SemaDecl.cpp revision 7a128e84006fdabfda4b8bd04f09c2739ed7f824
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous:
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  assert(IIDecl && "Didn't find decl");
141
142  QualType T;
143  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144    // C++ [temp.local]p2:
145    //   Within the scope of a class template specialization or
146    //   partial specialization, when the injected-class-name is
147    //   not followed by a <, it is equivalent to the
148    //   injected-class-name followed by the template-argument s
149    //   of the class template specialization or partial
150    //   specialization enclosed in <>.
151    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
152      if (RD->isInjectedClassName())
153        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
154          T = Template->getInjectedClassNameType(Context);
155
156    if (T.isNull())
157      T = Context.getTypeDeclType(TD);
158
159    if (SS)
160      T = getQualifiedNameType(*SS, T);
161
162  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
163    T = Context.getObjCInterfaceType(IDecl);
164  } else
165    return 0;
166
167  return T.getAsOpaquePtr();
168}
169
170/// isTagName() - This method is called *for error recovery purposes only*
171/// to determine if the specified name is a valid tag name ("struct foo").  If
172/// so, this returns the TST for the tag corresponding to it (TST_enum,
173/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
174/// where the user forgot to specify the tag.
175DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
176  // Do a tag name lookup in this scope.
177  LookupResult R;
178  LookupName(R, S, &II, LookupTagName, false, false);
179  if (R.getKind() == LookupResult::Found)
180    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
181      switch (TD->getTagKind()) {
182      case TagDecl::TK_struct: return DeclSpec::TST_struct;
183      case TagDecl::TK_union:  return DeclSpec::TST_union;
184      case TagDecl::TK_class:  return DeclSpec::TST_class;
185      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
186      }
187    }
188
189  return DeclSpec::TST_unspecified;
190}
191
192bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
193                                   SourceLocation IILoc,
194                                   Scope *S,
195                                   const CXXScopeSpec *SS,
196                                   TypeTy *&SuggestedType) {
197  // We don't have anything to suggest (yet).
198  SuggestedType = 0;
199
200  // FIXME: Should we move the logic that tries to recover from a missing tag
201  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
202
203  if (!SS)
204    Diag(IILoc, diag::err_unknown_typename) << &II;
205  else if (DeclContext *DC = computeDeclContext(*SS, false))
206    Diag(IILoc, diag::err_typename_nested_not_found)
207      << &II << DC << SS->getRange();
208  else if (isDependentScopeSpecifier(*SS)) {
209    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
210      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
211      << SourceRange(SS->getRange().getBegin(), IILoc)
212      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
213                                               "typename ");
214    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
215  } else {
216    assert(SS && SS->isInvalid() &&
217           "Invalid scope specifier has already been diagnosed");
218  }
219
220  return true;
221}
222
223// Determines the context to return to after temporarily entering a
224// context.  This depends in an unnecessarily complicated way on the
225// exact ordering of callbacks from the parser.
226DeclContext *Sema::getContainingDC(DeclContext *DC) {
227
228  // Functions defined inline within classes aren't parsed until we've
229  // finished parsing the top-level class, so the top-level class is
230  // the context we'll need to return to.
231  if (isa<FunctionDecl>(DC)) {
232    DC = DC->getLexicalParent();
233
234    // A function not defined within a class will always return to its
235    // lexical context.
236    if (!isa<CXXRecordDecl>(DC))
237      return DC;
238
239    // A C++ inline method/friend is parsed *after* the topmost class
240    // it was declared in is fully parsed ("complete");  the topmost
241    // class is the context we need to return to.
242    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
243      DC = RD;
244
245    // Return the declaration context of the topmost class the inline method is
246    // declared in.
247    return DC;
248  }
249
250  if (isa<ObjCMethodDecl>(DC))
251    return Context.getTranslationUnitDecl();
252
253  return DC->getLexicalParent();
254}
255
256void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
257  assert(getContainingDC(DC) == CurContext &&
258      "The next DeclContext should be lexically contained in the current one.");
259  CurContext = DC;
260  S->setEntity(DC);
261}
262
263void Sema::PopDeclContext() {
264  assert(CurContext && "DeclContext imbalance!");
265
266  CurContext = getContainingDC(CurContext);
267}
268
269/// EnterDeclaratorContext - Used when we must lookup names in the context
270/// of a declarator's nested name specifier.
271void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
272  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
273  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
274  CurContext = DC;
275  assert(CurContext && "No context?");
276  S->setEntity(CurContext);
277}
278
279void Sema::ExitDeclaratorContext(Scope *S) {
280  S->setEntity(PreDeclaratorDC);
281  PreDeclaratorDC = 0;
282
283  // Reset CurContext to the nearest enclosing context.
284  while (!S->getEntity() && S->getParent())
285    S = S->getParent();
286  CurContext = static_cast<DeclContext*>(S->getEntity());
287  assert(CurContext && "No context?");
288}
289
290/// \brief Determine whether we allow overloading of the function
291/// PrevDecl with another declaration.
292///
293/// This routine determines whether overloading is possible, not
294/// whether some new function is actually an overload. It will return
295/// true in C++ (where we can always provide overloads) or, as an
296/// extension, in C when the previous function is already an
297/// overloaded function declaration or has the "overloadable"
298/// attribute.
299static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
300  if (Context.getLangOptions().CPlusPlus)
301    return true;
302
303  if (isa<OverloadedFunctionDecl>(PrevDecl))
304    return true;
305
306  return PrevDecl->getAttr<OverloadableAttr>() != 0;
307}
308
309/// Add this decl to the scope shadowed decl chains.
310void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
311  // Move up the scope chain until we find the nearest enclosing
312  // non-transparent context. The declaration will be introduced into this
313  // scope.
314  while (S->getEntity() &&
315         ((DeclContext *)S->getEntity())->isTransparentContext())
316    S = S->getParent();
317
318  // Add scoped declarations into their context, so that they can be
319  // found later. Declarations without a context won't be inserted
320  // into any context.
321  if (AddToContext)
322    CurContext->addDecl(D);
323
324  // Out-of-line function and variable definitions should not be pushed into
325  // scope.
326  if ((isa<FunctionTemplateDecl>(D) &&
327       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
328      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
329      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
330    return;
331
332  // If this replaces anything in the current scope,
333  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
334                               IEnd = IdResolver.end();
335  for (; I != IEnd; ++I) {
336    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
337      S->RemoveDecl(DeclPtrTy::make(*I));
338      IdResolver.RemoveDecl(*I);
339
340      // Should only need to replace one decl.
341      break;
342    }
343  }
344
345  S->AddDecl(DeclPtrTy::make(D));
346  IdResolver.AddDecl(D);
347}
348
349bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
350  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
351    // Look inside the overload set to determine if any of the declarations
352    // are in scope. (Possibly) build a new overload set containing only
353    // those declarations that are in scope.
354    OverloadedFunctionDecl *NewOvl = 0;
355    bool FoundInScope = false;
356    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
357         FEnd = Ovl->function_end();
358         F != FEnd; ++F) {
359      NamedDecl *FD = F->get();
360      if (!isDeclInScope(FD, Ctx, S)) {
361        if (!NewOvl && F != Ovl->function_begin()) {
362          NewOvl = OverloadedFunctionDecl::Create(Context,
363                                                  F->get()->getDeclContext(),
364                                                  F->get()->getDeclName());
365          D = NewOvl;
366          for (OverloadedFunctionDecl::function_iterator
367               First = Ovl->function_begin();
368               First != F; ++First)
369            NewOvl->addOverload(*First);
370        }
371      } else {
372        FoundInScope = true;
373        if (NewOvl)
374          NewOvl->addOverload(*F);
375      }
376    }
377
378    return FoundInScope;
379  }
380
381  return IdResolver.isDeclInScope(D, Ctx, Context, S);
382}
383
384void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
385  if (S->decl_empty()) return;
386  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
387         "Scope shouldn't contain decls!");
388
389  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
390       I != E; ++I) {
391    Decl *TmpD = (*I).getAs<Decl>();
392    assert(TmpD && "This decl didn't get pushed??");
393
394    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
395    NamedDecl *D = cast<NamedDecl>(TmpD);
396
397    if (!D->getDeclName()) continue;
398
399    // Diagnose unused variables in this scope.
400    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
401        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
402        D->getDeclContext()->isFunctionOrMethod())
403	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
404
405    // Remove this name from our lexical scope.
406    IdResolver.RemoveDecl(D);
407  }
408}
409
410/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
411/// return 0 if one not found.
412ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
413  // The third "scope" argument is 0 since we aren't enabling lazy built-in
414  // creation from this context.
415  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
416
417  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
418}
419
420/// getNonFieldDeclScope - Retrieves the innermost scope, starting
421/// from S, where a non-field would be declared. This routine copes
422/// with the difference between C and C++ scoping rules in structs and
423/// unions. For example, the following code is well-formed in C but
424/// ill-formed in C++:
425/// @code
426/// struct S6 {
427///   enum { BAR } e;
428/// };
429///
430/// void test_S6() {
431///   struct S6 a;
432///   a.e = BAR;
433/// }
434/// @endcode
435/// For the declaration of BAR, this routine will return a different
436/// scope. The scope S will be the scope of the unnamed enumeration
437/// within S6. In C++, this routine will return the scope associated
438/// with S6, because the enumeration's scope is a transparent
439/// context but structures can contain non-field names. In C, this
440/// routine will return the translation unit scope, since the
441/// enumeration's scope is a transparent context and structures cannot
442/// contain non-field names.
443Scope *Sema::getNonFieldDeclScope(Scope *S) {
444  while (((S->getFlags() & Scope::DeclScope) == 0) ||
445         (S->getEntity() &&
446          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
447         (S->isClassScope() && !getLangOptions().CPlusPlus))
448    S = S->getParent();
449  return S;
450}
451
452void Sema::InitBuiltinVaListType() {
453  if (!Context.getBuiltinVaListType().isNull())
454    return;
455
456  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
457  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
458  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
459  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
460}
461
462/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
463/// file scope.  lazily create a decl for it. ForRedeclaration is true
464/// if we're creating this built-in in anticipation of redeclaring the
465/// built-in.
466NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
467                                     Scope *S, bool ForRedeclaration,
468                                     SourceLocation Loc) {
469  Builtin::ID BID = (Builtin::ID)bid;
470
471  if (Context.BuiltinInfo.hasVAListUse(BID))
472    InitBuiltinVaListType();
473
474  ASTContext::GetBuiltinTypeError Error;
475  QualType R = Context.GetBuiltinType(BID, Error);
476  switch (Error) {
477  case ASTContext::GE_None:
478    // Okay
479    break;
480
481  case ASTContext::GE_Missing_stdio:
482    if (ForRedeclaration)
483      Diag(Loc, diag::err_implicit_decl_requires_stdio)
484        << Context.BuiltinInfo.GetName(BID);
485    return 0;
486
487  case ASTContext::GE_Missing_setjmp:
488    if (ForRedeclaration)
489      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
490        << Context.BuiltinInfo.GetName(BID);
491    return 0;
492  }
493
494  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
495    Diag(Loc, diag::ext_implicit_lib_function_decl)
496      << Context.BuiltinInfo.GetName(BID)
497      << R;
498    if (Context.BuiltinInfo.getHeaderName(BID) &&
499        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
500          != Diagnostic::Ignored)
501      Diag(Loc, diag::note_please_include_header)
502        << Context.BuiltinInfo.getHeaderName(BID)
503        << Context.BuiltinInfo.GetName(BID);
504  }
505
506  FunctionDecl *New = FunctionDecl::Create(Context,
507                                           Context.getTranslationUnitDecl(),
508                                           Loc, II, R, /*DInfo=*/0,
509                                           FunctionDecl::Extern, false,
510                                           /*hasPrototype=*/true);
511  New->setImplicit();
512
513  // Create Decl objects for each parameter, adding them to the
514  // FunctionDecl.
515  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
516    llvm::SmallVector<ParmVarDecl*, 16> Params;
517    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
518      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
519                                           FT->getArgType(i), /*DInfo=*/0,
520                                           VarDecl::None, 0));
521    New->setParams(Context, Params.data(), Params.size());
522  }
523
524  AddKnownFunctionAttributes(New);
525
526  // TUScope is the translation-unit scope to insert this function into.
527  // FIXME: This is hideous. We need to teach PushOnScopeChains to
528  // relate Scopes to DeclContexts, and probably eliminate CurContext
529  // entirely, but we're not there yet.
530  DeclContext *SavedContext = CurContext;
531  CurContext = Context.getTranslationUnitDecl();
532  PushOnScopeChains(New, TUScope);
533  CurContext = SavedContext;
534  return New;
535}
536
537/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
538/// same name and scope as a previous declaration 'Old'.  Figure out
539/// how to resolve this situation, merging decls or emitting
540/// diagnostics as appropriate. If there was an error, set New to be invalid.
541///
542void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
543  // If either decl is known invalid already, set the new one to be invalid and
544  // don't bother doing any merging checks.
545  if (New->isInvalidDecl() || OldD->isInvalidDecl())
546    return New->setInvalidDecl();
547
548  // Allow multiple definitions for ObjC built-in typedefs.
549  // FIXME: Verify the underlying types are equivalent!
550  if (getLangOptions().ObjC1) {
551    const IdentifierInfo *TypeID = New->getIdentifier();
552    switch (TypeID->getLength()) {
553    default: break;
554    case 2:
555      if (!TypeID->isStr("id"))
556        break;
557      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
558      // Install the built-in type for 'id', ignoring the current definition.
559      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
560      return;
561    case 5:
562      if (!TypeID->isStr("Class"))
563        break;
564      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
565      // Install the built-in type for 'Class', ignoring the current definition.
566      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
567      return;
568    case 3:
569      if (!TypeID->isStr("SEL"))
570        break;
571      Context.setObjCSelType(Context.getTypeDeclType(New));
572      return;
573    case 8:
574      if (!TypeID->isStr("Protocol"))
575        break;
576      Context.setObjCProtoType(New->getUnderlyingType());
577      return;
578    }
579    // Fall through - the typedef name was not a builtin type.
580  }
581  // Verify the old decl was also a type.
582  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
583  if (!Old) {
584    Diag(New->getLocation(), diag::err_redefinition_different_kind)
585      << New->getDeclName();
586    if (OldD->getLocation().isValid())
587      Diag(OldD->getLocation(), diag::note_previous_definition);
588    return New->setInvalidDecl();
589  }
590
591  // Determine the "old" type we'll use for checking and diagnostics.
592  QualType OldType;
593  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
594    OldType = OldTypedef->getUnderlyingType();
595  else
596    OldType = Context.getTypeDeclType(Old);
597
598  // If the typedef types are not identical, reject them in all languages and
599  // with any extensions enabled.
600
601  if (OldType != New->getUnderlyingType() &&
602      Context.getCanonicalType(OldType) !=
603      Context.getCanonicalType(New->getUnderlyingType())) {
604    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
605      << New->getUnderlyingType() << OldType;
606    if (Old->getLocation().isValid())
607      Diag(Old->getLocation(), diag::note_previous_definition);
608    return New->setInvalidDecl();
609  }
610
611  if (getLangOptions().Microsoft)
612    return;
613
614  // C++ [dcl.typedef]p2:
615  //   In a given non-class scope, a typedef specifier can be used to
616  //   redefine the name of any type declared in that scope to refer
617  //   to the type to which it already refers.
618  if (getLangOptions().CPlusPlus) {
619    if (!isa<CXXRecordDecl>(CurContext))
620      return;
621    Diag(New->getLocation(), diag::err_redefinition)
622      << New->getDeclName();
623    Diag(Old->getLocation(), diag::note_previous_definition);
624    return New->setInvalidDecl();
625  }
626
627  // If we have a redefinition of a typedef in C, emit a warning.  This warning
628  // is normally mapped to an error, but can be controlled with
629  // -Wtypedef-redefinition.  If either the original or the redefinition is
630  // in a system header, don't emit this for compatibility with GCC.
631  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
632      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
633       Context.getSourceManager().isInSystemHeader(New->getLocation())))
634    return;
635
636  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
637    << New->getDeclName();
638  Diag(Old->getLocation(), diag::note_previous_definition);
639  return;
640}
641
642/// DeclhasAttr - returns true if decl Declaration already has the target
643/// attribute.
644static bool
645DeclHasAttr(const Decl *decl, const Attr *target) {
646  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
647    if (attr->getKind() == target->getKind())
648      return true;
649
650  return false;
651}
652
653/// MergeAttributes - append attributes from the Old decl to the New one.
654static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
655  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
656    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
657      Attr *NewAttr = attr->clone(C);
658      NewAttr->setInherited(true);
659      New->addAttr(NewAttr);
660    }
661  }
662}
663
664/// Used in MergeFunctionDecl to keep track of function parameters in
665/// C.
666struct GNUCompatibleParamWarning {
667  ParmVarDecl *OldParm;
668  ParmVarDecl *NewParm;
669  QualType PromotedType;
670};
671
672/// MergeFunctionDecl - We just parsed a function 'New' from
673/// declarator D which has the same name and scope as a previous
674/// declaration 'Old'.  Figure out how to resolve this situation,
675/// merging decls or emitting diagnostics as appropriate.
676///
677/// In C++, New and Old must be declarations that are not
678/// overloaded. Use IsOverload to determine whether New and Old are
679/// overloaded, and to select the Old declaration that New should be
680/// merged with.
681///
682/// Returns true if there was an error, false otherwise.
683bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
684  assert(!isa<OverloadedFunctionDecl>(OldD) &&
685         "Cannot merge with an overloaded function declaration");
686
687  // Verify the old decl was also a function.
688  FunctionDecl *Old = 0;
689  if (FunctionTemplateDecl *OldFunctionTemplate
690        = dyn_cast<FunctionTemplateDecl>(OldD))
691    Old = OldFunctionTemplate->getTemplatedDecl();
692  else
693    Old = dyn_cast<FunctionDecl>(OldD);
694  if (!Old) {
695    Diag(New->getLocation(), diag::err_redefinition_different_kind)
696      << New->getDeclName();
697    Diag(OldD->getLocation(), diag::note_previous_definition);
698    return true;
699  }
700
701  // Determine whether the previous declaration was a definition,
702  // implicit declaration, or a declaration.
703  diag::kind PrevDiag;
704  if (Old->isThisDeclarationADefinition())
705    PrevDiag = diag::note_previous_definition;
706  else if (Old->isImplicit())
707    PrevDiag = diag::note_previous_implicit_declaration;
708  else
709    PrevDiag = diag::note_previous_declaration;
710
711  QualType OldQType = Context.getCanonicalType(Old->getType());
712  QualType NewQType = Context.getCanonicalType(New->getType());
713
714  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
715      New->getStorageClass() == FunctionDecl::Static &&
716      Old->getStorageClass() != FunctionDecl::Static) {
717    Diag(New->getLocation(), diag::err_static_non_static)
718      << New;
719    Diag(Old->getLocation(), PrevDiag);
720    return true;
721  }
722
723  if (getLangOptions().CPlusPlus) {
724    // (C++98 13.1p2):
725    //   Certain function declarations cannot be overloaded:
726    //     -- Function declarations that differ only in the return type
727    //        cannot be overloaded.
728    QualType OldReturnType
729      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
730    QualType NewReturnType
731      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
732    if (OldReturnType != NewReturnType) {
733      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
734      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735      return true;
736    }
737
738    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
739    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
740    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
741        NewMethod->getLexicalDeclContext()->isRecord()) {
742      //    -- Member function declarations with the same name and the
743      //       same parameter types cannot be overloaded if any of them
744      //       is a static member function declaration.
745      if (OldMethod->isStatic() || NewMethod->isStatic()) {
746        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
747        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
748        return true;
749      }
750
751      // C++ [class.mem]p1:
752      //   [...] A member shall not be declared twice in the
753      //   member-specification, except that a nested class or member
754      //   class template can be declared and then later defined.
755      unsigned NewDiag;
756      if (isa<CXXConstructorDecl>(OldMethod))
757        NewDiag = diag::err_constructor_redeclared;
758      else if (isa<CXXDestructorDecl>(NewMethod))
759        NewDiag = diag::err_destructor_redeclared;
760      else if (isa<CXXConversionDecl>(NewMethod))
761        NewDiag = diag::err_conv_function_redeclared;
762      else
763        NewDiag = diag::err_member_redeclared;
764
765      Diag(New->getLocation(), NewDiag);
766      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
767    }
768
769    // (C++98 8.3.5p3):
770    //   All declarations for a function shall agree exactly in both the
771    //   return type and the parameter-type-list.
772    if (OldQType == NewQType)
773      return MergeCompatibleFunctionDecls(New, Old);
774
775    // Fall through for conflicting redeclarations and redefinitions.
776  }
777
778  // C: Function types need to be compatible, not identical. This handles
779  // duplicate function decls like "void f(int); void f(enum X);" properly.
780  if (!getLangOptions().CPlusPlus &&
781      Context.typesAreCompatible(OldQType, NewQType)) {
782    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
783    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
784    const FunctionProtoType *OldProto = 0;
785    if (isa<FunctionNoProtoType>(NewFuncType) &&
786        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
787      // The old declaration provided a function prototype, but the
788      // new declaration does not. Merge in the prototype.
789      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
790      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
791                                                 OldProto->arg_type_end());
792      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
793                                         ParamTypes.data(), ParamTypes.size(),
794                                         OldProto->isVariadic(),
795                                         OldProto->getTypeQuals());
796      New->setType(NewQType);
797      New->setHasInheritedPrototype();
798
799      // Synthesize a parameter for each argument type.
800      llvm::SmallVector<ParmVarDecl*, 16> Params;
801      for (FunctionProtoType::arg_type_iterator
802             ParamType = OldProto->arg_type_begin(),
803             ParamEnd = OldProto->arg_type_end();
804           ParamType != ParamEnd; ++ParamType) {
805        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
806                                                 SourceLocation(), 0,
807                                                 *ParamType, /*DInfo=*/0,
808                                                 VarDecl::None, 0);
809        Param->setImplicit();
810        Params.push_back(Param);
811      }
812
813      New->setParams(Context, Params.data(), Params.size());
814    }
815
816    return MergeCompatibleFunctionDecls(New, Old);
817  }
818
819  // GNU C permits a K&R definition to follow a prototype declaration
820  // if the declared types of the parameters in the K&R definition
821  // match the types in the prototype declaration, even when the
822  // promoted types of the parameters from the K&R definition differ
823  // from the types in the prototype. GCC then keeps the types from
824  // the prototype.
825  //
826  // If a variadic prototype is followed by a non-variadic K&R definition,
827  // the K&R definition becomes variadic.  This is sort of an edge case, but
828  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
829  // C99 6.9.1p8.
