SemaDecl.cpp revision 7a614d8380297fcd2bc23986241905d97222948c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return (LangOpts.GNUInline && !LangOpts.CPlusPlus &&
1531          FD->isInlineSpecified() &&
1532          FD->getStorageClass() == SC_Extern);
1533}
1534
1535/// MergeFunctionDecl - We just parsed a function 'New' from
1536/// declarator D which has the same name and scope as a previous
1537/// declaration 'Old'.  Figure out how to resolve this situation,
1538/// merging decls or emitting diagnostics as appropriate.
1539///
1540/// In C++, New and Old must be declarations that are not
1541/// overloaded. Use IsOverload to determine whether New and Old are
1542/// overloaded, and to select the Old declaration that New should be
1543/// merged with.
1544///
1545/// Returns true if there was an error, false otherwise.
1546bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1547  // Verify the old decl was also a function.
1548  FunctionDecl *Old = 0;
1549  if (FunctionTemplateDecl *OldFunctionTemplate
1550        = dyn_cast<FunctionTemplateDecl>(OldD))
1551    Old = OldFunctionTemplate->getTemplatedDecl();
1552  else
1553    Old = dyn_cast<FunctionDecl>(OldD);
1554  if (!Old) {
1555    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1556      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1557      Diag(Shadow->getTargetDecl()->getLocation(),
1558           diag::note_using_decl_target);
1559      Diag(Shadow->getUsingDecl()->getLocation(),
1560           diag::note_using_decl) << 0;
1561      return true;
1562    }
1563
1564    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1565      << New->getDeclName();
1566    Diag(OldD->getLocation(), diag::note_previous_definition);
1567    return true;
1568  }
1569
1570  // Determine whether the previous declaration was a definition,
1571  // implicit declaration, or a declaration.
1572  diag::kind PrevDiag;
1573  if (Old->isThisDeclarationADefinition())
1574    PrevDiag = diag::note_previous_definition;
1575  else if (Old->isImplicit())
1576    PrevDiag = diag::note_previous_implicit_declaration;
1577  else
1578    PrevDiag = diag::note_previous_declaration;
1579
1580  QualType OldQType = Context.getCanonicalType(Old->getType());
1581  QualType NewQType = Context.getCanonicalType(New->getType());
1582
1583  // Don't complain about this if we're in GNU89 mode and the old function
1584  // is an extern inline function.
1585  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1586      New->getStorageClass() == SC_Static &&
1587      Old->getStorageClass() != SC_Static &&
1588      !canRedefineFunction(Old, getLangOptions())) {
1589    if (getLangOptions().Microsoft) {
1590      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1591      Diag(Old->getLocation(), PrevDiag);
1592    } else {
1593      Diag(New->getLocation(), diag::err_static_non_static) << New;
1594      Diag(Old->getLocation(), PrevDiag);
1595      return true;
1596    }
1597  }
1598
1599  // If a function is first declared with a calling convention, but is
1600  // later declared or defined without one, the second decl assumes the
1601  // calling convention of the first.
1602  //
1603  // For the new decl, we have to look at the NON-canonical type to tell the
1604  // difference between a function that really doesn't have a calling
1605  // convention and one that is declared cdecl. That's because in
1606  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1607  // because it is the default calling convention.
1608  //
1609  // Note also that we DO NOT return at this point, because we still have
1610  // other tests to run.
1611  const FunctionType *OldType = cast<FunctionType>(OldQType);
1612  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1613  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1614  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1615  bool RequiresAdjustment = false;
1616  if (OldTypeInfo.getCC() != CC_Default &&
1617      NewTypeInfo.getCC() == CC_Default) {
1618    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1619    RequiresAdjustment = true;
1620  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1621                                     NewTypeInfo.getCC())) {
1622    // Calling conventions really aren't compatible, so complain.
1623    Diag(New->getLocation(), diag::err_cconv_change)
1624      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1625      << (OldTypeInfo.getCC() == CC_Default)
1626      << (OldTypeInfo.getCC() == CC_Default ? "" :
1627          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1628    Diag(Old->getLocation(), diag::note_previous_declaration);
1629    return true;
1630  }
1631
1632  // FIXME: diagnose the other way around?
1633  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1634    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1635    RequiresAdjustment = true;
1636  }
1637
1638  // Merge regparm attribute.
1639  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1640      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1641    if (NewTypeInfo.getHasRegParm()) {
1642      Diag(New->getLocation(), diag::err_regparm_mismatch)
1643        << NewType->getRegParmType()
1644        << OldType->getRegParmType();
1645      Diag(Old->getLocation(), diag::note_previous_declaration);
1646      return true;
1647    }
1648
1649    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1650    RequiresAdjustment = true;
1651  }
1652
1653  if (RequiresAdjustment) {
1654    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1655    New->setType(QualType(NewType, 0));
1656    NewQType = Context.getCanonicalType(New->getType());
1657  }
1658
1659  if (getLangOptions().CPlusPlus) {
1660    // (C++98 13.1p2):
1661    //   Certain function declarations cannot be overloaded:
1662    //     -- Function declarations that differ only in the return type
1663    //        cannot be overloaded.
1664    QualType OldReturnType = OldType->getResultType();
1665    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1666    QualType ResQT;
1667    if (OldReturnType != NewReturnType) {
1668      if (NewReturnType->isObjCObjectPointerType()
1669          && OldReturnType->isObjCObjectPointerType())
1670        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1671      if (ResQT.isNull()) {
1672        if (New->isCXXClassMember() && New->isOutOfLine())
1673          Diag(New->getLocation(),
1674               diag::err_member_def_does_not_match_ret_type) << New;
1675        else
1676          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1677        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1678        return true;
1679      }
1680      else
1681        NewQType = ResQT;
1682    }
1683
1684    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1685    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1686    if (OldMethod && NewMethod) {
1687      // Preserve triviality.
1688      NewMethod->setTrivial(OldMethod->isTrivial());
1689
1690      bool isFriend = NewMethod->getFriendObjectKind();
1691
1692      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1693        //    -- Member function declarations with the same name and the
1694        //       same parameter types cannot be overloaded if any of them
1695        //       is a static member function declaration.
1696        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1697          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1698          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1699          return true;
1700        }
1701
1702        // C++ [class.mem]p1:
1703        //   [...] A member shall not be declared twice in the
1704        //   member-specification, except that a nested class or member
1705        //   class template can be declared and then later defined.
