SemaDecl.cpp revision 6e4750188e836e119f8605cbd34023d0a3b18011
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  } else if (isa<ObjCInterfaceDecl>(D)) {
303    // We're pushing an Objective-C interface into the current
304    // context. If there is already an alias declaration, remove it first.
305    for (IdentifierResolver::iterator
306           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
307         I != IEnd; ++I) {
308      if (isa<ObjCCompatibleAliasDecl>(*I)) {
309        S->RemoveDecl(DeclPtrTy::make(*I));
310        IdResolver.RemoveDecl(*I);
311        break;
312      }
313    }
314  }
315
316  IdResolver.AddDecl(D);
317}
318
319void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
320  if (S->decl_empty()) return;
321  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
322	 "Scope shouldn't contain decls!");
323
324  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
325       I != E; ++I) {
326    Decl *TmpD = (*I).getAs<Decl>();
327    assert(TmpD && "This decl didn't get pushed??");
328
329    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
330    NamedDecl *D = cast<NamedDecl>(TmpD);
331
332    if (!D->getDeclName()) continue;
333
334    // Remove this name from our lexical scope.
335    IdResolver.RemoveDecl(D);
336  }
337}
338
339/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
340/// return 0 if one not found.
341ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
342  // The third "scope" argument is 0 since we aren't enabling lazy built-in
343  // creation from this context.
344  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
345
346  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
347}
348
349/// getNonFieldDeclScope - Retrieves the innermost scope, starting
350/// from S, where a non-field would be declared. This routine copes
351/// with the difference between C and C++ scoping rules in structs and
352/// unions. For example, the following code is well-formed in C but
353/// ill-formed in C++:
354/// @code
355/// struct S6 {
356///   enum { BAR } e;
357/// };
358///
359/// void test_S6() {
360///   struct S6 a;
361///   a.e = BAR;
362/// }
363/// @endcode
364/// For the declaration of BAR, this routine will return a different
365/// scope. The scope S will be the scope of the unnamed enumeration
366/// within S6. In C++, this routine will return the scope associated
367/// with S6, because the enumeration's scope is a transparent
368/// context but structures can contain non-field names. In C, this
369/// routine will return the translation unit scope, since the
370/// enumeration's scope is a transparent context and structures cannot
371/// contain non-field names.
372Scope *Sema::getNonFieldDeclScope(Scope *S) {
373  while (((S->getFlags() & Scope::DeclScope) == 0) ||
374         (S->getEntity() &&
375          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
376         (S->isClassScope() && !getLangOptions().CPlusPlus))
377    S = S->getParent();
378  return S;
379}
380
381void Sema::InitBuiltinVaListType() {
382  if (!Context.getBuiltinVaListType().isNull())
383    return;
384
385  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
386  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
387  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
388  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
389}
390
391/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
392/// file scope.  lazily create a decl for it. ForRedeclaration is true
393/// if we're creating this built-in in anticipation of redeclaring the
394/// built-in.
395NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
396                                     Scope *S, bool ForRedeclaration,
397                                     SourceLocation Loc) {
398  Builtin::ID BID = (Builtin::ID)bid;
399
400  if (Context.BuiltinInfo.hasVAListUse(BID))
401    InitBuiltinVaListType();
402
403  Builtin::Context::GetBuiltinTypeError Error;
404  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
405  switch (Error) {
406  case Builtin::Context::GE_None:
407    // Okay
408    break;
409
410  case Builtin::Context::GE_Missing_FILE:
411    if (ForRedeclaration)
412      Diag(Loc, diag::err_implicit_decl_requires_stdio)
413        << Context.BuiltinInfo.GetName(BID);
414    return 0;
415  }
416
417  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
418    Diag(Loc, diag::ext_implicit_lib_function_decl)
419      << Context.BuiltinInfo.GetName(BID)
420      << R;
421    if (Context.BuiltinInfo.getHeaderName(BID) &&
422        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
423          != Diagnostic::Ignored)
424      Diag(Loc, diag::note_please_include_header)
425        << Context.BuiltinInfo.getHeaderName(BID)
426        << Context.BuiltinInfo.GetName(BID);
427  }
428
429  FunctionDecl *New = FunctionDecl::Create(Context,
430                                           Context.getTranslationUnitDecl(),
431                                           Loc, II, R,
432                                           FunctionDecl::Extern, false,
433                                           /*hasPrototype=*/true);
434  New->setImplicit();
435
436  // Create Decl objects for each parameter, adding them to the
437  // FunctionDecl.
438  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
439    llvm::SmallVector<ParmVarDecl*, 16> Params;
440    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
441      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
442                                           FT->getArgType(i), VarDecl::None, 0));
443    New->setParams(Context, &Params[0], Params.size());
444  }
445
446  AddKnownFunctionAttributes(New);
447
448  // TUScope is the translation-unit scope to insert this function into.
449  // FIXME: This is hideous. We need to teach PushOnScopeChains to
450  // relate Scopes to DeclContexts, and probably eliminate CurContext
451  // entirely, but we're not there yet.
452  DeclContext *SavedContext = CurContext;
453  CurContext = Context.getTranslationUnitDecl();
454  PushOnScopeChains(New, TUScope);
455  CurContext = SavedContext;
456  return New;
457}
458
459/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
460/// everything from the standard library is defined.
461NamespaceDecl *Sema::GetStdNamespace() {
462  if (!StdNamespace) {
463    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
464    DeclContext *Global = Context.getTranslationUnitDecl();
465    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
466    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
467  }
468  return StdNamespace;
469}
470
471/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
472/// same name and scope as a previous declaration 'Old'.  Figure out
473/// how to resolve this situation, merging decls or emitting
474/// diagnostics as appropriate. If there was an error, set New to be invalid.
475///
476void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
477  // If either decl is known invalid already, set the new one to be invalid and
478  // don't bother doing any merging checks.
479  if (New->isInvalidDecl() || OldD->isInvalidDecl())
480    return New->setInvalidDecl();
481
482  bool objc_types = false;
483
484  // Allow multiple definitions for ObjC built-in typedefs.
485  // FIXME: Verify the underlying types are equivalent!
486  if (getLangOptions().ObjC1) {
487    const IdentifierInfo *TypeID = New->getIdentifier();
488    switch (TypeID->getLength()) {
489    default: break;
490    case 2:
491      if (!TypeID->isStr("id"))
492        break;
493      Context.setObjCIdType(Context.getTypeDeclType(New));
494      objc_types = true;
495      break;
496    case 5:
497      if (!TypeID->isStr("Class"))
498        break;
499      Context.setObjCClassType(Context.getTypeDeclType(New));
500      return;
501    case 3:
502      if (!TypeID->isStr("SEL"))
503        break;
504      Context.setObjCSelType(Context.getTypeDeclType(New));
505      return;
506    case 8:
507      if (!TypeID->isStr("Protocol"))
508        break;
509      Context.setObjCProtoType(New->getUnderlyingType());
510      return;
511    }
512    // Fall through - the typedef name was not a builtin type.
513  }
514  // Verify the old decl was also a type.
515  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
516  if (!Old) {
517    Diag(New->getLocation(), diag::err_redefinition_different_kind)
518      << New->getDeclName();
519    if (OldD->getLocation().isValid())
520      Diag(OldD->getLocation(), diag::note_previous_definition);
521    return New->setInvalidDecl();
522  }
523
524  // Determine the "old" type we'll use for checking and diagnostics.
525  QualType OldType;
526  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
527    OldType = OldTypedef->getUnderlyingType();
528  else
529    OldType = Context.getTypeDeclType(Old);
530
531  // If the typedef types are not identical, reject them in all languages and
532  // with any extensions enabled.
533
534  if (OldType != New->getUnderlyingType() &&
535      Context.getCanonicalType(OldType) !=
536      Context.getCanonicalType(New->getUnderlyingType())) {
537    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
538      << New->getUnderlyingType() << OldType;
539    if (Old->getLocation().isValid())
540      Diag(Old->getLocation(), diag::note_previous_definition);
541    return New->setInvalidDecl();
542  }
543
544  if (objc_types || getLangOptions().Microsoft)
545    return;
546
547  // C++ [dcl.typedef]p2:
548  //   In a given non-class scope, a typedef specifier can be used to
549  //   redefine the name of any type declared in that scope to refer
550  //   to the type to which it already refers.
551  if (getLangOptions().CPlusPlus) {
552    if (!isa<CXXRecordDecl>(CurContext))
553      return;
554    Diag(New->getLocation(), diag::err_redefinition)
555      << New->getDeclName();
556    Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  // If we have a redefinition of a typedef in C, emit a warning.  This warning
561  // is normally mapped to an error, but can be controlled with
562  // -Wtypedef-redefinition.
563  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
564    << New->getDeclName();
565  Diag(Old->getLocation(), diag::note_previous_definition);
566  return;
567}
568
569/// DeclhasAttr - returns true if decl Declaration already has the target
570/// attribute.
571static bool DeclHasAttr(const Decl *decl, const Attr *target) {
572  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
573    if (attr->getKind() == target->getKind())
574      return true;
575
576  return false;
577}
578
579/// MergeAttributes - append attributes from the Old decl to the New one.
580static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
581  Attr *attr = const_cast<Attr*>(Old->getAttrs());
582
583  while (attr) {
584    Attr *tmp = attr;
585    attr = attr->getNext();
586
587    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
588      tmp->setInherited(true);
589      New->addAttr(tmp);
590    } else {
591      tmp->setNext(0);
592      tmp->Destroy(C);
593    }
594  }
595
596  Old->invalidateAttrs();
597}
598
599/// Used in MergeFunctionDecl to keep track of function parameters in
600/// C.
601struct GNUCompatibleParamWarning {
602  ParmVarDecl *OldParm;
603  ParmVarDecl *NewParm;
604  QualType PromotedType;
605};
606
607/// MergeFunctionDecl - We just parsed a function 'New' from
608/// declarator D which has the same name and scope as a previous
609/// declaration 'Old'.  Figure out how to resolve this situation,
610/// merging decls or emitting diagnostics as appropriate.
611///
612/// In C++, New and Old must be declarations that are not
613/// overloaded. Use IsOverload to determine whether New and Old are
614/// overloaded, and to select the Old declaration that New should be
615/// merged with.
616///
617/// Returns true if there was an error, false otherwise.
618bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
619  assert(!isa<OverloadedFunctionDecl>(OldD) &&
620         "Cannot merge with an overloaded function declaration");
621
622  // Verify the old decl was also a function.
623  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
624  if (!Old) {
625    Diag(New->getLocation(), diag::err_redefinition_different_kind)
626      << New->getDeclName();
627    Diag(OldD->getLocation(), diag::note_previous_definition);
628    return true;
629  }
630
631  // Determine whether the previous declaration was a definition,
632  // implicit declaration, or a declaration.
633  diag::kind PrevDiag;
634  if (Old->isThisDeclarationADefinition())
635    PrevDiag = diag::note_previous_definition;
636  else if (Old->isImplicit())
637    PrevDiag = diag::note_previous_implicit_declaration;
638  else
639    PrevDiag = diag::note_previous_declaration;
640
641  QualType OldQType = Context.getCanonicalType(Old->getType());
642  QualType NewQType = Context.getCanonicalType(New->getType());
643
644  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
645      New->getStorageClass() == FunctionDecl::Static &&
646      Old->getStorageClass() != FunctionDecl::Static) {
647    Diag(New->getLocation(), diag::err_static_non_static)
648      << New;
649    Diag(Old->getLocation(), PrevDiag);
650    return true;
651  }
652
653  if (getLangOptions().CPlusPlus) {
654    // (C++98 13.1p2):
655    //   Certain function declarations cannot be overloaded:
656    //     -- Function declarations that differ only in the return type
657    //        cannot be overloaded.
658    QualType OldReturnType
659      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
660    QualType NewReturnType
661      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
662    if (OldReturnType != NewReturnType) {
663      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
664      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
665      return true;
666    }
667
668    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
669    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
670    if (OldMethod && NewMethod &&
671        OldMethod->getLexicalDeclContext() ==
672          NewMethod->getLexicalDeclContext()) {
673      //    -- Member function declarations with the same name and the
674      //       same parameter types cannot be overloaded if any of them
675      //       is a static member function declaration.
676      if (OldMethod->isStatic() || NewMethod->isStatic()) {
677        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
678        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
679        return true;
680      }
681
682      // C++ [class.mem]p1:
683      //   [...] A member shall not be declared twice in the
684      //   member-specification, except that a nested class or member
685      //   class template can be declared and then later defined.
686      unsigned NewDiag;
687      if (isa<CXXConstructorDecl>(OldMethod))
688        NewDiag = diag::err_constructor_redeclared;
689      else if (isa<CXXDestructorDecl>(NewMethod))
690        NewDiag = diag::err_destructor_redeclared;
691      else if (isa<CXXConversionDecl>(NewMethod))
692        NewDiag = diag::err_conv_function_redeclared;
693      else
694        NewDiag = diag::err_member_redeclared;
695
696      Diag(New->getLocation(), NewDiag);
697      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
698    }
699
700    // (C++98 8.3.5p3):
701    //   All declarations for a function shall agree exactly in both the
702    //   return type and the parameter-type-list.
703    if (OldQType == NewQType)
704      return MergeCompatibleFunctionDecls(New, Old);
705
706    // Fall through for conflicting redeclarations and redefinitions.
707  }
708
709  // C: Function types need to be compatible, not identical. This handles
710  // duplicate function decls like "void f(int); void f(enum X);" properly.
711  if (!getLangOptions().CPlusPlus &&
712      Context.typesAreCompatible(OldQType, NewQType)) {
713    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
714    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
715    const FunctionProtoType *OldProto = 0;
716    if (isa<FunctionNoProtoType>(NewFuncType) &&
717        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
718      // The old declaration provided a function prototype, but the
719      // new declaration does not. Merge in the prototype.
720      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
721                                                 OldProto->arg_type_end());
722      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
723                                         &ParamTypes[0], ParamTypes.size(),
724                                         OldProto->isVariadic(),
725                                         OldProto->getTypeQuals());
726      New->setType(NewQType);
727      New->setInheritedPrototype();
728
729      // Synthesize a parameter for each argument type.
730      llvm::SmallVector<ParmVarDecl*, 16> Params;
731      for (FunctionProtoType::arg_type_iterator
732             ParamType = OldProto->arg_type_begin(),
733             ParamEnd = OldProto->arg_type_end();
734           ParamType != ParamEnd; ++ParamType) {
735        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
736                                                 SourceLocation(), 0,
737                                                 *ParamType, VarDecl::None,
738                                                 0);
739        Param->setImplicit();
740        Params.push_back(Param);
741      }
742
743      New->setParams(Context, &Params[0], Params.size());
744    }
745
746    return MergeCompatibleFunctionDecls(New, Old);
747  }
748
749  // GNU C permits a K&R definition to follow a prototype declaration
750  // if the declared types of the parameters in the K&R definition
751  // match the types in the prototype declaration, even when the
752  // promoted types of the parameters from the K&R definition differ
753  // from the types in the prototype. GCC then keeps the types from
754  // the prototype.
755  if (!getLangOptions().CPlusPlus &&
756      !getLangOptions().NoExtensions &&
757      Old->hasPrototype() && !New->hasPrototype() &&
758      New->getType()->getAsFunctionProtoType() &&
759      Old->getNumParams() == New->getNumParams()) {
760    llvm::SmallVector<QualType, 16> ArgTypes;
761    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
762    const FunctionProtoType *OldProto
763      = Old->getType()->getAsFunctionProtoType();
764    const FunctionProtoType *NewProto
765      = New->getType()->getAsFunctionProtoType();
766
767    // Determine whether this is the GNU C extension.
768    bool GNUCompatible =
769      Context.typesAreCompatible(OldProto->getResultType(),
770                                 NewProto->getResultType()) &&
771      (OldProto->isVariadic() == NewProto->isVariadic());
772    for (unsigned Idx = 0, End = Old->getNumParams();
773         GNUCompatible && Idx != End; ++Idx) {
774      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
775      ParmVarDecl *NewParm = New->getParamDecl(Idx);
776      if (Context.typesAreCompatible(OldParm->getType(),
777                                     NewProto->getArgType(Idx))) {
778        ArgTypes.push_back(NewParm->getType());
779      } else if (Context.typesAreCompatible(OldParm->getType(),
780                                            NewParm->getType())) {
781        GNUCompatibleParamWarning Warn
782          = { OldParm, NewParm, NewProto->getArgType(Idx) };
783        Warnings.push_back(Warn);
784        ArgTypes.push_back(NewParm->getType());
785      } else
786        GNUCompatible = false;
787    }
788
789    if (GNUCompatible) {
790      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
791        Diag(Warnings[Warn].NewParm->getLocation(),
792             diag::ext_param_promoted_not_compatible_with_prototype)
793          << Warnings[Warn].PromotedType
794          << Warnings[Warn].OldParm->getType();
795        Diag(Warnings[Warn].OldParm->getLocation(),
796             diag::note_previous_declaration);
797      }
798
799      New->setType(Context.getFunctionType(NewProto->getResultType(),
800                                           &ArgTypes[0], ArgTypes.size(),
801                                           NewProto->isVariadic(),
802                                           NewProto->getTypeQuals()));
803      return MergeCompatibleFunctionDecls(New, Old);
804    }
805
806    // Fall through to diagnose conflicting types.
