SemaDecl.cpp revision 59b5da6d853b4368b984700315adf7b37de05764
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  LookupResult Result = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  Decl *IIDecl = 0;
45  switch (Result.getKind()) {
46  case LookupResult::NotFound:
47  case LookupResult::FoundOverloaded:
48  case LookupResult::AmbiguousBaseSubobjectTypes:
49  case LookupResult::AmbiguousBaseSubobjects:
50    // FIXME: In the event of an ambiguous lookup, we could visit all of
51    // the entities found to determine whether they are all types. This
52    // might provide better diagnostics.
53    return 0;
54
55  case LookupResult::Found:
56    IIDecl = Result.getAsDecl();
57    break;
58  }
59
60  if (isa<TypedefDecl>(IIDecl) ||
61      isa<ObjCInterfaceDecl>(IIDecl) ||
62      isa<TagDecl>(IIDecl) ||
63      isa<TemplateTypeParmDecl>(IIDecl))
64    return IIDecl;
65  return 0;
66}
67
68DeclContext *Sema::getContainingDC(DeclContext *DC) {
69  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
70    // A C++ out-of-line method will return to the file declaration context.
71    if (MD->isOutOfLineDefinition())
72      return MD->getLexicalDeclContext();
73
74    // A C++ inline method is parsed *after* the topmost class it was declared in
75    // is fully parsed (it's "complete").
76    // The parsing of a C++ inline method happens at the declaration context of
77    // the topmost (non-nested) class it is lexically declared in.
78    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
79    DC = MD->getParent();
80    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
81      DC = RD;
82
83    // Return the declaration context of the topmost class the inline method is
84    // declared in.
85    return DC;
86  }
87
88  if (isa<ObjCMethodDecl>(DC))
89    return Context.getTranslationUnitDecl();
90
91  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
92    return SD->getLexicalDeclContext();
93
94  return DC->getLexicalParent();
95}
96
97void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
98  assert(getContainingDC(DC) == CurContext &&
99      "The next DeclContext should be lexically contained in the current one.");
100  CurContext = DC;
101  S->setEntity(DC);
102}
103
104void Sema::PopDeclContext() {
105  assert(CurContext && "DeclContext imbalance!");
106
107  CurContext = getContainingDC(CurContext);
108}
109
110/// Add this decl to the scope shadowed decl chains.
111void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
112  // Move up the scope chain until we find the nearest enclosing
113  // non-transparent context. The declaration will be introduced into this
114  // scope.
115  while (S->getEntity() &&
116         ((DeclContext *)S->getEntity())->isTransparentContext())
117    S = S->getParent();
118
119  S->AddDecl(D);
120
121  // Add scoped declarations into their context, so that they can be
122  // found later. Declarations without a context won't be inserted
123  // into any context.
124  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
125    CurContext->addDecl(SD);
126
127  // C++ [basic.scope]p4:
128  //   -- exactly one declaration shall declare a class name or
129  //   enumeration name that is not a typedef name and the other
130  //   declarations shall all refer to the same object or
131  //   enumerator, or all refer to functions and function templates;
132  //   in this case the class name or enumeration name is hidden.
133  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
134    // We are pushing the name of a tag (enum or class).
135    if (CurContext->getLookupContext()
136          == TD->getDeclContext()->getLookupContext()) {
137      // We're pushing the tag into the current context, which might
138      // require some reshuffling in the identifier resolver.
139      IdentifierResolver::iterator
140        I = IdResolver.begin(TD->getDeclName(), CurContext,
141                             false/*LookInParentCtx*/),
142        IEnd = IdResolver.end();
143      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
144        NamedDecl *PrevDecl = *I;
145        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
146             PrevDecl = *I, ++I) {
147          if (TD->declarationReplaces(*I)) {
148            // This is a redeclaration. Remove it from the chain and
149            // break out, so that we'll add in the shadowed
150            // declaration.
151            S->RemoveDecl(*I);
152            if (PrevDecl == *I) {
153              IdResolver.RemoveDecl(*I);
154              IdResolver.AddDecl(TD);
155              return;
156            } else {
157              IdResolver.RemoveDecl(*I);
158              break;
159            }
160          }
161        }
162
163        // There is already a declaration with the same name in the same
164        // scope, which is not a tag declaration. It must be found
165        // before we find the new declaration, so insert the new
166        // declaration at the end of the chain.
167        IdResolver.AddShadowedDecl(TD, PrevDecl);
168
169        return;
170      }
171    }
172  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
173    // We are pushing the name of a function, which might be an
174    // overloaded name.
175    FunctionDecl *FD = cast<FunctionDecl>(D);
176    DeclContext *DC = FD->getDeclContext()->getLookupContext();
177    IdentifierResolver::iterator Redecl
178      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
179                                      false/*LookInParentCtx*/),
180                     IdResolver.end(),
181                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
182                                  FD));
183    if (Redecl != IdResolver.end()) {
184      // There is already a declaration of a function on our
185      // IdResolver chain. Replace it with this declaration.
186      S->RemoveDecl(*Redecl);
187      IdResolver.RemoveDecl(*Redecl);
188    }
189  }
190
191  IdResolver.AddDecl(D);
192}
193
194void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
195  if (S->decl_empty()) return;
196  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
197	 "Scope shouldn't contain decls!");
198
199  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
200       I != E; ++I) {
201    Decl *TmpD = static_cast<Decl*>(*I);
202    assert(TmpD && "This decl didn't get pushed??");
203
204    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
205    NamedDecl *D = cast<NamedDecl>(TmpD);
206
207    if (!D->getDeclName()) continue;
208
209    // Remove this name from our lexical scope.
210    IdResolver.RemoveDecl(D);
211  }
212}
213
214/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
215/// return 0 if one not found.
216ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
217  // The third "scope" argument is 0 since we aren't enabling lazy built-in
218  // creation from this context.
219  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
220
221  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
222}
223
224/// getNonFieldDeclScope - Retrieves the innermost scope, starting
225/// from S, where a non-field would be declared. This routine copes
226/// with the difference between C and C++ scoping rules in structs and
227/// unions. For example, the following code is well-formed in C but
228/// ill-formed in C++:
229/// @code
230/// struct S6 {
231///   enum { BAR } e;
232/// };
233///
234/// void test_S6() {
235///   struct S6 a;
236///   a.e = BAR;
237/// }
238/// @endcode
239/// For the declaration of BAR, this routine will return a different
240/// scope. The scope S will be the scope of the unnamed enumeration
241/// within S6. In C++, this routine will return the scope associated
242/// with S6, because the enumeration's scope is a transparent
243/// context but structures can contain non-field names. In C, this
244/// routine will return the translation unit scope, since the
245/// enumeration's scope is a transparent context and structures cannot
246/// contain non-field names.
247Scope *Sema::getNonFieldDeclScope(Scope *S) {
248  while (((S->getFlags() & Scope::DeclScope) == 0) ||
249         (S->getEntity() &&
250          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
251         (S->isClassScope() && !getLangOptions().CPlusPlus))
252    S = S->getParent();
253  return S;
254}
255
256/// LookupDecl - Look up the inner-most declaration in the specified
257/// namespace. NamespaceNameOnly - during lookup only namespace names
258/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
259/// 'When looking up a namespace-name in a using-directive or
260/// namespace-alias-definition, only namespace names are considered.'
261///
262/// Note: The use of this routine is deprecated. Please use
263/// LookupName, LookupQualifiedName, or LookupParsedName instead.
264Sema::LookupResult
265Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
266                 const DeclContext *LookupCtx,
267                 bool enableLazyBuiltinCreation,
268                 bool LookInParent,
269                 bool NamespaceNameOnly) {
270  LookupCriteria::NameKind Kind;
271  if (NSI == Decl::IDNS_Ordinary) {
272    if (NamespaceNameOnly)
273      Kind = LookupCriteria::Namespace;
274    else
275      Kind = LookupCriteria::Ordinary;
276  } else if (NSI == Decl::IDNS_Tag)
277    Kind = LookupCriteria::Tag;
278  else {
279    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
280    Kind = LookupCriteria::Member;
281  }
282
283  if (LookupCtx)
284    return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
285                               LookupCriteria(Kind, !LookInParent,
286                                              getLangOptions().CPlusPlus));
287
288  // Unqualified lookup
289  return LookupName(S, Name,
290                    LookupCriteria(Kind, !LookInParent,
291                                   getLangOptions().CPlusPlus));
292}
293
294void Sema::InitBuiltinVaListType() {
295  if (!Context.getBuiltinVaListType().isNull())
296    return;
297
298  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
299  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
300  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
301  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
302}
303
304/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
305/// lazily create a decl for it.
306ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
307                                      Scope *S) {
308  Builtin::ID BID = (Builtin::ID)bid;
309
310  if (Context.BuiltinInfo.hasVAListUse(BID))
311    InitBuiltinVaListType();
312
313  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
314  FunctionDecl *New = FunctionDecl::Create(Context,
315                                           Context.getTranslationUnitDecl(),
316                                           SourceLocation(), II, R,
317                                           FunctionDecl::Extern, false, 0);
318
319  // Create Decl objects for each parameter, adding them to the
320  // FunctionDecl.
321  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
322    llvm::SmallVector<ParmVarDecl*, 16> Params;
323    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
324      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
325                                           FT->getArgType(i), VarDecl::None, 0,
326                                           0));
327    New->setParams(Context, &Params[0], Params.size());
328  }
329
330
331
332  // TUScope is the translation-unit scope to insert this function into.
333  // FIXME: This is hideous. We need to teach PushOnScopeChains to
334  // relate Scopes to DeclContexts, and probably eliminate CurContext
335  // entirely, but we're not there yet.
336  DeclContext *SavedContext = CurContext;
337  CurContext = Context.getTranslationUnitDecl();
338  PushOnScopeChains(New, TUScope);
339  CurContext = SavedContext;
340  return New;
341}
342
343/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
344/// everything from the standard library is defined.
345NamespaceDecl *Sema::GetStdNamespace() {
346  if (!StdNamespace) {
347    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
348    DeclContext *Global = Context.getTranslationUnitDecl();
349    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Ordinary,
350                           0, Global, /*enableLazyBuiltinCreation=*/false);
351    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
352  }
353  return StdNamespace;
354}
355
356/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
357/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
358/// situation, merging decls or emitting diagnostics as appropriate.
359///
360TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
361  bool objc_types = false;
362  // Allow multiple definitions for ObjC built-in typedefs.
363  // FIXME: Verify the underlying types are equivalent!
364  if (getLangOptions().ObjC1) {
365    const IdentifierInfo *TypeID = New->getIdentifier();
366    switch (TypeID->getLength()) {
367    default: break;
368    case 2:
369      if (!TypeID->isStr("id"))
370        break;
371      Context.setObjCIdType(New);
372      objc_types = true;
373      break;
374    case 5:
375      if (!TypeID->isStr("Class"))
376        break;
377      Context.setObjCClassType(New);
378      objc_types = true;
379      return New;
380    case 3:
381      if (!TypeID->isStr("SEL"))
382        break;
383      Context.setObjCSelType(New);
384      objc_types = true;
385      return New;
386    case 8:
387      if (!TypeID->isStr("Protocol"))
388        break;
389      Context.setObjCProtoType(New->getUnderlyingType());
390      objc_types = true;
391      return New;
392    }
393    // Fall through - the typedef name was not a builtin type.
394  }
395  // Verify the old decl was also a typedef.
396  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
397  if (!Old) {
398    Diag(New->getLocation(), diag::err_redefinition_different_kind)
399      << New->getDeclName();
400    if (!objc_types)
401      Diag(OldD->getLocation(), diag::note_previous_definition);
402    return New;
403  }
404
405  // If the typedef types are not identical, reject them in all languages and
406  // with any extensions enabled.
407  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
408      Context.getCanonicalType(Old->getUnderlyingType()) !=
409      Context.getCanonicalType(New->getUnderlyingType())) {
410    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
411      << New->getUnderlyingType() << Old->getUnderlyingType();
412    if (!objc_types)
413      Diag(Old->getLocation(), diag::note_previous_definition);
414    return New;
415  }
416  if (objc_types) return New;
417  if (getLangOptions().Microsoft) return New;
418
419  // C++ [dcl.typedef]p2:
420  //   In a given non-class scope, a typedef specifier can be used to
421  //   redefine the name of any type declared in that scope to refer
422  //   to the type to which it already refers.
423  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
424    return New;
425
426  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
427  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
428  // *either* declaration is in a system header. The code below implements
429  // this adhoc compatibility rule. FIXME: The following code will not
430  // work properly when compiling ".i" files (containing preprocessed output).
431  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
432    SourceManager &SrcMgr = Context.getSourceManager();
433    if (SrcMgr.isInSystemHeader(Old->getLocation()))
434      return New;
435    if (SrcMgr.isInSystemHeader(New->getLocation()))
436      return New;
437  }
438
439  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
440  Diag(Old->getLocation(), diag::note_previous_definition);
441  return New;
442}
443
444/// DeclhasAttr - returns true if decl Declaration already has the target
445/// attribute.
446static bool DeclHasAttr(const Decl *decl, const Attr *target) {
447  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
448    if (attr->getKind() == target->getKind())
449      return true;
450
451  return false;
452}
453
454/// MergeAttributes - append attributes from the Old decl to the New one.
455static void MergeAttributes(Decl *New, Decl *Old) {
456  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
457
458  while (attr) {
459     tmp = attr;
460     attr = attr->getNext();
461
462    if (!DeclHasAttr(New, tmp)) {
463       tmp->setInherited(true);
464       New->addAttr(tmp);
465    } else {
466       tmp->setNext(0);
467       delete(tmp);
468    }
469  }
470
471  Old->invalidateAttrs();
472}
473
474/// MergeFunctionDecl - We just parsed a function 'New' from
475/// declarator D which has the same name and scope as a previous
476/// declaration 'Old'.  Figure out how to resolve this situation,
477/// merging decls or emitting diagnostics as appropriate.
478/// Redeclaration will be set true if this New is a redeclaration OldD.
479///
480/// In C++, New and Old must be declarations that are not
481/// overloaded. Use IsOverload to determine whether New and Old are
482/// overloaded, and to select the Old declaration that New should be
483/// merged with.
484FunctionDecl *
485Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
486  assert(!isa<OverloadedFunctionDecl>(OldD) &&
487         "Cannot merge with an overloaded function declaration");
488
489  Redeclaration = false;
490  // Verify the old decl was also a function.
491  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
492  if (!Old) {
493    Diag(New->getLocation(), diag::err_redefinition_different_kind)
494      << New->getDeclName();
495    Diag(OldD->getLocation(), diag::note_previous_definition);
496    return New;
497  }
498
499  // Determine whether the previous declaration was a definition,
500  // implicit declaration, or a declaration.
501  diag::kind PrevDiag;
502  if (Old->isThisDeclarationADefinition())
503    PrevDiag = diag::note_previous_definition;
504  else if (Old->isImplicit())
505    PrevDiag = diag::note_previous_implicit_declaration;
506  else
507    PrevDiag = diag::note_previous_declaration;
508
509  QualType OldQType = Context.getCanonicalType(Old->getType());
510  QualType NewQType = Context.getCanonicalType(New->getType());
511
512  if (getLangOptions().CPlusPlus) {
513    // (C++98 13.1p2):
514    //   Certain function declarations cannot be overloaded:
515    //     -- Function declarations that differ only in the return type
516    //        cannot be overloaded.