830  if (!getLangOptions().CPlusPlus &&
831      Old->hasPrototype() && !New->hasPrototype() &&
832      New->getType()->getAs<FunctionProtoType>() &&
833      Old->getNumParams() == New->getNumParams()) {
834    llvm::SmallVector<QualType, 16> ArgTypes;
835    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
836    const FunctionProtoType *OldProto
837      = Old->getType()->getAs<FunctionProtoType>();
838    const FunctionProtoType *NewProto
839      = New->getType()->getAs<FunctionProtoType>();
840
841    // Determine whether this is the GNU C extension.
842    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
843                                               NewProto->getResultType());
844    bool LooseCompatible = !MergedReturn.isNull();
845    for (unsigned Idx = 0, End = Old->getNumParams();
846         LooseCompatible && Idx != End; ++Idx) {
847      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
848      ParmVarDecl *NewParm = New->getParamDecl(Idx);
849      if (Context.typesAreCompatible(OldParm->getType(),
850                                     NewProto->getArgType(Idx))) {
851        ArgTypes.push_back(NewParm->getType());
852      } else if (Context.typesAreCompatible(OldParm->getType(),
853                                            NewParm->getType())) {
854        GNUCompatibleParamWarning Warn
855          = { OldParm, NewParm, NewProto->getArgType(Idx) };
856        Warnings.push_back(Warn);
857        ArgTypes.push_back(NewParm->getType());
858      } else
859        LooseCompatible = false;
860    }
861
862    if (LooseCompatible) {
863      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
864        Diag(Warnings[Warn].NewParm->getLocation(),
865             diag::ext_param_promoted_not_compatible_with_prototype)
866          << Warnings[Warn].PromotedType
867          << Warnings[Warn].OldParm->getType();
868        Diag(Warnings[Warn].OldParm->getLocation(),
869             diag::note_previous_declaration);
870      }
871
872      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
873                                           ArgTypes.size(),
874                                           OldProto->isVariadic(), 0));
875      return MergeCompatibleFunctionDecls(New, Old);
876    }
877
878    // Fall through to diagnose conflicting types.
879  }
880
881  // A function that has already been declared has been redeclared or defined
882  // with a different type- show appropriate diagnostic
883  if (unsigned BuiltinID = Old->getBuiltinID()) {
884    // The user has declared a builtin function with an incompatible
885    // signature.
886    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
887      // The function the user is redeclaring is a library-defined
888      // function like 'malloc' or 'printf'. Warn about the
889      // redeclaration, then pretend that we don't know about this
890      // library built-in.
891      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
892      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
893        << Old << Old->getType();
894      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
895      Old->setInvalidDecl();
896      return false;
897    }
898
899    PrevDiag = diag::note_previous_builtin_declaration;
900  }
901
902  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
903  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
904  return true;
905}
906
907/// \brief Completes the merge of two function declarations that are
908/// known to be compatible.
909///
910/// This routine handles the merging of attributes and other
911/// properties of function declarations form the old declaration to
912/// the new declaration, once we know that New is in fact a
913/// redeclaration of Old.
914///
915/// \returns false
916bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
917  // Merge the attributes
918  MergeAttributes(New, Old, Context);
919
920  // Merge the storage class.
921  if (Old->getStorageClass() != FunctionDecl::Extern &&
922      Old->getStorageClass() != FunctionDecl::None)
923    New->setStorageClass(Old->getStorageClass());
924
925  // Merge "pure" flag.
926  if (Old->isPure())
927    New->setPure();
928
929  // Merge the "deleted" flag.
930  if (Old->isDeleted())
931    New->setDeleted();
932
933  if (getLangOptions().CPlusPlus)
934    return MergeCXXFunctionDecl(New, Old);
935
936  return false;
937}
938
939/// MergeVarDecl - We just parsed a variable 'New' which has the same name
940/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
941/// situation, merging decls or emitting diagnostics as appropriate.
942///
943/// Tentative definition rules (C99 6.9.2p2) are checked by
944/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
945/// definitions here, since the initializer hasn't been attached.
946///
947void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
948  // If either decl is invalid, make sure the new one is marked invalid and
949  // don't do any other checking.
950  if (New->isInvalidDecl() || OldD->isInvalidDecl())
951    return New->setInvalidDecl();
952
953  // Verify the old decl was also a variable.
954  VarDecl *Old = dyn_cast<VarDecl>(OldD);
955  if (!Old) {
956    Diag(New->getLocation(), diag::err_redefinition_different_kind)
957      << New->getDeclName();
958    Diag(OldD->getLocation(), diag::note_previous_definition);
959    return New->setInvalidDecl();
960  }
961
962  MergeAttributes(New, Old, Context);
963
964  // Merge the types
965  QualType MergedT;
966  if (getLangOptions().CPlusPlus) {
967    if (Context.hasSameType(New->getType(), Old->getType()))
968      MergedT = New->getType();
969    // C++ [basic.types]p7:
970    //   [...] The declared type of an array object might be an array of
971    //   unknown size and therefore be incomplete at one point in a
972    //   translation unit and complete later on; [...]
973    else if (Old->getType()->isIncompleteArrayType() &&
974             New->getType()->isArrayType()) {
975      CanQual<ArrayType> OldArray
976        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
977      CanQual<ArrayType> NewArray
978        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
979      if (OldArray->getElementType() == NewArray->getElementType())
980        MergedT = New->getType();
981    }
982  } else {
983    MergedT = Context.mergeTypes(New->getType(), Old->getType());
984  }
985  if (MergedT.isNull()) {
986    Diag(New->getLocation(), diag::err_redefinition_different_type)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991  New->setType(MergedT);
992
993  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
994  if (New->getStorageClass() == VarDecl::Static &&
995      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
996    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
997    Diag(Old->getLocation(), diag::note_previous_definition);
998    return New->setInvalidDecl();
999  }
1000  // C99 6.2.2p4:
1001  //   For an identifier declared with the storage-class specifier
1002  //   extern in a scope in which a prior declaration of that
1003  //   identifier is visible,23) if the prior declaration specifies
1004  //   internal or external linkage, the linkage of the identifier at
1005  //   the later declaration is the same as the linkage specified at
1006  //   the prior declaration. If no prior declaration is visible, or
1007  //   if the prior declaration specifies no linkage, then the
1008  //   identifier has external linkage.
1009  if (New->hasExternalStorage() && Old->hasLinkage())
1010    /* Okay */;
1011  else if (New->getStorageClass() != VarDecl::Static &&
1012           Old->getStorageClass() == VarDecl::Static) {
1013    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1019
1020  // FIXME: The test for external storage here seems wrong? We still
1021  // need to check for mismatches.
1022  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1023      // Don't complain about out-of-line definitions of static members.
1024      !(Old->getLexicalDeclContext()->isRecord() &&
1025        !New->getLexicalDeclContext()->isRecord())) {
1026    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1027    Diag(Old->getLocation(), diag::note_previous_definition);
1028    return New->setInvalidDecl();
1029  }
1030
1031  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1032    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1033    Diag(Old->getLocation(), diag::note_previous_definition);
1034  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1035    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037  }
1038
1039  // Keep a chain of previous declarations.
1040  New->setPreviousDeclaration(Old);
1041}
1042
1043/// CheckFallThrough - Check that we don't fall off the end of a
1044/// Statement that should return a value.
1045///
1046/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1047/// MaybeFallThrough iff we might or might not fall off the end and
1048/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1049/// that functions not marked noreturn will return.
1050Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1051  // FIXME: Eventually share this CFG object when we have other warnings based
1052  // of the CFG.  This can be done using AnalysisContext.
1053  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1054
1055  // FIXME: They should never return 0, fix that, delete this code.
1056  if (cfg == 0)
1057    return NeverFallThrough;
1058  // The CFG leaves in dead things, and we don't want to dead code paths to
1059  // confuse us, so we mark all live things first.
1060  std::queue<CFGBlock*> workq;
1061  llvm::BitVector live(cfg->getNumBlockIDs());
1062  // Prep work queue
1063  workq.push(&cfg->getEntry());
1064  // Solve
1065  while (!workq.empty()) {
1066    CFGBlock *item = workq.front();
1067    workq.pop();
1068    live.set(item->getBlockID());
1069    for (CFGBlock::succ_iterator I=item->succ_begin(),
1070           E=item->succ_end();
1071         I != E;
1072         ++I) {
1073      if ((*I) && !live[(*I)->getBlockID()]) {
1074        live.set((*I)->getBlockID());
1075        workq.push(*I);
1076      }
1077    }
1078  }
1079
1080  // Now we know what is live, we check the live precessors of the exit block
1081  // and look for fall through paths, being careful to ignore normal returns,
1082  // and exceptional paths.
1083  bool HasLiveReturn = false;
1084  bool HasFakeEdge = false;
1085  bool HasPlainEdge = false;
1086  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1087         E = cfg->getExit().pred_end();
1088       I != E;
1089       ++I) {
1090    CFGBlock& B = **I;
1091    if (!live[B.getBlockID()])
1092      continue;
1093    if (B.size() == 0) {
1094      // A labeled empty statement, or the entry block...
1095      HasPlainEdge = true;
1096      continue;
1097    }
1098    Stmt *S = B[B.size()-1];
1099    if (isa<ReturnStmt>(S)) {
1100      HasLiveReturn = true;
1101      continue;
1102    }
1103    if (isa<ObjCAtThrowStmt>(S)) {
1104      HasFakeEdge = true;
1105      continue;
1106    }
1107    if (isa<CXXThrowExpr>(S)) {
1108      HasFakeEdge = true;
1109      continue;
1110    }
1111    bool NoReturnEdge = false;
1112    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1113      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1114      if (CEE->getType().getNoReturnAttr()) {
1115        NoReturnEdge = true;
1116        HasFakeEdge = true;
1117      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1118        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1119          if (FD->hasAttr<NoReturnAttr>()) {
1120            NoReturnEdge = true;
1121            HasFakeEdge = true;
1122          }
1123        }
1124      }
1125    }
1126    // FIXME: Add noreturn message sends.
1127    if (NoReturnEdge == false)
1128      HasPlainEdge = true;
1129  }
1130  if (!HasPlainEdge)
1131    return NeverFallThrough;
1132  if (HasFakeEdge || HasLiveReturn)
1133    return MaybeFallThrough;
1134  // This says AlwaysFallThrough for calls to functions that are not marked
1135  // noreturn, that don't return.  If people would like this warning to be more
1136  // accurate, such functions should be marked as noreturn.
1137  return AlwaysFallThrough;
1138}
1139
1140/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1141/// function that should return a value.  Check that we don't fall off the end
1142/// of a noreturn function.  We assume that functions and blocks not marked
1143/// noreturn will return.
1144void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1145  // FIXME: Would be nice if we had a better way to control cascading errors,
1146  // but for now, avoid them.  The problem is that when Parse sees:
1147  //   int foo() { return a; }
1148  // The return is eaten and the Sema code sees just:
1149  //   int foo() { }
1150  // which this code would then warn about.
1151  if (getDiagnostics().hasErrorOccurred())
1152    return;
1153
1154  bool ReturnsVoid = false;
1155  bool HasNoReturn = false;
1156  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1157    // If the result type of the function is a dependent type, we don't know
1158    // whether it will be void or not, so don't
1159    if (FD->getResultType()->isDependentType())
1160      return;
1161    if (FD->getResultType()->isVoidType())
1162      ReturnsVoid = true;
1163    if (FD->hasAttr<NoReturnAttr>())
1164      HasNoReturn = true;
1165  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1166    if (MD->getResultType()->isVoidType())
1167      ReturnsVoid = true;
1168    if (MD->hasAttr<NoReturnAttr>())
1169      HasNoReturn = true;
1170  }
1171
1172  // Short circuit for compilation speed.
1173  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1174       == Diagnostic::Ignored || ReturnsVoid)
1175      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1176          == Diagnostic::Ignored || !HasNoReturn)
1177      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1178          == Diagnostic::Ignored || !ReturnsVoid))
1179    return;
1180  // FIXME: Function try block
1181  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1182    switch (CheckFallThrough(Body)) {
1183    case MaybeFallThrough:
1184      if (HasNoReturn)
1185        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1186      else if (!ReturnsVoid)
1187        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1188      break;
1189    case AlwaysFallThrough:
1190      if (HasNoReturn)
1191        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1192      else if (!ReturnsVoid)
1193        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1194      break;
1195    case NeverFallThrough:
1196      if (ReturnsVoid && !HasNoReturn)
1197        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1198      break;
1199    }
1200  }
1201}
1202
1203/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1204/// that should return a value.  Check that we don't fall off the end of a
1205/// noreturn block.  We assume that functions and blocks not marked noreturn
1206/// will return.
1207void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1208  // FIXME: Would be nice if we had a better way to control cascading errors,
1209  // but for now, avoid them.  The problem is that when Parse sees:
1210  //   int foo() { return a; }
1211  // The return is eaten and the Sema code sees just:
1212  //   int foo() { }
1213  // which this code would then warn about.
1214  if (getDiagnostics().hasErrorOccurred())
1215    return;
1216  bool ReturnsVoid = false;
1217  bool HasNoReturn = false;
1218  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1219    if (FT->getResultType()->isVoidType())
1220      ReturnsVoid = true;
1221    if (FT->getNoReturnAttr())
1222      HasNoReturn = true;
1223  }
1224
1225  // Short circuit for compilation speed.
1226  if (ReturnsVoid
1227      && !HasNoReturn
1228      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1229          == Diagnostic::Ignored || !ReturnsVoid))
1230    return;
1231  // FIXME: Funtion try block
1232  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1233    switch (CheckFallThrough(Body)) {
1234    case MaybeFallThrough:
1235      if (HasNoReturn)
1236        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1237      else if (!ReturnsVoid)
1238        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1239      break;
1240    case AlwaysFallThrough:
1241      if (HasNoReturn)
1242        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1243      else if (!ReturnsVoid)
1244        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1245      break;
1246    case NeverFallThrough:
1247      if (ReturnsVoid)
1248        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1249      break;
1250    }
1251  }
1252}
1253
1254/// CheckParmsForFunctionDef - Check that the parameters of the given
1255/// function are appropriate for the definition of a function. This
1256/// takes care of any checks that cannot be performed on the
1257/// declaration itself, e.g., that the types of each of the function
1258/// parameters are complete.
1259bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1260  bool HasInvalidParm = false;
1261  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1262    ParmVarDecl *Param = FD->getParamDecl(p);
1263
1264    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1265    // function declarator that is part of a function definition of
1266    // that function shall not have incomplete type.
1267    //
1268    // This is also C++ [dcl.fct]p6.
1269    if (!Param->isInvalidDecl() &&
1270        RequireCompleteType(Param->getLocation(), Param->getType(),
1271                               diag::err_typecheck_decl_incomplete_type)) {
1272      Param->setInvalidDecl();
1273      HasInvalidParm = true;
1274    }
1275
1276    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1277    // declaration of each parameter shall include an identifier.
1278    if (Param->getIdentifier() == 0 &&
1279        !Param->isImplicit() &&
1280        !getLangOptions().CPlusPlus)
1281      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1282  }
1283
1284  return HasInvalidParm;
1285}
1286
1287/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1288/// no declarator (e.g. "struct foo;") is parsed.
1289Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1290  // FIXME: Error on auto/register at file scope
1291  // FIXME: Error on inline/virtual/explicit
1292  // FIXME: Error on invalid restrict
1293  // FIXME: Warn on useless __thread
1294  // FIXME: Warn on useless const/volatile
1295  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1296  // FIXME: Warn on useless attributes
1297  Decl *TagD = 0;
1298  TagDecl *Tag = 0;
1299  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1300      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1301      DS.getTypeSpecType() == DeclSpec::TST_union ||
1302      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1303    TagD = static_cast<Decl *>(DS.getTypeRep());
1304
1305    if (!TagD) // We probably had an error
1306      return DeclPtrTy();
1307
1308    // Note that the above type specs guarantee that the
1309    // type rep is a Decl, whereas in many of the others
1310    // it's a Type.
1311    Tag = dyn_cast<TagDecl>(TagD);
1312  }
1313
1314  if (DS.isFriendSpecified()) {
1315    // If we're dealing with a class template decl, assume that the
1316    // template routines are handling it.
1317    if (TagD && isa<ClassTemplateDecl>(TagD))
1318      return DeclPtrTy();
1319    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1320  }
1321
1322  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1323    // If there are attributes in the DeclSpec, apply them to the record.
1324    if (const AttributeList *AL = DS.getAttributes())
1325      ProcessDeclAttributeList(S, Record, AL);
1326
1327    if (!Record->getDeclName() && Record->isDefinition() &&
1328        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1329      if (getLangOptions().CPlusPlus ||
1330          Record->getDeclContext()->isRecord())
1331        return BuildAnonymousStructOrUnion(S, DS, Record);
1332
1333      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1334        << DS.getSourceRange();
1335    }
1336
1337    // Microsoft allows unnamed struct/union fields. Don't complain
1338    // about them.
1339    // FIXME: Should we support Microsoft's extensions in this area?
1340    if (Record->getDeclName() && getLangOptions().Microsoft)
1341      return DeclPtrTy::make(Tag);
1342  }
1343
1344  if (!DS.isMissingDeclaratorOk() &&
1345      DS.getTypeSpecType() != DeclSpec::TST_error) {
1346    // Warn about typedefs of enums without names, since this is an
1347    // extension in both Microsoft an GNU.
1348    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1349        Tag && isa<EnumDecl>(Tag)) {
1350      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1351        << DS.getSourceRange();
1352      return DeclPtrTy::make(Tag);
1353    }
1354
1355    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1356      << DS.getSourceRange();
1357    return DeclPtrTy();
1358  }
1359
1360  return DeclPtrTy::make(Tag);
1361}
1362
1363/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1364/// anonymous struct or union AnonRecord into the owning context Owner
1365/// and scope S. This routine will be invoked just after we realize
1366/// that an unnamed union or struct is actually an anonymous union or
1367/// struct, e.g.,
1368///
1369/// @code
1370/// union {
1371///   int i;
1372///   float f;
1373/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1374///    // f into the surrounding scope.x
1375/// @endcode
1376///
1377/// This routine is recursive, injecting the names of nested anonymous
1378/// structs/unions into the owning context and scope as well.
1379bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1380                                               RecordDecl *AnonRecord) {
1381  bool Invalid = false;
1382  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1383                               FEnd = AnonRecord->field_end();
1384       F != FEnd; ++F) {
1385    if ((*F)->getDeclName()) {
1386      LookupResult R;
1387      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1388                          LookupOrdinaryName, true);
1389      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1390      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1391        // C++ [class.union]p2:
1392        //   The names of the members of an anonymous union shall be
1393        //   distinct from the names of any other entity in the
1394        //   scope in which the anonymous union is declared.
1395        unsigned diagKind
1396          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1397                                 : diag::err_anonymous_struct_member_redecl;
1398        Diag((*F)->getLocation(), diagKind)
1399          << (*F)->getDeclName();
1400        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1401        Invalid = true;
1402      } else {
1403        // C++ [class.union]p2:
1404        //   For the purpose of name lookup, after the anonymous union
1405        //   definition, the members of the anonymous union are
1406        //   considered to have been defined in the scope in which the
1407        //   anonymous union is declared.
1408        Owner->makeDeclVisibleInContext(*F);
1409        S->AddDecl(DeclPtrTy::make(*F));
1410        IdResolver.AddDecl(*F);
1411      }
1412    } else if (const RecordType *InnerRecordType
1413                 = (*F)->getType()->getAs<RecordType>()) {
1414      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1415      if (InnerRecord->isAnonymousStructOrUnion())
1416        Invalid = Invalid ||
1417          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1418    }
1419  }
1420
1421  return Invalid;
1422}
1423
1424/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1425/// anonymous structure or union. Anonymous unions are a C++ feature
1426/// (C++ [class.union]) and a GNU C extension; anonymous structures
1427/// are a GNU C and GNU C++ extension.
1428Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1429                                                  RecordDecl *Record) {
1430  DeclContext *Owner = Record->getDeclContext();
1431
1432  // Diagnose whether this anonymous struct/union is an extension.
1433  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1434    Diag(Record->getLocation(), diag::ext_anonymous_union);
1435  else if (!Record->isUnion())
1436    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1437
1438  // C and C++ require different kinds of checks for anonymous
1439  // structs/unions.
1440  bool Invalid = false;
1441  if (getLangOptions().CPlusPlus) {
1442    const char* PrevSpec = 0;
1443    unsigned DiagID;
1444    // C++ [class.union]p3:
1445    //   Anonymous unions declared in a named namespace or in the
1446    //   global namespace shall be declared static.
1447    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1448        (isa<TranslationUnitDecl>(Owner) ||
1449         (isa<NamespaceDecl>(Owner) &&
1450          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1451      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1452      Invalid = true;
1453
1454      // Recover by adding 'static'.
1455      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1456                             PrevSpec, DiagID);
1457    }
1458    // C++ [class.union]p3:
1459    //   A storage class is not allowed in a declaration of an
1460    //   anonymous union in a class scope.
1461    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1462             isa<RecordDecl>(Owner)) {
1463      Diag(DS.getStorageClassSpecLoc(),
1464           diag::err_anonymous_union_with_storage_spec);
1465      Invalid = true;
1466
1467      // Recover by removing the storage specifier.
1468      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1469                             PrevSpec, DiagID);
1470    }
1471
1472    // C++ [class.union]p2:
1473    //   The member-specification of an anonymous union shall only
1474    //   define non-static data members. [Note: nested types and
1475    //   functions cannot be declared within an anonymous union. ]
1476    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1477                                 MemEnd = Record->decls_end();
1478         Mem != MemEnd; ++Mem) {
1479      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1480        // C++ [class.union]p3:
1481        //   An anonymous union shall not have private or protected
1482        //   members (clause 11).
1483        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1484          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1485            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1486          Invalid = true;
1487        }
1488      } else if ((*Mem)->isImplicit()) {
1489        // Any implicit members are fine.
1490      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1491        // This is a type that showed up in an
1492        // elaborated-type-specifier inside the anonymous struct or
1493        // union, but which actually declares a type outside of the
1494        // anonymous struct or union. It's okay.
1495      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1496        if (!MemRecord->isAnonymousStructOrUnion() &&
1497            MemRecord->getDeclName()) {
1498          // This is a nested type declaration.
1499          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1500            << (int)Record->isUnion();
1501          Invalid = true;
1502        }
1503      } else {
1504        // We have something that isn't a non-static data
1505        // member. Complain about it.
1506        unsigned DK = diag::err_anonymous_record_bad_member;
1507        if (isa<TypeDecl>(*Mem))
1508          DK = diag::err_anonymous_record_with_type;
1509        else if (isa<FunctionDecl>(*Mem))
1510          DK = diag::err_anonymous_record_with_function;
1511        else if (isa<VarDecl>(*Mem))
1512          DK = diag::err_anonymous_record_with_static;
1513        Diag((*Mem)->getLocation(), DK)
1514            << (int)Record->isUnion();
1515          Invalid = true;
1516      }
1517    }
1518  }
1519
1520  if (!Record->isUnion() && !Owner->isRecord()) {
1521    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1522      << (int)getLangOptions().CPlusPlus;
1523    Invalid = true;
1524  }
1525
1526  // Mock up a declarator.
