.
3711  if (VDecl->getPreviousDeclaration() &&
3712      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3713    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3714    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3715  }
3716
3717  if (getLangOptions().CPlusPlus) {
3718    // Make sure we mark the destructor as used if necessary.
3719    QualType InitType = VDecl->getType();
3720    if (const ArrayType *Array = Context.getAsArrayType(InitType))
3721      InitType = Context.getBaseElementType(Array);
3722    if (InitType->isRecordType())
3723      FinalizeVarWithDestructor(VDecl, InitType);
3724  }
3725
3726  return;
3727}
3728
3729void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3730                                  bool TypeContainsUndeducedAuto) {
3731  Decl *RealDecl = dcl.getAs<Decl>();
3732
3733  // If there is no declaration, there was an error parsing it. Just ignore it.
3734  if (RealDecl == 0)
3735    return;
3736
3737  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3738    QualType Type = Var->getType();
3739
3740    // Record tentative definitions.
3741    if (Var->isTentativeDefinition(Context)) {
3742      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3743        InsertPair =
3744           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3745
3746      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3747      // want the second one in the map.
3748      InsertPair.first->second = Var;
3749
3750      // However, for the list, we don't care about the order, just make sure
3751      // that there are no dupes for a given declaration name.
3752      if (InsertPair.second)
3753        TentativeDefinitionList.push_back(Var->getDeclName());
3754    }
3755
3756    // C++ [dcl.init.ref]p3:
3757    //   The initializer can be omitted for a reference only in a
3758    //   parameter declaration (8.3.5), in the declaration of a
3759    //   function return type, in the declaration of a class member
3760    //   within its class declaration (9.2), and where the extern
3761    //   specifier is explicitly used.
3762    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3763      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3764        << Var->getDeclName()
3765        << SourceRange(Var->getLocation(), Var->getLocation());
3766      Var->setInvalidDecl();
3767      return;
3768    }
3769
3770    // C++0x [dcl.spec.auto]p3
3771    if (TypeContainsUndeducedAuto) {
3772      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3773        << Var->getDeclName() << Type;
3774      Var->setInvalidDecl();
3775      return;
3776    }
3777
3778    // An array without size is an incomplete type, and there are no special
3779    // rules in C++ to make such a definition acceptable.
3780    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3781        !Var->hasExternalStorage()) {
3782      Diag(Var->getLocation(),
3783           diag::err_typecheck_incomplete_array_needs_initializer);
3784      Var->setInvalidDecl();
3785      return;
3786    }
3787
3788    // C++ [temp.expl.spec]p15:
3789    //   An explicit specialization of a static data member of a template is a
3790    //   definition if the declaration includes an initializer; otherwise, it
3791    //   is a declaration.
3792    if (Var->isStaticDataMember() &&
3793        Var->getInstantiatedFromStaticDataMember() &&
3794        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3795      return;
3796
3797    // C++ [dcl.init]p9:
3798    //   If no initializer is specified for an object, and the object
3799    //   is of (possibly cv-qualified) non-POD class type (or array
3800    //   thereof), the object shall be default-initialized; if the
3801    //   object is of const-qualified type, the underlying class type
3802    //   shall have a user-declared default constructor.
3803    //
3804    // FIXME: Diagnose the "user-declared default constructor" bit.
3805    if (getLangOptions().CPlusPlus) {
3806      QualType InitType = Type;
3807      if (const ArrayType *Array = Context.getAsArrayType(Type))
3808        InitType = Context.getBaseElementType(Array);
3809      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3810          InitType->isRecordType() && !InitType->isDependentType()) {
3811        if (!RequireCompleteType(Var->getLocation(), InitType,
3812                                 diag::err_invalid_incomplete_type_use)) {
3813          InitializedEntity Entity
3814            = InitializedEntity::InitializeVariable(Var);
3815          InitializationKind Kind
3816            = InitializationKind::CreateDefault(Var->getLocation());
3817
3818          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3819          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3820                                                  MultiExprArg(*this, 0, 0));
3821          if (Init.isInvalid())
3822            Var->setInvalidDecl();
3823          else {
3824            Var->setInit(Context,
3825                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3826            FinalizeVarWithDestructor(Var, InitType);
3827          }
3828        } else {
3829          Var->setInvalidDecl();
3830        }
3831      }
3832
3833      // The variable can not have an abstract class type.
3834      if (RequireNonAbstractType(Var->getLocation(), Type,
3835                                 diag::err_abstract_type_in_decl,
3836                                 AbstractVariableType))
3837        Var->setInvalidDecl();
3838    }
3839
3840#if 0
3841    // FIXME: Temporarily disabled because we are not properly parsing
3842    // linkage specifications on declarations, e.g.,
3843    //
3844    //   extern "C" const CGPoint CGPointerZero;
3845    //
3846    // C++ [dcl.init]p9:
3847    //
3848    //     If no initializer is specified for an object, and the
3849    //     object is of (possibly cv-qualified) non-POD class type (or
3850    //     array thereof), the object shall be default-initialized; if
3851    //     the object is of const-qualified type, the underlying class
3852    //     type shall have a user-declared default
3853    //     constructor. Otherwise, if no initializer is specified for
3854    //     an object, the object and its subobjects, if any, have an
3855    //     indeterminate initial value; if the object or any of its
3856    //     subobjects are of const-qualified type, the program is
3857    //     ill-formed.
3858    //
3859    // This isn't technically an error in C, so we don't diagnose it.
3860    //
3861    // FIXME: Actually perform the POD/user-defined default
3862    // constructor check.
3863    if (getLangOptions().CPlusPlus &&
3864        Context.getCanonicalType(Type).isConstQualified() &&
3865        !Var->hasExternalStorage())
3866      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3867        << Var->getName()
3868        << SourceRange(Var->getLocation(), Var->getLocation());
3869#endif
3870  }
3871}
3872
3873Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3874                                                   DeclPtrTy *Group,
3875                                                   unsigned NumDecls) {
3876  llvm::SmallVector<Decl*, 8> Decls;
3877
3878  if (DS.isTypeSpecOwned())
3879    Decls.push_back((Decl*)DS.getTypeRep());
3880
3881  for (unsigned i = 0; i != NumDecls; ++i)
3882    if (Decl *D = Group[i].getAs<Decl>())
3883      Decls.push_back(D);
3884
3885  // Perform semantic analysis that depends on having fully processed both
3886  // the declarator and initializer.
3887  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3888    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3889    if (!IDecl)
3890      continue;
3891    QualType T = IDecl->getType();
3892
3893    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3894    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3895    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3896      if (T->isDependentType()) {
3897        // If T is dependent, we should not require a complete type.
3898        // (RequireCompleteType shouldn't be called with dependent types.)
3899        // But we still can at least check if we've got an array of unspecified
3900        // size without an initializer.
3901        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3902            !IDecl->getInit()) {
3903          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3904            << T;
3905          IDecl->setInvalidDecl();
3906        }
3907      } else if (!IDecl->isInvalidDecl()) {
3908        // If T is an incomplete array type with an initializer list that is
3909        // dependent on something, its size has not been fixed. We could attempt
3910        // to fix the size for such arrays, but we would still have to check
3911        // here for initializers containing a C++0x vararg expansion, e.g.
3912        // template <typename... Args> void f(Args... args) {
3913        //   int vals[] = { args };
3914        // }
3915        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3916        Expr *Init = IDecl->getInit();
3917        if (IAT && Init &&
3918            (Init->isTypeDependent() || Init->isValueDependent())) {
3919          // Check that the member type of the array is complete, at least.
3920          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3921                                  diag::err_typecheck_decl_incomplete_type))
3922            IDecl->setInvalidDecl();
3923        } else if (RequireCompleteType(IDecl->getLocation(), T,
3924                                      diag::err_typecheck_decl_incomplete_type))
3925          IDecl->setInvalidDecl();
3926      }
3927    }
3928    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3929    // object that has file scope without an initializer, and without a
3930    // storage-class specifier or with the storage-class specifier "static",
3931    // constitutes a tentative definition. Note: A tentative definition with
3932    // external linkage is valid (C99 6.2.2p5).
3933    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3934      if (const IncompleteArrayType *ArrayT
3935          = Context.getAsIncompleteArrayType(T)) {
3936        if (RequireCompleteType(IDecl->getLocation(),
3937                                ArrayT->getElementType(),
3938                                diag::err_illegal_decl_array_incomplete_type))
3939          IDecl->setInvalidDecl();
3940      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3941        // C99 6.9.2p3: If the declaration of an identifier for an object is
3942        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3943        // declared type shall not be an incomplete type.
3944        // NOTE: code such as the following
3945        //     static struct s;
3946        //     struct s { int a; };
3947        // is accepted by gcc. Hence here we issue a warning instead of
3948        // an error and we do not invalidate the static declaration.
3949        // NOTE: to avoid multiple warnings, only check the first declaration.
3950        if (IDecl->getPreviousDeclaration() == 0)
3951          RequireCompleteType(IDecl->getLocation(), T,
3952                              diag::ext_typecheck_decl_incomplete_type);
3953      }
3954    }
3955  }
3956  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3957                                                   Decls.data(), Decls.size()));
3958}
3959
3960
3961/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3962/// to introduce parameters into function prototype scope.
3963Sema::DeclPtrTy
3964Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3965  const DeclSpec &DS = D.getDeclSpec();
3966
3967  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3968  VarDecl::StorageClass StorageClass = VarDecl::None;
3969  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3970    StorageClass = VarDecl::Register;
3971  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3972    Diag(DS.getStorageClassSpecLoc(),
3973         diag::err_invalid_storage_class_in_func_decl);
3974    D.getMutableDeclSpec().ClearStorageClassSpecs();
3975  }
3976
3977  if (D.getDeclSpec().isThreadSpecified())
3978    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3979
3980  DiagnoseFunctionSpecifiers(D);
3981
3982  // Check that there are no default arguments inside the type of this
3983  // parameter (C++ only).