1706        unsigned NewDiag;
1707        if (isa<CXXConstructorDecl>(OldMethod))
1708          NewDiag = diag::err_constructor_redeclared;
1709        else if (isa<CXXDestructorDecl>(NewMethod))
1710          NewDiag = diag::err_destructor_redeclared;
1711        else if (isa<CXXConversionDecl>(NewMethod))
1712          NewDiag = diag::err_conv_function_redeclared;
1713        else
1714          NewDiag = diag::err_member_redeclared;
1715
1716        Diag(New->getLocation(), NewDiag);
1717        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1718
1719      // Complain if this is an explicit declaration of a special
1720      // member that was initially declared implicitly.
1721      //
1722      // As an exception, it's okay to befriend such methods in order
1723      // to permit the implicit constructor/destructor/operator calls.
1724      } else if (OldMethod->isImplicit()) {
1725        if (isFriend) {
1726          NewMethod->setImplicit();
1727        } else {
1728          Diag(NewMethod->getLocation(),
1729               diag::err_definition_of_implicitly_declared_member)
1730            << New << getSpecialMember(OldMethod);
1731          return true;
1732        }
1733      } else if (OldMethod->isExplicitlyDefaulted()) {
1734        Diag(NewMethod->getLocation(),
1735             diag::err_definition_of_explicitly_defaulted_member)
1736          << getSpecialMember(OldMethod);
1737        return true;
1738      }
1739    }
1740
1741    // (C++98 8.3.5p3):
1742    //   All declarations for a function shall agree exactly in both the
1743    //   return type and the parameter-type-list.
1744    // We also want to respect all the extended bits except noreturn.
1745
1746    // noreturn should now match unless the old type info didn't have it.
1747    QualType OldQTypeForComparison = OldQType;
1748    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1749      assert(OldQType == QualType(OldType, 0));
1750      const FunctionType *OldTypeForComparison
1751        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1752      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1753      assert(OldQTypeForComparison.isCanonical());
1754    }
1755
1756    if (OldQTypeForComparison == NewQType)
1757      return MergeCompatibleFunctionDecls(New, Old);
1758
1759    // Fall through for conflicting redeclarations and redefinitions.
1760  }
1761
1762  // C: Function types need to be compatible, not identical. This handles
1763  // duplicate function decls like "void f(int); void f(enum X);" properly.
1764  if (!getLangOptions().CPlusPlus &&
1765      Context.typesAreCompatible(OldQType, NewQType)) {
1766    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1767    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1768    const FunctionProtoType *OldProto = 0;
1769    if (isa<FunctionNoProtoType>(NewFuncType) &&
1770        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1771      // The old declaration provided a function prototype, but the
1772      // new declaration does not. Merge in the prototype.
1773      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1774      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1775                                                 OldProto->arg_type_end());
1776      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1777                                         ParamTypes.data(), ParamTypes.size(),
1778                                         OldProto->getExtProtoInfo());
1779      New->setType(NewQType);
1780      New->setHasInheritedPrototype();
1781
1782      // Synthesize a parameter for each argument type.
1783      llvm::SmallVector<ParmVarDecl*, 16> Params;
1784      for (FunctionProtoType::arg_type_iterator
1785             ParamType = OldProto->arg_type_begin(),
1786             ParamEnd = OldProto->arg_type_end();
1787           ParamType != ParamEnd; ++ParamType) {
1788        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1789                                                 SourceLocation(),
1790                                                 SourceLocation(), 0,
1791                                                 *ParamType, /*TInfo=*/0,
1792                                                 SC_None, SC_None,
1793                                                 0);
1794        Param->setScopeInfo(0, Params.size());
1795        Param->setImplicit();
1796        Params.push_back(Param);
1797      }
1798
1799      New->setParams(Params.data(), Params.size());
1800    }
1801
1802    return MergeCompatibleFunctionDecls(New, Old);
1803  }
1804
1805  // GNU C permits a K&R definition to follow a prototype declaration
1806  // if the declared types of the parameters in the K&R definition
1807  // match the types in the prototype declaration, even when the
1808  // promoted types of the parameters from the K&R definition differ
1809  // from the types in the prototype. GCC then keeps the types from
1810  // the prototype.
1811  //
1812  // If a variadic prototype is followed by a non-variadic K&R definition,
1813  // the K&R definition becomes variadic.  This is sort of an edge case, but
1814  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1815  // C99 6.9.1p8.
1816  if (!getLangOptions().CPlusPlus &&
1817      Old->hasPrototype() && !New->hasPrototype() &&
1818      New->getType()->getAs<FunctionProtoType>() &&
1819      Old->getNumParams() == New->getNumParams()) {
1820    llvm::SmallVector<QualType, 16> ArgTypes;
1821    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1822    const FunctionProtoType *OldProto
1823      = Old->getType()->getAs<FunctionProtoType>();
1824    const FunctionProtoType *NewProto
1825      = New->getType()->getAs<FunctionProtoType>();
1826
1827    // Determine whether this is the GNU C extension.
1828    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1829                                               NewProto->getResultType());
1830    bool LooseCompatible = !MergedReturn.isNull();
1831    for (unsigned Idx = 0, End = Old->getNumParams();
1832         LooseCompatible && Idx != End; ++Idx) {
1833      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1834      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1835      if (Context.typesAreCompatible(OldParm->getType(),
1836                                     NewProto->getArgType(Idx))) {
1837        ArgTypes.push_back(NewParm->getType());
1838      } else if (Context.typesAreCompatible(OldParm->getType(),
1839                                            NewParm->getType(),
1840                                            /*CompareUnqualified=*/true)) {
1841        GNUCompatibleParamWarning Warn
1842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1843        Warnings.push_back(Warn);
1844        ArgTypes.push_back(NewParm->getType());
1845      } else
1846        LooseCompatible = false;
1847    }
1848
1849    if (LooseCompatible) {
1850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1851        Diag(Warnings[Warn].NewParm->getLocation(),
1852             diag::ext_param_promoted_not_compatible_with_prototype)
1853          << Warnings[Warn].PromotedType
1854          << Warnings[Warn].OldParm->getType();
1855        if (Warnings[Warn].OldParm->getLocation().isValid())
1856          Diag(Warnings[Warn].OldParm->getLocation(),
1857               diag::note_previous_declaration);
1858      }
1859
1860      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1861                                           ArgTypes.size(),
1862                                           OldProto->getExtProtoInfo()));
1863      return MergeCompatibleFunctionDecls(New, Old);
1864    }
1865
1866    // Fall through to diagnose conflicting types.
1867  }
1868
1869  // A function that has already been declared has been redeclared or defined
1870  // with a different type- show appropriate diagnostic
1871  if (unsigned BuiltinID = Old->getBuiltinID()) {
1872    // The user has declared a builtin function with an incompatible
1873    // signature.
