SemaDecl.cpp revision 6e24726524c2b51b31bb4b622aa678a46b024f42
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result;
89  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::Ambiguous: {
98    // Recover from type-hiding ambiguities by hiding the type.  We'll
99    // do the lookup again when looking for an object, and we can
100    // diagnose the error then.  If we don't do this, then the error
101    // about hiding the type will be immediately followed by an error
102    // that only makes sense if the identifier was treated like a type.
103    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
104      return 0;
105
106    // Look to see if we have a type anywhere in the list of results.
107    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
108         Res != ResEnd; ++Res) {
109      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
110        if (!IIDecl ||
111            (*Res)->getLocation().getRawEncoding() <
112              IIDecl->getLocation().getRawEncoding())
113          IIDecl = *Res;
114      }
115    }
116
117    if (!IIDecl) {
118      // None of the entities we found is a type, so there is no way
119      // to even assume that the result is a type. In this case, don't
120      // complain about the ambiguity. The parser will either try to
121      // perform this lookup again (e.g., as an object name), which
122      // will produce the ambiguity, or will complain that it expected
123      // a type name.
124      return 0;
125    }
126
127    // We found a type within the ambiguous lookup; diagnose the
128    // ambiguity and then return that type. This might be the right
129    // answer, or it might not be, but it suppresses any attempt to
130    // perform the name lookup again.
131    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
132    break;
133  }
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  if (IIDecl) {
141    QualType T;
142
143    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144      // Check whether we can use this type
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      if (getLangOptions().CPlusPlus) {
148        // C++ [temp.local]p2:
149        //   Within the scope of a class template specialization or
150        //   partial specialization, when the injected-class-name is
151        //   not followed by a <, it is equivalent to the
152        //   injected-class-name followed by the template-argument s
153        //   of the class template specialization or partial
154        //   specialization enclosed in <>.
155        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
156          if (RD->isInjectedClassName())
157            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
158              T = Template->getInjectedClassNameType(Context);
159      }
160
161      if (T.isNull())
162        T = Context.getTypeDeclType(TD);
163    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
164      // Check whether we can use this interface.
165      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
166
167      T = Context.getObjCInterfaceType(IDecl);
168    } else
169      return 0;
170
171    if (SS)
172      T = getQualifiedNameType(*SS, T);
173
174    return T.getAsOpaquePtr();
175  }
176
177  return 0;
178}
179
180/// isTagName() - This method is called *for error recovery purposes only*
181/// to determine if the specified name is a valid tag name ("struct foo").  If
182/// so, this returns the TST for the tag corresponding to it (TST_enum,
183/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
184/// where the user forgot to specify the tag.
185DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
186  // Do a tag name lookup in this scope.
187  LookupResult R;
188  LookupName(R, S, &II, LookupTagName, false, false);
189  if (R.getKind() == LookupResult::Found)
190    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
191      switch (TD->getTagKind()) {
192      case TagDecl::TK_struct: return DeclSpec::TST_struct;
193      case TagDecl::TK_union:  return DeclSpec::TST_union;
194      case TagDecl::TK_class:  return DeclSpec::TST_class;
195      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
196      }
197    }
198
199  return DeclSpec::TST_unspecified;
200}
201
202
203// Determines the context to return to after temporarily entering a
204// context.  This depends in an unnecessarily complicated way on the
205// exact ordering of callbacks from the parser.
206DeclContext *Sema::getContainingDC(DeclContext *DC) {
207
208  // Functions defined inline within classes aren't parsed until we've
209  // finished parsing the top-level class, so the top-level class is
210  // the context we'll need to return to.
211  if (isa<FunctionDecl>(DC)) {
212    DC = DC->getLexicalParent();
213
214    // A function not defined within a class will always return to its
215    // lexical context.
216    if (!isa<CXXRecordDecl>(DC))
217      return DC;
218
219    // A C++ inline method/friend is parsed *after* the topmost class
220    // it was declared in is fully parsed ("complete");  the topmost
221    // class is the context we need to return to.
222    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
223      DC = RD;
224
225    // Return the declaration context of the topmost class the inline method is
226    // declared in.
227    return DC;
228  }
229
230  if (isa<ObjCMethodDecl>(DC))
231    return Context.getTranslationUnitDecl();
232
233  return DC->getLexicalParent();
234}
235
236void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
237  assert(getContainingDC(DC) == CurContext &&
238      "The next DeclContext should be lexically contained in the current one.");
239  CurContext = DC;
240  S->setEntity(DC);
241}
242
243void Sema::PopDeclContext() {
244  assert(CurContext && "DeclContext imbalance!");
245
246  CurContext = getContainingDC(CurContext);
247}
248
249/// EnterDeclaratorContext - Used when we must lookup names in the context
250/// of a declarator's nested name specifier.
251void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
252  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
253  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
254  CurContext = DC;
255  assert(CurContext && "No context?");
256  S->setEntity(CurContext);
257}
258
259void Sema::ExitDeclaratorContext(Scope *S) {
260  S->setEntity(PreDeclaratorDC);
261  PreDeclaratorDC = 0;
262
263  // Reset CurContext to the nearest enclosing context.
264  while (!S->getEntity() && S->getParent())
265    S = S->getParent();
266  CurContext = static_cast<DeclContext*>(S->getEntity());
267  assert(CurContext && "No context?");
268}
269
270/// \brief Determine whether we allow overloading of the function
271/// PrevDecl with another declaration.
272///
273/// This routine determines whether overloading is possible, not
274/// whether some new function is actually an overload. It will return
275/// true in C++ (where we can always provide overloads) or, as an
276/// extension, in C when the previous function is already an
277/// overloaded function declaration or has the "overloadable"
278/// attribute.
279static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
280  if (Context.getLangOptions().CPlusPlus)
281    return true;
282
283  if (isa<OverloadedFunctionDecl>(PrevDecl))
284    return true;
285
286  return PrevDecl->getAttr<OverloadableAttr>() != 0;
287}
288
289/// Add this decl to the scope shadowed decl chains.
290void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
291  // Move up the scope chain until we find the nearest enclosing
292  // non-transparent context. The declaration will be introduced into this
293  // scope.
294  while (S->getEntity() &&
295         ((DeclContext *)S->getEntity())->isTransparentContext())
296    S = S->getParent();
297
298  // Add scoped declarations into their context, so that they can be
299  // found later. Declarations without a context won't be inserted
300  // into any context.
301  if (AddToContext)
302    CurContext->addDecl(D);
303
304  // Out-of-line function and variable definitions should not be pushed into
305  // scope.
306  if ((isa<FunctionTemplateDecl>(D) &&
307       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
308      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
309      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
310    return;
311
312  // If this replaces anything in the current scope,
313  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
314                               IEnd = IdResolver.end();
315  for (; I != IEnd; ++I) {
316    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
317      S->RemoveDecl(DeclPtrTy::make(*I));
318      IdResolver.RemoveDecl(*I);
319
320      // Should only need to replace one decl.
321      break;
322    }
323  }
324
325  S->AddDecl(DeclPtrTy::make(D));
326  IdResolver.AddDecl(D);
327}
328
329bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
330  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
331    // Look inside the overload set to determine if any of the declarations
332    // are in scope. (Possibly) build a new overload set containing only
333    // those declarations that are in scope.
334    OverloadedFunctionDecl *NewOvl = 0;
335    bool FoundInScope = false;
336    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
337         FEnd = Ovl->function_end();
338         F != FEnd; ++F) {
339      NamedDecl *FD = F->get();
340      if (!isDeclInScope(FD, Ctx, S)) {
341        if (!NewOvl && F != Ovl->function_begin()) {
342          NewOvl = OverloadedFunctionDecl::Create(Context,
343                                                  F->get()->getDeclContext(),
344                                                  F->get()->getDeclName());
345          D = NewOvl;
346          for (OverloadedFunctionDecl::function_iterator
347               First = Ovl->function_begin();
348               First != F; ++First)
349            NewOvl->addOverload(*First);
350        }
351      } else {
352        FoundInScope = true;
353        if (NewOvl)
354          NewOvl->addOverload(*F);
355      }
356    }
357
358    return FoundInScope;
359  }
360
361  return IdResolver.isDeclInScope(D, Ctx, Context, S);
362}
363
364void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
365  if (S->decl_empty()) return;
366  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
367         "Scope shouldn't contain decls!");
368
369  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
370       I != E; ++I) {
371    Decl *TmpD = (*I).getAs<Decl>();
372    assert(TmpD && "This decl didn't get pushed??");
373
374    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
375    NamedDecl *D = cast<NamedDecl>(TmpD);
376
377    if (!D->getDeclName()) continue;
378
379    // Diagnose unused variables in this scope.
380    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
381        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
382        D->getDeclContext()->isFunctionOrMethod())
383	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
384
385    // Remove this name from our lexical scope.
386    IdResolver.RemoveDecl(D);
387  }
388}
389
390/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
391/// return 0 if one not found.
392ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
393  // The third "scope" argument is 0 since we aren't enabling lazy built-in
394  // creation from this context.
395  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
396
397  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
398}
399
400/// getNonFieldDeclScope - Retrieves the innermost scope, starting
401/// from S, where a non-field would be declared. This routine copes
402/// with the difference between C and C++ scoping rules in structs and
403/// unions. For example, the following code is well-formed in C but
404/// ill-formed in C++:
405/// @code
406/// struct S6 {
407///   enum { BAR } e;
408/// };
409///
410/// void test_S6() {
411///   struct S6 a;
412///   a.e = BAR;
413/// }
414/// @endcode
415/// For the declaration of BAR, this routine will return a different
416/// scope. The scope S will be the scope of the unnamed enumeration
417/// within S6. In C++, this routine will return the scope associated
418/// with S6, because the enumeration's scope is a transparent
419/// context but structures can contain non-field names. In C, this
420/// routine will return the translation unit scope, since the
421/// enumeration's scope is a transparent context and structures cannot
422/// contain non-field names.
423Scope *Sema::getNonFieldDeclScope(Scope *S) {
424  while (((S->getFlags() & Scope::DeclScope) == 0) ||
425         (S->getEntity() &&
426          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
427         (S->isClassScope() && !getLangOptions().CPlusPlus))
428    S = S->getParent();
429  return S;
430}
431
432void Sema::InitBuiltinVaListType() {
433  if (!Context.getBuiltinVaListType().isNull())
434    return;
435
436  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
437  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
438  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
439  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
440}
441
442/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
443/// file scope.  lazily create a decl for it. ForRedeclaration is true
444/// if we're creating this built-in in anticipation of redeclaring the
445/// built-in.
446NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
447                                     Scope *S, bool ForRedeclaration,
448                                     SourceLocation Loc) {
449  Builtin::ID BID = (Builtin::ID)bid;
450
451  if (Context.BuiltinInfo.hasVAListUse(BID))
452    InitBuiltinVaListType();
453
454  ASTContext::GetBuiltinTypeError Error;
455  QualType R = Context.GetBuiltinType(BID, Error);
456  switch (Error) {
457  case ASTContext::GE_None:
458    // Okay
459    break;
460
461  case ASTContext::GE_Missing_stdio:
462    if (ForRedeclaration)
463      Diag(Loc, diag::err_implicit_decl_requires_stdio)
464        << Context.BuiltinInfo.GetName(BID);
465    return 0;
466
467  case ASTContext::GE_Missing_setjmp:
468    if (ForRedeclaration)
469      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
470        << Context.BuiltinInfo.GetName(BID);
471    return 0;
472  }
473
474  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
475    Diag(Loc, diag::ext_implicit_lib_function_decl)
476      << Context.BuiltinInfo.GetName(BID)
477      << R;
478    if (Context.BuiltinInfo.getHeaderName(BID) &&
479        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
480          != Diagnostic::Ignored)
481      Diag(Loc, diag::note_please_include_header)
482        << Context.BuiltinInfo.getHeaderName(BID)
483        << Context.BuiltinInfo.GetName(BID);
484  }
485
486  FunctionDecl *New = FunctionDecl::Create(Context,
487                                           Context.getTranslationUnitDecl(),
488                                           Loc, II, R, /*DInfo=*/0,
489                                           FunctionDecl::Extern, false,
490                                           /*hasPrototype=*/true);
491  New->setImplicit();
492
493  // Create Decl objects for each parameter, adding them to the
494  // FunctionDecl.
495  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
496    llvm::SmallVector<ParmVarDecl*, 16> Params;
497    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
498      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
499                                           FT->getArgType(i), /*DInfo=*/0,
500                                           VarDecl::None, 0));
501    New->setParams(Context, Params.data(), Params.size());
502  }
503
504  AddKnownFunctionAttributes(New);
505
506  // TUScope is the translation-unit scope to insert this function into.
507  // FIXME: This is hideous. We need to teach PushOnScopeChains to
508  // relate Scopes to DeclContexts, and probably eliminate CurContext
509  // entirely, but we're not there yet.
510  DeclContext *SavedContext = CurContext;
511  CurContext = Context.getTranslationUnitDecl();
512  PushOnScopeChains(New, TUScope);
513  CurContext = SavedContext;
514  return New;
515}
516
517/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
518/// same name and scope as a previous declaration 'Old'.  Figure out
519/// how to resolve this situation, merging decls or emitting
520/// diagnostics as appropriate. If there was an error, set New to be invalid.
521///
522void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
523  // If either decl is known invalid already, set the new one to be invalid and
524  // don't bother doing any merging checks.
525  if (New->isInvalidDecl() || OldD->isInvalidDecl())
526    return New->setInvalidDecl();
527
528  // Allow multiple definitions for ObjC built-in typedefs.
529  // FIXME: Verify the underlying types are equivalent!
530  if (getLangOptions().ObjC1) {
531    const IdentifierInfo *TypeID = New->getIdentifier();
532    switch (TypeID->getLength()) {
533    default: break;
534    case 2:
535      if (!TypeID->isStr("id"))
536        break;
537      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
538      // Install the built-in type for 'id', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
540      return;
541    case 5:
542      if (!TypeID->isStr("Class"))
543        break;
544      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'Class', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
547      return;
548    case 3:
549      if (!TypeID->isStr("SEL"))
550        break;
551      Context.setObjCSelType(Context.getTypeDeclType(New));
552      return;
553    case 8:
554      if (!TypeID->isStr("Protocol"))
555        break;
556      Context.setObjCProtoType(New->getUnderlyingType());
557      return;
558    }
559    // Fall through - the typedef name was not a builtin type.
560  }
561  // Verify the old decl was also a type.
562  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
563  if (!Old) {
564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
565      << New->getDeclName();
566    if (OldD->getLocation().isValid())
567      Diag(OldD->getLocation(), diag::note_previous_definition);
568    return New->setInvalidDecl();
569  }
570
571  // Determine the "old" type we'll use for checking and diagnostics.
572  QualType OldType;
573  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
574    OldType = OldTypedef->getUnderlyingType();
575  else
576    OldType = Context.getTypeDeclType(Old);
577
578  // If the typedef types are not identical, reject them in all languages and
579  // with any extensions enabled.
580
581  if (OldType != New->getUnderlyingType() &&
582      Context.getCanonicalType(OldType) !=
583      Context.getCanonicalType(New->getUnderlyingType())) {
584    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
585      << New->getUnderlyingType() << OldType;
586    if (Old->getLocation().isValid())
587      Diag(Old->getLocation(), diag::note_previous_definition);
588    return New->setInvalidDecl();
589  }
590
591  if (getLangOptions().Microsoft)
592    return;
593
594  // C++ [dcl.typedef]p2:
595  //   In a given non-class scope, a typedef specifier can be used to
596  //   redefine the name of any type declared in that scope to refer
597  //   to the type to which it already refers.
598  if (getLangOptions().CPlusPlus) {
599    if (!isa<CXXRecordDecl>(CurContext))
600      return;
601    Diag(New->getLocation(), diag::err_redefinition)
602      << New->getDeclName();
603    Diag(Old->getLocation(), diag::note_previous_definition);
604    return New->setInvalidDecl();
605  }
606
607  // If we have a redefinition of a typedef in C, emit a warning.  This warning
608  // is normally mapped to an error, but can be controlled with
609  // -Wtypedef-redefinition.  If either the original or the redefinition is
610  // in a system header, don't emit this for compatibility with GCC.
611  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
612      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
613       Context.getSourceManager().isInSystemHeader(New->getLocation())))
614    return;
615
616  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
617    << New->getDeclName();
618  Diag(Old->getLocation(), diag::note_previous_definition);
619  return;
620}
621
622/// DeclhasAttr - returns true if decl Declaration already has the target
623/// attribute.
624static bool
625DeclHasAttr(const Decl *decl, const Attr *target) {
626  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
627    if (attr->getKind() == target->getKind())
628      return true;
629
630  return false;
631}
632
633/// MergeAttributes - append attributes from the Old decl to the New one.
634static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
635  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
636    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
637      Attr *NewAttr = attr->clone(C);
638      NewAttr->setInherited(true);
639      New->addAttr(NewAttr);
640    }
641  }
642}
643
644/// Used in MergeFunctionDecl to keep track of function parameters in
645/// C.
646struct GNUCompatibleParamWarning {
647  ParmVarDecl *OldParm;
648  ParmVarDecl *NewParm;
649  QualType PromotedType;
650};
651
652/// MergeFunctionDecl - We just parsed a function 'New' from
653/// declarator D which has the same name and scope as a previous
654/// declaration 'Old'.  Figure out how to resolve this situation,
655/// merging decls or emitting diagnostics as appropriate.
656///
657/// In C++, New and Old must be declarations that are not
658/// overloaded. Use IsOverload to determine whether New and Old are
659/// overloaded, and to select the Old declaration that New should be
660/// merged with.
661///
662/// Returns true if there was an error, false otherwise.
663bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
664  assert(!isa<OverloadedFunctionDecl>(OldD) &&
665         "Cannot merge with an overloaded function declaration");
666
667  // Verify the old decl was also a function.
668  FunctionDecl *Old = 0;
669  if (FunctionTemplateDecl *OldFunctionTemplate
670        = dyn_cast<FunctionTemplateDecl>(OldD))
671    Old = OldFunctionTemplate->getTemplatedDecl();
672  else
673    Old = dyn_cast<FunctionDecl>(OldD);
674  if (!Old) {
675    Diag(New->getLocation(), diag::err_redefinition_different_kind)
676      << New->getDeclName();
677    Diag(OldD->getLocation(), diag::note_previous_definition);
678    return true;
679  }
680
681  // Determine whether the previous declaration was a definition,
682  // implicit declaration, or a declaration.
683  diag::kind PrevDiag;
684  if (Old->isThisDeclarationADefinition())
685    PrevDiag = diag::note_previous_definition;
686  else if (Old->isImplicit())
687    PrevDiag = diag::note_previous_implicit_declaration;
688  else
689    PrevDiag = diag::note_previous_declaration;
690
691  QualType OldQType = Context.getCanonicalType(Old->getType());
692  QualType NewQType = Context.getCanonicalType(New->getType());
693
694  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
695      New->getStorageClass() == FunctionDecl::Static &&
696      Old->getStorageClass() != FunctionDecl::Static) {
697    Diag(New->getLocation(), diag::err_static_non_static)
698      << New;
699    Diag(Old->getLocation(), PrevDiag);
700    return true;
701  }
702
703  if (getLangOptions().CPlusPlus) {
704    // (C++98 13.1p2):
705    //   Certain function declarations cannot be overloaded:
706    //     -- Function declarations that differ only in the return type
707    //        cannot be overloaded.
708    QualType OldReturnType
709      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
710    QualType NewReturnType
711      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
712    if (OldReturnType != NewReturnType) {
713      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
714      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
715      return true;
716    }
717
718    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
719    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
720    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
721        NewMethod->getLexicalDeclContext()->isRecord()) {
722      //    -- Member function declarations with the same name and the
723      //       same parameter types cannot be overloaded if any of them
724      //       is a static member function declaration.
725      if (OldMethod->isStatic() || NewMethod->isStatic()) {
726        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
728        return true;
729      }
730
731      // C++ [class.mem]p1:
732      //   [...] A member shall not be declared twice in the
733      //   member-specification, except that a nested class or member
734      //   class template can be declared and then later defined.
735      unsigned NewDiag;
736      if (isa<CXXConstructorDecl>(OldMethod))
737        NewDiag = diag::err_constructor_redeclared;
738      else if (isa<CXXDestructorDecl>(NewMethod))
739        NewDiag = diag::err_destructor_redeclared;
740      else if (isa<CXXConversionDecl>(NewMethod))
741        NewDiag = diag::err_conv_function_redeclared;
742      else
743        NewDiag = diag::err_member_redeclared;
744
745      Diag(New->getLocation(), NewDiag);
746      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
747    }
748
749    // (C++98 8.3.5p3):
750    //   All declarations for a function shall agree exactly in both the
751    //   return type and the parameter-type-list.
752    if (OldQType == NewQType)
753      return MergeCompatibleFunctionDecls(New, Old);
754
755    // Fall through for conflicting redeclarations and redefinitions.
756  }
757
758  // C: Function types need to be compatible, not identical. This handles
759  // duplicate function decls like "void f(int); void f(enum X);" properly.
760  if (!getLangOptions().CPlusPlus &&
761      Context.typesAreCompatible(OldQType, NewQType)) {
762    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
763    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
764    const FunctionProtoType *OldProto = 0;
765    if (isa<FunctionNoProtoType>(NewFuncType) &&
766        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
767      // The old declaration provided a function prototype, but the
768      // new declaration does not. Merge in the prototype.
769      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
770      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
771                                                 OldProto->arg_type_end());
772      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
773                                         ParamTypes.data(), ParamTypes.size(),
774                                         OldProto->isVariadic(),
775                                         OldProto->getTypeQuals());
776      New->setType(NewQType);
777      New->setHasInheritedPrototype();
778
779      // Synthesize a parameter for each argument type.
780      llvm::SmallVector<ParmVarDecl*, 16> Params;
781      for (FunctionProtoType::arg_type_iterator
782             ParamType = OldProto->arg_type_begin(),
783             ParamEnd = OldProto->arg_type_end();
784           ParamType != ParamEnd; ++ParamType) {
785        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
786                                                 SourceLocation(), 0,
787                                                 *ParamType, /*DInfo=*/0,
788                                                 VarDecl::None, 0);
789        Param->setImplicit();
790        Params.push_back(Param);
791      }
792
793      New->setParams(Context, Params.data(), Params.size());
794    }
795
796    return MergeCompatibleFunctionDecls(New, Old);
797  }
798
799  // GNU C permits a K&R definition to follow a prototype declaration
800  // if the declared types of the parameters in the K&R definition
801  // match the types in the prototype declaration, even when the
802  // promoted types of the parameters from the K&R definition differ
803  // from the types in the prototype. GCC then keeps the types from
804  // the prototype.