3984  if (getLangOptions().CPlusPlus)
3985    CheckExtraCXXDefaultArguments(D);
3986
3987  TypeSourceInfo *TInfo = 0;
3988  TagDecl *OwnedDecl = 0;
3989  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3990
3991  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3992    // C++ [dcl.fct]p6:
3993    //   Types shall not be defined in return or parameter types.
3994    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3995      << Context.getTypeDeclType(OwnedDecl);
3996  }
3997
3998  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3999  // Can this happen for params?  We already checked that they don't conflict
4000  // among each other.  Here they can only shadow globals, which is ok.
4001  IdentifierInfo *II = D.getIdentifier();
4002  if (II) {
4003    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4004      if (PrevDecl->isTemplateParameter()) {
4005        // Maybe we will complain about the shadowed template parameter.
4006        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4007        // Just pretend that we didn't see the previous declaration.
4008        PrevDecl = 0;
4009      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4010        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4011
4012        // Recover by removing the name
4013        II = 0;
4014        D.SetIdentifier(0, D.getIdentifierLoc());
4015      }
4016    }
4017  }
4018
4019  // Parameters can not be abstract class types.
4020  // For record types, this is done by the AbstractClassUsageDiagnoser once
4021  // the class has been completely parsed.
4022  if (!CurContext->isRecord() &&
4023      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4024                             diag::err_abstract_type_in_decl,
4025                             AbstractParamType))
4026    D.setInvalidType(true);
4027
4028  QualType T = adjustParameterType(parmDeclType);
4029
4030  ParmVarDecl *New
4031    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
4032                          T, TInfo, StorageClass, 0);
4033
4034  if (D.isInvalidType())
4035    New->setInvalidDecl();
4036
4037  // Parameter declarators cannot be interface types. All ObjC objects are
4038  // passed by reference.
4039  if (T->isObjCInterfaceType()) {
4040    Diag(D.getIdentifierLoc(),
4041         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4042    New->setInvalidDecl();
4043  }
4044
4045  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4046  if (D.getCXXScopeSpec().isSet()) {
4047    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4048      << D.getCXXScopeSpec().getRange();
4049    New->setInvalidDecl();
4050  }
4051
4052  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4053  // duration shall not be qualified by an address-space qualifier."
4054  // Since all parameters have automatic store duration, they can not have
4055  // an address space.
4056  if (T.getAddressSpace() != 0) {
4057    Diag(D.getIdentifierLoc(),
4058         diag::err_arg_with_address_space);
4059    New->setInvalidDecl();
4060  }
4061
4062
4063  // Add the parameter declaration into this scope.
4064  S->AddDecl(DeclPtrTy::make(New));
4065  if (II)
4066    IdResolver.AddDecl(New);
4067
4068  ProcessDeclAttributes(S, New, D);
4069
4070  if (New->hasAttr<BlocksAttr>()) {
4071    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4072  }
4073  return DeclPtrTy::make(New);
4074}
4075
4076void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4077                                           SourceLocation LocAfterDecls) {
4078  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4079         "Not a function declarator!");
4080  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4081
4082  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4083  // for a K&R function.
4084  if (!FTI.hasPrototype) {
4085    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4086      --i;
4087      if (FTI.ArgInfo[i].Param == 0) {
4088        llvm::SmallString<256> Code;
4089        llvm::raw_svector_ostream(Code) << "  int "
4090                                        << FTI.ArgInfo[i].Ident->getName()
4091                                        << ";\n";
4092        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4093          << FTI.ArgInfo[i].Ident
4094          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4095
4096        // Implicitly declare the argument as type 'int' for lack of a better
4097        // type.
4098        DeclSpec DS;
4099        const char* PrevSpec; // unused
4100        unsigned DiagID; // unused
4101        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4102                           PrevSpec, DiagID);
4103        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4104        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4105        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4106      }
4107    }
4108  }
4109}
4110
4111Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4112                                              Declarator &D) {
4113  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4114  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4115         "Not a function declarator!");
4116  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4117
4118  if (FTI.hasPrototype) {
4119    // FIXME: Diagnose arguments without names in C.
4120  }
4121
4122  Scope *ParentScope = FnBodyScope->getParent();
4123
4124  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4125                                  MultiTemplateParamsArg(*this),
4126                                  /*IsFunctionDefinition=*/true);
4127  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4128}
4129
4130static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4131  // Don't warn about invalid declarations.
4132  if (FD->isInvalidDecl())
4133    return false;
4134
4135  // Or declarations that aren't global.
4136  if (!FD->isGlobal())
4137    return false;
4138
4139  // Don't warn about C++ member functions.
4140  if (isa<CXXMethodDecl>(FD))
4141    return false;
4142
4143  // Don't warn about 'main'.
4144  if (FD->isMain())
4145    return false;
4146
4147  // Don't warn about inline functions.
4148  if (FD->isInlineSpecified())
4149    return false;
4150
4151  // Don't warn about function templates.
4152  if (FD->getDescribedFunctionTemplate())
4153    return false;
4154
4155  // Don't warn about function template specializations.
4156  if (FD->isFunctionTemplateSpecialization())
4157    return false;
4158
4159  bool MissingPrototype = true;
4160  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4161       Prev; Prev = Prev->getPreviousDeclaration()) {
4162    // Ignore any declarations that occur in function or method
4163    // scope, because they aren't visible from the header.
4164    if (Prev->getDeclContext()->isFunctionOrMethod())
4165      continue;
4166
4167    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4168    break;
4169  }
4170
4171  return MissingPrototype;
4172}
4173
4174Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4175  // Clear the last template instantiation error context.
4176  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4177
4178  if (!D)
4179    return D;
4180  FunctionDecl *FD = 0;
4181
4182  if (FunctionTemplateDecl *FunTmpl
4183        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4184    FD = FunTmpl->getTemplatedDecl();
4185  else
4186    FD = cast<FunctionDecl>(D.getAs<Decl>());
4187
4188  CurFunctionNeedsScopeChecking = false;
4189
4190  // See if this is a redefinition.
4191  const FunctionDecl *Definition;
4192  if (FD->getBody(Definition)) {
4193    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4194    Diag(Definition->getLocation(), diag::note_previous_definition);
4195  }
4196
4197  // Builtin functions cannot be defined.
4198  if (unsigned BuiltinID = FD->getBuiltinID()) {
4199    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4200      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4201      FD->setInvalidDecl();
4202    }
4203  }
4204
4205  // The return type of a function definition must be complete
4206  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4207  QualType ResultType = FD->getResultType();
4208  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4209      !FD->isInvalidDecl() &&
4210      RequireCompleteType(FD->getLocation(), ResultType,
4211                          diag::err_func_def_incomplete_result))
4212    FD->setInvalidDecl();
4213
4214  // GNU warning -Wmissing-prototypes:
4215  //   Warn if a global function is defined without a previous
4216  //   prototype declaration. This warning is issued even if the
4217  //   definition itself provides a prototype. The aim is to detect
4218  //   global functions that fail to be declared in header files.
4219  if (ShouldWarnAboutMissingPrototype(FD))
4220    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4221
4222  if (FnBodyScope)
4223    PushDeclContext(FnBodyScope, FD);
4224
4225  // Check the validity of our function parameters
4226  CheckParmsForFunctionDef(FD);
4227
4228  // Introduce our parameters into the function scope
4229  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4230    ParmVarDecl *Param = FD->getParamDecl(p);
4231    Param->setOwningFunction(FD);
4232
4233    // If this has an identifier, add it to the scope stack.
4234    if (Param->getIdentifier() && FnBodyScope)
4235      PushOnScopeChains(Param, FnBodyScope);
4236  }
4237
4238  // Checking attributes of current function definition
4239  // dllimport attribute.
4240  if (FD->getAttr<DLLImportAttr>() &&
4241      (!FD->getAttr<DLLExportAttr>())) {
4242    // dllimport attribute cannot be applied to definition.
4243    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4244      Diag(FD->getLocation(),
4245           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4246        << "dllimport";
4247      FD->setInvalidDecl();
4248      return DeclPtrTy::make(FD);
4249    } else {
4250      // If a symbol previously declared dllimport is later defined, the
4251      // attribute is ignored in subsequent references, and a warning is
4252      // emitted.
4253      Diag(FD->getLocation(),
4254           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4255        << FD->getNameAsCString() << "dllimport";
4256    }
4257  }
4258  return DeclPtrTy::make(FD);
4259}
4260
4261Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4262  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4263}
4264
4265Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4266                                              bool IsInstantiation) {
4267  Decl *dcl = D.getAs<Decl>();
4268  Stmt *Body = BodyArg.takeAs<Stmt>();
4269
4270  FunctionDecl *FD = 0;
4271  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4272  if (FunTmpl)
4273    FD = FunTmpl->getTemplatedDecl();
4274  else
4275    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4276
4277  if (FD) {
4278    FD->setBody(Body);
4279    if (FD->isMain())
4280      // C and C++ allow for main to automagically return 0.
4281      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4282      FD->setHasImplicitReturnZero(true);
4283    else
4284      CheckFallThroughForFunctionDef(FD, Body);
4285
4286    if (!FD->isInvalidDecl())
4287      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4288
4289    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4290      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4291
4292    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4293  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4294    assert(MD == getCurMethodDecl() && "Method parsing confused");
4295    MD->setBody(Body);
4296    CheckFallThroughForFunctionDef(MD, Body);
4297    MD->setEndLoc(Body->getLocEnd());
4298
4299    if (!MD->isInvalidDecl())
4300      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4301  } else {
4302    Body->Destroy(Context);
4303    return DeclPtrTy();
4304  }
4305  if (!IsInstantiation)
4306    PopDeclContext();
4307
4308  // Verify and clean out per-function state.
4309
4310  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4311
4312  // Check goto/label use.
4313  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4314       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4315    LabelStmt *L = I->second;
4316
4317    // Verify that we have no forward references left.  If so, there was a goto
4318    // or address of a label taken, but no definition of it.  Label fwd
4319    // definitions are indicated with a null substmt.
4320    if (L->getSubStmt() != 0)
4321      continue;
4322
4323    // Emit error.