1874    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1875      // The function the user is redeclaring is a library-defined
1876      // function like 'malloc' or 'printf'. Warn about the
1877      // redeclaration, then pretend that we don't know about this
1878      // library built-in.
1879      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1880      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1881        << Old << Old->getType();
1882      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1883      Old->setInvalidDecl();
1884      return false;
1885    }
1886
1887    PrevDiag = diag::note_previous_builtin_declaration;
1888  }
1889
1890  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1891  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1892  return true;
1893}
1894
1895/// \brief Completes the merge of two function declarations that are
1896/// known to be compatible.
1897///
1898/// This routine handles the merging of attributes and other
1899/// properties of function declarations form the old declaration to
1900/// the new declaration, once we know that New is in fact a
1901/// redeclaration of Old.
1902///
1903/// \returns false
1904bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1905  // Merge the attributes
1906  mergeDeclAttributes(New, Old, Context);
1907
1908  // Merge the storage class.
1909  if (Old->getStorageClass() != SC_Extern &&
1910      Old->getStorageClass() != SC_None)
1911    New->setStorageClass(Old->getStorageClass());
1912
1913  // Merge "pure" flag.
1914  if (Old->isPure())
1915    New->setPure();
1916
1917  // Merge attributes from the parameters.  These can mismatch with K&R
1918  // declarations.
1919  if (New->getNumParams() == Old->getNumParams())
1920    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1921      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1922                               Context);
1923
1924  if (getLangOptions().CPlusPlus)
1925    return MergeCXXFunctionDecl(New, Old);
1926
1927  return false;
1928}
1929
1930void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1931                                const ObjCMethodDecl *oldMethod) {
1932  // Merge the attributes.
1933  mergeDeclAttributes(newMethod, oldMethod, Context);
1934
1935  // Merge attributes from the parameters.
1936  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1937         ni = newMethod->param_begin(), ne = newMethod->param_end();
1938       ni != ne; ++ni, ++oi)
1939    mergeParamDeclAttributes(*ni, *oi, Context);
1940
1941  CheckObjCMethodOverride(newMethod, oldMethod, true);
1942}
1943
1944/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1945/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1946/// emitting diagnostics as appropriate.
1947///
1948/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1949/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1950/// check them before the initializer is attached.
1951///
1952void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1953  if (New->isInvalidDecl() || Old->isInvalidDecl())
1954    return;
1955
1956  QualType MergedT;
1957  if (getLangOptions().CPlusPlus) {
1958    AutoType *AT = New->getType()->getContainedAutoType();
1959    if (AT && !AT->isDeduced()) {
1960      // We don't know what the new type is until the initializer is attached.
1961      return;
1962    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1963      // These could still be something that needs exception specs checked.
1964      return MergeVarDeclExceptionSpecs(New, Old);
1965    }
1966    // C++ [basic.link]p10:
1967    //   [...] the types specified by all declarations referring to a given
1968    //   object or function shall be identical, except that declarations for an
1969    //   array object can specify array types that differ by the presence or
1970    //   absence of a major array bound (8.3.4).
1971    else if (Old->getType()->isIncompleteArrayType() &&
1972             New->getType()->isArrayType()) {
1973      CanQual<ArrayType> OldArray
1974        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1975      CanQual<ArrayType> NewArray
1976        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1977      if (OldArray->getElementType() == NewArray->getElementType())
1978        MergedT = New->getType();
1979    } else if (Old->getType()->isArrayType() &&
1980             New->getType()->isIncompleteArrayType()) {
1981      CanQual<ArrayType> OldArray
1982        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1983      CanQual<ArrayType> NewArray
1984        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1985      if (OldArray->getElementType() == NewArray->getElementType())
1986        MergedT = Old->getType();
1987    } else if (New->getType()->isObjCObjectPointerType()
1988               && Old->getType()->isObjCObjectPointerType()) {
1989        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1990                                                        Old->getType());
1991    }
1992  } else {
1993    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1994  }
1995  if (MergedT.isNull()) {
1996    Diag(New->getLocation(), diag::err_redefinition_different_type)
1997      << New->getDeclName();
1998    Diag(Old->getLocation(), diag::note_previous_definition);
1999    return New->setInvalidDecl();
2000  }
2001  New->setType(MergedT);
2002}
2003
2004/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2005/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2006/// situation, merging decls or emitting diagnostics as appropriate.
2007///
2008/// Tentative definition rules (C99 6.9.2p2) are checked by
2009/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2010/// definitions here, since the initializer hasn't been attached.
2011///
2012void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2013  // If the new decl is already invalid, don't do any other checking.
2014  if (New->isInvalidDecl())
2015    return;
2016
2017  // Verify the old decl was also a variable.
2018  VarDecl *Old = 0;
2019  if (!Previous.isSingleResult() ||
2020      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2021    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2022      << New->getDeclName();
2023    Diag(Previous.getRepresentativeDecl()->getLocation(),
2024         diag::note_previous_definition);
2025    return New->setInvalidDecl();
2026  }
2027
2028  // C++ [class.mem]p1:
2029  //   A member shall not be declared twice in the member-specification [...]
2030  //
2031  // Here, we need only consider static data members.
2032  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2033    Diag(New->getLocation(), diag::err_duplicate_member)
2034      << New->getIdentifier();
2035    Diag(Old->getLocation(), diag::note_previous_declaration);
2036    New->setInvalidDecl();
2037  }
2038
2039  mergeDeclAttributes(New, Old, Context);
2040
2041  // Merge the types.
2042  MergeVarDeclTypes(New, Old);
2043  if (New->isInvalidDecl())
2044    return;
2045
2046  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2047  if (New->getStorageClass() == SC_Static &&
2048      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2049    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2050    Diag(Old->getLocation(), diag::note_previous_definition);
2051    return New->setInvalidDecl();
2052  }
2053  // C99 6.2.2p4:
2054  //   For an identifier declared with the storage-class specifier
2055  //   extern in a scope in which a prior declaration of that
2056  //   identifier is visible,23) if the prior declaration specifies
2057  //   internal or external linkage, the linkage of the identifier at
2058  //   the later declaration is the same as the linkage specified at
2059  //   the prior declaration. If no prior declaration is visible, or
2060  //   if the prior declaration specifies no linkage, then the
2061  //   identifier has external linkage.