1527  Declarator Dc(DS, Declarator::TypeNameContext);
1528  DeclaratorInfo *DInfo = 0;
1529  GetTypeForDeclarator(Dc, S, &DInfo);
1530  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1531
1532  // Create a declaration for this anonymous struct/union.
1533  NamedDecl *Anon = 0;
1534  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1535    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1536                             /*IdentifierInfo=*/0,
1537                             Context.getTypeDeclType(Record),
1538                             DInfo,
1539                             /*BitWidth=*/0, /*Mutable=*/false);
1540    Anon->setAccess(AS_public);
1541    if (getLangOptions().CPlusPlus)
1542      FieldCollector->Add(cast<FieldDecl>(Anon));
1543  } else {
1544    VarDecl::StorageClass SC;
1545    switch (DS.getStorageClassSpec()) {
1546    default: assert(0 && "Unknown storage class!");
1547    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1548    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1549    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1550    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1551    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1552    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1553    case DeclSpec::SCS_mutable:
1554      // mutable can only appear on non-static class members, so it's always
1555      // an error here
1556      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1557      Invalid = true;
1558      SC = VarDecl::None;
1559      break;
1560    }
1561
1562    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1563                           /*IdentifierInfo=*/0,
1564                           Context.getTypeDeclType(Record),
1565                           DInfo,
1566                           SC);
1567  }
1568  Anon->setImplicit();
1569
1570  // Add the anonymous struct/union object to the current
1571  // context. We'll be referencing this object when we refer to one of
1572  // its members.
1573  Owner->addDecl(Anon);
1574
1575  // Inject the members of the anonymous struct/union into the owning
1576  // context and into the identifier resolver chain for name lookup
1577  // purposes.
1578  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1579    Invalid = true;
1580
1581  // Mark this as an anonymous struct/union type. Note that we do not
1582  // do this until after we have already checked and injected the
1583  // members of this anonymous struct/union type, because otherwise
1584  // the members could be injected twice: once by DeclContext when it
1585  // builds its lookup table, and once by
1586  // InjectAnonymousStructOrUnionMembers.
1587  Record->setAnonymousStructOrUnion(true);
1588
1589  if (Invalid)
1590    Anon->setInvalidDecl();
1591
1592  return DeclPtrTy::make(Anon);
1593}
1594
1595
1596/// GetNameForDeclarator - Determine the full declaration name for the
1597/// given Declarator.
1598DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1599  switch (D.getKind()) {
1600  case Declarator::DK_Abstract:
1601    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1602    return DeclarationName();
1603
1604  case Declarator::DK_Normal:
1605    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1606    return DeclarationName(D.getIdentifier());
1607
1608  case Declarator::DK_Constructor: {
1609    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1610    return Context.DeclarationNames.getCXXConstructorName(
1611                                                Context.getCanonicalType(Ty));
1612  }
1613
1614  case Declarator::DK_Destructor: {
1615    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1616    return Context.DeclarationNames.getCXXDestructorName(
1617                                                Context.getCanonicalType(Ty));
1618  }
1619
1620  case Declarator::DK_Conversion: {
1621    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1622    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1623    return Context.DeclarationNames.getCXXConversionFunctionName(
1624                                                Context.getCanonicalType(Ty));
1625  }
1626
1627  case Declarator::DK_Operator:
1628    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1629    return Context.DeclarationNames.getCXXOperatorName(
1630                                                D.getOverloadedOperator());
1631
1632  case Declarator::DK_TemplateId: {
1633    TemplateName Name
1634      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1635    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1636      return Template->getDeclName();
1637    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1638      return Ovl->getDeclName();
1639
1640    return DeclarationName();
1641  }
1642  }
1643
1644  assert(false && "Unknown name kind");
1645  return DeclarationName();
1646}
1647
1648/// isNearlyMatchingFunction - Determine whether the C++ functions
1649/// Declaration and Definition are "nearly" matching. This heuristic
1650/// is used to improve diagnostics in the case where an out-of-line
1651/// function definition doesn't match any declaration within
1652/// the class or namespace.
1653static bool isNearlyMatchingFunction(ASTContext &Context,
1654                                     FunctionDecl *Declaration,
1655                                     FunctionDecl *Definition) {
1656  if (Declaration->param_size() != Definition->param_size())
1657    return false;
1658  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1659    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1660    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1661
1662    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1663    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1664    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1665      return false;
1666  }
1667
1668  return true;
1669}
1670
1671Sema::DeclPtrTy
1672Sema::HandleDeclarator(Scope *S, Declarator &D,
1673                       MultiTemplateParamsArg TemplateParamLists,
1674                       bool IsFunctionDefinition) {
1675  DeclarationName Name = GetNameForDeclarator(D);
1676
1677  // All of these full declarators require an identifier.  If it doesn't have
1678  // one, the ParsedFreeStandingDeclSpec action should be used.
1679  if (!Name) {
1680    if (!D.isInvalidType())  // Reject this if we think it is valid.
1681      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1682           diag::err_declarator_need_ident)
1683        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1684    return DeclPtrTy();
1685  }
1686
1687  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1688  // we find one that is.
1689  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1690         (S->getFlags() & Scope::TemplateParamScope) != 0)
1691    S = S->getParent();
1692
1693  // If this is an out-of-line definition of a member of a class template
1694  // or class template partial specialization, we may need to rebuild the
1695  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1696  // for more information.
1697  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1698  // handle expressions properly.
1699  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1700  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1701      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1702      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1703       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1704       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1705       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1706    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1707      // FIXME: Preserve type source info.
1708      QualType T = GetTypeFromParser(DS.getTypeRep());
1709      EnterDeclaratorContext(S, DC);
1710      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1711      ExitDeclaratorContext(S);
1712      if (T.isNull())
1713        return DeclPtrTy();
1714      DS.UpdateTypeRep(T.getAsOpaquePtr());
1715    }
1716  }
1717
1718  DeclContext *DC;
1719  NamedDecl *PrevDecl;
1720  NamedDecl *New;
1721
1722  DeclaratorInfo *DInfo = 0;
1723  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1724
1725  // See if this is a redefinition of a variable in the same scope.
1726  if (D.getCXXScopeSpec().isInvalid()) {
1727    DC = CurContext;
1728    PrevDecl = 0;
1729    D.setInvalidType();
1730  } else if (!D.getCXXScopeSpec().isSet()) {
1731    LookupNameKind NameKind = LookupOrdinaryName;
1732
1733    // If the declaration we're planning to build will be a function
1734    // or object with linkage, then look for another declaration with
1735    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1736    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1737      /* Do nothing*/;
1738    else if (R->isFunctionType()) {
1739      if (CurContext->isFunctionOrMethod() ||
1740          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1741        NameKind = LookupRedeclarationWithLinkage;
1742    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1743      NameKind = LookupRedeclarationWithLinkage;
1744    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1745             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1746      NameKind = LookupRedeclarationWithLinkage;
1747
1748    DC = CurContext;
1749    LookupResult R;
1750    LookupName(R, S, Name, NameKind, true,
1751               NameKind == LookupRedeclarationWithLinkage,
1752               D.getIdentifierLoc());
1753    PrevDecl = R.getAsSingleDecl(Context);
1754  } else { // Something like "int foo::x;"
1755    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1756
1757    if (!DC) {
1758      // If we could not compute the declaration context, it's because the
1759      // declaration context is dependent but does not refer to a class,
1760      // class template, or class template partial specialization. Complain
1761      // and return early, to avoid the coming semantic disaster.
1762      Diag(D.getIdentifierLoc(),
1763           diag::err_template_qualified_declarator_no_match)
1764        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1765        << D.getCXXScopeSpec().getRange();
1766      return DeclPtrTy();
1767    }
1768
1769    if (!DC->isDependentContext() &&
1770        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1771      return DeclPtrTy();
1772
1773    LookupResult Res;
1774    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1775    PrevDecl = Res.getAsSingleDecl(Context);
1776
1777    // C++ 7.3.1.2p2:
1778    // Members (including explicit specializations of templates) of a named
1779    // namespace can also be defined outside that namespace by explicit
1780    // qualification of the name being defined, provided that the entity being
1781    // defined was already declared in the namespace and the definition appears
1782    // after the point of declaration in a namespace that encloses the
1783    // declarations namespace.
1784    //
1785    // Note that we only check the context at this point. We don't yet
1786    // have enough information to make sure that PrevDecl is actually
1787    // the declaration we want to match. For example, given:
1788    //
1789    //   class X {
1790    //     void f();
1791    //     void f(float);
1792    //   };
1793    //
1794    //   void X::f(int) { } // ill-formed
1795    //
1796    // In this case, PrevDecl will point to the overload set
1797    // containing the two f's declared in X, but neither of them
1798    // matches.
1799
1800    // First check whether we named the global scope.
1801    if (isa<TranslationUnitDecl>(DC)) {
1802      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1803        << Name << D.getCXXScopeSpec().getRange();
1804    } else if (!CurContext->Encloses(DC)) {
1805      // The qualifying scope doesn't enclose the original declaration.
1806      // Emit diagnostic based on current scope.
1807      SourceLocation L = D.getIdentifierLoc();
1808      SourceRange R = D.getCXXScopeSpec().getRange();
1809      if (isa<FunctionDecl>(CurContext))
1810        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1811      else
1812        Diag(L, diag::err_invalid_declarator_scope)
1813          << Name << cast<NamedDecl>(DC) << R;
1814      D.setInvalidType();
1815    }
1816  }
1817
1818  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1819    // Maybe we will complain about the shadowed template parameter.
1820    if (!D.isInvalidType())
1821      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1822        D.setInvalidType();
1823
1824    // Just pretend that we didn't see the previous declaration.
1825    PrevDecl = 0;
1826  }
1827
1828  // In C++, the previous declaration we find might be a tag type
1829  // (class or enum). In this case, the new declaration will hide the
1830  // tag type. Note that this does does not apply if we're declaring a
1831  // typedef (C++ [dcl.typedef]p4).
1832  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1833      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1834    PrevDecl = 0;
1835
1836  bool Redeclaration = false;
1837  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1838    if (TemplateParamLists.size()) {
1839      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1840      return DeclPtrTy();
1841    }
1842
1843    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1844  } else if (R->isFunctionType()) {
1845    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1846                                  move(TemplateParamLists),
1847                                  IsFunctionDefinition, Redeclaration);
1848  } else {
1849    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1850                                  move(TemplateParamLists),
1851                                  Redeclaration);
1852  }
1853
1854  if (New == 0)
1855    return DeclPtrTy();
1856
1857  // If this has an identifier and is not an invalid redeclaration or
1858  // function template specialization, add it to the scope stack.
1859  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1860      !(isa<FunctionDecl>(New) &&
1861        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1862    PushOnScopeChains(New, S);
1863
1864  return DeclPtrTy::make(New);
1865}
1866
1867/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1868/// types into constant array types in certain situations which would otherwise
1869/// be errors (for GCC compatibility).
1870static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1871                                                    ASTContext &Context,
1872                                                    bool &SizeIsNegative) {
1873  // This method tries to turn a variable array into a constant
1874  // array even when the size isn't an ICE.  This is necessary
1875  // for compatibility with code that depends on gcc's buggy
1876  // constant expression folding, like struct {char x[(int)(char*)2];}
1877  SizeIsNegative = false;
1878
1879  QualifierCollector Qs;
1880  const Type *Ty = Qs.strip(T);
1881
1882  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1883    QualType Pointee = PTy->getPointeeType();
1884    QualType FixedType =
1885        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1886    if (FixedType.isNull()) return FixedType;
1887    FixedType = Context.getPointerType(FixedType);
1888    return Qs.apply(FixedType);
1889  }
1890
1891  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1892  if (!VLATy)
1893    return QualType();
1894  // FIXME: We should probably handle this case
1895  if (VLATy->getElementType()->isVariablyModifiedType())
1896    return QualType();
1897
1898  Expr::EvalResult EvalResult;
1899  if (!VLATy->getSizeExpr() ||
1900      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1901      !EvalResult.Val.isInt())
1902    return QualType();
1903
1904  llvm::APSInt &Res = EvalResult.Val.getInt();
1905  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1906    // TODO: preserve the size expression in declarator info
1907    return Context.getConstantArrayType(VLATy->getElementType(),
1908                                        Res, ArrayType::Normal, 0);
1909  }
1910
1911  SizeIsNegative = true;
1912  return QualType();
1913}
1914
1915/// \brief Register the given locally-scoped external C declaration so
1916/// that it can be found later for redeclarations
1917void
1918Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1919                                       Scope *S) {
1920  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1921         "Decl is not a locally-scoped decl!");
1922  // Note that we have a locally-scoped external with this name.
1923  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1924
1925  if (!PrevDecl)
1926    return;
1927
1928  // If there was a previous declaration of this variable, it may be
1929  // in our identifier chain. Update the identifier chain with the new
1930  // declaration.
1931  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1932    // The previous declaration was found on the identifer resolver
1933    // chain, so remove it from its scope.
1934    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1935      S = S->getParent();
1936
1937    if (S)
1938      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1939  }
1940}
1941
1942/// \brief Diagnose function specifiers on a declaration of an identifier that
1943/// does not identify a function.
1944void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1945  // FIXME: We should probably indicate the identifier in question to avoid
1946  // confusion for constructs like "inline int a(), b;"
1947  if (D.getDeclSpec().isInlineSpecified())
1948    Diag(D.getDeclSpec().getInlineSpecLoc(),
1949         diag::err_inline_non_function);
1950
1951  if (D.getDeclSpec().isVirtualSpecified())
1952    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1953         diag::err_virtual_non_function);
1954
1955  if (D.getDeclSpec().isExplicitSpecified())
1956    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1957         diag::err_explicit_non_function);
1958}
1959
1960NamedDecl*
1961Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1962                             QualType R,  DeclaratorInfo *DInfo,
1963                             NamedDecl* PrevDecl, bool &Redeclaration) {
1964  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1965  if (D.getCXXScopeSpec().isSet()) {
1966    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1967      << D.getCXXScopeSpec().getRange();
1968    D.setInvalidType();
1969    // Pretend we didn't see the scope specifier.
1970    DC = 0;
1971  }
1972
1973  if (getLangOptions().CPlusPlus) {
1974    // Check that there are no default arguments (C++ only).
1975    CheckExtraCXXDefaultArguments(D);
1976  }
1977
1978  DiagnoseFunctionSpecifiers(D);
1979
1980  if (D.getDeclSpec().isThreadSpecified())
1981    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1982
1983  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
1984  if (!NewTD) return 0;
1985
1986  // Handle attributes prior to checking for duplicates in MergeVarDecl
1987  ProcessDeclAttributes(S, NewTD, D);
1988  // Merge the decl with the existing one if appropriate. If the decl is
1989  // in an outer scope, it isn't the same thing.
1990  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1991    Redeclaration = true;
1992    MergeTypeDefDecl(NewTD, PrevDecl);
1993  }
1994
1995  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1996  // then it shall have block scope.
1997  QualType T = NewTD->getUnderlyingType();
1998  if (T->isVariablyModifiedType()) {
1999    CurFunctionNeedsScopeChecking = true;
2000
2001    if (S->getFnParent() == 0) {
2002      bool SizeIsNegative;
2003      QualType FixedTy =
2004          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2005      if (!FixedTy.isNull()) {
2006        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2007        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2008      } else {
2009        if (SizeIsNegative)
2010          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2011        else if (T->isVariableArrayType())
2012          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2013        else
2014          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2015        NewTD->setInvalidDecl();
2016      }
2017    }
2018  }
2019
2020  // If this is the C FILE type, notify the AST context.
2021  if (IdentifierInfo *II = NewTD->getIdentifier())
2022    if (!NewTD->isInvalidDecl() &&
2023        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2024      if (II->isStr("FILE"))
2025        Context.setFILEDecl(NewTD);
2026      else if (II->isStr("jmp_buf"))
2027        Context.setjmp_bufDecl(NewTD);
2028      else if (II->isStr("sigjmp_buf"))
2029        Context.setsigjmp_bufDecl(NewTD);
2030    }
2031
2032  return NewTD;
2033}
2034
2035/// \brief Determines whether the given declaration is an out-of-scope
2036/// previous declaration.
2037///
2038/// This routine should be invoked when name lookup has found a
2039/// previous declaration (PrevDecl) that is not in the scope where a
2040/// new declaration by the same name is being introduced. If the new
2041/// declaration occurs in a local scope, previous declarations with
2042/// linkage may still be considered previous declarations (C99
2043/// 6.2.2p4-5, C++ [basic.link]p6).
2044///
2045/// \param PrevDecl the previous declaration found by name
2046/// lookup
2047///
2048/// \param DC the context in which the new declaration is being
2049/// declared.
2050///
2051/// \returns true if PrevDecl is an out-of-scope previous declaration
2052/// for a new delcaration with the same name.
2053static bool
2054isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2055                                ASTContext &Context) {
2056  if (!PrevDecl)
2057    return 0;
2058
2059  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2060  // case we need to check each of the overloaded functions.
2061  if (!PrevDecl->hasLinkage())
2062    return false;
2063
2064  if (Context.getLangOptions().CPlusPlus) {
2065    // C++ [basic.link]p6:
2066    //   If there is a visible declaration of an entity with linkage
2067    //   having the same name and type, ignoring entities declared
2068    //   outside the innermost enclosing namespace scope, the block
2069    //   scope declaration declares that same entity and receives the
2070    //   linkage of the previous declaration.
2071    DeclContext *OuterContext = DC->getLookupContext();
2072    if (!OuterContext->isFunctionOrMethod())
2073      // This rule only applies to block-scope declarations.
2074      return false;
2075    else {
2076      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2077      if (PrevOuterContext->isRecord())
2078        // We found a member function: ignore it.
2079        return false;
2080      else {
2081        // Find the innermost enclosing namespace for the new and
2082        // previous declarations.
2083        while (!OuterContext->isFileContext())
2084          OuterContext = OuterContext->getParent();
2085        while (!PrevOuterContext->isFileContext())
2086          PrevOuterContext = PrevOuterContext->getParent();
2087
2088        // The previous declaration is in a different namespace, so it
2089        // isn't the same function.
2090        if (OuterContext->getPrimaryContext() !=
2091            PrevOuterContext->getPrimaryContext())
2092          return false;
2093      }
2094    }
2095  }
2096
2097  return true;
2098}
2099
2100NamedDecl*
2101Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2102                              QualType R, DeclaratorInfo *DInfo,
2103                              NamedDecl* PrevDecl,
2104                              MultiTemplateParamsArg TemplateParamLists,
2105                              bool &Redeclaration) {
2106  DeclarationName Name = GetNameForDeclarator(D);
2107
2108  // Check that there are no default arguments (C++ only).
2109  if (getLangOptions().CPlusPlus)
2110    CheckExtraCXXDefaultArguments(D);
2111
2112  VarDecl *NewVD;
2113  VarDecl::StorageClass SC;
2114  switch (D.getDeclSpec().getStorageClassSpec()) {
2115  default: assert(0 && "Unknown storage class!");
2116  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2117  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2118  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2119  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2120  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2121  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2122  case DeclSpec::SCS_mutable:
2123    // mutable can only appear on non-static class members, so it's always
2124    // an error here
2125    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2126    D.setInvalidType();
2127    SC = VarDecl::None;
2128    break;
2129  }
2130
2131  IdentifierInfo *II = Name.getAsIdentifierInfo();
2132  if (!II) {
2133    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2134      << Name.getAsString();
2135    return 0;
2136  }
2137
2138  DiagnoseFunctionSpecifiers(D);
2139
2140  if (!DC->isRecord() && S->getFnParent() == 0) {
2141    // C99 6.9p2: The storage-class specifiers auto and register shall not
2142    // appear in the declaration specifiers in an external declaration.
2143    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2144
2145      // If this is a register variable with an asm label specified, then this
2146      // is a GNU extension.
2147      if (SC == VarDecl::Register && D.getAsmLabel())
2148        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2149      else
2150        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2151      D.setInvalidType();
2152    }
2153  }
2154  if (DC->isRecord() && !CurContext->isRecord()) {
2155    // This is an out-of-line definition of a static data member.
2156    if (SC == VarDecl::Static) {
2157      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2158           diag::err_static_out_of_line)
2159        << CodeModificationHint::CreateRemoval(
2160                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2161    } else if (SC == VarDecl::None)
2162      SC = VarDecl::Static;
2163  }
2164  if (SC == VarDecl::Static) {
2165    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2166      if (RD->isLocalClass())
2167        Diag(D.getIdentifierLoc(),
2168             diag::err_static_data_member_not_allowed_in_local_class)
2169          << Name << RD->getDeclName();
2170    }
2171  }
2172
2173  // Match up the template parameter lists with the scope specifier, then
2174  // determine whether we have a template or a template specialization.
2175  bool isExplicitSpecialization = false;
2176  if (TemplateParameterList *TemplateParams
2177        = MatchTemplateParametersToScopeSpecifier(
2178                                  D.getDeclSpec().getSourceRange().getBegin(),
2179                                                  D.getCXXScopeSpec(),
2180                        (TemplateParameterList**)TemplateParamLists.get(),
2181                                                   TemplateParamLists.size(),
2182                                                  isExplicitSpecialization)) {
2183    if (TemplateParams->size() > 0) {
2184      // There is no such thing as a variable template.
2185      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2186        << II
2187        << SourceRange(TemplateParams->getTemplateLoc(),
2188                       TemplateParams->getRAngleLoc());
2189      return 0;
2190    } else {
2191      // There is an extraneous 'template<>' for this variable. Complain
2192      // about it, but allow the declaration of the variable.
2193      Diag(TemplateParams->getTemplateLoc(),
2194           diag::err_template_variable_noparams)
2195        << II
2196        << SourceRange(TemplateParams->getTemplateLoc(),
2197                       TemplateParams->getRAngleLoc());
2198
2199      isExplicitSpecialization = true;
2200    }
2201  }
2202
2203  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2204                          II, R, DInfo, SC);
2205
2206  if (D.isInvalidType())
2207    NewVD->setInvalidDecl();
2208
2209  if (D.getDeclSpec().isThreadSpecified()) {
2210    if (NewVD->hasLocalStorage())
2211      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2212    else if (!Context.Target.isTLSSupported())
2213      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2214    else
2215      NewVD->setThreadSpecified(true);
2216  }
2217
2218  // Set the lexical context. If the declarator has a C++ scope specifier, the
2219  // lexical context will be different from the semantic context.