4324    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4325
4326    // At this point, we have gotos that use the bogus label.  Stitch it into
4327    // the function body so that they aren't leaked and that the AST is well
4328    // formed.
4329    if (Body == 0) {
4330      // The whole function wasn't parsed correctly, just delete this.
4331      L->Destroy(Context);
4332      continue;
4333    }
4334
4335    // Otherwise, the body is valid: we want to stitch the label decl into the
4336    // function somewhere so that it is properly owned and so that the goto
4337    // has a valid target.  Do this by creating a new compound stmt with the
4338    // label in it.
4339
4340    // Give the label a sub-statement.
4341    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4342
4343    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4344                               cast<CXXTryStmt>(Body)->getTryBlock() :
4345                               cast<CompoundStmt>(Body);
4346    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4347    Elements.push_back(L);
4348    Compound->setStmts(Context, &Elements[0], Elements.size());
4349  }
4350  FunctionLabelMap.clear();
4351
4352  if (!Body) return D;
4353
4354  // Verify that that gotos and switch cases don't jump into scopes illegally.
4355  if (CurFunctionNeedsScopeChecking)
4356    DiagnoseInvalidJumps(Body);
4357
4358  // C++ constructors that have function-try-blocks can't have return
4359  // statements in the handlers of that block. (C++ [except.handle]p14)
4360  // Verify this.
4361  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4362    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4363
4364  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4365    MarkBaseAndMemberDestructorsReferenced(Destructor);
4366
4367  // If any errors have occurred, clear out any temporaries that may have
4368  // been leftover. This ensures that these temporaries won't be picked up for
4369  // deletion in some later function.
4370  if (PP.getDiagnostics().hasErrorOccurred())
4371    ExprTemporaries.clear();
4372
4373  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4374  return D;
4375}
4376
4377/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4378/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4379NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4380                                          IdentifierInfo &II, Scope *S) {
4381  // Before we produce a declaration for an implicitly defined
4382  // function, see whether there was a locally-scoped declaration of
4383  // this name as a function or variable. If so, use that
4384  // (non-visible) declaration, and complain about it.
4385  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4386    = LocallyScopedExternalDecls.find(&II);
4387  if (Pos != LocallyScopedExternalDecls.end()) {
4388    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4389    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4390    return Pos->second;
4391  }
4392
4393  // Extension in C99.  Legal in C90, but warn about it.
4394  if (II.getName().startswith("__builtin_"))
4395    Diag(Loc, diag::warn_builtin_unknown) << &II;
4396  else if (getLangOptions().C99)
4397    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4398  else
4399    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4400
4401  // Set a Declarator for the implicit definition: int foo();
4402  const char *Dummy;
4403  DeclSpec DS;
4404  unsigned DiagID;
4405  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4406  Error = Error; // Silence warning.
4407  assert(!Error && "Error setting up implicit decl!");
4408  Declarator D(DS, Declarator::BlockContext);
4409  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4410                                             0, 0, false, SourceLocation(),
4411                                             false, 0,0,0, Loc, Loc, D),
4412                SourceLocation());
4413  D.SetIdentifier(&II, Loc);
4414
4415  // Insert this function into translation-unit scope.
4416
4417  DeclContext *PrevDC = CurContext;
4418  CurContext = Context.getTranslationUnitDecl();
4419
4420  FunctionDecl *FD =
4421 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4422  FD->setImplicit();
4423
4424  CurContext = PrevDC;
4425
4426  AddKnownFunctionAttributes(FD);
4427
4428  return FD;
4429}
4430
4431/// \brief Adds any function attributes that we know a priori based on
4432/// the declaration of this function.
4433///
4434/// These attributes can apply both to implicitly-declared builtins
4435/// (like __builtin___printf_chk) or to library-declared functions
4436/// like NSLog or printf.
4437void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4438  if (FD->isInvalidDecl())
4439    return;
4440
4441  // If this is a built-in function, map its builtin attributes to
4442  // actual attributes.
4443  if (unsigned BuiltinID = FD->getBuiltinID()) {
4444    // Handle printf-formatting attributes.
4445    unsigned FormatIdx;
4446    bool HasVAListArg;
4447    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4448      if (!FD->getAttr<FormatAttr>())
4449        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4450                                             HasVAListArg ? 0 : FormatIdx + 2));
4451    }
4452
4453    // Mark const if we don't care about errno and that is the only
4454    // thing preventing the function from being const. This allows
4455    // IRgen to use LLVM intrinsics for such functions.
4456    if (!getLangOptions().MathErrno &&
4457        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4458      if (!FD->getAttr<ConstAttr>())
4459        FD->addAttr(::new (Context) ConstAttr());
4460    }
4461
4462    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4463      FD->addAttr(::new (Context) NoReturnAttr());
4464    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4465      FD->addAttr(::new (Context) NoThrowAttr());
4466    if (Context.BuiltinInfo.isConst(BuiltinID))
4467      FD->addAttr(::new (Context) ConstAttr());
4468  }
4469
4470  IdentifierInfo *Name = FD->getIdentifier();
4471  if (!Name)
4472    return;
4473  if ((!getLangOptions().CPlusPlus &&
4474       FD->getDeclContext()->isTranslationUnit()) ||
4475      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4476       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4477       LinkageSpecDecl::lang_c)) {
4478    // Okay: this could be a libc/libm/Objective-C function we know
4479    // about.
4480  } else
4481    return;
4482
4483  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4484    // FIXME: NSLog and NSLogv should be target specific
4485    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4486      // FIXME: We known better than our headers.
4487      const_cast<FormatAttr *>(Format)->setType("printf");
4488    } else
4489      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4490                                             Name->isStr("NSLogv") ? 0 : 2));
4491  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4492    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4493    // target-specific builtins, perhaps?
4494    if (!FD->getAttr<FormatAttr>())
4495      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4496                                             Name->isStr("vasprintf") ? 0 : 3));
4497  }
4498}
4499
4500TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4501                                    TypeSourceInfo *TInfo) {
4502  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4503  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4504
4505  if (!TInfo) {
4506    assert(D.isInvalidType() && "no declarator info for valid type");
4507    TInfo = Context.getTrivialTypeSourceInfo(T);
4508  }
4509
4510  // Scope manipulation handled by caller.
4511  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4512                                           D.getIdentifierLoc(),
4513                                           D.getIdentifier(),
4514                                           TInfo);
4515
4516  if (const TagType *TT = T->getAs<TagType>()) {
4517    TagDecl *TD = TT->getDecl();
4518
4519    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4520    // keep track of the TypedefDecl.
4521    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4522      TD->setTypedefForAnonDecl(NewTD);
4523  }
4524
4525  if (D.isInvalidType())
4526    NewTD->setInvalidDecl();
4527  return NewTD;
4528}
4529
4530
4531/// \brief Determine whether a tag with a given kind is acceptable
4532/// as a redeclaration of the given tag declaration.
4533///
4534/// \returns true if the new tag kind is acceptable, false otherwise.
4535bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4536                                        TagDecl::TagKind NewTag,
4537                                        SourceLocation NewTagLoc,
4538                                        const IdentifierInfo &Name) {
4539  // C++ [dcl.type.elab]p3:
4540  //   The class-key or enum keyword present in the
4541  //   elaborated-type-specifier shall agree in kind with the
4542  //   declaration to which the name in theelaborated-type-specifier
4543  //   refers. This rule also applies to the form of
4544  //   elaborated-type-specifier that declares a class-name or
4545  //   friend class since it can be construed as referring to the
4546  //   definition of the class. Thus, in any
4547  //   elaborated-type-specifier, the enum keyword shall be used to
4548  //   refer to an enumeration (7.2), the union class-keyshall be
4549  //   used to refer to a union (clause 9), and either the class or
4550  //   struct class-key shall be used to refer to a class (clause 9)
4551  //   declared using the class or struct class-key.
4552  TagDecl::TagKind OldTag = Previous->getTagKind();
4553  if (OldTag == NewTag)
4554    return true;
4555
4556  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4557      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4558    // Warn about the struct/class tag mismatch.
4559    bool isTemplate = false;
4560    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4561      isTemplate = Record->getDescribedClassTemplate();
4562
4563    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4564      << (NewTag == TagDecl::TK_class)
4565      << isTemplate << &Name
4566      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4567                              OldTag == TagDecl::TK_class? "class" : "struct");
4568    Diag(Previous->getLocation(), diag::note_previous_use);
4569    return true;
4570  }
4571  return false;
4572}
4573
4574/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4575/// former case, Name will be non-null.  In the later case, Name will be null.
4576/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4577/// reference/declaration/definition of a tag.
4578Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4579                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4580                               IdentifierInfo *Name, SourceLocation NameLoc,
4581                               AttributeList *Attr, AccessSpecifier AS,
4582                               MultiTemplateParamsArg TemplateParameterLists,
4583                               bool &OwnedDecl, bool &IsDependent) {
4584  // If this is not a definition, it must have a name.
4585  assert((Name != 0 || TUK == TUK_Definition) &&
4586         "Nameless record must be a definition!");
4587
4588  OwnedDecl = false;
4589  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4590
4591  // FIXME: Check explicit specializations more carefully.
4592  bool isExplicitSpecialization = false;
4593  if (TUK != TUK_Reference) {
4594    if (TemplateParameterList *TemplateParams
4595          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4596                        (TemplateParameterList**)TemplateParameterLists.get(),
4597                                              TemplateParameterLists.size(),
4598                                                    isExplicitSpecialization)) {
4599      if (TemplateParams->size() > 0) {
4600        // This is a declaration or definition of a class template (which may
4601        // be a member of another template).
4602        OwnedDecl = false;
4603        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4604                                               SS, Name, NameLoc, Attr,
4605                                               TemplateParams,
4606                                               AS);
4607        TemplateParameterLists.release();
4608        return Result.get();
4609      } else {
4610        // The "template<>" header is extraneous.