2062  if (New->hasExternalStorage() && Old->hasLinkage())
2063    /* Okay */;
2064  else if (New->getStorageClass() != SC_Static &&
2065           Old->getStorageClass() == SC_Static) {
2066    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2067    Diag(Old->getLocation(), diag::note_previous_definition);
2068    return New->setInvalidDecl();
2069  }
2070
2071  // Check if extern is followed by non-extern and vice-versa.
2072  if (New->hasExternalStorage() &&
2073      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2074    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2075    Diag(Old->getLocation(), diag::note_previous_definition);
2076    return New->setInvalidDecl();
2077  }
2078  if (Old->hasExternalStorage() &&
2079      !New->hasLinkage() && New->isLocalVarDecl()) {
2080    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2081    Diag(Old->getLocation(), diag::note_previous_definition);
2082    return New->setInvalidDecl();
2083  }
2084
2085  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2086
2087  // FIXME: The test for external storage here seems wrong? We still
2088  // need to check for mismatches.
2089  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2090      // Don't complain about out-of-line definitions of static members.
2091      !(Old->getLexicalDeclContext()->isRecord() &&
2092        !New->getLexicalDeclContext()->isRecord())) {
2093    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2094    Diag(Old->getLocation(), diag::note_previous_definition);
2095    return New->setInvalidDecl();
2096  }
2097
2098  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2099    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2100    Diag(Old->getLocation(), diag::note_previous_definition);
2101  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2102    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2103    Diag(Old->getLocation(), diag::note_previous_definition);
2104  }
2105
2106  // C++ doesn't have tentative definitions, so go right ahead and check here.
2107  const VarDecl *Def;
2108  if (getLangOptions().CPlusPlus &&
2109      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2110      (Def = Old->getDefinition())) {
2111    Diag(New->getLocation(), diag::err_redefinition)
2112      << New->getDeclName();
2113    Diag(Def->getLocation(), diag::note_previous_definition);
2114    New->setInvalidDecl();
2115    return;
2116  }
2117  // c99 6.2.2 P4.
2118  // For an identifier declared with the storage-class specifier extern in a
2119  // scope in which a prior declaration of that identifier is visible, if
2120  // the prior declaration specifies internal or external linkage, the linkage
2121  // of the identifier at the later declaration is the same as the linkage
2122  // specified at the prior declaration.
2123  // FIXME. revisit this code.
2124  if (New->hasExternalStorage() &&
2125      Old->getLinkage() == InternalLinkage &&
2126      New->getDeclContext() == Old->getDeclContext())
2127    New->setStorageClass(Old->getStorageClass());
2128
2129  // Keep a chain of previous declarations.
2130  New->setPreviousDeclaration(Old);
2131
2132  // Inherit access appropriately.
2133  New->setAccess(Old->getAccess());
2134}
2135
2136/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2137/// no declarator (e.g. "struct foo;") is parsed.
2138Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2139                                       DeclSpec &DS) {
2140  return ParsedFreeStandingDeclSpec(S, AS, DS,
2141                                    MultiTemplateParamsArg(*this, 0, 0));
2142}
2143
2144/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2145/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2146/// parameters to cope with template friend declarations.
2147Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2148                                       DeclSpec &DS,
2149                                       MultiTemplateParamsArg TemplateParams) {
2150  Decl *TagD = 0;
2151  TagDecl *Tag = 0;
2152  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2153      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2154      DS.getTypeSpecType() == DeclSpec::TST_union ||
2155      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2156    TagD = DS.getRepAsDecl();
2157
2158    if (!TagD) // We probably had an error
2159      return 0;
2160
2161    // Note that the above type specs guarantee that the
2162    // type rep is a Decl, whereas in many of the others
2163    // it's a Type.
2164    Tag = dyn_cast<TagDecl>(TagD);
2165  }
2166
2167  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2168    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2169    // or incomplete types shall not be restrict-qualified."
2170    if (TypeQuals & DeclSpec::TQ_restrict)
2171      Diag(DS.getRestrictSpecLoc(),
2172           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2173           << DS.getSourceRange();
2174  }
2175
2176  if (DS.isFriendSpecified()) {
2177    // If we're dealing with a decl but not a TagDecl, assume that
2178    // whatever routines created it handled the friendship aspect.
2179    if (TagD && !Tag)
2180      return 0;
2181    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2182  }
2183
2184  // Track whether we warned about the fact that there aren't any
2185  // declarators.
2186  bool emittedWarning = false;
2187
2188  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2189    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2190
2191    if (!Record->getDeclName() && Record->isDefinition() &&
2192        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2193      if (getLangOptions().CPlusPlus ||
2194          Record->getDeclContext()->isRecord())
2195        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2196
2197      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2198        << DS.getSourceRange();
2199      emittedWarning = true;
2200    }
2201  }
2202
2203  // Check for Microsoft C extension: anonymous struct.
2204  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2205      CurContext->isRecord() &&
2206      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2207    // Handle 2 kinds of anonymous struct:
2208    //   struct STRUCT;
2209    // and
2210    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2211    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2212    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2213        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2214         DS.getRepAsType().get()->isStructureType())) {
2215      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2216        << DS.getSourceRange();
2217      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2218    }
2219  }
2220
2221  if (getLangOptions().CPlusPlus &&
2222      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2223    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2224      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2225          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2226        Diag(Enum->getLocation(), diag::ext_no_declarators)
2227          << DS.getSourceRange();
2228        emittedWarning = true;
2229      }
2230
2231  // Skip all the checks below if we have a type error.
2232  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2233
2234  if (!DS.isMissingDeclaratorOk()) {
2235    // Warn about typedefs of enums without names, since this is an
2236    // extension in both Microsoft and GNU.
2237    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2238        Tag && isa<EnumDecl>(Tag)) {
2239      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2240        << DS.getSourceRange();
2241      return Tag;
2242    }
2243
2244    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2245      << DS.getSourceRange();
2246    emittedWarning = true;
2247  }
2248
2249  // We're going to complain about a bunch of spurious specifiers;
2250  // only do this if we're declaring a tag, because otherwise we
2251  // should be getting diag::ext_no_declarators.
2252  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2253    return TagD;
2254
2255  // Note that a linkage-specification sets a storage class, but
2256  // 'extern "C" struct foo;' is actually valid and not theoretically
2257  // useless.
2258  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2259    if (!DS.isExternInLinkageSpec())
2260      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2261        << DeclSpec::getSpecifierName(scs);
2262
2263  if (DS.isThreadSpecified())
2264    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2265  if (DS.getTypeQualifiers()) {
2266    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2267      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2268    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2269      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2270    // Restrict is covered above.