807  }
808
809  // A function that has already been declared has been redeclared or defined
810  // with a different type- show appropriate diagnostic
811  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
812    // The user has declared a builtin function with an incompatible
813    // signature.
814    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
815      // The function the user is redeclaring is a library-defined
816      // function like 'malloc' or 'printf'. Warn about the
817      // redeclaration, then pretend that we don't know about this
818      // library built-in.
819      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
820      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
821        << Old << Old->getType();
822      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
823      Old->setInvalidDecl();
824      return false;
825    }
826
827    PrevDiag = diag::note_previous_builtin_declaration;
828  }
829
830  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
831  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
832  return true;
833}
834
835/// \brief Completes the merge of two function declarations that are
836/// known to be compatible.
837///
838/// This routine handles the merging of attributes and other
839/// properties of function declarations form the old declaration to
840/// the new declaration, once we know that New is in fact a
841/// redeclaration of Old.
842///
843/// \returns false
844bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
845  // Merge the attributes
846  MergeAttributes(New, Old, Context);
847
848  // Merge the storage class.
849  New->setStorageClass(Old->getStorageClass());
850
851  // Merge "inline"
852  if (Old->isInline())
853    New->setInline(true);
854
855  // If this function declaration by itself qualifies as a C99 inline
856  // definition (C99 6.7.4p6), but the previous definition did not,
857  // then the function is not a C99 inline definition.
858  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
859    New->setC99InlineDefinition(false);
860  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
861    // Mark all preceding definitions as not being C99 inline definitions.
862    for (const FunctionDecl *Prev = Old; Prev;
863         Prev = Prev->getPreviousDeclaration())
864      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
865  }
866
867  // Merge "pure" flag.
868  if (Old->isPure())
869    New->setPure();
870
871  // Merge the "deleted" flag.
872  if (Old->isDeleted())
873    New->setDeleted();
874
875  if (getLangOptions().CPlusPlus)
876    return MergeCXXFunctionDecl(New, Old);
877
878  return false;
879}
880
881/// MergeVarDecl - We just parsed a variable 'New' which has the same name
882/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
883/// situation, merging decls or emitting diagnostics as appropriate.
884///
885/// Tentative definition rules (C99 6.9.2p2) are checked by
886/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
887/// definitions here, since the initializer hasn't been attached.
888///
889void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
890  // If either decl is invalid, make sure the new one is marked invalid and
891  // don't do any other checking.
892  if (New->isInvalidDecl() || OldD->isInvalidDecl())
893    return New->setInvalidDecl();
894
895  // Verify the old decl was also a variable.
896  VarDecl *Old = dyn_cast<VarDecl>(OldD);
897  if (!Old) {
898    Diag(New->getLocation(), diag::err_redefinition_different_kind)
899      << New->getDeclName();
900    Diag(OldD->getLocation(), diag::note_previous_definition);
901    return New->setInvalidDecl();
902  }
903
904  MergeAttributes(New, Old, Context);
905
906  // Merge the types
907  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
908  if (MergedT.isNull()) {
909    Diag(New->getLocation(), diag::err_redefinition_different_type)
910      << New->getDeclName();
911    Diag(Old->getLocation(), diag::note_previous_definition);
912    return New->setInvalidDecl();
913  }
914  New->setType(MergedT);
915
916  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
917  if (New->getStorageClass() == VarDecl::Static &&
918      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
919    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
920    Diag(Old->getLocation(), diag::note_previous_definition);
921    return New->setInvalidDecl();
922  }
923  // C99 6.2.2p4:
924  //   For an identifier declared with the storage-class specifier
925  //   extern in a scope in which a prior declaration of that
926  //   identifier is visible,23) if the prior declaration specifies
927  //   internal or external linkage, the linkage of the identifier at
928  //   the later declaration is the same as the linkage specified at
929  //   the prior declaration. If no prior declaration is visible, or
930  //   if the prior declaration specifies no linkage, then the
931  //   identifier has external linkage.
932  if (New->hasExternalStorage() && Old->hasLinkage())
933    /* Okay */;
934  else if (New->getStorageClass() != VarDecl::Static &&
935           Old->getStorageClass() == VarDecl::Static) {
936    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
937    Diag(Old->getLocation(), diag::note_previous_definition);
938    return New->setInvalidDecl();
939  }
940
941  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
942
943  // FIXME: The test for external storage here seems wrong? We still
944  // need to check for mismatches.
945  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
946      // Don't complain about out-of-line definitions of static members.
947      !(Old->getLexicalDeclContext()->isRecord() &&
948        !New->getLexicalDeclContext()->isRecord())) {
949    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
950    Diag(Old->getLocation(), diag::note_previous_definition);
951    return New->setInvalidDecl();
952  }
953
954  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
955    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
958    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
959    Diag(Old->getLocation(), diag::note_previous_definition);
960  }
961
962  // Keep a chain of previous declarations.
963  New->setPreviousDeclaration(Old);
964}
965
966/// CheckParmsForFunctionDef - Check that the parameters of the given
967/// function are appropriate for the definition of a function. This
968/// takes care of any checks that cannot be performed on the
969/// declaration itself, e.g., that the types of each of the function
970/// parameters are complete.
971bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
972  bool HasInvalidParm = false;
973  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
974    ParmVarDecl *Param = FD->getParamDecl(p);
975
976    // C99 6.7.5.3p4: the parameters in a parameter type list in a
977    // function declarator that is part of a function definition of
978    // that function shall not have incomplete type.
979    //
980    // This is also C++ [dcl.fct]p6.
981    if (!Param->isInvalidDecl() &&
982        RequireCompleteType(Param->getLocation(), Param->getType(),
983                               diag::err_typecheck_decl_incomplete_type)) {
984      Param->setInvalidDecl();
985      HasInvalidParm = true;
986    }
987
988    // C99 6.9.1p5: If the declarator includes a parameter type list, the
989    // declaration of each parameter shall include an identifier.
990    if (Param->getIdentifier() == 0 &&
991        !Param->isImplicit() &&
992        !getLangOptions().CPlusPlus)
993      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
994  }
995
996  return HasInvalidParm;
997}
998
999/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1000/// no declarator (e.g. "struct foo;") is parsed.
1001Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1002  // FIXME: Error on auto/register at file scope
1003  // FIXME: Error on inline/virtual/explicit
1004  // FIXME: Error on invalid restrict
1005  // FIXME: Warn on useless __thread
1006  // FIXME: Warn on useless const/volatile
1007  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1008  // FIXME: Warn on useless attributes
1009
1010  TagDecl *Tag = 0;
1011  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1012      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1013      DS.getTypeSpecType() == DeclSpec::TST_union ||
1014      DS.getTypeSpecType() == DeclSpec::TST_enum)
1015    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1016
1017  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1018    if (!Record->getDeclName() && Record->isDefinition() &&
1019        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1020      if (getLangOptions().CPlusPlus ||
1021          Record->getDeclContext()->isRecord())
1022        return BuildAnonymousStructOrUnion(S, DS, Record);
1023
1024      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1025        << DS.getSourceRange();
1026    }
1027
1028    // Microsoft allows unnamed struct/union fields. Don't complain
1029    // about them.
1030    // FIXME: Should we support Microsoft's extensions in this area?
1031    if (Record->getDeclName() && getLangOptions().Microsoft)
1032      return DeclPtrTy::make(Tag);
1033  }
1034
1035  if (!DS.isMissingDeclaratorOk() &&
1036      DS.getTypeSpecType() != DeclSpec::TST_error) {
1037    // Warn about typedefs of enums without names, since this is an
1038    // extension in both Microsoft an GNU.
1039    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1040        Tag && isa<EnumDecl>(Tag)) {
1041      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1042        << DS.getSourceRange();
1043      return DeclPtrTy::make(Tag);
1044    }
1045
1046    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1047      << DS.getSourceRange();
1048    return DeclPtrTy();
1049  }
1050
1051  return DeclPtrTy::make(Tag);
1052}
1053
1054/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1055/// anonymous struct or union AnonRecord into the owning context Owner
1056/// and scope S. This routine will be invoked just after we realize
1057/// that an unnamed union or struct is actually an anonymous union or
1058/// struct, e.g.,
1059///
1060/// @code
1061/// union {
1062///   int i;
1063///   float f;
1064/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1065///    // f into the surrounding scope.x
1066/// @endcode
1067///
1068/// This routine is recursive, injecting the names of nested anonymous
1069/// structs/unions into the owning context and scope as well.
1070bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1071                                               RecordDecl *AnonRecord) {
1072  bool Invalid = false;
1073  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1074                               FEnd = AnonRecord->field_end(Context);
1075       F != FEnd; ++F) {
1076    if ((*F)->getDeclName()) {
1077      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1078                                                LookupOrdinaryName, true);
1079      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1080        // C++ [class.union]p2:
1081        //   The names of the members of an anonymous union shall be
1082        //   distinct from the names of any other entity in the
1083        //   scope in which the anonymous union is declared.
1084        unsigned diagKind
1085          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1086                                 : diag::err_anonymous_struct_member_redecl;
1087        Diag((*F)->getLocation(), diagKind)
1088          << (*F)->getDeclName();
1089        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1090        Invalid = true;
1091      } else {
1092        // C++ [class.union]p2:
1093        //   For the purpose of name lookup, after the anonymous union
1094        //   definition, the members of the anonymous union are
1095        //   considered to have been defined in the scope in which the
1096        //   anonymous union is declared.
1097        Owner->makeDeclVisibleInContext(Context, *F);
1098        S->AddDecl(DeclPtrTy::make(*F));
1099        IdResolver.AddDecl(*F);
1100      }
1101    } else if (const RecordType *InnerRecordType
1102                 = (*F)->getType()->getAsRecordType()) {
1103      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1104      if (InnerRecord->isAnonymousStructOrUnion())
1105        Invalid = Invalid ||
1106          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1107    }
1108  }
1109
1110  return Invalid;
1111}
1112
1113/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1114/// anonymous structure or union. Anonymous unions are a C++ feature
1115/// (C++ [class.union]) and a GNU C extension; anonymous structures
1116/// are a GNU C and GNU C++ extension.
1117Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1118                                                  RecordDecl *Record) {
1119  DeclContext *Owner = Record->getDeclContext();
1120
1121  // Diagnose whether this anonymous struct/union is an extension.
1122  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1123    Diag(Record->getLocation(), diag::ext_anonymous_union);
1124  else if (!Record->isUnion())
1125    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1126
1127  // C and C++ require different kinds of checks for anonymous
1128  // structs/unions.
1129  bool Invalid = false;
1130  if (getLangOptions().CPlusPlus) {
1131    const char* PrevSpec = 0;
1132    // C++ [class.union]p3:
1133    //   Anonymous unions declared in a named namespace or in the
1134    //   global namespace shall be declared static.
1135    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1136        (isa<TranslationUnitDecl>(Owner) ||
1137         (isa<NamespaceDecl>(Owner) &&
1138          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1139      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1140      Invalid = true;
1141
1142      // Recover by adding 'static'.
1143      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1144    }
1145    // C++ [class.union]p3:
1146    //   A storage class is not allowed in a declaration of an
1147    //   anonymous union in a class scope.
1148    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1149             isa<RecordDecl>(Owner)) {
1150      Diag(DS.getStorageClassSpecLoc(),
1151           diag::err_anonymous_union_with_storage_spec);
1152      Invalid = true;
1153
1154      // Recover by removing the storage specifier.
1155      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1156                             PrevSpec);
1157    }
1158
1159    // C++ [class.union]p2:
1160    //   The member-specification of an anonymous union shall only
1161    //   define non-static data members. [Note: nested types and
1162    //   functions cannot be declared within an anonymous union. ]
1163    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1164                                 MemEnd = Record->decls_end(Context);
1165         Mem != MemEnd; ++Mem) {
1166      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1167        // C++ [class.union]p3:
1168        //   An anonymous union shall not have private or protected
1169        //   members (clause 11).
1170        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1171          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1172            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1173          Invalid = true;
1174        }
1175      } else if ((*Mem)->isImplicit()) {
1176        // Any implicit members are fine.
1177      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1178        // This is a type that showed up in an
1179        // elaborated-type-specifier inside the anonymous struct or
1180        // union, but which actually declares a type outside of the
1181        // anonymous struct or union. It's okay.
1182      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1183        if (!MemRecord->isAnonymousStructOrUnion() &&
1184            MemRecord->getDeclName()) {
1185          // This is a nested type declaration.
1186          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1187            << (int)Record->isUnion();
1188          Invalid = true;
1189        }
1190      } else {
1191        // We have something that isn't a non-static data
1192        // member. Complain about it.
1193        unsigned DK = diag::err_anonymous_record_bad_member;
1194        if (isa<TypeDecl>(*Mem))
1195          DK = diag::err_anonymous_record_with_type;
1196        else if (isa<FunctionDecl>(*Mem))
1197          DK = diag::err_anonymous_record_with_function;
1198        else if (isa<VarDecl>(*Mem))
1199          DK = diag::err_anonymous_record_with_static;
1200        Diag((*Mem)->getLocation(), DK)
1201            << (int)Record->isUnion();
1202          Invalid = true;
1203      }
1204    }
1205  }
1206
1207  if (!Record->isUnion() && !Owner->isRecord()) {
1208    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1209      << (int)getLangOptions().CPlusPlus;
1210    Invalid = true;
1211  }
1212
1213  // Create a declaration for this anonymous struct/union.
1214  NamedDecl *Anon = 0;
1215  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1216    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1217                             /*IdentifierInfo=*/0,
1218                             Context.getTypeDeclType(Record),
1219                             /*BitWidth=*/0, /*Mutable=*/false);
1220    Anon->setAccess(AS_public);
1221    if (getLangOptions().CPlusPlus)
1222      FieldCollector->Add(cast<FieldDecl>(Anon));
1223  } else {
1224    VarDecl::StorageClass SC;
1225    switch (DS.getStorageClassSpec()) {
1226    default: assert(0 && "Unknown storage class!");
1227    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1228    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1229    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1230    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1231    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1232    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1233    case DeclSpec::SCS_mutable:
1234      // mutable can only appear on non-static class members, so it's always
1235      // an error here
1236      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1237      Invalid = true;
1238      SC = VarDecl::None;
1239      break;
1240    }
1241
1242    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1243                           /*IdentifierInfo=*/0,
1244                           Context.getTypeDeclType(Record),
1245                           SC, DS.getSourceRange().getBegin());
1246  }
1247  Anon->setImplicit();
1248
1249  // Add the anonymous struct/union object to the current
1250  // context. We'll be referencing this object when we refer to one of
1251  // its members.
1252  Owner->addDecl(Context, Anon);
1253
1254  // Inject the members of the anonymous struct/union into the owning
1255  // context and into the identifier resolver chain for name lookup
1256  // purposes.
1257  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1258    Invalid = true;
1259
1260  // Mark this as an anonymous struct/union type. Note that we do not
1261  // do this until after we have already checked and injected the
1262  // members of this anonymous struct/union type, because otherwise
1263  // the members could be injected twice: once by DeclContext when it
1264  // builds its lookup table, and once by
1265  // InjectAnonymousStructOrUnionMembers.
1266  Record->setAnonymousStructOrUnion(true);
1267
1268  if (Invalid)
1269    Anon->setInvalidDecl();
1270
1271  return DeclPtrTy::make(Anon);
1272}
1273
1274
1275/// GetNameForDeclarator - Determine the full declaration name for the
1276/// given Declarator.