4611        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4612          << ElaboratedType::getNameForTagKind(Kind) << Name;
4613        isExplicitSpecialization = true;
4614      }
4615    }
4616
4617    TemplateParameterLists.release();
4618  }
4619
4620  DeclContext *SearchDC = CurContext;
4621  DeclContext *DC = CurContext;
4622  bool isStdBadAlloc = false;
4623  bool Invalid = false;
4624
4625  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4626                                                   : NotForRedeclaration);
4627
4628  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4629
4630  if (Name && SS.isNotEmpty()) {
4631    // We have a nested-name tag ('struct foo::bar').
4632
4633    // Check for invalid 'foo::'.
4634    if (SS.isInvalid()) {
4635      Name = 0;
4636      goto CreateNewDecl;
4637    }
4638
4639    // If this is a friend or a reference to a class in a dependent
4640    // context, don't try to make a decl for it.
4641    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4642      DC = computeDeclContext(SS, false);
4643      if (!DC) {
4644        IsDependent = true;
4645        return DeclPtrTy();
4646      }
4647    }
4648
4649    if (RequireCompleteDeclContext(SS))
4650      return DeclPtrTy::make((Decl *)0);
4651
4652    DC = computeDeclContext(SS, true);
4653    SearchDC = DC;
4654    // Look-up name inside 'foo::'.
4655    LookupQualifiedName(Previous, DC);
4656
4657    if (Previous.isAmbiguous())
4658      return DeclPtrTy();
4659
4660    // A tag 'foo::bar' must already exist.
4661    if (Previous.empty()) {
4662      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4663      Name = 0;
4664      Invalid = true;
4665      goto CreateNewDecl;
4666    }
4667  } else if (Name) {
4668    // If this is a named struct, check to see if there was a previous forward
4669    // declaration or definition.
4670    // FIXME: We're looking into outer scopes here, even when we
4671    // shouldn't be. Doing so can result in ambiguities that we
4672    // shouldn't be diagnosing.
4673    LookupName(Previous, S);
4674
4675    // Note:  there used to be some attempt at recovery here.
4676    if (Previous.isAmbiguous())
4677      return DeclPtrTy();
4678
4679    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4680      // FIXME: This makes sure that we ignore the contexts associated
4681      // with C structs, unions, and enums when looking for a matching
4682      // tag declaration or definition. See the similar lookup tweak
4683      // in Sema::LookupName; is there a better way to deal with this?
4684      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4685        SearchDC = SearchDC->getParent();
4686    }
4687  }
4688
4689  if (Previous.isSingleResult() &&
4690      Previous.getFoundDecl()->isTemplateParameter()) {
4691    // Maybe we will complain about the shadowed template parameter.
4692    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4693    // Just pretend that we didn't see the previous declaration.
4694    Previous.clear();
4695  }
4696
4697  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4698      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4699    // This is a declaration of or a reference to "std::bad_alloc".
4700    isStdBadAlloc = true;
4701
4702    if (Previous.empty() && StdBadAlloc) {
4703      // std::bad_alloc has been implicitly declared (but made invisible to
4704      // name lookup). Fill in this implicit declaration as the previous
4705      // declaration, so that the declarations get chained appropriately.
4706      Previous.addDecl(StdBadAlloc);
4707    }
4708  }
4709
4710  if (!Previous.empty()) {
4711    assert(Previous.isSingleResult());
4712    NamedDecl *PrevDecl = Previous.getFoundDecl();
4713    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4714      // If this is a use of a previous tag, or if the tag is already declared
4715      // in the same scope (so that the definition/declaration completes or
4716      // rementions the tag), reuse the decl.
4717      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4718          isDeclInScope(PrevDecl, SearchDC, S)) {
4719        // Make sure that this wasn't declared as an enum and now used as a
4720        // struct or something similar.
4721        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4722          bool SafeToContinue
4723            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4724               Kind != TagDecl::TK_enum);
4725          if (SafeToContinue)
4726            Diag(KWLoc, diag::err_use_with_wrong_tag)
4727              << Name
4728              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4729                                                  PrevTagDecl->getKindName());
4730          else
4731            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4732          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4733
4734          if (SafeToContinue)
4735            Kind = PrevTagDecl->getTagKind();
4736          else {
4737            // Recover by making this an anonymous redefinition.
4738            Name = 0;
4739            Previous.clear();
4740            Invalid = true;
4741          }
4742        }
4743
4744        if (!Invalid) {
4745          // If this is a use, just return the declaration we found.
4746
4747          // FIXME: In the future, return a variant or some other clue
4748          // for the consumer of this Decl to know it doesn't own it.
4749          // For our current ASTs this shouldn't be a problem, but will
4750          // need to be changed with DeclGroups.
4751          if (TUK == TUK_Reference || TUK == TUK_Friend)
4752            return DeclPtrTy::make(PrevTagDecl);
4753
4754          // Diagnose attempts to redefine a tag.
4755          if (TUK == TUK_Definition) {
4756            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4757              // If we're defining a specialization and the previous definition
4758              // is from an implicit instantiation, don't emit an error
4759              // here; we'll catch this in the general case below.
4760              if (!isExplicitSpecialization ||
4761                  !isa<CXXRecordDecl>(Def) ||
4762                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4763                                               == TSK_ExplicitSpecialization) {
4764                Diag(NameLoc, diag::err_redefinition) << Name;
4765                Diag(Def->getLocation(), diag::note_previous_definition);
4766                // If this is a redefinition, recover by making this
4767                // struct be anonymous, which will make any later
4768                // references get the previous definition.
4769                Name = 0;
4770                Previous.clear();
4771                Invalid = true;
4772              }
4773            } else {
4774              // If the type is currently being defined, complain
4775              // about a nested redefinition.
4776              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4777              if (Tag->isBeingDefined()) {
4778                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4779                Diag(PrevTagDecl->getLocation(),
4780                     diag::note_previous_definition);
4781                Name = 0;
4782                Previous.clear();
4783                Invalid = true;
4784              }
4785            }
4786
4787            // Okay, this is definition of a previously declared or referenced
4788            // tag PrevDecl. We're going to create a new Decl for it.
4789          }
4790        }
4791        // If we get here we have (another) forward declaration or we
4792        // have a definition.  Just create a new decl.
4793
4794      } else {
4795        // If we get here, this is a definition of a new tag type in a nested
4796        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4797        // new decl/type.  We set PrevDecl to NULL so that the entities
4798        // have distinct types.
4799        Previous.clear();
4800      }
4801      // If we get here, we're going to create a new Decl. If PrevDecl
4802      // is non-NULL, it's a definition of the tag declared by
4803      // PrevDecl. If it's NULL, we have a new definition.
4804    } else {
4805      // PrevDecl is a namespace, template, or anything else
4806      // that lives in the IDNS_Tag identifier namespace.
4807      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4808        // The tag name clashes with a namespace name, issue an error and
4809        // recover by making this tag be anonymous.
4810        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4811        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4812        Name = 0;
4813        Previous.clear();
4814        Invalid = true;
4815      } else {
4816        // The existing declaration isn't relevant to us; we're in a
4817        // new scope, so clear out the previous declaration.
4818        Previous.clear();
4819      }
4820    }
4821  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4822    // C++ [basic.scope.pdecl]p5:
4823    //   -- for an elaborated-type-specifier of the form
4824    //
4825    //          class-key identifier
4826    //
4827    //      if the elaborated-type-specifier is used in the
4828    //      decl-specifier-seq or parameter-declaration-clause of a
4829    //      function defined in namespace scope, the identifier is
4830    //      declared as a class-name in the namespace that contains
4831    //      the declaration; otherwise, except as a friend
4832    //      declaration, the identifier is declared in the smallest
4833    //      non-class, non-function-prototype scope that contains the
4834    //      declaration.
4835    //
4836    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4837    // C structs and unions.
4838    //
4839    // It is an error in C++ to declare (rather than define) an enum
4840    // type, including via an elaborated type specifier.  We'll
4841    // diagnose that later; for now, declare the enum in the same
4842    // scope as we would have picked for any other tag type.
4843    //
4844    // GNU C also supports this behavior as part of its incomplete
4845    // enum types extension, while GNU C++ does not.
4846    //
4847    // Find the context where we'll be declaring the tag.
4848    // FIXME: We would like to maintain the current DeclContext as the
4849    // lexical context,
4850    while (SearchDC->isRecord())
4851      SearchDC = SearchDC->getParent();
4852
4853    // Find the scope where we'll be declaring the tag.
4854    while (S->isClassScope() ||
4855           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4856           ((S->getFlags() & Scope::DeclScope) == 0) ||
4857           (S->getEntity() &&
4858            ((DeclContext *)S->getEntity())->isTransparentContext()))
4859      S = S->getParent();
4860
4861  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4862    // C++ [namespace.memdef]p3:
4863    //   If a friend declaration in a non-local class first declares a
4864    //   class or function, the friend class or function is a member of
4865    //   the innermost enclosing namespace.
4866    while (!SearchDC->isFileContext())
4867      SearchDC = SearchDC->getParent();
4868
4869    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4870    while (S->getEntity() != SearchDC)
4871      S = S->getParent();
4872  }
4873
4874CreateNewDecl:
4875
4876  TagDecl *PrevDecl = 0;
4877  if (Previous.isSingleResult())
4878    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4879
4880  // If there is an identifier, use the location of the identifier as the
4881  // location of the decl, otherwise use the location of the struct/union
4882  // keyword.
4883  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4884
4885  // Otherwise, create a new declaration. If there is a previous
4886  // declaration of the same entity, the two will be linked via
4887  // PrevDecl.
4888  TagDecl *New;
4889
4890  if (Kind == TagDecl::TK_enum) {
4891    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4892    // enum X { A, B, C } D;    D should chain to X.
4893    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4894                           cast_or_null<EnumDecl>(PrevDecl));
4895    // If this is an undefined enum, warn.
4896    if (TUK != TUK_Definition && !Invalid)  {
4897      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4898                                              : diag::ext_forward_ref_enum;
4899      Diag(Loc, DK);
4900    }
4901  } else {
4902    // struct/union/class
4903
4904    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4905    // struct X { int A; } D;    D should chain to X.