517    QualType OldReturnType
518      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
519    QualType NewReturnType
520      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
521    if (OldReturnType != NewReturnType) {
522      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
523      Diag(Old->getLocation(), PrevDiag);
524      Redeclaration = true;
525      return New;
526    }
527
528    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
529    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
530    if (OldMethod && NewMethod) {
531      //    -- Member function declarations with the same name and the
532      //       same parameter types cannot be overloaded if any of them
533      //       is a static member function declaration.
534      if (OldMethod->isStatic() || NewMethod->isStatic()) {
535        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
536        Diag(Old->getLocation(), PrevDiag);
537        return New;
538      }
539
540      // C++ [class.mem]p1:
541      //   [...] A member shall not be declared twice in the
542      //   member-specification, except that a nested class or member
543      //   class template can be declared and then later defined.
544      if (OldMethod->getLexicalDeclContext() ==
545            NewMethod->getLexicalDeclContext()) {
546        unsigned NewDiag;
547        if (isa<CXXConstructorDecl>(OldMethod))
548          NewDiag = diag::err_constructor_redeclared;
549        else if (isa<CXXDestructorDecl>(NewMethod))
550          NewDiag = diag::err_destructor_redeclared;
551        else if (isa<CXXConversionDecl>(NewMethod))
552          NewDiag = diag::err_conv_function_redeclared;
553        else
554          NewDiag = diag::err_member_redeclared;
555
556        Diag(New->getLocation(), NewDiag);
557        Diag(Old->getLocation(), PrevDiag);
558      }
559    }
560
561    // (C++98 8.3.5p3):
562    //   All declarations for a function shall agree exactly in both the
563    //   return type and the parameter-type-list.
564    if (OldQType == NewQType) {
565      // We have a redeclaration.
566      MergeAttributes(New, Old);
567      Redeclaration = true;
568      return MergeCXXFunctionDecl(New, Old);
569    }
570
571    // Fall through for conflicting redeclarations and redefinitions.
572  }
573
574  // C: Function types need to be compatible, not identical. This handles
575  // duplicate function decls like "void f(int); void f(enum X);" properly.
576  if (!getLangOptions().CPlusPlus &&
577      Context.typesAreCompatible(OldQType, NewQType)) {
578    MergeAttributes(New, Old);
579    Redeclaration = true;
580    return New;
581  }
582
583  // A function that has already been declared has been redeclared or defined
584  // with a different type- show appropriate diagnostic
585
586  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
587  // TODO: This is totally simplistic.  It should handle merging functions
588  // together etc, merging extern int X; int X; ...
589  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
590  Diag(Old->getLocation(), PrevDiag);
591  return New;
592}
593
594/// Predicate for C "tentative" external object definitions (C99 6.9.2).
595static bool isTentativeDefinition(VarDecl *VD) {
596  if (VD->isFileVarDecl())
597    return (!VD->getInit() &&
598            (VD->getStorageClass() == VarDecl::None ||
599             VD->getStorageClass() == VarDecl::Static));
600  return false;
601}
602
603/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
604/// when dealing with C "tentative" external object definitions (C99 6.9.2).
605void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
606  bool VDIsTentative = isTentativeDefinition(VD);
607  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
608
609  // FIXME: I don't think this will actually see all of the
610  // redefinitions. Can't we check this property on-the-fly?
611  for (IdentifierResolver::iterator
612       I = IdResolver.begin(VD->getIdentifier(),
613                            VD->getDeclContext(), false/*LookInParentCtx*/),
614       E = IdResolver.end(); I != E; ++I) {
615    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
616      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
617
618      // Handle the following case:
619      //   int a[10];
620      //   int a[];   - the code below makes sure we set the correct type.
621      //   int a[11]; - this is an error, size isn't 10.
622      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
623          OldDecl->getType()->isConstantArrayType())
624        VD->setType(OldDecl->getType());
625
626      // Check for "tentative" definitions. We can't accomplish this in
627      // MergeVarDecl since the initializer hasn't been attached.
628      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
629        continue;
630
631      // Handle __private_extern__ just like extern.
632      if (OldDecl->getStorageClass() != VarDecl::Extern &&
633          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
634          VD->getStorageClass() != VarDecl::Extern &&
635          VD->getStorageClass() != VarDecl::PrivateExtern) {
636        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
637        Diag(OldDecl->getLocation(), diag::note_previous_definition);
638      }
639    }
640  }
641}
642
643/// MergeVarDecl - We just parsed a variable 'New' which has the same name
644/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
645/// situation, merging decls or emitting diagnostics as appropriate.
646///
647/// Tentative definition rules (C99 6.9.2p2) are checked by
648/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
649/// definitions here, since the initializer hasn't been attached.
650///
651VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
652  // Verify the old decl was also a variable.
653  VarDecl *Old = dyn_cast<VarDecl>(OldD);
654  if (!Old) {
655    Diag(New->getLocation(), diag::err_redefinition_different_kind)
656      << New->getDeclName();
657    Diag(OldD->getLocation(), diag::note_previous_definition);
658    return New;
659  }
660
661  MergeAttributes(New, Old);
662
663  // Verify the types match.
664  QualType OldCType = Context.getCanonicalType(Old->getType());
665  QualType NewCType = Context.getCanonicalType(New->getType());
666  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
667    Diag(New->getLocation(), diag::err_redefinition_different_type)
668      << New->getDeclName();
669    Diag(Old->getLocation(), diag::note_previous_definition);
670    return New;
671  }
672  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
673  if (New->getStorageClass() == VarDecl::Static &&
674      (Old->getStorageClass() == VarDecl::None ||
675       Old->getStorageClass() == VarDecl::Extern)) {
676    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
681  if (New->getStorageClass() != VarDecl::Static &&
682      Old->getStorageClass() == VarDecl::Static) {
683    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
684    Diag(Old->getLocation(), diag::note_previous_definition);
685    return New;
686  }
687  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
688  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
689    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
690    Diag(Old->getLocation(), diag::note_previous_definition);
691  }
692  return New;
693}
694
695/// CheckParmsForFunctionDef - Check that the parameters of the given
696/// function are appropriate for the definition of a function. This
697/// takes care of any checks that cannot be performed on the
698/// declaration itself, e.g., that the types of each of the function
699/// parameters are complete.
700bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
701  bool HasInvalidParm = false;
702  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
703    ParmVarDecl *Param = FD->getParamDecl(p);
704
705    // C99 6.7.5.3p4: the parameters in a parameter type list in a
706    // function declarator that is part of a function definition of
707    // that function shall not have incomplete type.
708    if (Param->getType()->isIncompleteType() &&
709        !Param->isInvalidDecl()) {
710      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
711        << Param->getType();
712      Param->setInvalidDecl();
713      HasInvalidParm = true;
714    }
715
716    // C99 6.9.1p5: If the declarator includes a parameter type list, the
717    // declaration of each parameter shall include an identifier.
718    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
719      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
720  }
721
722  return HasInvalidParm;
723}
724
725/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
726/// no declarator (e.g. "struct foo;") is parsed.
727Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
728  TagDecl *Tag
729    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
730  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
731    if (!Record->getDeclName() && Record->isDefinition() &&
732        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
733      return BuildAnonymousStructOrUnion(S, DS, Record);
734
735    // Microsoft allows unnamed struct/union fields. Don't complain
736    // about them.
737    // FIXME: Should we support Microsoft's extensions in this area?
738    if (Record->getDeclName() && getLangOptions().Microsoft)
739      return Tag;
740  }
741
742  // Permit typedefs without declarators as a Microsoft extension.
743  if (!DS.isMissingDeclaratorOk()) {
744    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
745        Tag && isa<EnumDecl>(Tag)) {
746      Diag(DS.getSourceRange().getBegin(), diag::warn_no_declarators)
747        << DS.getSourceRange();
748      return Tag;
749    }
750
751    // FIXME: This diagnostic is emitted even when various previous
752    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
753    // DeclSpec has no means of communicating this information, and the
754    // responsible parser functions are quite far apart.
755    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
756      << DS.getSourceRange();
757    return 0;
758  }
759
760  return Tag;
761}
762
763/// InjectAnonymousStructOrUnionMembers - Inject the members of the
764/// anonymous struct or union AnonRecord into the owning context Owner
765/// and scope S. This routine will be invoked just after we realize
766/// that an unnamed union or struct is actually an anonymous union or
767/// struct, e.g.,
768///
769/// @code
770/// union {
771///   int i;
772///   float f;
773/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
774///    // f into the surrounding scope.x
775/// @endcode
776///
777/// This routine is recursive, injecting the names of nested anonymous
778/// structs/unions into the owning context and scope as well.
779bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
780                                               RecordDecl *AnonRecord) {
781  bool Invalid = false;
782  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
783                               FEnd = AnonRecord->field_end();
784       F != FEnd; ++F) {
785    if ((*F)->getDeclName()) {
786      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
787                                  S, Owner, false, false, false);
788      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
789        // C++ [class.union]p2:
790        //   The names of the members of an anonymous union shall be
791        //   distinct from the names of any other entity in the
792        //   scope in which the anonymous union is declared.
793        unsigned diagKind
794          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
795                                 : diag::err_anonymous_struct_member_redecl;
796        Diag((*F)->getLocation(), diagKind)
797          << (*F)->getDeclName();
798        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
799        Invalid = true;
800      } else {
801        // C++ [class.union]p2:
802        //   For the purpose of name lookup, after the anonymous union
803        //   definition, the members of the anonymous union are
804        //   considered to have been defined in the scope in which the
805        //   anonymous union is declared.
806        Owner->insert(*F);
807        S->AddDecl(*F);
808        IdResolver.AddDecl(*F);
809      }
810    } else if (const RecordType *InnerRecordType
811                 = (*F)->getType()->getAsRecordType()) {
812      RecordDecl *InnerRecord = InnerRecordType->getDecl();
813      if (InnerRecord->isAnonymousStructOrUnion())
814        Invalid = Invalid ||
815          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
816    }
817  }
818
819  return Invalid;
820}
821
822/// ActOnAnonymousStructOrUnion - Handle the declaration of an
823/// anonymous structure or union. Anonymous unions are a C++ feature
824/// (C++ [class.union]) and a GNU C extension; anonymous structures
825/// are a GNU C and GNU C++ extension.
826Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
827                                                RecordDecl *Record) {
828  DeclContext *Owner = Record->getDeclContext();
829
830  // Diagnose whether this anonymous struct/union is an extension.
831  if (Record->isUnion() && !getLangOptions().CPlusPlus)
832    Diag(Record->getLocation(), diag::ext_anonymous_union);
833  else if (!Record->isUnion())
834    Diag(Record->getLocation(), diag::ext_anonymous_struct);
835
836  // C and C++ require different kinds of checks for anonymous
837  // structs/unions.
838  bool Invalid = false;
839  if (getLangOptions().CPlusPlus) {
840    const char* PrevSpec = 0;
841    // C++ [class.union]p3:
842    //   Anonymous unions declared in a named namespace or in the
843    //   global namespace shall be declared static.
844    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
845        (isa<TranslationUnitDecl>(Owner) ||
846         (isa<NamespaceDecl>(Owner) &&
847          cast<NamespaceDecl>(Owner)->getDeclName()))) {
848      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
849      Invalid = true;
850
851      // Recover by adding 'static'.
852      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
853    }
854    // C++ [class.union]p3:
855    //   A storage class is not allowed in a declaration of an
856    //   anonymous union in a class scope.
857    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
858             isa<RecordDecl>(Owner)) {
859      Diag(DS.getStorageClassSpecLoc(),
860           diag::err_anonymous_union_with_storage_spec);
861      Invalid = true;
862
863      // Recover by removing the storage specifier.
864      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
865                             PrevSpec);
866    }
867
868    // C++ [class.union]p2:
869    //   The member-specification of an anonymous union shall only
870    //   define non-static data members. [Note: nested types and
871    //   functions cannot be declared within an anonymous union. ]
872    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
873                                 MemEnd = Record->decls_end();
874         Mem != MemEnd; ++Mem) {
875      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
876        // C++ [class.union]p3:
877        //   An anonymous union shall not have private or protected
878        //   members (clause 11).
879        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
880          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
881            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
882          Invalid = true;
883        }
884      } else if ((*Mem)->isImplicit()) {
885        // Any implicit members are fine.
886      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
887        if (!MemRecord->isAnonymousStructOrUnion() &&
888            MemRecord->getDeclName()) {
889          // This is a nested type declaration.
890          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
891            << (int)Record->isUnion();
892          Invalid = true;
893        }
894      } else {
895        // We have something that isn't a non-static data
896        // member. Complain about it.
897        unsigned DK = diag::err_anonymous_record_bad_member;
898        if (isa<TypeDecl>(*Mem))
899          DK = diag::err_anonymous_record_with_type;
900        else if (isa<FunctionDecl>(*Mem))
901          DK = diag::err_anonymous_record_with_function;
902        else if (isa<VarDecl>(*Mem))
903          DK = diag::err_anonymous_record_with_static;
904        Diag((*Mem)->getLocation(), DK)
905            << (int)Record->isUnion();
906          Invalid = true;
907      }
908    }
909  } else {
910    // FIXME: Check GNU C semantics
911    if (Record->isUnion() && !Owner->isRecord()) {
912      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
913        << (int)getLangOptions().CPlusPlus;
914      Invalid = true;
915    }
916  }
917
918  if (!Record->isUnion() && !Owner->isRecord()) {
919    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
920      << (int)getLangOptions().CPlusPlus;
921    Invalid = true;
922  }
923
924  // Create a declaration for this anonymous struct/union.
925  ScopedDecl *Anon = 0;
926  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
927    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
928                             /*IdentifierInfo=*/0,
929                             Context.getTypeDeclType(Record),
930                             /*BitWidth=*/0, /*Mutable=*/false,
931                             /*PrevDecl=*/0);
932    Anon->setAccess(AS_public);
933    if (getLangOptions().CPlusPlus)
934      FieldCollector->Add(cast<FieldDecl>(Anon));
935  } else {
936    VarDecl::StorageClass SC;
937    switch (DS.getStorageClassSpec()) {
938    default: assert(0 && "Unknown storage class!");
939    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
940    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
941    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
942    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
943    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
944    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
945    case DeclSpec::SCS_mutable:
946      // mutable can only appear on non-static class members, so it's always
947      // an error here
948      Diag(Record->getLocation(), diag::err_mutable_nonmember);
949      Invalid = true;
950      SC = VarDecl::None;
951      break;
952    }
953
954    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
955                           /*IdentifierInfo=*/0,
956                           Context.getTypeDeclType(Record),
957                           SC, /*FIXME:LastDeclarator=*/0,
958                           DS.getSourceRange().getBegin());
959  }
960  Anon->setImplicit();
961
962  // Add the anonymous struct/union object to the current
963  // context. We'll be referencing this object when we refer to one of
964  // its members.
965  Owner->addDecl(Anon);
966
967  // Inject the members of the anonymous struct/union into the owning
968  // context and into the identifier resolver chain for name lookup
969  // purposes.
970  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
971    Invalid = true;
972
973  // Mark this as an anonymous struct/union type. Note that we do not
974  // do this until after we have already checked and injected the
975  // members of this anonymous struct/union type, because otherwise
976  // the members could be injected twice: once by DeclContext when it
977  // builds its lookup table, and once by
978  // InjectAnonymousStructOrUnionMembers.
979  Record->setAnonymousStructOrUnion(true);
980
981  if (Invalid)
982    Anon->setInvalidDecl();
983
984  return Anon;
985}
986
987bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
988                                  bool DirectInit) {
989  // Get the type before calling CheckSingleAssignmentConstraints(), since
990  // it can promote the expression.