1277DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1278  switch (D.getKind()) {
1279  case Declarator::DK_Abstract:
1280    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1281    return DeclarationName();
1282
1283  case Declarator::DK_Normal:
1284    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1285    return DeclarationName(D.getIdentifier());
1286
1287  case Declarator::DK_Constructor: {
1288    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1289    Ty = Context.getCanonicalType(Ty);
1290    return Context.DeclarationNames.getCXXConstructorName(Ty);
1291  }
1292
1293  case Declarator::DK_Destructor: {
1294    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1295    Ty = Context.getCanonicalType(Ty);
1296    return Context.DeclarationNames.getCXXDestructorName(Ty);
1297  }
1298
1299  case Declarator::DK_Conversion: {
1300    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1301    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1302    Ty = Context.getCanonicalType(Ty);
1303    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1304  }
1305
1306  case Declarator::DK_Operator:
1307    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1308    return Context.DeclarationNames.getCXXOperatorName(
1309                                                D.getOverloadedOperator());
1310  }
1311
1312  assert(false && "Unknown name kind");
1313  return DeclarationName();
1314}
1315
1316/// isNearlyMatchingFunction - Determine whether the C++ functions
1317/// Declaration and Definition are "nearly" matching. This heuristic
1318/// is used to improve diagnostics in the case where an out-of-line
1319/// function definition doesn't match any declaration within
1320/// the class or namespace.
1321static bool isNearlyMatchingFunction(ASTContext &Context,
1322                                     FunctionDecl *Declaration,
1323                                     FunctionDecl *Definition) {
1324  if (Declaration->param_size() != Definition->param_size())
1325    return false;
1326  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1327    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1328    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1329
1330    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1331    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1332    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1333      return false;
1334  }
1335
1336  return true;
1337}
1338
1339Sema::DeclPtrTy
1340Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1341  DeclarationName Name = GetNameForDeclarator(D);
1342
1343  // All of these full declarators require an identifier.  If it doesn't have
1344  // one, the ParsedFreeStandingDeclSpec action should be used.
1345  if (!Name) {
1346    if (!D.isInvalidType())  // Reject this if we think it is valid.
1347      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1348           diag::err_declarator_need_ident)
1349        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1350    return DeclPtrTy();
1351  }
1352
1353  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1354  // we find one that is.
1355  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1356         (S->getFlags() & Scope::TemplateParamScope) != 0)
1357    S = S->getParent();
1358
1359  DeclContext *DC;
1360  NamedDecl *PrevDecl;
1361  NamedDecl *New;
1362
1363  QualType R = GetTypeForDeclarator(D, S);
1364  if (R.isNull()) {
1365    D.setInvalidType();
1366    R = Context.IntTy;
1367    if (IsFunctionDefinition) // int(...)
1368      R = Context.getFunctionType(R, 0, 0, true, 0);
1369
1370  }
1371
1372  // See if this is a redefinition of a variable in the same scope.
1373  if (D.getCXXScopeSpec().isInvalid()) {
1374    DC = CurContext;
1375    PrevDecl = 0;
1376    D.setInvalidType();
1377  } else if (!D.getCXXScopeSpec().isSet()) {
1378    LookupNameKind NameKind = LookupOrdinaryName;
1379
1380    // If the declaration we're planning to build will be a function
1381    // or object with linkage, then look for another declaration with
1382    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1383    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1384      /* Do nothing*/;
1385    else if (R->isFunctionType()) {
1386      if (CurContext->isFunctionOrMethod())
1387        NameKind = LookupRedeclarationWithLinkage;
1388    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1389      NameKind = LookupRedeclarationWithLinkage;
1390
1391    DC = CurContext;
1392    PrevDecl = LookupName(S, Name, NameKind, true,
1393                          D.getDeclSpec().getStorageClassSpec() !=
1394                            DeclSpec::SCS_static,
1395                          D.getIdentifierLoc());
1396  } else { // Something like "int foo::x;"
1397    DC = computeDeclContext(D.getCXXScopeSpec());
1398    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1399    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1400
1401    // C++ 7.3.1.2p2:
1402    // Members (including explicit specializations of templates) of a named
1403    // namespace can also be defined outside that namespace by explicit
1404    // qualification of the name being defined, provided that the entity being
1405    // defined was already declared in the namespace and the definition appears
1406    // after the point of declaration in a namespace that encloses the
1407    // declarations namespace.
1408    //
1409    // Note that we only check the context at this point. We don't yet
1410    // have enough information to make sure that PrevDecl is actually
1411    // the declaration we want to match. For example, given:
1412    //
1413    //   class X {
1414    //     void f();
1415    //     void f(float);
1416    //   };
1417    //
1418    //   void X::f(int) { } // ill-formed
1419    //
1420    // In this case, PrevDecl will point to the overload set
1421    // containing the two f's declared in X, but neither of them
1422    // matches.
1423
1424    // First check whether we named the global scope.
1425    if (isa<TranslationUnitDecl>(DC)) {
1426      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1427        << Name << D.getCXXScopeSpec().getRange();
1428    } else if (!CurContext->Encloses(DC)) {
1429      // The qualifying scope doesn't enclose the original declaration.
1430      // Emit diagnostic based on current scope.
1431      SourceLocation L = D.getIdentifierLoc();
1432      SourceRange R = D.getCXXScopeSpec().getRange();
1433      if (isa<FunctionDecl>(CurContext))
1434        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1435      else
1436        Diag(L, diag::err_invalid_declarator_scope)
1437          << Name << cast<NamedDecl>(DC) << R;
1438      D.setInvalidType();
1439    }
1440  }
1441
1442  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1443    // Maybe we will complain about the shadowed template parameter.
1444    if (!D.isInvalidType())
1445      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1446        D.setInvalidType();
1447
1448    // Just pretend that we didn't see the previous declaration.
1449    PrevDecl = 0;
1450  }
1451
1452  // In C++, the previous declaration we find might be a tag type
1453  // (class or enum). In this case, the new declaration will hide the
1454  // tag type. Note that this does does not apply if we're declaring a
1455  // typedef (C++ [dcl.typedef]p4).
1456  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1457      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1458    PrevDecl = 0;
1459
1460  bool Redeclaration = false;
1461  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1462    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1463  } else if (R->isFunctionType()) {
1464    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1465                                  IsFunctionDefinition, Redeclaration);
1466  } else {
1467    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1468  }
1469
1470  if (New == 0)
1471    return DeclPtrTy();
1472
1473  // If this has an identifier and is not an invalid redeclaration,
1474  // add it to the scope stack.
1475  if (Name && !(Redeclaration && New->isInvalidDecl()))
1476    PushOnScopeChains(New, S);
1477
1478  return DeclPtrTy::make(New);
1479}
1480
1481/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1482/// types into constant array types in certain situations which would otherwise
1483/// be errors (for GCC compatibility).
1484static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1485                                                    ASTContext &Context,
1486                                                    bool &SizeIsNegative) {
1487  // This method tries to turn a variable array into a constant
1488  // array even when the size isn't an ICE.  This is necessary
1489  // for compatibility with code that depends on gcc's buggy
1490  // constant expression folding, like struct {char x[(int)(char*)2];}
1491  SizeIsNegative = false;
1492
1493  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1494    QualType Pointee = PTy->getPointeeType();
1495    QualType FixedType =
1496        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1497    if (FixedType.isNull()) return FixedType;
1498    FixedType = Context.getPointerType(FixedType);
1499    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1500    return FixedType;
1501  }
1502
1503  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1504  if (!VLATy)
1505    return QualType();
1506  // FIXME: We should probably handle this case
1507  if (VLATy->getElementType()->isVariablyModifiedType())
1508    return QualType();
1509
1510  Expr::EvalResult EvalResult;
1511  if (!VLATy->getSizeExpr() ||
1512      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1513      !EvalResult.Val.isInt())
1514    return QualType();
1515
1516  llvm::APSInt &Res = EvalResult.Val.getInt();
1517  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1518    return Context.getConstantArrayType(VLATy->getElementType(),
1519                                        Res, ArrayType::Normal, 0);
1520
1521  SizeIsNegative = true;
1522  return QualType();
1523}
1524
1525/// \brief Register the given locally-scoped external C declaration so
1526/// that it can be found later for redeclarations
1527void
1528Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1529                                       Scope *S) {
1530  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1531         "Decl is not a locally-scoped decl!");
1532  // Note that we have a locally-scoped external with this name.
1533  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1534
1535  if (!PrevDecl)
1536    return;
1537
1538  // If there was a previous declaration of this variable, it may be
1539  // in our identifier chain. Update the identifier chain with the new
1540  // declaration.
1541  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1542    // The previous declaration was found on the identifer resolver
1543    // chain, so remove it from its scope.
1544    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1545      S = S->getParent();
1546
1547    if (S)
1548      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1549  }
1550}
1551
1552/// \brief Diagnose function specifiers on a declaration of an identifier that
1553/// does not identify a function.
1554void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1555  // FIXME: We should probably indicate the identifier in question to avoid
1556  // confusion for constructs like "inline int a(), b;"
1557  if (D.getDeclSpec().isInlineSpecified())
1558    Diag(D.getDeclSpec().getInlineSpecLoc(),
1559         diag::err_inline_non_function);
1560
1561  if (D.getDeclSpec().isVirtualSpecified())
1562    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1563         diag::err_virtual_non_function);
1564
1565  if (D.getDeclSpec().isExplicitSpecified())
1566    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1567         diag::err_explicit_non_function);
1568}
1569
1570NamedDecl*
1571Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1572                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1573  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1574  if (D.getCXXScopeSpec().isSet()) {
1575    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1576      << D.getCXXScopeSpec().getRange();
1577    D.setInvalidType();
1578    // Pretend we didn't see the scope specifier.
1579    DC = 0;
1580  }
1581
1582  if (getLangOptions().CPlusPlus) {
1583    // Check that there are no default arguments (C++ only).
1584    CheckExtraCXXDefaultArguments(D);
1585  }
1586
1587  DiagnoseFunctionSpecifiers(D);
1588
1589  if (D.getDeclSpec().isThreadSpecified())
1590    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1591
1592  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1593  if (!NewTD) return 0;
1594
1595  if (D.isInvalidType())
1596    NewTD->setInvalidDecl();
1597
1598  // Handle attributes prior to checking for duplicates in MergeVarDecl
1599  ProcessDeclAttributes(NewTD, D);
1600  // Merge the decl with the existing one if appropriate. If the decl is
1601  // in an outer scope, it isn't the same thing.
1602  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1603    Redeclaration = true;
1604    MergeTypeDefDecl(NewTD, PrevDecl);
1605  }
1606
1607  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1608  // then it shall have block scope.
1609  QualType T = NewTD->getUnderlyingType();
1610  if (T->isVariablyModifiedType()) {
1611    CurFunctionNeedsScopeChecking = true;
1612
1613    if (S->getFnParent() == 0) {
1614      bool SizeIsNegative;
1615      QualType FixedTy =
1616          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1617      if (!FixedTy.isNull()) {
1618        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1619        NewTD->setUnderlyingType(FixedTy);
1620      } else {
1621        if (SizeIsNegative)
1622          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1623        else if (T->isVariableArrayType())
1624          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1625        else
1626          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1627        NewTD->setInvalidDecl();
1628      }
1629    }
1630  }
1631  return NewTD;
1632}
1633
1634/// \brief Determines whether the given declaration is an out-of-scope
1635/// previous declaration.
1636///
1637/// This routine should be invoked when name lookup has found a
1638/// previous declaration (PrevDecl) that is not in the scope where a
1639/// new declaration by the same name is being introduced. If the new
1640/// declaration occurs in a local scope, previous declarations with
1641/// linkage may still be considered previous declarations (C99
1642/// 6.2.2p4-5, C++ [basic.link]p6).
1643///
1644/// \param PrevDecl the previous declaration found by name
1645/// lookup
1646///
1647/// \param DC the context in which the new declaration is being
1648/// declared.
1649///
1650/// \returns true if PrevDecl is an out-of-scope previous declaration
1651/// for a new delcaration with the same name.
1652static bool
1653isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1654                                ASTContext &Context) {
1655  if (!PrevDecl)
1656    return 0;
1657
1658  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1659  // case we need to check each of the overloaded functions.
1660  if (!PrevDecl->hasLinkage())
1661    return false;
1662
1663  if (Context.getLangOptions().CPlusPlus) {
1664    // C++ [basic.link]p6:
1665    //   If there is a visible declaration of an entity with linkage
1666    //   having the same name and type, ignoring entities declared
1667    //   outside the innermost enclosing namespace scope, the block
1668    //   scope declaration declares that same entity and receives the
1669    //   linkage of the previous declaration.
1670    DeclContext *OuterContext = DC->getLookupContext();
1671    if (!OuterContext->isFunctionOrMethod())
1672      // This rule only applies to block-scope declarations.
1673      return false;
1674    else {
1675      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1676      if (PrevOuterContext->isRecord())
1677        // We found a member function: ignore it.
1678        return false;
1679      else {
1680        // Find the innermost enclosing namespace for the new and
1681        // previous declarations.
1682        while (!OuterContext->isFileContext())
1683          OuterContext = OuterContext->getParent();
1684        while (!PrevOuterContext->isFileContext())
1685          PrevOuterContext = PrevOuterContext->getParent();
1686
1687        // The previous declaration is in a different namespace, so it
1688        // isn't the same function.
1689        if (OuterContext->getPrimaryContext() !=
1690            PrevOuterContext->getPrimaryContext())
1691          return false;
1692      }
1693    }
1694  }
1695
1696  return true;
1697}
1698
1699NamedDecl*
1700Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1701                              QualType R,NamedDecl* PrevDecl,
1702                              bool &Redeclaration) {
1703  DeclarationName Name = GetNameForDeclarator(D);
1704
1705  // Check that there are no default arguments (C++ only).
1706  if (getLangOptions().CPlusPlus)
1707    CheckExtraCXXDefaultArguments(D);
1708
1709  VarDecl *NewVD;
1710  VarDecl::StorageClass SC;
1711  switch (D.getDeclSpec().getStorageClassSpec()) {
1712  default: assert(0 && "Unknown storage class!");
1713  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1714  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1715  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1716  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1717  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1718  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1719  case DeclSpec::SCS_mutable:
1720    // mutable can only appear on non-static class members, so it's always
1721    // an error here
1722    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1723    D.setInvalidType();
1724    SC = VarDecl::None;
1725    break;
1726  }
1727
1728  IdentifierInfo *II = Name.getAsIdentifierInfo();
1729  if (!II) {
1730    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1731      << Name.getAsString();
1732    return 0;
1733  }
1734
1735  DiagnoseFunctionSpecifiers(D);
1736
1737  if (!DC->isRecord() && S->getFnParent() == 0) {
1738    // C99 6.9p2: The storage-class specifiers auto and register shall not
1739    // appear in the declaration specifiers in an external declaration.
1740    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1741      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1742      D.setInvalidType();
1743    }
1744  }
1745  if (DC->isRecord() && !CurContext->isRecord()) {
1746    // This is an out-of-line definition of a static data member.
1747    if (SC == VarDecl::Static) {
1748      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1749           diag::err_static_out_of_line)
1750        << CodeModificationHint::CreateRemoval(
1751                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1752    } else if (SC == VarDecl::None)
1753      SC = VarDecl::Static;
1754  }
1755
1756  // The variable can not
1757  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1758                          II, R, SC,
1759                          // FIXME: Move to DeclGroup...
1760                          D.getDeclSpec().getSourceRange().getBegin());
1761
1762  if (D.isInvalidType())
1763    NewVD->setInvalidDecl();
1764
1765  if (D.getDeclSpec().isThreadSpecified()) {
1766    if (NewVD->hasLocalStorage())
1767      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1768    else if (!Context.Target.isTLSSupported())
1769      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1770    else
1771      NewVD->setThreadSpecified(true);
1772  }
1773
1774  // Set the lexical context. If the declarator has a C++ scope specifier, the
1775  // lexical context will be different from the semantic context.
1776  NewVD->setLexicalDeclContext(CurContext);
1777
1778  // Handle attributes prior to checking for duplicates in MergeVarDecl
1779  ProcessDeclAttributes(NewVD, D);
1780
1781  // Handle GNU asm-label extension (encoded as an attribute).
1782  if (Expr *E = (Expr*) D.getAsmLabel()) {
1783    // The parser guarantees this is a string.
1784    StringLiteral *SE = cast<StringLiteral>(E);
1785    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1786                                                        SE->getByteLength())));
1787  }
1788
1789  // If name lookup finds a previous declaration that is not in the
1790  // same scope as the new declaration, this may still be an
1791  // acceptable redeclaration.
1792  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1793      !(NewVD->hasLinkage() &&
1794        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1795    PrevDecl = 0;
1796
1797  // Merge the decl with the existing one if appropriate.
1798  if (PrevDecl) {
1799    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1800      // The user tried to define a non-static data member
1801      // out-of-line (C++ [dcl.meaning]p1).
1802      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1803        << D.getCXXScopeSpec().getRange();
1804      PrevDecl = 0;
1805      NewVD->setInvalidDecl();
1806    }
1807  } else if (D.getCXXScopeSpec().isSet()) {
1808    // No previous declaration in the qualifying scope.