2271  }
2272  if (DS.isInlineSpecified())
2273    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2274  if (DS.isVirtualSpecified())
2275    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2276  if (DS.isExplicitSpecified())
2277    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2278
2279  // FIXME: Warn on useless attributes
2280
2281  return TagD;
2282}
2283
2284/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2285/// builds a statement for it and returns it so it is evaluated.
2286StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2287  StmtResult R;
2288  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2289    Expr *Exp = DS.getRepAsExpr();
2290    QualType Ty = Exp->getType();
2291    if (Ty->isPointerType()) {
2292      do
2293        Ty = Ty->getAs<PointerType>()->getPointeeType();
2294      while (Ty->isPointerType());
2295    }
2296    if (Ty->isVariableArrayType()) {
2297      R = ActOnExprStmt(MakeFullExpr(Exp));
2298    }
2299  }
2300  return R;
2301}
2302
2303/// We are trying to inject an anonymous member into the given scope;
2304/// check if there's an existing declaration that can't be overloaded.
2305///
2306/// \return true if this is a forbidden redeclaration
2307static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2308                                         Scope *S,
2309                                         DeclContext *Owner,
2310                                         DeclarationName Name,
2311                                         SourceLocation NameLoc,
2312                                         unsigned diagnostic) {
2313  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2314                 Sema::ForRedeclaration);
2315  if (!SemaRef.LookupName(R, S)) return false;
2316
2317  if (R.getAsSingle<TagDecl>())
2318    return false;
2319
2320  // Pick a representative declaration.
2321  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2322  assert(PrevDecl && "Expected a non-null Decl");
2323
2324  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2325    return false;
2326
2327  SemaRef.Diag(NameLoc, diagnostic) << Name;
2328  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2329
2330  return true;
2331}
2332
2333/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2334/// anonymous struct or union AnonRecord into the owning context Owner
2335/// and scope S. This routine will be invoked just after we realize
2336/// that an unnamed union or struct is actually an anonymous union or
2337/// struct, e.g.,
2338///
2339/// @code
2340/// union {
2341///   int i;
2342///   float f;
2343/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2344///    // f into the surrounding scope.x
2345/// @endcode
2346///
2347/// This routine is recursive, injecting the names of nested anonymous
2348/// structs/unions into the owning context and scope as well.
2349static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2350                                                DeclContext *Owner,
2351                                                RecordDecl *AnonRecord,
2352                                                AccessSpecifier AS,
2353                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2354                                                      bool MSAnonStruct) {
2355  unsigned diagKind
2356    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2357                            : diag::err_anonymous_struct_member_redecl;
2358
2359  bool Invalid = false;
2360
2361  // Look every FieldDecl and IndirectFieldDecl with a name.
2362  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2363                               DEnd = AnonRecord->decls_end();
2364       D != DEnd; ++D) {
2365    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2366        cast<NamedDecl>(*D)->getDeclName()) {
2367      ValueDecl *VD = cast<ValueDecl>(*D);
2368      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2369                                       VD->getLocation(), diagKind)) {
2370        // C++ [class.union]p2:
2371        //   The names of the members of an anonymous union shall be
2372        //   distinct from the names of any other entity in the
2373        //   scope in which the anonymous union is declared.
2374        Invalid = true;
2375      } else {
2376        // C++ [class.union]p2:
2377        //   For the purpose of name lookup, after the anonymous union
2378        //   definition, the members of the anonymous union are
2379        //   considered to have been defined in the scope in which the
2380        //   anonymous union is declared.
2381        unsigned OldChainingSize = Chaining.size();
2382        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2383          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2384               PE = IF->chain_end(); PI != PE; ++PI)
2385            Chaining.push_back(*PI);
2386        else
2387          Chaining.push_back(VD);
2388
2389        assert(Chaining.size() >= 2);
2390        NamedDecl **NamedChain =
2391          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2392        for (unsigned i = 0; i < Chaining.size(); i++)
2393          NamedChain[i] = Chaining[i];
2394
2395        IndirectFieldDecl* IndirectField =
2396          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2397                                    VD->getIdentifier(), VD->getType(),
2398                                    NamedChain, Chaining.size());
2399
2400        IndirectField->setAccess(AS);
2401        IndirectField->setImplicit();
2402        SemaRef.PushOnScopeChains(IndirectField, S);
2403
2404        // That includes picking up the appropriate access specifier.
2405        if (AS != AS_none) IndirectField->setAccess(AS);
2406
2407        Chaining.resize(OldChainingSize);
2408      }
2409    }
2410  }
2411
2412  return Invalid;
2413}
2414
2415/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2416/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2417/// illegal input values are mapped to SC_None.
2418static StorageClass
2419StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2420  switch (StorageClassSpec) {
2421  case DeclSpec::SCS_unspecified:    return SC_None;
2422  case DeclSpec::SCS_extern:         return SC_Extern;
2423  case DeclSpec::SCS_static:         return SC_Static;
2424  case DeclSpec::SCS_auto:           return SC_Auto;
2425  case DeclSpec::SCS_register:       return SC_Register;
2426  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2427    // Illegal SCSs map to None: error reporting is up to the caller.
2428  case DeclSpec::SCS_mutable:        // Fall through.
2429  case DeclSpec::SCS_typedef:        return SC_None;
2430  }
2431  llvm_unreachable("unknown storage class specifier");
2432}
2433
2434/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2435/// a StorageClass. Any error reporting is up to the caller:
2436/// illegal input values are mapped to SC_None.
2437static StorageClass
2438StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2439  switch (StorageClassSpec) {
2440  case DeclSpec::SCS_unspecified:    return SC_None;
2441  case DeclSpec::SCS_extern:         return SC_Extern;
2442  case DeclSpec::SCS_static:         return SC_Static;
2443  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2444    // Illegal SCSs map to None: error reporting is up to the caller.
2445  case DeclSpec::SCS_auto:           // Fall through.
2446  case DeclSpec::SCS_mutable:        // Fall through.
2447  case DeclSpec::SCS_register:       // Fall through.
2448  case DeclSpec::SCS_typedef:        return SC_None;
2449  }
2450  llvm_unreachable("unknown storage class specifier");
2451}
2452
2453/// BuildAnonymousStructOrUnion - Handle the declaration of an
2454/// anonymous structure or union. Anonymous unions are a C++ feature
2455/// (C++ [class.union]) and a GNU C extension; anonymous structures
2456/// are a GNU C and GNU C++ extension.
2457Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2458                                             AccessSpecifier AS,
2459                                             RecordDecl *Record) {
2460  DeclContext *Owner = Record->getDeclContext();
2461
2462  // Diagnose whether this anonymous struct/union is an extension.