4906    if (getLangOptions().CPlusPlus) {
4907      // FIXME: Look for a way to use RecordDecl for simple structs.
4908      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4909                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4910
4911      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4912        StdBadAlloc = cast<CXXRecordDecl>(New);
4913    } else
4914      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4915                               cast_or_null<RecordDecl>(PrevDecl));
4916  }
4917
4918  if (Kind != TagDecl::TK_enum) {
4919    // Handle #pragma pack: if the #pragma pack stack has non-default
4920    // alignment, make up a packed attribute for this decl. These
4921    // attributes are checked when the ASTContext lays out the
4922    // structure.
4923    //
4924    // It is important for implementing the correct semantics that this
4925    // happen here (in act on tag decl). The #pragma pack stack is
4926    // maintained as a result of parser callbacks which can occur at
4927    // many points during the parsing of a struct declaration (because
4928    // the #pragma tokens are effectively skipped over during the
4929    // parsing of the struct).
4930    if (unsigned Alignment = getPragmaPackAlignment())
4931      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4932  }
4933
4934  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4935    // C++ [dcl.typedef]p3:
4936    //   [...] Similarly, in a given scope, a class or enumeration
4937    //   shall not be declared with the same name as a typedef-name
4938    //   that is declared in that scope and refers to a type other
4939    //   than the class or enumeration itself.
4940    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4941                        ForRedeclaration);
4942    LookupName(Lookup, S);
4943    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4944    NamedDecl *PrevTypedefNamed = PrevTypedef;
4945    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4946        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4947          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4948      Diag(Loc, diag::err_tag_definition_of_typedef)
4949        << Context.getTypeDeclType(New)
4950        << PrevTypedef->getUnderlyingType();
4951      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4952      Invalid = true;
4953    }
4954  }
4955
4956  // If this is a specialization of a member class (of a class template),
4957  // check the specialization.
4958  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4959    Invalid = true;
4960
4961  if (Invalid)
4962    New->setInvalidDecl();
4963
4964  if (Attr)
4965    ProcessDeclAttributeList(S, New, Attr);
4966
4967  // If we're declaring or defining a tag in function prototype scope
4968  // in C, note that this type can only be used within the function.
4969  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4970    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4971
4972  // Set the lexical context. If the tag has a C++ scope specifier, the
4973  // lexical context will be different from the semantic context.
4974  New->setLexicalDeclContext(CurContext);
4975
4976  // Mark this as a friend decl if applicable.
4977  if (TUK == TUK_Friend)
4978    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4979
4980  // Set the access specifier.
4981  if (!Invalid && TUK != TUK_Friend)
4982    SetMemberAccessSpecifier(New, PrevDecl, AS);
4983
4984  if (TUK == TUK_Definition)
4985    New->startDefinition();
4986
4987  // If this has an identifier, add it to the scope stack.
4988  if (TUK == TUK_Friend) {
4989    // We might be replacing an existing declaration in the lookup tables;
4990    // if so, borrow its access specifier.
4991    if (PrevDecl)
4992      New->setAccess(PrevDecl->getAccess());
4993
4994    // Friend tag decls are visible in fairly strange ways.
4995    if (!CurContext->isDependentContext()) {
4996      DeclContext *DC = New->getDeclContext()->getLookupContext();
4997      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4998      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4999        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5000    }
5001  } else if (Name) {
5002    S = getNonFieldDeclScope(S);
5003    PushOnScopeChains(New, S);
5004  } else {
5005    CurContext->addDecl(New);
5006  }
5007
5008  // If this is the C FILE type, notify the AST context.
5009  if (IdentifierInfo *II = New->getIdentifier())
5010    if (!New->isInvalidDecl() &&
5011        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5012        II->isStr("FILE"))
5013      Context.setFILEDecl(New);
5014
5015  OwnedDecl = true;
5016  return DeclPtrTy::make(New);
5017}
5018
5019void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5020  AdjustDeclIfTemplate(TagD);
5021  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5022
5023  // Enter the tag context.
5024  PushDeclContext(S, Tag);
5025}
5026
5027void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5028                                           SourceLocation LBraceLoc) {
5029  AdjustDeclIfTemplate(TagD);
5030  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5031
5032  FieldCollector->StartClass();
5033
5034  if (!Record->getIdentifier())
5035    return;
5036
5037  // C++ [class]p2:
5038  //   [...] The class-name is also inserted into the scope of the
5039  //   class itself; this is known as the injected-class-name. For
5040  //   purposes of access checking, the injected-class-name is treated
5041  //   as if it were a public member name.
5042  CXXRecordDecl *InjectedClassName
5043    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5044                            CurContext, Record->getLocation(),
5045                            Record->getIdentifier(),
5046                            Record->getTagKeywordLoc(),
5047                            Record);
5048  InjectedClassName->setImplicit();
5049  InjectedClassName->setAccess(AS_public);
5050  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5051      InjectedClassName->setDescribedClassTemplate(Template);
5052  PushOnScopeChains(InjectedClassName, S);
5053  assert(InjectedClassName->isInjectedClassName() &&
5054         "Broken injected-class-name");
5055}
5056
5057void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5058                                    SourceLocation RBraceLoc) {
5059  AdjustDeclIfTemplate(TagD);
5060  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5061  Tag->setRBraceLoc(RBraceLoc);
5062
5063  if (isa<CXXRecordDecl>(Tag))
5064    FieldCollector->FinishClass();
5065
5066  // Exit this scope of this tag's definition.
5067  PopDeclContext();
5068
5069  // Notify the consumer that we've defined a tag.
5070  Consumer.HandleTagDeclDefinition(Tag);
5071}
5072
5073// Note that FieldName may be null for anonymous bitfields.
5074bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5075                          QualType FieldTy, const Expr *BitWidth,
5076                          bool *ZeroWidth) {
5077  // Default to true; that shouldn't confuse checks for emptiness
5078  if (ZeroWidth)
5079    *ZeroWidth = true;
5080
5081  // C99 6.7.2.1p4 - verify the field type.
5082  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5083  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5084    // Handle incomplete types with specific error.
5085    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5086      return true;
5087    if (FieldName)
5088      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5089        << FieldName << FieldTy << BitWidth->getSourceRange();
5090    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5091      << FieldTy << BitWidth->getSourceRange();
5092  }
5093
5094  // If the bit-width is type- or value-dependent, don't try to check
5095  // it now.
5096  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5097    return false;
5098
5099  llvm::APSInt Value;
5100  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5101    return true;
5102
5103  if (Value != 0 && ZeroWidth)
5104    *ZeroWidth = false;
5105
5106  // Zero-width bitfield is ok for anonymous field.
5107  if (Value == 0 && FieldName)
5108    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5109
5110  if (Value.isSigned() && Value.isNegative()) {
5111    if (FieldName)
5112      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5113               << FieldName << Value.toString(10);
5114    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5115      << Value.toString(10);
5116  }
5117
5118  if (!FieldTy->isDependentType()) {
5119    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5120    if (Value.getZExtValue() > TypeSize) {
5121      if (FieldName)
5122        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5123          << FieldName << (unsigned)TypeSize;
5124      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5125        << (unsigned)TypeSize;
5126    }
5127  }
5128
5129  return false;
5130}
5131
5132/// ActOnField - Each field of a struct/union/class is passed into this in order
5133/// to create a FieldDecl object for it.
5134Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5135                                 SourceLocation DeclStart,
5136                                 Declarator &D, ExprTy *BitfieldWidth) {
5137  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5138                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5139                               AS_public);
5140  return DeclPtrTy::make(Res);
5141}
5142
5143/// HandleField - Analyze a field of a C struct or a C++ data member.
5144///
5145FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5146                             SourceLocation DeclStart,
5147                             Declarator &D, Expr *BitWidth,
5148                             AccessSpecifier AS) {
5149  IdentifierInfo *II = D.getIdentifier();
5150  SourceLocation Loc = DeclStart;
5151  if (II) Loc = D.getIdentifierLoc();
5152
5153  TypeSourceInfo *TInfo = 0;
5154  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5155  if (getLangOptions().CPlusPlus)
5156    CheckExtraCXXDefaultArguments(D);
5157
5158  DiagnoseFunctionSpecifiers(D);
5159
5160  if (D.getDeclSpec().isThreadSpecified())
5161    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5162
5163  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5164                                         ForRedeclaration);
5165
5166  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5167    // Maybe we will complain about the shadowed template parameter.
5168    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5169    // Just pretend that we didn't see the previous declaration.
5170    PrevDecl = 0;
5171  }
5172
5173  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5174    PrevDecl = 0;
5175
5176  bool Mutable
5177    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5178  SourceLocation TSSL = D.getSourceRange().getBegin();
5179  FieldDecl *NewFD
5180    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5181                     AS, PrevDecl, &D);
5182  if (NewFD->isInvalidDecl() && PrevDecl) {
5183    // Don't introduce NewFD into scope; there's already something
5184    // with the same name in the same scope.
5185  } else if (II) {
5186    PushOnScopeChains(NewFD, S);
5187  } else
5188    Record->addDecl(NewFD);
5189
5190  return NewFD;
5191}
5192
5193/// \brief Build a new FieldDecl and check its well-formedness.
5194///
5195/// This routine builds a new FieldDecl given the fields name, type,
5196/// record, etc. \p PrevDecl should refer to any previous declaration
5197/// with the same name and in the same scope as the field to be
5198/// created.
5199///
5200/// \returns a new FieldDecl.
5201///
5202/// \todo The Declarator argument is a hack. It will be removed once
5203FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5204                                TypeSourceInfo *TInfo,
5205                                RecordDecl *Record, SourceLocation Loc,
5206                                bool Mutable, Expr *BitWidth,
5207                                SourceLocation TSSL,
5208                                AccessSpecifier AS, NamedDecl *PrevDecl,
5209                                Declarator *D) {
5210  IdentifierInfo *II = Name.getAsIdentifierInfo();
5211  bool InvalidDecl = false;
5212  if (D) InvalidDecl = D->isInvalidType();
5213
5214  // If we receive a broken type, recover by assuming 'int' and
5215  // marking this declaration as invalid.