1809    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1810      << Name << D.getCXXScopeSpec().getRange();
1811    NewVD->setInvalidDecl();
1812  }
1813
1814  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1815
1816  // If this is a locally-scoped extern C variable, update the map of
1817  // such variables.
1818  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1819      !NewVD->isInvalidDecl())
1820    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1821
1822  return NewVD;
1823}
1824
1825/// \brief Perform semantic checking on a newly-created variable
1826/// declaration.
1827///
1828/// This routine performs all of the type-checking required for a
1829/// variable declaration once it has been build. It is used both to
1830/// check variables after they have been parsed and their declarators
1831/// have been translated into a declaration, and to check
1832///
1833/// Sets NewVD->isInvalidDecl() if an error was encountered.
1834void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1835                                    bool &Redeclaration) {
1836  // If the decl is already known invalid, don't check it.
1837  if (NewVD->isInvalidDecl())
1838    return;
1839
1840  QualType T = NewVD->getType();
1841
1842  if (T->isObjCInterfaceType()) {
1843    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1844    return NewVD->setInvalidDecl();
1845  }
1846
1847  // The variable can not have an abstract class type.
1848  if (RequireNonAbstractType(NewVD->getLocation(), T,
1849                             diag::err_abstract_type_in_decl,
1850                             AbstractVariableType))
1851    return NewVD->setInvalidDecl();
1852
1853  // Emit an error if an address space was applied to decl with local storage.
1854  // This includes arrays of objects with address space qualifiers, but not
1855  // automatic variables that point to other address spaces.
1856  // ISO/IEC TR 18037 S5.1.2
1857  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1858    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1859    return NewVD->setInvalidDecl();
1860  }
1861
1862  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1863      && !NewVD->hasAttr<BlocksAttr>())
1864    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1865
1866  bool isVM = T->isVariablyModifiedType();
1867  if (isVM || NewVD->hasAttr<CleanupAttr>())
1868    CurFunctionNeedsScopeChecking = true;
1869
1870  if ((isVM && NewVD->hasLinkage()) ||
1871      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1872    bool SizeIsNegative;
1873    QualType FixedTy =
1874        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1875
1876    if (FixedTy.isNull() && T->isVariableArrayType()) {
1877      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1878      // FIXME: This won't give the correct result for
1879      // int a[10][n];
1880      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1881
1882      if (NewVD->isFileVarDecl())
1883        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1884        << SizeRange;
1885      else if (NewVD->getStorageClass() == VarDecl::Static)
1886        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1887        << SizeRange;
1888      else
1889        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1890        << SizeRange;
1891      return NewVD->setInvalidDecl();
1892    }
1893
1894    if (FixedTy.isNull()) {
1895      if (NewVD->isFileVarDecl())
1896        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1897      else
1898        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1899      return NewVD->setInvalidDecl();
1900    }
1901
1902    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1903    NewVD->setType(FixedTy);
1904  }
1905
1906  if (!PrevDecl && NewVD->isExternC(Context)) {
1907    // Since we did not find anything by this name and we're declaring
1908    // an extern "C" variable, look for a non-visible extern "C"
1909    // declaration with the same name.
1910    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1911      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1912    if (Pos != LocallyScopedExternalDecls.end())
1913      PrevDecl = Pos->second;
1914  }
1915
1916  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1917    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1918      << T;
1919    return NewVD->setInvalidDecl();
1920  }
1921
1922  if (PrevDecl) {
1923    Redeclaration = true;
1924    MergeVarDecl(NewVD, PrevDecl);
1925  }
1926}
1927
1928NamedDecl*
1929Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1930                              QualType R, NamedDecl* PrevDecl,
1931                              bool IsFunctionDefinition, bool &Redeclaration) {
1932  assert(R.getTypePtr()->isFunctionType());
1933
1934  DeclarationName Name = GetNameForDeclarator(D);
1935  FunctionDecl::StorageClass SC = FunctionDecl::None;
1936  switch (D.getDeclSpec().getStorageClassSpec()) {
1937  default: assert(0 && "Unknown storage class!");
1938  case DeclSpec::SCS_auto:
1939  case DeclSpec::SCS_register:
1940  case DeclSpec::SCS_mutable:
1941    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1942         diag::err_typecheck_sclass_func);
1943    D.setInvalidType();
1944    break;
1945  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1946  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1947  case DeclSpec::SCS_static: {
1948    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1949      // C99 6.7.1p5:
1950      //   The declaration of an identifier for a function that has
1951      //   block scope shall have no explicit storage-class specifier
1952      //   other than extern
1953      // See also (C++ [dcl.stc]p4).
1954      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1955           diag::err_static_block_func);
1956      SC = FunctionDecl::None;
1957    } else
1958      SC = FunctionDecl::Static;
1959    break;
1960  }
1961  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1962  }
1963
1964  if (D.getDeclSpec().isThreadSpecified())
1965    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1966
1967  bool isInline = D.getDeclSpec().isInlineSpecified();
1968  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1969  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1970
1971  // Check that the return type is not an abstract class type.
1972  // For record types, this is done by the AbstractClassUsageDiagnoser once
1973  // the class has been completely parsed.
1974  if (!DC->isRecord() &&
1975      RequireNonAbstractType(D.getIdentifierLoc(),
1976                             R->getAsFunctionType()->getResultType(),
1977                             diag::err_abstract_type_in_decl,
1978                             AbstractReturnType))
1979    D.setInvalidType();
1980
1981  // Do not allow returning a objc interface by-value.
1982  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1983    Diag(D.getIdentifierLoc(),
1984         diag::err_object_cannot_be_passed_returned_by_value) << 0
1985      << R->getAsFunctionType()->getResultType();
1986    D.setInvalidType();
1987  }
1988
1989  bool isVirtualOkay = false;
1990  FunctionDecl *NewFD;
1991  if (D.getKind() == Declarator::DK_Constructor) {
1992    // This is a C++ constructor declaration.
1993    assert(DC->isRecord() &&
1994           "Constructors can only be declared in a member context");
1995
1996    R = CheckConstructorDeclarator(D, R, SC);
1997
1998    // Create the new declaration
1999    NewFD = CXXConstructorDecl::Create(Context,
2000                                       cast<CXXRecordDecl>(DC),
2001                                       D.getIdentifierLoc(), Name, R,
2002                                       isExplicit, isInline,
2003                                       /*isImplicitlyDeclared=*/false);
2004  } else if (D.getKind() == Declarator::DK_Destructor) {
2005    // This is a C++ destructor declaration.
2006    if (DC->isRecord()) {
2007      R = CheckDestructorDeclarator(D, SC);
2008
2009      NewFD = CXXDestructorDecl::Create(Context,
2010                                        cast<CXXRecordDecl>(DC),
2011                                        D.getIdentifierLoc(), Name, R,
2012                                        isInline,
2013                                        /*isImplicitlyDeclared=*/false);
2014
2015      isVirtualOkay = true;
2016    } else {
2017      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2018
2019      // Create a FunctionDecl to satisfy the function definition parsing
2020      // code path.
2021      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2022                                   Name, R, SC, isInline,
2023                                   /*hasPrototype=*/true,
2024                                   // FIXME: Move to DeclGroup...
2025                                   D.getDeclSpec().getSourceRange().getBegin());
2026      D.setInvalidType();
2027    }
2028  } else if (D.getKind() == Declarator::DK_Conversion) {
2029    if (!DC->isRecord()) {
2030      Diag(D.getIdentifierLoc(),
2031           diag::err_conv_function_not_member);
2032      return 0;
2033    }
2034
2035    CheckConversionDeclarator(D, R, SC);
2036    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2037                                      D.getIdentifierLoc(), Name, R,
2038                                      isInline, isExplicit);
2039
2040    isVirtualOkay = true;
2041  } else if (DC->isRecord()) {
2042    // This is a C++ method declaration.
2043    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2044                                  D.getIdentifierLoc(), Name, R,
2045                                  (SC == FunctionDecl::Static), isInline);
2046
2047    isVirtualOkay = (SC != FunctionDecl::Static);
2048  } else {
2049    // Determine whether the function was written with a
2050    // prototype. This true when:
2051    //   - we're in C++ (where every function has a prototype),
2052    //   - there is a prototype in the declarator, or
2053    //   - the type R of the function is some kind of typedef or other reference
2054    //     to a type name (which eventually refers to a function type).
2055    bool HasPrototype =
2056       getLangOptions().CPlusPlus ||
2057       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2058       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2059
2060    NewFD = FunctionDecl::Create(Context, DC,
2061                                 D.getIdentifierLoc(),
2062                                 Name, R, SC, isInline, HasPrototype,
2063                                 // FIXME: Move to DeclGroup...
2064                                 D.getDeclSpec().getSourceRange().getBegin());
2065  }
2066
2067  if (D.isInvalidType())
2068    NewFD->setInvalidDecl();
2069
2070  // Set the lexical context. If the declarator has a C++
2071  // scope specifier, the lexical context will be different
2072  // from the semantic context.
2073  NewFD->setLexicalDeclContext(CurContext);
2074
2075  // C++ [dcl.fct.spec]p5:
2076  //   The virtual specifier shall only be used in declarations of
2077  //   nonstatic class member functions that appear within a
2078  //   member-specification of a class declaration; see 10.3.
2079  //
2080  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2081  // function is also virtual if it overrides an already virtual
2082  // function. This is important to do here because it's part of the
2083  // declaration.
2084  if (isVirtual && !NewFD->isInvalidDecl()) {
2085    if (!isVirtualOkay) {
2086       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2087           diag::err_virtual_non_function);
2088    } else if (!CurContext->isRecord()) {
2089      // 'virtual' was specified outside of the class.
2090      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2091        << CodeModificationHint::CreateRemoval(
2092                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2093    } else {
2094      // Okay: Add virtual to the method.
2095      cast<CXXMethodDecl>(NewFD)->setVirtual();
2096      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2097      CurClass->setAggregate(false);
2098      CurClass->setPOD(false);
2099      CurClass->setPolymorphic(true);
2100      CurClass->setHasTrivialConstructor(false);
2101    }
2102  }
2103
2104  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2105      !CurContext->isRecord()) {
2106    // C++ [class.static]p1:
2107    //   A data or function member of a class may be declared static
2108    //   in a class definition, in which case it is a static member of
2109    //   the class.
2110
2111    // Complain about the 'static' specifier if it's on an out-of-line
2112    // member function definition.
2113    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2114         diag::err_static_out_of_line)
2115      << CodeModificationHint::CreateRemoval(
2116                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2117  }
2118
2119  // Handle GNU asm-label extension (encoded as an attribute).
2120  if (Expr *E = (Expr*) D.getAsmLabel()) {
2121    // The parser guarantees this is a string.
2122    StringLiteral *SE = cast<StringLiteral>(E);
2123    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2124                                                        SE->getByteLength())));
2125  }
2126
2127  // Copy the parameter declarations from the declarator D to the function
2128  // declaration NewFD, if they are available.  First scavenge them into Params.
2129  llvm::SmallVector<ParmVarDecl*, 16> Params;
2130  if (D.getNumTypeObjects() > 0) {
2131    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2132
2133    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2134    // function that takes no arguments, not a function that takes a
2135    // single void argument.
2136    // We let through "const void" here because Sema::GetTypeForDeclarator
2137    // already checks for that case.
2138    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2139        FTI.ArgInfo[0].Param &&
2140        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2141      // Empty arg list, don't push any params.
2142      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2143
2144      // In C++, the empty parameter-type-list must be spelled "void"; a
2145      // typedef of void is not permitted.
2146      if (getLangOptions().CPlusPlus &&
2147          Param->getType().getUnqualifiedType() != Context.VoidTy)
2148        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2149      // FIXME: Leaks decl?
2150    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2151      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2152        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2153    }
2154
2155  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2156    // When we're declaring a function with a typedef, typeof, etc as in the
2157    // following example, we'll need to synthesize (unnamed)
2158    // parameters for use in the declaration.
2159    //
2160    // @code
2161    // typedef void fn(int);
2162    // fn f;
2163    // @endcode
2164
2165    // Synthesize a parameter for each argument type.
2166    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2167         AE = FT->arg_type_end(); AI != AE; ++AI) {
2168      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2169                                               SourceLocation(), 0,
2170                                               *AI, VarDecl::None, 0);
2171      Param->setImplicit();
2172      Params.push_back(Param);
2173    }
2174  }
2175
2176  // If NewFD is invalid, then the Params list may not have the right number of
2177  // decls for this FunctionDecl.  Because we want the AST to be as correct as
2178  // possible, "fix" these problems by removing or adding params as needed.
2179  if (NewFD->isInvalidDecl()) {
2180    unsigned NumNeededParams = NewFD->getNumParams();
2181    while (NumNeededParams > Params.size()) {
2182      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2183                                               SourceLocation(), 0,
2184                                               Context.IntTy, VarDecl::None, 0);
2185      Param->setImplicit();
2186      Param->setInvalidDecl();
2187      Params.push_back(Param);
2188    }
2189
2190    while (NumNeededParams < Params.size()) {
2191      Params.pop_back();
2192      // FIXME: Don't leak the decl.
2193    }
2194  }
2195
2196  // Finally, we know we have the right number of parameters, install them.
2197  NewFD->setParams(Context, &Params[0], Params.size());
2198
2199
2200  // If name lookup finds a previous declaration that is not in the
2201  // same scope as the new declaration, this may still be an
2202  // acceptable redeclaration.
2203  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2204      !(NewFD->hasLinkage() &&
2205        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2206    PrevDecl = 0;
2207
2208  // FIXME: We need to determine whether the GNU inline attribute will
2209  // be applied to this function declaration, since it affects
2210  // declaration merging. This hack will go away when the FIXME below
2211  // is resolved, since we should be putting *all* attributes onto the
2212  // declaration now.
2213  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2214       Attr; Attr = Attr->getNext()) {
2215    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2216      NewFD->addAttr(::new (Context) GNUInlineAttr());
2217      break;
2218    }
2219  }
2220
2221  // Perform semantic checking on the function declaration.
2222  bool OverloadableAttrRequired = false; // FIXME: HACK!
2223  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2224                           /*FIXME:*/OverloadableAttrRequired);
2225
2226  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2227    // An out-of-line member function declaration must also be a
2228    // definition (C++ [dcl.meaning]p1).
2229    if (!IsFunctionDefinition) {
2230      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2231        << D.getCXXScopeSpec().getRange();
2232      NewFD->setInvalidDecl();
2233    } else if (!Redeclaration) {
2234      // The user tried to provide an out-of-line definition for a
2235      // function that is a member of a class or namespace, but there
2236      // was no such member function declared (C++ [class.mfct]p2,
2237      // C++ [namespace.memdef]p2). For example:
2238      //
2239      // class X {
2240      //   void f() const;
2241      // };
2242      //
2243      // void X::f() { } // ill-formed
2244      //
2245      // Complain about this problem, and attempt to suggest close
2246      // matches (e.g., those that differ only in cv-qualifiers and
2247      // whether the parameter types are references).
2248      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2249        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2250      NewFD->setInvalidDecl();
2251
2252      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2253                                              true);
2254      assert(!Prev.isAmbiguous() &&
2255             "Cannot have an ambiguity in previous-declaration lookup");
2256      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2257           Func != FuncEnd; ++Func) {
2258        if (isa<FunctionDecl>(*Func) &&
2259            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2260          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2261      }
2262
2263      PrevDecl = 0;
2264    }
2265  }
2266
2267  // Handle attributes. We need to have merged decls when handling attributes
2268  // (for example to check for conflicts, etc).
2269  // FIXME: This needs to happen before we merge declarations. Then,
2270  // let attribute merging cope with attribute conflicts.
2271  ProcessDeclAttributes(NewFD, D);
2272  AddKnownFunctionAttributes(NewFD);
2273
2274  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2275    // If a function name is overloadable in C, then every function
2276    // with that name must be marked "overloadable".
2277    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2278      << Redeclaration << NewFD;
2279    if (PrevDecl)
2280      Diag(PrevDecl->getLocation(),
2281           diag::note_attribute_overloadable_prev_overload);
2282    NewFD->addAttr(::new (Context) OverloadableAttr());
2283  }
2284
2285  // If this is a locally-scoped extern C function, update the
2286  // map of such names.
2287  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2288      && !NewFD->isInvalidDecl())
2289    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2290
2291  return NewFD;
2292}
2293
2294/// \brief Perform semantic checking of a new function declaration.