991  QualType InitType = Init->getType();
992
993  if (getLangOptions().CPlusPlus) {
994    // FIXME: I dislike this error message. A lot.
995    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
996      return Diag(Init->getSourceRange().getBegin(),
997                  diag::err_typecheck_convert_incompatible)
998        << DeclType << Init->getType() << "initializing"
999        << Init->getSourceRange();
1000
1001    return false;
1002  }
1003
1004  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1005  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1006                                  InitType, Init, "initializing");
1007}
1008
1009bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1010  const ArrayType *AT = Context.getAsArrayType(DeclT);
1011
1012  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1013    // C99 6.7.8p14. We have an array of character type with unknown size
1014    // being initialized to a string literal.
1015    llvm::APSInt ConstVal(32);
1016    ConstVal = strLiteral->getByteLength() + 1;
1017    // Return a new array type (C99 6.7.8p22).
1018    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1019                                         ArrayType::Normal, 0);
1020  } else {
1021    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1022    // C99 6.7.8p14. We have an array of character type with known size.
1023    // FIXME: Avoid truncation for 64-bit length strings.
1024    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1025      Diag(strLiteral->getSourceRange().getBegin(),
1026           diag::warn_initializer_string_for_char_array_too_long)
1027        << strLiteral->getSourceRange();
1028  }
1029  // Set type from "char *" to "constant array of char".
1030  strLiteral->setType(DeclT);
1031  // For now, we always return false (meaning success).
1032  return false;
1033}
1034
1035StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1036  const ArrayType *AT = Context.getAsArrayType(DeclType);
1037  if (AT && AT->getElementType()->isCharType()) {
1038    return dyn_cast<StringLiteral>(Init);
1039  }
1040  return 0;
1041}
1042
1043bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1044                                 SourceLocation InitLoc,
1045                                 DeclarationName InitEntity,
1046                                 bool DirectInit) {
1047  if (DeclType->isDependentType() || Init->isTypeDependent())
1048    return false;
1049
1050  // C++ [dcl.init.ref]p1:
1051  //   A variable declared to be a T&, that is "reference to type T"
1052  //   (8.3.2), shall be initialized by an object, or function, of
1053  //   type T or by an object that can be converted into a T.
1054  if (DeclType->isReferenceType())
1055    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1056
1057  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1058  // of unknown size ("[]") or an object type that is not a variable array type.
1059  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1060    return Diag(InitLoc,  diag::err_variable_object_no_init)
1061      << VAT->getSizeExpr()->getSourceRange();
1062
1063  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1064  if (!InitList) {
1065    // FIXME: Handle wide strings
1066    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1067      return CheckStringLiteralInit(strLiteral, DeclType);
1068
1069    // C++ [dcl.init]p14:
1070    //   -- If the destination type is a (possibly cv-qualified) class
1071    //      type:
1072    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1073      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1074      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1075
1076      //   -- If the initialization is direct-initialization, or if it is
1077      //      copy-initialization where the cv-unqualified version of the
1078      //      source type is the same class as, or a derived class of, the
1079      //      class of the destination, constructors are considered.
1080      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1081          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1082        CXXConstructorDecl *Constructor
1083          = PerformInitializationByConstructor(DeclType, &Init, 1,
1084                                               InitLoc, Init->getSourceRange(),
1085                                               InitEntity,
1086                                               DirectInit? IK_Direct : IK_Copy);
1087        return Constructor == 0;
1088      }
1089
1090      //   -- Otherwise (i.e., for the remaining copy-initialization
1091      //      cases), user-defined conversion sequences that can
1092      //      convert from the source type to the destination type or
1093      //      (when a conversion function is used) to a derived class
1094      //      thereof are enumerated as described in 13.3.1.4, and the
1095      //      best one is chosen through overload resolution
1096      //      (13.3). If the conversion cannot be done or is
1097      //      ambiguous, the initialization is ill-formed. The
1098      //      function selected is called with the initializer
1099      //      expression as its argument; if the function is a
1100      //      constructor, the call initializes a temporary of the
1101      //      destination type.
1102      // FIXME: We're pretending to do copy elision here; return to
1103      // this when we have ASTs for such things.
1104      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1105        return false;
1106
1107      if (InitEntity)
1108        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1109          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1110          << Init->getType() << Init->getSourceRange();
1111      else
1112        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1113          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1114          << Init->getType() << Init->getSourceRange();
1115    }
1116
1117    // C99 6.7.8p16.
1118    if (DeclType->isArrayType())
1119      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1120        << Init->getSourceRange();
1121
1122    return CheckSingleInitializer(Init, DeclType, DirectInit);
1123  } else if (getLangOptions().CPlusPlus) {
1124    // C++ [dcl.init]p14:
1125    //   [...] If the class is an aggregate (8.5.1), and the initializer
1126    //   is a brace-enclosed list, see 8.5.1.
1127    //
1128    // Note: 8.5.1 is handled below; here, we diagnose the case where
1129    // we have an initializer list and a destination type that is not
1130    // an aggregate.
1131    // FIXME: In C++0x, this is yet another form of initialization.
1132    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1133      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1134      if (!ClassDecl->isAggregate())
1135        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1136           << DeclType << Init->getSourceRange();
1137    }
1138  }
1139
1140  InitListChecker CheckInitList(this, InitList, DeclType);
1141  return CheckInitList.HadError();
1142}
1143
1144/// GetNameForDeclarator - Determine the full declaration name for the
1145/// given Declarator.
1146DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1147  switch (D.getKind()) {
1148  case Declarator::DK_Abstract:
1149    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1150    return DeclarationName();
1151
1152  case Declarator::DK_Normal:
1153    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1154    return DeclarationName(D.getIdentifier());
1155
1156  case Declarator::DK_Constructor: {
1157    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1158    Ty = Context.getCanonicalType(Ty);
1159    return Context.DeclarationNames.getCXXConstructorName(Ty);
1160  }
1161
1162  case Declarator::DK_Destructor: {
1163    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1164    Ty = Context.getCanonicalType(Ty);
1165    return Context.DeclarationNames.getCXXDestructorName(Ty);
1166  }
1167
1168  case Declarator::DK_Conversion: {
1169    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1170    Ty = Context.getCanonicalType(Ty);
1171    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1172  }
1173
1174  case Declarator::DK_Operator:
1175    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1176    return Context.DeclarationNames.getCXXOperatorName(
1177                                                D.getOverloadedOperator());
1178  }
1179
1180  assert(false && "Unknown name kind");
1181  return DeclarationName();
1182}
1183
1184/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1185/// functions Declaration and Definition are "nearly" matching. This
1186/// heuristic is used to improve diagnostics in the case where an
1187/// out-of-line member function definition doesn't match any
1188/// declaration within the class.
1189static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1190                                           FunctionDecl *Declaration,
1191                                           FunctionDecl *Definition) {
1192  if (Declaration->param_size() != Definition->param_size())
1193    return false;
1194  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1195    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1196    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1197
1198    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1199    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1200    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1201      return false;
1202  }
1203
1204  return true;
1205}
1206
1207Sema::DeclTy *
1208Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1209                      bool IsFunctionDefinition) {
1210  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
1211  DeclarationName Name = GetNameForDeclarator(D);
1212
1213  // All of these full declarators require an identifier.  If it doesn't have
1214  // one, the ParsedFreeStandingDeclSpec action should be used.
1215  if (!Name) {
1216    if (!D.getInvalidType())  // Reject this if we think it is valid.
1217      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1218           diag::err_declarator_need_ident)
1219        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1220    return 0;
1221  }
1222
1223  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1224  // we find one that is.
1225  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1226        (S->getFlags() & Scope::TemplateParamScope) != 0)
1227    S = S->getParent();
1228
1229  DeclContext *DC;
1230  Decl *PrevDecl;
1231  ScopedDecl *New;
1232  bool InvalidDecl = false;
1233
1234  // See if this is a redefinition of a variable in the same scope.
1235  if (!D.getCXXScopeSpec().isSet()) {
1236    DC = CurContext;
1237    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1238  } else { // Something like "int foo::x;"
1239    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1240    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1241
1242    // C++ 7.3.1.2p2:
1243    // Members (including explicit specializations of templates) of a named
1244    // namespace can also be defined outside that namespace by explicit
1245    // qualification of the name being defined, provided that the entity being
1246    // defined was already declared in the namespace and the definition appears
1247    // after the point of declaration in a namespace that encloses the
1248    // declarations namespace.
1249    //
1250    // Note that we only check the context at this point. We don't yet
1251    // have enough information to make sure that PrevDecl is actually
1252    // the declaration we want to match. For example, given:
1253    //
1254    //   class X {
1255    //     void f();
1256    //     void f(float);
1257    //   };
1258    //
1259    //   void X::f(int) { } // ill-formed
1260    //
1261    // In this case, PrevDecl will point to the overload set
1262    // containing the two f's declared in X, but neither of them
1263    // matches.
1264    if (!CurContext->Encloses(DC)) {
1265      // The qualifying scope doesn't enclose the original declaration.
1266      // Emit diagnostic based on current scope.
1267      SourceLocation L = D.getIdentifierLoc();
1268      SourceRange R = D.getCXXScopeSpec().getRange();
1269      if (isa<FunctionDecl>(CurContext)) {
1270        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1271      } else {
1272        Diag(L, diag::err_invalid_declarator_scope)
1273          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1274      }
1275      InvalidDecl = true;
1276    }
1277  }
1278
1279  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1280    // Maybe we will complain about the shadowed template parameter.
1281    InvalidDecl = InvalidDecl
1282      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1283    // Just pretend that we didn't see the previous declaration.
1284    PrevDecl = 0;
1285  }
1286
1287  // In C++, the previous declaration we find might be a tag type
1288  // (class or enum). In this case, the new declaration will hide the
1289  // tag type.
1290  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1291    PrevDecl = 0;
1292
1293  QualType R = GetTypeForDeclarator(D, S);
1294  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1295
1296  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1297    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1298                                 InvalidDecl);
1299  } else if (R.getTypePtr()->isFunctionType()) {
1300    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1301                                  IsFunctionDefinition, InvalidDecl);
1302  } else {
1303    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1304                                  InvalidDecl);
1305  }
1306
1307  if (New == 0)
1308    return 0;
1309
1310  // Set the lexical context. If the declarator has a C++ scope specifier, the
1311  // lexical context will be different from the semantic context.
1312  New->setLexicalDeclContext(CurContext);
1313
1314  // If this has an identifier, add it to the scope stack.
1315  if (Name)
1316    PushOnScopeChains(New, S);
1317  // If any semantic error occurred, mark the decl as invalid.
1318  if (D.getInvalidType() || InvalidDecl)
1319    New->setInvalidDecl();
1320
1321  return New;
1322}
1323
1324ScopedDecl*
1325Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1326                             QualType R, ScopedDecl* LastDeclarator,
1327                             Decl* PrevDecl, bool& InvalidDecl) {
1328  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1329  if (D.getCXXScopeSpec().isSet()) {
1330    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1331      << D.getCXXScopeSpec().getRange();
1332    InvalidDecl = true;
1333    // Pretend we didn't see the scope specifier.
1334    DC = 0;
1335  }
1336
1337  // Check that there are no default arguments (C++ only).
1338  if (getLangOptions().CPlusPlus)
1339    CheckExtraCXXDefaultArguments(D);
1340
1341  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1342  if (!NewTD) return 0;
1343
1344  // Handle attributes prior to checking for duplicates in MergeVarDecl
1345  ProcessDeclAttributes(NewTD, D);
1346  // Merge the decl with the existing one if appropriate. If the decl is
1347  // in an outer scope, it isn't the same thing.
1348  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1349    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1350    if (NewTD == 0) return 0;
1351  }
1352
1353  if (S->getFnParent() == 0) {
1354    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1355    // then it shall have block scope.
1356    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1357      if (NewTD->getUnderlyingType()->isVariableArrayType())
1358        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1359      else
1360        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1361
1362      InvalidDecl = true;
1363    }
1364  }
1365  return NewTD;
1366}
1367
1368ScopedDecl*
1369Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1370                              QualType R, ScopedDecl* LastDeclarator,
1371                              Decl* PrevDecl, bool& InvalidDecl) {
1372  DeclarationName Name = GetNameForDeclarator(D);
1373
1374  // Check that there are no default arguments (C++ only).
1375  if (getLangOptions().CPlusPlus)
1376    CheckExtraCXXDefaultArguments(D);
1377
1378  if (R.getTypePtr()->isObjCInterfaceType()) {
1379    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1380      << D.getIdentifier();
1381    InvalidDecl = true;
1382  }
1383
1384  VarDecl *NewVD;
1385  VarDecl::StorageClass SC;
1386  switch (D.getDeclSpec().getStorageClassSpec()) {
1387  default: assert(0 && "Unknown storage class!");
1388  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1389  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1390  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1391  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1392  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1393  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1394  case DeclSpec::SCS_mutable:
1395    // mutable can only appear on non-static class members, so it's always
1396    // an error here
1397    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1398    InvalidDecl = true;
1399    SC = VarDecl::None;
1400    break;
1401  }
1402
1403  IdentifierInfo *II = Name.getAsIdentifierInfo();
1404  if (!II) {
1405    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1406      << Name.getAsString();
1407    return 0;
1408  }
1409
1410  if (DC->isRecord()) {
1411    // This is a static data member for a C++ class.
1412    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1413                                    D.getIdentifierLoc(), II,
1414                                    R, LastDeclarator);
1415  } else {
1416    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1417    if (S->getFnParent() == 0) {
1418      // C99 6.9p2: The storage-class specifiers auto and register shall not
1419      // appear in the declaration specifiers in an external declaration.
1420      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1421        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1422        InvalidDecl = true;
1423      }
1424    }
1425    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1426                            II, R, SC, LastDeclarator,
1427                            // FIXME: Move to DeclGroup...
1428                            D.getDeclSpec().getSourceRange().getBegin());
1429    NewVD->setThreadSpecified(ThreadSpecified);
1430  }
1431  // Handle attributes prior to checking for duplicates in MergeVarDecl
1432  ProcessDeclAttributes(NewVD, D);
1433
1434  // Handle GNU asm-label extension (encoded as an attribute).
1435  if (Expr *E = (Expr*) D.getAsmLabel()) {
1436    // The parser guarantees this is a string.
1437    StringLiteral *SE = cast<StringLiteral>(E);
1438    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1439                                                SE->getByteLength())));
1440  }
1441
1442  // Emit an error if an address space was applied to decl with local storage.
1443  // This includes arrays of objects with address space qualifiers, but not
1444  // automatic variables that point to other address spaces.
1445  // ISO/IEC TR 18037 S5.1.2
1446  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1447    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1448    InvalidDecl = true;
1449  }
1450  // Merge the decl with the existing one if appropriate. If the decl is
1451  // in an outer scope, it isn't the same thing.
1452  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1453    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1454      // The user tried to define a non-static data member
1455      // out-of-line (C++ [dcl.meaning]p1).
1456      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1457        << D.getCXXScopeSpec().getRange();
1458      NewVD->Destroy(Context);
1459      return 0;
1460    }
1461
1462    NewVD = MergeVarDecl(NewVD, PrevDecl);
1463    if (NewVD == 0) return 0;
1464
1465    if (D.getCXXScopeSpec().isSet()) {
1466      // No previous declaration in the qualifying scope.