805  //
806  // If a variadic prototype is followed by a non-variadic K&R definition,
807  // the K&R definition becomes variadic.  This is sort of an edge case, but
808  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
809  // C99 6.9.1p8.
810  if (!getLangOptions().CPlusPlus &&
811      Old->hasPrototype() && !New->hasPrototype() &&
812      New->getType()->getAs<FunctionProtoType>() &&
813      Old->getNumParams() == New->getNumParams()) {
814    llvm::SmallVector<QualType, 16> ArgTypes;
815    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
816    const FunctionProtoType *OldProto
817      = Old->getType()->getAs<FunctionProtoType>();
818    const FunctionProtoType *NewProto
819      = New->getType()->getAs<FunctionProtoType>();
820
821    // Determine whether this is the GNU C extension.
822    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
823                                               NewProto->getResultType());
824    bool LooseCompatible = !MergedReturn.isNull();
825    for (unsigned Idx = 0, End = Old->getNumParams();
826         LooseCompatible && Idx != End; ++Idx) {
827      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
828      ParmVarDecl *NewParm = New->getParamDecl(Idx);
829      if (Context.typesAreCompatible(OldParm->getType(),
830                                     NewProto->getArgType(Idx))) {
831        ArgTypes.push_back(NewParm->getType());
832      } else if (Context.typesAreCompatible(OldParm->getType(),
833                                            NewParm->getType())) {
834        GNUCompatibleParamWarning Warn
835          = { OldParm, NewParm, NewProto->getArgType(Idx) };
836        Warnings.push_back(Warn);
837        ArgTypes.push_back(NewParm->getType());
838      } else
839        LooseCompatible = false;
840    }
841
842    if (LooseCompatible) {
843      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
844        Diag(Warnings[Warn].NewParm->getLocation(),
845             diag::ext_param_promoted_not_compatible_with_prototype)
846          << Warnings[Warn].PromotedType
847          << Warnings[Warn].OldParm->getType();
848        Diag(Warnings[Warn].OldParm->getLocation(),
849             diag::note_previous_declaration);
850      }
851
852      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
853                                           ArgTypes.size(),
854                                           OldProto->isVariadic(), 0));
855      return MergeCompatibleFunctionDecls(New, Old);
856    }
857
858    // Fall through to diagnose conflicting types.
859  }
860
861  // A function that has already been declared has been redeclared or defined
862  // with a different type- show appropriate diagnostic
863  if (unsigned BuiltinID = Old->getBuiltinID()) {
864    // The user has declared a builtin function with an incompatible
865    // signature.
866    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
867      // The function the user is redeclaring is a library-defined
868      // function like 'malloc' or 'printf'. Warn about the
869      // redeclaration, then pretend that we don't know about this
870      // library built-in.
871      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
872      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
873        << Old << Old->getType();
874      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
875      Old->setInvalidDecl();
876      return false;
877    }
878
879    PrevDiag = diag::note_previous_builtin_declaration;
880  }
881
882  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
883  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
884  return true;
885}
886
887/// \brief Completes the merge of two function declarations that are
888/// known to be compatible.
889///
890/// This routine handles the merging of attributes and other
891/// properties of function declarations form the old declaration to
892/// the new declaration, once we know that New is in fact a
893/// redeclaration of Old.
894///
895/// \returns false
896bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
897  // Merge the attributes
898  MergeAttributes(New, Old, Context);
899
900  // Merge the storage class.
901  if (Old->getStorageClass() != FunctionDecl::Extern &&
902      Old->getStorageClass() != FunctionDecl::None)
903    New->setStorageClass(Old->getStorageClass());
904
905  // Merge "pure" flag.
906  if (Old->isPure())
907    New->setPure();
908
909  // Merge the "deleted" flag.
910  if (Old->isDeleted())
911    New->setDeleted();
912
913  if (getLangOptions().CPlusPlus)
914    return MergeCXXFunctionDecl(New, Old);
915
916  return false;
917}
918
919/// MergeVarDecl - We just parsed a variable 'New' which has the same name
920/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
921/// situation, merging decls or emitting diagnostics as appropriate.
922///
923/// Tentative definition rules (C99 6.9.2p2) are checked by
924/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
925/// definitions here, since the initializer hasn't been attached.
926///
927void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
928  // If either decl is invalid, make sure the new one is marked invalid and
929  // don't do any other checking.
930  if (New->isInvalidDecl() || OldD->isInvalidDecl())
931    return New->setInvalidDecl();
932
933  // Verify the old decl was also a variable.
934  VarDecl *Old = dyn_cast<VarDecl>(OldD);
935  if (!Old) {
936    Diag(New->getLocation(), diag::err_redefinition_different_kind)
937      << New->getDeclName();
938    Diag(OldD->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  MergeAttributes(New, Old, Context);
943
944  // Merge the types
945  QualType MergedT;
946  if (getLangOptions().CPlusPlus) {
947    if (Context.hasSameType(New->getType(), Old->getType()))
948      MergedT = New->getType();
949    // C++ [basic.types]p7:
950    //   [...] The declared type of an array object might be an array of
951    //   unknown size and therefore be incomplete at one point in a
952    //   translation unit and complete later on; [...]
953    else if (Old->getType()->isIncompleteArrayType() &&
954             New->getType()->isArrayType()) {
955      CanQual<ArrayType> OldArray
956        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
957      CanQual<ArrayType> NewArray
958        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
959      if (OldArray->getElementType() == NewArray->getElementType())
960        MergedT = New->getType();
961    }
962  } else {
963    MergedT = Context.mergeTypes(New->getType(), Old->getType());
964  }
965  if (MergedT.isNull()) {
966    Diag(New->getLocation(), diag::err_redefinition_different_type)
967      << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  New->setType(MergedT);
972
973  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
974  if (New->getStorageClass() == VarDecl::Static &&
975      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
976    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  // C99 6.2.2p4:
981  //   For an identifier declared with the storage-class specifier
982  //   extern in a scope in which a prior declaration of that
983  //   identifier is visible,23) if the prior declaration specifies
984  //   internal or external linkage, the linkage of the identifier at
985  //   the later declaration is the same as the linkage specified at
986  //   the prior declaration. If no prior declaration is visible, or
987  //   if the prior declaration specifies no linkage, then the
988  //   identifier has external linkage.
989  if (New->hasExternalStorage() && Old->hasLinkage())
990    /* Okay */;
991  else if (New->getStorageClass() != VarDecl::Static &&
992           Old->getStorageClass() == VarDecl::Static) {
993    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
999
1000  // FIXME: The test for external storage here seems wrong? We still
1001  // need to check for mismatches.
1002  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1003      // Don't complain about out-of-line definitions of static members.
1004      !(Old->getLexicalDeclContext()->isRecord() &&
1005        !New->getLexicalDeclContext()->isRecord())) {
1006    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008    return New->setInvalidDecl();
1009  }
1010
1011  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1012    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1013    Diag(Old->getLocation(), diag::note_previous_definition);
1014  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1015    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017  }
1018
1019  // Keep a chain of previous declarations.
1020  New->setPreviousDeclaration(Old);
1021}
1022
1023/// CheckFallThrough - Check that we don't fall off the end of a
1024/// Statement that should return a value.
1025///
1026/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1027/// MaybeFallThrough iff we might or might not fall off the end and
1028/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1029/// that functions not marked noreturn will return.
1030Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1031  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1032
1033  // FIXME: They should never return 0, fix that, delete this code.
1034  if (cfg == 0)
1035    return NeverFallThrough;
1036  // The CFG leaves in dead things, and we don't want to dead code paths to
1037  // confuse us, so we mark all live things first.
1038  std::queue<CFGBlock*> workq;
1039  llvm::BitVector live(cfg->getNumBlockIDs());
1040  // Prep work queue
1041  workq.push(&cfg->getEntry());
1042  // Solve
1043  while (!workq.empty()) {
1044    CFGBlock *item = workq.front();
1045    workq.pop();
1046    live.set(item->getBlockID());
1047    for (CFGBlock::succ_iterator I=item->succ_begin(),
1048           E=item->succ_end();
1049         I != E;
1050         ++I) {
1051      if ((*I) && !live[(*I)->getBlockID()]) {
1052        live.set((*I)->getBlockID());
1053        workq.push(*I);
1054      }
1055    }
1056  }
1057
1058  // Now we know what is live, we check the live precessors of the exit block
1059  // and look for fall through paths, being careful to ignore normal returns,
1060  // and exceptional paths.
1061  bool HasLiveReturn = false;
1062  bool HasFakeEdge = false;
1063  bool HasPlainEdge = false;
1064  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1065         E = cfg->getExit().pred_end();
1066       I != E;
1067       ++I) {
1068    CFGBlock& B = **I;
1069    if (!live[B.getBlockID()])
1070      continue;
1071    if (B.size() == 0) {
1072      // A labeled empty statement, or the entry block...
1073      HasPlainEdge = true;
1074      continue;
1075    }
1076    Stmt *S = B[B.size()-1];
1077    if (isa<ReturnStmt>(S)) {
1078      HasLiveReturn = true;
1079      continue;
1080    }
1081    if (isa<ObjCAtThrowStmt>(S)) {
1082      HasFakeEdge = true;
1083      continue;
1084    }
1085    if (isa<CXXThrowExpr>(S)) {
1086      HasFakeEdge = true;
1087      continue;
1088    }
1089    bool NoReturnEdge = false;
1090    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1091      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1092      if (CEE->getType().getNoReturnAttr()) {
1093        NoReturnEdge = true;
1094        HasFakeEdge = true;
1095      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1096        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1097          if (FD->hasAttr<NoReturnAttr>()) {
1098            NoReturnEdge = true;
1099            HasFakeEdge = true;
1100          }
1101        }
1102      }
1103    }
1104    // FIXME: Add noreturn message sends.
1105    if (NoReturnEdge == false)
1106      HasPlainEdge = true;
1107  }
1108  if (!HasPlainEdge)
1109    return NeverFallThrough;
1110  if (HasFakeEdge || HasLiveReturn)
1111    return MaybeFallThrough;
1112  // This says AlwaysFallThrough for calls to functions that are not marked
1113  // noreturn, that don't return.  If people would like this warning to be more
1114  // accurate, such functions should be marked as noreturn.
1115  return AlwaysFallThrough;
1116}
1117
1118/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1119/// function that should return a value.  Check that we don't fall off the end
1120/// of a noreturn function.  We assume that functions and blocks not marked
1121/// noreturn will return.
1122void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1123  // FIXME: Would be nice if we had a better way to control cascading errors,
1124  // but for now, avoid them.  The problem is that when Parse sees:
1125  //   int foo() { return a; }
1126  // The return is eaten and the Sema code sees just:
1127  //   int foo() { }
1128  // which this code would then warn about.
1129  if (getDiagnostics().hasErrorOccurred())
1130    return;
1131  bool ReturnsVoid = false;
1132  bool HasNoReturn = false;
1133  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1134    // If the result type of the function is a dependent type, we don't know
1135    // whether it will be void or not, so don't
1136    if (FD->getResultType()->isDependentType())
1137      return;
1138    if (FD->getResultType()->isVoidType())
1139      ReturnsVoid = true;
1140    if (FD->hasAttr<NoReturnAttr>())
1141      HasNoReturn = true;
1142  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1143    if (MD->getResultType()->isVoidType())
1144      ReturnsVoid = true;
1145    if (MD->hasAttr<NoReturnAttr>())
1146      HasNoReturn = true;
1147  }
1148
1149  // Short circuit for compilation speed.
1150  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1151       == Diagnostic::Ignored || ReturnsVoid)
1152      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1153          == Diagnostic::Ignored || !HasNoReturn)
1154      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1155          == Diagnostic::Ignored || !ReturnsVoid))
1156    return;
1157  // FIXME: Function try block
1158  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1159    switch (CheckFallThrough(Body)) {
1160    case MaybeFallThrough:
1161      if (HasNoReturn)
1162        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1163      else if (!ReturnsVoid)
1164        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1165      break;
1166    case AlwaysFallThrough:
1167      if (HasNoReturn)
1168        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1169      else if (!ReturnsVoid)
1170        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1171      break;
1172    case NeverFallThrough:
1173      if (ReturnsVoid)
1174        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1175      break;
1176    }
1177  }
1178}
1179
1180/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1181/// that should return a value.  Check that we don't fall off the end of a
1182/// noreturn block.  We assume that functions and blocks not marked noreturn
1183/// will return.
1184void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1185  // FIXME: Would be nice if we had a better way to control cascading errors,
1186  // but for now, avoid them.  The problem is that when Parse sees:
1187  //   int foo() { return a; }
1188  // The return is eaten and the Sema code sees just:
1189  //   int foo() { }
1190  // which this code would then warn about.
1191  if (getDiagnostics().hasErrorOccurred())
1192    return;
1193  bool ReturnsVoid = false;
1194  bool HasNoReturn = false;
1195  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1196    if (FT->getResultType()->isVoidType())
1197      ReturnsVoid = true;
1198    if (FT->getNoReturnAttr())
1199      HasNoReturn = true;
1200  }
1201
1202  // Short circuit for compilation speed.
1203  if (ReturnsVoid
1204      && !HasNoReturn
1205      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1206          == Diagnostic::Ignored || !ReturnsVoid))
1207    return;
1208  // FIXME: Funtion try block
1209  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1210    switch (CheckFallThrough(Body)) {
1211    case MaybeFallThrough:
1212      if (HasNoReturn)
1213        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1214      else if (!ReturnsVoid)
1215        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1216      break;
1217    case AlwaysFallThrough:
1218      if (HasNoReturn)
1219        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1220      else if (!ReturnsVoid)
1221        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1222      break;
1223    case NeverFallThrough:
1224      if (ReturnsVoid)
1225        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1226      break;
1227    }
1228  }
1229}
1230
1231/// CheckParmsForFunctionDef - Check that the parameters of the given
1232/// function are appropriate for the definition of a function. This
1233/// takes care of any checks that cannot be performed on the
1234/// declaration itself, e.g., that the types of each of the function
1235/// parameters are complete.
1236bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1237  bool HasInvalidParm = false;
1238  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1239    ParmVarDecl *Param = FD->getParamDecl(p);
1240
1241    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1242    // function declarator that is part of a function definition of
1243    // that function shall not have incomplete type.
1244    //
1245    // This is also C++ [dcl.fct]p6.
1246    if (!Param->isInvalidDecl() &&
1247        RequireCompleteType(Param->getLocation(), Param->getType(),
1248                               diag::err_typecheck_decl_incomplete_type)) {
1249      Param->setInvalidDecl();
1250      HasInvalidParm = true;
1251    }
1252
1253    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1254    // declaration of each parameter shall include an identifier.
1255    if (Param->getIdentifier() == 0 &&
1256        !Param->isImplicit() &&
1257        !getLangOptions().CPlusPlus)
1258      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1259  }
1260
1261  return HasInvalidParm;
1262}
1263
1264/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1265/// no declarator (e.g. "struct foo;") is parsed.
1266Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1267  // FIXME: Error on auto/register at file scope
1268  // FIXME: Error on inline/virtual/explicit
1269  // FIXME: Error on invalid restrict
1270  // FIXME: Warn on useless __thread
1271  // FIXME: Warn on useless const/volatile
1272  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1273  // FIXME: Warn on useless attributes
1274  Decl *TagD = 0;
1275  TagDecl *Tag = 0;
1276  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1277      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1278      DS.getTypeSpecType() == DeclSpec::TST_union ||
1279      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1280    TagD = static_cast<Decl *>(DS.getTypeRep());
1281
1282    if (!TagD) // We probably had an error
1283      return DeclPtrTy();
1284
1285    // Note that the above type specs guarantee that the
1286    // type rep is a Decl, whereas in many of the others
1287    // it's a Type.
1288    Tag = dyn_cast<TagDecl>(TagD);
1289  }
1290
1291  if (DS.isFriendSpecified()) {
1292    // If we're dealing with a class template decl, assume that the
1293    // template routines are handling it.
1294    if (TagD && isa<ClassTemplateDecl>(TagD))
1295      return DeclPtrTy();
1296    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1297  }
1298
1299  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1300    if (!Record->getDeclName() && Record->isDefinition() &&
1301        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1302      if (getLangOptions().CPlusPlus ||
1303          Record->getDeclContext()->isRecord())
1304        return BuildAnonymousStructOrUnion(S, DS, Record);
1305
1306      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1307        << DS.getSourceRange();
1308    }
1309
1310    // Microsoft allows unnamed struct/union fields. Don't complain
1311    // about them.
1312    // FIXME: Should we support Microsoft's extensions in this area?
1313    if (Record->getDeclName() && getLangOptions().Microsoft)
1314      return DeclPtrTy::make(Tag);
1315  }
1316
1317  if (!DS.isMissingDeclaratorOk() &&
1318      DS.getTypeSpecType() != DeclSpec::TST_error) {
1319    // Warn about typedefs of enums without names, since this is an
1320    // extension in both Microsoft an GNU.
1321    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1322        Tag && isa<EnumDecl>(Tag)) {
1323      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1324        << DS.getSourceRange();
1325      return DeclPtrTy::make(Tag);
1326    }
1327
1328    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1329      << DS.getSourceRange();
1330    return DeclPtrTy();
1331  }
1332
1333  return DeclPtrTy::make(Tag);
1334}
1335
1336/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1337/// anonymous struct or union AnonRecord into the owning context Owner
1338/// and scope S. This routine will be invoked just after we realize
1339/// that an unnamed union or struct is actually an anonymous union or
1340/// struct, e.g.,
1341///
1342/// @code
1343/// union {
1344///   int i;
1345///   float f;
1346/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1347///    // f into the surrounding scope.x
1348/// @endcode
1349///
1350/// This routine is recursive, injecting the names of nested anonymous
1351/// structs/unions into the owning context and scope as well.
1352bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1353                                               RecordDecl *AnonRecord) {
1354  bool Invalid = false;
1355  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1356                               FEnd = AnonRecord->field_end();
1357       F != FEnd; ++F) {
1358    if ((*F)->getDeclName()) {
1359      LookupResult R;
1360      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1361                          LookupOrdinaryName, true);
1362      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1363      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1364        // C++ [class.union]p2:
1365        //   The names of the members of an anonymous union shall be
1366        //   distinct from the names of any other entity in the
1367        //   scope in which the anonymous union is declared.
1368        unsigned diagKind
1369          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1370                                 : diag::err_anonymous_struct_member_redecl;
1371        Diag((*F)->getLocation(), diagKind)
1372          << (*F)->getDeclName();
1373        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1374        Invalid = true;
1375      } else {
1376        // C++ [class.union]p2:
1377        //   For the purpose of name lookup, after the anonymous union
1378        //   definition, the members of the anonymous union are
1379        //   considered to have been defined in the scope in which the
1380        //   anonymous union is declared.
1381        Owner->makeDeclVisibleInContext(*F);
1382        S->AddDecl(DeclPtrTy::make(*F));
1383        IdResolver.AddDecl(*F);
1384      }
1385    } else if (const RecordType *InnerRecordType
1386                 = (*F)->getType()->getAs<RecordType>()) {
1387      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1388      if (InnerRecord->isAnonymousStructOrUnion())
1389        Invalid = Invalid ||
1390          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1391    }
1392  }
1393
1394  return Invalid;
1395}
1396
1397/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1398/// anonymous structure or union. Anonymous unions are a C++ feature
1399/// (C++ [class.union]) and a GNU C extension; anonymous structures
1400/// are a GNU C and GNU C++ extension.
1401Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1402                                                  RecordDecl *Record) {
1403  DeclContext *Owner = Record->getDeclContext();
1404
1405  // Diagnose whether this anonymous struct/union is an extension.
1406  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1407    Diag(Record->getLocation(), diag::ext_anonymous_union);
1408  else if (!Record->isUnion())
1409    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1410
1411  // C and C++ require different kinds of checks for anonymous
1412  // structs/unions.
1413  bool Invalid = false;
1414  if (getLangOptions().CPlusPlus) {
1415    const char* PrevSpec = 0;
1416    unsigned DiagID;
1417    // C++ [class.union]p3:
1418    //   Anonymous unions declared in a named namespace or in the
1419    //   global namespace shall be declared static.
1420    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1421        (isa<TranslationUnitDecl>(Owner) ||
1422         (isa<NamespaceDecl>(Owner) &&
1423          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1424      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1425      Invalid = true;
1426
1427      // Recover by adding 'static'.
1428      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1429                             PrevSpec, DiagID);
1430    }
1431    // C++ [class.union]p3:
1432    //   A storage class is not allowed in a declaration of an
1433    //   anonymous union in a class scope.
1434    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1435             isa<RecordDecl>(Owner)) {
1436      Diag(DS.getStorageClassSpecLoc(),
1437           diag::err_anonymous_union_with_storage_spec);
1438      Invalid = true;
1439
1440      // Recover by removing the storage specifier.
1441      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1442                             PrevSpec, DiagID);
1443    }
1444
1445    // C++ [class.union]p2:
1446    //   The member-specification of an anonymous union shall only
1447    //   define non-static data members. [Note: nested types and
1448    //   functions cannot be declared within an anonymous union. ]
1449    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1450                                 MemEnd = Record->decls_end();
1451         Mem != MemEnd; ++Mem) {
1452      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1453        // C++ [class.union]p3:
1454        //   An anonymous union shall not have private or protected
1455        //   members (clause 11).
1456        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1457          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1458            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1459          Invalid = true;
1460        }
1461      } else if ((*Mem)->isImplicit()) {
1462        // Any implicit members are fine.
1463      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1464        // This is a type that showed up in an
1465        // elaborated-type-specifier inside the anonymous struct or
1466        // union, but which actually declares a type outside of the
1467        // anonymous struct or union. It's okay.
1468      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1469        if (!MemRecord->isAnonymousStructOrUnion() &&
1470            MemRecord->getDeclName()) {
1471          // This is a nested type declaration.
1472          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1473            << (int)Record->isUnion();
1474          Invalid = true;
1475        }
1476      } else {
1477        // We have something that isn't a non-static data
1478        // member. Complain about it.