2295///
2296/// Performs semantic analysis of the new function declaration
2297/// NewFD. This routine performs all semantic checking that does not
2298/// require the actual declarator involved in the declaration, and is
2299/// used both for the declaration of functions as they are parsed
2300/// (called via ActOnDeclarator) and for the declaration of functions
2301/// that have been instantiated via C++ template instantiation (called
2302/// via InstantiateDecl).
2303///
2304/// This sets NewFD->isInvalidDecl() to true if there was an error.
2305void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2306                                    bool &Redeclaration,
2307                                    bool &OverloadableAttrRequired) {
2308  // If NewFD is already known erroneous, don't do any of this checking.
2309  if (NewFD->isInvalidDecl())
2310    return;
2311
2312  // Semantic checking for this function declaration (in isolation).
2313  if (getLangOptions().CPlusPlus) {
2314    // C++-specific checks.
2315    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2316      CheckConstructor(Constructor);
2317    } else if (isa<CXXDestructorDecl>(NewFD)) {
2318      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2319      Record->setUserDeclaredDestructor(true);
2320      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2321      // user-defined destructor.
2322      Record->setPOD(false);
2323
2324      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2325      // declared destructor.
2326      Record->setHasTrivialDestructor(false);
2327    } else if (CXXConversionDecl *Conversion
2328               = dyn_cast<CXXConversionDecl>(NewFD))
2329      ActOnConversionDeclarator(Conversion);
2330
2331    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2332    if (NewFD->isOverloadedOperator() &&
2333        CheckOverloadedOperatorDeclaration(NewFD))
2334      return NewFD->setInvalidDecl();
2335  }
2336
2337  // C99 6.7.4p6:
2338  //   [... ] For a function with external linkage, the following
2339  //   restrictions apply: [...] If all of the file scope declarations
2340  //   for a function in a translation unit include the inline
2341  //   function specifier without extern, then the definition in that
2342  //   translation unit is an inline definition. An inline definition
2343  //   does not provide an external definition for the function, and
2344  //   does not forbid an external definition in another translation
2345  //   unit.
2346  //
2347  // Here we determine whether this function, in isolation, would be a
2348  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2349  // previous declarations.
2350  if (NewFD->isInline() &&
2351      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2352    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2353      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2354    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2355      // GNU "extern inline" is the same as "inline" in C99.
2356      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2357        NewFD->setC99InlineDefinition(true);
2358    } else if (getLangOptions().C99 &&
2359               NewFD->getStorageClass() == FunctionDecl::None)
2360      NewFD->setC99InlineDefinition(true);
2361  }
2362
2363  // Check for a previous declaration of this name.
2364  if (!PrevDecl && NewFD->isExternC(Context)) {
2365    // Since we did not find anything by this name and we're declaring
2366    // an extern "C" function, look for a non-visible extern "C"
2367    // declaration with the same name.
2368    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2369      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2370    if (Pos != LocallyScopedExternalDecls.end())
2371      PrevDecl = Pos->second;
2372  }
2373
2374  // Merge or overload the declaration with an existing declaration of
2375  // the same name, if appropriate.
2376  if (PrevDecl) {
2377    // Determine whether NewFD is an overload of PrevDecl or
2378    // a declaration that requires merging. If it's an overload,
2379    // there's no more work to do here; we'll just add the new
2380    // function to the scope.
2381    OverloadedFunctionDecl::function_iterator MatchedDecl;
2382
2383    if (!getLangOptions().CPlusPlus &&
2384        AllowOverloadingOfFunction(PrevDecl, Context)) {
2385      OverloadableAttrRequired = true;
2386
2387      // Functions marked "overloadable" must have a prototype (that
2388      // we can't get through declaration merging).
2389      if (!NewFD->getType()->getAsFunctionProtoType()) {
2390        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2391          << NewFD;
2392        Redeclaration = true;
2393
2394        // Turn this into a variadic function with no parameters.
2395        QualType R = Context.getFunctionType(
2396                       NewFD->getType()->getAsFunctionType()->getResultType(),
2397                       0, 0, true, 0);
2398        NewFD->setType(R);
2399        return NewFD->setInvalidDecl();
2400      }
2401    }
2402
2403    if (PrevDecl &&
2404        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2405         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2406      Redeclaration = true;
2407      Decl *OldDecl = PrevDecl;
2408
2409      // If PrevDecl was an overloaded function, extract the
2410      // FunctionDecl that matched.
2411      if (isa<OverloadedFunctionDecl>(PrevDecl))
2412        OldDecl = *MatchedDecl;
2413
2414      // NewFD and OldDecl represent declarations that need to be
2415      // merged.
2416      if (MergeFunctionDecl(NewFD, OldDecl))
2417        return NewFD->setInvalidDecl();
2418
2419      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2420    }
2421  }
2422
2423  // In C++, check default arguments now that we have merged decls. Unless
2424  // the lexical context is the class, because in this case this is done
2425  // during delayed parsing anyway.
2426  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2427    CheckCXXDefaultArguments(NewFD);
2428}
2429
2430bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2431  // FIXME: Need strict checking.  In C89, we need to check for
2432  // any assignment, increment, decrement, function-calls, or
2433  // commas outside of a sizeof.  In C99, it's the same list,
2434  // except that the aforementioned are allowed in unevaluated
2435  // expressions.  Everything else falls under the
2436  // "may accept other forms of constant expressions" exception.
2437  // (We never end up here for C++, so the constant expression
2438  // rules there don't matter.)
2439  if (Init->isConstantInitializer(Context))
2440    return false;
2441  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2442    << Init->getSourceRange();
2443  return true;
2444}
2445
2446void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2447  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2448}
2449
2450/// AddInitializerToDecl - Adds the initializer Init to the
2451/// declaration dcl. If DirectInit is true, this is C++ direct
2452/// initialization rather than copy initialization.
2453void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2454  Decl *RealDecl = dcl.getAs<Decl>();
2455  // If there is no declaration, there was an error parsing it.  Just ignore
2456  // the initializer.
2457  if (RealDecl == 0)
2458    return;
2459
2460  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2461    // With declarators parsed the way they are, the parser cannot
2462    // distinguish between a normal initializer and a pure-specifier.
2463    // Thus this grotesque test.
2464    IntegerLiteral *IL;
2465    Expr *Init = static_cast<Expr *>(init.get());
2466    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2467        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2468      if (Method->isVirtual()) {
2469        Method->setPure();
2470
2471        // A class is abstract if at least one function is pure virtual.
2472        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2473      } else if (!Method->isInvalidDecl()) {
2474        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2475          << Method->getDeclName() << Init->getSourceRange();
2476        Method->setInvalidDecl();
2477      }
2478    } else {
2479      Diag(Method->getLocation(), diag::err_member_function_initialization)
2480        << Method->getDeclName() << Init->getSourceRange();
2481      Method->setInvalidDecl();
2482    }
2483    return;
2484  }
2485
2486  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2487  if (!VDecl) {
2488    if (getLangOptions().CPlusPlus &&
2489        RealDecl->getLexicalDeclContext()->isRecord() &&
2490        isa<NamedDecl>(RealDecl))
2491      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2492        << cast<NamedDecl>(RealDecl)->getDeclName();
2493    else
2494      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2495    RealDecl->setInvalidDecl();
2496    return;
2497  }
2498
2499  if (!VDecl->getType()->isArrayType() &&
2500      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2501                          diag::err_typecheck_decl_incomplete_type)) {
2502    RealDecl->setInvalidDecl();
2503    return;
2504  }
2505
2506  const VarDecl *Def = 0;
2507  if (VDecl->getDefinition(Def)) {
2508    Diag(VDecl->getLocation(), diag::err_redefinition)
2509      << VDecl->getDeclName();
2510    Diag(Def->getLocation(), diag::note_previous_definition);
2511    VDecl->setInvalidDecl();
2512    return;
2513  }
2514
2515  // Take ownership of the expression, now that we're sure we have somewhere
2516  // to put it.
2517  Expr *Init = static_cast<Expr *>(init.release());
2518  assert(Init && "missing initializer");
2519
2520  // Get the decls type and save a reference for later, since
2521  // CheckInitializerTypes may change it.
2522  QualType DclT = VDecl->getType(), SavT = DclT;
2523  if (VDecl->isBlockVarDecl()) {
2524    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2525      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2526      VDecl->setInvalidDecl();
2527    } else if (!VDecl->isInvalidDecl()) {
2528      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2529                                VDecl->getDeclName(), DirectInit))
2530        VDecl->setInvalidDecl();
2531
2532      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2533      // Don't check invalid declarations to avoid emitting useless diagnostics.
2534      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2535        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2536          CheckForConstantInitializer(Init, DclT);
2537      }
2538    }
2539  } else if (VDecl->isStaticDataMember() &&
2540             VDecl->getLexicalDeclContext()->isRecord()) {
2541    // This is an in-class initialization for a static data member, e.g.,
2542    //
2543    // struct S {
2544    //   static const int value = 17;
2545    // };
2546
2547    // Attach the initializer
2548    VDecl->setInit(Init);
2549
2550    // C++ [class.mem]p4:
2551    //   A member-declarator can contain a constant-initializer only
2552    //   if it declares a static member (9.4) of const integral or
2553    //   const enumeration type, see 9.4.2.
2554    QualType T = VDecl->getType();
2555    if (!T->isDependentType() &&
2556        (!Context.getCanonicalType(T).isConstQualified() ||
2557         !T->isIntegralType())) {
2558      Diag(VDecl->getLocation(), diag::err_member_initialization)
2559        << VDecl->getDeclName() << Init->getSourceRange();
2560      VDecl->setInvalidDecl();
2561    } else {
2562      // C++ [class.static.data]p4:
2563      //   If a static data member is of const integral or const
2564      //   enumeration type, its declaration in the class definition
2565      //   can specify a constant-initializer which shall be an
2566      //   integral constant expression (5.19).
2567      if (!Init->isTypeDependent() &&
2568          !Init->getType()->isIntegralType()) {
2569        // We have a non-dependent, non-integral or enumeration type.
2570        Diag(Init->getSourceRange().getBegin(),
2571             diag::err_in_class_initializer_non_integral_type)
2572          << Init->getType() << Init->getSourceRange();
2573        VDecl->setInvalidDecl();
2574      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2575        // Check whether the expression is a constant expression.
2576        llvm::APSInt Value;
2577        SourceLocation Loc;
2578        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2579          Diag(Loc, diag::err_in_class_initializer_non_constant)
2580            << Init->getSourceRange();
2581          VDecl->setInvalidDecl();
2582        } else if (!VDecl->getType()->isDependentType())
2583          ImpCastExprToType(Init, VDecl->getType());
2584      }
2585    }
2586  } else if (VDecl->isFileVarDecl()) {
2587    if (VDecl->getStorageClass() == VarDecl::Extern)
2588      Diag(VDecl->getLocation(), diag::warn_extern_init);
2589    if (!VDecl->isInvalidDecl())
2590      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2591                                VDecl->getDeclName(), DirectInit))
2592        VDecl->setInvalidDecl();
2593
2594    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2595    // Don't check invalid declarations to avoid emitting useless diagnostics.
2596    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2597      // C99 6.7.8p4. All file scoped initializers need to be constant.
2598      CheckForConstantInitializer(Init, DclT);
2599    }
2600  }
2601  // If the type changed, it means we had an incomplete type that was
2602  // completed by the initializer. For example:
2603  //   int ary[] = { 1, 3, 5 };
2604  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2605  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2606    VDecl->setType(DclT);
2607    Init->setType(DclT);
2608  }
2609
2610  // Attach the initializer to the decl.
2611  VDecl->setInit(Init);
2612
2613  // If the previous declaration of VDecl was a tentative definition,
2614  // remove it from the set of tentative definitions.
2615  if (VDecl->getPreviousDeclaration() &&
2616      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2617    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2618      = TentativeDefinitions.find(VDecl->getDeclName());
2619    assert(Pos != TentativeDefinitions.end() &&
2620           "Unrecorded tentative definition?");
2621    TentativeDefinitions.erase(Pos);
2622  }
2623
2624  return;
2625}
2626
2627void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2628  Decl *RealDecl = dcl.getAs<Decl>();
2629
2630  // If there is no declaration, there was an error parsing it. Just ignore it.
2631  if (RealDecl == 0)
2632    return;
2633
2634  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2635    QualType Type = Var->getType();
2636
2637    // Record tentative definitions.
2638    if (Var->isTentativeDefinition(Context))
2639      TentativeDefinitions[Var->getDeclName()] = Var;
2640
2641    // C++ [dcl.init.ref]p3:
2642    //   The initializer can be omitted for a reference only in a
2643    //   parameter declaration (8.3.5), in the declaration of a
2644    //   function return type, in the declaration of a class member
2645    //   within its class declaration (9.2), and where the extern
2646    //   specifier is explicitly used.
2647    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2648      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2649        << Var->getDeclName()
2650        << SourceRange(Var->getLocation(), Var->getLocation());
2651      Var->setInvalidDecl();
2652      return;
2653    }
2654
2655    // C++ [dcl.init]p9:
2656    //
2657    //   If no initializer is specified for an object, and the object
2658    //   is of (possibly cv-qualified) non-POD class type (or array
2659    //   thereof), the object shall be default-initialized; if the
2660    //   object is of const-qualified type, the underlying class type
2661    //   shall have a user-declared default constructor.
2662    if (getLangOptions().CPlusPlus) {
2663      QualType InitType = Type;
2664      if (const ArrayType *Array = Context.getAsArrayType(Type))
2665        InitType = Array->getElementType();
2666      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2667        CXXRecordDecl *RD =
2668          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2669        CXXConstructorDecl *Constructor = 0;
2670        if (!RequireCompleteType(Var->getLocation(), InitType,
2671                                    diag::err_invalid_incomplete_type_use))
2672          Constructor
2673            = PerformInitializationByConstructor(InitType, 0, 0,
2674                                                 Var->getLocation(),
2675                                               SourceRange(Var->getLocation(),
2676                                                           Var->getLocation()),
2677                                                 Var->getDeclName(),
2678                                                 IK_Default);
2679        if (!Constructor)
2680          Var->setInvalidDecl();
2681        else if (!RD->hasTrivialConstructor())
2682          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2683      }
2684    }
2685
2686#if 0
2687    // FIXME: Temporarily disabled because we are not properly parsing
2688    // linkage specifications on declarations, e.g.,
2689    //
2690    //   extern "C" const CGPoint CGPointerZero;
2691    //
2692    // C++ [dcl.init]p9:
2693    //
2694    //     If no initializer is specified for an object, and the
2695    //     object is of (possibly cv-qualified) non-POD class type (or
2696    //     array thereof), the object shall be default-initialized; if
2697    //     the object is of const-qualified type, the underlying class
2698    //     type shall have a user-declared default
2699    //     constructor. Otherwise, if no initializer is specified for
2700    //     an object, the object and its subobjects, if any, have an
2701    //     indeterminate initial value; if the object or any of its
2702    //     subobjects are of const-qualified type, the program is
2703    //     ill-formed.
2704    //
2705    // This isn't technically an error in C, so we don't diagnose it.
2706    //
2707    // FIXME: Actually perform the POD/user-defined default
2708    // constructor check.
2709    if (getLangOptions().CPlusPlus &&
2710        Context.getCanonicalType(Type).isConstQualified() &&
2711        !Var->hasExternalStorage())
2712      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2713        << Var->getName()
2714        << SourceRange(Var->getLocation(), Var->getLocation());
2715#endif
2716  }
2717}
2718
2719Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2720                                                   unsigned NumDecls) {
2721  llvm::SmallVector<Decl*, 8> Decls;
2722
2723  for (unsigned i = 0; i != NumDecls; ++i)
2724    if (Decl *D = Group[i].getAs<Decl>())
2725      Decls.push_back(D);
2726
2727  // Perform semantic analysis that depends on having fully processed both
2728  // the declarator and initializer.
2729  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2730    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2731    if (!IDecl)
2732      continue;
2733    QualType T = IDecl->getType();
2734
2735    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2736    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2737    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2738      if (!IDecl->isInvalidDecl() &&
2739          RequireCompleteType(IDecl->getLocation(), T,
2740                              diag::err_typecheck_decl_incomplete_type))
2741        IDecl->setInvalidDecl();
2742    }
2743    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2744    // object that has file scope without an initializer, and without a
2745    // storage-class specifier or with the storage-class specifier "static",
2746    // constitutes a tentative definition. Note: A tentative definition with
2747    // external linkage is valid (C99 6.2.2p5).
2748    if (IDecl->isTentativeDefinition(Context)) {
2749      QualType CheckType = T;
2750      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2751
2752      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2753      if (ArrayT) {
2754        CheckType = ArrayT->getElementType();
2755        DiagID = diag::err_illegal_decl_array_incomplete_type;
2756      }
2757
2758      if (IDecl->isInvalidDecl()) {
2759        // Do nothing with invalid declarations
2760      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2761                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2762        // C99 6.9.2p3: If the declaration of an identifier for an object is
2763        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2764        // declared type shall not be an incomplete type.