1467      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1468        << Name << D.getCXXScopeSpec().getRange();
1469      InvalidDecl = true;
1470    }
1471  }
1472  return NewVD;
1473}
1474
1475ScopedDecl*
1476Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1477                              QualType R, ScopedDecl *LastDeclarator,
1478                              Decl* PrevDecl, bool IsFunctionDefinition,
1479                              bool& InvalidDecl) {
1480  assert(R.getTypePtr()->isFunctionType());
1481
1482  DeclarationName Name = GetNameForDeclarator(D);
1483  FunctionDecl::StorageClass SC = FunctionDecl::None;
1484  switch (D.getDeclSpec().getStorageClassSpec()) {
1485  default: assert(0 && "Unknown storage class!");
1486  case DeclSpec::SCS_auto:
1487  case DeclSpec::SCS_register:
1488  case DeclSpec::SCS_mutable:
1489    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1490    InvalidDecl = true;
1491    break;
1492  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1493  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1494  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1495  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1496  }
1497
1498  bool isInline = D.getDeclSpec().isInlineSpecified();
1499  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1500  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1501
1502  FunctionDecl *NewFD;
1503  if (D.getKind() == Declarator::DK_Constructor) {
1504    // This is a C++ constructor declaration.
1505    assert(DC->isRecord() &&
1506           "Constructors can only be declared in a member context");
1507
1508    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1509
1510    // Create the new declaration
1511    NewFD = CXXConstructorDecl::Create(Context,
1512                                       cast<CXXRecordDecl>(DC),
1513                                       D.getIdentifierLoc(), Name, R,
1514                                       isExplicit, isInline,
1515                                       /*isImplicitlyDeclared=*/false);
1516
1517    if (InvalidDecl)
1518      NewFD->setInvalidDecl();
1519  } else if (D.getKind() == Declarator::DK_Destructor) {
1520    // This is a C++ destructor declaration.
1521    if (DC->isRecord()) {
1522      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1523
1524      NewFD = CXXDestructorDecl::Create(Context,
1525                                        cast<CXXRecordDecl>(DC),
1526                                        D.getIdentifierLoc(), Name, R,
1527                                        isInline,
1528                                        /*isImplicitlyDeclared=*/false);
1529
1530      if (InvalidDecl)
1531        NewFD->setInvalidDecl();
1532    } else {
1533      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1534
1535      // Create a FunctionDecl to satisfy the function definition parsing
1536      // code path.
1537      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1538                                   Name, R, SC, isInline, LastDeclarator,
1539                                   // FIXME: Move to DeclGroup...
1540                                   D.getDeclSpec().getSourceRange().getBegin());
1541      InvalidDecl = true;
1542      NewFD->setInvalidDecl();
1543    }
1544  } else if (D.getKind() == Declarator::DK_Conversion) {
1545    if (!DC->isRecord()) {
1546      Diag(D.getIdentifierLoc(),
1547           diag::err_conv_function_not_member);
1548      return 0;
1549    } else {
1550      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1551
1552      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1553                                        D.getIdentifierLoc(), Name, R,
1554                                        isInline, isExplicit);
1555
1556      if (InvalidDecl)
1557        NewFD->setInvalidDecl();
1558    }
1559  } else if (DC->isRecord()) {
1560    // This is a C++ method declaration.
1561    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1562                                  D.getIdentifierLoc(), Name, R,
1563                                  (SC == FunctionDecl::Static), isInline,
1564                                  LastDeclarator);
1565  } else {
1566    NewFD = FunctionDecl::Create(Context, DC,
1567                                 D.getIdentifierLoc(),
1568                                 Name, R, SC, isInline, LastDeclarator,
1569                                 // FIXME: Move to DeclGroup...
1570                                 D.getDeclSpec().getSourceRange().getBegin());
1571  }
1572
1573  // Set the lexical context. If the declarator has a C++
1574  // scope specifier, the lexical context will be different
1575  // from the semantic context.
1576  NewFD->setLexicalDeclContext(CurContext);
1577
1578  // Handle GNU asm-label extension (encoded as an attribute).
1579  if (Expr *E = (Expr*) D.getAsmLabel()) {
1580    // The parser guarantees this is a string.
1581    StringLiteral *SE = cast<StringLiteral>(E);
1582    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1583                                                SE->getByteLength())));
1584  }
1585
1586  // Copy the parameter declarations from the declarator D to
1587  // the function declaration NewFD, if they are available.
1588  if (D.getNumTypeObjects() > 0) {
1589    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1590
1591    // Create Decl objects for each parameter, adding them to the
1592    // FunctionDecl.
1593    llvm::SmallVector<ParmVarDecl*, 16> Params;
1594
1595    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1596    // function that takes no arguments, not a function that takes a
1597    // single void argument.
1598    // We let through "const void" here because Sema::GetTypeForDeclarator
1599    // already checks for that case.
1600    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1601        FTI.ArgInfo[0].Param &&
1602        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1603      // empty arg list, don't push any params.
1604      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1605
1606      // In C++, the empty parameter-type-list must be spelled "void"; a
1607      // typedef of void is not permitted.
1608      if (getLangOptions().CPlusPlus &&
1609          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1610        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1611      }
1612    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1613      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1614        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1615    }
1616
1617    NewFD->setParams(Context, &Params[0], Params.size());
1618  } else if (R->getAsTypedefType()) {
1619    // When we're declaring a function with a typedef, as in the
1620    // following example, we'll need to synthesize (unnamed)
1621    // parameters for use in the declaration.
1622    //
1623    // @code
1624    // typedef void fn(int);
1625    // fn f;
1626    // @endcode
1627    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1628    if (!FT) {
1629      // This is a typedef of a function with no prototype, so we
1630      // don't need to do anything.
1631    } else if ((FT->getNumArgs() == 0) ||
1632               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1633                FT->getArgType(0)->isVoidType())) {
1634      // This is a zero-argument function. We don't need to do anything.
1635    } else {
1636      // Synthesize a parameter for each argument type.
1637      llvm::SmallVector<ParmVarDecl*, 16> Params;
1638      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1639           ArgType != FT->arg_type_end(); ++ArgType) {
1640        Params.push_back(ParmVarDecl::Create(Context, DC,
1641                                             SourceLocation(), 0,
1642                                             *ArgType, VarDecl::None,
1643                                             0, 0));
1644      }
1645
1646      NewFD->setParams(Context, &Params[0], Params.size());
1647    }
1648  }
1649
1650  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1651    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1652  else if (isa<CXXDestructorDecl>(NewFD)) {
1653    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1654    Record->setUserDeclaredDestructor(true);
1655    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1656    // user-defined destructor.
1657    Record->setPOD(false);
1658  } else if (CXXConversionDecl *Conversion =
1659             dyn_cast<CXXConversionDecl>(NewFD))
1660    ActOnConversionDeclarator(Conversion);
1661
1662  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1663  if (NewFD->isOverloadedOperator() &&
1664      CheckOverloadedOperatorDeclaration(NewFD))
1665    NewFD->setInvalidDecl();
1666
1667  // Merge the decl with the existing one if appropriate. Since C functions
1668  // are in a flat namespace, make sure we consider decls in outer scopes.
1669  if (PrevDecl &&
1670      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1671    bool Redeclaration = false;
1672
1673    // If C++, determine whether NewFD is an overload of PrevDecl or
1674    // a declaration that requires merging. If it's an overload,
1675    // there's no more work to do here; we'll just add the new
1676    // function to the scope.
1677    OverloadedFunctionDecl::function_iterator MatchedDecl;
1678    if (!getLangOptions().CPlusPlus ||
1679        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1680      Decl *OldDecl = PrevDecl;
1681
1682      // If PrevDecl was an overloaded function, extract the
1683      // FunctionDecl that matched.
1684      if (isa<OverloadedFunctionDecl>(PrevDecl))
1685        OldDecl = *MatchedDecl;
1686
1687      // NewFD and PrevDecl represent declarations that need to be
1688      // merged.
1689      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1690
1691      if (NewFD == 0) return 0;
1692      if (Redeclaration) {
1693        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1694
1695        // An out-of-line member function declaration must also be a
1696        // definition (C++ [dcl.meaning]p1).
1697        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1698            !InvalidDecl) {
1699          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1700            << D.getCXXScopeSpec().getRange();
1701          NewFD->setInvalidDecl();
1702        }
1703      }
1704    }
1705
1706    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1707      // The user tried to provide an out-of-line definition for a
1708      // member function, but there was no such member function
1709      // declared (C++ [class.mfct]p2). For example:
1710      //
1711      // class X {
1712      //   void f() const;
1713      // };
1714      //
1715      // void X::f() { } // ill-formed
1716      //
1717      // Complain about this problem, and attempt to suggest close
1718      // matches (e.g., those that differ only in cv-qualifiers and
1719      // whether the parameter types are references).
1720      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1721        << cast<CXXRecordDecl>(DC)->getDeclName()
1722        << D.getCXXScopeSpec().getRange();
1723      InvalidDecl = true;
1724
1725      PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1726      if (!PrevDecl) {
1727        // Nothing to suggest.
1728      } else if (OverloadedFunctionDecl *Ovl
1729                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1730        for (OverloadedFunctionDecl::function_iterator
1731               Func = Ovl->function_begin(),
1732               FuncEnd = Ovl->function_end();
1733             Func != FuncEnd; ++Func) {
1734          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1735            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1736
1737        }
1738      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1739        // Suggest this no matter how mismatched it is; it's the only
1740        // thing we have.
1741        unsigned diag;
1742        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1743          diag = diag::note_member_def_close_match;
1744        else if (Method->getBody())
1745          diag = diag::note_previous_definition;
1746        else
1747          diag = diag::note_previous_declaration;
1748        Diag(Method->getLocation(), diag);
1749      }
1750
1751      PrevDecl = 0;
1752    }
1753  }
1754  // Handle attributes. We need to have merged decls when handling attributes
1755  // (for example to check for conflicts, etc).
1756  ProcessDeclAttributes(NewFD, D);
1757
1758  if (getLangOptions().CPlusPlus) {
1759    // In C++, check default arguments now that we have merged decls.
1760    CheckCXXDefaultArguments(NewFD);
1761
1762    // An out-of-line member function declaration must also be a
1763    // definition (C++ [dcl.meaning]p1).
1764    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1765      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1766        << D.getCXXScopeSpec().getRange();
1767      InvalidDecl = true;
1768    }
1769  }
1770  return NewFD;
1771}
1772
1773void Sema::InitializerElementNotConstant(const Expr *Init) {
1774  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1775    << Init->getSourceRange();
1776}
1777
1778bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1779  switch (Init->getStmtClass()) {
1780  default:
1781    InitializerElementNotConstant(Init);
1782    return true;
1783  case Expr::ParenExprClass: {
1784    const ParenExpr* PE = cast<ParenExpr>(Init);
1785    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1786  }
1787  case Expr::CompoundLiteralExprClass:
1788    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1789  case Expr::DeclRefExprClass:
1790  case Expr::QualifiedDeclRefExprClass: {
1791    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1792    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1793      if (VD->hasGlobalStorage())
1794        return false;
1795      InitializerElementNotConstant(Init);
1796      return true;
1797    }
1798    if (isa<FunctionDecl>(D))
1799      return false;
1800    InitializerElementNotConstant(Init);
1801    return true;
1802  }
1803  case Expr::MemberExprClass: {
1804    const MemberExpr *M = cast<MemberExpr>(Init);
1805    if (M->isArrow())
1806      return CheckAddressConstantExpression(M->getBase());
1807    return CheckAddressConstantExpressionLValue(M->getBase());
1808  }
1809  case Expr::ArraySubscriptExprClass: {
1810    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1811    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1812    return CheckAddressConstantExpression(ASE->getBase()) ||
1813           CheckArithmeticConstantExpression(ASE->getIdx());
1814  }
1815  case Expr::StringLiteralClass:
1816  case Expr::PredefinedExprClass:
1817    return false;
1818  case Expr::UnaryOperatorClass: {
1819    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1820
1821    // C99 6.6p9
1822    if (Exp->getOpcode() == UnaryOperator::Deref)
1823      return CheckAddressConstantExpression(Exp->getSubExpr());
1824
1825    InitializerElementNotConstant(Init);
1826    return true;
1827  }
1828  }
1829}
1830
1831bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1832  switch (Init->getStmtClass()) {
1833  default:
1834    InitializerElementNotConstant(Init);
1835    return true;
1836  case Expr::ParenExprClass:
1837    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1838  case Expr::StringLiteralClass:
1839  case Expr::ObjCStringLiteralClass:
1840    return false;
1841  case Expr::CallExprClass:
1842  case Expr::CXXOperatorCallExprClass:
1843    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1844    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1845           Builtin::BI__builtin___CFStringMakeConstantString)
1846      return false;
1847
1848    InitializerElementNotConstant(Init);
1849    return true;
1850
1851  case Expr::UnaryOperatorClass: {
1852    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1853
1854    // C99 6.6p9
1855    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1856      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1857
1858    if (Exp->getOpcode() == UnaryOperator::Extension)
1859      return CheckAddressConstantExpression(Exp->getSubExpr());
1860
1861    InitializerElementNotConstant(Init);
1862    return true;
1863  }
1864  case Expr::BinaryOperatorClass: {
1865    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1866    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1867
1868    Expr *PExp = Exp->getLHS();
1869    Expr *IExp = Exp->getRHS();
1870    if (IExp->getType()->isPointerType())
1871      std::swap(PExp, IExp);
1872
1873    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1874    return CheckAddressConstantExpression(PExp) ||
1875           CheckArithmeticConstantExpression(IExp);
1876  }
1877  case Expr::ImplicitCastExprClass:
1878  case Expr::CStyleCastExprClass: {
1879    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1880    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1881      // Check for implicit promotion
1882      if (SubExpr->getType()->isFunctionType() ||
1883          SubExpr->getType()->isArrayType())
1884        return CheckAddressConstantExpressionLValue(SubExpr);
1885    }
1886
1887    // Check for pointer->pointer cast
1888    if (SubExpr->getType()->isPointerType())
1889      return CheckAddressConstantExpression(SubExpr);
1890
1891    if (SubExpr->getType()->isIntegralType()) {
1892      // Check for the special-case of a pointer->int->pointer cast;
1893      // this isn't standard, but some code requires it. See
1894      // PR2720 for an example.
1895      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1896        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1897          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1898          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1899          if (IntWidth >= PointerWidth) {
1900            return CheckAddressConstantExpression(SubCast->getSubExpr());
1901          }
1902        }
1903      }
1904    }
1905    if (SubExpr->getType()->isArithmeticType()) {
1906      return CheckArithmeticConstantExpression(SubExpr);
1907    }
1908
1909    InitializerElementNotConstant(Init);
1910    return true;
1911  }
1912  case Expr::ConditionalOperatorClass: {
1913    // FIXME: Should we pedwarn here?