2463  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2464    Diag(Record->getLocation(), diag::ext_anonymous_union);
2465  else if (!Record->isUnion())
2466    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2467
2468  // C and C++ require different kinds of checks for anonymous
2469  // structs/unions.
2470  bool Invalid = false;
2471  if (getLangOptions().CPlusPlus) {
2472    const char* PrevSpec = 0;
2473    unsigned DiagID;
2474    // C++ [class.union]p3:
2475    //   Anonymous unions declared in a named namespace or in the
2476    //   global namespace shall be declared static.
2477    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2478        (isa<TranslationUnitDecl>(Owner) ||
2479         (isa<NamespaceDecl>(Owner) &&
2480          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2481      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2482      Invalid = true;
2483
2484      // Recover by adding 'static'.
2485      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2486                             PrevSpec, DiagID, getLangOptions());
2487    }
2488    // C++ [class.union]p3:
2489    //   A storage class is not allowed in a declaration of an
2490    //   anonymous union in a class scope.
2491    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2492             isa<RecordDecl>(Owner)) {
2493      Diag(DS.getStorageClassSpecLoc(),
2494           diag::err_anonymous_union_with_storage_spec);
2495      Invalid = true;
2496
2497      // Recover by removing the storage specifier.
2498      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2499                             PrevSpec, DiagID, getLangOptions());
2500    }
2501
2502    // Ignore const/volatile/restrict qualifiers.
2503    if (DS.getTypeQualifiers()) {
2504      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2505        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2506          << Record->isUnion() << 0
2507          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2508      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2509        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2510          << Record->isUnion() << 1
2511          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2512      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2513        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2514          << Record->isUnion() << 2
2515          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2516
2517      DS.ClearTypeQualifiers();
2518    }
2519
2520    // C++ [class.union]p2:
2521    //   The member-specification of an anonymous union shall only
2522    //   define non-static data members. [Note: nested types and
2523    //   functions cannot be declared within an anonymous union. ]
2524    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2525                                 MemEnd = Record->decls_end();
2526         Mem != MemEnd; ++Mem) {
2527      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2528        // C++ [class.union]p3:
2529        //   An anonymous union shall not have private or protected
2530        //   members (clause 11).
2531        assert(FD->getAccess() != AS_none);
2532        if (FD->getAccess() != AS_public) {
2533          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2534            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2535          Invalid = true;
2536        }
2537
2538        // C++ [class.union]p1
2539        //   An object of a class with a non-trivial constructor, a non-trivial
2540        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2541        //   assignment operator cannot be a member of a union, nor can an
2542        //   array of such objects.
2543        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2544          Invalid = true;
2545      } else if ((*Mem)->isImplicit()) {
2546        // Any implicit members are fine.
2547      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2548        // This is a type that showed up in an
2549        // elaborated-type-specifier inside the anonymous struct or
2550        // union, but which actually declares a type outside of the
2551        // anonymous struct or union. It's okay.
2552      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2553        if (!MemRecord->isAnonymousStructOrUnion() &&
2554            MemRecord->getDeclName()) {
2555          // Visual C++ allows type definition in anonymous struct or union.
2556          if (getLangOptions().Microsoft)
2557            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2558              << (int)Record->isUnion();
2559          else {
2560            // This is a nested type declaration.
2561            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2562              << (int)Record->isUnion();
2563            Invalid = true;
2564          }
2565        }
2566      } else if (isa<AccessSpecDecl>(*Mem)) {
2567        // Any access specifier is fine.
2568      } else {
2569        // We have something that isn't a non-static data
2570        // member. Complain about it.
2571        unsigned DK = diag::err_anonymous_record_bad_member;
2572        if (isa<TypeDecl>(*Mem))
2573          DK = diag::err_anonymous_record_with_type;
2574        else if (isa<FunctionDecl>(*Mem))
2575          DK = diag::err_anonymous_record_with_function;
2576        else if (isa<VarDecl>(*Mem))
2577          DK = diag::err_anonymous_record_with_static;
2578
2579        // Visual C++ allows type definition in anonymous struct or union.
2580        if (getLangOptions().Microsoft &&
2581            DK == diag::err_anonymous_record_with_type)
2582          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2583            << (int)Record->isUnion();
2584        else {
2585          Diag((*Mem)->getLocation(), DK)
2586              << (int)Record->isUnion();
2587          Invalid = true;
2588        }
2589      }
2590    }
2591  }
2592
2593  if (!Record->isUnion() && !Owner->isRecord()) {
2594    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2595      << (int)getLangOptions().CPlusPlus;
2596    Invalid = true;
2597  }
2598
2599  // Mock up a declarator.
2600  Declarator Dc(DS, Declarator::TypeNameContext);
2601  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2602  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2603
2604  // Create a declaration for this anonymous struct/union.
2605  NamedDecl *Anon = 0;
2606  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2607    Anon = FieldDecl::Create(Context, OwningClass,
2608                             DS.getSourceRange().getBegin(),
2609                             Record->getLocation(),
2610                             /*IdentifierInfo=*/0,
2611                             Context.getTypeDeclType(Record),
2612                             TInfo,
2613                             /*BitWidth=*/0, /*Mutable=*/false,
2614                             /*HasInit=*/false);
2615    Anon->setAccess(AS);
2616    if (getLangOptions().CPlusPlus)
2617      FieldCollector->Add(cast<FieldDecl>(Anon));
2618  } else {
2619    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2620    assert(SCSpec != DeclSpec::SCS_typedef &&
2621           "Parser allowed 'typedef' as storage class VarDecl.");
2622    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2623    if (SCSpec == DeclSpec::SCS_mutable) {
2624      // mutable can only appear on non-static class members, so it's always
2625      // an error here
2626      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2627      Invalid = true;
2628      SC = SC_None;
2629    }
2630    SCSpec = DS.getStorageClassSpecAsWritten();
2631    VarDecl::StorageClass SCAsWritten
2632      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2633
2634    Anon = VarDecl::Create(Context, Owner,
2635                           DS.getSourceRange().getBegin(),
2636                           Record->getLocation(), /*IdentifierInfo=*/0,
2637                           Context.getTypeDeclType(Record),
2638                           TInfo, SC, SCAsWritten);
2639  }
2640  Anon->setImplicit();
2641
2642  // Add the anonymous struct/union object to the current
2643  // context. We'll be referencing this object when we refer to one of
2644  // its members.
2645  Owner->addDecl(Anon);
2646
2647  // Inject the members of the anonymous struct/union into the owning
2648  // context and into the identifier resolver chain for name lookup
2649  // purposes.