2220  NewVD->setLexicalDeclContext(CurContext);
2221
2222  // Handle attributes prior to checking for duplicates in MergeVarDecl
2223  ProcessDeclAttributes(S, NewVD, D);
2224
2225  // Handle GNU asm-label extension (encoded as an attribute).
2226  if (Expr *E = (Expr*) D.getAsmLabel()) {
2227    // The parser guarantees this is a string.
2228    StringLiteral *SE = cast<StringLiteral>(E);
2229    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2230                                                        SE->getByteLength())));
2231  }
2232
2233  // If name lookup finds a previous declaration that is not in the
2234  // same scope as the new declaration, this may still be an
2235  // acceptable redeclaration.
2236  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2237      !(NewVD->hasLinkage() &&
2238        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2239    PrevDecl = 0;
2240
2241  // Merge the decl with the existing one if appropriate.
2242  if (PrevDecl) {
2243    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2244      // The user tried to define a non-static data member
2245      // out-of-line (C++ [dcl.meaning]p1).
2246      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2247        << D.getCXXScopeSpec().getRange();
2248      PrevDecl = 0;
2249      NewVD->setInvalidDecl();
2250    }
2251  } else if (D.getCXXScopeSpec().isSet()) {
2252    // No previous declaration in the qualifying scope.
2253    Diag(D.getIdentifierLoc(), diag::err_no_member)
2254      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2255      << D.getCXXScopeSpec().getRange();
2256    NewVD->setInvalidDecl();
2257  }
2258
2259  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2260
2261  // This is an explicit specialization of a static data member. Check it.
2262  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2263      CheckMemberSpecialization(NewVD, PrevDecl))
2264    NewVD->setInvalidDecl();
2265
2266  // attributes declared post-definition are currently ignored
2267  if (PrevDecl) {
2268    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2269    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2270      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2271      Diag(Def->getLocation(), diag::note_previous_definition);
2272    }
2273  }
2274
2275  // If this is a locally-scoped extern C variable, update the map of
2276  // such variables.
2277  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2278      !NewVD->isInvalidDecl())
2279    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2280
2281  return NewVD;
2282}
2283
2284/// \brief Perform semantic checking on a newly-created variable
2285/// declaration.
2286///
2287/// This routine performs all of the type-checking required for a
2288/// variable declaration once it has been built. It is used both to
2289/// check variables after they have been parsed and their declarators
2290/// have been translated into a declaration, and to check variables
2291/// that have been instantiated from a template.
2292///
2293/// Sets NewVD->isInvalidDecl() if an error was encountered.
2294void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2295                                    bool &Redeclaration) {
2296  // If the decl is already known invalid, don't check it.
2297  if (NewVD->isInvalidDecl())
2298    return;
2299
2300  QualType T = NewVD->getType();
2301
2302  if (T->isObjCInterfaceType()) {
2303    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2304    return NewVD->setInvalidDecl();
2305  }
2306
2307  // The variable can not have an abstract class type.
2308  if (RequireNonAbstractType(NewVD->getLocation(), T,
2309                             diag::err_abstract_type_in_decl,
2310                             AbstractVariableType))
2311    return NewVD->setInvalidDecl();
2312
2313  // Emit an error if an address space was applied to decl with local storage.
2314  // This includes arrays of objects with address space qualifiers, but not
2315  // automatic variables that point to other address spaces.
2316  // ISO/IEC TR 18037 S5.1.2
2317  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2318    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2319    return NewVD->setInvalidDecl();
2320  }
2321
2322  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2323      && !NewVD->hasAttr<BlocksAttr>())
2324    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2325
2326  bool isVM = T->isVariablyModifiedType();
2327  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2328      NewVD->hasAttr<BlocksAttr>())
2329    CurFunctionNeedsScopeChecking = true;
2330
2331  if ((isVM && NewVD->hasLinkage()) ||
2332      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2333    bool SizeIsNegative;
2334    QualType FixedTy =
2335        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2336
2337    if (FixedTy.isNull() && T->isVariableArrayType()) {
2338      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2339      // FIXME: This won't give the correct result for
2340      // int a[10][n];
2341      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2342
2343      if (NewVD->isFileVarDecl())
2344        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2345        << SizeRange;
2346      else if (NewVD->getStorageClass() == VarDecl::Static)
2347        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2348        << SizeRange;
2349      else
2350        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2351        << SizeRange;
2352      return NewVD->setInvalidDecl();
2353    }
2354
2355    if (FixedTy.isNull()) {
2356      if (NewVD->isFileVarDecl())
2357        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2358      else
2359        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2360      return NewVD->setInvalidDecl();
2361    }
2362
2363    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2364    NewVD->setType(FixedTy);
2365  }
2366
2367  if (!PrevDecl && NewVD->isExternC()) {
2368    // Since we did not find anything by this name and we're declaring
2369    // an extern "C" variable, look for a non-visible extern "C"
2370    // declaration with the same name.
2371    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2372      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2373    if (Pos != LocallyScopedExternalDecls.end())
2374      PrevDecl = Pos->second;
2375  }
2376
2377  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2378    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2379      << T;
2380    return NewVD->setInvalidDecl();
2381  }
2382
2383  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2384    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2385    return NewVD->setInvalidDecl();
2386  }
2387
2388  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2389    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2390    return NewVD->setInvalidDecl();
2391  }
2392
2393  if (PrevDecl) {
2394    Redeclaration = true;
2395    MergeVarDecl(NewVD, PrevDecl);
2396  }
2397}
2398
2399static bool isUsingDecl(Decl *D) {
2400  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2401}
2402
2403/// \brief Data used with FindOverriddenMethod
2404struct FindOverriddenMethodData {
2405  Sema *S;
2406  CXXMethodDecl *Method;
2407};
2408
2409/// \brief Member lookup function that determines whether a given C++
2410/// method overrides a method in a base class, to be used with
2411/// CXXRecordDecl::lookupInBases().
2412static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2413                                 CXXBasePath &Path,
2414                                 void *UserData) {
2415  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2416
2417  FindOverriddenMethodData *Data
2418    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2419  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2420       Path.Decls.first != Path.Decls.second;
2421       ++Path.Decls.first) {
2422    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2423      OverloadedFunctionDecl::function_iterator MatchedDecl;
2424      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2425        return true;
2426    }
2427  }
2428
2429  return false;
2430}
2431
2432NamedDecl*
2433Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2434                              QualType R, DeclaratorInfo *DInfo,
2435                              NamedDecl* PrevDecl,
2436                              MultiTemplateParamsArg TemplateParamLists,
2437                              bool IsFunctionDefinition, bool &Redeclaration) {
2438  assert(R.getTypePtr()->isFunctionType());
2439
2440  DeclarationName Name = GetNameForDeclarator(D);
2441  FunctionDecl::StorageClass SC = FunctionDecl::None;
2442  switch (D.getDeclSpec().getStorageClassSpec()) {
2443  default: assert(0 && "Unknown storage class!");
2444  case DeclSpec::SCS_auto:
2445  case DeclSpec::SCS_register:
2446  case DeclSpec::SCS_mutable:
2447    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2448         diag::err_typecheck_sclass_func);
2449    D.setInvalidType();
2450    break;
2451  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2452  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2453  case DeclSpec::SCS_static: {
2454    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2455      // C99 6.7.1p5:
2456      //   The declaration of an identifier for a function that has
2457      //   block scope shall have no explicit storage-class specifier
2458      //   other than extern
2459      // See also (C++ [dcl.stc]p4).
2460      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2461           diag::err_static_block_func);
2462      SC = FunctionDecl::None;
2463    } else
2464      SC = FunctionDecl::Static;
2465    break;
2466  }
2467  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2468  }
2469
2470  if (D.getDeclSpec().isThreadSpecified())
2471    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2472
2473  bool isFriend = D.getDeclSpec().isFriendSpecified();
2474  bool isInline = D.getDeclSpec().isInlineSpecified();
2475  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2476  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2477
2478  // Check that the return type is not an abstract class type.
2479  // For record types, this is done by the AbstractClassUsageDiagnoser once
2480  // the class has been completely parsed.
2481  if (!DC->isRecord() &&
2482      RequireNonAbstractType(D.getIdentifierLoc(),
2483                             R->getAs<FunctionType>()->getResultType(),
2484                             diag::err_abstract_type_in_decl,
2485                             AbstractReturnType))
2486    D.setInvalidType();
2487
2488  // Do not allow returning a objc interface by-value.
2489  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2490    Diag(D.getIdentifierLoc(),
2491         diag::err_object_cannot_be_passed_returned_by_value) << 0
2492      << R->getAs<FunctionType>()->getResultType();
2493    D.setInvalidType();
2494  }
2495
2496  bool isVirtualOkay = false;
2497  FunctionDecl *NewFD;
2498
2499  if (isFriend) {
2500    // DC is the namespace in which the function is being declared.
2501    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2502           "friend function being created in a non-namespace context");
2503
2504    // C++ [class.friend]p5
2505    //   A function can be defined in a friend declaration of a
2506    //   class . . . . Such a function is implicitly inline.
2507    isInline |= IsFunctionDefinition;
2508  }
2509
2510  if (D.getKind() == Declarator::DK_Constructor) {
2511    // This is a C++ constructor declaration.
2512    assert(DC->isRecord() &&
2513           "Constructors can only be declared in a member context");
2514
2515    R = CheckConstructorDeclarator(D, R, SC);
2516
2517    // Create the new declaration
2518    NewFD = CXXConstructorDecl::Create(Context,
2519                                       cast<CXXRecordDecl>(DC),
2520                                       D.getIdentifierLoc(), Name, R, DInfo,
2521                                       isExplicit, isInline,
2522                                       /*isImplicitlyDeclared=*/false);
2523  } else if (D.getKind() == Declarator::DK_Destructor) {
2524    // This is a C++ destructor declaration.
2525    if (DC->isRecord()) {
2526      R = CheckDestructorDeclarator(D, SC);
2527
2528      NewFD = CXXDestructorDecl::Create(Context,
2529                                        cast<CXXRecordDecl>(DC),
2530                                        D.getIdentifierLoc(), Name, R,
2531                                        isInline,
2532                                        /*isImplicitlyDeclared=*/false);
2533
2534      isVirtualOkay = true;
2535    } else {
2536      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2537
2538      // Create a FunctionDecl to satisfy the function definition parsing
2539      // code path.
2540      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2541                                   Name, R, DInfo, SC, isInline,
2542                                   /*hasPrototype=*/true);
2543      D.setInvalidType();
2544    }
2545  } else if (D.getKind() == Declarator::DK_Conversion) {
2546    if (!DC->isRecord()) {
2547      Diag(D.getIdentifierLoc(),
2548           diag::err_conv_function_not_member);
2549      return 0;
2550    }
2551
2552    CheckConversionDeclarator(D, R, SC);
2553    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2554                                      D.getIdentifierLoc(), Name, R, DInfo,
2555                                      isInline, isExplicit);
2556
2557    isVirtualOkay = true;
2558  } else if (DC->isRecord()) {
2559    // If the of the function is the same as the name of the record, then this
2560    // must be an invalid constructor that has a return type.
2561    // (The parser checks for a return type and makes the declarator a
2562    // constructor if it has no return type).
2563    // must have an invalid constructor that has a return type
2564    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2565      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2566        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2567        << SourceRange(D.getIdentifierLoc());
2568      return 0;
2569    }
2570
2571    // This is a C++ method declaration.
2572    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2573                                  D.getIdentifierLoc(), Name, R, DInfo,
2574                                  (SC == FunctionDecl::Static), isInline);
2575
2576    isVirtualOkay = (SC != FunctionDecl::Static);
2577  } else {
2578    // Determine whether the function was written with a
2579    // prototype. This true when:
2580    //   - we're in C++ (where every function has a prototype),
2581    //   - there is a prototype in the declarator, or
2582    //   - the type R of the function is some kind of typedef or other reference
2583    //     to a type name (which eventually refers to a function type).
2584    bool HasPrototype =
2585       getLangOptions().CPlusPlus ||
2586       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2587       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2588
2589    NewFD = FunctionDecl::Create(Context, DC,
2590                                 D.getIdentifierLoc(),
2591                                 Name, R, DInfo, SC, isInline, HasPrototype);
2592  }
2593
2594  if (D.isInvalidType())
2595    NewFD->setInvalidDecl();
2596
2597  // Set the lexical context. If the declarator has a C++
2598  // scope specifier, or is the object of a friend declaration, the
2599  // lexical context will be different from the semantic context.
2600  NewFD->setLexicalDeclContext(CurContext);
2601
2602  // Match up the template parameter lists with the scope specifier, then
2603  // determine whether we have a template or a template specialization.
2604  FunctionTemplateDecl *FunctionTemplate = 0;
2605  bool isExplicitSpecialization = false;
2606  bool isFunctionTemplateSpecialization = false;
2607  if (TemplateParameterList *TemplateParams
2608        = MatchTemplateParametersToScopeSpecifier(
2609                                  D.getDeclSpec().getSourceRange().getBegin(),
2610                                  D.getCXXScopeSpec(),
2611                           (TemplateParameterList**)TemplateParamLists.get(),
2612                                                  TemplateParamLists.size(),
2613                                                  isExplicitSpecialization)) {
2614    if (TemplateParams->size() > 0) {
2615      // This is a function template
2616
2617      // Check that we can declare a template here.
2618      if (CheckTemplateDeclScope(S, TemplateParams))
2619        return 0;
2620
2621      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2622                                                      NewFD->getLocation(),
2623                                                      Name, TemplateParams,
2624                                                      NewFD);
2625      FunctionTemplate->setLexicalDeclContext(CurContext);
2626      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2627    } else {
2628      // This is a function template specialization.
2629      isFunctionTemplateSpecialization = true;
2630    }
2631
2632    // FIXME: Free this memory properly.
2633    TemplateParamLists.release();
2634  }
2635
2636  // C++ [dcl.fct.spec]p5:
2637  //   The virtual specifier shall only be used in declarations of
2638  //   nonstatic class member functions that appear within a
2639  //   member-specification of a class declaration; see 10.3.
2640  //
2641  if (isVirtual && !NewFD->isInvalidDecl()) {
2642    if (!isVirtualOkay) {
2643       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2644           diag::err_virtual_non_function);
2645    } else if (!CurContext->isRecord()) {
2646      // 'virtual' was specified outside of the class.
2647      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2648        << CodeModificationHint::CreateRemoval(
2649                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2650    } else {
2651      // Okay: Add virtual to the method.
2652      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2653      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2654      CurClass->setAggregate(false);
2655      CurClass->setPOD(false);
2656      CurClass->setEmpty(false);
2657      CurClass->setPolymorphic(true);
2658      CurClass->setHasTrivialConstructor(false);
2659      CurClass->setHasTrivialCopyConstructor(false);
2660      CurClass->setHasTrivialCopyAssignment(false);
2661    }
2662  }
2663
2664  if (isFriend) {
2665    if (FunctionTemplate) {
2666      FunctionTemplate->setObjectOfFriendDecl(
2667                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2668      FunctionTemplate->setAccess(AS_public);
2669    }
2670    else
2671      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2672
2673    NewFD->setAccess(AS_public);
2674  }
2675
2676
2677  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2678    // Look for virtual methods in base classes that this method might override.
2679    CXXBasePaths Paths;
2680    FindOverriddenMethodData Data;
2681    Data.Method = NewMD;
2682    Data.S = this;
2683    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2684                                                Paths)) {
2685      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2686           E = Paths.found_decls_end(); I != E; ++I) {
2687        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2688          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2689              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2690            NewMD->addOverriddenMethod(OldMD);
2691        }
2692      }
2693    }
2694  }
2695
2696  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2697      !CurContext->isRecord()) {
2698    // C++ [class.static]p1:
2699    //   A data or function member of a class may be declared static
2700    //   in a class definition, in which case it is a static member of
2701    //   the class.
2702
2703    // Complain about the 'static' specifier if it's on an out-of-line
2704    // member function definition.
2705    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2706         diag::err_static_out_of_line)
2707      << CodeModificationHint::CreateRemoval(
2708                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2709  }
2710
2711  // Handle GNU asm-label extension (encoded as an attribute).
2712  if (Expr *E = (Expr*) D.getAsmLabel()) {
2713    // The parser guarantees this is a string.
2714    StringLiteral *SE = cast<StringLiteral>(E);
2715    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2716                                                        SE->getByteLength())));
2717  }
2718
2719  // Copy the parameter declarations from the declarator D to the function
2720  // declaration NewFD, if they are available.  First scavenge them into Params.
2721  llvm::SmallVector<ParmVarDecl*, 16> Params;
2722  if (D.getNumTypeObjects() > 0) {
2723    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2724
2725    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2726    // function that takes no arguments, not a function that takes a
2727    // single void argument.
2728    // We let through "const void" here because Sema::GetTypeForDeclarator
2729    // already checks for that case.
2730    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2731        FTI.ArgInfo[0].Param &&
2732        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2733      // Empty arg list, don't push any params.
2734      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2735
2736      // In C++, the empty parameter-type-list must be spelled "void"; a
2737      // typedef of void is not permitted.
2738      if (getLangOptions().CPlusPlus &&
2739          Param->getType().getUnqualifiedType() != Context.VoidTy)
2740        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2741      // FIXME: Leaks decl?
2742    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2743      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2744        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2745        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2746        Param->setDeclContext(NewFD);
2747        Params.push_back(Param);
2748      }
2749    }
2750
2751  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2752    // When we're declaring a function with a typedef, typeof, etc as in the
2753    // following example, we'll need to synthesize (unnamed)
2754    // parameters for use in the declaration.
2755    //
2756    // @code
2757    // typedef void fn(int);
2758    // fn f;
2759    // @endcode
2760
2761    // Synthesize a parameter for each argument type.
2762    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2763         AE = FT->arg_type_end(); AI != AE; ++AI) {
2764      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2765                                               SourceLocation(), 0,
2766                                               *AI, /*DInfo=*/0,
2767                                               VarDecl::None, 0);
2768      Param->setImplicit();
2769      Params.push_back(Param);
2770    }
2771  } else {
2772    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2773           "Should not need args for typedef of non-prototype fn");
2774  }
2775  // Finally, we know we have the right number of parameters, install them.
2776  NewFD->setParams(Context, Params.data(), Params.size());
2777
2778  // If name lookup finds a previous declaration that is not in the
2779  // same scope as the new declaration, this may still be an
2780  // acceptable redeclaration.
2781  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2782      !(NewFD->hasLinkage() &&
2783        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2784    PrevDecl = 0;
2785
2786  // If the declarator is a template-id, translate the parser's template
2787  // argument list into our AST format.
2788  bool HasExplicitTemplateArgs = false;
2789  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2790  SourceLocation LAngleLoc, RAngleLoc;
2791  if (D.getKind() == Declarator::DK_TemplateId) {
2792    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2793    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2794                                       TemplateId->getTemplateArgs(),
2795                                       TemplateId->getTemplateArgIsType(),
2796                                       TemplateId->NumArgs);
2797    translateTemplateArguments(TemplateArgsPtr,
2798                               TemplateId->getTemplateArgLocations(),
2799                               TemplateArgs);
2800    TemplateArgsPtr.release();
2801
2802    HasExplicitTemplateArgs = true;
2803    LAngleLoc = TemplateId->LAngleLoc;
2804    RAngleLoc = TemplateId->RAngleLoc;
2805
2806    if (FunctionTemplate) {
2807      // FIXME: Diagnose function template with explicit template
2808      // arguments.
2809      HasExplicitTemplateArgs = false;
2810    } else if (!isFunctionTemplateSpecialization &&
2811               !D.getDeclSpec().isFriendSpecified()) {
2812      // We have encountered something that the user meant to be a
2813      // specialization (because it has explicitly-specified template
2814      // arguments) but that was not introduced with a "template<>" (or had
2815      // too few of them).
2816      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2817        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2818        << CodeModificationHint::CreateInsertion(
2819                                   D.getDeclSpec().getSourceRange().getBegin(),
2820                                                 "template<> ");
2821      isFunctionTemplateSpecialization = true;
2822    }
2823  }
2824
2825  if (isFunctionTemplateSpecialization) {
2826      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2827                                              LAngleLoc, TemplateArgs.data(),
2828                                              TemplateArgs.size(), RAngleLoc,
2829                                              PrevDecl))
2830        NewFD->setInvalidDecl();
2831  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2832             CheckMemberSpecialization(NewFD, PrevDecl))
2833    NewFD->setInvalidDecl();
2834
2835  // Perform semantic checking on the function declaration.
2836  bool OverloadableAttrRequired = false; // FIXME: HACK!
2837  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2838                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2839
2840  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2841    // An out-of-line member function declaration must also be a
2842    // definition (C++ [dcl.meaning]p1).
2843    // Note that this is not the case for explicit specializations of
2844    // function templates or member functions of class templates, per
2845    // C++ [temp.expl.spec]p2.
2846    if (!IsFunctionDefinition && !isFriend &&
2847        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2848      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2849        << D.getCXXScopeSpec().getRange();
2850      NewFD->setInvalidDecl();
2851    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2852      // The user tried to provide an out-of-line definition for a
2853      // function that is a member of a class or namespace, but there
2854      // was no such member function declared (C++ [class.mfct]p2,
2855      // C++ [namespace.memdef]p2). For example:
2856      //
2857      // class X {
2858      //   void f() const;
2859      // };
2860      //
2861      // void X::f() { } // ill-formed
2862      //
2863      // Complain about this problem, and attempt to suggest close
2864      // matches (e.g., those that differ only in cv-qualifiers and
2865      // whether the parameter types are references).
2866      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2867        << Name << DC << D.getCXXScopeSpec().getRange();
2868      NewFD->setInvalidDecl();
2869
2870      LookupResult Prev;
2871      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2872      assert(!Prev.isAmbiguous() &&
2873             "Cannot have an ambiguity in previous-declaration lookup");
2874      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2875           Func != FuncEnd; ++Func) {
2876        if (isa<FunctionDecl>(*Func) &&
2877            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2878          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2879      }
2880
2881      PrevDecl = 0;
2882    }
2883  }
2884
2885  // Handle attributes. We need to have merged decls when handling attributes
2886  // (for example to check for conflicts, etc).
2887  // FIXME: This needs to happen before we merge declarations. Then,
2888  // let attribute merging cope with attribute conflicts.
2889  ProcessDeclAttributes(S, NewFD, D);
2890
2891  // attributes declared post-definition are currently ignored
2892  if (Redeclaration && PrevDecl) {
2893    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2894    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2895      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2896      Diag(Def->getLocation(), diag::note_previous_definition);
2897    }
2898  }
2899
2900  AddKnownFunctionAttributes(NewFD);
2901
2902  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2903    // If a function name is overloadable in C, then every function
2904    // with that name must be marked "overloadable".
2905    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2906      << Redeclaration << NewFD;
2907    if (PrevDecl)
2908      Diag(PrevDecl->getLocation(),
2909           diag::note_attribute_overloadable_prev_overload);
2910    NewFD->addAttr(::new (Context) OverloadableAttr());
2911  }
2912
2913  // If this is a locally-scoped extern C function, update the
2914  // map of such names.