1914    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1915    if (!Exp->getCond()->getType()->isArithmeticType()) {
1916      InitializerElementNotConstant(Init);
1917      return true;
1918    }
1919    if (CheckArithmeticConstantExpression(Exp->getCond()))
1920      return true;
1921    if (Exp->getLHS() &&
1922        CheckAddressConstantExpression(Exp->getLHS()))
1923      return true;
1924    return CheckAddressConstantExpression(Exp->getRHS());
1925  }
1926  case Expr::AddrLabelExprClass:
1927    return false;
1928  }
1929}
1930
1931static const Expr* FindExpressionBaseAddress(const Expr* E);
1932
1933static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1934  switch (E->getStmtClass()) {
1935  default:
1936    return E;
1937  case Expr::ParenExprClass: {
1938    const ParenExpr* PE = cast<ParenExpr>(E);
1939    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1940  }
1941  case Expr::MemberExprClass: {
1942    const MemberExpr *M = cast<MemberExpr>(E);
1943    if (M->isArrow())
1944      return FindExpressionBaseAddress(M->getBase());
1945    return FindExpressionBaseAddressLValue(M->getBase());
1946  }
1947  case Expr::ArraySubscriptExprClass: {
1948    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1949    return FindExpressionBaseAddress(ASE->getBase());
1950  }
1951  case Expr::UnaryOperatorClass: {
1952    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1953
1954    if (Exp->getOpcode() == UnaryOperator::Deref)
1955      return FindExpressionBaseAddress(Exp->getSubExpr());
1956
1957    return E;
1958  }
1959  }
1960}
1961
1962static const Expr* FindExpressionBaseAddress(const Expr* E) {
1963  switch (E->getStmtClass()) {
1964  default:
1965    return E;
1966  case Expr::ParenExprClass: {
1967    const ParenExpr* PE = cast<ParenExpr>(E);
1968    return FindExpressionBaseAddress(PE->getSubExpr());
1969  }
1970  case Expr::UnaryOperatorClass: {
1971    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1972
1973    // C99 6.6p9
1974    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1975      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1976
1977    if (Exp->getOpcode() == UnaryOperator::Extension)
1978      return FindExpressionBaseAddress(Exp->getSubExpr());
1979
1980    return E;
1981  }
1982  case Expr::BinaryOperatorClass: {
1983    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1984
1985    Expr *PExp = Exp->getLHS();
1986    Expr *IExp = Exp->getRHS();
1987    if (IExp->getType()->isPointerType())
1988      std::swap(PExp, IExp);
1989
1990    return FindExpressionBaseAddress(PExp);
1991  }
1992  case Expr::ImplicitCastExprClass: {
1993    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1994
1995    // Check for implicit promotion
1996    if (SubExpr->getType()->isFunctionType() ||
1997        SubExpr->getType()->isArrayType())
1998      return FindExpressionBaseAddressLValue(SubExpr);
1999
2000    // Check for pointer->pointer cast
2001    if (SubExpr->getType()->isPointerType())
2002      return FindExpressionBaseAddress(SubExpr);
2003
2004    // We assume that we have an arithmetic expression here;
2005    // if we don't, we'll figure it out later
2006    return 0;
2007  }
2008  case Expr::CStyleCastExprClass: {
2009    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2010
2011    // Check for pointer->pointer cast
2012    if (SubExpr->getType()->isPointerType())
2013      return FindExpressionBaseAddress(SubExpr);
2014
2015    // We assume that we have an arithmetic expression here;
2016    // if we don't, we'll figure it out later
2017    return 0;
2018  }
2019  }
2020}
2021
2022bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2023  switch (Init->getStmtClass()) {
2024  default:
2025    InitializerElementNotConstant(Init);
2026    return true;
2027  case Expr::ParenExprClass: {
2028    const ParenExpr* PE = cast<ParenExpr>(Init);
2029    return CheckArithmeticConstantExpression(PE->getSubExpr());
2030  }
2031  case Expr::FloatingLiteralClass:
2032  case Expr::IntegerLiteralClass:
2033  case Expr::CharacterLiteralClass:
2034  case Expr::ImaginaryLiteralClass:
2035  case Expr::TypesCompatibleExprClass:
2036  case Expr::CXXBoolLiteralExprClass:
2037    return false;
2038  case Expr::CallExprClass:
2039  case Expr::CXXOperatorCallExprClass: {
2040    const CallExpr *CE = cast<CallExpr>(Init);
2041
2042    // Allow any constant foldable calls to builtins.
2043    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2044      return false;
2045
2046    InitializerElementNotConstant(Init);
2047    return true;
2048  }
2049  case Expr::DeclRefExprClass:
2050  case Expr::QualifiedDeclRefExprClass: {
2051    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2052    if (isa<EnumConstantDecl>(D))
2053      return false;
2054    InitializerElementNotConstant(Init);
2055    return true;
2056  }
2057  case Expr::CompoundLiteralExprClass:
2058    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2059    // but vectors are allowed to be magic.
2060    if (Init->getType()->isVectorType())
2061      return false;
2062    InitializerElementNotConstant(Init);
2063    return true;
2064  case Expr::UnaryOperatorClass: {
2065    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2066
2067    switch (Exp->getOpcode()) {
2068    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2069    // See C99 6.6p3.
2070    default:
2071      InitializerElementNotConstant(Init);
2072      return true;
2073    case UnaryOperator::OffsetOf:
2074      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2075        return false;
2076      InitializerElementNotConstant(Init);
2077      return true;
2078    case UnaryOperator::Extension:
2079    case UnaryOperator::LNot:
2080    case UnaryOperator::Plus:
2081    case UnaryOperator::Minus:
2082    case UnaryOperator::Not:
2083      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2084    }
2085  }
2086  case Expr::SizeOfAlignOfExprClass: {
2087    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2088    // Special check for void types, which are allowed as an extension
2089    if (Exp->getTypeOfArgument()->isVoidType())
2090      return false;
2091    // alignof always evaluates to a constant.
2092    // FIXME: is sizeof(int[3.0]) a constant expression?
2093    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2094      InitializerElementNotConstant(Init);
2095      return true;
2096    }
2097    return false;
2098  }
2099  case Expr::BinaryOperatorClass: {
2100    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2101
2102    if (Exp->getLHS()->getType()->isArithmeticType() &&
2103        Exp->getRHS()->getType()->isArithmeticType()) {
2104      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2105             CheckArithmeticConstantExpression(Exp->getRHS());
2106    }
2107
2108    if (Exp->getLHS()->getType()->isPointerType() &&
2109        Exp->getRHS()->getType()->isPointerType()) {
2110      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2111      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2112
2113      // Only allow a null (constant integer) base; we could
2114      // allow some additional cases if necessary, but this
2115      // is sufficient to cover offsetof-like constructs.
2116      if (!LHSBase && !RHSBase) {
2117        return CheckAddressConstantExpression(Exp->getLHS()) ||
2118               CheckAddressConstantExpression(Exp->getRHS());
2119      }
2120    }
2121
2122    InitializerElementNotConstant(Init);
2123    return true;
2124  }
2125  case Expr::ImplicitCastExprClass:
2126  case Expr::CStyleCastExprClass: {
2127    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2128    if (SubExpr->getType()->isArithmeticType())
2129      return CheckArithmeticConstantExpression(SubExpr);
2130
2131    if (SubExpr->getType()->isPointerType()) {
2132      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2133      // If the pointer has a null base, this is an offsetof-like construct
2134      if (!Base)
2135        return CheckAddressConstantExpression(SubExpr);
2136    }
2137
2138    InitializerElementNotConstant(Init);
2139    return true;
2140  }
2141  case Expr::ConditionalOperatorClass: {
2142    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2143
2144    // If GNU extensions are disabled, we require all operands to be arithmetic
2145    // constant expressions.
2146    if (getLangOptions().NoExtensions) {
2147      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2148          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2149             CheckArithmeticConstantExpression(Exp->getRHS());
2150    }
2151
2152    // Otherwise, we have to emulate some of the behavior of fold here.
2153    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2154    // because it can constant fold things away.  To retain compatibility with
2155    // GCC code, we see if we can fold the condition to a constant (which we
2156    // should always be able to do in theory).  If so, we only require the
2157    // specified arm of the conditional to be a constant.  This is a horrible
2158    // hack, but is require by real world code that uses __builtin_constant_p.
2159    Expr::EvalResult EvalResult;
2160    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2161        EvalResult.HasSideEffects) {
2162      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2163      // won't be able to either.  Use it to emit the diagnostic though.
2164      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2165      assert(Res && "Evaluate couldn't evaluate this constant?");
2166      return Res;
2167    }
2168
2169    // Verify that the side following the condition is also a constant.
2170    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2171    if (EvalResult.Val.getInt() == 0)
2172      std::swap(TrueSide, FalseSide);
2173
2174    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2175      return true;
2176
2177    // Okay, the evaluated side evaluates to a constant, so we accept this.
2178    // Check to see if the other side is obviously not a constant.  If so,
2179    // emit a warning that this is a GNU extension.
2180    if (FalseSide && !FalseSide->isEvaluatable(Context))
2181      Diag(Init->getExprLoc(),
2182           diag::ext_typecheck_expression_not_constant_but_accepted)
2183        << FalseSide->getSourceRange();
2184    return false;
2185  }
2186  }
2187}
2188
2189bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2190  Init = Init->IgnoreParens();
2191
2192  if (Init->isEvaluatable(Context))
2193    return false;
2194
2195  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2196  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2197    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2198
2199  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2200    return CheckForConstantInitializer(e->getInitializer(), DclT);
2201
2202  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2203    unsigned numInits = Exp->getNumInits();
2204    for (unsigned i = 0; i < numInits; i++) {
2205      // FIXME: Need to get the type of the declaration for C++,
2206      // because it could be a reference?
2207      if (CheckForConstantInitializer(Exp->getInit(i),
2208                                      Exp->getInit(i)->getType()))
2209        return true;
2210    }
2211    return false;
2212  }
2213
2214  // FIXME: We can probably remove some of this code below, now that
2215  // Expr::Evaluate is doing the heavy lifting for scalars.
2216
2217  if (Init->isNullPointerConstant(Context))
2218    return false;
2219  if (Init->getType()->isArithmeticType()) {
2220    QualType InitTy = Context.getCanonicalType(Init->getType())
2221                             .getUnqualifiedType();
2222    if (InitTy == Context.BoolTy) {
2223      // Special handling for pointers implicitly cast to bool;
2224      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2225      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2226        Expr* SubE = ICE->getSubExpr();
2227        if (SubE->getType()->isPointerType() ||
2228            SubE->getType()->isArrayType() ||
2229            SubE->getType()->isFunctionType()) {
2230          return CheckAddressConstantExpression(Init);
2231        }
2232      }
2233    } else if (InitTy->isIntegralType()) {
2234      Expr* SubE = 0;
2235      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2236        SubE = CE->getSubExpr();
2237      // Special check for pointer cast to int; we allow as an extension
2238      // an address constant cast to an integer if the integer
2239      // is of an appropriate width (this sort of code is apparently used
2240      // in some places).
2241      // FIXME: Add pedwarn?
2242      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2243      if (SubE && (SubE->getType()->isPointerType() ||
2244                   SubE->getType()->isArrayType() ||
2245                   SubE->getType()->isFunctionType())) {
2246        unsigned IntWidth = Context.getTypeSize(Init->getType());
2247        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2248        if (IntWidth >= PointerWidth)
2249          return CheckAddressConstantExpression(Init);
2250      }
2251    }
2252
2253    return CheckArithmeticConstantExpression(Init);
2254  }
2255
2256  if (Init->getType()->isPointerType())
2257    return CheckAddressConstantExpression(Init);
2258
2259  // An array type at the top level that isn't an init-list must
2260  // be a string literal
2261  if (Init->getType()->isArrayType())
2262    return false;
2263
2264  if (Init->getType()->isFunctionType())
2265    return false;
2266
2267  // Allow block exprs at top level.
2268  if (Init->getType()->isBlockPointerType())
2269    return false;
2270
2271  // GCC cast to union extension
2272  // note: the validity of the cast expr is checked by CheckCastTypes()
2273  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2274    QualType T = C->getType();
2275    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2276  }
2277
2278  InitializerElementNotConstant(Init);
2279  return true;
2280}
2281
2282void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2283  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2284}
2285
2286/// AddInitializerToDecl - Adds the initializer Init to the
2287/// declaration dcl. If DirectInit is true, this is C++ direct
2288/// initialization rather than copy initialization.
2289void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2290  Decl *RealDecl = static_cast<Decl *>(dcl);
2291  Expr *Init = static_cast<Expr *>(init.release());
2292  assert(Init && "missing initializer");
2293
2294  // If there is no declaration, there was an error parsing it.  Just ignore
2295  // the initializer.
2296  if (RealDecl == 0) {
2297    delete Init;
2298    return;
2299  }
2300
2301  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2302  if (!VDecl) {
2303    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2304         diag::err_illegal_initializer);
2305    RealDecl->setInvalidDecl();
2306    return;
2307  }
2308  // Get the decls type and save a reference for later, since
2309  // CheckInitializerTypes may change it.
2310  QualType DclT = VDecl->getType(), SavT = DclT;
2311  if (VDecl->isBlockVarDecl()) {
2312    VarDecl::StorageClass SC = VDecl->getStorageClass();
2313    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2314      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2315      VDecl->setInvalidDecl();
2316    } else if (!VDecl->isInvalidDecl()) {
2317      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2318                                VDecl->getDeclName(), DirectInit))
2319        VDecl->setInvalidDecl();
2320
2321      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2322      if (!getLangOptions().CPlusPlus) {
2323        if (SC == VarDecl::Static) // C99 6.7.8p4.
2324          CheckForConstantInitializer(Init, DclT);
2325      }
2326    }
2327  } else if (VDecl->isFileVarDecl()) {
2328    if (VDecl->getStorageClass() == VarDecl::Extern)
2329      Diag(VDecl->getLocation(), diag::warn_extern_init);
2330    if (!VDecl->isInvalidDecl())
2331      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2332                                VDecl->getDeclName(), DirectInit))
2333        VDecl->setInvalidDecl();
2334
2335    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2336    if (!getLangOptions().CPlusPlus) {
2337      // C99 6.7.8p4. All file scoped initializers need to be constant.
2338      CheckForConstantInitializer(Init, DclT);
2339    }
2340  }
2341  // If the type changed, it means we had an incomplete type that was
2342  // completed by the initializer. For example:
2343  //   int ary[] = { 1, 3, 5 };
2344  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2345  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2346    VDecl->setType(DclT);
2347    Init->setType(DclT);
2348  }
2349
2350  // Attach the initializer to the decl.
2351  VDecl->setInit(Init);
2352  return;
2353}
2354
2355void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2356  Decl *RealDecl = static_cast<Decl *>(dcl);
2357
2358  // If there is no declaration, there was an error parsing it. Just ignore it.
2359  if (RealDecl == 0)
2360    return;
2361
2362  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2363    QualType Type = Var->getType();
2364    // C++ [dcl.init.ref]p3:
2365    //   The initializer can be omitted for a reference only in a
2366    //   parameter declaration (8.3.5), in the declaration of a
2367    //   function return type, in the declaration of a class member
2368    //   within its class declaration (9.2), and where the extern
2369    //   specifier is explicitly used.
2370    if (Type->isReferenceType() &&
2371        Var->getStorageClass() != VarDecl::Extern &&
2372        Var->getStorageClass() != VarDecl::PrivateExtern) {
2373      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2374        << Var->getDeclName()
2375        << SourceRange(Var->getLocation(), Var->getLocation());
2376      Var->setInvalidDecl();
2377      return;
2378    }
2379
2380    // C++ [dcl.init]p9:
2381    //
2382    //   If no initializer is specified for an object, and the object
2383    //   is of (possibly cv-qualified) non-POD class type (or array
2384    //   thereof), the object shall be default-initialized; if the
2385    //   object is of const-qualified type, the underlying class type
2386    //   shall have a user-declared default constructor.