2765        IDecl->setInvalidDecl();
2766      }
2767    }
2768  }
2769  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2770                                                   &Decls[0], Decls.size()));
2771}
2772
2773
2774/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2775/// to introduce parameters into function prototype scope.
2776Sema::DeclPtrTy
2777Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2778  const DeclSpec &DS = D.getDeclSpec();
2779
2780  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2781  VarDecl::StorageClass StorageClass = VarDecl::None;
2782  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2783    StorageClass = VarDecl::Register;
2784  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2785    Diag(DS.getStorageClassSpecLoc(),
2786         diag::err_invalid_storage_class_in_func_decl);
2787    D.getMutableDeclSpec().ClearStorageClassSpecs();
2788  }
2789
2790  if (D.getDeclSpec().isThreadSpecified())
2791    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2792
2793  DiagnoseFunctionSpecifiers(D);
2794
2795  // Check that there are no default arguments inside the type of this
2796  // parameter (C++ only).
2797  if (getLangOptions().CPlusPlus)
2798    CheckExtraCXXDefaultArguments(D);
2799
2800  QualType parmDeclType = GetTypeForDeclarator(D, S);
2801  if (parmDeclType.isNull()) {
2802    D.setInvalidType(true);
2803    parmDeclType = Context.IntTy;
2804  }
2805
2806  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2807  // Can this happen for params?  We already checked that they don't conflict
2808  // among each other.  Here they can only shadow globals, which is ok.
2809  IdentifierInfo *II = D.getIdentifier();
2810  if (II) {
2811    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2812      if (PrevDecl->isTemplateParameter()) {
2813        // Maybe we will complain about the shadowed template parameter.
2814        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2815        // Just pretend that we didn't see the previous declaration.
2816        PrevDecl = 0;
2817      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2818        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2819
2820        // Recover by removing the name
2821        II = 0;
2822        D.SetIdentifier(0, D.getIdentifierLoc());
2823      }
2824    }
2825  }
2826
2827  // Parameters can not be abstract class types.
2828  // For record types, this is done by the AbstractClassUsageDiagnoser once
2829  // the class has been completely parsed.
2830  if (!CurContext->isRecord() &&
2831      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2832                             diag::err_abstract_type_in_decl,
2833                             AbstractParamType))
2834    D.setInvalidType(true);
2835
2836  QualType T = adjustParameterType(parmDeclType);
2837
2838  ParmVarDecl *New;
2839  if (T == parmDeclType) // parameter type did not need adjustment
2840    New = ParmVarDecl::Create(Context, CurContext,
2841                              D.getIdentifierLoc(), II,
2842                              parmDeclType, StorageClass,
2843                              0);
2844  else // keep track of both the adjusted and unadjusted types
2845    New = OriginalParmVarDecl::Create(Context, CurContext,
2846                                      D.getIdentifierLoc(), II, T,
2847                                      parmDeclType, StorageClass, 0);
2848
2849  if (D.isInvalidType())
2850    New->setInvalidDecl();
2851
2852  // Parameter declarators cannot be interface types. All ObjC objects are
2853  // passed by reference.
2854  if (T->isObjCInterfaceType()) {
2855    Diag(D.getIdentifierLoc(),
2856         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2857    New->setInvalidDecl();
2858  }
2859
2860  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2861  if (D.getCXXScopeSpec().isSet()) {
2862    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2863      << D.getCXXScopeSpec().getRange();
2864    New->setInvalidDecl();
2865  }
2866
2867  // Add the parameter declaration into this scope.
2868  S->AddDecl(DeclPtrTy::make(New));
2869  if (II)
2870    IdResolver.AddDecl(New);
2871
2872  ProcessDeclAttributes(New, D);
2873  return DeclPtrTy::make(New);
2874}
2875
2876void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2877                                           SourceLocation LocAfterDecls) {
2878  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2879         "Not a function declarator!");
2880  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2881
2882  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2883  // for a K&R function.
2884  if (!FTI.hasPrototype) {
2885    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2886      --i;
2887      if (FTI.ArgInfo[i].Param == 0) {
2888        std::string Code = "  int ";
2889        Code += FTI.ArgInfo[i].Ident->getName();
2890        Code += ";\n";
2891        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2892          << FTI.ArgInfo[i].Ident
2893          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2894
2895        // Implicitly declare the argument as type 'int' for lack of a better
2896        // type.
2897        DeclSpec DS;
2898        const char* PrevSpec; // unused
2899        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2900                           PrevSpec);
2901        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2902        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2903        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2904      }
2905    }
2906  }
2907}
2908
2909Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2910                                              Declarator &D) {
2911  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2912  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2913         "Not a function declarator!");
2914  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2915
2916  if (FTI.hasPrototype) {
2917    // FIXME: Diagnose arguments without names in C.
2918  }
2919
2920  Scope *ParentScope = FnBodyScope->getParent();
2921
2922  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2923  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2924}
2925
2926Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2927  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2928
2929  CurFunctionNeedsScopeChecking = false;
2930
2931  // See if this is a redefinition.
2932  const FunctionDecl *Definition;
2933  if (FD->getBody(Context, Definition)) {
2934    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2935    Diag(Definition->getLocation(), diag::note_previous_definition);
2936  }
2937
2938  // Builtin functions cannot be defined.
2939  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2940    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2941      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2942      FD->setInvalidDecl();
2943    }
2944  }
2945
2946  // The return type of a function definition must be complete
2947  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2948  QualType ResultType = FD->getResultType();
2949  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2950      RequireCompleteType(FD->getLocation(), ResultType,
2951                          diag::err_func_def_incomplete_result))
2952    FD->setInvalidDecl();
2953
2954  // GNU warning -Wmissing-prototypes:
2955  //   Warn if a global function is defined without a previous
2956  //   prototype declaration. This warning is issued even if the
2957  //   definition itself provides a prototype. The aim is to detect
2958  //   global functions that fail to be declared in header files.
2959  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2960      !FD->isMain()) {
2961    bool MissingPrototype = true;
2962    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2963         Prev; Prev = Prev->getPreviousDeclaration()) {
2964      // Ignore any declarations that occur in function or method
2965      // scope, because they aren't visible from the header.
2966      if (Prev->getDeclContext()->isFunctionOrMethod())
2967        continue;
2968
2969      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2970      break;
2971    }
2972
2973    if (MissingPrototype)
2974      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2975  }
2976
2977  PushDeclContext(FnBodyScope, FD);
2978
2979  // Check the validity of our function parameters
2980  CheckParmsForFunctionDef(FD);
2981
2982  // Introduce our parameters into the function scope
2983  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2984    ParmVarDecl *Param = FD->getParamDecl(p);
2985    Param->setOwningFunction(FD);
2986
2987    // If this has an identifier, add it to the scope stack.
2988    if (Param->getIdentifier())
2989      PushOnScopeChains(Param, FnBodyScope);
2990  }
2991
2992  // Checking attributes of current function definition
2993  // dllimport attribute.
2994  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2995    // dllimport attribute cannot be applied to definition.
2996    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2997      Diag(FD->getLocation(),
2998           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2999        << "dllimport";
3000      FD->setInvalidDecl();
3001      return DeclPtrTy::make(FD);
3002    } else {
3003      // If a symbol previously declared dllimport is later defined, the
3004      // attribute is ignored in subsequent references, and a warning is
3005      // emitted.
3006      Diag(FD->getLocation(),
3007           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3008        << FD->getNameAsCString() << "dllimport";
3009    }
3010  }
3011  return DeclPtrTy::make(FD);
3012}
3013
3014
3015Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3016  Decl *dcl = D.getAs<Decl>();
3017  CompoundStmt *Body =cast<CompoundStmt>(static_cast<Stmt*>(BodyArg.release()));
3018  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3019    FD->setBody(Body);
3020    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3021  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3022    assert(MD == getCurMethodDecl() && "Method parsing confused");
3023    MD->setBody(Body);
3024  } else {
3025    Body->Destroy(Context);
3026    return DeclPtrTy();
3027  }
3028  PopDeclContext();
3029  // Verify and clean out per-function state.
3030
3031  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3032
3033  // Check goto/label use.
3034  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3035       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3036    LabelStmt *L = I->second;
3037
3038    // Verify that we have no forward references left.  If so, there was a goto
3039    // or address of a label taken, but no definition of it.  Label fwd
3040    // definitions are indicated with a null substmt.
3041    if (L->getSubStmt() != 0)
3042      continue;
3043
3044    // Emit error.
3045    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3046
3047    // At this point, we have gotos that use the bogus label.  Stitch it into
3048    // the function body so that they aren't leaked and that the AST is well
3049    // formed.
3050    if (Body == 0) {
3051      // The whole function wasn't parsed correctly, just delete this.
3052      L->Destroy(Context);
3053      continue;
3054    }
3055
3056    // Otherwise, the body is valid: we want to stitch the label decl into the
3057    // function somewhere so that it is properly owned and so that the goto
3058    // has a valid target.  Do this by creating a new compound stmt with the
3059    // label in it.
3060
3061    // Give the label a sub-statement.
3062    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3063
3064    std::vector<Stmt*> Elements(Body->body_begin(), Body->body_end());
3065    Elements.push_back(L);
3066    Body->setStmts(Context, &Elements[0], Elements.size());
3067  }
3068  FunctionLabelMap.clear();
3069
3070  if (!Body) return D;
3071
3072  // Verify that that gotos and switch cases don't jump into scopes illegally.
3073  if (CurFunctionNeedsScopeChecking)
3074    DiagnoseInvalidJumps(Body);
3075
3076  return D;
3077}
3078
3079/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3080/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3081NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3082                                          IdentifierInfo &II, Scope *S) {
3083  // Before we produce a declaration for an implicitly defined
3084  // function, see whether there was a locally-scoped declaration of
3085  // this name as a function or variable. If so, use that
3086  // (non-visible) declaration, and complain about it.
3087  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3088    = LocallyScopedExternalDecls.find(&II);
3089  if (Pos != LocallyScopedExternalDecls.end()) {
3090    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3091    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3092    return Pos->second;
3093  }
3094
3095  // Extension in C99.  Legal in C90, but warn about it.
3096  if (getLangOptions().C99)
3097    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3098  else
3099    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3100
3101  // FIXME: handle stuff like:
3102  // void foo() { extern float X(); }
3103  // void bar() { X(); }  <-- implicit decl for X in another scope.
3104
3105  // Set a Declarator for the implicit definition: int foo();
3106  const char *Dummy;
3107  DeclSpec DS;
3108  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3109  Error = Error; // Silence warning.
3110  assert(!Error && "Error setting up implicit decl!");
3111  Declarator D(DS, Declarator::BlockContext);
3112  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3113                                             0, 0, 0, Loc, D),
3114                SourceLocation());
3115  D.SetIdentifier(&II, Loc);
3116
3117  // Insert this function into translation-unit scope.
3118
3119  DeclContext *PrevDC = CurContext;
3120  CurContext = Context.getTranslationUnitDecl();
3121
3122  FunctionDecl *FD =
3123 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3124  FD->setImplicit();
3125
3126  CurContext = PrevDC;
3127
3128  AddKnownFunctionAttributes(FD);
3129
3130  return FD;
3131}
3132
3133/// \brief Adds any function attributes that we know a priori based on
3134/// the declaration of this function.
3135///
3136/// These attributes can apply both to implicitly-declared builtins
3137/// (like __builtin___printf_chk) or to library-declared functions
3138/// like NSLog or printf.
3139void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3140  if (FD->isInvalidDecl())
3141    return;
3142
3143  // If this is a built-in function, map its builtin attributes to
3144  // actual attributes.
3145  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3146    // Handle printf-formatting attributes.
3147    unsigned FormatIdx;
3148    bool HasVAListArg;
3149    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3150      if (!FD->getAttr<FormatAttr>())
3151        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3152                                               FormatIdx + 2));
3153    }
3154
3155    // Mark const if we don't care about errno and that is the only
3156    // thing preventing the function from being const. This allows
3157    // IRgen to use LLVM intrinsics for such functions.
3158    if (!getLangOptions().MathErrno &&
3159        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3160      if (!FD->getAttr<ConstAttr>())
3161        FD->addAttr(::new (Context) ConstAttr());
3162    }
3163  }
3164
3165  IdentifierInfo *Name = FD->getIdentifier();
3166  if (!Name)
3167    return;
3168  if ((!getLangOptions().CPlusPlus &&
3169       FD->getDeclContext()->isTranslationUnit()) ||
3170      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3171       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3172       LinkageSpecDecl::lang_c)) {
3173    // Okay: this could be a libc/libm/Objective-C function we know
3174    // about.
3175  } else
3176    return;
3177
3178  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3179    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3180      // FIXME: We known better than our headers.
3181      const_cast<FormatAttr *>(Format)->setType("printf");
3182    } else
3183      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3184  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3185    if (!FD->getAttr<FormatAttr>())
3186      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3187  }
3188}
3189
3190TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3191  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3192  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3193
3194  // Scope manipulation handled by caller.
3195  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3196                                           D.getIdentifierLoc(),
3197                                           D.getIdentifier(),
3198                                           T);
3199
3200  if (TagType *TT = dyn_cast<TagType>(T)) {
3201    TagDecl *TD = TT->getDecl();
3202
3203    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3204    // keep track of the TypedefDecl.
3205    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3206      TD->setTypedefForAnonDecl(NewTD);
3207  }
3208
3209  if (D.isInvalidType())
3210    NewTD->setInvalidDecl();
3211  return NewTD;
3212}
3213
3214/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3215/// former case, Name will be non-null.  In the later case, Name will be null.
3216/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3217/// reference/declaration/definition of a tag.
3218Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3219                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3220                               IdentifierInfo *Name, SourceLocation NameLoc,
3221                               AttributeList *Attr, AccessSpecifier AS) {
3222  // If this is not a definition, it must have a name.
3223  assert((Name != 0 || TK == TK_Definition) &&
3224         "Nameless record must be a definition!");
3225
3226  TagDecl::TagKind Kind;
3227  switch (TagSpec) {
3228  default: assert(0 && "Unknown tag type!");
3229  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3230  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3231  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3232  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3233  }
3234
3235  DeclContext *SearchDC = CurContext;
3236  DeclContext *DC = CurContext;
3237  NamedDecl *PrevDecl = 0;
3238
3239  bool Invalid = false;
3240
3241  if (Name && SS.isNotEmpty()) {
3242    // We have a nested-name tag ('struct foo::bar').
3243
3244    // Check for invalid 'foo::'.
3245    if (SS.isInvalid()) {
3246      Name = 0;
3247      goto CreateNewDecl;
3248    }
3249
3250    // FIXME: RequireCompleteDeclContext(SS)?
3251    DC = computeDeclContext(SS);
3252    SearchDC = DC;
3253    // Look-up name inside 'foo::'.
3254    PrevDecl = dyn_cast_or_null<TagDecl>(
3255                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3256
3257    // A tag 'foo::bar' must already exist.
3258    if (PrevDecl == 0) {
3259      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3260      Name = 0;
3261      goto CreateNewDecl;
3262    }
3263  } else if (Name) {
3264    // If this is a named struct, check to see if there was a previous forward
3265    // declaration or definition.
3266    // FIXME: We're looking into outer scopes here, even when we
3267    // shouldn't be. Doing so can result in ambiguities that we
3268    // shouldn't be diagnosing.
3269    LookupResult R = LookupName(S, Name, LookupTagName,
3270                                /*RedeclarationOnly=*/(TK != TK_Reference));
3271    if (R.isAmbiguous()) {
3272      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3273      // FIXME: This is not best way to recover from case like:
3274      //
3275      // struct S s;
3276      //
3277      // causes needless "incomplete type" error later.
3278      Name = 0;
3279      PrevDecl = 0;
3280      Invalid = true;
3281    }
3282    else
3283      PrevDecl = R;
3284
3285    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3286      // FIXME: This makes sure that we ignore the contexts associated
3287      // with C structs, unions, and enums when looking for a matching
3288      // tag declaration or definition. See the similar lookup tweak
3289      // in Sema::LookupName; is there a better way to deal with this?
3290      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3291        SearchDC = SearchDC->getParent();
3292    }
3293  }
3294
3295  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3296    // Maybe we will complain about the shadowed template parameter.
3297    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3298    // Just pretend that we didn't see the previous declaration.
3299    PrevDecl = 0;
3300  }
3301
3302  if (PrevDecl) {
3303    // Check whether the previous declaration is usable.