2915  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2916      && !NewFD->isInvalidDecl())
2917    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2918
2919  // Set this FunctionDecl's range up to the right paren.
2920  NewFD->setLocEnd(D.getSourceRange().getEnd());
2921
2922  if (FunctionTemplate && NewFD->isInvalidDecl())
2923    FunctionTemplate->setInvalidDecl();
2924
2925  if (FunctionTemplate)
2926    return FunctionTemplate;
2927
2928  return NewFD;
2929}
2930
2931/// \brief Perform semantic checking of a new function declaration.
2932///
2933/// Performs semantic analysis of the new function declaration
2934/// NewFD. This routine performs all semantic checking that does not
2935/// require the actual declarator involved in the declaration, and is
2936/// used both for the declaration of functions as they are parsed
2937/// (called via ActOnDeclarator) and for the declaration of functions
2938/// that have been instantiated via C++ template instantiation (called
2939/// via InstantiateDecl).
2940///
2941/// \param IsExplicitSpecialiation whether this new function declaration is
2942/// an explicit specialization of the previous declaration.
2943///
2944/// This sets NewFD->isInvalidDecl() to true if there was an error.
2945void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2946                                    bool IsExplicitSpecialization,
2947                                    bool &Redeclaration,
2948                                    bool &OverloadableAttrRequired) {
2949  // If NewFD is already known erroneous, don't do any of this checking.
2950  if (NewFD->isInvalidDecl())
2951    return;
2952
2953  if (NewFD->getResultType()->isVariablyModifiedType()) {
2954    // Functions returning a variably modified type violate C99 6.7.5.2p2
2955    // because all functions have linkage.
2956    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2957    return NewFD->setInvalidDecl();
2958  }
2959
2960  if (NewFD->isMain())
2961    CheckMain(NewFD);
2962
2963  // Check for a previous declaration of this name.
2964  if (!PrevDecl && NewFD->isExternC()) {
2965    // Since we did not find anything by this name and we're declaring
2966    // an extern "C" function, look for a non-visible extern "C"
2967    // declaration with the same name.
2968    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2969      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2970    if (Pos != LocallyScopedExternalDecls.end())
2971      PrevDecl = Pos->second;
2972  }
2973
2974  // Merge or overload the declaration with an existing declaration of
2975  // the same name, if appropriate.
2976  if (PrevDecl) {
2977    // Determine whether NewFD is an overload of PrevDecl or
2978    // a declaration that requires merging. If it's an overload,
2979    // there's no more work to do here; we'll just add the new
2980    // function to the scope.
2981    OverloadedFunctionDecl::function_iterator MatchedDecl;
2982
2983    if (!getLangOptions().CPlusPlus &&
2984        AllowOverloadingOfFunction(PrevDecl, Context)) {
2985      OverloadableAttrRequired = true;
2986
2987      // Functions marked "overloadable" must have a prototype (that
2988      // we can't get through declaration merging).
2989      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2990        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2991          << NewFD;
2992        Redeclaration = true;
2993
2994        // Turn this into a variadic function with no parameters.
2995        QualType R = Context.getFunctionType(
2996                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2997                       0, 0, true, 0);
2998        NewFD->setType(R);
2999        return NewFD->setInvalidDecl();
3000      }
3001    }
3002
3003    if (PrevDecl &&
3004        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3005         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3006      Redeclaration = true;
3007      Decl *OldDecl = PrevDecl;
3008
3009      // If PrevDecl was an overloaded function, extract the
3010      // FunctionDecl that matched.
3011      if (isa<OverloadedFunctionDecl>(PrevDecl))
3012        OldDecl = *MatchedDecl;
3013
3014      // NewFD and OldDecl represent declarations that need to be
3015      // merged.
3016      if (MergeFunctionDecl(NewFD, OldDecl))
3017        return NewFD->setInvalidDecl();
3018
3019      if (FunctionTemplateDecl *OldTemplateDecl
3020                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3021        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3022        FunctionTemplateDecl *NewTemplateDecl
3023          = NewFD->getDescribedFunctionTemplate();
3024        assert(NewTemplateDecl && "Template/non-template mismatch");
3025        if (CXXMethodDecl *Method
3026              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3027          Method->setAccess(OldTemplateDecl->getAccess());
3028          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3029        }
3030
3031        // If this is an explicit specialization of a member that is a function
3032        // template, mark it as a member specialization.
3033        if (IsExplicitSpecialization &&
3034            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3035          NewTemplateDecl->setMemberSpecialization();
3036          assert(OldTemplateDecl->isMemberSpecialization());
3037        }
3038      } else {
3039        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3040          NewFD->setAccess(OldDecl->getAccess());
3041        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3042      }
3043    }
3044  }
3045
3046  // Semantic checking for this function declaration (in isolation).
3047  if (getLangOptions().CPlusPlus) {
3048    // C++-specific checks.
3049    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3050      CheckConstructor(Constructor);
3051    } else if (isa<CXXDestructorDecl>(NewFD)) {
3052      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3053      QualType ClassType = Context.getTypeDeclType(Record);
3054      if (!ClassType->isDependentType()) {
3055        DeclarationName Name
3056          = Context.DeclarationNames.getCXXDestructorName(
3057                                        Context.getCanonicalType(ClassType));
3058        if (NewFD->getDeclName() != Name) {
3059          Diag(NewFD->getLocation(), diag::err_destructor_name);
3060          return NewFD->setInvalidDecl();
3061        }
3062      }
3063      Record->setUserDeclaredDestructor(true);
3064      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3065      // user-defined destructor.
3066      Record->setPOD(false);
3067
3068      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3069      // declared destructor.
3070      // FIXME: C++0x: don't do this for "= default" destructors
3071      Record->setHasTrivialDestructor(false);
3072    } else if (CXXConversionDecl *Conversion
3073               = dyn_cast<CXXConversionDecl>(NewFD))
3074      ActOnConversionDeclarator(Conversion);
3075
3076    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3077    if (NewFD->isOverloadedOperator() &&
3078        CheckOverloadedOperatorDeclaration(NewFD))
3079      return NewFD->setInvalidDecl();
3080
3081    // In C++, check default arguments now that we have merged decls. Unless
3082    // the lexical context is the class, because in this case this is done
3083    // during delayed parsing anyway.
3084    if (!CurContext->isRecord())
3085      CheckCXXDefaultArguments(NewFD);
3086  }
3087}
3088
3089void Sema::CheckMain(FunctionDecl* FD) {
3090  // C++ [basic.start.main]p3:  A program that declares main to be inline
3091  //   or static is ill-formed.
3092  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3093  //   shall not appear in a declaration of main.
3094  // static main is not an error under C99, but we should warn about it.
3095  bool isInline = FD->isInline();
3096  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3097  if (isInline || isStatic) {
3098    unsigned diagID = diag::warn_unusual_main_decl;
3099    if (isInline || getLangOptions().CPlusPlus)
3100      diagID = diag::err_unusual_main_decl;
3101
3102    int which = isStatic + (isInline << 1) - 1;
3103    Diag(FD->getLocation(), diagID) << which;
3104  }
3105
3106  QualType T = FD->getType();
3107  assert(T->isFunctionType() && "function decl is not of function type");
3108  const FunctionType* FT = T->getAs<FunctionType>();
3109
3110  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3111    // TODO: add a replacement fixit to turn the return type into 'int'.
3112    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3113    FD->setInvalidDecl(true);
3114  }
3115
3116  // Treat protoless main() as nullary.
3117  if (isa<FunctionNoProtoType>(FT)) return;
3118
3119  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3120  unsigned nparams = FTP->getNumArgs();
3121  assert(FD->getNumParams() == nparams);
3122
3123  if (nparams > 3) {
3124    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3125    FD->setInvalidDecl(true);
3126    nparams = 3;
3127  }
3128
3129  // FIXME: a lot of the following diagnostics would be improved
3130  // if we had some location information about types.
3131
3132  QualType CharPP =
3133    Context.getPointerType(Context.getPointerType(Context.CharTy));
3134  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3135
3136  for (unsigned i = 0; i < nparams; ++i) {
3137    QualType AT = FTP->getArgType(i);
3138
3139    bool mismatch = true;
3140
3141    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3142      mismatch = false;
3143    else if (Expected[i] == CharPP) {
3144      // As an extension, the following forms are okay:
3145      //   char const **
3146      //   char const * const *
3147      //   char * const *
3148
3149      QualifierCollector qs;
3150      const PointerType* PT;
3151      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3152          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3153          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3154        qs.removeConst();
3155        mismatch = !qs.empty();
3156      }
3157    }
3158
3159    if (mismatch) {
3160      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3161      // TODO: suggest replacing given type with expected type
3162      FD->setInvalidDecl(true);
3163    }
3164  }
3165
3166  if (nparams == 1 && !FD->isInvalidDecl()) {
3167    Diag(FD->getLocation(), diag::warn_main_one_arg);
3168  }
3169}
3170
3171bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3172  // FIXME: Need strict checking.  In C89, we need to check for
3173  // any assignment, increment, decrement, function-calls, or
3174  // commas outside of a sizeof.  In C99, it's the same list,
3175  // except that the aforementioned are allowed in unevaluated
3176  // expressions.  Everything else falls under the
3177  // "may accept other forms of constant expressions" exception.
3178  // (We never end up here for C++, so the constant expression
3179  // rules there don't matter.)
3180  if (Init->isConstantInitializer(Context))
3181    return false;
3182  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3183    << Init->getSourceRange();
3184  return true;
3185}
3186
3187void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3188  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3189}
3190
3191/// AddInitializerToDecl - Adds the initializer Init to the
3192/// declaration dcl. If DirectInit is true, this is C++ direct
3193/// initialization rather than copy initialization.
3194void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3195  Decl *RealDecl = dcl.getAs<Decl>();
3196  // If there is no declaration, there was an error parsing it.  Just ignore
3197  // the initializer.
3198  if (RealDecl == 0)
3199    return;
3200
3201  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3202    // With declarators parsed the way they are, the parser cannot
3203    // distinguish between a normal initializer and a pure-specifier.
3204    // Thus this grotesque test.
3205    IntegerLiteral *IL;
3206    Expr *Init = static_cast<Expr *>(init.get());
3207    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3208        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3209      if (Method->isVirtualAsWritten()) {
3210        Method->setPure();
3211
3212        // A class is abstract if at least one function is pure virtual.
3213        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3214      } else if (!Method->isInvalidDecl()) {
3215        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3216          << Method->getDeclName() << Init->getSourceRange();
3217        Method->setInvalidDecl();
3218      }
3219    } else {
3220      Diag(Method->getLocation(), diag::err_member_function_initialization)
3221        << Method->getDeclName() << Init->getSourceRange();
3222      Method->setInvalidDecl();
3223    }
3224    return;
3225  }
3226
3227  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3228  if (!VDecl) {
3229    if (getLangOptions().CPlusPlus &&
3230        RealDecl->getLexicalDeclContext()->isRecord() &&
3231        isa<NamedDecl>(RealDecl))
3232      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3233        << cast<NamedDecl>(RealDecl)->getDeclName();
3234    else
3235      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3236    RealDecl->setInvalidDecl();
3237    return;
3238  }
3239
3240  if (!VDecl->getType()->isArrayType() &&
3241      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3242                          diag::err_typecheck_decl_incomplete_type)) {
3243    RealDecl->setInvalidDecl();
3244    return;
3245  }
3246
3247  const VarDecl *Def = 0;
3248  if (VDecl->getDefinition(Def)) {
3249    Diag(VDecl->getLocation(), diag::err_redefinition)
3250      << VDecl->getDeclName();
3251    Diag(Def->getLocation(), diag::note_previous_definition);
3252    VDecl->setInvalidDecl();
3253    return;
3254  }
3255
3256  // Take ownership of the expression, now that we're sure we have somewhere
3257  // to put it.
3258  Expr *Init = init.takeAs<Expr>();
3259  assert(Init && "missing initializer");
3260
3261  // Get the decls type and save a reference for later, since
3262  // CheckInitializerTypes may change it.
3263  QualType DclT = VDecl->getType(), SavT = DclT;
3264  if (VDecl->isBlockVarDecl()) {
3265    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3266      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3267      VDecl->setInvalidDecl();
3268    } else if (!VDecl->isInvalidDecl()) {
3269      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3270                                VDecl->getDeclName(), DirectInit))
3271        VDecl->setInvalidDecl();
3272
3273      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3274      // Don't check invalid declarations to avoid emitting useless diagnostics.
3275      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3276        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3277          CheckForConstantInitializer(Init, DclT);
3278      }
3279    }
3280  } else if (VDecl->isStaticDataMember() &&
3281             VDecl->getLexicalDeclContext()->isRecord()) {
3282    // This is an in-class initialization for a static data member, e.g.,
3283    //
3284    // struct S {
3285    //   static const int value = 17;
3286    // };
3287
3288    // Attach the initializer
3289    VDecl->setInit(Context, Init);
3290
3291    // C++ [class.mem]p4:
3292    //   A member-declarator can contain a constant-initializer only
3293    //   if it declares a static member (9.4) of const integral or
3294    //   const enumeration type, see 9.4.2.
3295    QualType T = VDecl->getType();
3296    if (!T->isDependentType() &&
3297        (!Context.getCanonicalType(T).isConstQualified() ||
3298         !T->isIntegralType())) {
3299      Diag(VDecl->getLocation(), diag::err_member_initialization)
3300        << VDecl->getDeclName() << Init->getSourceRange();
3301      VDecl->setInvalidDecl();
3302    } else {
3303      // C++ [class.static.data]p4:
3304      //   If a static data member is of const integral or const
3305      //   enumeration type, its declaration in the class definition
3306      //   can specify a constant-initializer which shall be an
3307      //   integral constant expression (5.19).
3308      if (!Init->isTypeDependent() &&
3309          !Init->getType()->isIntegralType()) {
3310        // We have a non-dependent, non-integral or enumeration type.
3311        Diag(Init->getSourceRange().getBegin(),
3312             diag::err_in_class_initializer_non_integral_type)
3313          << Init->getType() << Init->getSourceRange();
3314        VDecl->setInvalidDecl();
3315      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3316        // Check whether the expression is a constant expression.
3317        llvm::APSInt Value;
3318        SourceLocation Loc;
3319        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3320          Diag(Loc, diag::err_in_class_initializer_non_constant)
3321            << Init->getSourceRange();
3322          VDecl->setInvalidDecl();
3323        } else if (!VDecl->getType()->isDependentType())
3324          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3325      }
3326    }
3327  } else if (VDecl->isFileVarDecl()) {
3328    if (VDecl->getStorageClass() == VarDecl::Extern)
3329      Diag(VDecl->getLocation(), diag::warn_extern_init);
3330    if (!VDecl->isInvalidDecl())
3331      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3332                                VDecl->getDeclName(), DirectInit))
3333        VDecl->setInvalidDecl();
3334
3335    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3336    // Don't check invalid declarations to avoid emitting useless diagnostics.
3337    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3338      // C99 6.7.8p4. All file scoped initializers need to be constant.
3339      CheckForConstantInitializer(Init, DclT);
3340    }
3341  }
3342  // If the type changed, it means we had an incomplete type that was
3343  // completed by the initializer. For example:
3344  //   int ary[] = { 1, 3, 5 };
3345  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3346  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3347    VDecl->setType(DclT);
3348    Init->setType(DclT);
3349  }
3350
3351  Init = MaybeCreateCXXExprWithTemporaries(Init,
3352                                           /*ShouldDestroyTemporaries=*/true);
3353  // Attach the initializer to the decl.
3354  VDecl->setInit(Context, Init);
3355
3356  // If the previous declaration of VDecl was a tentative definition,
3357  // remove it from the set of tentative definitions.
3358  if (VDecl->getPreviousDeclaration() &&
3359      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3360    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3361    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3362  }
3363
3364  return;
3365}
3366
3367void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3368                                  bool TypeContainsUndeducedAuto) {
3369  Decl *RealDecl = dcl.getAs<Decl>();
3370
3371  // If there is no declaration, there was an error parsing it. Just ignore it.
3372  if (RealDecl == 0)
3373    return;
3374
3375  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3376    QualType Type = Var->getType();
3377
3378    // Record tentative definitions.
3379    if (Var->isTentativeDefinition(Context)) {
3380      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3381        InsertPair =
3382           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3383
3384      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3385      // want the second one in the map.
3386      InsertPair.first->second = Var;
3387
3388      // However, for the list, we don't care about the order, just make sure
3389      // that there are no dupes for a given declaration name.
3390      if (InsertPair.second)
3391        TentativeDefinitionList.push_back(Var->getDeclName());
3392    }
3393
3394    // C++ [dcl.init.ref]p3:
3395    //   The initializer can be omitted for a reference only in a
3396    //   parameter declaration (8.3.5), in the declaration of a
3397    //   function return type, in the declaration of a class member
3398    //   within its class declaration (9.2), and where the extern
3399    //   specifier is explicitly used.
3400    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3401      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3402        << Var->getDeclName()
3403        << SourceRange(Var->getLocation(), Var->getLocation());
3404      Var->setInvalidDecl();
3405      return;
3406    }
3407
3408    // C++0x [dcl.spec.auto]p3
3409    if (TypeContainsUndeducedAuto) {
3410      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3411        << Var->getDeclName() << Type;
3412      Var->setInvalidDecl();
3413      return;
3414    }
3415
3416    // C++ [temp.expl.spec]p15:
3417    //   An explicit specialization of a static data member of a template is a
3418    //   definition if the declaration includes an initializer; otherwise, it
3419    //   is a declaration.
3420    if (Var->isStaticDataMember() &&
3421        Var->getInstantiatedFromStaticDataMember() &&
3422        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3423      return;
3424
3425    // C++ [dcl.init]p9:
3426    //   If no initializer is specified for an object, and the object
3427    //   is of (possibly cv-qualified) non-POD class type (or array
3428    //   thereof), the object shall be default-initialized; if the
3429    //   object is of const-qualified type, the underlying class type
3430    //   shall have a user-declared default constructor.
3431    //
3432    // FIXME: Diagnose the "user-declared default constructor" bit.
3433    if (getLangOptions().CPlusPlus) {
3434      QualType InitType = Type;
3435      if (const ArrayType *Array = Context.getAsArrayType(Type))
3436        InitType = Array->getElementType();
3437      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3438          InitType->isRecordType() && !InitType->isDependentType()) {
3439        if (!RequireCompleteType(Var->getLocation(), InitType,
3440                                 diag::err_invalid_incomplete_type_use)) {
3441          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3442
3443          CXXConstructorDecl *Constructor
3444            = PerformInitializationByConstructor(InitType,
3445                                                 MultiExprArg(*this, 0, 0),
3446                                                 Var->getLocation(),
3447                                               SourceRange(Var->getLocation(),
3448                                                           Var->getLocation()),
3449                                                 Var->getDeclName(),
3450                                                 IK_Default,
3451                                                 ConstructorArgs);
3452
3453          // FIXME: Location info for the variable initialization?
3454          if (!Constructor)
3455            Var->setInvalidDecl();
3456          else {
3457            // FIXME: Cope with initialization of arrays
3458            if (!Constructor->isTrivial() &&
3459                InitializeVarWithConstructor(Var, Constructor, InitType,
3460                                             move_arg(ConstructorArgs)))
3461              Var->setInvalidDecl();
3462
3463            FinalizeVarWithDestructor(Var, InitType);
3464          }
3465        } else {
3466          Var->setInvalidDecl();
3467        }
3468      }
3469    }
3470
3471#if 0
3472    // FIXME: Temporarily disabled because we are not properly parsing
3473    // linkage specifications on declarations, e.g.,
3474    //
3475    //   extern "C" const CGPoint CGPointerZero;
3476    //
3477    // C++ [dcl.init]p9:
3478    //
3479    //     If no initializer is specified for an object, and the
3480    //     object is of (possibly cv-qualified) non-POD class type (or
3481    //     array thereof), the object shall be default-initialized; if
3482    //     the object is of const-qualified type, the underlying class
3483    //     type shall have a user-declared default
3484    //     constructor. Otherwise, if no initializer is specified for
3485    //     an object, the object and its subobjects, if any, have an
3486    //     indeterminate initial value; if the object or any of its
3487    //     subobjects are of const-qualified type, the program is
3488    //     ill-formed.
3489    //
3490    // This isn't technically an error in C, so we don't diagnose it.
3491    //
3492    // FIXME: Actually perform the POD/user-defined default
3493    // constructor check.
3494    if (getLangOptions().CPlusPlus &&
3495        Context.getCanonicalType(Type).isConstQualified() &&
3496        !Var->hasExternalStorage())
3497      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3498        << Var->getName()
3499        << SourceRange(Var->getLocation(), Var->getLocation());
3500#endif
3501  }
3502}
3503
3504Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3505                                                   DeclPtrTy *Group,
3506                                                   unsigned NumDecls) {
3507  llvm::SmallVector<Decl*, 8> Decls;
3508
3509  if (DS.isTypeSpecOwned())
3510    Decls.push_back((Decl*)DS.getTypeRep());
3511
3512  for (unsigned i = 0; i != NumDecls; ++i)
3513    if (Decl *D = Group[i].getAs<Decl>())
3514      Decls.push_back(D);
3515
3516  // Perform semantic analysis that depends on having fully processed both
3517  // the declarator and initializer.
3518  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3519    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3520    if (!IDecl)
3521      continue;
3522    QualType T = IDecl->getType();
3523
3524    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3525    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3526    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3527      if (T->isDependentType()) {
3528        // If T is dependent, we should not require a complete type.
3529        // (RequireCompleteType shouldn't be called with dependent types.)
3530        // But we still can at least check if we've got an array of unspecified
3531        // size without an initializer.
3532        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3533            !IDecl->getInit()) {
3534          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3535            << T;
3536          IDecl->setInvalidDecl();
3537        }
3538      } else if (!IDecl->isInvalidDecl()) {
3539        // If T is an incomplete array type with an initializer list that is
3540        // dependent on something, its size has not been fixed. We could attempt
3541        // to fix the size for such arrays, but we would still have to check
3542        // here for initializers containing a C++0x vararg expansion, e.g.
3543        // template <typename... Args> void f(Args... args) {
3544        //   int vals[] = { args };
3545        // }
3546        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3547        Expr *Init = IDecl->getInit();
3548        if (IAT && Init &&
3549            (Init->isTypeDependent() || Init->isValueDependent())) {
3550          // Check that the member type of the array is complete, at least.