2387    if (getLangOptions().CPlusPlus) {
2388      QualType InitType = Type;
2389      if (const ArrayType *Array = Context.getAsArrayType(Type))
2390        InitType = Array->getElementType();
2391      if (Var->getStorageClass() != VarDecl::Extern &&
2392          Var->getStorageClass() != VarDecl::PrivateExtern &&
2393          InitType->isRecordType()) {
2394        const CXXConstructorDecl *Constructor
2395          = PerformInitializationByConstructor(InitType, 0, 0,
2396                                               Var->getLocation(),
2397                                               SourceRange(Var->getLocation(),
2398                                                           Var->getLocation()),
2399                                               Var->getDeclName(),
2400                                               IK_Default);
2401        if (!Constructor)
2402          Var->setInvalidDecl();
2403      }
2404    }
2405
2406#if 0
2407    // FIXME: Temporarily disabled because we are not properly parsing
2408    // linkage specifications on declarations, e.g.,
2409    //
2410    //   extern "C" const CGPoint CGPointerZero;
2411    //
2412    // C++ [dcl.init]p9:
2413    //
2414    //     If no initializer is specified for an object, and the
2415    //     object is of (possibly cv-qualified) non-POD class type (or
2416    //     array thereof), the object shall be default-initialized; if
2417    //     the object is of const-qualified type, the underlying class
2418    //     type shall have a user-declared default
2419    //     constructor. Otherwise, if no initializer is specified for
2420    //     an object, the object and its subobjects, if any, have an
2421    //     indeterminate initial value; if the object or any of its
2422    //     subobjects are of const-qualified type, the program is
2423    //     ill-formed.
2424    //
2425    // This isn't technically an error in C, so we don't diagnose it.
2426    //
2427    // FIXME: Actually perform the POD/user-defined default
2428    // constructor check.
2429    if (getLangOptions().CPlusPlus &&
2430        Context.getCanonicalType(Type).isConstQualified() &&
2431        Var->getStorageClass() != VarDecl::Extern)
2432      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2433        << Var->getName()
2434        << SourceRange(Var->getLocation(), Var->getLocation());
2435#endif
2436  }
2437}
2438
2439/// The declarators are chained together backwards, reverse the list.
2440Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2441  // Often we have single declarators, handle them quickly.
2442  Decl *GroupDecl = static_cast<Decl*>(group);
2443  if (GroupDecl == 0)
2444    return 0;
2445
2446  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2447  ScopedDecl *NewGroup = 0;
2448  if (Group->getNextDeclarator() == 0)
2449    NewGroup = Group;
2450  else { // reverse the list.
2451    while (Group) {
2452      ScopedDecl *Next = Group->getNextDeclarator();
2453      Group->setNextDeclarator(NewGroup);
2454      NewGroup = Group;
2455      Group = Next;
2456    }
2457  }
2458  // Perform semantic analysis that depends on having fully processed both
2459  // the declarator and initializer.
2460  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2461    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2462    if (!IDecl)
2463      continue;
2464    QualType T = IDecl->getType();
2465
2466    if (T->isVariableArrayType()) {
2467      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2468
2469      // FIXME: This won't give the correct result for
2470      // int a[10][n];
2471      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2472      if (IDecl->isFileVarDecl()) {
2473        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2474          SizeRange;
2475
2476        IDecl->setInvalidDecl();
2477      } else {
2478        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2479        // static storage duration, it shall not have a variable length array.
2480        if (IDecl->getStorageClass() == VarDecl::Static) {
2481          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2482            << SizeRange;
2483          IDecl->setInvalidDecl();
2484        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2485          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2486            << SizeRange;
2487          IDecl->setInvalidDecl();
2488        }
2489      }
2490    } else if (T->isVariablyModifiedType()) {
2491      if (IDecl->isFileVarDecl()) {
2492        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2493        IDecl->setInvalidDecl();
2494      } else {
2495        if (IDecl->getStorageClass() == VarDecl::Extern) {
2496          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2497          IDecl->setInvalidDecl();
2498        }
2499      }
2500    }
2501
2502    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2503    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2504    if (IDecl->isBlockVarDecl() &&
2505        IDecl->getStorageClass() != VarDecl::Extern) {
2506      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2507        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2508        IDecl->setInvalidDecl();
2509      }
2510    }
2511    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2512    // object that has file scope without an initializer, and without a
2513    // storage-class specifier or with the storage-class specifier "static",
2514    // constitutes a tentative definition. Note: A tentative definition with
2515    // external linkage is valid (C99 6.2.2p5).
2516    if (isTentativeDefinition(IDecl)) {
2517      if (T->isIncompleteArrayType()) {
2518        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2519        // array to be completed. Don't issue a diagnostic.
2520      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2521        // C99 6.9.2p3: If the declaration of an identifier for an object is
2522        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2523        // declared type shall not be an incomplete type.
2524        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2525        IDecl->setInvalidDecl();
2526      }
2527    }
2528    if (IDecl->isFileVarDecl())
2529      CheckForFileScopedRedefinitions(S, IDecl);
2530  }
2531  return NewGroup;
2532}
2533
2534/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2535/// to introduce parameters into function prototype scope.
2536Sema::DeclTy *
2537Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2538  const DeclSpec &DS = D.getDeclSpec();
2539
2540  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2541  VarDecl::StorageClass StorageClass = VarDecl::None;
2542  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2543    StorageClass = VarDecl::Register;
2544  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2545    Diag(DS.getStorageClassSpecLoc(),
2546         diag::err_invalid_storage_class_in_func_decl);
2547    D.getMutableDeclSpec().ClearStorageClassSpecs();
2548  }
2549  if (DS.isThreadSpecified()) {
2550    Diag(DS.getThreadSpecLoc(),
2551         diag::err_invalid_storage_class_in_func_decl);
2552    D.getMutableDeclSpec().ClearStorageClassSpecs();
2553  }
2554
2555  // Check that there are no default arguments inside the type of this
2556  // parameter (C++ only).
2557  if (getLangOptions().CPlusPlus)
2558    CheckExtraCXXDefaultArguments(D);
2559
2560  // In this context, we *do not* check D.getInvalidType(). If the declarator
2561  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2562  // though it will not reflect the user specified type.
2563  QualType parmDeclType = GetTypeForDeclarator(D, S);
2564
2565  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2566
2567  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2568  // Can this happen for params?  We already checked that they don't conflict
2569  // among each other.  Here they can only shadow globals, which is ok.
2570  IdentifierInfo *II = D.getIdentifier();
2571  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2572    if (PrevDecl->isTemplateParameter()) {
2573      // Maybe we will complain about the shadowed template parameter.
2574      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2575      // Just pretend that we didn't see the previous declaration.
2576      PrevDecl = 0;
2577    } else if (S->isDeclScope(PrevDecl)) {
2578      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2579
2580      // Recover by removing the name
2581      II = 0;
2582      D.SetIdentifier(0, D.getIdentifierLoc());
2583    }
2584  }
2585
2586  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2587  // Doing the promotion here has a win and a loss. The win is the type for
2588  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2589  // code generator). The loss is the orginal type isn't preserved. For example:
2590  //
2591  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2592  //    int blockvardecl[5];
2593  //    sizeof(parmvardecl);  // size == 4
2594  //    sizeof(blockvardecl); // size == 20
2595  // }
2596  //
2597  // For expressions, all implicit conversions are captured using the
2598  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2599  //
2600  // FIXME: If a source translation tool needs to see the original type, then
2601  // we need to consider storing both types (in ParmVarDecl)...
2602  //
2603  if (parmDeclType->isArrayType()) {
2604    // int x[restrict 4] ->  int *restrict
2605    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2606  } else if (parmDeclType->isFunctionType())
2607    parmDeclType = Context.getPointerType(parmDeclType);
2608
2609  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2610                                         D.getIdentifierLoc(), II,
2611                                         parmDeclType, StorageClass,
2612                                         0, 0);
2613
2614  if (D.getInvalidType())
2615    New->setInvalidDecl();
2616
2617  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2618  if (D.getCXXScopeSpec().isSet()) {
2619    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2620      << D.getCXXScopeSpec().getRange();
2621    New->setInvalidDecl();
2622  }
2623
2624  // Add the parameter declaration into this scope.
2625  S->AddDecl(New);
2626  if (II)
2627    IdResolver.AddDecl(New);
2628
2629  ProcessDeclAttributes(New, D);
2630  return New;
2631
2632}
2633
2634Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2635  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2636  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2637         "Not a function declarator!");
2638  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2639
2640  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2641  // for a K&R function.
2642  if (!FTI.hasPrototype) {
2643    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2644      if (FTI.ArgInfo[i].Param == 0) {
2645        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2646          << FTI.ArgInfo[i].Ident;
2647        // Implicitly declare the argument as type 'int' for lack of a better
2648        // type.
2649        DeclSpec DS;
2650        const char* PrevSpec; // unused
2651        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2652                           PrevSpec);
2653        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2654        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2655        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2656      }
2657    }
2658  } else {
2659    // FIXME: Diagnose arguments without names in C.
2660  }
2661
2662  Scope *ParentScope = FnBodyScope->getParent();
2663
2664  return ActOnStartOfFunctionDef(FnBodyScope,
2665                                 ActOnDeclarator(ParentScope, D, 0,
2666                                                 /*IsFunctionDefinition=*/true));
2667}
2668
2669Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2670  Decl *decl = static_cast<Decl*>(D);
2671  FunctionDecl *FD = cast<FunctionDecl>(decl);
2672
2673  // See if this is a redefinition.
2674  const FunctionDecl *Definition;
2675  if (FD->getBody(Definition)) {
2676    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2677    Diag(Definition->getLocation(), diag::note_previous_definition);
2678  }
2679
2680  PushDeclContext(FnBodyScope, FD);
2681
2682  // Check the validity of our function parameters
2683  CheckParmsForFunctionDef(FD);
2684
2685  // Introduce our parameters into the function scope
2686  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2687    ParmVarDecl *Param = FD->getParamDecl(p);
2688    Param->setOwningFunction(FD);
2689
2690    // If this has an identifier, add it to the scope stack.
2691    if (Param->getIdentifier())
2692      PushOnScopeChains(Param, FnBodyScope);
2693  }
2694
2695  // Checking attributes of current function definition
2696  // dllimport attribute.
2697  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2698    // dllimport attribute cannot be applied to definition.
2699    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2700      Diag(FD->getLocation(),
2701           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2702        << "dllimport";
2703      FD->setInvalidDecl();
2704      return FD;
2705    } else {
2706      // If a symbol previously declared dllimport is later defined, the
2707      // attribute is ignored in subsequent references, and a warning is
2708      // emitted.
2709      Diag(FD->getLocation(),
2710           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2711        << FD->getNameAsCString() << "dllimport";
2712    }
2713  }
2714  return FD;
2715}
2716
2717Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2718  Decl *dcl = static_cast<Decl *>(D);
2719  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2720  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2721    FD->setBody(Body);
2722    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2723  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2724    MD->setBody((Stmt*)Body);
2725  } else
2726    return 0;
2727  PopDeclContext();
2728  // Verify and clean out per-function state.
2729
2730  // Check goto/label use.
2731  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2732       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2733    // Verify that we have no forward references left.  If so, there was a goto
2734    // or address of a label taken, but no definition of it.  Label fwd
2735    // definitions are indicated with a null substmt.
2736    if (I->second->getSubStmt() == 0) {
2737      LabelStmt *L = I->second;
2738      // Emit error.
2739      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2740
2741      // At this point, we have gotos that use the bogus label.  Stitch it into
2742      // the function body so that they aren't leaked and that the AST is well
2743      // formed.
2744      if (Body) {
2745        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2746        cast<CompoundStmt>(Body)->push_back(L);
2747      } else {
2748        // The whole function wasn't parsed correctly, just delete this.
2749        delete L;
2750      }
2751    }
2752  }
2753  LabelMap.clear();
2754
2755  return D;
2756}
2757
2758/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2759/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2760ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2761                                           IdentifierInfo &II, Scope *S) {
2762  // Extension in C99.  Legal in C90, but warn about it.
2763  if (getLangOptions().C99)
2764    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2765  else
2766    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2767
2768  // FIXME: handle stuff like:
2769  // void foo() { extern float X(); }
2770  // void bar() { X(); }  <-- implicit decl for X in another scope.
2771
2772  // Set a Declarator for the implicit definition: int foo();
2773  const char *Dummy;
2774  DeclSpec DS;
2775  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2776  Error = Error; // Silence warning.
2777  assert(!Error && "Error setting up implicit decl!");
2778  Declarator D(DS, Declarator::BlockContext);
2779  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2780  D.SetIdentifier(&II, Loc);
2781
2782  // Insert this function into translation-unit scope.
2783
2784  DeclContext *PrevDC = CurContext;
2785  CurContext = Context.getTranslationUnitDecl();
2786
2787  FunctionDecl *FD =
2788    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2789  FD->setImplicit();
2790
2791  CurContext = PrevDC;
2792
2793  return FD;
2794}
2795
2796
2797TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2798                                    ScopedDecl *LastDeclarator) {
2799  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2800  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2801
2802  // Scope manipulation handled by caller.
2803  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2804                                           D.getIdentifierLoc(),
2805                                           D.getIdentifier(),
2806                                           T, LastDeclarator);
2807  if (D.getInvalidType())
2808    NewTD->setInvalidDecl();
2809  return NewTD;
2810}
2811
2812/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2813/// former case, Name will be non-null.  In the later case, Name will be null.
2814/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2815/// reference/declaration/definition of a tag.
2816Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2817                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2818                             IdentifierInfo *Name, SourceLocation NameLoc,
2819                             AttributeList *Attr,
2820                             MultiTemplateParamsArg TemplateParameterLists) {
2821  // If this is not a definition, it must have a name.
2822  assert((Name != 0 || TK == TK_Definition) &&
2823         "Nameless record must be a definition!");
2824
2825  TagDecl::TagKind Kind;
2826  switch (TagSpec) {
2827  default: assert(0 && "Unknown tag type!");
2828  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2829  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2830  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2831  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2832  }
2833
2834  DeclContext *SearchDC = CurContext;
2835  DeclContext *DC = CurContext;
2836  DeclContext *LexicalContext = CurContext;
2837  ScopedDecl *PrevDecl = 0;
2838
2839  bool Invalid = false;
2840
2841  if (Name && SS.isNotEmpty()) {
2842    // We have a nested-name tag ('struct foo::bar').
2843
2844    // Check for invalid 'foo::'.
2845    if (SS.isInvalid()) {
2846      Name = 0;
2847      goto CreateNewDecl;
2848    }
2849
2850    DC = static_cast<DeclContext*>(SS.getScopeRep());
2851    // Look-up name inside 'foo::'.
2852    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC)
2853                                           .getAsDecl());
2854
2855    // A tag 'foo::bar' must already exist.
2856    if (PrevDecl == 0) {
2857      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2858      Name = 0;
2859      goto CreateNewDecl;
2860    }
2861  } else {
2862    // If this is a named struct, check to see if there was a previous forward
2863    // declaration or definition.
2864    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2865    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S)
2866                                              .getAsDecl());
2867
2868    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2869      // FIXME: This makes sure that we ignore the contexts associated
2870      // with C structs, unions, and enums when looking for a matching
2871      // tag declaration or definition. See the similar lookup tweak
2872      // in Sema::LookupDecl; is there a better way to deal with this?
2873      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2874        SearchDC = SearchDC->getParent();
2875    }
2876  }
2877
2878  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2879    // Maybe we will complain about the shadowed template parameter.
2880    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2881    // Just pretend that we didn't see the previous declaration.
2882    PrevDecl = 0;
2883  }
2884
2885  if (PrevDecl) {
2886    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2887            "unexpected Decl type");
2888    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2889      // If this is a use of a previous tag, or if the tag is already declared
2890      // in the same scope (so that the definition/declaration completes or
2891      // rementions the tag), reuse the decl.