2650  llvm::SmallVector<NamedDecl*, 2> Chain;
2651  Chain.push_back(Anon);
2652
2653  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2654                                          Chain, false))
2655    Invalid = true;
2656
2657  // Mark this as an anonymous struct/union type. Note that we do not
2658  // do this until after we have already checked and injected the
2659  // members of this anonymous struct/union type, because otherwise
2660  // the members could be injected twice: once by DeclContext when it
2661  // builds its lookup table, and once by
2662  // InjectAnonymousStructOrUnionMembers.
2663  Record->setAnonymousStructOrUnion(true);
2664
2665  if (Invalid)
2666    Anon->setInvalidDecl();
2667
2668  return Anon;
2669}
2670
2671/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2672/// Microsoft C anonymous structure.
2673/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2674/// Example:
2675///
2676/// struct A { int a; };
2677/// struct B { struct A; int b; };
2678///
2679/// void foo() {
2680///   B var;
2681///   var.a = 3;
2682/// }
2683///
2684Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2685                                           RecordDecl *Record) {
2686
2687  // If there is no Record, get the record via the typedef.
2688  if (!Record)
2689    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2690
2691  // Mock up a declarator.
2692  Declarator Dc(DS, Declarator::TypeNameContext);
2693  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2694  assert(TInfo && "couldn't build declarator info for anonymous struct");
2695
2696  // Create a declaration for this anonymous struct.
2697  NamedDecl* Anon = FieldDecl::Create(Context,
2698                             cast<RecordDecl>(CurContext),
2699                             DS.getSourceRange().getBegin(),
2700                             DS.getSourceRange().getBegin(),
2701                             /*IdentifierInfo=*/0,
2702                             Context.getTypeDeclType(Record),
2703                             TInfo,
2704                             /*BitWidth=*/0, /*Mutable=*/false,
2705                             /*HasInit=*/false);
2706  Anon->setImplicit();
2707
2708  // Add the anonymous struct object to the current context.
2709  CurContext->addDecl(Anon);
2710
2711  // Inject the members of the anonymous struct into the current
2712  // context and into the identifier resolver chain for name lookup
2713  // purposes.
2714  llvm::SmallVector<NamedDecl*, 2> Chain;
2715  Chain.push_back(Anon);
2716
2717  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2718                                          Record->getDefinition(),
2719                                          AS_none, Chain, true))
2720    Anon->setInvalidDecl();
2721
2722  return Anon;
2723}
2724
2725/// GetNameForDeclarator - Determine the full declaration name for the
2726/// given Declarator.
2727DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2728  return GetNameFromUnqualifiedId(D.getName());
2729}
2730
2731/// \brief Retrieves the declaration name from a parsed unqualified-id.
2732DeclarationNameInfo
2733Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2734  DeclarationNameInfo NameInfo;
2735  NameInfo.setLoc(Name.StartLocation);
2736
2737  switch (Name.getKind()) {
2738
2739  case UnqualifiedId::IK_Identifier:
2740    NameInfo.setName(Name.Identifier);
2741    NameInfo.setLoc(Name.StartLocation);
2742    return NameInfo;
2743
2744  case UnqualifiedId::IK_OperatorFunctionId:
2745    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2746                                           Name.OperatorFunctionId.Operator));
2747    NameInfo.setLoc(Name.StartLocation);
2748    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2749      = Name.OperatorFunctionId.SymbolLocations[0];
2750    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2751      = Name.EndLocation.getRawEncoding();
2752    return NameInfo;
2753
2754  case UnqualifiedId::IK_LiteralOperatorId:
2755    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2756                                                           Name.Identifier));
2757    NameInfo.setLoc(Name.StartLocation);
2758    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2759    return NameInfo;
2760
2761  case UnqualifiedId::IK_ConversionFunctionId: {
2762    TypeSourceInfo *TInfo;
2763    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2764    if (Ty.isNull())
2765      return DeclarationNameInfo();
2766    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2767                                               Context.getCanonicalType(Ty)));
2768    NameInfo.setLoc(Name.StartLocation);
2769    NameInfo.setNamedTypeInfo(TInfo);
2770    return NameInfo;
2771  }
2772
2773  case UnqualifiedId::IK_ConstructorName: {
2774    TypeSourceInfo *TInfo;
2775    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2776    if (Ty.isNull())
2777      return DeclarationNameInfo();
2778    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2779                                              Context.getCanonicalType(Ty)));
2780    NameInfo.setLoc(Name.StartLocation);
2781    NameInfo.setNamedTypeInfo(TInfo);
2782    return NameInfo;
2783  }
2784
2785  case UnqualifiedId::IK_ConstructorTemplateId: {
2786    // In well-formed code, we can only have a constructor
2787    // template-id that refers to the current context, so go there
2788    // to find the actual type being constructed.
2789    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2790    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2791      return DeclarationNameInfo();
2792
2793    // Determine the type of the class being constructed.
2794    QualType CurClassType = Context.getTypeDeclType(CurClass);
2795
2796    // FIXME: Check two things: that the template-id names the same type as
2797    // CurClassType, and that the template-id does not occur when the name
2798    // was qualified.
2799
2800    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2801                                    Context.getCanonicalType(CurClassType)));
2802    NameInfo.setLoc(Name.StartLocation);
2803    // FIXME: should we retrieve TypeSourceInfo?
2804    NameInfo.setNamedTypeInfo(0);
2805    return NameInfo;
2806  }
2807
2808  case UnqualifiedId::IK_DestructorName: {
2809    TypeSourceInfo *TInfo;
2810    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2811    if (Ty.isNull())
2812      return DeclarationNameInfo();
2813    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2814                                              Context.getCanonicalType(Ty)));
2815    NameInfo.setLoc(Name.StartLocation);
2816    NameInfo.setNamedTypeInfo(TInfo);
2817    return NameInfo;
2818  }
2819
2820  case UnqualifiedId::IK_TemplateId: {
2821    TemplateName TName = Name.TemplateId->Template.get();
2822    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2823    return Context.getNameForTemplate(TName, TNameLoc);
2824  }
2825
2826  } // switch (Name.getKind())
2827
2828  assert(false && "Unknown name kind");
2829  return DeclarationNameInfo();
2830}
2831
2832/// isNearlyMatchingFunction - Determine whether the C++ functions
2833/// Declaration and Definition are "nearly" matching. This heuristic
2834/// is used to improve diagnostics in the case where an out-of-line
2835/// function definition doesn't match any declaration within
2836/// the class or namespace.