1479        unsigned DK = diag::err_anonymous_record_bad_member;
1480        if (isa<TypeDecl>(*Mem))
1481          DK = diag::err_anonymous_record_with_type;
1482        else if (isa<FunctionDecl>(*Mem))
1483          DK = diag::err_anonymous_record_with_function;
1484        else if (isa<VarDecl>(*Mem))
1485          DK = diag::err_anonymous_record_with_static;
1486        Diag((*Mem)->getLocation(), DK)
1487            << (int)Record->isUnion();
1488          Invalid = true;
1489      }
1490    }
1491  }
1492
1493  if (!Record->isUnion() && !Owner->isRecord()) {
1494    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1495      << (int)getLangOptions().CPlusPlus;
1496    Invalid = true;
1497  }
1498
1499  // Create a declaration for this anonymous struct/union.
1500  NamedDecl *Anon = 0;
1501  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1502    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1503                             /*IdentifierInfo=*/0,
1504                             Context.getTypeDeclType(Record),
1505                             // FIXME: Type source info.
1506                             /*DInfo=*/0,
1507                             /*BitWidth=*/0, /*Mutable=*/false);
1508    Anon->setAccess(AS_public);
1509    if (getLangOptions().CPlusPlus)
1510      FieldCollector->Add(cast<FieldDecl>(Anon));
1511  } else {
1512    VarDecl::StorageClass SC;
1513    switch (DS.getStorageClassSpec()) {
1514    default: assert(0 && "Unknown storage class!");
1515    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1516    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1517    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1518    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1519    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1520    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1521    case DeclSpec::SCS_mutable:
1522      // mutable can only appear on non-static class members, so it's always
1523      // an error here
1524      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1525      Invalid = true;
1526      SC = VarDecl::None;
1527      break;
1528    }
1529
1530    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1531                           /*IdentifierInfo=*/0,
1532                           Context.getTypeDeclType(Record),
1533                           // FIXME: Type source info.
1534                           /*DInfo=*/0,
1535                           SC);
1536  }
1537  Anon->setImplicit();
1538
1539  // Add the anonymous struct/union object to the current
1540  // context. We'll be referencing this object when we refer to one of
1541  // its members.
1542  Owner->addDecl(Anon);
1543
1544  // Inject the members of the anonymous struct/union into the owning
1545  // context and into the identifier resolver chain for name lookup
1546  // purposes.
1547  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1548    Invalid = true;
1549
1550  // Mark this as an anonymous struct/union type. Note that we do not
1551  // do this until after we have already checked and injected the
1552  // members of this anonymous struct/union type, because otherwise
1553  // the members could be injected twice: once by DeclContext when it
1554  // builds its lookup table, and once by
1555  // InjectAnonymousStructOrUnionMembers.
1556  Record->setAnonymousStructOrUnion(true);
1557
1558  if (Invalid)
1559    Anon->setInvalidDecl();
1560
1561  return DeclPtrTy::make(Anon);
1562}
1563
1564
1565/// GetNameForDeclarator - Determine the full declaration name for the
1566/// given Declarator.
1567DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1568  switch (D.getKind()) {
1569  case Declarator::DK_Abstract:
1570    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1571    return DeclarationName();
1572
1573  case Declarator::DK_Normal:
1574    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1575    return DeclarationName(D.getIdentifier());
1576
1577  case Declarator::DK_Constructor: {
1578    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1579    return Context.DeclarationNames.getCXXConstructorName(
1580                                                Context.getCanonicalType(Ty));
1581  }
1582
1583  case Declarator::DK_Destructor: {
1584    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1585    return Context.DeclarationNames.getCXXDestructorName(
1586                                                Context.getCanonicalType(Ty));
1587  }
1588
1589  case Declarator::DK_Conversion: {
1590    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1591    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1592    return Context.DeclarationNames.getCXXConversionFunctionName(
1593                                                Context.getCanonicalType(Ty));
1594  }
1595
1596  case Declarator::DK_Operator:
1597    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1598    return Context.DeclarationNames.getCXXOperatorName(
1599                                                D.getOverloadedOperator());
1600
1601  case Declarator::DK_TemplateId: {
1602    TemplateName Name
1603      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1604    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1605      return Template->getDeclName();
1606    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1607      return Ovl->getDeclName();
1608
1609    return DeclarationName();
1610  }
1611  }
1612
1613  assert(false && "Unknown name kind");
1614  return DeclarationName();
1615}
1616
1617/// isNearlyMatchingFunction - Determine whether the C++ functions
1618/// Declaration and Definition are "nearly" matching. This heuristic
1619/// is used to improve diagnostics in the case where an out-of-line
1620/// function definition doesn't match any declaration within
1621/// the class or namespace.
1622static bool isNearlyMatchingFunction(ASTContext &Context,
1623                                     FunctionDecl *Declaration,
1624                                     FunctionDecl *Definition) {
1625  if (Declaration->param_size() != Definition->param_size())
1626    return false;
1627  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1628    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1629    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1630
1631    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1632    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1633    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1634      return false;
1635  }
1636
1637  return true;
1638}
1639
1640Sema::DeclPtrTy
1641Sema::HandleDeclarator(Scope *S, Declarator &D,
1642                       MultiTemplateParamsArg TemplateParamLists,
1643                       bool IsFunctionDefinition) {
1644  DeclarationName Name = GetNameForDeclarator(D);
1645
1646  // All of these full declarators require an identifier.  If it doesn't have
1647  // one, the ParsedFreeStandingDeclSpec action should be used.
1648  if (!Name) {
1649    if (!D.isInvalidType())  // Reject this if we think it is valid.
1650      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1651           diag::err_declarator_need_ident)
1652        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1653    return DeclPtrTy();
1654  }
1655
1656  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1657  // we find one that is.
1658  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1659         (S->getFlags() & Scope::TemplateParamScope) != 0)
1660    S = S->getParent();
1661
1662  // If this is an out-of-line definition of a member of a class template
1663  // or class template partial specialization, we may need to rebuild the
1664  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1665  // for more information.
1666  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1667  // handle expressions properly.
1668  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1669  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1670      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1671      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1672       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1673       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1674       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1675    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1676      // FIXME: Preserve type source info.
1677      QualType T = GetTypeFromParser(DS.getTypeRep());
1678      EnterDeclaratorContext(S, DC);
1679      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1680      ExitDeclaratorContext(S);
1681      if (T.isNull())
1682        return DeclPtrTy();
1683      DS.UpdateTypeRep(T.getAsOpaquePtr());
1684    }
1685  }
1686
1687  DeclContext *DC;
1688  NamedDecl *PrevDecl;
1689  NamedDecl *New;
1690
1691  DeclaratorInfo *DInfo = 0;
1692  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1693
1694  // See if this is a redefinition of a variable in the same scope.
1695  if (D.getCXXScopeSpec().isInvalid()) {
1696    DC = CurContext;
1697    PrevDecl = 0;
1698    D.setInvalidType();
1699  } else if (!D.getCXXScopeSpec().isSet()) {
1700    LookupNameKind NameKind = LookupOrdinaryName;
1701
1702    // If the declaration we're planning to build will be a function
1703    // or object with linkage, then look for another declaration with
1704    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1705    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1706      /* Do nothing*/;
1707    else if (R->isFunctionType()) {
1708      if (CurContext->isFunctionOrMethod() ||
1709          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1710        NameKind = LookupRedeclarationWithLinkage;
1711    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1712      NameKind = LookupRedeclarationWithLinkage;
1713    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1714             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1715      NameKind = LookupRedeclarationWithLinkage;
1716
1717    DC = CurContext;
1718    LookupResult R;
1719    LookupName(R, S, Name, NameKind, true,
1720               NameKind == LookupRedeclarationWithLinkage,
1721               D.getIdentifierLoc());
1722    PrevDecl = R.getAsSingleDecl(Context);
1723  } else { // Something like "int foo::x;"
1724    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1725
1726    if (!DC) {
1727      // If we could not compute the declaration context, it's because the
1728      // declaration context is dependent but does not refer to a class,
1729      // class template, or class template partial specialization. Complain
1730      // and return early, to avoid the coming semantic disaster.
1731      Diag(D.getIdentifierLoc(),
1732           diag::err_template_qualified_declarator_no_match)
1733        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1734        << D.getCXXScopeSpec().getRange();
1735      return DeclPtrTy();
1736    }
1737
1738    LookupResult Res;
1739    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1740    PrevDecl = Res.getAsSingleDecl(Context);
1741
1742    // C++ 7.3.1.2p2:
1743    // Members (including explicit specializations of templates) of a named
1744    // namespace can also be defined outside that namespace by explicit
1745    // qualification of the name being defined, provided that the entity being
1746    // defined was already declared in the namespace and the definition appears
1747    // after the point of declaration in a namespace that encloses the
1748    // declarations namespace.
1749    //
1750    // Note that we only check the context at this point. We don't yet
1751    // have enough information to make sure that PrevDecl is actually
1752    // the declaration we want to match. For example, given:
1753    //
1754    //   class X {
1755    //     void f();
1756    //     void f(float);
1757    //   };
1758    //
1759    //   void X::f(int) { } // ill-formed
1760    //
1761    // In this case, PrevDecl will point to the overload set
1762    // containing the two f's declared in X, but neither of them
1763    // matches.
1764
1765    // First check whether we named the global scope.
1766    if (isa<TranslationUnitDecl>(DC)) {
1767      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1768        << Name << D.getCXXScopeSpec().getRange();
1769    } else if (!CurContext->Encloses(DC)) {
1770      // The qualifying scope doesn't enclose the original declaration.
1771      // Emit diagnostic based on current scope.
1772      SourceLocation L = D.getIdentifierLoc();
1773      SourceRange R = D.getCXXScopeSpec().getRange();
1774      if (isa<FunctionDecl>(CurContext))
1775        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1776      else
1777        Diag(L, diag::err_invalid_declarator_scope)
1778          << Name << cast<NamedDecl>(DC) << R;
1779      D.setInvalidType();
1780    }
1781  }
1782
1783  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1784    // Maybe we will complain about the shadowed template parameter.
1785    if (!D.isInvalidType())
1786      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1787        D.setInvalidType();
1788
1789    // Just pretend that we didn't see the previous declaration.
1790    PrevDecl = 0;
1791  }
1792
1793  // In C++, the previous declaration we find might be a tag type
1794  // (class or enum). In this case, the new declaration will hide the
1795  // tag type. Note that this does does not apply if we're declaring a
1796  // typedef (C++ [dcl.typedef]p4).
1797  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1798      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1799    PrevDecl = 0;
1800
1801  bool Redeclaration = false;
1802  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1803    if (TemplateParamLists.size()) {
1804      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1805      return DeclPtrTy();
1806    }
1807
1808    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1809  } else if (R->isFunctionType()) {
1810    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1811                                  move(TemplateParamLists),
1812                                  IsFunctionDefinition, Redeclaration);
1813  } else {
1814    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1815                                  move(TemplateParamLists),
1816                                  Redeclaration);
1817  }
1818
1819  if (New == 0)
1820    return DeclPtrTy();
1821
1822  // If this has an identifier and is not an invalid redeclaration or
1823  // function template specialization, add it to the scope stack.
1824  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1825      !(isa<FunctionDecl>(New) &&
1826        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1827    PushOnScopeChains(New, S);
1828
1829  return DeclPtrTy::make(New);
1830}
1831
1832/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1833/// types into constant array types in certain situations which would otherwise
1834/// be errors (for GCC compatibility).
1835static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1836                                                    ASTContext &Context,
1837                                                    bool &SizeIsNegative) {
1838  // This method tries to turn a variable array into a constant
1839  // array even when the size isn't an ICE.  This is necessary
1840  // for compatibility with code that depends on gcc's buggy
1841  // constant expression folding, like struct {char x[(int)(char*)2];}
1842  SizeIsNegative = false;
1843
1844  QualifierCollector Qs;
1845  const Type *Ty = Qs.strip(T);
1846
1847  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1848    QualType Pointee = PTy->getPointeeType();
1849    QualType FixedType =
1850        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1851    if (FixedType.isNull()) return FixedType;
1852    FixedType = Context.getPointerType(FixedType);
1853    return Qs.apply(FixedType);
1854  }
1855
1856  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1857  if (!VLATy)
1858    return QualType();
1859  // FIXME: We should probably handle this case
1860  if (VLATy->getElementType()->isVariablyModifiedType())
1861    return QualType();
1862
1863  Expr::EvalResult EvalResult;
1864  if (!VLATy->getSizeExpr() ||
1865      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1866      !EvalResult.Val.isInt())
1867    return QualType();
1868
1869  llvm::APSInt &Res = EvalResult.Val.getInt();
1870  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1871    Expr* ArySizeExpr = VLATy->getSizeExpr();
1872    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1873    // so as to transfer ownership to the ConstantArrayWithExpr.
1874    // Alternatively, we could "clone" it (how?).
1875    // Since we don't know how to do things above, we just use the
1876    // very same Expr*.
1877    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1878                                                Res, ArySizeExpr,
1879                                                ArrayType::Normal, 0,
1880                                                VLATy->getBracketsRange());
1881  }
1882
1883  SizeIsNegative = true;
1884  return QualType();
1885}
1886
1887/// \brief Register the given locally-scoped external C declaration so
1888/// that it can be found later for redeclarations
1889void
1890Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1891                                       Scope *S) {
1892  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1893         "Decl is not a locally-scoped decl!");
1894  // Note that we have a locally-scoped external with this name.
1895  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1896
1897  if (!PrevDecl)
1898    return;
1899
1900  // If there was a previous declaration of this variable, it may be
1901  // in our identifier chain. Update the identifier chain with the new
1902  // declaration.
1903  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1904    // The previous declaration was found on the identifer resolver
1905    // chain, so remove it from its scope.
1906    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1907      S = S->getParent();
1908
1909    if (S)
1910      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1911  }
1912}
1913
1914/// \brief Diagnose function specifiers on a declaration of an identifier that
1915/// does not identify a function.
1916void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1917  // FIXME: We should probably indicate the identifier in question to avoid
1918  // confusion for constructs like "inline int a(), b;"
1919  if (D.getDeclSpec().isInlineSpecified())
1920    Diag(D.getDeclSpec().getInlineSpecLoc(),
1921         diag::err_inline_non_function);
1922
1923  if (D.getDeclSpec().isVirtualSpecified())
1924    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1925         diag::err_virtual_non_function);
1926
1927  if (D.getDeclSpec().isExplicitSpecified())
1928    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1929         diag::err_explicit_non_function);
1930}
1931
1932NamedDecl*
1933Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1934                             QualType R,  DeclaratorInfo *DInfo,
1935                             NamedDecl* PrevDecl, bool &Redeclaration) {
1936  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1937  if (D.getCXXScopeSpec().isSet()) {
1938    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1939      << D.getCXXScopeSpec().getRange();
1940    D.setInvalidType();
1941    // Pretend we didn't see the scope specifier.
1942    DC = 0;
1943  }
1944
1945  if (getLangOptions().CPlusPlus) {
1946    // Check that there are no default arguments (C++ only).
1947    CheckExtraCXXDefaultArguments(D);
1948  }
1949
1950  DiagnoseFunctionSpecifiers(D);
1951
1952  if (D.getDeclSpec().isThreadSpecified())
1953    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1954
1955  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1956  if (!NewTD) return 0;
1957
1958  if (D.isInvalidType())
1959    NewTD->setInvalidDecl();
1960
1961  // Handle attributes prior to checking for duplicates in MergeVarDecl
1962  ProcessDeclAttributes(S, NewTD, D);
1963  // Merge the decl with the existing one if appropriate. If the decl is
1964  // in an outer scope, it isn't the same thing.
1965  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1966    Redeclaration = true;
1967    MergeTypeDefDecl(NewTD, PrevDecl);
1968  }
1969
1970  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1971  // then it shall have block scope.
1972  QualType T = NewTD->getUnderlyingType();
1973  if (T->isVariablyModifiedType()) {
1974    CurFunctionNeedsScopeChecking = true;
1975
1976    if (S->getFnParent() == 0) {
1977      bool SizeIsNegative;
1978      QualType FixedTy =
1979          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1980      if (!FixedTy.isNull()) {
1981        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1982        NewTD->setUnderlyingType(FixedTy);
1983      } else {
1984        if (SizeIsNegative)
1985          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1986        else if (T->isVariableArrayType())
1987          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1988        else
1989          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1990        NewTD->setInvalidDecl();
1991      }
1992    }
1993  }
1994
1995  // If this is the C FILE type, notify the AST context.
1996  if (IdentifierInfo *II = NewTD->getIdentifier())
1997    if (!NewTD->isInvalidDecl() &&
1998        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1999      if (II->isStr("FILE"))
2000        Context.setFILEDecl(NewTD);
2001      else if (II->isStr("jmp_buf"))
2002        Context.setjmp_bufDecl(NewTD);
2003      else if (II->isStr("sigjmp_buf"))
2004        Context.setsigjmp_bufDecl(NewTD);
2005    }
2006
2007  return NewTD;
2008}
2009
2010/// \brief Determines whether the given declaration is an out-of-scope
2011/// previous declaration.
2012///
2013/// This routine should be invoked when name lookup has found a
2014/// previous declaration (PrevDecl) that is not in the scope where a
2015/// new declaration by the same name is being introduced. If the new
2016/// declaration occurs in a local scope, previous declarations with
2017/// linkage may still be considered previous declarations (C99
2018/// 6.2.2p4-5, C++ [basic.link]p6).
2019///
2020/// \param PrevDecl the previous declaration found by name
2021/// lookup
2022///
2023/// \param DC the context in which the new declaration is being
2024/// declared.
2025///
2026/// \returns true if PrevDecl is an out-of-scope previous declaration
2027/// for a new delcaration with the same name.
2028static bool
2029isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2030                                ASTContext &Context) {
2031  if (!PrevDecl)
2032    return 0;
2033
2034  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2035  // case we need to check each of the overloaded functions.
2036  if (!PrevDecl->hasLinkage())
2037    return false;
2038
2039  if (Context.getLangOptions().CPlusPlus) {
2040    // C++ [basic.link]p6:
2041    //   If there is a visible declaration of an entity with linkage
2042    //   having the same name and type, ignoring entities declared
2043    //   outside the innermost enclosing namespace scope, the block
2044    //   scope declaration declares that same entity and receives the
2045    //   linkage of the previous declaration.
2046    DeclContext *OuterContext = DC->getLookupContext();
2047    if (!OuterContext->isFunctionOrMethod())
2048      // This rule only applies to block-scope declarations.
2049      return false;
2050    else {
2051      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2052      if (PrevOuterContext->isRecord())
2053        // We found a member function: ignore it.
2054        return false;
2055      else {
2056        // Find the innermost enclosing namespace for the new and
2057        // previous declarations.
2058        while (!OuterContext->isFileContext())
2059          OuterContext = OuterContext->getParent();
2060        while (!PrevOuterContext->isFileContext())
2061          PrevOuterContext = PrevOuterContext->getParent();
2062
2063        // The previous declaration is in a different namespace, so it
2064        // isn't the same function.
2065        if (OuterContext->getPrimaryContext() !=
2066            PrevOuterContext->getPrimaryContext())
2067          return false;
2068      }
2069    }
2070  }
2071
2072  return true;
2073}
2074
2075NamedDecl*
2076Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2077                              QualType R, DeclaratorInfo *DInfo,
2078                              NamedDecl* PrevDecl,
2079                              MultiTemplateParamsArg TemplateParamLists,
2080                              bool &Redeclaration) {
2081  DeclarationName Name = GetNameForDeclarator(D);
2082
2083  // Check that there are no default arguments (C++ only).
2084  if (getLangOptions().CPlusPlus)
2085    CheckExtraCXXDefaultArguments(D);
2086
2087  VarDecl *NewVD;
2088  VarDecl::StorageClass SC;
2089  switch (D.getDeclSpec().getStorageClassSpec()) {
2090  default: assert(0 && "Unknown storage class!");
2091  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2092  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2093  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2094  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2095  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2096  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2097  case DeclSpec::SCS_mutable:
2098    // mutable can only appear on non-static class members, so it's always
2099    // an error here
2100    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2101    D.setInvalidType();
2102    SC = VarDecl::None;
2103    break;
2104  }
2105
2106  IdentifierInfo *II = Name.getAsIdentifierInfo();
2107  if (!II) {
2108    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2109      << Name.getAsString();
2110    return 0;
2111  }
2112
2113  DiagnoseFunctionSpecifiers(D);
2114
2115  if (!DC->isRecord() && S->getFnParent() == 0) {
2116    // C99 6.9p2: The storage-class specifiers auto and register shall not
2117    // appear in the declaration specifiers in an external declaration.
2118    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2119
2120      // If this is a register variable with an asm label specified, then this
2121      // is a GNU extension.
2122      if (SC == VarDecl::Register && D.getAsmLabel())
2123        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2124      else
2125        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2126      D.setInvalidType();
2127    }
2128  }
2129  if (DC->isRecord() && !CurContext->isRecord()) {
2130    // This is an out-of-line definition of a static data member.
2131    if (SC == VarDecl::Static) {
2132      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2133           diag::err_static_out_of_line)
2134        << CodeModificationHint::CreateRemoval(
2135                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2136    } else if (SC == VarDecl::None)
2137      SC = VarDecl::Static;
2138  }
2139  if (SC == VarDecl::Static) {
2140    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2141      if (RD->isLocalClass())
2142        Diag(D.getIdentifierLoc(),
2143             diag::err_static_data_member_not_allowed_in_local_class)
2144          << Name << RD->getDeclName();
2145    }
2146  }
2147
2148  // Match up the template parameter lists with the scope specifier, then
2149  // determine whether we have a template or a template specialization.
2150  bool isExplicitSpecialization = false;
2151  if (TemplateParameterList *TemplateParams
2152        = MatchTemplateParametersToScopeSpecifier(
2153                                  D.getDeclSpec().getSourceRange().getBegin(),
2154                                                  D.getCXXScopeSpec(),
2155                        (TemplateParameterList**)TemplateParamLists.get(),
2156                                                   TemplateParamLists.size(),
2157                                                  isExplicitSpecialization)) {
2158    if (TemplateParams->size() > 0) {
2159      // There is no such thing as a variable template.
2160      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2161        << II
2162        << SourceRange(TemplateParams->getTemplateLoc(),
2163                       TemplateParams->getRAngleLoc());
2164      return 0;
2165    } else {
2166      // There is an extraneous 'template<>' for this variable. Complain
2167      // about it, but allow the declaration of the variable.