2892      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2893        // Make sure that this wasn't declared as an enum and now used as a
2894        // struct or something similar.
2895        if (PrevTagDecl->getTagKind() != Kind) {
2896          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2897          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2898          // Recover by making this an anonymous redefinition.
2899          Name = 0;
2900          PrevDecl = 0;
2901          Invalid = true;
2902        } else {
2903          // If this is a use, just return the declaration we found.
2904
2905          // FIXME: In the future, return a variant or some other clue
2906          // for the consumer of this Decl to know it doesn't own it.
2907          // For our current ASTs this shouldn't be a problem, but will
2908          // need to be changed with DeclGroups.
2909          if (TK == TK_Reference)
2910            return PrevDecl;
2911
2912          // Diagnose attempts to redefine a tag.
2913          if (TK == TK_Definition) {
2914            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2915              Diag(NameLoc, diag::err_redefinition) << Name;
2916              Diag(Def->getLocation(), diag::note_previous_definition);
2917              // If this is a redefinition, recover by making this
2918              // struct be anonymous, which will make any later
2919              // references get the previous definition.
2920              Name = 0;
2921              PrevDecl = 0;
2922              Invalid = true;
2923            } else {
2924              // If the type is currently being defined, complain
2925              // about a nested redefinition.
2926              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2927              if (Tag->isBeingDefined()) {
2928                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2929                Diag(PrevTagDecl->getLocation(),
2930                     diag::note_previous_definition);
2931                Name = 0;
2932                PrevDecl = 0;
2933                Invalid = true;
2934              }
2935            }
2936
2937            // Okay, this is definition of a previously declared or referenced
2938            // tag PrevDecl. We're going to create a new Decl for it.
2939          }
2940        }
2941        // If we get here we have (another) forward declaration or we
2942        // have a definition.  Just create a new decl.
2943      } else {
2944        // If we get here, this is a definition of a new tag type in a nested
2945        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2946        // new decl/type.  We set PrevDecl to NULL so that the entities
2947        // have distinct types.
2948        PrevDecl = 0;
2949      }
2950      // If we get here, we're going to create a new Decl. If PrevDecl
2951      // is non-NULL, it's a definition of the tag declared by
2952      // PrevDecl. If it's NULL, we have a new definition.
2953    } else {
2954      // PrevDecl is a namespace.
2955      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2956        // The tag name clashes with a namespace name, issue an error and
2957        // recover by making this tag be anonymous.
2958        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2959        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2960        Name = 0;
2961        PrevDecl = 0;
2962        Invalid = true;
2963      } else {
2964        // The existing declaration isn't relevant to us; we're in a
2965        // new scope, so clear out the previous declaration.
2966        PrevDecl = 0;
2967      }
2968    }
2969  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2970             (Kind != TagDecl::TK_enum))  {
2971    // C++ [basic.scope.pdecl]p5:
2972    //   -- for an elaborated-type-specifier of the form
2973    //
2974    //          class-key identifier
2975    //
2976    //      if the elaborated-type-specifier is used in the
2977    //      decl-specifier-seq or parameter-declaration-clause of a
2978    //      function defined in namespace scope, the identifier is
2979    //      declared as a class-name in the namespace that contains
2980    //      the declaration; otherwise, except as a friend
2981    //      declaration, the identifier is declared in the smallest
2982    //      non-class, non-function-prototype scope that contains the
2983    //      declaration.
2984    //
2985    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2986    // C structs and unions.
2987
2988    // Find the context where we'll be declaring the tag.
2989    // FIXME: We would like to maintain the current DeclContext as the
2990    // lexical context,
2991    while (DC->isRecord())
2992      DC = DC->getParent();
2993    LexicalContext = DC;
2994
2995    // Find the scope where we'll be declaring the tag.
2996    while (S->isClassScope() ||
2997           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2998           ((S->getFlags() & Scope::DeclScope) == 0) ||
2999           (S->getEntity() &&
3000            ((DeclContext *)S->getEntity())->isTransparentContext()))
3001      S = S->getParent();
3002  }
3003
3004CreateNewDecl:
3005
3006  // If there is an identifier, use the location of the identifier as the
3007  // location of the decl, otherwise use the location of the struct/union
3008  // keyword.
3009  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3010
3011  // Otherwise, create a new declaration. If there is a previous
3012  // declaration of the same entity, the two will be linked via
3013  // PrevDecl.
3014  TagDecl *New;
3015
3016  if (Kind == TagDecl::TK_enum) {
3017    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3018    // enum X { A, B, C } D;    D should chain to X.
3019    New = EnumDecl::Create(Context, DC, Loc, Name,
3020                           cast_or_null<EnumDecl>(PrevDecl));
3021    // If this is an undefined enum, warn.
3022    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3023  } else {
3024    // struct/union/class
3025
3026    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3027    // struct X { int A; } D;    D should chain to X.
3028    if (getLangOptions().CPlusPlus)
3029      // FIXME: Look for a way to use RecordDecl for simple structs.
3030      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3031                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3032    else
3033      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3034                               cast_or_null<RecordDecl>(PrevDecl));
3035  }
3036
3037  if (Kind != TagDecl::TK_enum) {
3038    // Handle #pragma pack: if the #pragma pack stack has non-default
3039    // alignment, make up a packed attribute for this decl. These
3040    // attributes are checked when the ASTContext lays out the
3041    // structure.
3042    //
3043    // It is important for implementing the correct semantics that this
3044    // happen here (in act on tag decl). The #pragma pack stack is
3045    // maintained as a result of parser callbacks which can occur at
3046    // many points during the parsing of a struct declaration (because
3047    // the #pragma tokens are effectively skipped over during the
3048    // parsing of the struct).
3049    if (unsigned Alignment = PackContext.getAlignment())
3050      New->addAttr(new PackedAttr(Alignment * 8));
3051  }
3052
3053  if (Invalid)
3054    New->setInvalidDecl();
3055
3056  if (Attr)
3057    ProcessDeclAttributeList(New, Attr);
3058
3059  // If we're declaring or defining a tag in function prototype scope
3060  // in C, note that this type can only be used within the function.
3061  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3062    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3063
3064  // Set the lexical context. If the tag has a C++ scope specifier, the
3065  // lexical context will be different from the semantic context.
3066  New->setLexicalDeclContext(LexicalContext);
3067
3068  if (TK == TK_Definition)
3069    New->startDefinition();
3070
3071  // If this has an identifier, add it to the scope stack.
3072  if (Name) {
3073    S = getNonFieldDeclScope(S);
3074
3075    // Add it to the decl chain.
3076    if (LexicalContext != CurContext) {
3077      // FIXME: PushOnScopeChains should not rely on CurContext!
3078      DeclContext *OldContext = CurContext;
3079      CurContext = LexicalContext;
3080      PushOnScopeChains(New, S);
3081      CurContext = OldContext;
3082    } else
3083      PushOnScopeChains(New, S);
3084  } else {
3085    LexicalContext->addDecl(New);
3086  }
3087
3088  return New;
3089}
3090
3091void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3092  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3093
3094  // Enter the tag context.
3095  PushDeclContext(S, Tag);
3096
3097  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3098    FieldCollector->StartClass();
3099
3100    if (Record->getIdentifier()) {
3101      // C++ [class]p2:
3102      //   [...] The class-name is also inserted into the scope of the
3103      //   class itself; this is known as the injected-class-name. For
3104      //   purposes of access checking, the injected-class-name is treated
3105      //   as if it were a public member name.
3106      RecordDecl *InjectedClassName
3107        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3108                                CurContext, Record->getLocation(),
3109                                Record->getIdentifier(), Record);
3110      InjectedClassName->setImplicit();
3111      PushOnScopeChains(InjectedClassName, S);
3112    }
3113  }
3114}
3115
3116void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3117  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3118
3119  if (isa<CXXRecordDecl>(Tag))
3120    FieldCollector->FinishClass();
3121
3122  // Exit this scope of this tag's definition.
3123  PopDeclContext();
3124
3125  // Notify the consumer that we've defined a tag.
3126  Consumer.HandleTagDeclDefinition(Tag);
3127}
3128
3129/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3130/// types into constant array types in certain situations which would otherwise
3131/// be errors (for GCC compatibility).
3132static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3133                                                    ASTContext &Context) {
3134  // This method tries to turn a variable array into a constant
3135  // array even when the size isn't an ICE.  This is necessary
3136  // for compatibility with code that depends on gcc's buggy
3137  // constant expression folding, like struct {char x[(int)(char*)2];}
3138  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3139  if (!VLATy) return QualType();
3140
3141  Expr::EvalResult EvalResult;
3142  if (!VLATy->getSizeExpr() ||
3143      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3144    return QualType();
3145
3146  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3147  llvm::APSInt &Res = EvalResult.Val.getInt();
3148  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3149    return Context.getConstantArrayType(VLATy->getElementType(),
3150                                        Res, ArrayType::Normal, 0);
3151  return QualType();
3152}
3153
3154bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3155                          QualType FieldTy, const Expr *BitWidth) {
3156  // FIXME: 6.7.2.1p4 - verify the field type.
3157
3158  llvm::APSInt Value;
3159  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3160    return true;
3161
3162  // Zero-width bitfield is ok for anonymous field.
3163  if (Value == 0 && FieldName)
3164    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3165
3166  if (Value.isNegative())
3167    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3168
3169  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3170  // FIXME: We won't need the 0 size once we check that the field type is valid.
3171  if (TypeSize && Value.getZExtValue() > TypeSize)
3172    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3173       << FieldName << (unsigned)TypeSize;
3174
3175  return false;
3176}
3177
3178/// ActOnField - Each field of a struct/union/class is passed into this in order
3179/// to create a FieldDecl object for it.
3180Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3181                               SourceLocation DeclStart,
3182                               Declarator &D, ExprTy *BitfieldWidth) {
3183  IdentifierInfo *II = D.getIdentifier();
3184  Expr *BitWidth = (Expr*)BitfieldWidth;
3185  SourceLocation Loc = DeclStart;
3186  RecordDecl *Record = (RecordDecl *)TagD;
3187  if (II) Loc = D.getIdentifierLoc();
3188
3189  // FIXME: Unnamed fields can be handled in various different ways, for
3190  // example, unnamed unions inject all members into the struct namespace!
3191
3192  QualType T = GetTypeForDeclarator(D, S);
3193  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3194  bool InvalidDecl = false;
3195
3196  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3197  // than a variably modified type.
3198  if (T->isVariablyModifiedType()) {
3199    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3200    if (!FixedTy.isNull()) {
3201      Diag(Loc, diag::warn_illegal_constant_array_size);
3202      T = FixedTy;
3203    } else {
3204      Diag(Loc, diag::err_typecheck_field_variable_size);
3205      T = Context.IntTy;
3206      InvalidDecl = true;
3207    }
3208  }
3209
3210  if (BitWidth) {
3211    if (VerifyBitField(Loc, II, T, BitWidth))
3212      InvalidDecl = true;
3213  } else {
3214    // Not a bitfield.
3215
3216    // validate II.
3217
3218  }
3219
3220  // FIXME: Chain fielddecls together.
3221  FieldDecl *NewFD;
3222
3223  NewFD = FieldDecl::Create(Context, Record,
3224                            Loc, II, T, BitWidth,
3225                            D.getDeclSpec().getStorageClassSpec() ==
3226                              DeclSpec::SCS_mutable,
3227                            /*PrevDecl=*/0);
3228
3229  if (II) {
3230    Decl *PrevDecl
3231      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3232    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3233        && !isa<TagDecl>(PrevDecl)) {
3234      Diag(Loc, diag::err_duplicate_member) << II;
3235      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3236      NewFD->setInvalidDecl();
3237      Record->setInvalidDecl();
3238    }
3239  }
3240
3241  if (getLangOptions().CPlusPlus) {
3242    CheckExtraCXXDefaultArguments(D);
3243    if (!T->isPODType())
3244      cast<CXXRecordDecl>(Record)->setPOD(false);
3245  }
3246
3247  ProcessDeclAttributes(NewFD, D);
3248
3249  if (D.getInvalidType() || InvalidDecl)
3250    NewFD->setInvalidDecl();
3251
3252  if (II) {
3253    PushOnScopeChains(NewFD, S);
3254  } else
3255    Record->addDecl(NewFD);
3256
3257  return NewFD;
3258}
3259
3260/// TranslateIvarVisibility - Translate visibility from a token ID to an
3261///  AST enum value.
3262static ObjCIvarDecl::AccessControl
3263TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3264  switch (ivarVisibility) {
3265  default: assert(0 && "Unknown visitibility kind");
3266  case tok::objc_private: return ObjCIvarDecl::Private;
3267  case tok::objc_public: return ObjCIvarDecl::Public;
3268  case tok::objc_protected: return ObjCIvarDecl::Protected;
3269  case tok::objc_package: return ObjCIvarDecl::Package;
3270  }
3271}
3272
3273/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3274/// in order to create an IvarDecl object for it.
3275Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3276                              SourceLocation DeclStart,
3277                              Declarator &D, ExprTy *BitfieldWidth,
3278                              tok::ObjCKeywordKind Visibility) {
3279
3280  IdentifierInfo *II = D.getIdentifier();
3281  Expr *BitWidth = (Expr*)BitfieldWidth;
3282  SourceLocation Loc = DeclStart;
3283  if (II) Loc = D.getIdentifierLoc();
3284
3285  // FIXME: Unnamed fields can be handled in various different ways, for
3286  // example, unnamed unions inject all members into the struct namespace!
3287
3288  QualType T = GetTypeForDeclarator(D, S);
3289  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3290  bool InvalidDecl = false;
3291
3292  if (BitWidth) {
3293    // TODO: Validate.
3294    //printf("WARNING: BITFIELDS IGNORED!\n");
3295
3296    // 6.7.2.1p3
3297    // 6.7.2.1p4
3298
3299  } else {
3300    // Not a bitfield.
3301
3302    // validate II.
3303
3304  }
3305
3306  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3307  // than a variably modified type.
3308  if (T->isVariablyModifiedType()) {
3309    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3310    InvalidDecl = true;
3311  }
3312
3313  // Get the visibility (access control) for this ivar.
3314  ObjCIvarDecl::AccessControl ac =
3315    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3316                                        : ObjCIvarDecl::None;
3317
3318  // Construct the decl.
3319  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3320                                             (Expr *)BitfieldWidth);
3321
3322  if (II) {
3323    Decl *PrevDecl
3324      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3325    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3326        && !isa<TagDecl>(PrevDecl)) {
3327      Diag(Loc, diag::err_duplicate_member) << II;
3328      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3329      NewID->setInvalidDecl();
3330    }
3331  }
3332
3333  // Process attributes attached to the ivar.
3334  ProcessDeclAttributes(NewID, D);
3335
3336  if (D.getInvalidType() || InvalidDecl)
3337    NewID->setInvalidDecl();
3338
3339  if (II) {
3340    // FIXME: When interfaces are DeclContexts, we'll need to add
3341    // these to the interface.
3342    S->AddDecl(NewID);
3343    IdResolver.AddDecl(NewID);
3344  }
3345
3346  return NewID;
3347}
3348
3349void Sema::ActOnFields(Scope* S,
3350                       SourceLocation RecLoc, DeclTy *RecDecl,
3351                       DeclTy **Fields, unsigned NumFields,
3352                       SourceLocation LBrac, SourceLocation RBrac,
3353                       AttributeList *Attr) {
3354  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3355  assert(EnclosingDecl && "missing record or interface decl");
3356  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3357
3358  // Verify that all the fields are okay.