3304    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3305
3306    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3307      // If this is a use of a previous tag, or if the tag is already declared
3308      // in the same scope (so that the definition/declaration completes or
3309      // rementions the tag), reuse the decl.
3310      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3311        // Make sure that this wasn't declared as an enum and now used as a
3312        // struct or something similar.
3313        if (PrevTagDecl->getTagKind() != Kind) {
3314          bool SafeToContinue
3315            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3316               Kind != TagDecl::TK_enum);
3317          if (SafeToContinue)
3318            Diag(KWLoc, diag::err_use_with_wrong_tag)
3319              << Name
3320              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3321                                                  PrevTagDecl->getKindName());
3322          else
3323            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3324          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3325
3326          if (SafeToContinue)
3327            Kind = PrevTagDecl->getTagKind();
3328          else {
3329            // Recover by making this an anonymous redefinition.
3330            Name = 0;
3331            PrevDecl = 0;
3332            Invalid = true;
3333          }
3334        }
3335
3336        if (!Invalid) {
3337          // If this is a use, just return the declaration we found.
3338
3339          // FIXME: In the future, return a variant or some other clue
3340          // for the consumer of this Decl to know it doesn't own it.
3341          // For our current ASTs this shouldn't be a problem, but will
3342          // need to be changed with DeclGroups.
3343          if (TK == TK_Reference)
3344            return DeclPtrTy::make(PrevDecl);
3345
3346          // Diagnose attempts to redefine a tag.
3347          if (TK == TK_Definition) {
3348            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3349              Diag(NameLoc, diag::err_redefinition) << Name;
3350              Diag(Def->getLocation(), diag::note_previous_definition);
3351              // If this is a redefinition, recover by making this
3352              // struct be anonymous, which will make any later
3353              // references get the previous definition.
3354              Name = 0;
3355              PrevDecl = 0;
3356              Invalid = true;
3357            } else {
3358              // If the type is currently being defined, complain
3359              // about a nested redefinition.
3360              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3361              if (Tag->isBeingDefined()) {
3362                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3363                Diag(PrevTagDecl->getLocation(),
3364                     diag::note_previous_definition);
3365                Name = 0;
3366                PrevDecl = 0;
3367                Invalid = true;
3368              }
3369            }
3370
3371            // Okay, this is definition of a previously declared or referenced
3372            // tag PrevDecl. We're going to create a new Decl for it.
3373          }
3374        }
3375        // If we get here we have (another) forward declaration or we
3376        // have a definition.  Just create a new decl.
3377      } else {
3378        // If we get here, this is a definition of a new tag type in a nested
3379        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3380        // new decl/type.  We set PrevDecl to NULL so that the entities
3381        // have distinct types.
3382        PrevDecl = 0;
3383      }
3384      // If we get here, we're going to create a new Decl. If PrevDecl
3385      // is non-NULL, it's a definition of the tag declared by
3386      // PrevDecl. If it's NULL, we have a new definition.
3387    } else {
3388      // PrevDecl is a namespace, template, or anything else
3389      // that lives in the IDNS_Tag identifier namespace.
3390      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3391        // The tag name clashes with a namespace name, issue an error and
3392        // recover by making this tag be anonymous.
3393        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3394        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3395        Name = 0;
3396        PrevDecl = 0;
3397        Invalid = true;
3398      } else {
3399        // The existing declaration isn't relevant to us; we're in a
3400        // new scope, so clear out the previous declaration.
3401        PrevDecl = 0;
3402      }
3403    }
3404  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3405             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3406    // C.scope.pdecl]p5:
3407    //   -- for an elaborated-type-specifier of the form
3408    //
3409    //          class-key identifier
3410    //
3411    //      if the elaborated-type-specifier is used in the
3412    //      decl-specifier-seq or parameter-declaration-clause of a
3413    //      function defined in namespace scope, the identifier is
3414    //      declared as a class-name in the namespace that contains
3415    //      the declaration; otherwise, except as a friend
3416    //      declaration, the identifier is declared in the smallest
3417    //      non-class, non-function-prototype scope that contains the
3418    //      declaration.
3419    //
3420    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3421    // C structs and unions.
3422    //
3423    // GNU C also supports this behavior as part of its incomplete
3424    // enum types extension, while GNU C++ does not.
3425    //
3426    // Find the context where we'll be declaring the tag.
3427    // FIXME: We would like to maintain the current DeclContext as the
3428    // lexical context,
3429    while (SearchDC->isRecord())
3430      SearchDC = SearchDC->getParent();
3431
3432    // Find the scope where we'll be declaring the tag.
3433    while (S->isClassScope() ||
3434           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3435           ((S->getFlags() & Scope::DeclScope) == 0) ||
3436           (S->getEntity() &&
3437            ((DeclContext *)S->getEntity())->isTransparentContext()))
3438      S = S->getParent();
3439  }
3440
3441CreateNewDecl:
3442
3443  // If there is an identifier, use the location of the identifier as the
3444  // location of the decl, otherwise use the location of the struct/union
3445  // keyword.
3446  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3447
3448  // Otherwise, create a new declaration. If there is a previous
3449  // declaration of the same entity, the two will be linked via
3450  // PrevDecl.
3451  TagDecl *New;
3452
3453  if (Kind == TagDecl::TK_enum) {
3454    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3455    // enum X { A, B, C } D;    D should chain to X.
3456    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3457                           cast_or_null<EnumDecl>(PrevDecl));
3458    // If this is an undefined enum, warn.
3459    if (TK != TK_Definition && !Invalid)  {
3460      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3461                                              : diag::ext_forward_ref_enum;
3462      Diag(Loc, DK);
3463    }
3464  } else {
3465    // struct/union/class
3466
3467    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3468    // struct X { int A; } D;    D should chain to X.
3469    if (getLangOptions().CPlusPlus)
3470      // FIXME: Look for a way to use RecordDecl for simple structs.
3471      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3472                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3473    else
3474      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3475                               cast_or_null<RecordDecl>(PrevDecl));
3476  }
3477
3478  if (Kind != TagDecl::TK_enum) {
3479    // Handle #pragma pack: if the #pragma pack stack has non-default
3480    // alignment, make up a packed attribute for this decl. These
3481    // attributes are checked when the ASTContext lays out the
3482    // structure.
3483    //
3484    // It is important for implementing the correct semantics that this
3485    // happen here (in act on tag decl). The #pragma pack stack is
3486    // maintained as a result of parser callbacks which can occur at
3487    // many points during the parsing of a struct declaration (because
3488    // the #pragma tokens are effectively skipped over during the
3489    // parsing of the struct).
3490    if (unsigned Alignment = getPragmaPackAlignment())
3491      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3492  }
3493
3494  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3495    // C++ [dcl.typedef]p3:
3496    //   [...] Similarly, in a given scope, a class or enumeration
3497    //   shall not be declared with the same name as a typedef-name
3498    //   that is declared in that scope and refers to a type other
3499    //   than the class or enumeration itself.
3500    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3501    TypedefDecl *PrevTypedef = 0;
3502    if (Lookup.getKind() == LookupResult::Found)
3503      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3504
3505    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3506        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3507          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3508      Diag(Loc, diag::err_tag_definition_of_typedef)
3509        << Context.getTypeDeclType(New)
3510        << PrevTypedef->getUnderlyingType();
3511      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3512      Invalid = true;
3513    }
3514  }
3515
3516  if (Invalid)
3517    New->setInvalidDecl();
3518
3519  if (Attr)
3520    ProcessDeclAttributeList(New, Attr);
3521
3522  // If we're declaring or defining a tag in function prototype scope
3523  // in C, note that this type can only be used within the function.
3524  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3525    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3526
3527  // Set the lexical context. If the tag has a C++ scope specifier, the
3528  // lexical context will be different from the semantic context.
3529  New->setLexicalDeclContext(CurContext);
3530
3531  // Set the access specifier.
3532  SetMemberAccessSpecifier(New, PrevDecl, AS);
3533
3534  if (TK == TK_Definition)
3535    New->startDefinition();
3536
3537  // If this has an identifier, add it to the scope stack.
3538  if (Name) {
3539    S = getNonFieldDeclScope(S);
3540    PushOnScopeChains(New, S);
3541  } else {
3542    CurContext->addDecl(Context, New);
3543  }
3544
3545  return DeclPtrTy::make(New);
3546}
3547
3548void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3549  AdjustDeclIfTemplate(TagD);
3550  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3551
3552  // Enter the tag context.
3553  PushDeclContext(S, Tag);
3554
3555  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3556    FieldCollector->StartClass();
3557
3558    if (Record->getIdentifier()) {
3559      // C++ [class]p2:
3560      //   [...] The class-name is also inserted into the scope of the
3561      //   class itself; this is known as the injected-class-name. For
3562      //   purposes of access checking, the injected-class-name is treated
3563      //   as if it were a public member name.
3564      CXXRecordDecl *InjectedClassName
3565        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3566                                CurContext, Record->getLocation(),
3567                                Record->getIdentifier(), Record);
3568      InjectedClassName->setImplicit();
3569      InjectedClassName->setAccess(AS_public);
3570      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3571        InjectedClassName->setDescribedClassTemplate(Template);
3572      PushOnScopeChains(InjectedClassName, S);
3573      assert(InjectedClassName->isInjectedClassName() &&
3574             "Broken injected-class-name");
3575    }
3576  }
3577}
3578
3579void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3580  AdjustDeclIfTemplate(TagD);
3581  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3582
3583  if (isa<CXXRecordDecl>(Tag))
3584    FieldCollector->FinishClass();
3585
3586  // Exit this scope of this tag's definition.
3587  PopDeclContext();
3588
3589  // Notify the consumer that we've defined a tag.
3590  Consumer.HandleTagDeclDefinition(Tag);
3591}
3592
3593// Note that FieldName may be null for anonymous bitfields.
3594bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3595                          QualType FieldTy, const Expr *BitWidth) {
3596
3597  // C99 6.7.2.1p4 - verify the field type.
3598  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3599  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3600    // Handle incomplete types with specific error.
3601    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3602      return true;
3603    if (FieldName)
3604      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3605        << FieldName << FieldTy << BitWidth->getSourceRange();
3606    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3607      << FieldTy << BitWidth->getSourceRange();
3608  }
3609
3610  // If the bit-width is type- or value-dependent, don't try to check
3611  // it now.
3612  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3613    return false;
3614
3615  llvm::APSInt Value;
3616  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3617    return true;
3618
3619  // Zero-width bitfield is ok for anonymous field.
3620  if (Value == 0 && FieldName)
3621    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3622
3623  if (Value.isSigned() && Value.isNegative()) {
3624    if (FieldName)
3625      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3626               << FieldName << Value.toString(10);
3627    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3628      << Value.toString(10);
3629  }
3630
3631  if (!FieldTy->isDependentType()) {
3632    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3633    if (Value.getZExtValue() > TypeSize) {
3634      if (FieldName)
3635        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3636          << FieldName << (unsigned)TypeSize;
3637      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3638        << (unsigned)TypeSize;
3639    }
3640  }
3641
3642  return false;
3643}
3644
3645/// ActOnField - Each field of a struct/union/class is passed into this in order
3646/// to create a FieldDecl object for it.
3647Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3648                                 SourceLocation DeclStart,
3649                                 Declarator &D, ExprTy *BitfieldWidth) {
3650  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3651                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3652                               AS_public);
3653  return DeclPtrTy::make(Res);
3654}
3655
3656/// HandleField - Analyze a field of a C struct or a C++ data member.
3657///
3658FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3659                             SourceLocation DeclStart,
3660                             Declarator &D, Expr *BitWidth,
3661                             AccessSpecifier AS) {
3662  IdentifierInfo *II = D.getIdentifier();
3663  SourceLocation Loc = DeclStart;
3664  if (II) Loc = D.getIdentifierLoc();
3665
3666  QualType T = GetTypeForDeclarator(D, S);
3667  if (getLangOptions().CPlusPlus)
3668    CheckExtraCXXDefaultArguments(D);
3669
3670  DiagnoseFunctionSpecifiers(D);
3671
3672  if (D.getDeclSpec().isThreadSpecified())
3673    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3674
3675  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3676  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3677    PrevDecl = 0;
3678
3679  FieldDecl *NewFD
3680    = CheckFieldDecl(II, T, Record, Loc,
3681               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3682                     BitWidth, AS, PrevDecl, &D);
3683  if (NewFD->isInvalidDecl() && PrevDecl) {
3684    // Don't introduce NewFD into scope; there's already something
3685    // with the same name in the same scope.
3686  } else if (II) {
3687    PushOnScopeChains(NewFD, S);
3688  } else
3689    Record->addDecl(Context, NewFD);
3690
3691  return NewFD;
3692}
3693
3694/// \brief Build a new FieldDecl and check its well-formedness.
3695///
3696/// This routine builds a new FieldDecl given the fields name, type,
3697/// record, etc. \p PrevDecl should refer to any previous declaration
3698/// with the same name and in the same scope as the field to be
3699/// created.
3700///
3701/// \returns a new FieldDecl.
3702///
3703/// \todo The Declarator argument is a hack. It will be removed once
3704FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3705                                RecordDecl *Record, SourceLocation Loc,
3706                                bool Mutable, Expr *BitWidth,
3707                                AccessSpecifier AS, NamedDecl *PrevDecl,
3708                                Declarator *D) {
3709  IdentifierInfo *II = Name.getAsIdentifierInfo();
3710  bool InvalidDecl = false;
3711  if (D) InvalidDecl = D->isInvalidType();
3712
3713  // If we receive a broken type, recover by assuming 'int' and
3714  // marking this declaration as invalid.
3715  if (T.isNull()) {
3716    InvalidDecl = true;
3717    T = Context.IntTy;
3718  }
3719
3720  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3721  // than a variably modified type.
3722  if (T->isVariablyModifiedType()) {
3723    bool SizeIsNegative;
3724    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3725                                                           SizeIsNegative);
3726    if (!FixedTy.isNull()) {
3727      Diag(Loc, diag::warn_illegal_constant_array_size);
3728      T = FixedTy;
3729    } else {
3730      if (SizeIsNegative)
3731        Diag(Loc, diag::err_typecheck_negative_array_size);
3732      else
3733        Diag(Loc, diag::err_typecheck_field_variable_size);
3734      T = Context.IntTy;
3735      InvalidDecl = true;
3736    }
3737  }
3738
3739  // Fields can not have abstract class types
3740  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3741                             AbstractFieldType))
3742    InvalidDecl = true;
3743
3744  // If this is declared as a bit-field, check the bit-field.
3745  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3746    InvalidDecl = true;
3747    DeleteExpr(BitWidth);
3748    BitWidth = 0;
3749  }
3750
3751  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3752                                       Mutable);
3753  if (InvalidDecl)
3754    NewFD->setInvalidDecl();
3755
3756  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3757    Diag(Loc, diag::err_duplicate_member) << II;
3758    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3759    NewFD->setInvalidDecl();
3760    Record->setInvalidDecl();
3761  }
3762
3763  if (getLangOptions().CPlusPlus && !T->isPODType())
3764    cast<CXXRecordDecl>(Record)->setPOD(false);
3765
3766  // FIXME: We need to pass in the attributes given an AST
3767  // representation, not a parser representation.
3768  if (D)
3769    ProcessDeclAttributes(NewFD, *D);
3770
3771  if (T.isObjCGCWeak())
3772    Diag(Loc, diag::warn_attribute_weak_on_field);
3773
3774  NewFD->setAccess(AS);
3775
3776  // C++ [dcl.init.aggr]p1:
3777  //   An aggregate is an array or a class (clause 9) with [...] no
3778  //   private or protected non-static data members (clause 11).
3779  // A POD must be an aggregate.
3780  if (getLangOptions().CPlusPlus &&
3781      (AS == AS_private || AS == AS_protected)) {
3782    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3783    CXXRecord->setAggregate(false);
3784    CXXRecord->setPOD(false);
3785  }
3786
3787  return NewFD;
3788}
3789
3790/// TranslateIvarVisibility - Translate visibility from a token ID to an
3791///  AST enum value.
3792static ObjCIvarDecl::AccessControl
3793TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3794  switch (ivarVisibility) {
3795  default: assert(0 && "Unknown visitibility kind");
3796  case tok::objc_private: return ObjCIvarDecl::Private;
3797  case tok::objc_public: return ObjCIvarDecl::Public;
3798  case tok::objc_protected: return ObjCIvarDecl::Protected;
3799  case tok::objc_package: return ObjCIvarDecl::Package;
3800  }
3801}
3802
3803/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3804/// in order to create an IvarDecl object for it.