2168      Diag(TemplateParams->getTemplateLoc(),
2169           diag::err_template_variable_noparams)
2170        << II
2171        << SourceRange(TemplateParams->getTemplateLoc(),
2172                       TemplateParams->getRAngleLoc());
2173
2174      isExplicitSpecialization = true;
2175    }
2176  }
2177
2178  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2179                          II, R, DInfo, SC);
2180
2181  if (D.isInvalidType())
2182    NewVD->setInvalidDecl();
2183
2184  if (D.getDeclSpec().isThreadSpecified()) {
2185    if (NewVD->hasLocalStorage())
2186      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2187    else if (!Context.Target.isTLSSupported())
2188      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2189    else
2190      NewVD->setThreadSpecified(true);
2191  }
2192
2193  // Set the lexical context. If the declarator has a C++ scope specifier, the
2194  // lexical context will be different from the semantic context.
2195  NewVD->setLexicalDeclContext(CurContext);
2196
2197  // Handle attributes prior to checking for duplicates in MergeVarDecl
2198  ProcessDeclAttributes(S, NewVD, D);
2199
2200  // Handle GNU asm-label extension (encoded as an attribute).
2201  if (Expr *E = (Expr*) D.getAsmLabel()) {
2202    // The parser guarantees this is a string.
2203    StringLiteral *SE = cast<StringLiteral>(E);
2204    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2205                                                        SE->getByteLength())));
2206  }
2207
2208  // If name lookup finds a previous declaration that is not in the
2209  // same scope as the new declaration, this may still be an
2210  // acceptable redeclaration.
2211  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2212      !(NewVD->hasLinkage() &&
2213        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2214    PrevDecl = 0;
2215
2216  // Merge the decl with the existing one if appropriate.
2217  if (PrevDecl) {
2218    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2219      // The user tried to define a non-static data member
2220      // out-of-line (C++ [dcl.meaning]p1).
2221      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2222        << D.getCXXScopeSpec().getRange();
2223      PrevDecl = 0;
2224      NewVD->setInvalidDecl();
2225    }
2226  } else if (D.getCXXScopeSpec().isSet()) {
2227    // No previous declaration in the qualifying scope.
2228    NestedNameSpecifier *NNS =
2229      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2230    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2231                          D.getCXXScopeSpec().getRange());
2232    NewVD->setInvalidDecl();
2233  }
2234
2235  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2236
2237  // This is an explicit specialization of a static data member. Check it.
2238  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2239      CheckMemberSpecialization(NewVD, PrevDecl))
2240    NewVD->setInvalidDecl();
2241
2242  // attributes declared post-definition are currently ignored
2243  if (PrevDecl) {
2244    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2245    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2246      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2247      Diag(Def->getLocation(), diag::note_previous_definition);
2248    }
2249  }
2250
2251  // If this is a locally-scoped extern C variable, update the map of
2252  // such variables.
2253  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2254      !NewVD->isInvalidDecl())
2255    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2256
2257  return NewVD;
2258}
2259
2260/// \brief Perform semantic checking on a newly-created variable
2261/// declaration.
2262///
2263/// This routine performs all of the type-checking required for a
2264/// variable declaration once it has been built. It is used both to
2265/// check variables after they have been parsed and their declarators
2266/// have been translated into a declaration, and to check variables
2267/// that have been instantiated from a template.
2268///
2269/// Sets NewVD->isInvalidDecl() if an error was encountered.
2270void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2271                                    bool &Redeclaration) {
2272  // If the decl is already known invalid, don't check it.
2273  if (NewVD->isInvalidDecl())
2274    return;
2275
2276  QualType T = NewVD->getType();
2277
2278  if (T->isObjCInterfaceType()) {
2279    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2280    return NewVD->setInvalidDecl();
2281  }
2282
2283  // The variable can not have an abstract class type.
2284  if (RequireNonAbstractType(NewVD->getLocation(), T,
2285                             diag::err_abstract_type_in_decl,
2286                             AbstractVariableType))
2287    return NewVD->setInvalidDecl();
2288
2289  // Emit an error if an address space was applied to decl with local storage.
2290  // This includes arrays of objects with address space qualifiers, but not
2291  // automatic variables that point to other address spaces.
2292  // ISO/IEC TR 18037 S5.1.2
2293  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2294    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2295    return NewVD->setInvalidDecl();
2296  }
2297
2298  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2299      && !NewVD->hasAttr<BlocksAttr>())
2300    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2301
2302  bool isVM = T->isVariablyModifiedType();
2303  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2304      NewVD->hasAttr<BlocksAttr>())
2305    CurFunctionNeedsScopeChecking = true;
2306
2307  if ((isVM && NewVD->hasLinkage()) ||
2308      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2309    bool SizeIsNegative;
2310    QualType FixedTy =
2311        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2312
2313    if (FixedTy.isNull() && T->isVariableArrayType()) {
2314      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2315      // FIXME: This won't give the correct result for
2316      // int a[10][n];
2317      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2318
2319      if (NewVD->isFileVarDecl())
2320        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2321        << SizeRange;
2322      else if (NewVD->getStorageClass() == VarDecl::Static)
2323        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2324        << SizeRange;
2325      else
2326        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2327        << SizeRange;
2328      return NewVD->setInvalidDecl();
2329    }
2330
2331    if (FixedTy.isNull()) {
2332      if (NewVD->isFileVarDecl())
2333        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2334      else
2335        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2336      return NewVD->setInvalidDecl();
2337    }
2338
2339    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2340    NewVD->setType(FixedTy);
2341  }
2342
2343  if (!PrevDecl && NewVD->isExternC()) {
2344    // Since we did not find anything by this name and we're declaring
2345    // an extern "C" variable, look for a non-visible extern "C"
2346    // declaration with the same name.
2347    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2348      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2349    if (Pos != LocallyScopedExternalDecls.end())
2350      PrevDecl = Pos->second;
2351  }
2352
2353  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2354    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2355      << T;
2356    return NewVD->setInvalidDecl();
2357  }
2358
2359  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2360    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2361    return NewVD->setInvalidDecl();
2362  }
2363
2364  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2365    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2366    return NewVD->setInvalidDecl();
2367  }
2368
2369  if (PrevDecl) {
2370    Redeclaration = true;
2371    MergeVarDecl(NewVD, PrevDecl);
2372  }
2373}
2374
2375static bool isUsingDecl(Decl *D) {
2376  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2377}
2378
2379/// \brief Data used with FindOverriddenMethod
2380struct FindOverriddenMethodData {
2381  Sema *S;
2382  CXXMethodDecl *Method;
2383};
2384
2385/// \brief Member lookup function that determines whether a given C++
2386/// method overrides a method in a base class, to be used with
2387/// CXXRecordDecl::lookupInBases().
2388static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2389                                 CXXBasePath &Path,
2390                                 void *UserData) {
2391  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2392
2393  FindOverriddenMethodData *Data
2394    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2395  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2396       Path.Decls.first != Path.Decls.second;
2397       ++Path.Decls.first) {
2398    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2399      OverloadedFunctionDecl::function_iterator MatchedDecl;
2400      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2401        return true;
2402    }
2403  }
2404
2405  return false;
2406}
2407
2408NamedDecl*
2409Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2410                              QualType R, DeclaratorInfo *DInfo,
2411                              NamedDecl* PrevDecl,
2412                              MultiTemplateParamsArg TemplateParamLists,
2413                              bool IsFunctionDefinition, bool &Redeclaration) {
2414  assert(R.getTypePtr()->isFunctionType());
2415
2416  DeclarationName Name = GetNameForDeclarator(D);
2417  FunctionDecl::StorageClass SC = FunctionDecl::None;
2418  switch (D.getDeclSpec().getStorageClassSpec()) {
2419  default: assert(0 && "Unknown storage class!");
2420  case DeclSpec::SCS_auto:
2421  case DeclSpec::SCS_register:
2422  case DeclSpec::SCS_mutable:
2423    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2424         diag::err_typecheck_sclass_func);
2425    D.setInvalidType();
2426    break;
2427  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2428  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2429  case DeclSpec::SCS_static: {
2430    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2431      // C99 6.7.1p5:
2432      //   The declaration of an identifier for a function that has
2433      //   block scope shall have no explicit storage-class specifier
2434      //   other than extern
2435      // See also (C++ [dcl.stc]p4).
2436      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2437           diag::err_static_block_func);
2438      SC = FunctionDecl::None;
2439    } else
2440      SC = FunctionDecl::Static;
2441    break;
2442  }
2443  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2444  }
2445
2446  if (D.getDeclSpec().isThreadSpecified())
2447    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2448
2449  bool isFriend = D.getDeclSpec().isFriendSpecified();
2450  bool isInline = D.getDeclSpec().isInlineSpecified();
2451  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2452  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2453
2454  // Check that the return type is not an abstract class type.
2455  // For record types, this is done by the AbstractClassUsageDiagnoser once
2456  // the class has been completely parsed.
2457  if (!DC->isRecord() &&
2458      RequireNonAbstractType(D.getIdentifierLoc(),
2459                             R->getAs<FunctionType>()->getResultType(),
2460                             diag::err_abstract_type_in_decl,
2461                             AbstractReturnType))
2462    D.setInvalidType();
2463
2464  // Do not allow returning a objc interface by-value.
2465  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2466    Diag(D.getIdentifierLoc(),
2467         diag::err_object_cannot_be_passed_returned_by_value) << 0
2468      << R->getAs<FunctionType>()->getResultType();
2469    D.setInvalidType();
2470  }
2471
2472  bool isVirtualOkay = false;
2473  FunctionDecl *NewFD;
2474
2475  if (isFriend) {
2476    // DC is the namespace in which the function is being declared.
2477    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2478           "friend function being created in a non-namespace context");
2479
2480    // C++ [class.friend]p5
2481    //   A function can be defined in a friend declaration of a
2482    //   class . . . . Such a function is implicitly inline.
2483    isInline |= IsFunctionDefinition;
2484  }
2485
2486  if (D.getKind() == Declarator::DK_Constructor) {
2487    // This is a C++ constructor declaration.
2488    assert(DC->isRecord() &&
2489           "Constructors can only be declared in a member context");
2490
2491    R = CheckConstructorDeclarator(D, R, SC);
2492
2493    // Create the new declaration
2494    NewFD = CXXConstructorDecl::Create(Context,
2495                                       cast<CXXRecordDecl>(DC),
2496                                       D.getIdentifierLoc(), Name, R, DInfo,
2497                                       isExplicit, isInline,
2498                                       /*isImplicitlyDeclared=*/false);
2499  } else if (D.getKind() == Declarator::DK_Destructor) {
2500    // This is a C++ destructor declaration.
2501    if (DC->isRecord()) {
2502      R = CheckDestructorDeclarator(D, SC);
2503
2504      NewFD = CXXDestructorDecl::Create(Context,
2505                                        cast<CXXRecordDecl>(DC),
2506                                        D.getIdentifierLoc(), Name, R,
2507                                        isInline,
2508                                        /*isImplicitlyDeclared=*/false);
2509
2510      isVirtualOkay = true;
2511    } else {
2512      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2513
2514      // Create a FunctionDecl to satisfy the function definition parsing
2515      // code path.
2516      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2517                                   Name, R, DInfo, SC, isInline,
2518                                   /*hasPrototype=*/true);
2519      D.setInvalidType();
2520    }
2521  } else if (D.getKind() == Declarator::DK_Conversion) {
2522    if (!DC->isRecord()) {
2523      Diag(D.getIdentifierLoc(),
2524           diag::err_conv_function_not_member);
2525      return 0;
2526    }
2527
2528    CheckConversionDeclarator(D, R, SC);
2529    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2530                                      D.getIdentifierLoc(), Name, R, DInfo,
2531                                      isInline, isExplicit);
2532
2533    isVirtualOkay = true;
2534  } else if (DC->isRecord()) {
2535    // If the of the function is the same as the name of the record, then this
2536    // must be an invalid constructor that has a return type.
2537    // (The parser checks for a return type and makes the declarator a
2538    // constructor if it has no return type).
2539    // must have an invalid constructor that has a return type
2540    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2541      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2542        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2543        << SourceRange(D.getIdentifierLoc());
2544      return 0;
2545    }
2546
2547    // This is a C++ method declaration.
2548    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2549                                  D.getIdentifierLoc(), Name, R, DInfo,
2550                                  (SC == FunctionDecl::Static), isInline);
2551
2552    isVirtualOkay = (SC != FunctionDecl::Static);
2553  } else {
2554    // Determine whether the function was written with a
2555    // prototype. This true when:
2556    //   - we're in C++ (where every function has a prototype),
2557    //   - there is a prototype in the declarator, or
2558    //   - the type R of the function is some kind of typedef or other reference
2559    //     to a type name (which eventually refers to a function type).
2560    bool HasPrototype =
2561       getLangOptions().CPlusPlus ||
2562       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2563       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2564
2565    NewFD = FunctionDecl::Create(Context, DC,
2566                                 D.getIdentifierLoc(),
2567                                 Name, R, DInfo, SC, isInline, HasPrototype);
2568  }
2569
2570  if (D.isInvalidType())
2571    NewFD->setInvalidDecl();
2572
2573  // Set the lexical context. If the declarator has a C++
2574  // scope specifier, or is the object of a friend declaration, the
2575  // lexical context will be different from the semantic context.
2576  NewFD->setLexicalDeclContext(CurContext);
2577
2578  if (isFriend)
2579    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2580
2581  // Match up the template parameter lists with the scope specifier, then
2582  // determine whether we have a template or a template specialization.
2583  FunctionTemplateDecl *FunctionTemplate = 0;
2584  bool isExplicitSpecialization = false;
2585  bool isFunctionTemplateSpecialization = false;
2586  if (TemplateParameterList *TemplateParams
2587        = MatchTemplateParametersToScopeSpecifier(
2588                                  D.getDeclSpec().getSourceRange().getBegin(),
2589                                  D.getCXXScopeSpec(),
2590                           (TemplateParameterList**)TemplateParamLists.get(),
2591                                                  TemplateParamLists.size(),
2592                                                  isExplicitSpecialization)) {
2593    if (TemplateParams->size() > 0) {
2594      // This is a function template
2595
2596      // Check that we can declare a template here.
2597      if (CheckTemplateDeclScope(S, TemplateParams))
2598        return 0;
2599
2600      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2601                                                      NewFD->getLocation(),
2602                                                      Name, TemplateParams,
2603                                                      NewFD);
2604      FunctionTemplate->setLexicalDeclContext(CurContext);
2605      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2606    } else {
2607      // This is a function template specialization.
2608      isFunctionTemplateSpecialization = true;
2609    }
2610
2611    // FIXME: Free this memory properly.
2612    TemplateParamLists.release();
2613  }
2614
2615  // C++ [dcl.fct.spec]p5:
2616  //   The virtual specifier shall only be used in declarations of
2617  //   nonstatic class member functions that appear within a
2618  //   member-specification of a class declaration; see 10.3.
2619  //
2620  if (isVirtual && !NewFD->isInvalidDecl()) {
2621    if (!isVirtualOkay) {
2622       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2623           diag::err_virtual_non_function);
2624    } else if (!CurContext->isRecord()) {
2625      // 'virtual' was specified outside of the class.
2626      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2627        << CodeModificationHint::CreateRemoval(
2628                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2629    } else {
2630      // Okay: Add virtual to the method.
2631      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2632      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2633      CurClass->setAggregate(false);
2634      CurClass->setPOD(false);
2635      CurClass->setEmpty(false);
2636      CurClass->setPolymorphic(true);
2637      CurClass->setHasTrivialConstructor(false);
2638      CurClass->setHasTrivialCopyConstructor(false);
2639      CurClass->setHasTrivialCopyAssignment(false);
2640    }
2641  }
2642
2643  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2644    // Look for virtual methods in base classes that this method might override.
2645    CXXBasePaths Paths;
2646    FindOverriddenMethodData Data;
2647    Data.Method = NewMD;
2648    Data.S = this;
2649    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2650                                                Paths)) {
2651      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2652           E = Paths.found_decls_end(); I != E; ++I) {
2653        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2654          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2655              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2656            NewMD->addOverriddenMethod(OldMD);
2657        }
2658      }
2659    }
2660  }
2661
2662  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2663      !CurContext->isRecord()) {
2664    // C++ [class.static]p1:
2665    //   A data or function member of a class may be declared static
2666    //   in a class definition, in which case it is a static member of
2667    //   the class.
2668
2669    // Complain about the 'static' specifier if it's on an out-of-line
2670    // member function definition.
2671    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2672         diag::err_static_out_of_line)
2673      << CodeModificationHint::CreateRemoval(
2674                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2675  }
2676
2677  // Handle GNU asm-label extension (encoded as an attribute).
2678  if (Expr *E = (Expr*) D.getAsmLabel()) {
2679    // The parser guarantees this is a string.
2680    StringLiteral *SE = cast<StringLiteral>(E);
2681    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2682                                                        SE->getByteLength())));
2683  }
2684
2685  // Copy the parameter declarations from the declarator D to the function
2686  // declaration NewFD, if they are available.  First scavenge them into Params.
2687  llvm::SmallVector<ParmVarDecl*, 16> Params;
2688  if (D.getNumTypeObjects() > 0) {
2689    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2690
2691    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2692    // function that takes no arguments, not a function that takes a
2693    // single void argument.
2694    // We let through "const void" here because Sema::GetTypeForDeclarator
2695    // already checks for that case.
2696    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2697        FTI.ArgInfo[0].Param &&
2698        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2699      // Empty arg list, don't push any params.
2700      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2701
2702      // In C++, the empty parameter-type-list must be spelled "void"; a
2703      // typedef of void is not permitted.
2704      if (getLangOptions().CPlusPlus &&
2705          Param->getType().getUnqualifiedType() != Context.VoidTy)
2706        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2707      // FIXME: Leaks decl?
2708    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2709      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2710        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2711        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2712        Param->setDeclContext(NewFD);
2713        Params.push_back(Param);
2714      }
2715    }
2716
2717  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2718    // When we're declaring a function with a typedef, typeof, etc as in the
2719    // following example, we'll need to synthesize (unnamed)
2720    // parameters for use in the declaration.
2721    //
2722    // @code
2723    // typedef void fn(int);
2724    // fn f;
2725    // @endcode
2726
2727    // Synthesize a parameter for each argument type.
2728    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2729         AE = FT->arg_type_end(); AI != AE; ++AI) {
2730      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2731                                               SourceLocation(), 0,
2732                                               *AI, /*DInfo=*/0,
2733                                               VarDecl::None, 0);
2734      Param->setImplicit();
2735      Params.push_back(Param);
2736    }
2737  } else {
2738    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2739           "Should not need args for typedef of non-prototype fn");
2740  }
2741  // Finally, we know we have the right number of parameters, install them.
2742  NewFD->setParams(Context, Params.data(), Params.size());
2743
2744  // If name lookup finds a previous declaration that is not in the
2745  // same scope as the new declaration, this may still be an
2746  // acceptable redeclaration.
2747  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2748      !(NewFD->hasLinkage() &&
2749        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2750    PrevDecl = 0;
2751
2752  // If the declarator is a template-id, translate the parser's template
2753  // argument list into our AST format.
2754  bool HasExplicitTemplateArgs = false;
2755  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2756  SourceLocation LAngleLoc, RAngleLoc;
2757  if (D.getKind() == Declarator::DK_TemplateId) {
2758    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2759    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2760                                       TemplateId->getTemplateArgs(),
2761                                       TemplateId->getTemplateArgIsType(),
2762                                       TemplateId->NumArgs);
2763    translateTemplateArguments(TemplateArgsPtr,
2764                               TemplateId->getTemplateArgLocations(),
2765                               TemplateArgs);
2766    TemplateArgsPtr.release();
2767
2768    HasExplicitTemplateArgs = true;
2769    LAngleLoc = TemplateId->LAngleLoc;
2770    RAngleLoc = TemplateId->RAngleLoc;
2771
2772    if (FunctionTemplate) {
2773      // FIXME: Diagnose function template with explicit template
2774      // arguments.
2775      HasExplicitTemplateArgs = false;
2776    } else if (!isFunctionTemplateSpecialization &&
2777               !D.getDeclSpec().isFriendSpecified()) {
2778      // We have encountered something that the user meant to be a
2779      // specialization (because it has explicitly-specified template
2780      // arguments) but that was not introduced with a "template<>" (or had
2781      // too few of them).
2782      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2783        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2784        << CodeModificationHint::CreateInsertion(
2785                                   D.getDeclSpec().getSourceRange().getBegin(),
2786                                                 "template<> ");
2787      isFunctionTemplateSpecialization = true;
2788    }
2789  }
2790
2791  if (isFunctionTemplateSpecialization) {
2792      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2793                                              LAngleLoc, TemplateArgs.data(),
2794                                              TemplateArgs.size(), RAngleLoc,
2795                                              PrevDecl))
2796        NewFD->setInvalidDecl();
2797  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2798             CheckMemberSpecialization(NewFD, PrevDecl))
2799    NewFD->setInvalidDecl();
2800
2801  // Perform semantic checking on the function declaration.
2802  bool OverloadableAttrRequired = false; // FIXME: HACK!
2803  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2804                           /*FIXME:*/OverloadableAttrRequired);
2805
2806  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2807    // An out-of-line member function declaration must also be a
2808    // definition (C++ [dcl.meaning]p1).
2809    // Note that this is not the case for explicit specializations of
2810    // function templates or member functions of class templates, per
2811    // C++ [temp.expl.spec]p2.
2812    if (!IsFunctionDefinition && !isFriend &&
2813        NewFD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
2814      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2815        << D.getCXXScopeSpec().getRange();
2816      NewFD->setInvalidDecl();
2817    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2818      // The user tried to provide an out-of-line definition for a
2819      // function that is a member of a class or namespace, but there
2820      // was no such member function declared (C++ [class.mfct]p2,
2821      // C++ [namespace.memdef]p2). For example:
2822      //
2823      // class X {
2824      //   void f() const;
2825      // };
2826      //
2827      // void X::f() { } // ill-formed
2828      //
2829      // Complain about this problem, and attempt to suggest close
2830      // matches (e.g., those that differ only in cv-qualifiers and
2831      // whether the parameter types are references).
2832      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2833        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2834      NewFD->setInvalidDecl();
2835
2836      LookupResult Prev;
2837      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2838      assert(!Prev.isAmbiguous() &&
2839             "Cannot have an ambiguity in previous-declaration lookup");
2840      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2841           Func != FuncEnd; ++Func) {
2842        if (isa<FunctionDecl>(*Func) &&
2843            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2844          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2845      }
2846
2847      PrevDecl = 0;
2848    }
2849  }
2850
2851  // Handle attributes. We need to have merged decls when handling attributes
2852  // (for example to check for conflicts, etc).