3551          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3552                                  diag::err_typecheck_decl_incomplete_type))
3553            IDecl->setInvalidDecl();
3554        } else if (RequireCompleteType(IDecl->getLocation(), T,
3555                                      diag::err_typecheck_decl_incomplete_type))
3556          IDecl->setInvalidDecl();
3557      }
3558    }
3559    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3560    // object that has file scope without an initializer, and without a
3561    // storage-class specifier or with the storage-class specifier "static",
3562    // constitutes a tentative definition. Note: A tentative definition with
3563    // external linkage is valid (C99 6.2.2p5).
3564    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3565      if (const IncompleteArrayType *ArrayT
3566          = Context.getAsIncompleteArrayType(T)) {
3567        if (RequireCompleteType(IDecl->getLocation(),
3568                                ArrayT->getElementType(),
3569                                diag::err_illegal_decl_array_incomplete_type))
3570          IDecl->setInvalidDecl();
3571      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3572        // C99 6.9.2p3: If the declaration of an identifier for an object is
3573        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3574        // declared type shall not be an incomplete type.
3575        // NOTE: code such as the following
3576        //     static struct s;
3577        //     struct s { int a; };
3578        // is accepted by gcc. Hence here we issue a warning instead of
3579        // an error and we do not invalidate the static declaration.
3580        // NOTE: to avoid multiple warnings, only check the first declaration.
3581        if (IDecl->getPreviousDeclaration() == 0)
3582          RequireCompleteType(IDecl->getLocation(), T,
3583                              diag::ext_typecheck_decl_incomplete_type);
3584      }
3585    }
3586  }
3587  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3588                                                   Decls.data(), Decls.size()));
3589}
3590
3591
3592/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3593/// to introduce parameters into function prototype scope.
3594Sema::DeclPtrTy
3595Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3596  const DeclSpec &DS = D.getDeclSpec();
3597
3598  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3599  VarDecl::StorageClass StorageClass = VarDecl::None;
3600  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3601    StorageClass = VarDecl::Register;
3602  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3603    Diag(DS.getStorageClassSpecLoc(),
3604         diag::err_invalid_storage_class_in_func_decl);
3605    D.getMutableDeclSpec().ClearStorageClassSpecs();
3606  }
3607
3608  if (D.getDeclSpec().isThreadSpecified())
3609    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3610
3611  DiagnoseFunctionSpecifiers(D);
3612
3613  // Check that there are no default arguments inside the type of this
3614  // parameter (C++ only).
3615  if (getLangOptions().CPlusPlus)
3616    CheckExtraCXXDefaultArguments(D);
3617
3618  DeclaratorInfo *DInfo = 0;
3619  TagDecl *OwnedDecl = 0;
3620  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3621
3622  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3623    // C++ [dcl.fct]p6:
3624    //   Types shall not be defined in return or parameter types.
3625    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3626      << Context.getTypeDeclType(OwnedDecl);
3627  }
3628
3629  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3630  // Can this happen for params?  We already checked that they don't conflict
3631  // among each other.  Here they can only shadow globals, which is ok.
3632  IdentifierInfo *II = D.getIdentifier();
3633  if (II) {
3634    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3635      if (PrevDecl->isTemplateParameter()) {
3636        // Maybe we will complain about the shadowed template parameter.
3637        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3638        // Just pretend that we didn't see the previous declaration.
3639        PrevDecl = 0;
3640      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3641        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3642
3643        // Recover by removing the name
3644        II = 0;
3645        D.SetIdentifier(0, D.getIdentifierLoc());
3646      }
3647    }
3648  }
3649
3650  // Parameters can not be abstract class types.
3651  // For record types, this is done by the AbstractClassUsageDiagnoser once
3652  // the class has been completely parsed.
3653  if (!CurContext->isRecord() &&
3654      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3655                             diag::err_abstract_type_in_decl,
3656                             AbstractParamType))
3657    D.setInvalidType(true);
3658
3659  QualType T = adjustParameterType(parmDeclType);
3660
3661  ParmVarDecl *New
3662    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3663                          T, DInfo, StorageClass, 0);
3664
3665  if (D.isInvalidType())
3666    New->setInvalidDecl();
3667
3668  // Parameter declarators cannot be interface types. All ObjC objects are
3669  // passed by reference.
3670  if (T->isObjCInterfaceType()) {
3671    Diag(D.getIdentifierLoc(),
3672         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3673    New->setInvalidDecl();
3674  }
3675
3676  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3677  if (D.getCXXScopeSpec().isSet()) {
3678    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3679      << D.getCXXScopeSpec().getRange();
3680    New->setInvalidDecl();
3681  }
3682
3683  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3684  // duration shall not be qualified by an address-space qualifier."
3685  // Since all parameters have automatic store duration, they can not have
3686  // an address space.
3687  if (T.getAddressSpace() != 0) {
3688    Diag(D.getIdentifierLoc(),
3689         diag::err_arg_with_address_space);
3690    New->setInvalidDecl();
3691  }
3692
3693
3694  // Add the parameter declaration into this scope.
3695  S->AddDecl(DeclPtrTy::make(New));
3696  if (II)
3697    IdResolver.AddDecl(New);
3698
3699  ProcessDeclAttributes(S, New, D);
3700
3701  if (New->hasAttr<BlocksAttr>()) {
3702    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3703  }
3704  return DeclPtrTy::make(New);
3705}
3706
3707void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3708                                           SourceLocation LocAfterDecls) {
3709  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3710         "Not a function declarator!");
3711  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3712
3713  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3714  // for a K&R function.
3715  if (!FTI.hasPrototype) {
3716    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3717      --i;
3718      if (FTI.ArgInfo[i].Param == 0) {
3719        llvm::SmallString<256> Code;
3720        llvm::raw_svector_ostream(Code) << "  int "
3721                                        << FTI.ArgInfo[i].Ident->getName()
3722                                        << ";\n";
3723        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3724          << FTI.ArgInfo[i].Ident
3725          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3726
3727        // Implicitly declare the argument as type 'int' for lack of a better
3728        // type.
3729        DeclSpec DS;
3730        const char* PrevSpec; // unused
3731        unsigned DiagID; // unused
3732        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3733                           PrevSpec, DiagID);
3734        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3735        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3736        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3737      }
3738    }
3739  }
3740}
3741
3742Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3743                                              Declarator &D) {
3744  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3745  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3746         "Not a function declarator!");
3747  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3748
3749  if (FTI.hasPrototype) {
3750    // FIXME: Diagnose arguments without names in C.
3751  }
3752
3753  Scope *ParentScope = FnBodyScope->getParent();
3754
3755  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3756                                  MultiTemplateParamsArg(*this),
3757                                  /*IsFunctionDefinition=*/true);
3758  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3759}
3760
3761Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3762  if (!D)
3763    return D;
3764  FunctionDecl *FD = 0;
3765
3766  if (FunctionTemplateDecl *FunTmpl
3767        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3768    FD = FunTmpl->getTemplatedDecl();
3769  else
3770    FD = cast<FunctionDecl>(D.getAs<Decl>());
3771
3772  CurFunctionNeedsScopeChecking = false;
3773
3774  // See if this is a redefinition.
3775  const FunctionDecl *Definition;
3776  if (FD->getBody(Definition)) {
3777    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3778    Diag(Definition->getLocation(), diag::note_previous_definition);
3779  }
3780
3781  // Builtin functions cannot be defined.
3782  if (unsigned BuiltinID = FD->getBuiltinID()) {
3783    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3784      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3785      FD->setInvalidDecl();
3786    }
3787  }
3788
3789  // The return type of a function definition must be complete
3790  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3791  QualType ResultType = FD->getResultType();
3792  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3793      !FD->isInvalidDecl() &&
3794      RequireCompleteType(FD->getLocation(), ResultType,
3795                          diag::err_func_def_incomplete_result))
3796    FD->setInvalidDecl();
3797
3798  // GNU warning -Wmissing-prototypes:
3799  //   Warn if a global function is defined without a previous
3800  //   prototype declaration. This warning is issued even if the
3801  //   definition itself provides a prototype. The aim is to detect
3802  //   global functions that fail to be declared in header files.
3803  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3804      !FD->isMain()) {
3805    bool MissingPrototype = true;
3806    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3807         Prev; Prev = Prev->getPreviousDeclaration()) {
3808      // Ignore any declarations that occur in function or method
3809      // scope, because they aren't visible from the header.
3810      if (Prev->getDeclContext()->isFunctionOrMethod())
3811        continue;
3812
3813      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3814      break;
3815    }
3816
3817    if (MissingPrototype)
3818      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3819  }
3820
3821  if (FnBodyScope)
3822    PushDeclContext(FnBodyScope, FD);
3823
3824  // Check the validity of our function parameters
3825  CheckParmsForFunctionDef(FD);
3826
3827  // Introduce our parameters into the function scope
3828  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3829    ParmVarDecl *Param = FD->getParamDecl(p);
3830    Param->setOwningFunction(FD);
3831
3832    // If this has an identifier, add it to the scope stack.
3833    if (Param->getIdentifier() && FnBodyScope)
3834      PushOnScopeChains(Param, FnBodyScope);
3835  }
3836
3837  // Checking attributes of current function definition
3838  // dllimport attribute.
3839  if (FD->getAttr<DLLImportAttr>() &&
3840      (!FD->getAttr<DLLExportAttr>())) {
3841    // dllimport attribute cannot be applied to definition.
3842    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3843      Diag(FD->getLocation(),
3844           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3845        << "dllimport";
3846      FD->setInvalidDecl();
3847      return DeclPtrTy::make(FD);
3848    } else {
3849      // If a symbol previously declared dllimport is later defined, the
3850      // attribute is ignored in subsequent references, and a warning is
3851      // emitted.
3852      Diag(FD->getLocation(),
3853           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3854        << FD->getNameAsCString() << "dllimport";
3855    }
3856  }
3857  return DeclPtrTy::make(FD);
3858}
3859
3860Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3861  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3862}
3863
3864Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3865                                              bool IsInstantiation) {
3866  Decl *dcl = D.getAs<Decl>();
3867  Stmt *Body = BodyArg.takeAs<Stmt>();
3868
3869  FunctionDecl *FD = 0;
3870  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3871  if (FunTmpl)
3872    FD = FunTmpl->getTemplatedDecl();
3873  else
3874    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3875
3876  if (FD) {
3877    FD->setBody(Body);
3878    if (FD->isMain())
3879      // C and C++ allow for main to automagically return 0.
3880      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3881      FD->setHasImplicitReturnZero(true);
3882    else
3883      CheckFallThroughForFunctionDef(FD, Body);
3884
3885    if (!FD->isInvalidDecl())
3886      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3887
3888    // C++ [basic.def.odr]p2:
3889    //   [...] A virtual member function is used if it is not pure. [...]
3890    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3891      if (Method->isVirtual() && !Method->isPure())
3892        MarkDeclarationReferenced(Method->getLocation(), Method);
3893
3894    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3895  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3896    assert(MD == getCurMethodDecl() && "Method parsing confused");
3897    MD->setBody(Body);
3898    CheckFallThroughForFunctionDef(MD, Body);
3899    MD->setEndLoc(Body->getLocEnd());
3900
3901    if (!MD->isInvalidDecl())
3902      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3903  } else {
3904    Body->Destroy(Context);
3905    return DeclPtrTy();
3906  }
3907  if (!IsInstantiation)
3908    PopDeclContext();
3909
3910  // Verify and clean out per-function state.
3911
3912  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3913
3914  // Check goto/label use.
3915  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3916       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3917    LabelStmt *L = I->second;
3918
3919    // Verify that we have no forward references left.  If so, there was a goto
3920    // or address of a label taken, but no definition of it.  Label fwd
3921    // definitions are indicated with a null substmt.
3922    if (L->getSubStmt() != 0)
3923      continue;
3924
3925    // Emit error.
3926    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3927
3928    // At this point, we have gotos that use the bogus label.  Stitch it into
3929    // the function body so that they aren't leaked and that the AST is well
3930    // formed.
3931    if (Body == 0) {
3932      // The whole function wasn't parsed correctly, just delete this.
3933      L->Destroy(Context);
3934      continue;
3935    }
3936
3937    // Otherwise, the body is valid: we want to stitch the label decl into the
3938    // function somewhere so that it is properly owned and so that the goto
3939    // has a valid target.  Do this by creating a new compound stmt with the
3940    // label in it.
3941
3942    // Give the label a sub-statement.
3943    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3944
3945    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3946                               cast<CXXTryStmt>(Body)->getTryBlock() :
3947                               cast<CompoundStmt>(Body);
3948    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3949    Elements.push_back(L);
3950    Compound->setStmts(Context, &Elements[0], Elements.size());
3951  }
3952  FunctionLabelMap.clear();
3953
3954  if (!Body) return D;
3955
3956  // Verify that that gotos and switch cases don't jump into scopes illegally.
3957  if (CurFunctionNeedsScopeChecking)
3958    DiagnoseInvalidJumps(Body);
3959
3960  // C++ constructors that have function-try-blocks can't have return
3961  // statements in the handlers of that block. (C++ [except.handle]p14)
3962  // Verify this.
3963  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3964    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3965
3966  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3967    computeBaseOrMembersToDestroy(Destructor);
3968  return D;
3969}
3970
3971/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3972/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3973NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3974                                          IdentifierInfo &II, Scope *S) {
3975  // Before we produce a declaration for an implicitly defined
3976  // function, see whether there was a locally-scoped declaration of
3977  // this name as a function or variable. If so, use that
3978  // (non-visible) declaration, and complain about it.
3979  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3980    = LocallyScopedExternalDecls.find(&II);
3981  if (Pos != LocallyScopedExternalDecls.end()) {
3982    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3983    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3984    return Pos->second;
3985  }
3986
3987  // Extension in C99.  Legal in C90, but warn about it.
3988  if (II.getName().startswith("__builtin_"))
3989    Diag(Loc, diag::warn_builtin_unknown) << &II;
3990  else if (getLangOptions().C99)
3991    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3992  else
3993    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3994
3995  // Set a Declarator for the implicit definition: int foo();
3996  const char *Dummy;
3997  DeclSpec DS;
3998  unsigned DiagID;
3999  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4000  Error = Error; // Silence warning.
4001  assert(!Error && "Error setting up implicit decl!");
4002  Declarator D(DS, Declarator::BlockContext);
4003  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4004                                             0, 0, false, SourceLocation(),
4005                                             false, 0,0,0, Loc, Loc, D),
4006                SourceLocation());
4007  D.SetIdentifier(&II, Loc);
4008
4009  // Insert this function into translation-unit scope.
4010
4011  DeclContext *PrevDC = CurContext;
4012  CurContext = Context.getTranslationUnitDecl();
4013
4014  FunctionDecl *FD =
4015 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4016  FD->setImplicit();
4017
4018  CurContext = PrevDC;
4019
4020  AddKnownFunctionAttributes(FD);
4021
4022  return FD;
4023}
4024
4025/// \brief Adds any function attributes that we know a priori based on
4026/// the declaration of this function.
4027///
4028/// These attributes can apply both to implicitly-declared builtins
4029/// (like __builtin___printf_chk) or to library-declared functions
4030/// like NSLog or printf.
4031void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4032  if (FD->isInvalidDecl())
4033    return;
4034
4035  // If this is a built-in function, map its builtin attributes to
4036  // actual attributes.
4037  if (unsigned BuiltinID = FD->getBuiltinID()) {
4038    // Handle printf-formatting attributes.
4039    unsigned FormatIdx;
4040    bool HasVAListArg;
4041    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4042      if (!FD->getAttr<FormatAttr>())
4043        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4044                                             HasVAListArg ? 0 : FormatIdx + 2));
4045    }
4046
4047    // Mark const if we don't care about errno and that is the only
4048    // thing preventing the function from being const. This allows
4049    // IRgen to use LLVM intrinsics for such functions.
4050    if (!getLangOptions().MathErrno &&
4051        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4052      if (!FD->getAttr<ConstAttr>())
4053        FD->addAttr(::new (Context) ConstAttr());
4054    }
4055
4056    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4057      FD->addAttr(::new (Context) NoReturnAttr());
4058  }
4059
4060  IdentifierInfo *Name = FD->getIdentifier();
4061  if (!Name)
4062    return;
4063  if ((!getLangOptions().CPlusPlus &&
4064       FD->getDeclContext()->isTranslationUnit()) ||
4065      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4066       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4067       LinkageSpecDecl::lang_c)) {
4068    // Okay: this could be a libc/libm/Objective-C function we know
4069    // about.
4070  } else
4071    return;
4072
4073  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4074    // FIXME: NSLog and NSLogv should be target specific
4075    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4076      // FIXME: We known better than our headers.
4077      const_cast<FormatAttr *>(Format)->setType("printf");
4078    } else
4079      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4080                                             Name->isStr("NSLogv") ? 0 : 2));
4081  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4082    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4083    // target-specific builtins, perhaps?
4084    if (!FD->getAttr<FormatAttr>())
4085      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4086                                             Name->isStr("vasprintf") ? 0 : 3));
4087  }
4088}
4089
4090TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4091                                    DeclaratorInfo *DInfo) {
4092  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4093  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4094
4095  if (!DInfo) {
4096    assert(D.isInvalidType() && "no declarator info for valid type");
4097    DInfo = Context.getTrivialDeclaratorInfo(T);
4098  }
4099
4100  // Scope manipulation handled by caller.
4101  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4102                                           D.getIdentifierLoc(),
4103                                           D.getIdentifier(),
4104                                           DInfo);
4105
4106  if (const TagType *TT = T->getAs<TagType>()) {
4107    TagDecl *TD = TT->getDecl();
4108
4109    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4110    // keep track of the TypedefDecl.
4111    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4112      TD->setTypedefForAnonDecl(NewTD);
4113  }
4114
4115  if (D.isInvalidType())
4116    NewTD->setInvalidDecl();
4117  return NewTD;
4118}
4119
4120
4121/// \brief Determine whether a tag with a given kind is acceptable
4122/// as a redeclaration of the given tag declaration.
4123///
4124/// \returns true if the new tag kind is acceptable, false otherwise.
4125bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4126                                        TagDecl::TagKind NewTag,
4127                                        SourceLocation NewTagLoc,
4128                                        const IdentifierInfo &Name) {
4129  // C++ [dcl.type.elab]p3:
4130  //   The class-key or enum keyword present in the
4131  //   elaborated-type-specifier shall agree in kind with the
4132  //   declaration to which the name in theelaborated-type-specifier
4133  //   refers. This rule also applies to the form of
4134  //   elaborated-type-specifier that declares a class-name or
4135  //   friend class since it can be construed as referring to the
4136  //   definition of the class. Thus, in any
4137  //   elaborated-type-specifier, the enum keyword shall be used to
4138  //   refer to an enumeration (7.2), the union class-keyshall be
4139  //   used to refer to a union (clause 9), and either the class or
4140  //   struct class-key shall be used to refer to a class (clause 9)
4141  //   declared using the class or struct class-key.
4142  TagDecl::TagKind OldTag = Previous->getTagKind();
4143  if (OldTag == NewTag)
4144    return true;
4145
4146  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4147      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4148    // Warn about the struct/class tag mismatch.
4149    bool isTemplate = false;
4150    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4151      isTemplate = Record->getDescribedClassTemplate();
4152
4153    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4154      << (NewTag == TagDecl::TK_class)
4155      << isTemplate << &Name
4156      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4157                              OldTag == TagDecl::TK_class? "class" : "struct");
4158    Diag(Previous->getLocation(), diag::note_previous_use);
4159    return true;
4160  }
4161  return false;
4162}
4163
4164/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4165/// former case, Name will be non-null.  In the later case, Name will be null.
4166/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4167/// reference/declaration/definition of a tag.
4168Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4169                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4170                               IdentifierInfo *Name, SourceLocation NameLoc,
4171                               AttributeList *Attr, AccessSpecifier AS,
4172                               MultiTemplateParamsArg TemplateParameterLists,
4173                               bool &OwnedDecl, bool &IsDependent) {
4174  // If this is not a definition, it must have a name.
4175  assert((Name != 0 || TUK == TUK_Definition) &&
4176         "Nameless record must be a definition!");
4177
4178  OwnedDecl = false;
4179  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4180
4181  // FIXME: Check explicit specializations more carefully.
4182  bool isExplicitSpecialization = false;
4183  if (TUK != TUK_Reference) {
4184    if (TemplateParameterList *TemplateParams
4185          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4186                        (TemplateParameterList**)TemplateParameterLists.get(),
4187                                              TemplateParameterLists.size(),
4188                                                    isExplicitSpecialization)) {
4189      if (TemplateParams->size() > 0) {
4190        // This is a declaration or definition of a class template (which may
4191        // be a member of another template).
4192        OwnedDecl = false;
4193        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4194                                               SS, Name, NameLoc, Attr,
4195                                               TemplateParams,
4196                                               AS);
4197        TemplateParameterLists.release();
4198        return Result.get();
4199      } else {
4200        // The "template<>" header is extraneous.
4201        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4202          << ElaboratedType::getNameForTagKind(Kind) << Name;
4203        isExplicitSpecialization = true;
4204      }
4205    }
4206
4207    TemplateParameterLists.release();
4208  }
4209
4210  DeclContext *SearchDC = CurContext;
4211  DeclContext *DC = CurContext;
4212  NamedDecl *PrevDecl = 0;
4213  bool isStdBadAlloc = false;
4214  bool Invalid = false;
4215
4216  bool RedeclarationOnly = (TUK != TUK_Reference);
4217
4218  if (Name && SS.isNotEmpty()) {
4219    // We have a nested-name tag ('struct foo::bar').
4220
4221    // Check for invalid 'foo::'.
4222    if (SS.isInvalid()) {
4223      Name = 0;
4224      goto CreateNewDecl;
4225    }
4226
4227    // If this is a friend or a reference to a class in a dependent
4228    // context, don't try to make a decl for it.
4229    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4230      DC = computeDeclContext(SS, false);
4231      if (!DC) {
4232        IsDependent = true;
4233        return DeclPtrTy();
4234      }
4235    }
4236
4237    if (RequireCompleteDeclContext(SS))
4238      return DeclPtrTy::make((Decl *)0);
4239
4240    DC = computeDeclContext(SS, true);
4241    SearchDC = DC;
4242    // Look-up name inside 'foo::'.
4243    LookupResult R;
4244    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4245
4246    if (R.isAmbiguous()) {
4247      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4248      return DeclPtrTy();
4249    }
4250
4251    if (R.getKind() == LookupResult::Found)
4252      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4253
4254    // A tag 'foo::bar' must already exist.
4255    if (!PrevDecl) {
4256      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4257      Name = 0;
4258      Invalid = true;
4259      goto CreateNewDecl;
4260    }
4261  } else if (Name) {
4262    // If this is a named struct, check to see if there was a previous forward
4263    // declaration or definition.
4264    // FIXME: We're looking into outer scopes here, even when we
4265    // shouldn't be. Doing so can result in ambiguities that we
4266    // shouldn't be diagnosing.