3805Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3806                                SourceLocation DeclStart,
3807                                Declarator &D, ExprTy *BitfieldWidth,
3808                                tok::ObjCKeywordKind Visibility) {
3809
3810  IdentifierInfo *II = D.getIdentifier();
3811  Expr *BitWidth = (Expr*)BitfieldWidth;
3812  SourceLocation Loc = DeclStart;
3813  if (II) Loc = D.getIdentifierLoc();
3814
3815  // FIXME: Unnamed fields can be handled in various different ways, for
3816  // example, unnamed unions inject all members into the struct namespace!
3817
3818  QualType T = GetTypeForDeclarator(D, S);
3819 if (T.isNull()) {
3820   D.setInvalidType();
3821   T = Context.IntTy;
3822 }
3823
3824  if (BitWidth) {
3825    // 6.7.2.1p3, 6.7.2.1p4
3826    if (VerifyBitField(Loc, II, T, BitWidth)) {
3827      D.setInvalidType();
3828      DeleteExpr(BitWidth);
3829      BitWidth = 0;
3830    }
3831  } else {
3832    // Not a bitfield.
3833
3834    // validate II.
3835
3836  }
3837
3838  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3839  // than a variably modified type.
3840  if (T->isVariablyModifiedType()) {
3841    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3842    D.setInvalidType();
3843  }
3844
3845  // Get the visibility (access control) for this ivar.
3846  ObjCIvarDecl::AccessControl ac =
3847    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3848                                        : ObjCIvarDecl::None;
3849
3850  // Construct the decl.
3851  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3852                                             (Expr *)BitfieldWidth);
3853
3854  if (II) {
3855    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3856    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3857        && !isa<TagDecl>(PrevDecl)) {
3858      Diag(Loc, diag::err_duplicate_member) << II;
3859      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3860      NewID->setInvalidDecl();
3861    }
3862  }
3863
3864  // Process attributes attached to the ivar.
3865  ProcessDeclAttributes(NewID, D);
3866
3867  if (D.isInvalidType())
3868    NewID->setInvalidDecl();
3869
3870  if (II) {
3871    // FIXME: When interfaces are DeclContexts, we'll need to add
3872    // these to the interface.
3873    S->AddDecl(DeclPtrTy::make(NewID));
3874    IdResolver.AddDecl(NewID);
3875  }
3876
3877  return DeclPtrTy::make(NewID);
3878}
3879
3880void Sema::ActOnFields(Scope* S,
3881                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3882                       DeclPtrTy *Fields, unsigned NumFields,
3883                       SourceLocation LBrac, SourceLocation RBrac,
3884                       AttributeList *Attr) {
3885  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3886  assert(EnclosingDecl && "missing record or interface decl");
3887
3888  // If the decl this is being inserted into is invalid, then it may be a
3889  // redeclaration or some other bogus case.  Don't try to add fields to it.
3890  if (EnclosingDecl->isInvalidDecl()) {
3891    // FIXME: Deallocate fields?
3892    return;
3893  }
3894
3895
3896  // Verify that all the fields are okay.
3897  unsigned NumNamedMembers = 0;
3898  llvm::SmallVector<FieldDecl*, 32> RecFields;
3899
3900  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3901  for (unsigned i = 0; i != NumFields; ++i) {
3902    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3903
3904    // Get the type for the field.
3905    Type *FDTy = FD->getType().getTypePtr();
3906
3907    if (!FD->isAnonymousStructOrUnion()) {
3908      // Remember all fields written by the user.
3909      RecFields.push_back(FD);
3910    }
3911
3912    // If the field is already invalid for some reason, don't emit more
3913    // diagnostics about it.
3914    if (FD->isInvalidDecl())
3915      continue;
3916
3917    // C99 6.7.2.1p2:
3918    //   A structure or union shall not contain a member with
3919    //   incomplete or function type (hence, a structure shall not
3920    //   contain an instance of itself, but may contain a pointer to
3921    //   an instance of itself), except that the last member of a
3922    //   structure with more than one named member may have incomplete
3923    //   array type; such a structure (and any union containing,
3924    //   possibly recursively, a member that is such a structure)
3925    //   shall not be a member of a structure or an element of an
3926    //   array.
3927    if (FDTy->isFunctionType()) {
3928      // Field declared as a function.
3929      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3930        << FD->getDeclName();
3931      FD->setInvalidDecl();
3932      EnclosingDecl->setInvalidDecl();
3933      continue;
3934    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3935               Record && Record->isStruct()) {
3936      // Flexible array member.
3937      if (NumNamedMembers < 1) {
3938        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3939          << FD->getDeclName();
3940        FD->setInvalidDecl();
3941        EnclosingDecl->setInvalidDecl();
3942        continue;
3943      }
3944      // Okay, we have a legal flexible array member at the end of the struct.
3945      if (Record)
3946        Record->setHasFlexibleArrayMember(true);
3947    } else if (!FDTy->isDependentType() &&
3948               RequireCompleteType(FD->getLocation(), FD->getType(),
3949                                   diag::err_field_incomplete)) {
3950      // Incomplete type
3951      FD->setInvalidDecl();
3952      EnclosingDecl->setInvalidDecl();
3953      continue;
3954    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3955      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3956        // If this is a member of a union, then entire union becomes "flexible".
3957        if (Record && Record->isUnion()) {
3958          Record->setHasFlexibleArrayMember(true);
3959        } else {
3960          // If this is a struct/class and this is not the last element, reject
3961          // it.  Note that GCC supports variable sized arrays in the middle of
3962          // structures.
3963          if (i != NumFields-1)
3964            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3965              << FD->getDeclName();
3966          else {
3967            // We support flexible arrays at the end of structs in
3968            // other structs as an extension.
3969            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3970              << FD->getDeclName();
3971            if (Record)
3972              Record->setHasFlexibleArrayMember(true);
3973          }
3974        }
3975      }
3976    } else if (FDTy->isObjCInterfaceType()) {
3977      /// A field cannot be an Objective-c object
3978      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3979      FD->setInvalidDecl();
3980      EnclosingDecl->setInvalidDecl();
3981      continue;
3982    }
3983    // Keep track of the number of named members.
3984    if (FD->getIdentifier())
3985      ++NumNamedMembers;
3986  }
3987
3988  // Okay, we successfully defined 'Record'.
3989  if (Record) {
3990    Record->completeDefinition(Context);
3991  } else {
3992    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3993    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3994      ID->setIVarList(ClsFields, RecFields.size(), Context);
3995      ID->setLocEnd(RBrac);
3996
3997      // Must enforce the rule that ivars in the base classes may not be
3998      // duplicates.
3999      if (ID->getSuperClass()) {
4000        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4001             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4002          ObjCIvarDecl* Ivar = (*IVI);
4003          IdentifierInfo *II = Ivar->getIdentifier();
4004          ObjCIvarDecl* prevIvar =
4005            ID->getSuperClass()->lookupInstanceVariable(Context, II);
4006          if (prevIvar) {
4007            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4008            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4009          }
4010        }
4011      }
4012    } else if (ObjCImplementationDecl *IMPDecl =
4013                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4014      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4015      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4016        // FIXME: Set the DeclContext correctly when we build the
4017        // declarations.
4018        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4019        IMPDecl->addDecl(Context, ClsFields[I]);
4020      }
4021      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4022    }
4023  }
4024
4025  if (Attr)
4026    ProcessDeclAttributeList(Record, Attr);
4027}
4028
4029EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4030                                          EnumConstantDecl *LastEnumConst,
4031                                          SourceLocation IdLoc,
4032                                          IdentifierInfo *Id,
4033                                          ExprArg val) {
4034  Expr *Val = (Expr *)val.get();
4035
4036  llvm::APSInt EnumVal(32);
4037  QualType EltTy;
4038  if (Val && !Val->isTypeDependent()) {
4039    // Make sure to promote the operand type to int.
4040    UsualUnaryConversions(Val);
4041    if (Val != val.get()) {
4042      val.release();
4043      val = Val;
4044    }
4045
4046    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4047    SourceLocation ExpLoc;
4048    if (!Val->isValueDependent() &&
4049        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4050      Val = 0;
4051    } else {
4052      EltTy = Val->getType();
4053    }
4054  }
4055
4056  if (!Val) {
4057    if (LastEnumConst) {
4058      // Assign the last value + 1.
4059      EnumVal = LastEnumConst->getInitVal();
4060      ++EnumVal;
4061
4062      // Check for overflow on increment.
4063      if (EnumVal < LastEnumConst->getInitVal())
4064        Diag(IdLoc, diag::warn_enum_value_overflow);
4065
4066      EltTy = LastEnumConst->getType();
4067    } else {
4068      // First value, set to zero.
4069      EltTy = Context.IntTy;
4070      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4071    }
4072  }
4073
4074  val.release();
4075  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4076                                  Val, EnumVal);
4077}
4078
4079
4080Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4081                                        DeclPtrTy lastEnumConst,
4082                                        SourceLocation IdLoc,
4083                                        IdentifierInfo *Id,
4084                                        SourceLocation EqualLoc, ExprTy *val) {
4085  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4086  EnumConstantDecl *LastEnumConst =
4087    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4088  Expr *Val = static_cast<Expr*>(val);
4089
4090  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4091  // we find one that is.
4092  S = getNonFieldDeclScope(S);
4093
4094  // Verify that there isn't already something declared with this name in this
4095  // scope.
4096  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4097  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4098    // Maybe we will complain about the shadowed template parameter.
4099    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4100    // Just pretend that we didn't see the previous declaration.
4101    PrevDecl = 0;
4102  }
4103
4104  if (PrevDecl) {
4105    // When in C++, we may get a TagDecl with the same name; in this case the
4106    // enum constant will 'hide' the tag.
4107    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4108           "Received TagDecl when not in C++!");
4109    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4110      if (isa<EnumConstantDecl>(PrevDecl))
4111        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4112      else
4113        Diag(IdLoc, diag::err_redefinition) << Id;
4114      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4115      if (Val) Val->Destroy(Context);
4116      return DeclPtrTy();
4117    }
4118  }
4119
4120  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4121                                            IdLoc, Id, Owned(Val));
4122
4123  // Register this decl in the current scope stack.
4124  if (New)
4125    PushOnScopeChains(New, S);
4126
4127  return DeclPtrTy::make(New);
4128}
4129
4130// FIXME: For consistency with ActOnFields(), we should have the parser
4131// pass in the source location for the left/right braces.
4132void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4133                         DeclPtrTy *Elements, unsigned NumElements) {
4134  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4135  QualType EnumType = Context.getTypeDeclType(Enum);
4136
4137  // TODO: If the result value doesn't fit in an int, it must be a long or long
4138  // long value.  ISO C does not support this, but GCC does as an extension,
4139  // emit a warning.
4140  unsigned IntWidth = Context.Target.getIntWidth();
4141
4142  // Verify that all the values are okay, compute the size of the values, and
4143  // reverse the list.
4144  unsigned NumNegativeBits = 0;
4145  unsigned NumPositiveBits = 0;
4146
4147  // Keep track of whether all elements have type int.
4148  bool AllElementsInt = true;
4149
4150  for (unsigned i = 0; i != NumElements; ++i) {
4151    EnumConstantDecl *ECD =
4152      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4153    if (!ECD) continue;  // Already issued a diagnostic.
4154
4155    // If the enum value doesn't fit in an int, emit an extension warning.
4156    const llvm::APSInt &InitVal = ECD->getInitVal();
4157    assert(InitVal.getBitWidth() >= IntWidth &&
4158           "Should have promoted value to int");
4159    if (InitVal.getBitWidth() > IntWidth) {
4160      llvm::APSInt V(InitVal);
4161      V.trunc(IntWidth);
4162      V.extend(InitVal.getBitWidth());
4163      if (V != InitVal)
4164        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4165          << InitVal.toString(10);
4166    }
4167
4168    // Keep track of the size of positive and negative values.
4169    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4170      NumPositiveBits = std::max(NumPositiveBits,
4171                                 (unsigned)InitVal.getActiveBits());
4172    else
4173      NumNegativeBits = std::max(NumNegativeBits,
4174                                 (unsigned)InitVal.getMinSignedBits());
4175
4176    // Keep track of whether every enum element has type int (very commmon).
4177    if (AllElementsInt)
4178      AllElementsInt = ECD->getType() == Context.IntTy;
4179  }
4180
4181  // Figure out the type that should be used for this enum.
4182  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4183  QualType BestType;
4184  unsigned BestWidth;
4185
4186  if (NumNegativeBits) {
4187    // If there is a negative value, figure out the smallest integer type (of
4188    // int/long/longlong) that fits.
4189    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4190      BestType = Context.IntTy;
4191      BestWidth = IntWidth;
4192    } else {
4193      BestWidth = Context.Target.getLongWidth();
4194
4195      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4196        BestType = Context.LongTy;
4197      else {
4198        BestWidth = Context.Target.getLongLongWidth();
4199
4200        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4201          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4202        BestType = Context.LongLongTy;
4203      }
4204    }
4205  } else {
4206    // If there is no negative value, figure out which of uint, ulong, ulonglong
4207    // fits.
4208    if (NumPositiveBits <= IntWidth) {
4209      BestType = Context.UnsignedIntTy;
4210      BestWidth = IntWidth;
4211    } else if (NumPositiveBits <=
4212               (BestWidth = Context.Target.getLongWidth())) {
4213      BestType = Context.UnsignedLongTy;
4214    } else {
4215      BestWidth = Context.Target.getLongLongWidth();
4216      assert(NumPositiveBits <= BestWidth &&
4217             "How could an initializer get larger than ULL?");
4218      BestType = Context.UnsignedLongLongTy;
4219    }
4220  }
4221
4222  // Loop over all of the enumerator constants, changing their types to match
4223  // the type of the enum if needed.
4224  for (unsigned i = 0; i != NumElements; ++i) {
4225    EnumConstantDecl *ECD =
4226      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4227    if (!ECD) continue;  // Already issued a diagnostic.
4228
4229    // Standard C says the enumerators have int type, but we allow, as an
4230    // extension, the enumerators to be larger than int size.  If each
4231    // enumerator value fits in an int, type it as an int, otherwise type it the
4232    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4233    // that X has type 'int', not 'unsigned'.
4234    if (ECD->getType() == Context.IntTy) {
4235      // Make sure the init value is signed.
4236      llvm::APSInt IV = ECD->getInitVal();
4237      IV.setIsSigned(true);
4238      ECD->setInitVal(IV);
4239
4240      if (getLangOptions().CPlusPlus)
4241        // C++ [dcl.enum]p4: Following the closing brace of an
4242        // enum-specifier, each enumerator has the type of its
4243        // enumeration.
4244        ECD->setType(EnumType);
4245      continue;  // Already int type.
4246    }
4247
4248    // Determine whether the value fits into an int.
4249    llvm::APSInt InitVal = ECD->getInitVal();
4250    bool FitsInInt;
4251    if (InitVal.isUnsigned() || !InitVal.isNegative())
4252      FitsInInt = InitVal.getActiveBits() < IntWidth;
4253    else
4254      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4255
4256    // If it fits into an integer type, force it.  Otherwise force it to match
4257    // the enum decl type.
4258    QualType NewTy;
4259    unsigned NewWidth;
4260    bool NewSign;
4261    if (FitsInInt) {
4262      NewTy = Context.IntTy;
4263      NewWidth = IntWidth;
4264      NewSign = true;
4265    } else if (ECD->getType() == BestType) {
4266      // Already the right type!
4267      if (getLangOptions().CPlusPlus)
4268        // C++ [dcl.enum]p4: Following the closing brace of an
4269        // enum-specifier, each enumerator has the type of its
4270        // enumeration.
4271        ECD->setType(EnumType);
4272      continue;
4273    } else {
4274      NewTy = BestType;
4275      NewWidth = BestWidth;
4276      NewSign = BestType->isSignedIntegerType();
4277    }
4278
4279    // Adjust the APSInt value.
4280    InitVal.extOrTrunc(NewWidth);
4281    InitVal.setIsSigned(NewSign);
4282    ECD->setInitVal(InitVal);
4283
4284    // Adjust the Expr initializer and type.
4285    if (ECD->getInitExpr())
4286      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4287                                                      /*isLvalue=*/false));
4288    if (getLangOptions().CPlusPlus)
4289      // C++ [dcl.enum]p4: Following the closing brace of an
4290      // enum-specifier, each enumerator has the type of its
4291      // enumeration.
4292      ECD->setType(EnumType);
4293    else
4294      ECD->setType(NewTy);
4295  }
4296
4297  Enum->completeDefinition(Context, BestType);
4298}
4299
4300Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4301                                            ExprArg expr) {
4302  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4303
4304  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4305                                                  Loc, AsmString));
4306}
4307
4308