2853  // FIXME: This needs to happen before we merge declarations. Then,
2854  // let attribute merging cope with attribute conflicts.
2855  ProcessDeclAttributes(S, NewFD, D);
2856
2857  // attributes declared post-definition are currently ignored
2858  if (Redeclaration && PrevDecl) {
2859    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2860    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2861      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2862      Diag(Def->getLocation(), diag::note_previous_definition);
2863    }
2864  }
2865
2866  AddKnownFunctionAttributes(NewFD);
2867
2868  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2869    // If a function name is overloadable in C, then every function
2870    // with that name must be marked "overloadable".
2871    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2872      << Redeclaration << NewFD;
2873    if (PrevDecl)
2874      Diag(PrevDecl->getLocation(),
2875           diag::note_attribute_overloadable_prev_overload);
2876    NewFD->addAttr(::new (Context) OverloadableAttr());
2877  }
2878
2879  // If this is a locally-scoped extern C function, update the
2880  // map of such names.
2881  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2882      && !NewFD->isInvalidDecl())
2883    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2884
2885  // Set this FunctionDecl's range up to the right paren.
2886  NewFD->setLocEnd(D.getSourceRange().getEnd());
2887
2888  if (FunctionTemplate && NewFD->isInvalidDecl())
2889    FunctionTemplate->setInvalidDecl();
2890
2891  if (FunctionTemplate)
2892    return FunctionTemplate;
2893
2894  return NewFD;
2895}
2896
2897/// \brief Perform semantic checking of a new function declaration.
2898///
2899/// Performs semantic analysis of the new function declaration
2900/// NewFD. This routine performs all semantic checking that does not
2901/// require the actual declarator involved in the declaration, and is
2902/// used both for the declaration of functions as they are parsed
2903/// (called via ActOnDeclarator) and for the declaration of functions
2904/// that have been instantiated via C++ template instantiation (called
2905/// via InstantiateDecl).
2906///
2907/// This sets NewFD->isInvalidDecl() to true if there was an error.
2908void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2909                                    bool &Redeclaration,
2910                                    bool &OverloadableAttrRequired) {
2911  // If NewFD is already known erroneous, don't do any of this checking.
2912  if (NewFD->isInvalidDecl())
2913    return;
2914
2915  if (NewFD->getResultType()->isVariablyModifiedType()) {
2916    // Functions returning a variably modified type violate C99 6.7.5.2p2
2917    // because all functions have linkage.
2918    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2919    return NewFD->setInvalidDecl();
2920  }
2921
2922  if (NewFD->isMain())
2923    CheckMain(NewFD);
2924
2925  // Check for a previous declaration of this name.
2926  if (!PrevDecl && NewFD->isExternC()) {
2927    // Since we did not find anything by this name and we're declaring
2928    // an extern "C" function, look for a non-visible extern "C"
2929    // declaration with the same name.
2930    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2931      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2932    if (Pos != LocallyScopedExternalDecls.end())
2933      PrevDecl = Pos->second;
2934  }
2935
2936  // Merge or overload the declaration with an existing declaration of
2937  // the same name, if appropriate.
2938  if (PrevDecl) {
2939    // Determine whether NewFD is an overload of PrevDecl or
2940    // a declaration that requires merging. If it's an overload,
2941    // there's no more work to do here; we'll just add the new
2942    // function to the scope.
2943    OverloadedFunctionDecl::function_iterator MatchedDecl;
2944
2945    if (!getLangOptions().CPlusPlus &&
2946        AllowOverloadingOfFunction(PrevDecl, Context)) {
2947      OverloadableAttrRequired = true;
2948
2949      // Functions marked "overloadable" must have a prototype (that
2950      // we can't get through declaration merging).
2951      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2952        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2953          << NewFD;
2954        Redeclaration = true;
2955
2956        // Turn this into a variadic function with no parameters.
2957        QualType R = Context.getFunctionType(
2958                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2959                       0, 0, true, 0);
2960        NewFD->setType(R);
2961        return NewFD->setInvalidDecl();
2962      }
2963    }
2964
2965    if (PrevDecl &&
2966        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2967         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2968      Redeclaration = true;
2969      Decl *OldDecl = PrevDecl;
2970
2971      // If PrevDecl was an overloaded function, extract the
2972      // FunctionDecl that matched.
2973      if (isa<OverloadedFunctionDecl>(PrevDecl))
2974        OldDecl = *MatchedDecl;
2975
2976      // NewFD and OldDecl represent declarations that need to be
2977      // merged.
2978      if (MergeFunctionDecl(NewFD, OldDecl))
2979        return NewFD->setInvalidDecl();
2980
2981      if (FunctionTemplateDecl *OldTemplateDecl
2982            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2983        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2984      else {
2985        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2986          NewFD->setAccess(OldDecl->getAccess());
2987        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2988      }
2989    }
2990  }
2991
2992  // Semantic checking for this function declaration (in isolation).
2993  if (getLangOptions().CPlusPlus) {
2994    // C++-specific checks.
2995    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2996      CheckConstructor(Constructor);
2997    } else if (isa<CXXDestructorDecl>(NewFD)) {
2998      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2999      QualType ClassType = Context.getTypeDeclType(Record);
3000      if (!ClassType->isDependentType()) {
3001        DeclarationName Name
3002          = Context.DeclarationNames.getCXXDestructorName(
3003                                        Context.getCanonicalType(ClassType));
3004        if (NewFD->getDeclName() != Name) {
3005          Diag(NewFD->getLocation(), diag::err_destructor_name);
3006          return NewFD->setInvalidDecl();
3007        }
3008      }
3009      Record->setUserDeclaredDestructor(true);
3010      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3011      // user-defined destructor.
3012      Record->setPOD(false);
3013
3014      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3015      // declared destructor.
3016      // FIXME: C++0x: don't do this for "= default" destructors
3017      Record->setHasTrivialDestructor(false);
3018    } else if (CXXConversionDecl *Conversion
3019               = dyn_cast<CXXConversionDecl>(NewFD))
3020      ActOnConversionDeclarator(Conversion);
3021
3022    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3023    if (NewFD->isOverloadedOperator() &&
3024        CheckOverloadedOperatorDeclaration(NewFD))
3025      return NewFD->setInvalidDecl();
3026
3027    // In C++, check default arguments now that we have merged decls. Unless
3028    // the lexical context is the class, because in this case this is done
3029    // during delayed parsing anyway.
3030    if (!CurContext->isRecord())
3031      CheckCXXDefaultArguments(NewFD);
3032  }
3033}
3034
3035void Sema::CheckMain(FunctionDecl* FD) {
3036  // C++ [basic.start.main]p3:  A program that declares main to be inline
3037  //   or static is ill-formed.
3038  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3039  //   shall not appear in a declaration of main.
3040  // static main is not an error under C99, but we should warn about it.
3041  bool isInline = FD->isInline();
3042  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3043  if (isInline || isStatic) {
3044    unsigned diagID = diag::warn_unusual_main_decl;
3045    if (isInline || getLangOptions().CPlusPlus)
3046      diagID = diag::err_unusual_main_decl;
3047
3048    int which = isStatic + (isInline << 1) - 1;
3049    Diag(FD->getLocation(), diagID) << which;
3050  }
3051
3052  QualType T = FD->getType();
3053  assert(T->isFunctionType() && "function decl is not of function type");
3054  const FunctionType* FT = T->getAs<FunctionType>();
3055
3056  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3057    // TODO: add a replacement fixit to turn the return type into 'int'.
3058    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3059    FD->setInvalidDecl(true);
3060  }
3061
3062  // Treat protoless main() as nullary.
3063  if (isa<FunctionNoProtoType>(FT)) return;
3064
3065  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3066  unsigned nparams = FTP->getNumArgs();
3067  assert(FD->getNumParams() == nparams);
3068
3069  if (nparams > 3) {
3070    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3071    FD->setInvalidDecl(true);
3072    nparams = 3;
3073  }
3074
3075  // FIXME: a lot of the following diagnostics would be improved
3076  // if we had some location information about types.
3077
3078  QualType CharPP =
3079    Context.getPointerType(Context.getPointerType(Context.CharTy));
3080  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3081
3082  for (unsigned i = 0; i < nparams; ++i) {
3083    QualType AT = FTP->getArgType(i);
3084
3085    bool mismatch = true;
3086
3087    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3088      mismatch = false;
3089    else if (Expected[i] == CharPP) {
3090      // As an extension, the following forms are okay:
3091      //   char const **
3092      //   char const * const *
3093      //   char * const *
3094
3095      QualifierCollector qs;
3096      const PointerType* PT;
3097      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3098          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3099          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3100        qs.removeConst();
3101        mismatch = !qs.empty();
3102      }
3103    }
3104
3105    if (mismatch) {
3106      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3107      // TODO: suggest replacing given type with expected type
3108      FD->setInvalidDecl(true);
3109    }
3110  }
3111
3112  if (nparams == 1 && !FD->isInvalidDecl()) {
3113    Diag(FD->getLocation(), diag::warn_main_one_arg);
3114  }
3115}
3116
3117bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3118  // FIXME: Need strict checking.  In C89, we need to check for
3119  // any assignment, increment, decrement, function-calls, or
3120  // commas outside of a sizeof.  In C99, it's the same list,
3121  // except that the aforementioned are allowed in unevaluated
3122  // expressions.  Everything else falls under the
3123  // "may accept other forms of constant expressions" exception.
3124  // (We never end up here for C++, so the constant expression
3125  // rules there don't matter.)
3126  if (Init->isConstantInitializer(Context))
3127    return false;
3128  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3129    << Init->getSourceRange();
3130  return true;
3131}
3132
3133void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3134  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3135}
3136
3137/// AddInitializerToDecl - Adds the initializer Init to the
3138/// declaration dcl. If DirectInit is true, this is C++ direct
3139/// initialization rather than copy initialization.
3140void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3141  Decl *RealDecl = dcl.getAs<Decl>();
3142  // If there is no declaration, there was an error parsing it.  Just ignore
3143  // the initializer.
3144  if (RealDecl == 0)
3145    return;
3146
3147  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3148    // With declarators parsed the way they are, the parser cannot
3149    // distinguish between a normal initializer and a pure-specifier.
3150    // Thus this grotesque test.
3151    IntegerLiteral *IL;
3152    Expr *Init = static_cast<Expr *>(init.get());
3153    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3154        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3155      if (Method->isVirtualAsWritten()) {
3156        Method->setPure();
3157
3158        // A class is abstract if at least one function is pure virtual.
3159        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3160      } else if (!Method->isInvalidDecl()) {
3161        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3162          << Method->getDeclName() << Init->getSourceRange();
3163        Method->setInvalidDecl();
3164      }
3165    } else {
3166      Diag(Method->getLocation(), diag::err_member_function_initialization)
3167        << Method->getDeclName() << Init->getSourceRange();
3168      Method->setInvalidDecl();
3169    }
3170    return;
3171  }
3172
3173  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3174  if (!VDecl) {
3175    if (getLangOptions().CPlusPlus &&
3176        RealDecl->getLexicalDeclContext()->isRecord() &&
3177        isa<NamedDecl>(RealDecl))
3178      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3179        << cast<NamedDecl>(RealDecl)->getDeclName();
3180    else
3181      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3182    RealDecl->setInvalidDecl();
3183    return;
3184  }
3185
3186  if (!VDecl->getType()->isArrayType() &&
3187      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3188                          diag::err_typecheck_decl_incomplete_type)) {
3189    RealDecl->setInvalidDecl();
3190    return;
3191  }
3192
3193  const VarDecl *Def = 0;
3194  if (VDecl->getDefinition(Def)) {
3195    Diag(VDecl->getLocation(), diag::err_redefinition)
3196      << VDecl->getDeclName();
3197    Diag(Def->getLocation(), diag::note_previous_definition);
3198    VDecl->setInvalidDecl();
3199    return;
3200  }
3201
3202  // Take ownership of the expression, now that we're sure we have somewhere
3203  // to put it.
3204  Expr *Init = init.takeAs<Expr>();
3205  assert(Init && "missing initializer");
3206
3207  // Get the decls type and save a reference for later, since
3208  // CheckInitializerTypes may change it.
3209  QualType DclT = VDecl->getType(), SavT = DclT;
3210  if (VDecl->isBlockVarDecl()) {
3211    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3212      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3213      VDecl->setInvalidDecl();
3214    } else if (!VDecl->isInvalidDecl()) {
3215      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3216                                VDecl->getDeclName(), DirectInit))
3217        VDecl->setInvalidDecl();
3218
3219      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3220      // Don't check invalid declarations to avoid emitting useless diagnostics.
3221      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3222        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3223          CheckForConstantInitializer(Init, DclT);
3224      }
3225    }
3226  } else if (VDecl->isStaticDataMember() &&
3227             VDecl->getLexicalDeclContext()->isRecord()) {
3228    // This is an in-class initialization for a static data member, e.g.,
3229    //
3230    // struct S {
3231    //   static const int value = 17;
3232    // };
3233
3234    // Attach the initializer
3235    VDecl->setInit(Context, Init);
3236
3237    // C++ [class.mem]p4:
3238    //   A member-declarator can contain a constant-initializer only
3239    //   if it declares a static member (9.4) of const integral or
3240    //   const enumeration type, see 9.4.2.
3241    QualType T = VDecl->getType();
3242    if (!T->isDependentType() &&
3243        (!Context.getCanonicalType(T).isConstQualified() ||
3244         !T->isIntegralType())) {
3245      Diag(VDecl->getLocation(), diag::err_member_initialization)
3246        << VDecl->getDeclName() << Init->getSourceRange();
3247      VDecl->setInvalidDecl();
3248    } else {
3249      // C++ [class.static.data]p4:
3250      //   If a static data member is of const integral or const
3251      //   enumeration type, its declaration in the class definition
3252      //   can specify a constant-initializer which shall be an
3253      //   integral constant expression (5.19).
3254      if (!Init->isTypeDependent() &&
3255          !Init->getType()->isIntegralType()) {
3256        // We have a non-dependent, non-integral or enumeration type.
3257        Diag(Init->getSourceRange().getBegin(),
3258             diag::err_in_class_initializer_non_integral_type)
3259          << Init->getType() << Init->getSourceRange();
3260        VDecl->setInvalidDecl();
3261      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3262        // Check whether the expression is a constant expression.
3263        llvm::APSInt Value;
3264        SourceLocation Loc;
3265        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3266          Diag(Loc, diag::err_in_class_initializer_non_constant)
3267            << Init->getSourceRange();
3268          VDecl->setInvalidDecl();
3269        } else if (!VDecl->getType()->isDependentType())
3270          ImpCastExprToType(Init, VDecl->getType());
3271      }
3272    }
3273  } else if (VDecl->isFileVarDecl()) {
3274    if (VDecl->getStorageClass() == VarDecl::Extern)
3275      Diag(VDecl->getLocation(), diag::warn_extern_init);
3276    if (!VDecl->isInvalidDecl())
3277      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3278                                VDecl->getDeclName(), DirectInit))
3279        VDecl->setInvalidDecl();
3280
3281    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3282    // Don't check invalid declarations to avoid emitting useless diagnostics.
3283    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3284      // C99 6.7.8p4. All file scoped initializers need to be constant.
3285      CheckForConstantInitializer(Init, DclT);
3286    }
3287  }
3288  // If the type changed, it means we had an incomplete type that was
3289  // completed by the initializer. For example:
3290  //   int ary[] = { 1, 3, 5 };
3291  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3292  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3293    VDecl->setType(DclT);
3294    Init->setType(DclT);
3295  }
3296
3297  Init = MaybeCreateCXXExprWithTemporaries(Init,
3298                                           /*ShouldDestroyTemporaries=*/true);
3299  // Attach the initializer to the decl.
3300  VDecl->setInit(Context, Init);
3301
3302  // If the previous declaration of VDecl was a tentative definition,
3303  // remove it from the set of tentative definitions.
3304  if (VDecl->getPreviousDeclaration() &&
3305      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3306    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3307    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3308  }
3309
3310  return;
3311}
3312
3313void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3314                                  bool TypeContainsUndeducedAuto) {
3315  Decl *RealDecl = dcl.getAs<Decl>();
3316
3317  // If there is no declaration, there was an error parsing it. Just ignore it.
3318  if (RealDecl == 0)
3319    return;
3320
3321  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3322    QualType Type = Var->getType();
3323
3324    // Record tentative definitions.
3325    if (Var->isTentativeDefinition(Context)) {
3326      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3327        InsertPair =
3328           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3329
3330      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3331      // want the second one in the map.
3332      InsertPair.first->second = Var;
3333
3334      // However, for the list, we don't care about the order, just make sure
3335      // that there are no dupes for a given declaration name.
3336      if (InsertPair.second)
3337        TentativeDefinitionList.push_back(Var->getDeclName());
3338    }
3339
3340    // C++ [dcl.init.ref]p3:
3341    //   The initializer can be omitted for a reference only in a
3342    //   parameter declaration (8.3.5), in the declaration of a
3343    //   function return type, in the declaration of a class member
3344    //   within its class declaration (9.2), and where the extern
3345    //   specifier is explicitly used.
3346    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3347      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3348        << Var->getDeclName()
3349        << SourceRange(Var->getLocation(), Var->getLocation());
3350      Var->setInvalidDecl();
3351      return;
3352    }
3353
3354    // C++0x [dcl.spec.auto]p3
3355    if (TypeContainsUndeducedAuto) {
3356      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3357        << Var->getDeclName() << Type;
3358      Var->setInvalidDecl();
3359      return;
3360    }
3361
3362    // C++ [temp.expl.spec]p15:
3363    //   An explicit specialization of a static data member of a template is a
3364    //   definition if the declaration includes an initializer; otherwise, it
3365    //   is a declaration.
3366    if (Var->isStaticDataMember() &&
3367        Var->getInstantiatedFromStaticDataMember() &&
3368        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3369      return;
3370
3371    // C++ [dcl.init]p9:
3372    //   If no initializer is specified for an object, and the object
3373    //   is of (possibly cv-qualified) non-POD class type (or array
3374    //   thereof), the object shall be default-initialized; if the
3375    //   object is of const-qualified type, the underlying class type
3376    //   shall have a user-declared default constructor.
3377    //
3378    // FIXME: Diagnose the "user-declared default constructor" bit.
3379    if (getLangOptions().CPlusPlus) {
3380      QualType InitType = Type;
3381      if (const ArrayType *Array = Context.getAsArrayType(Type))
3382        InitType = Array->getElementType();
3383      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3384          InitType->isRecordType() && !InitType->isDependentType()) {
3385        if (!RequireCompleteType(Var->getLocation(), InitType,
3386                                 diag::err_invalid_incomplete_type_use)) {
3387          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3388
3389          CXXConstructorDecl *Constructor
3390            = PerformInitializationByConstructor(InitType,
3391                                                 MultiExprArg(*this, 0, 0),
3392                                                 Var->getLocation(),
3393                                               SourceRange(Var->getLocation(),
3394                                                           Var->getLocation()),
3395                                                 Var->getDeclName(),
3396                                                 IK_Default,
3397                                                 ConstructorArgs);
3398
3399          // FIXME: Location info for the variable initialization?
3400          if (!Constructor)
3401            Var->setInvalidDecl();
3402          else {
3403            // FIXME: Cope with initialization of arrays
3404            if (!Constructor->isTrivial() &&
3405                InitializeVarWithConstructor(Var, Constructor, InitType,
3406                                             move_arg(ConstructorArgs)))
3407              Var->setInvalidDecl();
3408
3409            FinalizeVarWithDestructor(Var, InitType);
3410          }
3411        } else {
3412          Var->setInvalidDecl();
3413        }
3414      }
3415    }
3416
3417#if 0
3418    // FIXME: Temporarily disabled because we are not properly parsing
3419    // linkage specifications on declarations, e.g.,
3420    //
3421    //   extern "C" const CGPoint CGPointerZero;
3422    //
3423    // C++ [dcl.init]p9:
3424    //
3425    //     If no initializer is specified for an object, and the
3426    //     object is of (possibly cv-qualified) non-POD class type (or
3427    //     array thereof), the object shall be default-initialized; if
3428    //     the object is of const-qualified type, the underlying class
3429    //     type shall have a user-declared default
3430    //     constructor. Otherwise, if no initializer is specified for
3431    //     an object, the object and its subobjects, if any, have an
3432    //     indeterminate initial value; if the object or any of its
3433    //     subobjects are of const-qualified type, the program is
3434    //     ill-formed.
3435    //
3436    // This isn't technically an error in C, so we don't diagnose it.
3437    //
3438    // FIXME: Actually perform the POD/user-defined default
3439    // constructor check.
3440    if (getLangOptions().CPlusPlus &&
3441        Context.getCanonicalType(Type).isConstQualified() &&
3442        !Var->hasExternalStorage())
3443      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3444        << Var->getName()
3445        << SourceRange(Var->getLocation(), Var->getLocation());
3446#endif
3447  }
3448}
3449
3450Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3451                                                   DeclPtrTy *Group,
3452                                                   unsigned NumDecls) {
3453  llvm::SmallVector<Decl*, 8> Decls;
3454
3455  if (DS.isTypeSpecOwned())
3456    Decls.push_back((Decl*)DS.getTypeRep());
3457
3458  for (unsigned i = 0; i != NumDecls; ++i)
3459    if (Decl *D = Group[i].getAs<Decl>())
3460      Decls.push_back(D);
3461
3462  // Perform semantic analysis that depends on having fully processed both
3463  // the declarator and initializer.
3464  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3465    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3466    if (!IDecl)
3467      continue;
3468    QualType T = IDecl->getType();
3469
3470    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3471    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3472    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3473      if (!IDecl->isInvalidDecl() &&
3474          RequireCompleteType(IDecl->getLocation(), T,
3475                              diag::err_typecheck_decl_incomplete_type))
3476        IDecl->setInvalidDecl();
3477    }
3478    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3479    // object that has file scope without an initializer, and without a
3480    // storage-class specifier or with the storage-class specifier "static",
3481    // constitutes a tentative definition. Note: A tentative definition with
3482    // external linkage is valid (C99 6.2.2p5).
3483    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3484      if (const IncompleteArrayType *ArrayT
3485          = Context.getAsIncompleteArrayType(T)) {
3486        if (RequireCompleteType(IDecl->getLocation(),
3487                                ArrayT->getElementType(),
3488                                diag::err_illegal_decl_array_incomplete_type))
3489          IDecl->setInvalidDecl();
3490      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3491        // C99 6.9.2p3: If the declaration of an identifier for an object is
3492        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3493        // declared type shall not be an incomplete type.