4267    LookupResult R;
4268    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4269    if (R.isAmbiguous()) {
4270      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4271      // FIXME: This is not best way to recover from case like:
4272      //
4273      // struct S s;
4274      //
4275      // causes needless "incomplete type" error later.
4276      Name = 0;
4277      PrevDecl = 0;
4278      Invalid = true;
4279    } else
4280      PrevDecl = R.getAsSingleDecl(Context);
4281
4282    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4283      // FIXME: This makes sure that we ignore the contexts associated
4284      // with C structs, unions, and enums when looking for a matching
4285      // tag declaration or definition. See the similar lookup tweak
4286      // in Sema::LookupName; is there a better way to deal with this?
4287      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4288        SearchDC = SearchDC->getParent();
4289    }
4290  }
4291
4292  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4293    // Maybe we will complain about the shadowed template parameter.
4294    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4295    // Just pretend that we didn't see the previous declaration.
4296    PrevDecl = 0;
4297  }
4298
4299  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4300      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4301    // This is a declaration of or a reference to "std::bad_alloc".
4302    isStdBadAlloc = true;
4303
4304    if (!PrevDecl && StdBadAlloc) {
4305      // std::bad_alloc has been implicitly declared (but made invisible to
4306      // name lookup). Fill in this implicit declaration as the previous
4307      // declaration, so that the declarations get chained appropriately.
4308      PrevDecl = StdBadAlloc;
4309    }
4310  }
4311
4312  if (PrevDecl) {
4313    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4314      // If this is a use of a previous tag, or if the tag is already declared
4315      // in the same scope (so that the definition/declaration completes or
4316      // rementions the tag), reuse the decl.
4317      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4318          isDeclInScope(PrevDecl, SearchDC, S)) {
4319        // Make sure that this wasn't declared as an enum and now used as a
4320        // struct or something similar.
4321        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4322          bool SafeToContinue
4323            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4324               Kind != TagDecl::TK_enum);
4325          if (SafeToContinue)
4326            Diag(KWLoc, diag::err_use_with_wrong_tag)
4327              << Name
4328              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4329                                                  PrevTagDecl->getKindName());
4330          else
4331            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4332          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4333
4334          if (SafeToContinue)
4335            Kind = PrevTagDecl->getTagKind();
4336          else {
4337            // Recover by making this an anonymous redefinition.
4338            Name = 0;
4339            PrevDecl = 0;
4340            Invalid = true;
4341          }
4342        }
4343
4344        if (!Invalid) {
4345          // If this is a use, just return the declaration we found.
4346
4347          // FIXME: In the future, return a variant or some other clue
4348          // for the consumer of this Decl to know it doesn't own it.
4349          // For our current ASTs this shouldn't be a problem, but will
4350          // need to be changed with DeclGroups.
4351          if (TUK == TUK_Reference || TUK == TUK_Friend)
4352            return DeclPtrTy::make(PrevDecl);
4353
4354          // Diagnose attempts to redefine a tag.
4355          if (TUK == TUK_Definition) {
4356            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4357              // If we're defining a specialization and the previous definition
4358              // is from an implicit instantiation, don't emit an error
4359              // here; we'll catch this in the general case below.
4360              if (!isExplicitSpecialization ||
4361                  !isa<CXXRecordDecl>(Def) ||
4362                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4363                                               == TSK_ExplicitSpecialization) {
4364                Diag(NameLoc, diag::err_redefinition) << Name;
4365                Diag(Def->getLocation(), diag::note_previous_definition);
4366                // If this is a redefinition, recover by making this
4367                // struct be anonymous, which will make any later
4368                // references get the previous definition.
4369                Name = 0;
4370                PrevDecl = 0;
4371                Invalid = true;
4372              }
4373            } else {
4374              // If the type is currently being defined, complain
4375              // about a nested redefinition.
4376              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4377              if (Tag->isBeingDefined()) {
4378                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4379                Diag(PrevTagDecl->getLocation(),
4380                     diag::note_previous_definition);
4381                Name = 0;
4382                PrevDecl = 0;
4383                Invalid = true;
4384              }
4385            }
4386
4387            // Okay, this is definition of a previously declared or referenced
4388            // tag PrevDecl. We're going to create a new Decl for it.
4389          }
4390        }
4391        // If we get here we have (another) forward declaration or we
4392        // have a definition.  Just create a new decl.
4393
4394      } else {
4395        // If we get here, this is a definition of a new tag type in a nested
4396        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4397        // new decl/type.  We set PrevDecl to NULL so that the entities
4398        // have distinct types.
4399        PrevDecl = 0;
4400      }
4401      // If we get here, we're going to create a new Decl. If PrevDecl
4402      // is non-NULL, it's a definition of the tag declared by
4403      // PrevDecl. If it's NULL, we have a new definition.
4404    } else {
4405      // PrevDecl is a namespace, template, or anything else
4406      // that lives in the IDNS_Tag identifier namespace.
4407      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4408        // The tag name clashes with a namespace name, issue an error and
4409        // recover by making this tag be anonymous.
4410        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4411        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4412        Name = 0;
4413        PrevDecl = 0;
4414        Invalid = true;
4415      } else {
4416        // The existing declaration isn't relevant to us; we're in a
4417        // new scope, so clear out the previous declaration.
4418        PrevDecl = 0;
4419      }
4420    }
4421  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4422             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4423    // C++ [basic.scope.pdecl]p5:
4424    //   -- for an elaborated-type-specifier of the form
4425    //
4426    //          class-key identifier
4427    //
4428    //      if the elaborated-type-specifier is used in the
4429    //      decl-specifier-seq or parameter-declaration-clause of a
4430    //      function defined in namespace scope, the identifier is
4431    //      declared as a class-name in the namespace that contains
4432    //      the declaration; otherwise, except as a friend
4433    //      declaration, the identifier is declared in the smallest
4434    //      non-class, non-function-prototype scope that contains the
4435    //      declaration.
4436    //
4437    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4438    // C structs and unions.
4439    //
4440    // GNU C also supports this behavior as part of its incomplete
4441    // enum types extension, while GNU C++ does not.
4442    //
4443    // Find the context where we'll be declaring the tag.
4444    // FIXME: We would like to maintain the current DeclContext as the
4445    // lexical context,
4446    while (SearchDC->isRecord())
4447      SearchDC = SearchDC->getParent();
4448
4449    // Find the scope where we'll be declaring the tag.
4450    while (S->isClassScope() ||
4451           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4452           ((S->getFlags() & Scope::DeclScope) == 0) ||
4453           (S->getEntity() &&
4454            ((DeclContext *)S->getEntity())->isTransparentContext()))
4455      S = S->getParent();
4456
4457  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4458    // C++ [namespace.memdef]p3:
4459    //   If a friend declaration in a non-local class first declares a
4460    //   class or function, the friend class or function is a member of
4461    //   the innermost enclosing namespace.
4462    while (!SearchDC->isFileContext())
4463      SearchDC = SearchDC->getParent();
4464
4465    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4466    while (S->getEntity() != SearchDC)
4467      S = S->getParent();
4468  }
4469
4470CreateNewDecl:
4471
4472  // If there is an identifier, use the location of the identifier as the
4473  // location of the decl, otherwise use the location of the struct/union
4474  // keyword.
4475  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4476
4477  // Otherwise, create a new declaration. If there is a previous
4478  // declaration of the same entity, the two will be linked via
4479  // PrevDecl.
4480  TagDecl *New;
4481
4482  if (Kind == TagDecl::TK_enum) {
4483    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4484    // enum X { A, B, C } D;    D should chain to X.
4485    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4486                           cast_or_null<EnumDecl>(PrevDecl));
4487    // If this is an undefined enum, warn.
4488    if (TUK != TUK_Definition && !Invalid)  {
4489      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4490                                              : diag::ext_forward_ref_enum;
4491      Diag(Loc, DK);
4492    }
4493  } else {
4494    // struct/union/class
4495
4496    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4497    // struct X { int A; } D;    D should chain to X.
4498    if (getLangOptions().CPlusPlus) {
4499      // FIXME: Look for a way to use RecordDecl for simple structs.
4500      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4501                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4502
4503      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4504        StdBadAlloc = cast<CXXRecordDecl>(New);
4505    } else
4506      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4507                               cast_or_null<RecordDecl>(PrevDecl));
4508  }
4509
4510  if (Kind != TagDecl::TK_enum) {
4511    // Handle #pragma pack: if the #pragma pack stack has non-default
4512    // alignment, make up a packed attribute for this decl. These
4513    // attributes are checked when the ASTContext lays out the
4514    // structure.
4515    //
4516    // It is important for implementing the correct semantics that this
4517    // happen here (in act on tag decl). The #pragma pack stack is
4518    // maintained as a result of parser callbacks which can occur at
4519    // many points during the parsing of a struct declaration (because
4520    // the #pragma tokens are effectively skipped over during the
4521    // parsing of the struct).
4522    if (unsigned Alignment = getPragmaPackAlignment())
4523      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4524  }
4525
4526  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4527    // C++ [dcl.typedef]p3:
4528    //   [...] Similarly, in a given scope, a class or enumeration
4529    //   shall not be declared with the same name as a typedef-name
4530    //   that is declared in that scope and refers to a type other
4531    //   than the class or enumeration itself.
4532    LookupResult Lookup;
4533    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4534    TypedefDecl *PrevTypedef = 0;
4535    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4536      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4537
4538    NamedDecl *PrevTypedefNamed = PrevTypedef;
4539    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4540        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4541          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4542      Diag(Loc, diag::err_tag_definition_of_typedef)
4543        << Context.getTypeDeclType(New)
4544        << PrevTypedef->getUnderlyingType();
4545      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4546      Invalid = true;
4547    }
4548  }
4549
4550  // If this is a specialization of a member class (of a class template),
4551  // check the specialization.
4552  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4553    Invalid = true;
4554
4555  if (Invalid)
4556    New->setInvalidDecl();
4557
4558  if (Attr)
4559    ProcessDeclAttributeList(S, New, Attr);
4560
4561  // If we're declaring or defining a tag in function prototype scope
4562  // in C, note that this type can only be used within the function.
4563  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4564    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4565
4566  // Set the lexical context. If the tag has a C++ scope specifier, the
4567  // lexical context will be different from the semantic context.
4568  New->setLexicalDeclContext(CurContext);
4569
4570  // Mark this as a friend decl if applicable.
4571  if (TUK == TUK_Friend)
4572    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4573
4574  // Set the access specifier.
4575  if (!Invalid && TUK != TUK_Friend)
4576    SetMemberAccessSpecifier(New, PrevDecl, AS);
4577
4578  if (TUK == TUK_Definition)
4579    New->startDefinition();
4580
4581  // If this has an identifier, add it to the scope stack.
4582  if (TUK == TUK_Friend) {
4583    // We might be replacing an existing declaration in the lookup tables;
4584    // if so, borrow its access specifier.
4585    if (PrevDecl)
4586      New->setAccess(PrevDecl->getAccess());
4587
4588    // Friend tag decls are visible in fairly strange ways.
4589    if (!CurContext->isDependentContext()) {
4590      DeclContext *DC = New->getDeclContext()->getLookupContext();
4591      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4592      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4593        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4594    }
4595  } else if (Name) {
4596    S = getNonFieldDeclScope(S);
4597    PushOnScopeChains(New, S);
4598  } else {
4599    CurContext->addDecl(New);
4600  }
4601
4602  // If this is the C FILE type, notify the AST context.
4603  if (IdentifierInfo *II = New->getIdentifier())
4604    if (!New->isInvalidDecl() &&
4605        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4606        II->isStr("FILE"))
4607      Context.setFILEDecl(New);
4608
4609  OwnedDecl = true;
4610  return DeclPtrTy::make(New);
4611}
4612
4613void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4614  AdjustDeclIfTemplate(TagD);
4615  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4616
4617  // Enter the tag context.
4618  PushDeclContext(S, Tag);
4619
4620  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4621    FieldCollector->StartClass();
4622
4623    if (Record->getIdentifier()) {
4624      // C++ [class]p2:
4625      //   [...] The class-name is also inserted into the scope of the
4626      //   class itself; this is known as the injected-class-name. For
4627      //   purposes of access checking, the injected-class-name is treated
4628      //   as if it were a public member name.
4629      CXXRecordDecl *InjectedClassName
4630        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4631                                CurContext, Record->getLocation(),
4632                                Record->getIdentifier(),
4633                                Record->getTagKeywordLoc(),
4634                                Record);
4635      InjectedClassName->setImplicit();
4636      InjectedClassName->setAccess(AS_public);
4637      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4638        InjectedClassName->setDescribedClassTemplate(Template);
4639      PushOnScopeChains(InjectedClassName, S);
4640      assert(InjectedClassName->isInjectedClassName() &&
4641             "Broken injected-class-name");
4642    }
4643  }
4644}
4645
4646void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4647                                    SourceLocation RBraceLoc) {
4648  AdjustDeclIfTemplate(TagD);
4649  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4650  Tag->setRBraceLoc(RBraceLoc);
4651
4652  if (isa<CXXRecordDecl>(Tag))
4653    FieldCollector->FinishClass();
4654
4655  // Exit this scope of this tag's definition.
4656  PopDeclContext();
4657
4658  // Notify the consumer that we've defined a tag.
4659  Consumer.HandleTagDeclDefinition(Tag);
4660}
4661
4662// Note that FieldName may be null for anonymous bitfields.
4663bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4664                          QualType FieldTy, const Expr *BitWidth,
4665                          bool *ZeroWidth) {
4666  // Default to true; that shouldn't confuse checks for emptiness
4667  if (ZeroWidth)
4668    *ZeroWidth = true;
4669
4670  // C99 6.7.2.1p4 - verify the field type.
4671  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4672  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4673    // Handle incomplete types with specific error.
4674    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4675      return true;
4676    if (FieldName)
4677      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4678        << FieldName << FieldTy << BitWidth->getSourceRange();
4679    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4680      << FieldTy << BitWidth->getSourceRange();
4681  }
4682
4683  // If the bit-width is type- or value-dependent, don't try to check
4684  // it now.
4685  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4686    return false;
4687
4688  llvm::APSInt Value;
4689  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4690    return true;
4691
4692  if (Value != 0 && ZeroWidth)
4693    *ZeroWidth = false;
4694
4695  // Zero-width bitfield is ok for anonymous field.
4696  if (Value == 0 && FieldName)
4697    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4698
4699  if (Value.isSigned() && Value.isNegative()) {
4700    if (FieldName)
4701      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4702               << FieldName << Value.toString(10);
4703    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4704      << Value.toString(10);
4705  }
4706
4707  if (!FieldTy->isDependentType()) {
4708    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4709    if (Value.getZExtValue() > TypeSize) {
4710      if (FieldName)
4711        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4712          << FieldName << (unsigned)TypeSize;
4713      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4714        << (unsigned)TypeSize;
4715    }
4716  }
4717
4718  return false;
4719}
4720
4721/// ActOnField - Each field of a struct/union/class is passed into this in order
4722/// to create a FieldDecl object for it.
4723Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4724                                 SourceLocation DeclStart,
4725                                 Declarator &D, ExprTy *BitfieldWidth) {
4726  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4727                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4728                               AS_public);
4729  return DeclPtrTy::make(Res);
4730}
4731
4732/// HandleField - Analyze a field of a C struct or a C++ data member.
4733///
4734FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4735                             SourceLocation DeclStart,
4736                             Declarator &D, Expr *BitWidth,
4737                             AccessSpecifier AS) {
4738  IdentifierInfo *II = D.getIdentifier();
4739  SourceLocation Loc = DeclStart;
4740  if (II) Loc = D.getIdentifierLoc();
4741
4742  DeclaratorInfo *DInfo = 0;
4743  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4744  if (getLangOptions().CPlusPlus)
4745    CheckExtraCXXDefaultArguments(D);
4746
4747  DiagnoseFunctionSpecifiers(D);
4748
4749  if (D.getDeclSpec().isThreadSpecified())
4750    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4751
4752  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4753
4754  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4755    // Maybe we will complain about the shadowed template parameter.
4756    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4757    // Just pretend that we didn't see the previous declaration.
4758    PrevDecl = 0;
4759  }
4760
4761  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4762    PrevDecl = 0;
4763
4764  bool Mutable
4765    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4766  SourceLocation TSSL = D.getSourceRange().getBegin();
4767  FieldDecl *NewFD
4768    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4769                     AS, PrevDecl, &D);
4770  if (NewFD->isInvalidDecl() && PrevDecl) {
4771    // Don't introduce NewFD into scope; there's already something
4772    // with the same name in the same scope.
4773  } else if (II) {
4774    PushOnScopeChains(NewFD, S);
4775  } else
4776    Record->addDecl(NewFD);
4777
4778  return NewFD;
4779}
4780
4781/// \brief Build a new FieldDecl and check its well-formedness.
4782///
4783/// This routine builds a new FieldDecl given the fields name, type,
4784/// record, etc. \p PrevDecl should refer to any previous declaration
4785/// with the same name and in the same scope as the field to be
4786/// created.
4787///
4788/// \returns a new FieldDecl.
4789///
4790/// \todo The Declarator argument is a hack. It will be removed once
4791FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4792                                DeclaratorInfo *DInfo,
4793                                RecordDecl *Record, SourceLocation Loc,
4794                                bool Mutable, Expr *BitWidth,
4795                                SourceLocation TSSL,
4796                                AccessSpecifier AS, NamedDecl *PrevDecl,
4797                                Declarator *D) {
4798  IdentifierInfo *II = Name.getAsIdentifierInfo();
4799  bool InvalidDecl = false;
4800  if (D) InvalidDecl = D->isInvalidType();
4801
4802  // If we receive a broken type, recover by assuming 'int' and
4803  // marking this declaration as invalid.
4804  if (T.isNull()) {
4805    InvalidDecl = true;
4806    T = Context.IntTy;
4807  }
4808
4809  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4810  // than a variably modified type.
4811  if (T->isVariablyModifiedType()) {
4812    bool SizeIsNegative;
4813    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4814                                                           SizeIsNegative);
4815    if (!FixedTy.isNull()) {
4816      Diag(Loc, diag::warn_illegal_constant_array_size);
4817      T = FixedTy;
4818    } else {
4819      if (SizeIsNegative)
4820        Diag(Loc, diag::err_typecheck_negative_array_size);
4821      else
4822        Diag(Loc, diag::err_typecheck_field_variable_size);
4823      InvalidDecl = true;
4824    }
4825  }
4826
4827  // Fields can not have abstract class types
4828  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4829                             AbstractFieldType))
4830    InvalidDecl = true;
4831
4832  bool ZeroWidth = false;
4833  // If this is declared as a bit-field, check the bit-field.
4834  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4835    InvalidDecl = true;
4836    DeleteExpr(BitWidth);
4837    BitWidth = 0;
4838    ZeroWidth = false;
4839  }
4840
4841  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4842                                       BitWidth, Mutable);
4843  if (InvalidDecl)
4844    NewFD->setInvalidDecl();
4845
4846  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4847    Diag(Loc, diag::err_duplicate_member) << II;
4848    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4849    NewFD->setInvalidDecl();
4850  }
4851
4852  if (getLangOptions().CPlusPlus) {
4853    QualType EltTy = Context.getBaseElementType(T);
4854
4855    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4856
4857    if (!T->isPODType())
4858      CXXRecord->setPOD(false);
4859    if (!ZeroWidth)
4860      CXXRecord->setEmpty(false);
4861
4862    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4863      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4864
4865      if (!RDecl->hasTrivialConstructor())
4866        CXXRecord->setHasTrivialConstructor(false);
4867      if (!RDecl->hasTrivialCopyConstructor())
4868        CXXRecord->setHasTrivialCopyConstructor(false);
4869      if (!RDecl->hasTrivialCopyAssignment())
4870        CXXRecord->setHasTrivialCopyAssignment(false);
4871      if (!RDecl->hasTrivialDestructor())
4872        CXXRecord->setHasTrivialDestructor(false);
4873
4874      // C++ 9.5p1: An object of a class with a non-trivial
4875      // constructor, a non-trivial copy constructor, a non-trivial
4876      // destructor, or a non-trivial copy assignment operator
4877      // cannot be a member of a union, nor can an array of such
4878      // objects.
4879      // TODO: C++0x alters this restriction significantly.
4880      if (Record->isUnion()) {
4881        // We check for copy constructors before constructors
4882        // because otherwise we'll never get complaints about
4883        // copy constructors.
4884
4885        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4886
4887        CXXSpecialMember member;
4888        if (!RDecl->hasTrivialCopyConstructor())
4889          member = CXXCopyConstructor;
4890        else if (!RDecl->hasTrivialConstructor())
4891          member = CXXDefaultConstructor;
4892        else if (!RDecl->hasTrivialCopyAssignment())
4893          member = CXXCopyAssignment;
4894        else if (!RDecl->hasTrivialDestructor())
4895          member = CXXDestructor;
4896        else
4897          member = invalid;
4898
4899        if (member != invalid) {
4900          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4901          DiagnoseNontrivial(RT, member);
4902          NewFD->setInvalidDecl();
4903        }
4904      }
4905    }
4906  }
4907
4908  // FIXME: We need to pass in the attributes given an AST
4909  // representation, not a parser representation.
4910  if (D)
4911    // FIXME: What to pass instead of TUScope?
4912    ProcessDeclAttributes(TUScope, NewFD, *D);
4913
4914  if (T.isObjCGCWeak())
4915    Diag(Loc, diag::warn_attribute_weak_on_field);
4916
4917  NewFD->setAccess(AS);
4918
4919  // C++ [dcl.init.aggr]p1:
4920  //   An aggregate is an array or a class (clause 9) with [...] no
4921  //   private or protected non-static data members (clause 11).
4922  // A POD must be an aggregate.
4923  if (getLangOptions().CPlusPlus &&
4924      (AS == AS_private || AS == AS_protected)) {
4925    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4926    CXXRecord->setAggregate(false);
4927    CXXRecord->setPOD(false);
4928  }
4929
4930  return NewFD;
4931}
4932
4933/// DiagnoseNontrivial - Given that a class has a non-trivial
4934/// special member, figure out why.
4935void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4936  QualType QT(T, 0U);
4937  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4938
4939  // Check whether the member was user-declared.
4940  switch (member) {
4941  case CXXDefaultConstructor:
4942    if (RD->hasUserDeclaredConstructor()) {
4943      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4944      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
4945        const FunctionDecl *body = 0;
4946        ci->getBody(body);
4947        if (!body ||
4948            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
4949          SourceLocation CtorLoc = ci->getLocation();
4950          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4951          return;
4952        }
4953      }
4954
4955      assert(0 && "found no user-declared constructors");
4956      return;
4957    }
4958    break;
4959
4960  case CXXCopyConstructor:
4961    if (RD->hasUserDeclaredCopyConstructor()) {
4962      SourceLocation CtorLoc =
4963        RD->getCopyConstructor(Context, 0)->getLocation();
4964      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4965      return;
4966    }
4967    break;
4968
4969  case CXXCopyAssignment:
4970    if (RD->hasUserDeclaredCopyAssignment()) {
4971      // FIXME: this should use the location of the copy
4972      // assignment, not the type.