5216  if (T.isNull()) {
5217    InvalidDecl = true;
5218    T = Context.IntTy;
5219  }
5220
5221  QualType EltTy = Context.getBaseElementType(T);
5222  if (!EltTy->isDependentType() &&
5223      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5224    InvalidDecl = true;
5225
5226  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5227  // than a variably modified type.
5228  if (!InvalidDecl && T->isVariablyModifiedType()) {
5229    bool SizeIsNegative;
5230    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5231                                                           SizeIsNegative);
5232    if (!FixedTy.isNull()) {
5233      Diag(Loc, diag::warn_illegal_constant_array_size);
5234      T = FixedTy;
5235    } else {
5236      if (SizeIsNegative)
5237        Diag(Loc, diag::err_typecheck_negative_array_size);
5238      else
5239        Diag(Loc, diag::err_typecheck_field_variable_size);
5240      InvalidDecl = true;
5241    }
5242  }
5243
5244  // Fields can not have abstract class types
5245  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5246                                             diag::err_abstract_type_in_decl,
5247                                             AbstractFieldType))
5248    InvalidDecl = true;
5249
5250  bool ZeroWidth = false;
5251  // If this is declared as a bit-field, check the bit-field.
5252  if (!InvalidDecl && BitWidth &&
5253      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5254    InvalidDecl = true;
5255    DeleteExpr(BitWidth);
5256    BitWidth = 0;
5257    ZeroWidth = false;
5258  }
5259
5260  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5261                                       BitWidth, Mutable);
5262  if (InvalidDecl)
5263    NewFD->setInvalidDecl();
5264
5265  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5266    Diag(Loc, diag::err_duplicate_member) << II;
5267    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5268    NewFD->setInvalidDecl();
5269  }
5270
5271  if (getLangOptions().CPlusPlus) {
5272    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5273
5274    if (!T->isPODType())
5275      CXXRecord->setPOD(false);
5276    if (!ZeroWidth)
5277      CXXRecord->setEmpty(false);
5278
5279    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5280      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5281
5282      if (!RDecl->hasTrivialConstructor())
5283        CXXRecord->setHasTrivialConstructor(false);
5284      if (!RDecl->hasTrivialCopyConstructor())
5285        CXXRecord->setHasTrivialCopyConstructor(false);
5286      if (!RDecl->hasTrivialCopyAssignment())
5287        CXXRecord->setHasTrivialCopyAssignment(false);
5288      if (!RDecl->hasTrivialDestructor())
5289        CXXRecord->setHasTrivialDestructor(false);
5290
5291      // C++ 9.5p1: An object of a class with a non-trivial
5292      // constructor, a non-trivial copy constructor, a non-trivial
5293      // destructor, or a non-trivial copy assignment operator
5294      // cannot be a member of a union, nor can an array of such
5295      // objects.
5296      // TODO: C++0x alters this restriction significantly.
5297      if (Record->isUnion()) {
5298        // We check for copy constructors before constructors
5299        // because otherwise we'll never get complaints about
5300        // copy constructors.
5301
5302        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5303
5304        CXXSpecialMember member;
5305        if (!RDecl->hasTrivialCopyConstructor())
5306          member = CXXCopyConstructor;
5307        else if (!RDecl->hasTrivialConstructor())
5308          member = CXXDefaultConstructor;
5309        else if (!RDecl->hasTrivialCopyAssignment())
5310          member = CXXCopyAssignment;
5311        else if (!RDecl->hasTrivialDestructor())
5312          member = CXXDestructor;
5313        else
5314          member = invalid;
5315
5316        if (member != invalid) {
5317          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5318          DiagnoseNontrivial(RT, member);
5319          NewFD->setInvalidDecl();
5320        }
5321      }
5322    }
5323  }
5324
5325  // FIXME: We need to pass in the attributes given an AST
5326  // representation, not a parser representation.
5327  if (D)
5328    // FIXME: What to pass instead of TUScope?
5329    ProcessDeclAttributes(TUScope, NewFD, *D);
5330
5331  if (T.isObjCGCWeak())
5332    Diag(Loc, diag::warn_attribute_weak_on_field);
5333
5334  NewFD->setAccess(AS);
5335
5336  // C++ [dcl.init.aggr]p1:
5337  //   An aggregate is an array or a class (clause 9) with [...] no
5338  //   private or protected non-static data members (clause 11).
5339  // A POD must be an aggregate.
5340  if (getLangOptions().CPlusPlus &&
5341      (AS == AS_private || AS == AS_protected)) {
5342    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5343    CXXRecord->setAggregate(false);
5344    CXXRecord->setPOD(false);
5345  }
5346
5347  return NewFD;
5348}
5349
5350/// DiagnoseNontrivial - Given that a class has a non-trivial
5351/// special member, figure out why.
5352void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5353  QualType QT(T, 0U);
5354  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5355
5356  // Check whether the member was user-declared.
5357  switch (member) {
5358  case CXXDefaultConstructor:
5359    if (RD->hasUserDeclaredConstructor()) {
5360      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5361      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5362        const FunctionDecl *body = 0;
5363        ci->getBody(body);
5364        if (!body ||
5365            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5366          SourceLocation CtorLoc = ci->getLocation();
5367          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5368          return;
5369        }
5370      }
5371
5372      assert(0 && "found no user-declared constructors");
5373      return;
5374    }
5375    break;
5376
5377  case CXXCopyConstructor:
5378    if (RD->hasUserDeclaredCopyConstructor()) {
5379      SourceLocation CtorLoc =
5380        RD->getCopyConstructor(Context, 0)->getLocation();
5381      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5382      return;
5383    }
5384    break;
5385
5386  case CXXCopyAssignment:
5387    if (RD->hasUserDeclaredCopyAssignment()) {
5388      // FIXME: this should use the location of the copy
5389      // assignment, not the type.
5390      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5391      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5392      return;
5393    }
5394    break;
5395
5396  case CXXDestructor:
5397    if (RD->hasUserDeclaredDestructor()) {
5398      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5399      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5400      return;
5401    }
5402    break;
5403  }
5404
5405  typedef CXXRecordDecl::base_class_iterator base_iter;
5406
5407  // Virtual bases and members inhibit trivial copying/construction,
5408  // but not trivial destruction.
5409  if (member != CXXDestructor) {
5410    // Check for virtual bases.  vbases includes indirect virtual bases,
5411    // so we just iterate through the direct bases.
5412    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5413      if (bi->isVirtual()) {
5414        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5415        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5416        return;
5417      }
5418
5419    // Check for virtual methods.
5420    typedef CXXRecordDecl::method_iterator meth_iter;
5421    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5422         ++mi) {
5423      if (mi->isVirtual()) {
5424        SourceLocation MLoc = mi->getSourceRange().getBegin();
5425        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5426        return;
5427      }
5428    }
5429  }
5430
5431  bool (CXXRecordDecl::*hasTrivial)() const;
5432  switch (member) {
5433  case CXXDefaultConstructor:
5434    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5435  case CXXCopyConstructor:
5436    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5437  case CXXCopyAssignment:
5438    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5439  case CXXDestructor:
5440    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5441  default:
5442    assert(0 && "unexpected special member"); return;
5443  }
5444
5445  // Check for nontrivial bases (and recurse).
5446  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5447    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5448    assert(BaseRT && "Don't know how to handle dependent bases");
5449    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5450    if (!(BaseRecTy->*hasTrivial)()) {
5451      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5452      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5453      DiagnoseNontrivial(BaseRT, member);
5454      return;
5455    }
5456  }
5457
5458  // Check for nontrivial members (and recurse).
5459  typedef RecordDecl::field_iterator field_iter;
5460  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5461       ++fi) {
5462    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5463    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5464      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5465
5466      if (!(EltRD->*hasTrivial)()) {
5467        SourceLocation FLoc = (*fi)->getLocation();
5468        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5469        DiagnoseNontrivial(EltRT, member);
5470        return;
5471      }
5472    }
5473  }
5474
5475  assert(0 && "found no explanation for non-trivial member");
5476}
5477
5478/// TranslateIvarVisibility - Translate visibility from a token ID to an
5479///  AST enum value.
5480static ObjCIvarDecl::AccessControl
5481TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5482  switch (ivarVisibility) {
5483  default: assert(0 && "Unknown visitibility kind");
5484  case tok::objc_private: return ObjCIvarDecl::Private;
5485  case tok::objc_public: return ObjCIvarDecl::Public;
5486  case tok::objc_protected: return ObjCIvarDecl::Protected;
5487  case tok::objc_package: return ObjCIvarDecl::Package;
5488  }
5489}
5490
5491/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5492/// in order to create an IvarDecl object for it.
5493Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5494                                SourceLocation DeclStart,
5495                                DeclPtrTy IntfDecl,
5496                                Declarator &D, ExprTy *BitfieldWidth,
5497                                tok::ObjCKeywordKind Visibility) {
5498
5499  IdentifierInfo *II = D.getIdentifier();
5500  Expr *BitWidth = (Expr*)BitfieldWidth;
5501  SourceLocation Loc = DeclStart;
5502  if (II) Loc = D.getIdentifierLoc();
5503
5504  // FIXME: Unnamed fields can be handled in various different ways, for
5505  // example, unnamed unions inject all members into the struct namespace!
5506
5507  TypeSourceInfo *TInfo = 0;
5508  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5509
5510  if (BitWidth) {
5511    // 6.7.2.1p3, 6.7.2.1p4
5512    if (VerifyBitField(Loc, II, T, BitWidth)) {
5513      D.setInvalidType();
5514      DeleteExpr(BitWidth);
5515      BitWidth = 0;
5516    }
5517  } else {
5518    // Not a bitfield.
5519
5520    // validate II.
5521
5522  }
5523
5524  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5525  // than a variably modified type.
5526  if (T->isVariablyModifiedType()) {
5527    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5528    D.setInvalidType();
5529  }
5530
5531  // Get the visibility (access control) for this ivar.