3494        // NOTE: code such as the following
3495        //     static struct s;
3496        //     struct s { int a; };
3497        // is accepted by gcc. Hence here we issue a warning instead of
3498        // an error and we do not invalidate the static declaration.
3499        // NOTE: to avoid multiple warnings, only check the first declaration.
3500        if (IDecl->getPreviousDeclaration() == 0)
3501          RequireCompleteType(IDecl->getLocation(), T,
3502                              diag::ext_typecheck_decl_incomplete_type);
3503      }
3504    }
3505  }
3506  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3507                                                   Decls.data(), Decls.size()));
3508}
3509
3510
3511/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3512/// to introduce parameters into function prototype scope.
3513Sema::DeclPtrTy
3514Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3515  const DeclSpec &DS = D.getDeclSpec();
3516
3517  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3518  VarDecl::StorageClass StorageClass = VarDecl::None;
3519  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3520    StorageClass = VarDecl::Register;
3521  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3522    Diag(DS.getStorageClassSpecLoc(),
3523         diag::err_invalid_storage_class_in_func_decl);
3524    D.getMutableDeclSpec().ClearStorageClassSpecs();
3525  }
3526
3527  if (D.getDeclSpec().isThreadSpecified())
3528    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3529
3530  DiagnoseFunctionSpecifiers(D);
3531
3532  // Check that there are no default arguments inside the type of this
3533  // parameter (C++ only).
3534  if (getLangOptions().CPlusPlus)
3535    CheckExtraCXXDefaultArguments(D);
3536
3537  DeclaratorInfo *DInfo = 0;
3538  TagDecl *OwnedDecl = 0;
3539  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3540                                               &OwnedDecl);
3541
3542  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3543    // C++ [dcl.fct]p6:
3544    //   Types shall not be defined in return or parameter types.
3545    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3546      << Context.getTypeDeclType(OwnedDecl);
3547  }
3548
3549  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3550  // Can this happen for params?  We already checked that they don't conflict
3551  // among each other.  Here they can only shadow globals, which is ok.
3552  IdentifierInfo *II = D.getIdentifier();
3553  if (II) {
3554    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3555      if (PrevDecl->isTemplateParameter()) {
3556        // Maybe we will complain about the shadowed template parameter.
3557        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3558        // Just pretend that we didn't see the previous declaration.
3559        PrevDecl = 0;
3560      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3561        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3562
3563        // Recover by removing the name
3564        II = 0;
3565        D.SetIdentifier(0, D.getIdentifierLoc());
3566      }
3567    }
3568  }
3569
3570  // Parameters can not be abstract class types.
3571  // For record types, this is done by the AbstractClassUsageDiagnoser once
3572  // the class has been completely parsed.
3573  if (!CurContext->isRecord() &&
3574      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3575                             diag::err_abstract_type_in_decl,
3576                             AbstractParamType))
3577    D.setInvalidType(true);
3578
3579  QualType T = adjustParameterType(parmDeclType);
3580
3581  ParmVarDecl *New;
3582  if (T == parmDeclType) // parameter type did not need adjustment
3583    New = ParmVarDecl::Create(Context, CurContext,
3584                              D.getIdentifierLoc(), II,
3585                              parmDeclType, DInfo, StorageClass,
3586                              0);
3587  else // keep track of both the adjusted and unadjusted types
3588    New = OriginalParmVarDecl::Create(Context, CurContext,
3589                                      D.getIdentifierLoc(), II, T, DInfo,
3590                                      parmDeclType, StorageClass, 0);
3591
3592  if (D.isInvalidType())
3593    New->setInvalidDecl();
3594
3595  // Parameter declarators cannot be interface types. All ObjC objects are
3596  // passed by reference.
3597  if (T->isObjCInterfaceType()) {
3598    Diag(D.getIdentifierLoc(),
3599         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3600    New->setInvalidDecl();
3601  }
3602
3603  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3604  if (D.getCXXScopeSpec().isSet()) {
3605    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3606      << D.getCXXScopeSpec().getRange();
3607    New->setInvalidDecl();
3608  }
3609
3610  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3611  // duration shall not be qualified by an address-space qualifier."
3612  // Since all parameters have automatic store duration, they can not have
3613  // an address space.
3614  if (T.getAddressSpace() != 0) {
3615    Diag(D.getIdentifierLoc(),
3616         diag::err_arg_with_address_space);
3617    New->setInvalidDecl();
3618  }
3619
3620
3621  // Add the parameter declaration into this scope.
3622  S->AddDecl(DeclPtrTy::make(New));
3623  if (II)
3624    IdResolver.AddDecl(New);
3625
3626  ProcessDeclAttributes(S, New, D);
3627
3628  if (New->hasAttr<BlocksAttr>()) {
3629    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3630  }
3631  return DeclPtrTy::make(New);
3632}
3633
3634void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3635                                           SourceLocation LocAfterDecls) {
3636  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3637         "Not a function declarator!");
3638  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3639
3640  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3641  // for a K&R function.
3642  if (!FTI.hasPrototype) {
3643    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3644      --i;
3645      if (FTI.ArgInfo[i].Param == 0) {
3646        std::string Code = "  int ";
3647        Code += FTI.ArgInfo[i].Ident->getName();
3648        Code += ";\n";
3649        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3650          << FTI.ArgInfo[i].Ident
3651          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3652
3653        // Implicitly declare the argument as type 'int' for lack of a better
3654        // type.
3655        DeclSpec DS;
3656        const char* PrevSpec; // unused
3657        unsigned DiagID; // unused
3658        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3659                           PrevSpec, DiagID);
3660        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3661        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3662        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3663      }
3664    }
3665  }
3666}
3667
3668Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3669                                              Declarator &D) {
3670  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3671  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3672         "Not a function declarator!");
3673  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3674
3675  if (FTI.hasPrototype) {
3676    // FIXME: Diagnose arguments without names in C.
3677  }
3678
3679  Scope *ParentScope = FnBodyScope->getParent();
3680
3681  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3682                                  MultiTemplateParamsArg(*this),
3683                                  /*IsFunctionDefinition=*/true);
3684  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3685}
3686
3687Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3688  if (!D)
3689    return D;
3690  FunctionDecl *FD = 0;
3691
3692  if (FunctionTemplateDecl *FunTmpl
3693        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3694    FD = FunTmpl->getTemplatedDecl();
3695  else
3696    FD = cast<FunctionDecl>(D.getAs<Decl>());
3697
3698  CurFunctionNeedsScopeChecking = false;
3699
3700  // See if this is a redefinition.
3701  const FunctionDecl *Definition;
3702  if (FD->getBody(Definition)) {
3703    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3704    Diag(Definition->getLocation(), diag::note_previous_definition);
3705  }
3706
3707  // Builtin functions cannot be defined.
3708  if (unsigned BuiltinID = FD->getBuiltinID()) {
3709    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3710      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3711      FD->setInvalidDecl();
3712    }
3713  }
3714
3715  // The return type of a function definition must be complete
3716  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3717  QualType ResultType = FD->getResultType();
3718  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3719      !FD->isInvalidDecl() &&
3720      RequireCompleteType(FD->getLocation(), ResultType,
3721                          diag::err_func_def_incomplete_result))
3722    FD->setInvalidDecl();
3723
3724  // GNU warning -Wmissing-prototypes:
3725  //   Warn if a global function is defined without a previous
3726  //   prototype declaration. This warning is issued even if the
3727  //   definition itself provides a prototype. The aim is to detect
3728  //   global functions that fail to be declared in header files.
3729  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3730      !FD->isMain()) {
3731    bool MissingPrototype = true;
3732    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3733         Prev; Prev = Prev->getPreviousDeclaration()) {
3734      // Ignore any declarations that occur in function or method
3735      // scope, because they aren't visible from the header.
3736      if (Prev->getDeclContext()->isFunctionOrMethod())
3737        continue;
3738
3739      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3740      break;
3741    }
3742
3743    if (MissingPrototype)
3744      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3745  }
3746
3747  if (FnBodyScope)
3748    PushDeclContext(FnBodyScope, FD);
3749
3750  // Check the validity of our function parameters
3751  CheckParmsForFunctionDef(FD);
3752
3753  // Introduce our parameters into the function scope
3754  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3755    ParmVarDecl *Param = FD->getParamDecl(p);
3756    Param->setOwningFunction(FD);
3757
3758    // If this has an identifier, add it to the scope stack.
3759    if (Param->getIdentifier() && FnBodyScope)
3760      PushOnScopeChains(Param, FnBodyScope);
3761  }
3762
3763  // Checking attributes of current function definition
3764  // dllimport attribute.
3765  if (FD->getAttr<DLLImportAttr>() &&
3766      (!FD->getAttr<DLLExportAttr>())) {
3767    // dllimport attribute cannot be applied to definition.
3768    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3769      Diag(FD->getLocation(),
3770           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3771        << "dllimport";
3772      FD->setInvalidDecl();
3773      return DeclPtrTy::make(FD);
3774    } else {
3775      // If a symbol previously declared dllimport is later defined, the
3776      // attribute is ignored in subsequent references, and a warning is
3777      // emitted.
3778      Diag(FD->getLocation(),
3779           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3780        << FD->getNameAsCString() << "dllimport";
3781    }
3782  }
3783  return DeclPtrTy::make(FD);
3784}
3785
3786Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3787  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3788}
3789
3790Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3791                                              bool IsInstantiation) {
3792  Decl *dcl = D.getAs<Decl>();
3793  Stmt *Body = BodyArg.takeAs<Stmt>();
3794
3795  FunctionDecl *FD = 0;
3796  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3797  if (FunTmpl)
3798    FD = FunTmpl->getTemplatedDecl();
3799  else
3800    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3801
3802  if (FD) {
3803    FD->setBody(Body);
3804    if (FD->isMain())
3805      // C and C++ allow for main to automagically return 0.
3806      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3807      FD->setHasImplicitReturnZero(true);
3808    else
3809      CheckFallThroughForFunctionDef(FD, Body);
3810
3811    if (!FD->isInvalidDecl())
3812      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3813
3814    // C++ [basic.def.odr]p2:
3815    //   [...] A virtual member function is used if it is not pure. [...]
3816    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3817      if (Method->isVirtual() && !Method->isPure())
3818        MarkDeclarationReferenced(Method->getLocation(), Method);
3819
3820    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3821  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3822    assert(MD == getCurMethodDecl() && "Method parsing confused");
3823    MD->setBody(Body);
3824    CheckFallThroughForFunctionDef(MD, Body);
3825    MD->setEndLoc(Body->getLocEnd());
3826
3827    if (!MD->isInvalidDecl())
3828      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3829  } else {
3830    Body->Destroy(Context);
3831    return DeclPtrTy();
3832  }
3833  if (!IsInstantiation)
3834    PopDeclContext();
3835
3836  // Verify and clean out per-function state.
3837
3838  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3839
3840  // Check goto/label use.
3841  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3842       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3843    LabelStmt *L = I->second;
3844
3845    // Verify that we have no forward references left.  If so, there was a goto
3846    // or address of a label taken, but no definition of it.  Label fwd
3847    // definitions are indicated with a null substmt.
3848    if (L->getSubStmt() != 0)
3849      continue;
3850
3851    // Emit error.
3852    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3853
3854    // At this point, we have gotos that use the bogus label.  Stitch it into
3855    // the function body so that they aren't leaked and that the AST is well
3856    // formed.
3857    if (Body == 0) {
3858      // The whole function wasn't parsed correctly, just delete this.
3859      L->Destroy(Context);
3860      continue;
3861    }
3862
3863    // Otherwise, the body is valid: we want to stitch the label decl into the
3864    // function somewhere so that it is properly owned and so that the goto
3865    // has a valid target.  Do this by creating a new compound stmt with the
3866    // label in it.
3867
3868    // Give the label a sub-statement.
3869    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3870
3871    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3872                               cast<CXXTryStmt>(Body)->getTryBlock() :
3873                               cast<CompoundStmt>(Body);
3874    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3875    Elements.push_back(L);
3876    Compound->setStmts(Context, &Elements[0], Elements.size());
3877  }
3878  FunctionLabelMap.clear();
3879
3880  if (!Body) return D;
3881
3882  // Verify that that gotos and switch cases don't jump into scopes illegally.
3883  if (CurFunctionNeedsScopeChecking)
3884    DiagnoseInvalidJumps(Body);
3885
3886  // C++ constructors that have function-try-blocks can't have return
3887  // statements in the handlers of that block. (C++ [except.handle]p14)
3888  // Verify this.
3889  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3890    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3891
3892  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3893    computeBaseOrMembersToDestroy(Destructor);
3894  return D;
3895}
3896
3897/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3898/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3899NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3900                                          IdentifierInfo &II, Scope *S) {
3901  // Before we produce a declaration for an implicitly defined
3902  // function, see whether there was a locally-scoped declaration of
3903  // this name as a function or variable. If so, use that
3904  // (non-visible) declaration, and complain about it.
3905  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3906    = LocallyScopedExternalDecls.find(&II);
3907  if (Pos != LocallyScopedExternalDecls.end()) {
3908    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3909    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3910    return Pos->second;
3911  }
3912
3913  // Extension in C99.  Legal in C90, but warn about it.
3914  static const unsigned int BuiltinLen = strlen("__builtin_");
3915  if (II.getLength() > BuiltinLen &&
3916      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3917    Diag(Loc, diag::warn_builtin_unknown) << &II;
3918  else if (getLangOptions().C99)
3919    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3920  else
3921    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3922
3923  // Set a Declarator for the implicit definition: int foo();
3924  const char *Dummy;
3925  DeclSpec DS;
3926  unsigned DiagID;
3927  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3928  Error = Error; // Silence warning.
3929  assert(!Error && "Error setting up implicit decl!");
3930  Declarator D(DS, Declarator::BlockContext);
3931  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3932                                             0, 0, false, SourceLocation(),
3933                                             false, 0,0,0, Loc, Loc, D),
3934                SourceLocation());
3935  D.SetIdentifier(&II, Loc);
3936
3937  // Insert this function into translation-unit scope.
3938
3939  DeclContext *PrevDC = CurContext;
3940  CurContext = Context.getTranslationUnitDecl();
3941
3942  FunctionDecl *FD =
3943 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3944  FD->setImplicit();
3945
3946  CurContext = PrevDC;
3947
3948  AddKnownFunctionAttributes(FD);
3949
3950  return FD;
3951}
3952
3953/// \brief Adds any function attributes that we know a priori based on
3954/// the declaration of this function.
3955///
3956/// These attributes can apply both to implicitly-declared builtins
3957/// (like __builtin___printf_chk) or to library-declared functions
3958/// like NSLog or printf.
3959void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3960  if (FD->isInvalidDecl())
3961    return;
3962
3963  // If this is a built-in function, map its builtin attributes to
3964  // actual attributes.
3965  if (unsigned BuiltinID = FD->getBuiltinID()) {
3966    // Handle printf-formatting attributes.
3967    unsigned FormatIdx;
3968    bool HasVAListArg;
3969    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3970      if (!FD->getAttr<FormatAttr>())
3971        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3972                                             HasVAListArg ? 0 : FormatIdx + 2));
3973    }
3974
3975    // Mark const if we don't care about errno and that is the only
3976    // thing preventing the function from being const. This allows
3977    // IRgen to use LLVM intrinsics for such functions.
3978    if (!getLangOptions().MathErrno &&
3979        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3980      if (!FD->getAttr<ConstAttr>())
3981        FD->addAttr(::new (Context) ConstAttr());
3982    }
3983
3984    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3985      FD->addAttr(::new (Context) NoReturnAttr());
3986  }
3987
3988  IdentifierInfo *Name = FD->getIdentifier();
3989  if (!Name)
3990    return;
3991  if ((!getLangOptions().CPlusPlus &&
3992       FD->getDeclContext()->isTranslationUnit()) ||
3993      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3994       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3995       LinkageSpecDecl::lang_c)) {
3996    // Okay: this could be a libc/libm/Objective-C function we know
3997    // about.
3998  } else
3999    return;
4000
4001  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4002    // FIXME: NSLog and NSLogv should be target specific
4003    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4004      // FIXME: We known better than our headers.
4005      const_cast<FormatAttr *>(Format)->setType("printf");
4006    } else
4007      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4008                                             Name->isStr("NSLogv") ? 0 : 2));
4009  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4010    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4011    // target-specific builtins, perhaps?
4012    if (!FD->getAttr<FormatAttr>())
4013      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4014                                             Name->isStr("vasprintf") ? 0 : 3));
4015  }
4016}
4017
4018TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4019  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4020  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4021
4022  // Scope manipulation handled by caller.
4023  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4024                                           D.getIdentifierLoc(),
4025                                           D.getIdentifier(),
4026                                           T);
4027
4028  if (const TagType *TT = T->getAs<TagType>()) {
4029    TagDecl *TD = TT->getDecl();
4030
4031    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4032    // keep track of the TypedefDecl.
4033    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4034      TD->setTypedefForAnonDecl(NewTD);
4035  }
4036
4037  if (D.isInvalidType())
4038    NewTD->setInvalidDecl();
4039  return NewTD;
4040}
4041
4042
4043/// \brief Determine whether a tag with a given kind is acceptable
4044/// as a redeclaration of the given tag declaration.
4045///
4046/// \returns true if the new tag kind is acceptable, false otherwise.
4047bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4048                                        TagDecl::TagKind NewTag,
4049                                        SourceLocation NewTagLoc,
4050                                        const IdentifierInfo &Name) {
4051  // C++ [dcl.type.elab]p3:
4052  //   The class-key or enum keyword present in the
4053  //   elaborated-type-specifier shall agree in kind with the
4054  //   declaration to which the name in theelaborated-type-specifier
4055  //   refers. This rule also applies to the form of
4056  //   elaborated-type-specifier that declares a class-name or
4057  //   friend class since it can be construed as referring to the
4058  //   definition of the class. Thus, in any
4059  //   elaborated-type-specifier, the enum keyword shall be used to
4060  //   refer to an enumeration (7.2), the union class-keyshall be
4061  //   used to refer to a union (clause 9), and either the class or
4062  //   struct class-key shall be used to refer to a class (clause 9)
4063  //   declared using the class or struct class-key.
4064  TagDecl::TagKind OldTag = Previous->getTagKind();
4065  if (OldTag == NewTag)
4066    return true;
4067
4068  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4069      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4070    // Warn about the struct/class tag mismatch.
4071    bool isTemplate = false;
4072    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4073      isTemplate = Record->getDescribedClassTemplate();
4074
4075    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4076      << (NewTag == TagDecl::TK_class)
4077      << isTemplate << &Name
4078      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4079                              OldTag == TagDecl::TK_class? "class" : "struct");
4080    Diag(Previous->getLocation(), diag::note_previous_use);
4081    return true;
4082  }
4083  return false;
4084}
4085
4086/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4087/// former case, Name will be non-null.  In the later case, Name will be null.
4088/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4089/// reference/declaration/definition of a tag.
4090Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4091                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4092                               IdentifierInfo *Name, SourceLocation NameLoc,
4093                               AttributeList *Attr, AccessSpecifier AS,
4094                               MultiTemplateParamsArg TemplateParameterLists,
4095                               bool &OwnedDecl, bool &IsDependent) {
4096  // If this is not a definition, it must have a name.
4097  assert((Name != 0 || TUK == TUK_Definition) &&
4098         "Nameless record must be a definition!");
4099
4100  OwnedDecl = false;
4101  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4102
4103  // FIXME: Check explicit specializations more carefully.
4104  bool isExplicitSpecialization = false;
4105  if (TUK != TUK_Reference) {
4106    if (TemplateParameterList *TemplateParams
4107          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4108                        (TemplateParameterList**)TemplateParameterLists.get(),
4109                                              TemplateParameterLists.size(),
4110                                                    isExplicitSpecialization)) {
4111      if (TemplateParams->size() > 0) {
4112        // This is a declaration or definition of a class template (which may
4113        // be a member of another template).
4114        OwnedDecl = false;
4115        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4116                                               SS, Name, NameLoc, Attr,
4117                                               TemplateParams,
4118                                               AS);
4119        TemplateParameterLists.release();
4120        return Result.get();
4121      } else {
4122        // The "template<>" header is extraneous.
4123        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4124          << ElaboratedType::getNameForTagKind(Kind) << Name;
4125        isExplicitSpecialization = true;
4126      }
4127    }
4128
4129    TemplateParameterLists.release();
4130  }
4131
4132  DeclContext *SearchDC = CurContext;
4133  DeclContext *DC = CurContext;
4134  NamedDecl *PrevDecl = 0;
4135  bool isStdBadAlloc = false;
4136  bool Invalid = false;
4137
4138  bool RedeclarationOnly = (TUK != TUK_Reference);
4139
4140  if (Name && SS.isNotEmpty()) {
4141    // We have a nested-name tag ('struct foo::bar').
4142
4143    // Check for invalid 'foo::'.
4144    if (SS.isInvalid()) {
4145      Name = 0;
4146      goto CreateNewDecl;
4147    }
4148
4149    // If this is a friend or a reference to a class in a dependent
4150    // context, don't try to make a decl for it.
4151    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4152      DC = computeDeclContext(SS, false);
4153      if (!DC) {
4154        IsDependent = true;
4155        return DeclPtrTy();
4156      }
4157    }
4158
4159    if (RequireCompleteDeclContext(SS))
4160      return DeclPtrTy::make((Decl *)0);
4161
4162    DC = computeDeclContext(SS, true);
4163    SearchDC = DC;
4164    // Look-up name inside 'foo::'.
4165    LookupResult R;
4166    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4167
4168    if (R.isAmbiguous()) {
4169      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4170      return DeclPtrTy();
4171    }
4172
4173    if (R.getKind() == LookupResult::Found)
4174      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4175
4176    // A tag 'foo::bar' must already exist.
4177    if (!PrevDecl) {
4178      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4179      Name = 0;
4180      Invalid = true;
4181      goto CreateNewDecl;
4182    }
4183  } else if (Name) {
4184    // If this is a named struct, check to see if there was a previous forward
4185    // declaration or definition.
4186    // FIXME: We're looking into outer scopes here, even when we
4187    // shouldn't be. Doing so can result in ambiguities that we
4188    // shouldn't be diagnosing.
4189    LookupResult R;
4190    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4191    if (R.isAmbiguous()) {
4192      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4193      // FIXME: This is not best way to recover from case like:
4194      //
4195      // struct S s;
4196      //
4197      // causes needless "incomplete type" error later.