4973      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4974      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4975      return;
4976    }
4977    break;
4978
4979  case CXXDestructor:
4980    if (RD->hasUserDeclaredDestructor()) {
4981      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4982      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4983      return;
4984    }
4985    break;
4986  }
4987
4988  typedef CXXRecordDecl::base_class_iterator base_iter;
4989
4990  // Virtual bases and members inhibit trivial copying/construction,
4991  // but not trivial destruction.
4992  if (member != CXXDestructor) {
4993    // Check for virtual bases.  vbases includes indirect virtual bases,
4994    // so we just iterate through the direct bases.
4995    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4996      if (bi->isVirtual()) {
4997        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4998        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4999        return;
5000      }
5001
5002    // Check for virtual methods.
5003    typedef CXXRecordDecl::method_iterator meth_iter;
5004    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5005         ++mi) {
5006      if (mi->isVirtual()) {
5007        SourceLocation MLoc = mi->getSourceRange().getBegin();
5008        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5009        return;
5010      }
5011    }
5012  }
5013
5014  bool (CXXRecordDecl::*hasTrivial)() const;
5015  switch (member) {
5016  case CXXDefaultConstructor:
5017    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5018  case CXXCopyConstructor:
5019    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5020  case CXXCopyAssignment:
5021    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5022  case CXXDestructor:
5023    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5024  default:
5025    assert(0 && "unexpected special member"); return;
5026  }
5027
5028  // Check for nontrivial bases (and recurse).
5029  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5030    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5031    assert(BaseRT && "Don't know how to handle dependent bases");
5032    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5033    if (!(BaseRecTy->*hasTrivial)()) {
5034      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5035      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5036      DiagnoseNontrivial(BaseRT, member);
5037      return;
5038    }
5039  }
5040
5041  // Check for nontrivial members (and recurse).
5042  typedef RecordDecl::field_iterator field_iter;
5043  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5044       ++fi) {
5045    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5046    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5047      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5048
5049      if (!(EltRD->*hasTrivial)()) {
5050        SourceLocation FLoc = (*fi)->getLocation();
5051        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5052        DiagnoseNontrivial(EltRT, member);
5053        return;
5054      }
5055    }
5056  }
5057
5058  assert(0 && "found no explanation for non-trivial member");
5059}
5060
5061/// TranslateIvarVisibility - Translate visibility from a token ID to an
5062///  AST enum value.
5063static ObjCIvarDecl::AccessControl
5064TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5065  switch (ivarVisibility) {
5066  default: assert(0 && "Unknown visitibility kind");
5067  case tok::objc_private: return ObjCIvarDecl::Private;
5068  case tok::objc_public: return ObjCIvarDecl::Public;
5069  case tok::objc_protected: return ObjCIvarDecl::Protected;
5070  case tok::objc_package: return ObjCIvarDecl::Package;
5071  }
5072}
5073
5074/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5075/// in order to create an IvarDecl object for it.
5076Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5077                                SourceLocation DeclStart,
5078                                DeclPtrTy IntfDecl,
5079                                Declarator &D, ExprTy *BitfieldWidth,
5080                                tok::ObjCKeywordKind Visibility) {
5081
5082  IdentifierInfo *II = D.getIdentifier();
5083  Expr *BitWidth = (Expr*)BitfieldWidth;
5084  SourceLocation Loc = DeclStart;
5085  if (II) Loc = D.getIdentifierLoc();
5086
5087  // FIXME: Unnamed fields can be handled in various different ways, for
5088  // example, unnamed unions inject all members into the struct namespace!
5089
5090  DeclaratorInfo *DInfo = 0;
5091  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5092
5093  if (BitWidth) {
5094    // 6.7.2.1p3, 6.7.2.1p4
5095    if (VerifyBitField(Loc, II, T, BitWidth)) {
5096      D.setInvalidType();
5097      DeleteExpr(BitWidth);
5098      BitWidth = 0;
5099    }
5100  } else {
5101    // Not a bitfield.
5102
5103    // validate II.
5104
5105  }
5106
5107  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5108  // than a variably modified type.
5109  if (T->isVariablyModifiedType()) {
5110    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5111    D.setInvalidType();
5112  }
5113
5114  // Get the visibility (access control) for this ivar.
5115  ObjCIvarDecl::AccessControl ac =
5116    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5117                                        : ObjCIvarDecl::None;
5118  // Must set ivar's DeclContext to its enclosing interface.
5119  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5120  DeclContext *EnclosingContext;
5121  if (ObjCImplementationDecl *IMPDecl =
5122      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5123    // Case of ivar declared in an implementation. Context is that of its class.
5124    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5125    assert(IDecl && "No class- ActOnIvar");
5126    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5127  } else
5128    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5129  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5130
5131  // Construct the decl.
5132  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5133                                             EnclosingContext, Loc, II, T,
5134                                             DInfo, ac, (Expr *)BitfieldWidth);
5135
5136  if (II) {
5137    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5138    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5139        && !isa<TagDecl>(PrevDecl)) {
5140      Diag(Loc, diag::err_duplicate_member) << II;
5141      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5142      NewID->setInvalidDecl();
5143    }
5144  }
5145
5146  // Process attributes attached to the ivar.
5147  ProcessDeclAttributes(S, NewID, D);
5148
5149  if (D.isInvalidType())
5150    NewID->setInvalidDecl();
5151
5152  if (II) {
5153    // FIXME: When interfaces are DeclContexts, we'll need to add
5154    // these to the interface.
5155    S->AddDecl(DeclPtrTy::make(NewID));
5156    IdResolver.AddDecl(NewID);
5157  }
5158
5159  return DeclPtrTy::make(NewID);
5160}
5161
5162void Sema::ActOnFields(Scope* S,
5163                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5164                       DeclPtrTy *Fields, unsigned NumFields,
5165                       SourceLocation LBrac, SourceLocation RBrac,
5166                       AttributeList *Attr) {
5167  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5168  assert(EnclosingDecl && "missing record or interface decl");
5169
5170  // If the decl this is being inserted into is invalid, then it may be a
5171  // redeclaration or some other bogus case.  Don't try to add fields to it.
5172  if (EnclosingDecl->isInvalidDecl()) {
5173    // FIXME: Deallocate fields?
5174    return;
5175  }
5176
5177
5178  // Verify that all the fields are okay.
5179  unsigned NumNamedMembers = 0;
5180  llvm::SmallVector<FieldDecl*, 32> RecFields;
5181
5182  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5183  for (unsigned i = 0; i != NumFields; ++i) {
5184    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5185
5186    // Get the type for the field.
5187    Type *FDTy = FD->getType().getTypePtr();
5188
5189    if (!FD->isAnonymousStructOrUnion()) {
5190      // Remember all fields written by the user.
5191      RecFields.push_back(FD);
5192    }
5193
5194    // If the field is already invalid for some reason, don't emit more
5195    // diagnostics about it.
5196    if (FD->isInvalidDecl())
5197      continue;
5198
5199    // C99 6.7.2.1p2:
5200    //   A structure or union shall not contain a member with
5201    //   incomplete or function type (hence, a structure shall not
5202    //   contain an instance of itself, but may contain a pointer to
5203    //   an instance of itself), except that the last member of a
5204    //   structure with more than one named member may have incomplete
5205    //   array type; such a structure (and any union containing,
5206    //   possibly recursively, a member that is such a structure)
5207    //   shall not be a member of a structure or an element of an
5208    //   array.
5209    if (FDTy->isFunctionType()) {
5210      // Field declared as a function.
5211      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5212        << FD->getDeclName();
5213      FD->setInvalidDecl();
5214      EnclosingDecl->setInvalidDecl();
5215      continue;
5216    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5217               Record && Record->isStruct()) {
5218      // Flexible array member.
5219      if (NumNamedMembers < 1) {
5220        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5221          << FD->getDeclName();
5222        FD->setInvalidDecl();
5223        EnclosingDecl->setInvalidDecl();
5224        continue;
5225      }
5226      // Okay, we have a legal flexible array member at the end of the struct.
5227      if (Record)
5228        Record->setHasFlexibleArrayMember(true);
5229    } else if (!FDTy->isDependentType() &&
5230               RequireCompleteType(FD->getLocation(), FD->getType(),
5231                                   diag::err_field_incomplete)) {
5232      // Incomplete type
5233      FD->setInvalidDecl();
5234      EnclosingDecl->setInvalidDecl();
5235      continue;
5236    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5237      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5238        // If this is a member of a union, then entire union becomes "flexible".
5239        if (Record && Record->isUnion()) {
5240          Record->setHasFlexibleArrayMember(true);
5241        } else {
5242          // If this is a struct/class and this is not the last element, reject
5243          // it.  Note that GCC supports variable sized arrays in the middle of
5244          // structures.
5245          if (i != NumFields-1)
5246            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5247              << FD->getDeclName() << FD->getType();
5248          else {
5249            // We support flexible arrays at the end of structs in
5250            // other structs as an extension.
5251            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5252              << FD->getDeclName();
5253            if (Record)
5254              Record->setHasFlexibleArrayMember(true);
5255          }
5256        }
5257      }
5258      if (Record && FDTTy->getDecl()->hasObjectMember())
5259        Record->setHasObjectMember(true);
5260    } else if (FDTy->isObjCInterfaceType()) {
5261      /// A field cannot be an Objective-c object
5262      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5263      FD->setInvalidDecl();
5264      EnclosingDecl->setInvalidDecl();
5265      continue;
5266    } else if (getLangOptions().ObjC1 &&
5267               getLangOptions().getGCMode() != LangOptions::NonGC &&
5268               Record &&
5269               (FD->getType()->isObjCObjectPointerType() ||
5270                FD->getType().isObjCGCStrong()))
5271      Record->setHasObjectMember(true);
5272    // Keep track of the number of named members.
5273    if (FD->getIdentifier())
5274      ++NumNamedMembers;
5275  }
5276
5277  // Okay, we successfully defined 'Record'.
5278  if (Record) {
5279    Record->completeDefinition(Context);
5280  } else {
5281    ObjCIvarDecl **ClsFields =
5282      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5283    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5284      ID->setIVarList(ClsFields, RecFields.size(), Context);
5285      ID->setLocEnd(RBrac);
5286      // Add ivar's to class's DeclContext.
5287      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5288        ClsFields[i]->setLexicalDeclContext(ID);
5289        ID->addDecl(ClsFields[i]);
5290      }
5291      // Must enforce the rule that ivars in the base classes may not be
5292      // duplicates.
5293      if (ID->getSuperClass()) {
5294        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5295             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5296          ObjCIvarDecl* Ivar = (*IVI);
5297
5298          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5299            ObjCIvarDecl* prevIvar =
5300              ID->getSuperClass()->lookupInstanceVariable(II);
5301            if (prevIvar) {
5302              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5303              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5304            }
5305          }
5306        }
5307      }
5308    } else if (ObjCImplementationDecl *IMPDecl =
5309                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5310      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5311      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5312        // Ivar declared in @implementation never belongs to the implementation.
5313        // Only it is in implementation's lexical context.
5314        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5315      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5316    }
5317  }
5318
5319  if (Attr)
5320    ProcessDeclAttributeList(S, Record, Attr);
5321}
5322
5323EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5324                                          EnumConstantDecl *LastEnumConst,
5325                                          SourceLocation IdLoc,
5326                                          IdentifierInfo *Id,
5327                                          ExprArg val) {
5328  Expr *Val = (Expr *)val.get();
5329
5330  llvm::APSInt EnumVal(32);
5331  QualType EltTy;
5332  if (Val && !Val->isTypeDependent()) {
5333    // Make sure to promote the operand type to int.
5334    UsualUnaryConversions(Val);
5335    if (Val != val.get()) {
5336      val.release();
5337      val = Val;
5338    }
5339
5340    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5341    SourceLocation ExpLoc;
5342    if (!Val->isValueDependent() &&
5343        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5344      Val = 0;
5345    } else {
5346      EltTy = Val->getType();
5347    }
5348  }
5349
5350  if (!Val) {
5351    if (LastEnumConst) {
5352      // Assign the last value + 1.
5353      EnumVal = LastEnumConst->getInitVal();
5354      ++EnumVal;
5355
5356      // Check for overflow on increment.
5357      if (EnumVal < LastEnumConst->getInitVal())
5358        Diag(IdLoc, diag::warn_enum_value_overflow);
5359
5360      EltTy = LastEnumConst->getType();
5361    } else {
5362      // First value, set to zero.
5363      EltTy = Context.IntTy;
5364      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5365    }
5366  }
5367
5368  val.release();
5369  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5370                                  Val, EnumVal);
5371}
5372
5373
5374Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5375                                        DeclPtrTy lastEnumConst,
5376                                        SourceLocation IdLoc,
5377                                        IdentifierInfo *Id,
5378                                        SourceLocation EqualLoc, ExprTy *val) {
5379  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5380  EnumConstantDecl *LastEnumConst =
5381    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5382  Expr *Val = static_cast<Expr*>(val);
5383
5384  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5385  // we find one that is.
5386  S = getNonFieldDeclScope(S);
5387
5388  // Verify that there isn't already something declared with this name in this
5389  // scope.
5390  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5391  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5392    // Maybe we will complain about the shadowed template parameter.
5393    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5394    // Just pretend that we didn't see the previous declaration.
5395    PrevDecl = 0;
5396  }
5397
5398  if (PrevDecl) {
5399    // When in C++, we may get a TagDecl with the same name; in this case the
5400    // enum constant will 'hide' the tag.
5401    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5402           "Received TagDecl when not in C++!");
5403    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5404      if (isa<EnumConstantDecl>(PrevDecl))
5405        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5406      else
5407        Diag(IdLoc, diag::err_redefinition) << Id;
5408      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5409      if (Val) Val->Destroy(Context);
5410      return DeclPtrTy();
5411    }
5412  }
5413
5414  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5415                                            IdLoc, Id, Owned(Val));
5416
5417  // Register this decl in the current scope stack.
5418  if (New)
5419    PushOnScopeChains(New, S);
5420
5421  return DeclPtrTy::make(New);
5422}
5423
5424void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5425                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5426                         DeclPtrTy *Elements, unsigned NumElements,
5427                         Scope *S, AttributeList *Attr) {
5428  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5429  QualType EnumType = Context.getTypeDeclType(Enum);
5430
5431  if (Attr)
5432    ProcessDeclAttributeList(S, Enum, Attr);
5433
5434  // TODO: If the result value doesn't fit in an int, it must be a long or long
5435  // long value.  ISO C does not support this, but GCC does as an extension,
5436  // emit a warning.
5437  unsigned IntWidth = Context.Target.getIntWidth();
5438  unsigned CharWidth = Context.Target.getCharWidth();
5439  unsigned ShortWidth = Context.Target.getShortWidth();
5440
5441  // Verify that all the values are okay, compute the size of the values, and
5442  // reverse the list.
5443  unsigned NumNegativeBits = 0;
5444  unsigned NumPositiveBits = 0;
5445
5446  // Keep track of whether all elements have type int.
5447  bool AllElementsInt = true;
5448
5449  for (unsigned i = 0; i != NumElements; ++i) {
5450    EnumConstantDecl *ECD =
5451      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5452    if (!ECD) continue;  // Already issued a diagnostic.
5453
5454    // If the enum value doesn't fit in an int, emit an extension warning.
5455    const llvm::APSInt &InitVal = ECD->getInitVal();
5456    assert(InitVal.getBitWidth() >= IntWidth &&
5457           "Should have promoted value to int");
5458    if (InitVal.getBitWidth() > IntWidth) {
5459      llvm::APSInt V(InitVal);
5460      V.trunc(IntWidth);
5461      V.extend(InitVal.getBitWidth());
5462      if (V != InitVal)
5463        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5464          << InitVal.toString(10);
5465    }
5466
5467    // Keep track of the size of positive and negative values.
5468    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5469      NumPositiveBits = std::max(NumPositiveBits,
5470                                 (unsigned)InitVal.getActiveBits());
5471    else
5472      NumNegativeBits = std::max(NumNegativeBits,
5473                                 (unsigned)InitVal.getMinSignedBits());
5474
5475    // Keep track of whether every enum element has type int (very commmon).
5476    if (AllElementsInt)
5477      AllElementsInt = ECD->getType() == Context.IntTy;
5478  }
5479
5480  // Figure out the type that should be used for this enum.
5481  // FIXME: Support -fshort-enums.
5482  QualType BestType;
5483  unsigned BestWidth;
5484
5485  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5486
5487  if (NumNegativeBits) {
5488    // If there is a negative value, figure out the smallest integer type (of
5489    // int/long/longlong) that fits.
5490    // If it's packed, check also if it fits a char or a short.
5491    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5492        BestType = Context.SignedCharTy;
5493        BestWidth = CharWidth;
5494    } else if (Packed && NumNegativeBits <= ShortWidth &&
5495               NumPositiveBits < ShortWidth) {
5496        BestType = Context.ShortTy;
5497        BestWidth = ShortWidth;
5498    }
5499    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5500      BestType = Context.IntTy;
5501      BestWidth = IntWidth;
5502    } else {
5503      BestWidth = Context.Target.getLongWidth();
5504
5505      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5506        BestType = Context.LongTy;
5507      else {
5508        BestWidth = Context.Target.getLongLongWidth();
5509
5510        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5511          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5512        BestType = Context.LongLongTy;
5513      }
5514    }
5515  } else {
5516    // If there is no negative value, figure out which of uint, ulong, ulonglong
5517    // fits.
5518    // If it's packed, check also if it fits a char or a short.
5519    if (Packed && NumPositiveBits <= CharWidth) {
5520        BestType = Context.UnsignedCharTy;
5521        BestWidth = CharWidth;
5522    } else if (Packed && NumPositiveBits <= ShortWidth) {
5523        BestType = Context.UnsignedShortTy;
5524        BestWidth = ShortWidth;
5525    }
5526    else if (NumPositiveBits <= IntWidth) {
5527      BestType = Context.UnsignedIntTy;
5528      BestWidth = IntWidth;
5529    } else if (NumPositiveBits <=
5530               (BestWidth = Context.Target.getLongWidth())) {
5531      BestType = Context.UnsignedLongTy;
5532    } else {
5533      BestWidth = Context.Target.getLongLongWidth();
5534      assert(NumPositiveBits <= BestWidth &&
5535             "How could an initializer get larger than ULL?");
5536      BestType = Context.UnsignedLongLongTy;
5537    }
5538  }
5539
5540  // Loop over all of the enumerator constants, changing their types to match
5541  // the type of the enum if needed.
5542  for (unsigned i = 0; i != NumElements; ++i) {
5543    EnumConstantDecl *ECD =
5544      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5545    if (!ECD) continue;  // Already issued a diagnostic.
5546
5547    // Standard C says the enumerators have int type, but we allow, as an
5548    // extension, the enumerators to be larger than int size.  If each
5549    // enumerator value fits in an int, type it as an int, otherwise type it the
5550    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5551    // that X has type 'int', not 'unsigned'.
5552    if (ECD->getType() == Context.IntTy) {
5553      // Make sure the init value is signed.
5554      llvm::APSInt IV = ECD->getInitVal();
5555      IV.setIsSigned(true);
5556      ECD->setInitVal(IV);
5557
5558      if (getLangOptions().CPlusPlus)
5559        // C++ [dcl.enum]p4: Following the closing brace of an
5560        // enum-specifier, each enumerator has the type of its
5561        // enumeration.
5562        ECD->setType(EnumType);
5563      continue;  // Already int type.
5564    }
5565
5566    // Determine whether the value fits into an int.
5567    llvm::APSInt InitVal = ECD->getInitVal();
5568    bool FitsInInt;
5569    if (InitVal.isUnsigned() || !InitVal.isNegative())
5570      FitsInInt = InitVal.getActiveBits() < IntWidth;
5571    else
5572      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5573
5574    // If it fits into an integer type, force it.  Otherwise force it to match
5575    // the enum decl type.
5576    QualType NewTy;
5577    unsigned NewWidth;
5578    bool NewSign;
5579    if (FitsInInt) {
5580      NewTy = Context.IntTy;
5581      NewWidth = IntWidth;
5582      NewSign = true;
5583    } else if (ECD->getType() == BestType) {
5584      // Already the right type!
5585      if (getLangOptions().CPlusPlus)
5586        // C++ [dcl.enum]p4: Following the closing brace of an
5587        // enum-specifier, each enumerator has the type of its
5588        // enumeration.
5589        ECD->setType(EnumType);
5590      continue;
5591    } else {
5592      NewTy = BestType;
5593      NewWidth = BestWidth;
5594      NewSign = BestType->isSignedIntegerType();
5595    }
5596
5597    // Adjust the APSInt value.
5598    InitVal.extOrTrunc(NewWidth);
5599    InitVal.setIsSigned(NewSign);
5600    ECD->setInitVal(InitVal);
5601
5602    // Adjust the Expr initializer and type.
5603    if (ECD->getInitExpr())
5604      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5605                                                      CastExpr::CK_IntegralCast,
5606                                                      ECD->getInitExpr(),
5607                                                      /*isLvalue=*/false));
5608    if (getLangOptions().CPlusPlus)
5609      // C++ [dcl.enum]p4: Following the closing brace of an
5610      // enum-specifier, each enumerator has the type of its
5611      // enumeration.
5612      ECD->setType(EnumType);
5613    else
5614      ECD->setType(NewTy);
5615  }
5616
5617  Enum->completeDefinition(Context, BestType);
5618}
5619
5620Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5621                                            ExprArg expr) {
5622  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5623
5624  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5625                                                   Loc, AsmString);
5626  CurContext->addDecl(New);
5627  return DeclPtrTy::make(New);
5628}
5629
5630void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5631                             SourceLocation PragmaLoc,
5632                             SourceLocation NameLoc) {
5633  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5634
5635  if (PrevDecl) {
5636    PrevDecl->addAttr(::new (Context) WeakAttr());
5637  } else {
5638    (void)WeakUndeclaredIdentifiers.insert(
5639      std::pair<IdentifierInfo*,WeakInfo>
5640        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5641  }
5642}
5643
5644void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5645                                IdentifierInfo* AliasName,
5646                                SourceLocation PragmaLoc,
5647                                SourceLocation NameLoc,
5648                                SourceLocation AliasNameLoc) {
5649  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5650  WeakInfo W = WeakInfo(Name, NameLoc);
5651
5652  if (PrevDecl) {
5653    if (!PrevDecl->hasAttr<AliasAttr>())
5654      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5655        DeclApplyPragmaWeak(TUScope, ND, W);
5656  } else {
5657    (void)WeakUndeclaredIdentifiers.insert(
5658      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5659  }
5660}
5661