5532  ObjCIvarDecl::AccessControl ac =
5533    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5534                                        : ObjCIvarDecl::None;
5535  // Must set ivar's DeclContext to its enclosing interface.
5536  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5537  DeclContext *EnclosingContext;
5538  if (ObjCImplementationDecl *IMPDecl =
5539      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5540    // Case of ivar declared in an implementation. Context is that of its class.
5541    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5542    assert(IDecl && "No class- ActOnIvar");
5543    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5544  } else
5545    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5546  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5547
5548  // Construct the decl.
5549  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5550                                             EnclosingContext, Loc, II, T,
5551                                             TInfo, ac, (Expr *)BitfieldWidth);
5552
5553  if (II) {
5554    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5555                                           ForRedeclaration);
5556    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5557        && !isa<TagDecl>(PrevDecl)) {
5558      Diag(Loc, diag::err_duplicate_member) << II;
5559      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5560      NewID->setInvalidDecl();
5561    }
5562  }
5563
5564  // Process attributes attached to the ivar.
5565  ProcessDeclAttributes(S, NewID, D);
5566
5567  if (D.isInvalidType())
5568    NewID->setInvalidDecl();
5569
5570  if (II) {
5571    // FIXME: When interfaces are DeclContexts, we'll need to add
5572    // these to the interface.
5573    S->AddDecl(DeclPtrTy::make(NewID));
5574    IdResolver.AddDecl(NewID);
5575  }
5576
5577  return DeclPtrTy::make(NewID);
5578}
5579
5580void Sema::ActOnFields(Scope* S,
5581                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5582                       DeclPtrTy *Fields, unsigned NumFields,
5583                       SourceLocation LBrac, SourceLocation RBrac,
5584                       AttributeList *Attr) {
5585  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5586  assert(EnclosingDecl && "missing record or interface decl");
5587
5588  // If the decl this is being inserted into is invalid, then it may be a
5589  // redeclaration or some other bogus case.  Don't try to add fields to it.
5590  if (EnclosingDecl->isInvalidDecl()) {
5591    // FIXME: Deallocate fields?
5592    return;
5593  }
5594
5595
5596  // Verify that all the fields are okay.
5597  unsigned NumNamedMembers = 0;
5598  llvm::SmallVector<FieldDecl*, 32> RecFields;
5599
5600  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5601  for (unsigned i = 0; i != NumFields; ++i) {
5602    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5603
5604    // Get the type for the field.
5605    Type *FDTy = FD->getType().getTypePtr();
5606
5607    if (!FD->isAnonymousStructOrUnion()) {
5608      // Remember all fields written by the user.
5609      RecFields.push_back(FD);
5610    }
5611
5612    // If the field is already invalid for some reason, don't emit more
5613    // diagnostics about it.
5614    if (FD->isInvalidDecl()) {
5615      EnclosingDecl->setInvalidDecl();
5616      continue;
5617    }
5618
5619    // C99 6.7.2.1p2:
5620    //   A structure or union shall not contain a member with
5621    //   incomplete or function type (hence, a structure shall not
5622    //   contain an instance of itself, but may contain a pointer to
5623    //   an instance of itself), except that the last member of a
5624    //   structure with more than one named member may have incomplete
5625    //   array type; such a structure (and any union containing,
5626    //   possibly recursively, a member that is such a structure)
5627    //   shall not be a member of a structure or an element of an
5628    //   array.
5629    if (FDTy->isFunctionType()) {
5630      // Field declared as a function.
5631      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5632        << FD->getDeclName();
5633      FD->setInvalidDecl();
5634      EnclosingDecl->setInvalidDecl();
5635      continue;
5636    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5637               Record && Record->isStruct()) {
5638      // Flexible array member.
5639      if (NumNamedMembers < 1) {
5640        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5641          << FD->getDeclName();
5642        FD->setInvalidDecl();
5643        EnclosingDecl->setInvalidDecl();
5644        continue;
5645      }
5646      // Okay, we have a legal flexible array member at the end of the struct.
5647      if (Record)
5648        Record->setHasFlexibleArrayMember(true);
5649    } else if (!FDTy->isDependentType() &&
5650               RequireCompleteType(FD->getLocation(), FD->getType(),
5651                                   diag::err_field_incomplete)) {
5652      // Incomplete type
5653      FD->setInvalidDecl();
5654      EnclosingDecl->setInvalidDecl();
5655      continue;
5656    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5657      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5658        // If this is a member of a union, then entire union becomes "flexible".
5659        if (Record && Record->isUnion()) {
5660          Record->setHasFlexibleArrayMember(true);
5661        } else {
5662          // If this is a struct/class and this is not the last element, reject
5663          // it.  Note that GCC supports variable sized arrays in the middle of
5664          // structures.
5665          if (i != NumFields-1)
5666            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5667              << FD->getDeclName() << FD->getType();
5668          else {
5669            // We support flexible arrays at the end of structs in
5670            // other structs as an extension.
5671            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5672              << FD->getDeclName();
5673            if (Record)
5674              Record->setHasFlexibleArrayMember(true);
5675          }
5676        }
5677      }
5678      if (Record && FDTTy->getDecl()->hasObjectMember())
5679        Record->setHasObjectMember(true);
5680    } else if (FDTy->isObjCInterfaceType()) {
5681      /// A field cannot be an Objective-c object
5682      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5683      FD->setInvalidDecl();
5684      EnclosingDecl->setInvalidDecl();
5685      continue;
5686    } else if (getLangOptions().ObjC1 &&
5687               getLangOptions().getGCMode() != LangOptions::NonGC &&
5688               Record &&
5689               (FD->getType()->isObjCObjectPointerType() ||
5690                FD->getType().isObjCGCStrong()))
5691      Record->setHasObjectMember(true);
5692    // Keep track of the number of named members.
5693    if (FD->getIdentifier())
5694      ++NumNamedMembers;
5695  }
5696
5697  // Okay, we successfully defined 'Record'.
5698  if (Record) {
5699    Record->completeDefinition(Context);
5700  } else {
5701    ObjCIvarDecl **ClsFields =
5702      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5703    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5704      ID->setIVarList(ClsFields, RecFields.size(), Context);
5705      ID->setLocEnd(RBrac);
5706      // Add ivar's to class's DeclContext.
5707      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5708        ClsFields[i]->setLexicalDeclContext(ID);
5709        ID->addDecl(ClsFields[i]);
5710      }
5711      // Must enforce the rule that ivars in the base classes may not be
5712      // duplicates.
5713      if (ID->getSuperClass()) {
5714        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5715             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5716          ObjCIvarDecl* Ivar = (*IVI);
5717
5718          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5719            ObjCIvarDecl* prevIvar =
5720              ID->getSuperClass()->lookupInstanceVariable(II);
5721            if (prevIvar) {
5722              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5723              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5724            }
5725          }
5726        }
5727      }
5728    } else if (ObjCImplementationDecl *IMPDecl =
5729                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5730      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5731      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5732        // Ivar declared in @implementation never belongs to the implementation.
5733        // Only it is in implementation's lexical context.
5734        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5735      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5736    }
5737  }
5738
5739  if (Attr)
5740    ProcessDeclAttributeList(S, Record, Attr);
5741}
5742
5743EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5744                                          EnumConstantDecl *LastEnumConst,
5745                                          SourceLocation IdLoc,
5746                                          IdentifierInfo *Id,
5747                                          ExprArg val) {
5748  Expr *Val = (Expr *)val.get();
5749
5750  llvm::APSInt EnumVal(32);
5751  QualType EltTy;
5752  if (Val) {
5753    if (Enum->isDependentType())
5754      EltTy = Context.DependentTy;
5755    else {
5756      // Make sure to promote the operand type to int.
5757      UsualUnaryConversions(Val);
5758      if (Val != val.get()) {
5759        val.release();
5760        val = Val;
5761      }
5762
5763      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5764      SourceLocation ExpLoc;
5765      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5766        Val = 0;
5767      } else {
5768        EltTy = Val->getType();
5769      }
5770    }
5771  }
5772
5773  if (!Val) {
5774    if (Enum->isDependentType())
5775      EltTy = Context.DependentTy;
5776    else if (LastEnumConst) {
5777      // Assign the last value + 1.
5778      EnumVal = LastEnumConst->getInitVal();
5779      ++EnumVal;
5780
5781      // Check for overflow on increment.
5782      if (EnumVal < LastEnumConst->getInitVal())
5783        Diag(IdLoc, diag::warn_enum_value_overflow);
5784
5785      EltTy = LastEnumConst->getType();
5786    } else {
5787      // First value, set to zero.
5788      EltTy = Context.IntTy;
5789      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5790      EnumVal.setIsSigned(true);
5791    }
5792  }
5793
5794  assert(!EltTy.isNull() && "Enum constant with NULL type");
5795
5796  val.release();
5797  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5798                                  Val, EnumVal);
5799}
5800
5801
5802Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5803                                        DeclPtrTy lastEnumConst,
5804                                        SourceLocation IdLoc,
5805                                        IdentifierInfo *Id,
5806                                        SourceLocation EqualLoc, ExprTy *val) {
5807  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5808  EnumConstantDecl *LastEnumConst =
5809    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5810  Expr *Val = static_cast<Expr*>(val);
5811
5812  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5813  // we find one that is.
5814  S = getNonFieldDeclScope(S);
5815
5816  // Verify that there isn't already something declared with this name in this
5817  // scope.
5818  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5819  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5820    // Maybe we will complain about the shadowed template parameter.
5821    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5822    // Just pretend that we didn't see the previous declaration.
5823    PrevDecl = 0;
5824  }
5825
5826  if (PrevDecl) {
5827    // When in C++, we may get a TagDecl with the same name; in this case the
5828    // enum constant will 'hide' the tag.
5829    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5830           "Received TagDecl when not in C++!");
5831    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5832      if (isa<EnumConstantDecl>(PrevDecl))
5833        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5834      else
5835        Diag(IdLoc, diag::err_redefinition) << Id;
5836      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5837      if (Val) Val->Destroy(Context);
5838      return DeclPtrTy();
5839    }
5840  }
5841
5842  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5843                                            IdLoc, Id, Owned(Val));
5844
5845  // Register this decl in the current scope stack.