4198      Name = 0;
4199      PrevDecl = 0;
4200      Invalid = true;
4201    } else
4202      PrevDecl = R.getAsSingleDecl(Context);
4203
4204    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4205      // FIXME: This makes sure that we ignore the contexts associated
4206      // with C structs, unions, and enums when looking for a matching
4207      // tag declaration or definition. See the similar lookup tweak
4208      // in Sema::LookupName; is there a better way to deal with this?
4209      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4210        SearchDC = SearchDC->getParent();
4211    }
4212  }
4213
4214  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4215    // Maybe we will complain about the shadowed template parameter.
4216    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4217    // Just pretend that we didn't see the previous declaration.
4218    PrevDecl = 0;
4219  }
4220
4221  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4222      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4223    // This is a declaration of or a reference to "std::bad_alloc".
4224    isStdBadAlloc = true;
4225
4226    if (!PrevDecl && StdBadAlloc) {
4227      // std::bad_alloc has been implicitly declared (but made invisible to
4228      // name lookup). Fill in this implicit declaration as the previous
4229      // declaration, so that the declarations get chained appropriately.
4230      PrevDecl = StdBadAlloc;
4231    }
4232  }
4233
4234  if (PrevDecl) {
4235    // Check whether the previous declaration is usable.
4236    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4237
4238    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4239      // If this is a use of a previous tag, or if the tag is already declared
4240      // in the same scope (so that the definition/declaration completes or
4241      // rementions the tag), reuse the decl.
4242      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4243          isDeclInScope(PrevDecl, SearchDC, S)) {
4244        // Make sure that this wasn't declared as an enum and now used as a
4245        // struct or something similar.
4246        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4247          bool SafeToContinue
4248            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4249               Kind != TagDecl::TK_enum);
4250          if (SafeToContinue)
4251            Diag(KWLoc, diag::err_use_with_wrong_tag)
4252              << Name
4253              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4254                                                  PrevTagDecl->getKindName());
4255          else
4256            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4257          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4258
4259          if (SafeToContinue)
4260            Kind = PrevTagDecl->getTagKind();
4261          else {
4262            // Recover by making this an anonymous redefinition.
4263            Name = 0;
4264            PrevDecl = 0;
4265            Invalid = true;
4266          }
4267        }
4268
4269        if (!Invalid) {
4270          // If this is a use, just return the declaration we found.
4271
4272          // FIXME: In the future, return a variant or some other clue
4273          // for the consumer of this Decl to know it doesn't own it.
4274          // For our current ASTs this shouldn't be a problem, but will
4275          // need to be changed with DeclGroups.
4276          if (TUK == TUK_Reference || TUK == TUK_Friend)
4277            return DeclPtrTy::make(PrevDecl);
4278
4279          // Diagnose attempts to redefine a tag.
4280          if (TUK == TUK_Definition) {
4281            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4282              Diag(NameLoc, diag::err_redefinition) << Name;
4283              Diag(Def->getLocation(), diag::note_previous_definition);
4284              // If this is a redefinition, recover by making this
4285              // struct be anonymous, which will make any later
4286              // references get the previous definition.
4287              Name = 0;
4288              PrevDecl = 0;
4289              Invalid = true;
4290            } else {
4291              // If the type is currently being defined, complain
4292              // about a nested redefinition.
4293              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4294              if (Tag->isBeingDefined()) {
4295                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4296                Diag(PrevTagDecl->getLocation(),
4297                     diag::note_previous_definition);
4298                Name = 0;
4299                PrevDecl = 0;
4300                Invalid = true;
4301              }
4302            }
4303
4304            // Okay, this is definition of a previously declared or referenced
4305            // tag PrevDecl. We're going to create a new Decl for it.
4306          }
4307        }
4308        // If we get here we have (another) forward declaration or we
4309        // have a definition.  Just create a new decl.
4310
4311      } else {
4312        // If we get here, this is a definition of a new tag type in a nested
4313        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4314        // new decl/type.  We set PrevDecl to NULL so that the entities
4315        // have distinct types.
4316        PrevDecl = 0;
4317      }
4318      // If we get here, we're going to create a new Decl. If PrevDecl
4319      // is non-NULL, it's a definition of the tag declared by
4320      // PrevDecl. If it's NULL, we have a new definition.
4321    } else {
4322      // PrevDecl is a namespace, template, or anything else
4323      // that lives in the IDNS_Tag identifier namespace.
4324      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4325        // The tag name clashes with a namespace name, issue an error and
4326        // recover by making this tag be anonymous.
4327        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4328        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4329        Name = 0;
4330        PrevDecl = 0;
4331        Invalid = true;
4332      } else {
4333        // The existing declaration isn't relevant to us; we're in a
4334        // new scope, so clear out the previous declaration.
4335        PrevDecl = 0;
4336      }
4337    }
4338  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4339             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4340    // C++ [basic.scope.pdecl]p5:
4341    //   -- for an elaborated-type-specifier of the form
4342    //
4343    //          class-key identifier
4344    //
4345    //      if the elaborated-type-specifier is used in the
4346    //      decl-specifier-seq or parameter-declaration-clause of a
4347    //      function defined in namespace scope, the identifier is
4348    //      declared as a class-name in the namespace that contains
4349    //      the declaration; otherwise, except as a friend
4350    //      declaration, the identifier is declared in the smallest
4351    //      non-class, non-function-prototype scope that contains the
4352    //      declaration.
4353    //
4354    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4355    // C structs and unions.
4356    //
4357    // GNU C also supports this behavior as part of its incomplete
4358    // enum types extension, while GNU C++ does not.
4359    //
4360    // Find the context where we'll be declaring the tag.
4361    // FIXME: We would like to maintain the current DeclContext as the
4362    // lexical context,
4363    while (SearchDC->isRecord())
4364      SearchDC = SearchDC->getParent();
4365
4366    // Find the scope where we'll be declaring the tag.
4367    while (S->isClassScope() ||
4368           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4369           ((S->getFlags() & Scope::DeclScope) == 0) ||
4370           (S->getEntity() &&
4371            ((DeclContext *)S->getEntity())->isTransparentContext()))
4372      S = S->getParent();
4373
4374  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4375    // C++ [namespace.memdef]p3:
4376    //   If a friend declaration in a non-local class first declares a
4377    //   class or function, the friend class or function is a member of
4378    //   the innermost enclosing namespace.
4379    while (!SearchDC->isFileContext())
4380      SearchDC = SearchDC->getParent();
4381
4382    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4383    while (S->getEntity() != SearchDC)
4384      S = S->getParent();
4385  }
4386
4387CreateNewDecl:
4388
4389  // If there is an identifier, use the location of the identifier as the
4390  // location of the decl, otherwise use the location of the struct/union
4391  // keyword.
4392  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4393
4394  // Otherwise, create a new declaration. If there is a previous
4395  // declaration of the same entity, the two will be linked via
4396  // PrevDecl.
4397  TagDecl *New;
4398
4399  if (Kind == TagDecl::TK_enum) {
4400    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4401    // enum X { A, B, C } D;    D should chain to X.
4402    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4403                           cast_or_null<EnumDecl>(PrevDecl));
4404    // If this is an undefined enum, warn.
4405    if (TUK != TUK_Definition && !Invalid)  {
4406      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4407                                              : diag::ext_forward_ref_enum;
4408      Diag(Loc, DK);
4409    }
4410  } else {
4411    // struct/union/class
4412
4413    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4414    // struct X { int A; } D;    D should chain to X.
4415    if (getLangOptions().CPlusPlus) {
4416      // FIXME: Look for a way to use RecordDecl for simple structs.
4417      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4418                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4419
4420      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4421        StdBadAlloc = cast<CXXRecordDecl>(New);
4422    } else
4423      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4424                               cast_or_null<RecordDecl>(PrevDecl));
4425  }
4426
4427  if (Kind != TagDecl::TK_enum) {
4428    // Handle #pragma pack: if the #pragma pack stack has non-default
4429    // alignment, make up a packed attribute for this decl. These
4430    // attributes are checked when the ASTContext lays out the
4431    // structure.
4432    //
4433    // It is important for implementing the correct semantics that this
4434    // happen here (in act on tag decl). The #pragma pack stack is
4435    // maintained as a result of parser callbacks which can occur at
4436    // many points during the parsing of a struct declaration (because
4437    // the #pragma tokens are effectively skipped over during the
4438    // parsing of the struct).
4439    if (unsigned Alignment = getPragmaPackAlignment())
4440      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4441  }
4442
4443  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4444    // C++ [dcl.typedef]p3:
4445    //   [...] Similarly, in a given scope, a class or enumeration
4446    //   shall not be declared with the same name as a typedef-name
4447    //   that is declared in that scope and refers to a type other
4448    //   than the class or enumeration itself.
4449    LookupResult Lookup;
4450    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4451    TypedefDecl *PrevTypedef = 0;
4452    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4453      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4454
4455    NamedDecl *PrevTypedefNamed = PrevTypedef;
4456    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4457        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4458          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4459      Diag(Loc, diag::err_tag_definition_of_typedef)
4460        << Context.getTypeDeclType(New)
4461        << PrevTypedef->getUnderlyingType();
4462      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4463      Invalid = true;
4464    }
4465  }
4466
4467  // If this is a specialization of a member class (of a class template),
4468  // check the specialization.
4469  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4470    Invalid = true;
4471
4472  if (Invalid)
4473    New->setInvalidDecl();
4474
4475  if (Attr)
4476    ProcessDeclAttributeList(S, New, Attr);
4477
4478  // If we're declaring or defining a tag in function prototype scope
4479  // in C, note that this type can only be used within the function.
4480  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4481    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4482
4483  // Set the lexical context. If the tag has a C++ scope specifier, the
4484  // lexical context will be different from the semantic context.
4485  New->setLexicalDeclContext(CurContext);
4486
4487  // Mark this as a friend decl if applicable.
4488  if (TUK == TUK_Friend)
4489    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4490
4491  // Set the access specifier.
4492  if (!Invalid && TUK != TUK_Friend)
4493    SetMemberAccessSpecifier(New, PrevDecl, AS);
4494
4495  if (TUK == TUK_Definition)
4496    New->startDefinition();
4497
4498  // If this has an identifier, add it to the scope stack.
4499  if (TUK == TUK_Friend) {
4500    // We might be replacing an existing declaration in the lookup tables;
4501    // if so, borrow its access specifier.
4502    if (PrevDecl)
4503      New->setAccess(PrevDecl->getAccess());
4504
4505    // Friend tag decls are visible in fairly strange ways.
4506    if (!CurContext->isDependentContext()) {
4507      DeclContext *DC = New->getDeclContext()->getLookupContext();
4508      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4509      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4510        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4511    }
4512  } else if (Name) {
4513    S = getNonFieldDeclScope(S);
4514    PushOnScopeChains(New, S);
4515  } else {
4516    CurContext->addDecl(New);
4517  }
4518
4519  // If this is the C FILE type, notify the AST context.
4520  if (IdentifierInfo *II = New->getIdentifier())
4521    if (!New->isInvalidDecl() &&
4522        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4523        II->isStr("FILE"))
4524      Context.setFILEDecl(New);
4525
4526  OwnedDecl = true;
4527  return DeclPtrTy::make(New);
4528}
4529
4530void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4531  AdjustDeclIfTemplate(TagD);
4532  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4533
4534  // Enter the tag context.
4535  PushDeclContext(S, Tag);
4536
4537  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4538    FieldCollector->StartClass();
4539
4540    if (Record->getIdentifier()) {
4541      // C++ [class]p2:
4542      //   [...] The class-name is also inserted into the scope of the
4543      //   class itself; this is known as the injected-class-name. For
4544      //   purposes of access checking, the injected-class-name is treated
4545      //   as if it were a public member name.
4546      CXXRecordDecl *InjectedClassName
4547        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4548                                CurContext, Record->getLocation(),
4549                                Record->getIdentifier(),
4550                                Record->getTagKeywordLoc(),
4551                                Record);
4552      InjectedClassName->setImplicit();
4553      InjectedClassName->setAccess(AS_public);
4554      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4555        InjectedClassName->setDescribedClassTemplate(Template);
4556      PushOnScopeChains(InjectedClassName, S);
4557      assert(InjectedClassName->isInjectedClassName() &&
4558             "Broken injected-class-name");
4559    }
4560  }
4561}
4562
4563void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4564                                    SourceLocation RBraceLoc) {
4565  AdjustDeclIfTemplate(TagD);
4566  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4567  Tag->setRBraceLoc(RBraceLoc);
4568
4569  if (isa<CXXRecordDecl>(Tag))
4570    FieldCollector->FinishClass();
4571
4572  // Exit this scope of this tag's definition.
4573  PopDeclContext();
4574
4575  // Notify the consumer that we've defined a tag.
4576  Consumer.HandleTagDeclDefinition(Tag);
4577}
4578
4579// Note that FieldName may be null for anonymous bitfields.
4580bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4581                          QualType FieldTy, const Expr *BitWidth,
4582                          bool *ZeroWidth) {
4583  // Default to true; that shouldn't confuse checks for emptiness
4584  if (ZeroWidth)
4585    *ZeroWidth = true;
4586
4587  // C99 6.7.2.1p4 - verify the field type.
4588  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4589  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4590    // Handle incomplete types with specific error.
4591    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4592      return true;
4593    if (FieldName)
4594      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4595        << FieldName << FieldTy << BitWidth->getSourceRange();
4596    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4597      << FieldTy << BitWidth->getSourceRange();
4598  }
4599
4600  // If the bit-width is type- or value-dependent, don't try to check
4601  // it now.
4602  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4603    return false;
4604
4605  llvm::APSInt Value;
4606  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4607    return true;
4608
4609  if (Value != 0 && ZeroWidth)
4610    *ZeroWidth = false;
4611
4612  // Zero-width bitfield is ok for anonymous field.
4613  if (Value == 0 && FieldName)
4614    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4615
4616  if (Value.isSigned() && Value.isNegative()) {
4617    if (FieldName)
4618      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4619               << FieldName << Value.toString(10);
4620    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4621      << Value.toString(10);
4622  }
4623
4624  if (!FieldTy->isDependentType()) {
4625    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4626    if (Value.getZExtValue() > TypeSize) {
4627      if (FieldName)
4628        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4629          << FieldName << (unsigned)TypeSize;
4630      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4631        << (unsigned)TypeSize;
4632    }
4633  }
4634
4635  return false;
4636}
4637
4638/// ActOnField - Each field of a struct/union/class is passed into this in order
4639/// to create a FieldDecl object for it.
4640Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4641                                 SourceLocation DeclStart,
4642                                 Declarator &D, ExprTy *BitfieldWidth) {
4643  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4644                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4645                               AS_public);
4646  return DeclPtrTy::make(Res);
4647}
4648
4649/// HandleField - Analyze a field of a C struct or a C++ data member.
4650///
4651FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4652                             SourceLocation DeclStart,
4653                             Declarator &D, Expr *BitWidth,
4654                             AccessSpecifier AS) {
4655  IdentifierInfo *II = D.getIdentifier();
4656  SourceLocation Loc = DeclStart;
4657  if (II) Loc = D.getIdentifierLoc();
4658
4659  DeclaratorInfo *DInfo = 0;
4660  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4661  if (getLangOptions().CPlusPlus)
4662    CheckExtraCXXDefaultArguments(D);
4663
4664  DiagnoseFunctionSpecifiers(D);
4665
4666  if (D.getDeclSpec().isThreadSpecified())
4667    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4668
4669  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4670
4671  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4672    // Maybe we will complain about the shadowed template parameter.
4673    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4674    // Just pretend that we didn't see the previous declaration.
4675    PrevDecl = 0;
4676  }
4677
4678  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4679    PrevDecl = 0;
4680
4681  bool Mutable
4682    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4683  SourceLocation TSSL = D.getSourceRange().getBegin();
4684  FieldDecl *NewFD
4685    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4686                     AS, PrevDecl, &D);
4687  if (NewFD->isInvalidDecl() && PrevDecl) {
4688    // Don't introduce NewFD into scope; there's already something
4689    // with the same name in the same scope.
4690  } else if (II) {
4691    PushOnScopeChains(NewFD, S);
4692  } else
4693    Record->addDecl(NewFD);
4694
4695  return NewFD;
4696}
4697
4698/// \brief Build a new FieldDecl and check its well-formedness.
4699///
4700/// This routine builds a new FieldDecl given the fields name, type,
4701/// record, etc. \p PrevDecl should refer to any previous declaration
4702/// with the same name and in the same scope as the field to be
4703/// created.
4704///
4705/// \returns a new FieldDecl.
4706///
4707/// \todo The Declarator argument is a hack. It will be removed once
4708FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4709                                DeclaratorInfo *DInfo,
4710                                RecordDecl *Record, SourceLocation Loc,
4711                                bool Mutable, Expr *BitWidth,
4712                                SourceLocation TSSL,
4713                                AccessSpecifier AS, NamedDecl *PrevDecl,
4714                                Declarator *D) {
4715  IdentifierInfo *II = Name.getAsIdentifierInfo();
4716  bool InvalidDecl = false;
4717  if (D) InvalidDecl = D->isInvalidType();
4718
4719  // If we receive a broken type, recover by assuming 'int' and
4720  // marking this declaration as invalid.
4721  if (T.isNull()) {
4722    InvalidDecl = true;
4723    T = Context.IntTy;
4724  }
4725
4726  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4727  // than a variably modified type.
4728  if (T->isVariablyModifiedType()) {
4729    bool SizeIsNegative;
4730    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4731                                                           SizeIsNegative);
4732    if (!FixedTy.isNull()) {
4733      Diag(Loc, diag::warn_illegal_constant_array_size);
4734      T = FixedTy;
4735    } else {
4736      if (SizeIsNegative)
4737        Diag(Loc, diag::err_typecheck_negative_array_size);
4738      else
4739        Diag(Loc, diag::err_typecheck_field_variable_size);
4740      InvalidDecl = true;
4741    }
4742  }
4743
4744  // Fields can not have abstract class types
4745  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4746                             AbstractFieldType))
4747    InvalidDecl = true;
4748
4749  bool ZeroWidth = false;
4750  // If this is declared as a bit-field, check the bit-field.
4751  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4752    InvalidDecl = true;
4753    DeleteExpr(BitWidth);
4754    BitWidth = 0;
4755    ZeroWidth = false;
4756  }
4757
4758  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4759                                       BitWidth, Mutable);
4760  if (InvalidDecl)
4761    NewFD->setInvalidDecl();
4762
4763  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4764    Diag(Loc, diag::err_duplicate_member) << II;
4765    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4766    NewFD->setInvalidDecl();
4767  }
4768
4769  if (getLangOptions().CPlusPlus) {
4770    QualType EltTy = Context.getBaseElementType(T);
4771
4772    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4773
4774    if (!T->isPODType())
4775      CXXRecord->setPOD(false);
4776    if (!ZeroWidth)
4777      CXXRecord->setEmpty(false);
4778
4779    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4780      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4781
4782      if (!RDecl->hasTrivialConstructor())
4783        CXXRecord->setHasTrivialConstructor(false);
4784      if (!RDecl->hasTrivialCopyConstructor())
4785        CXXRecord->setHasTrivialCopyConstructor(false);
4786      if (!RDecl->hasTrivialCopyAssignment())
4787        CXXRecord->setHasTrivialCopyAssignment(false);
4788      if (!RDecl->hasTrivialDestructor())
4789        CXXRecord->setHasTrivialDestructor(false);
4790
4791      // C++ 9.5p1: An object of a class with a non-trivial
4792      // constructor, a non-trivial copy constructor, a non-trivial
4793      // destructor, or a non-trivial copy assignment operator
4794      // cannot be a member of a union, nor can an array of such
4795      // objects.
4796      // TODO: C++0x alters this restriction significantly.
4797      if (Record->isUnion()) {
4798        // We check for copy constructors before constructors
4799        // because otherwise we'll never get complaints about
4800        // copy constructors.
4801
4802        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4803
4804        CXXSpecialMember member;
4805        if (!RDecl->hasTrivialCopyConstructor())
4806          member = CXXCopyConstructor;
4807        else if (!RDecl->hasTrivialConstructor())
4808          member = CXXDefaultConstructor;
4809        else if (!RDecl->hasTrivialCopyAssignment())
4810          member = CXXCopyAssignment;
4811        else if (!RDecl->hasTrivialDestructor())
4812          member = CXXDestructor;
4813        else
4814          member = invalid;
4815
4816        if (member != invalid) {
4817          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4818          DiagnoseNontrivial(RT, member);
4819          NewFD->setInvalidDecl();
4820        }
4821      }
4822    }
4823  }
4824
4825  // FIXME: We need to pass in the attributes given an AST
4826  // representation, not a parser representation.
4827  if (D)
4828    // FIXME: What to pass instead of TUScope?
4829    ProcessDeclAttributes(TUScope, NewFD, *D);
4830
4831  if (T.isObjCGCWeak())
4832    Diag(Loc, diag::warn_attribute_weak_on_field);
4833
4834  NewFD->setAccess(AS);
4835
4836  // C++ [dcl.init.aggr]p1:
4837  //   An aggregate is an array or a class (clause 9) with [...] no
4838  //   private or protected non-static data members (clause 11).
4839  // A POD must be an aggregate.
4840  if (getLangOptions().CPlusPlus &&
4841      (AS == AS_private || AS == AS_protected)) {
4842    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4843    CXXRecord->setAggregate(false);
4844    CXXRecord->setPOD(false);
4845  }
4846
4847  return NewFD;
4848}
4849
4850/// DiagnoseNontrivial - Given that a class has a non-trivial
4851/// special member, figure out why.
4852void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4853  QualType QT(T, 0U);
4854  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4855
4856  // Check whether the member was user-declared.
4857  switch (member) {
4858  case CXXDefaultConstructor:
4859    if (RD->hasUserDeclaredConstructor()) {
4860      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4861      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4862        if (!ci->isImplicitlyDefined(Context)) {
4863          SourceLocation CtorLoc = ci->getLocation();
4864          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4865          return;
4866        }
4867
4868      assert(0 && "found no user-declared constructors");
4869      return;
4870    }
4871    break;
4872
4873  case CXXCopyConstructor:
4874    if (RD->hasUserDeclaredCopyConstructor()) {
4875      SourceLocation CtorLoc =
4876        RD->getCopyConstructor(Context, 0)->getLocation();
4877      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4878      return;
4879    }
4880    break;
4881
4882  case CXXCopyAssignment:
4883    if (RD->hasUserDeclaredCopyAssignment()) {
4884      // FIXME: this should use the location of the copy
4885      // assignment, not the type.