3359  unsigned NumNamedMembers = 0;
3360  llvm::SmallVector<FieldDecl*, 32> RecFields;
3361
3362  for (unsigned i = 0; i != NumFields; ++i) {
3363    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3364    assert(FD && "missing field decl");
3365
3366    // Get the type for the field.
3367    Type *FDTy = FD->getType().getTypePtr();
3368
3369    if (!FD->isAnonymousStructOrUnion()) {
3370      // Remember all fields written by the user.
3371      RecFields.push_back(FD);
3372    }
3373
3374    // C99 6.7.2.1p2 - A field may not be a function type.
3375    if (FDTy->isFunctionType()) {
3376      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3377        << FD->getDeclName();
3378      FD->setInvalidDecl();
3379      EnclosingDecl->setInvalidDecl();
3380      continue;
3381    }
3382    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3383    if (FDTy->isIncompleteType()) {
3384      if (!Record) {  // Incomplete ivar type is always an error.
3385        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3386        FD->setInvalidDecl();
3387        EnclosingDecl->setInvalidDecl();
3388        continue;
3389      }
3390      if (i != NumFields-1 ||                   // ... that the last member ...
3391          !Record->isStruct() ||  // ... of a structure ...
3392          !FDTy->isArrayType()) {         //... may have incomplete array type.
3393        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3394        FD->setInvalidDecl();
3395        EnclosingDecl->setInvalidDecl();
3396        continue;
3397      }
3398      if (NumNamedMembers < 1) {  //... must have more than named member ...
3399        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3400          << FD->getDeclName();
3401        FD->setInvalidDecl();
3402        EnclosingDecl->setInvalidDecl();
3403        continue;
3404      }
3405      // Okay, we have a legal flexible array member at the end of the struct.
3406      if (Record)
3407        Record->setHasFlexibleArrayMember(true);
3408    }
3409    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3410    /// field of another structure or the element of an array.
3411    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3412      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3413        // If this is a member of a union, then entire union becomes "flexible".
3414        if (Record && Record->isUnion()) {
3415          Record->setHasFlexibleArrayMember(true);
3416        } else {
3417          // If this is a struct/class and this is not the last element, reject
3418          // it.  Note that GCC supports variable sized arrays in the middle of
3419          // structures.
3420          if (i != NumFields-1) {
3421            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3422              << FD->getDeclName();
3423            FD->setInvalidDecl();
3424            EnclosingDecl->setInvalidDecl();
3425            continue;
3426          }
3427          // We support flexible arrays at the end of structs in other structs
3428          // as an extension.
3429          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3430            << FD->getDeclName();
3431          if (Record)
3432            Record->setHasFlexibleArrayMember(true);
3433        }
3434      }
3435    }
3436    /// A field cannot be an Objective-c object
3437    if (FDTy->isObjCInterfaceType()) {
3438      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3439        << FD->getDeclName();
3440      FD->setInvalidDecl();
3441      EnclosingDecl->setInvalidDecl();
3442      continue;
3443    }
3444    // Keep track of the number of named members.
3445    if (FD->getIdentifier())
3446      ++NumNamedMembers;
3447  }
3448
3449  // Okay, we successfully defined 'Record'.
3450  if (Record) {
3451    Record->completeDefinition(Context);
3452  } else {
3453    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3454    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3455      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3456      // Must enforce the rule that ivars in the base classes may not be
3457      // duplicates.
3458      if (ID->getSuperClass()) {
3459        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3460             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3461          ObjCIvarDecl* Ivar = (*IVI);
3462          IdentifierInfo *II = Ivar->getIdentifier();
3463          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3464          if (prevIvar) {
3465            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3466            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3467          }
3468        }
3469      }
3470    }
3471    else if (ObjCImplementationDecl *IMPDecl =
3472               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3473      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3474      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3475      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3476    }
3477  }
3478
3479  if (Attr)
3480    ProcessDeclAttributeList(Record, Attr);
3481}
3482
3483Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3484                                      DeclTy *lastEnumConst,
3485                                      SourceLocation IdLoc, IdentifierInfo *Id,
3486                                      SourceLocation EqualLoc, ExprTy *val) {
3487  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3488  EnumConstantDecl *LastEnumConst =
3489    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3490  Expr *Val = static_cast<Expr*>(val);
3491
3492  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3493  // we find one that is.
3494  S = getNonFieldDeclScope(S);
3495
3496  // Verify that there isn't already something declared with this name in this
3497  // scope.
3498  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3499  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3500    // Maybe we will complain about the shadowed template parameter.
3501    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3502    // Just pretend that we didn't see the previous declaration.
3503    PrevDecl = 0;
3504  }
3505
3506  if (PrevDecl) {
3507    // When in C++, we may get a TagDecl with the same name; in this case the
3508    // enum constant will 'hide' the tag.
3509    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3510           "Received TagDecl when not in C++!");
3511    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3512      if (isa<EnumConstantDecl>(PrevDecl))
3513        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3514      else
3515        Diag(IdLoc, diag::err_redefinition) << Id;
3516      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3517      delete Val;
3518      return 0;
3519    }
3520  }
3521
3522  llvm::APSInt EnumVal(32);
3523  QualType EltTy;
3524  if (Val) {
3525    // Make sure to promote the operand type to int.
3526    UsualUnaryConversions(Val);
3527
3528    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3529    SourceLocation ExpLoc;
3530    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3531      delete Val;
3532      Val = 0;  // Just forget about it.
3533    } else {
3534      EltTy = Val->getType();
3535    }
3536  }
3537
3538  if (!Val) {
3539    if (LastEnumConst) {
3540      // Assign the last value + 1.
3541      EnumVal = LastEnumConst->getInitVal();
3542      ++EnumVal;
3543
3544      // Check for overflow on increment.
3545      if (EnumVal < LastEnumConst->getInitVal())
3546        Diag(IdLoc, diag::warn_enum_value_overflow);
3547
3548      EltTy = LastEnumConst->getType();
3549    } else {
3550      // First value, set to zero.
3551      EltTy = Context.IntTy;
3552      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3553    }
3554  }
3555
3556  EnumConstantDecl *New =
3557    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3558                             Val, EnumVal,
3559                             LastEnumConst);
3560
3561  // Register this decl in the current scope stack.
3562  PushOnScopeChains(New, S);
3563
3564  return New;
3565}
3566
3567// FIXME: For consistency with ActOnFields(), we should have the parser
3568// pass in the source location for the left/right braces.
3569void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3570                         DeclTy **Elements, unsigned NumElements) {
3571  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3572  QualType EnumType = Context.getTypeDeclType(Enum);
3573
3574  // TODO: If the result value doesn't fit in an int, it must be a long or long
3575  // long value.  ISO C does not support this, but GCC does as an extension,
3576  // emit a warning.
3577  unsigned IntWidth = Context.Target.getIntWidth();
3578
3579  // Verify that all the values are okay, compute the size of the values, and
3580  // reverse the list.
3581  unsigned NumNegativeBits = 0;
3582  unsigned NumPositiveBits = 0;
3583
3584  // Keep track of whether all elements have type int.
3585  bool AllElementsInt = true;
3586
3587  for (unsigned i = 0; i != NumElements; ++i) {
3588    EnumConstantDecl *ECD =
3589      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3590    if (!ECD) continue;  // Already issued a diagnostic.
3591
3592    // If the enum value doesn't fit in an int, emit an extension warning.
3593    const llvm::APSInt &InitVal = ECD->getInitVal();
3594    assert(InitVal.getBitWidth() >= IntWidth &&
3595           "Should have promoted value to int");
3596    if (InitVal.getBitWidth() > IntWidth) {
3597      llvm::APSInt V(InitVal);
3598      V.trunc(IntWidth);
3599      V.extend(InitVal.getBitWidth());
3600      if (V != InitVal)
3601        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3602          << InitVal.toString(10);
3603    }
3604
3605    // Keep track of the size of positive and negative values.
3606    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3607      NumPositiveBits = std::max(NumPositiveBits,
3608                                 (unsigned)InitVal.getActiveBits());
3609    else
3610      NumNegativeBits = std::max(NumNegativeBits,
3611                                 (unsigned)InitVal.getMinSignedBits());
3612
3613    // Keep track of whether every enum element has type int (very commmon).
3614    if (AllElementsInt)
3615      AllElementsInt = ECD->getType() == Context.IntTy;
3616  }
3617
3618  // Figure out the type that should be used for this enum.
3619  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3620  QualType BestType;
3621  unsigned BestWidth;
3622
3623  if (NumNegativeBits) {
3624    // If there is a negative value, figure out the smallest integer type (of
3625    // int/long/longlong) that fits.
3626    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3627      BestType = Context.IntTy;
3628      BestWidth = IntWidth;
3629    } else {
3630      BestWidth = Context.Target.getLongWidth();
3631
3632      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3633        BestType = Context.LongTy;
3634      else {
3635        BestWidth = Context.Target.getLongLongWidth();
3636
3637        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3638          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3639        BestType = Context.LongLongTy;
3640      }
3641    }
3642  } else {
3643    // If there is no negative value, figure out which of uint, ulong, ulonglong
3644    // fits.
3645    if (NumPositiveBits <= IntWidth) {
3646      BestType = Context.UnsignedIntTy;
3647      BestWidth = IntWidth;
3648    } else if (NumPositiveBits <=
3649               (BestWidth = Context.Target.getLongWidth())) {
3650      BestType = Context.UnsignedLongTy;
3651    } else {
3652      BestWidth = Context.Target.getLongLongWidth();
3653      assert(NumPositiveBits <= BestWidth &&
3654             "How could an initializer get larger than ULL?");
3655      BestType = Context.UnsignedLongLongTy;
3656    }
3657  }
3658
3659  // Loop over all of the enumerator constants, changing their types to match
3660  // the type of the enum if needed.
3661  for (unsigned i = 0; i != NumElements; ++i) {
3662    EnumConstantDecl *ECD =
3663      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3664    if (!ECD) continue;  // Already issued a diagnostic.
3665
3666    // Standard C says the enumerators have int type, but we allow, as an
3667    // extension, the enumerators to be larger than int size.  If each
3668    // enumerator value fits in an int, type it as an int, otherwise type it the
3669    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3670    // that X has type 'int', not 'unsigned'.
3671    if (ECD->getType() == Context.IntTy) {
3672      // Make sure the init value is signed.
3673      llvm::APSInt IV = ECD->getInitVal();
3674      IV.setIsSigned(true);
3675      ECD->setInitVal(IV);
3676
3677      if (getLangOptions().CPlusPlus)
3678        // C++ [dcl.enum]p4: Following the closing brace of an
3679        // enum-specifier, each enumerator has the type of its
3680        // enumeration.
3681        ECD->setType(EnumType);
3682      continue;  // Already int type.
3683    }
3684
3685    // Determine whether the value fits into an int.
3686    llvm::APSInt InitVal = ECD->getInitVal();
3687    bool FitsInInt;
3688    if (InitVal.isUnsigned() || !InitVal.isNegative())
3689      FitsInInt = InitVal.getActiveBits() < IntWidth;
3690    else
3691      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3692
3693    // If it fits into an integer type, force it.  Otherwise force it to match
3694    // the enum decl type.
3695    QualType NewTy;
3696    unsigned NewWidth;
3697    bool NewSign;
3698    if (FitsInInt) {
3699      NewTy = Context.IntTy;
3700      NewWidth = IntWidth;
3701      NewSign = true;
3702    } else if (ECD->getType() == BestType) {
3703      // Already the right type!
3704      if (getLangOptions().CPlusPlus)
3705        // C++ [dcl.enum]p4: Following the closing brace of an
3706        // enum-specifier, each enumerator has the type of its
3707        // enumeration.
3708        ECD->setType(EnumType);
3709      continue;
3710    } else {
3711      NewTy = BestType;
3712      NewWidth = BestWidth;
3713      NewSign = BestType->isSignedIntegerType();
3714    }
3715
3716    // Adjust the APSInt value.
3717    InitVal.extOrTrunc(NewWidth);
3718    InitVal.setIsSigned(NewSign);
3719    ECD->setInitVal(InitVal);
3720
3721    // Adjust the Expr initializer and type.
3722    if (ECD->getInitExpr())
3723      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3724                                            /*isLvalue=*/false));
3725    if (getLangOptions().CPlusPlus)
3726      // C++ [dcl.enum]p4: Following the closing brace of an
3727      // enum-specifier, each enumerator has the type of its
3728      // enumeration.
3729      ECD->setType(EnumType);
3730    else
3731      ECD->setType(NewTy);
3732  }
3733
3734  Enum->completeDefinition(Context, BestType);
3735}
3736
3737Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3738                                          ExprArg expr) {
3739  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3740
3741  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3742}
3743
3744
3745void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3746                           ExprTy *alignment, SourceLocation PragmaLoc,
3747                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3748  Expr *Alignment = static_cast<Expr *>(alignment);
3749
3750  // If specified then alignment must be a "small" power of two.
3751  unsigned AlignmentVal = 0;
3752  if (Alignment) {
3753    llvm::APSInt Val;
3754    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3755        !Val.isPowerOf2() ||
3756        Val.getZExtValue() > 16) {
3757      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3758      delete Alignment;
3759      return; // Ignore
3760    }
3761
3762    AlignmentVal = (unsigned) Val.getZExtValue();
3763  }
3764
3765  switch (Kind) {
3766  case Action::PPK_Default: // pack([n])
3767    PackContext.setAlignment(AlignmentVal);
3768    break;
3769
3770  case Action::PPK_Show: // pack(show)
3771    // Show the current alignment, making sure to show the right value
3772    // for the default.
3773    AlignmentVal = PackContext.getAlignment();
3774    // FIXME: This should come from the target.
3775    if (AlignmentVal == 0)
3776      AlignmentVal = 8;
3777    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3778    break;
3779
3780  case Action::PPK_Push: // pack(push [, id] [, [n])
3781    PackContext.push(Name);
3782    // Set the new alignment if specified.
3783    if (Alignment)
3784      PackContext.setAlignment(AlignmentVal);
3785    break;
3786
3787  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3788    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3789    // "#pragma pack(pop, identifier, n) is undefined"
3790    if (Alignment && Name)
3791      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3792
3793    // Do the pop.
3794    if (!PackContext.pop(Name)) {
3795      // If a name was specified then failure indicates the name
3796      // wasn't found. Otherwise failure indicates the stack was
3797      // empty.
3798      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3799        << (Name ? "no record matching name" : "stack empty");
3800
3801      // FIXME: Warn about popping named records as MSVC does.
3802    } else {
3803      // Pop succeeded, set the new alignment if specified.
3804      if (Alignment)
3805        PackContext.setAlignment(AlignmentVal);
3806    }
3807    break;
3808
3809  default:
3810    assert(0 && "Invalid #pragma pack kind.");
3811  }
3812}
3813
3814bool PragmaPackStack::pop(IdentifierInfo *Name) {
3815  if (Stack.empty())
3816    return false;
3817
3818  // If name is empty just pop top.
3819  if (!Name) {
3820    Alignment = Stack.back().first;
3821    Stack.pop_back();
3822    return true;
3823  }
3824
3825  // Otherwise, find the named record.
3826  for (unsigned i = Stack.size(); i != 0; ) {
3827    --i;
3828    if (Stack[i].second == Name) {
3829      // Found it, pop up to and including this record.
3830      Alignment = Stack[i].first;
3831      Stack.erase(Stack.begin() + i, Stack.end());
3832      return true;
3833    }
3834  }
3835
3836  return false;
3837}
3838