5846  if (New)
5847    PushOnScopeChains(New, S);
5848
5849  return DeclPtrTy::make(New);
5850}
5851
5852void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5853                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5854                         DeclPtrTy *Elements, unsigned NumElements,
5855                         Scope *S, AttributeList *Attr) {
5856  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5857  QualType EnumType = Context.getTypeDeclType(Enum);
5858
5859  if (Attr)
5860    ProcessDeclAttributeList(S, Enum, Attr);
5861
5862  if (Enum->isDependentType()) {
5863    for (unsigned i = 0; i != NumElements; ++i) {
5864      EnumConstantDecl *ECD =
5865        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5866      if (!ECD) continue;
5867
5868      ECD->setType(EnumType);
5869    }
5870
5871    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5872    return;
5873  }
5874
5875  // TODO: If the result value doesn't fit in an int, it must be a long or long
5876  // long value.  ISO C does not support this, but GCC does as an extension,
5877  // emit a warning.
5878  unsigned IntWidth = Context.Target.getIntWidth();
5879  unsigned CharWidth = Context.Target.getCharWidth();
5880  unsigned ShortWidth = Context.Target.getShortWidth();
5881
5882  // Verify that all the values are okay, compute the size of the values, and
5883  // reverse the list.
5884  unsigned NumNegativeBits = 0;
5885  unsigned NumPositiveBits = 0;
5886
5887  // Keep track of whether all elements have type int.
5888  bool AllElementsInt = true;
5889
5890  for (unsigned i = 0; i != NumElements; ++i) {
5891    EnumConstantDecl *ECD =
5892      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5893    if (!ECD) continue;  // Already issued a diagnostic.
5894
5895    // If the enum value doesn't fit in an int, emit an extension warning.
5896    const llvm::APSInt &InitVal = ECD->getInitVal();
5897    assert(InitVal.getBitWidth() >= IntWidth &&
5898           "Should have promoted value to int");
5899    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5900      llvm::APSInt V(InitVal);
5901      V.trunc(IntWidth);
5902      V.extend(InitVal.getBitWidth());
5903      if (V != InitVal)
5904        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5905          << InitVal.toString(10);
5906    }
5907
5908    // Keep track of the size of positive and negative values.
5909    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5910      NumPositiveBits = std::max(NumPositiveBits,
5911                                 (unsigned)InitVal.getActiveBits());
5912    else
5913      NumNegativeBits = std::max(NumNegativeBits,
5914                                 (unsigned)InitVal.getMinSignedBits());
5915
5916    // Keep track of whether every enum element has type int (very commmon).
5917    if (AllElementsInt)
5918      AllElementsInt = ECD->getType() == Context.IntTy;
5919  }
5920
5921  // Figure out the type that should be used for this enum.
5922  // FIXME: Support -fshort-enums.
5923  QualType BestType;
5924  unsigned BestWidth;
5925
5926  // C++0x N3000 [conv.prom]p3:
5927  //   An rvalue of an unscoped enumeration type whose underlying
5928  //   type is not fixed can be converted to an rvalue of the first
5929  //   of the following types that can represent all the values of
5930  //   the enumeration: int, unsigned int, long int, unsigned long
5931  //   int, long long int, or unsigned long long int.
5932  // C99 6.4.4.3p2:
5933  //   An identifier declared as an enumeration constant has type int.
5934  // The C99 rule is modified by a gcc extension
5935  QualType BestPromotionType;
5936
5937  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5938
5939  if (NumNegativeBits) {
5940    // If there is a negative value, figure out the smallest integer type (of
5941    // int/long/longlong) that fits.
5942    // If it's packed, check also if it fits a char or a short.
5943    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5944      BestType = Context.SignedCharTy;
5945      BestWidth = CharWidth;
5946    } else if (Packed && NumNegativeBits <= ShortWidth &&
5947               NumPositiveBits < ShortWidth) {
5948      BestType = Context.ShortTy;
5949      BestWidth = ShortWidth;
5950    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5951      BestType = Context.IntTy;
5952      BestWidth = IntWidth;
5953    } else {
5954      BestWidth = Context.Target.getLongWidth();
5955
5956      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5957        BestType = Context.LongTy;
5958      } else {
5959        BestWidth = Context.Target.getLongLongWidth();
5960
5961        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5962          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5963        BestType = Context.LongLongTy;
5964      }
5965    }
5966    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5967  } else {
5968    // If there is no negative value, figure out which of uint, ulong, ulonglong
5969    // fits.
5970    // If it's packed, check also if it fits a char or a short.
5971    if (Packed && NumPositiveBits <= CharWidth) {
5972      BestType = Context.UnsignedCharTy;
5973      BestPromotionType = Context.IntTy;
5974      BestWidth = CharWidth;
5975    } else if (Packed && NumPositiveBits <= ShortWidth) {
5976      BestType = Context.UnsignedShortTy;
5977      BestPromotionType = Context.IntTy;
5978      BestWidth = ShortWidth;
5979    } else if (NumPositiveBits <= IntWidth) {
5980      BestType = Context.UnsignedIntTy;
5981      BestWidth = IntWidth;
5982      BestPromotionType = (NumPositiveBits == BestWidth
5983                           ? Context.UnsignedIntTy : Context.IntTy);
5984    } else if (NumPositiveBits <=
5985               (BestWidth = Context.Target.getLongWidth())) {
5986      BestType = Context.UnsignedLongTy;
5987      BestPromotionType = (NumPositiveBits == BestWidth
5988                           ? Context.UnsignedLongTy : Context.LongTy);
5989    } else {
5990      BestWidth = Context.Target.getLongLongWidth();
5991      assert(NumPositiveBits <= BestWidth &&
5992             "How could an initializer get larger than ULL?");
5993      BestType = Context.UnsignedLongLongTy;
5994      BestPromotionType = (NumPositiveBits == BestWidth
5995                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5996    }
5997  }
5998
5999  // If we're in C and the promotion type is larger than an int, just
6000  // use the underlying type, which is generally the unsigned integer
6001  // type of the same rank as the promotion type.  This is how the gcc
6002  // extension works.
6003  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
6004    BestPromotionType = BestType;
6005
6006  // Loop over all of the enumerator constants, changing their types to match
6007  // the type of the enum if needed.
6008  for (unsigned i = 0; i != NumElements; ++i) {
6009    EnumConstantDecl *ECD =
6010      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6011    if (!ECD) continue;  // Already issued a diagnostic.
6012
6013    // Standard C says the enumerators have int type, but we allow, as an
6014    // extension, the enumerators to be larger than int size.  If each
6015    // enumerator value fits in an int, type it as an int, otherwise type it the
6016    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6017    // that X has type 'int', not 'unsigned'.
6018    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
6019      continue;
6020
6021    // Determine whether the value fits into an int.
6022    llvm::APSInt InitVal = ECD->getInitVal();
6023    bool FitsInInt;
6024    if (InitVal.isUnsigned() || !InitVal.isNegative())
6025      FitsInInt = InitVal.getActiveBits() < IntWidth;
6026    else
6027      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
6028
6029    // If it fits into an integer type, force it.  Otherwise force it to match
6030    // the enum decl type.
6031    QualType NewTy;
6032    unsigned NewWidth;
6033    bool NewSign;
6034    if (FitsInInt && !getLangOptions().CPlusPlus) {
6035      NewTy = Context.IntTy;
6036      NewWidth = IntWidth;
6037      NewSign = true;
6038    } else if (ECD->getType() == BestType) {
6039      // Already the right type!
6040      if (getLangOptions().CPlusPlus)
6041        // C++ [dcl.enum]p4: Following the closing brace of an
6042        // enum-specifier, each enumerator has the type of its
6043        // enumeration.
6044        ECD->setType(EnumType);
6045      continue;
6046    } else {
6047      NewTy = BestType;
6048      NewWidth = BestWidth;
6049      NewSign = BestType->isSignedIntegerType();
6050    }
6051
6052    // Adjust the APSInt value.
6053    InitVal.extOrTrunc(NewWidth);
6054    InitVal.setIsSigned(NewSign);
6055    ECD->setInitVal(InitVal);
6056
6057    // Adjust the Expr initializer and type.
6058    if (ECD->getInitExpr())
6059      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6060                                                      CastExpr::CK_IntegralCast,
6061                                                      ECD->getInitExpr(),
6062                                                      /*isLvalue=*/false));
6063    if (getLangOptions().CPlusPlus)
6064      // C++ [dcl.enum]p4: Following the closing brace of an
6065      // enum-specifier, each enumerator has the type of its
6066      // enumeration.
6067      ECD->setType(EnumType);
6068    else
6069      ECD->setType(NewTy);
6070  }
6071
6072  Enum->completeDefinition(Context, BestType, BestPromotionType);
6073}
6074
6075Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6076                                            ExprArg expr) {
6077  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6078
6079  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6080                                                   Loc, AsmString);
6081  CurContext->addDecl(New);
6082  return DeclPtrTy::make(New);
6083}
6084
6085void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6086                             SourceLocation PragmaLoc,
6087                             SourceLocation NameLoc) {
6088  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6089
6090  if (PrevDecl) {
6091    PrevDecl->addAttr(::new (Context) WeakAttr());
6092  } else {
6093    (void)WeakUndeclaredIdentifiers.insert(
6094      std::pair<IdentifierInfo*,WeakInfo>
6095        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6096  }
6097}
6098
6099void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6100                                IdentifierInfo* AliasName,
6101                                SourceLocation PragmaLoc,
6102                                SourceLocation NameLoc,
6103                                SourceLocation AliasNameLoc) {
6104  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6105  WeakInfo W = WeakInfo(Name, NameLoc);
6106
6107  if (PrevDecl) {
6108    if (!PrevDecl->hasAttr<AliasAttr>())
6109      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6110        DeclApplyPragmaWeak(TUScope, ND, W);
6111  } else {
6112    (void)WeakUndeclaredIdentifiers.insert(
6113      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6114  }
6115}
6116