4886      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4887      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4888      return;
4889    }
4890    break;
4891
4892  case CXXDestructor:
4893    if (RD->hasUserDeclaredDestructor()) {
4894      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4895      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4896      return;
4897    }
4898    break;
4899  }
4900
4901  typedef CXXRecordDecl::base_class_iterator base_iter;
4902
4903  // Virtual bases and members inhibit trivial copying/construction,
4904  // but not trivial destruction.
4905  if (member != CXXDestructor) {
4906    // Check for virtual bases.  vbases includes indirect virtual bases,
4907    // so we just iterate through the direct bases.
4908    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4909      if (bi->isVirtual()) {
4910        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4911        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4912        return;
4913      }
4914
4915    // Check for virtual methods.
4916    typedef CXXRecordDecl::method_iterator meth_iter;
4917    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4918         ++mi) {
4919      if (mi->isVirtual()) {
4920        SourceLocation MLoc = mi->getSourceRange().getBegin();
4921        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4922        return;
4923      }
4924    }
4925  }
4926
4927  bool (CXXRecordDecl::*hasTrivial)() const;
4928  switch (member) {
4929  case CXXDefaultConstructor:
4930    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4931  case CXXCopyConstructor:
4932    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4933  case CXXCopyAssignment:
4934    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4935  case CXXDestructor:
4936    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4937  default:
4938    assert(0 && "unexpected special member"); return;
4939  }
4940
4941  // Check for nontrivial bases (and recurse).
4942  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4943    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4944    assert(BaseRT);
4945    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4946    if (!(BaseRecTy->*hasTrivial)()) {
4947      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4948      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4949      DiagnoseNontrivial(BaseRT, member);
4950      return;
4951    }
4952  }
4953
4954  // Check for nontrivial members (and recurse).
4955  typedef RecordDecl::field_iterator field_iter;
4956  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4957       ++fi) {
4958    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4959    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4960      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4961
4962      if (!(EltRD->*hasTrivial)()) {
4963        SourceLocation FLoc = (*fi)->getLocation();
4964        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4965        DiagnoseNontrivial(EltRT, member);
4966        return;
4967      }
4968    }
4969  }
4970
4971  assert(0 && "found no explanation for non-trivial member");
4972}
4973
4974/// TranslateIvarVisibility - Translate visibility from a token ID to an
4975///  AST enum value.
4976static ObjCIvarDecl::AccessControl
4977TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4978  switch (ivarVisibility) {
4979  default: assert(0 && "Unknown visitibility kind");
4980  case tok::objc_private: return ObjCIvarDecl::Private;
4981  case tok::objc_public: return ObjCIvarDecl::Public;
4982  case tok::objc_protected: return ObjCIvarDecl::Protected;
4983  case tok::objc_package: return ObjCIvarDecl::Package;
4984  }
4985}
4986
4987/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4988/// in order to create an IvarDecl object for it.
4989Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4990                                SourceLocation DeclStart,
4991                                DeclPtrTy IntfDecl,
4992                                Declarator &D, ExprTy *BitfieldWidth,
4993                                tok::ObjCKeywordKind Visibility) {
4994
4995  IdentifierInfo *II = D.getIdentifier();
4996  Expr *BitWidth = (Expr*)BitfieldWidth;
4997  SourceLocation Loc = DeclStart;
4998  if (II) Loc = D.getIdentifierLoc();
4999
5000  // FIXME: Unnamed fields can be handled in various different ways, for
5001  // example, unnamed unions inject all members into the struct namespace!
5002
5003  DeclaratorInfo *DInfo = 0;
5004  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5005
5006  if (BitWidth) {
5007    // 6.7.2.1p3, 6.7.2.1p4
5008    if (VerifyBitField(Loc, II, T, BitWidth)) {
5009      D.setInvalidType();
5010      DeleteExpr(BitWidth);
5011      BitWidth = 0;
5012    }
5013  } else {
5014    // Not a bitfield.
5015
5016    // validate II.
5017
5018  }
5019
5020  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5021  // than a variably modified type.
5022  if (T->isVariablyModifiedType()) {
5023    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5024    D.setInvalidType();
5025  }
5026
5027  // Get the visibility (access control) for this ivar.
5028  ObjCIvarDecl::AccessControl ac =
5029    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5030                                        : ObjCIvarDecl::None;
5031  // Must set ivar's DeclContext to its enclosing interface.
5032  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5033  DeclContext *EnclosingContext;
5034  if (ObjCImplementationDecl *IMPDecl =
5035      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5036    // Case of ivar declared in an implementation. Context is that of its class.
5037    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5038    assert(IDecl && "No class- ActOnIvar");
5039    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5040  } else
5041    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5042  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5043
5044  // Construct the decl.
5045  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5046                                             EnclosingContext, Loc, II, T,
5047                                             DInfo, ac, (Expr *)BitfieldWidth);
5048
5049  if (II) {
5050    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5051    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5052        && !isa<TagDecl>(PrevDecl)) {
5053      Diag(Loc, diag::err_duplicate_member) << II;
5054      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5055      NewID->setInvalidDecl();
5056    }
5057  }
5058
5059  // Process attributes attached to the ivar.
5060  ProcessDeclAttributes(S, NewID, D);
5061
5062  if (D.isInvalidType())
5063    NewID->setInvalidDecl();
5064
5065  if (II) {
5066    // FIXME: When interfaces are DeclContexts, we'll need to add
5067    // these to the interface.
5068    S->AddDecl(DeclPtrTy::make(NewID));
5069    IdResolver.AddDecl(NewID);
5070  }
5071
5072  return DeclPtrTy::make(NewID);
5073}
5074
5075void Sema::ActOnFields(Scope* S,
5076                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5077                       DeclPtrTy *Fields, unsigned NumFields,
5078                       SourceLocation LBrac, SourceLocation RBrac,
5079                       AttributeList *Attr) {
5080  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5081  assert(EnclosingDecl && "missing record or interface decl");
5082
5083  // If the decl this is being inserted into is invalid, then it may be a
5084  // redeclaration or some other bogus case.  Don't try to add fields to it.
5085  if (EnclosingDecl->isInvalidDecl()) {
5086    // FIXME: Deallocate fields?
5087    return;
5088  }
5089
5090
5091  // Verify that all the fields are okay.
5092  unsigned NumNamedMembers = 0;
5093  llvm::SmallVector<FieldDecl*, 32> RecFields;
5094
5095  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5096  for (unsigned i = 0; i != NumFields; ++i) {
5097    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5098
5099    // Get the type for the field.
5100    Type *FDTy = FD->getType().getTypePtr();
5101
5102    if (!FD->isAnonymousStructOrUnion()) {
5103      // Remember all fields written by the user.
5104      RecFields.push_back(FD);
5105    }
5106
5107    // If the field is already invalid for some reason, don't emit more
5108    // diagnostics about it.
5109    if (FD->isInvalidDecl())
5110      continue;
5111
5112    // C99 6.7.2.1p2:
5113    //   A structure or union shall not contain a member with
5114    //   incomplete or function type (hence, a structure shall not
5115    //   contain an instance of itself, but may contain a pointer to
5116    //   an instance of itself), except that the last member of a
5117    //   structure with more than one named member may have incomplete
5118    //   array type; such a structure (and any union containing,
5119    //   possibly recursively, a member that is such a structure)
5120    //   shall not be a member of a structure or an element of an
5121    //   array.
5122    if (FDTy->isFunctionType()) {
5123      // Field declared as a function.
5124      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5125        << FD->getDeclName();
5126      FD->setInvalidDecl();
5127      EnclosingDecl->setInvalidDecl();
5128      continue;
5129    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5130               Record && Record->isStruct()) {
5131      // Flexible array member.
5132      if (NumNamedMembers < 1) {
5133        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5134          << FD->getDeclName();
5135        FD->setInvalidDecl();
5136        EnclosingDecl->setInvalidDecl();
5137        continue;
5138      }
5139      // Okay, we have a legal flexible array member at the end of the struct.
5140      if (Record)
5141        Record->setHasFlexibleArrayMember(true);
5142    } else if (!FDTy->isDependentType() &&
5143               RequireCompleteType(FD->getLocation(), FD->getType(),
5144                                   diag::err_field_incomplete)) {
5145      // Incomplete type
5146      FD->setInvalidDecl();
5147      EnclosingDecl->setInvalidDecl();
5148      continue;
5149    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5150      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5151        // If this is a member of a union, then entire union becomes "flexible".
5152        if (Record && Record->isUnion()) {
5153          Record->setHasFlexibleArrayMember(true);
5154        } else {
5155          // If this is a struct/class and this is not the last element, reject
5156          // it.  Note that GCC supports variable sized arrays in the middle of
5157          // structures.
5158          if (i != NumFields-1)
5159            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5160              << FD->getDeclName() << FD->getType();
5161          else {
5162            // We support flexible arrays at the end of structs in
5163            // other structs as an extension.
5164            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5165              << FD->getDeclName();
5166            if (Record)
5167              Record->setHasFlexibleArrayMember(true);
5168          }
5169        }
5170      }
5171      if (Record && FDTTy->getDecl()->hasObjectMember())
5172        Record->setHasObjectMember(true);
5173    } else if (FDTy->isObjCInterfaceType()) {
5174      /// A field cannot be an Objective-c object
5175      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5176      FD->setInvalidDecl();
5177      EnclosingDecl->setInvalidDecl();
5178      continue;
5179    } else if (getLangOptions().ObjC1 &&
5180               getLangOptions().getGCMode() != LangOptions::NonGC &&
5181               Record &&
5182               (FD->getType()->isObjCObjectPointerType() ||
5183                FD->getType().isObjCGCStrong()))
5184      Record->setHasObjectMember(true);
5185    // Keep track of the number of named members.
5186    if (FD->getIdentifier())
5187      ++NumNamedMembers;
5188  }
5189
5190  // Okay, we successfully defined 'Record'.
5191  if (Record) {
5192    Record->completeDefinition(Context);
5193  } else {
5194    ObjCIvarDecl **ClsFields =
5195      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5196    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5197      ID->setIVarList(ClsFields, RecFields.size(), Context);
5198      ID->setLocEnd(RBrac);
5199      // Add ivar's to class's DeclContext.
5200      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5201        ClsFields[i]->setLexicalDeclContext(ID);
5202        ID->addDecl(ClsFields[i]);
5203      }
5204      // Must enforce the rule that ivars in the base classes may not be
5205      // duplicates.
5206      if (ID->getSuperClass()) {
5207        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5208             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5209          ObjCIvarDecl* Ivar = (*IVI);
5210
5211          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5212            ObjCIvarDecl* prevIvar =
5213              ID->getSuperClass()->lookupInstanceVariable(II);
5214            if (prevIvar) {
5215              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5216              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5217            }
5218          }
5219        }
5220      }
5221    } else if (ObjCImplementationDecl *IMPDecl =
5222                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5223      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5224      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5225        // Ivar declared in @implementation never belongs to the implementation.
5226        // Only it is in implementation's lexical context.
5227        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5228      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5229    }
5230  }
5231
5232  if (Attr)
5233    ProcessDeclAttributeList(S, Record, Attr);
5234}
5235
5236EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5237                                          EnumConstantDecl *LastEnumConst,
5238                                          SourceLocation IdLoc,
5239                                          IdentifierInfo *Id,
5240                                          ExprArg val) {
5241  Expr *Val = (Expr *)val.get();
5242
5243  llvm::APSInt EnumVal(32);
5244  QualType EltTy;
5245  if (Val && !Val->isTypeDependent()) {
5246    // Make sure to promote the operand type to int.
5247    UsualUnaryConversions(Val);
5248    if (Val != val.get()) {
5249      val.release();
5250      val = Val;
5251    }
5252
5253    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5254    SourceLocation ExpLoc;
5255    if (!Val->isValueDependent() &&
5256        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5257      Val = 0;
5258    } else {
5259      EltTy = Val->getType();
5260    }
5261  }
5262
5263  if (!Val) {
5264    if (LastEnumConst) {
5265      // Assign the last value + 1.
5266      EnumVal = LastEnumConst->getInitVal();
5267      ++EnumVal;
5268
5269      // Check for overflow on increment.
5270      if (EnumVal < LastEnumConst->getInitVal())
5271        Diag(IdLoc, diag::warn_enum_value_overflow);
5272
5273      EltTy = LastEnumConst->getType();
5274    } else {
5275      // First value, set to zero.
5276      EltTy = Context.IntTy;
5277      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5278    }
5279  }
5280
5281  val.release();
5282  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5283                                  Val, EnumVal);
5284}
5285
5286
5287Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5288                                        DeclPtrTy lastEnumConst,
5289                                        SourceLocation IdLoc,
5290                                        IdentifierInfo *Id,
5291                                        SourceLocation EqualLoc, ExprTy *val) {
5292  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5293  EnumConstantDecl *LastEnumConst =
5294    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5295  Expr *Val = static_cast<Expr*>(val);
5296
5297  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5298  // we find one that is.
5299  S = getNonFieldDeclScope(S);
5300
5301  // Verify that there isn't already something declared with this name in this
5302  // scope.
5303  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5304  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5305    // Maybe we will complain about the shadowed template parameter.
5306    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5307    // Just pretend that we didn't see the previous declaration.
5308    PrevDecl = 0;
5309  }
5310
5311  if (PrevDecl) {
5312    // When in C++, we may get a TagDecl with the same name; in this case the
5313    // enum constant will 'hide' the tag.
5314    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5315           "Received TagDecl when not in C++!");
5316    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5317      if (isa<EnumConstantDecl>(PrevDecl))
5318        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5319      else
5320        Diag(IdLoc, diag::err_redefinition) << Id;
5321      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5322      if (Val) Val->Destroy(Context);
5323      return DeclPtrTy();
5324    }
5325  }
5326
5327  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5328                                            IdLoc, Id, Owned(Val));
5329
5330  // Register this decl in the current scope stack.
5331  if (New)
5332    PushOnScopeChains(New, S);
5333
5334  return DeclPtrTy::make(New);
5335}
5336
5337void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5338                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5339                         DeclPtrTy *Elements, unsigned NumElements,
5340                         Scope *S, AttributeList *Attr) {
5341  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5342  QualType EnumType = Context.getTypeDeclType(Enum);
5343
5344  if (Attr)
5345    ProcessDeclAttributeList(S, Enum, Attr);
5346
5347  // TODO: If the result value doesn't fit in an int, it must be a long or long
5348  // long value.  ISO C does not support this, but GCC does as an extension,
5349  // emit a warning.
5350  unsigned IntWidth = Context.Target.getIntWidth();
5351  unsigned CharWidth = Context.Target.getCharWidth();
5352  unsigned ShortWidth = Context.Target.getShortWidth();
5353
5354  // Verify that all the values are okay, compute the size of the values, and
5355  // reverse the list.
5356  unsigned NumNegativeBits = 0;
5357  unsigned NumPositiveBits = 0;
5358
5359  // Keep track of whether all elements have type int.
5360  bool AllElementsInt = true;
5361
5362  for (unsigned i = 0; i != NumElements; ++i) {
5363    EnumConstantDecl *ECD =
5364      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5365    if (!ECD) continue;  // Already issued a diagnostic.
5366
5367    // If the enum value doesn't fit in an int, emit an extension warning.
5368    const llvm::APSInt &InitVal = ECD->getInitVal();
5369    assert(InitVal.getBitWidth() >= IntWidth &&
5370           "Should have promoted value to int");
5371    if (InitVal.getBitWidth() > IntWidth) {
5372      llvm::APSInt V(InitVal);
5373      V.trunc(IntWidth);
5374      V.extend(InitVal.getBitWidth());
5375      if (V != InitVal)
5376        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5377          << InitVal.toString(10);
5378    }
5379
5380    // Keep track of the size of positive and negative values.
5381    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5382      NumPositiveBits = std::max(NumPositiveBits,
5383                                 (unsigned)InitVal.getActiveBits());
5384    else
5385      NumNegativeBits = std::max(NumNegativeBits,
5386                                 (unsigned)InitVal.getMinSignedBits());
5387
5388    // Keep track of whether every enum element has type int (very commmon).
5389    if (AllElementsInt)
5390      AllElementsInt = ECD->getType() == Context.IntTy;
5391  }
5392
5393  // Figure out the type that should be used for this enum.
5394  // FIXME: Support -fshort-enums.
5395  QualType BestType;
5396  unsigned BestWidth;
5397
5398  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5399
5400  if (NumNegativeBits) {
5401    // If there is a negative value, figure out the smallest integer type (of
5402    // int/long/longlong) that fits.
5403    // If it's packed, check also if it fits a char or a short.
5404    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5405        BestType = Context.SignedCharTy;
5406        BestWidth = CharWidth;
5407    } else if (Packed && NumNegativeBits <= ShortWidth &&
5408               NumPositiveBits < ShortWidth) {
5409        BestType = Context.ShortTy;
5410        BestWidth = ShortWidth;
5411    }
5412    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5413      BestType = Context.IntTy;
5414      BestWidth = IntWidth;
5415    } else {
5416      BestWidth = Context.Target.getLongWidth();
5417
5418      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5419        BestType = Context.LongTy;
5420      else {
5421        BestWidth = Context.Target.getLongLongWidth();
5422
5423        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5424          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5425        BestType = Context.LongLongTy;
5426      }
5427    }
5428  } else {
5429    // If there is no negative value, figure out which of uint, ulong, ulonglong
5430    // fits.
5431    // If it's packed, check also if it fits a char or a short.
5432    if (Packed && NumPositiveBits <= CharWidth) {
5433        BestType = Context.UnsignedCharTy;
5434        BestWidth = CharWidth;
5435    } else if (Packed && NumPositiveBits <= ShortWidth) {
5436        BestType = Context.UnsignedShortTy;
5437        BestWidth = ShortWidth;
5438    }
5439    else if (NumPositiveBits <= IntWidth) {
5440      BestType = Context.UnsignedIntTy;
5441      BestWidth = IntWidth;
5442    } else if (NumPositiveBits <=
5443               (BestWidth = Context.Target.getLongWidth())) {
5444      BestType = Context.UnsignedLongTy;
5445    } else {
5446      BestWidth = Context.Target.getLongLongWidth();
5447      assert(NumPositiveBits <= BestWidth &&
5448             "How could an initializer get larger than ULL?");
5449      BestType = Context.UnsignedLongLongTy;
5450    }
5451  }
5452
5453  // Loop over all of the enumerator constants, changing their types to match
5454  // the type of the enum if needed.
5455  for (unsigned i = 0; i != NumElements; ++i) {
5456    EnumConstantDecl *ECD =
5457      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5458    if (!ECD) continue;  // Already issued a diagnostic.
5459
5460    // Standard C says the enumerators have int type, but we allow, as an
5461    // extension, the enumerators to be larger than int size.  If each
5462    // enumerator value fits in an int, type it as an int, otherwise type it the
5463    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5464    // that X has type 'int', not 'unsigned'.
5465    if (ECD->getType() == Context.IntTy) {
5466      // Make sure the init value is signed.
5467      llvm::APSInt IV = ECD->getInitVal();
5468      IV.setIsSigned(true);
5469      ECD->setInitVal(IV);
5470
5471      if (getLangOptions().CPlusPlus)
5472        // C++ [dcl.enum]p4: Following the closing brace of an
5473        // enum-specifier, each enumerator has the type of its
5474        // enumeration.
5475        ECD->setType(EnumType);
5476      continue;  // Already int type.
5477    }
5478
5479    // Determine whether the value fits into an int.
5480    llvm::APSInt InitVal = ECD->getInitVal();
5481    bool FitsInInt;
5482    if (InitVal.isUnsigned() || !InitVal.isNegative())
5483      FitsInInt = InitVal.getActiveBits() < IntWidth;
5484    else
5485      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5486
5487    // If it fits into an integer type, force it.  Otherwise force it to match
5488    // the enum decl type.
5489    QualType NewTy;
5490    unsigned NewWidth;
5491    bool NewSign;
5492    if (FitsInInt) {
5493      NewTy = Context.IntTy;
5494      NewWidth = IntWidth;
5495      NewSign = true;
5496    } else if (ECD->getType() == BestType) {
5497      // Already the right type!
5498      if (getLangOptions().CPlusPlus)
5499        // C++ [dcl.enum]p4: Following the closing brace of an
5500        // enum-specifier, each enumerator has the type of its
5501        // enumeration.
5502        ECD->setType(EnumType);
5503      continue;
5504    } else {
5505      NewTy = BestType;
5506      NewWidth = BestWidth;
5507      NewSign = BestType->isSignedIntegerType();
5508    }
5509
5510    // Adjust the APSInt value.
5511    InitVal.extOrTrunc(NewWidth);
5512    InitVal.setIsSigned(NewSign);
5513    ECD->setInitVal(InitVal);
5514
5515    // Adjust the Expr initializer and type.
5516    if (ECD->getInitExpr())
5517      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5518                                                      CastExpr::CK_Unknown,
5519                                                      ECD->getInitExpr(),
5520                                                      /*isLvalue=*/false));
5521    if (getLangOptions().CPlusPlus)
5522      // C++ [dcl.enum]p4: Following the closing brace of an
5523      // enum-specifier, each enumerator has the type of its
5524      // enumeration.
5525      ECD->setType(EnumType);
5526    else
5527      ECD->setType(NewTy);
5528  }
5529
5530  Enum->completeDefinition(Context, BestType);
5531}
5532
5533Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5534                                            ExprArg expr) {
5535  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5536
5537  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5538                                                   Loc, AsmString);
5539  CurContext->addDecl(New);
5540  return DeclPtrTy::make(New);
5541}
5542
5543void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5544                             SourceLocation PragmaLoc,
5545                             SourceLocation NameLoc) {
5546  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5547
5548  if (PrevDecl) {
5549    PrevDecl->addAttr(::new (Context) WeakAttr());
5550  } else {
5551    (void)WeakUndeclaredIdentifiers.insert(
5552      std::pair<IdentifierInfo*,WeakInfo>
5553        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5554  }
5555}
5556
5557void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5558                                IdentifierInfo* AliasName,
5559                                SourceLocation PragmaLoc,
5560                                SourceLocation NameLoc,
5561                                SourceLocation AliasNameLoc) {
5562  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5563  WeakInfo W = WeakInfo(Name, NameLoc);
5564
5565  if (PrevDecl) {
5566    if (!PrevDecl->hasAttr<AliasAttr>())
5567      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5568        DeclApplyPragmaWeak(TUScope, ND, W);
5569  } else {
5570    (void)WeakUndeclaredIdentifiers.insert(
5571      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5572  }
5573}
5574