2837static bool isNearlyMatchingFunction(ASTContext &Context,
2838                                     FunctionDecl *Declaration,
2839                                     FunctionDecl *Definition) {
2840  if (Declaration->param_size() != Definition->param_size())
2841    return false;
2842  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2843    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2844    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2845
2846    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2847                                        DefParamTy.getNonReferenceType()))
2848      return false;
2849  }
2850
2851  return true;
2852}
2853
2854/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2855/// declarator needs to be rebuilt in the current instantiation.
2856/// Any bits of declarator which appear before the name are valid for
2857/// consideration here.  That's specifically the type in the decl spec
2858/// and the base type in any member-pointer chunks.
2859static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2860                                                    DeclarationName Name) {
2861  // The types we specifically need to rebuild are:
2862  //   - typenames, typeofs, and decltypes
2863  //   - types which will become injected class names
2864  // Of course, we also need to rebuild any type referencing such a
2865  // type.  It's safest to just say "dependent", but we call out a
2866  // few cases here.
2867
2868  DeclSpec &DS = D.getMutableDeclSpec();
2869  switch (DS.getTypeSpecType()) {
2870  case DeclSpec::TST_typename:
2871  case DeclSpec::TST_typeofType:
2872  case DeclSpec::TST_decltype:
2873  case DeclSpec::TST_underlyingType: {
2874    // Grab the type from the parser.
2875    TypeSourceInfo *TSI = 0;
2876    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2877    if (T.isNull() || !T->isDependentType()) break;
2878
2879    // Make sure there's a type source info.  This isn't really much
2880    // of a waste; most dependent types should have type source info
2881    // attached already.
2882    if (!TSI)
2883      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2884
2885    // Rebuild the type in the current instantiation.
2886    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2887    if (!TSI) return true;
2888
2889    // Store the new type back in the decl spec.
2890    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2891    DS.UpdateTypeRep(LocType);
2892    break;
2893  }
2894
2895  case DeclSpec::TST_typeofExpr: {
2896    Expr *E = DS.getRepAsExpr();
2897    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2898    if (Result.isInvalid()) return true;
2899    DS.UpdateExprRep(Result.get());
2900    break;
2901  }
2902
2903  default:
2904    // Nothing to do for these decl specs.
2905    break;
2906  }
2907
2908  // It doesn't matter what order we do this in.
2909  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2910    DeclaratorChunk &Chunk = D.getTypeObject(I);
2911
2912    // The only type information in the declarator which can come
2913    // before the declaration name is the base type of a member
2914    // pointer.
2915    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2916      continue;
2917
2918    // Rebuild the scope specifier in-place.
2919    CXXScopeSpec &SS = Chunk.Mem.Scope();
2920    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2921      return true;
2922  }
2923
2924  return false;
2925}
2926
2927Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2928                            bool IsFunctionDefinition) {
2929  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2930                          IsFunctionDefinition);
2931}
2932
2933/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2934///   If T is the name of a class, then each of the following shall have a
2935///   name different from T:
2936///     - every static data member of class T;
2937///     - every member function of class T
2938///     - every member of class T that is itself a type;
2939/// \returns true if the declaration name violates these rules.
2940bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2941                                   DeclarationNameInfo NameInfo) {
2942  DeclarationName Name = NameInfo.getName();
2943
2944  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2945    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2946      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2947      return true;
2948    }
2949
2950  return false;
2951}
2952
2953Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2954                             MultiTemplateParamsArg TemplateParamLists,
2955                             bool IsFunctionDefinition) {
2956  // TODO: consider using NameInfo for diagnostic.
2957  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2958  DeclarationName Name = NameInfo.getName();
2959
2960  // All of these full declarators require an identifier.  If it doesn't have
2961  // one, the ParsedFreeStandingDeclSpec action should be used.
2962  if (!Name) {
2963    if (!D.isInvalidType())  // Reject this if we think it is valid.
2964      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2965           diag::err_declarator_need_ident)
2966        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2967    return 0;
2968  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2969    return 0;
2970
2971  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2972  // we find one that is.
2973  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2974         (S->getFlags() & Scope::TemplateParamScope) != 0)
2975    S = S->getParent();
2976
2977  DeclContext *DC = CurContext;
2978  if (D.getCXXScopeSpec().isInvalid())
2979    D.setInvalidType();
2980  else if (D.getCXXScopeSpec().isSet()) {
2981    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2982                                        UPPC_DeclarationQualifier))
2983      return 0;
2984
2985    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2986    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2987    if (!DC) {
2988      // If we could not compute the declaration context, it's because the
2989      // declaration context is dependent but does not refer to a class,
2990      // class template, or class template partial specialization. Complain
2991      // and return early, to avoid the coming semantic disaster.
2992      Diag(D.getIdentifierLoc(),
2993           diag::err_template_qualified_declarator_no_match)
2994        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2995        << D.getCXXScopeSpec().getRange();
2996      return 0;
2997    }
2998    bool IsDependentContext = DC->isDependentContext();
2999
3000    if (!IsDependentContext &&
3001        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3002      return 0;
3003
3004    if (isa<CXXRecordDecl>(DC)) {
3005      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3006        Diag(D.getIdentifierLoc(),
3007             diag::err_member_def_undefined_record)
3008          << Name << DC << D.getCXXScopeSpec().getRange();
3009        D.setInvalidType();
3010      } else if (isa<CXXRecordDecl>(CurContext) &&
3011                 !D.getDeclSpec().isFriendSpecified()) {
3012        // The user provided a superfluous scope specifier inside a class
3013        // definition:
3014        //
3015        // class X {
3016        //   void X::f();
3017        // };
3018        if (CurContext->Equals(DC))
3019          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3020            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3021        else
3022          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3023            << Name << D.getCXXScopeSpec().getRange();
3024
3025        // Pretend that this qualifier was not here.
3026        D.getCXXScopeSpec().clear();
3027      }
3028    }
3029
3030    // Check whether we need to rebuild the type of the given
3031    // declaration in the current instantiation.
3032    if (EnteringContext && IsDependentContext &&
3033        TemplateParamLists.size() != 0) {
3034      ContextRAII SavedContext(*this, DC);
3035      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3036        D.setInvalidType();
3037    }
3038  }
3039
3040  if (DiagnoseClassNameShadow(DC, NameInfo))
3041    // If this is a typedef, we'll end up spewing multiple diagnostics.
3042    // Just return early; it's safer.
3043    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3044      return 0;
3045
3046  NamedDecl *New;
3047
3048  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3049  QualType R = TInfo->getType();
3050
3051  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3052                                      UPPC_DeclarationType))
3053    D.setInvalidType();
3054
3055  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3056                        ForRedeclaration);
3057
3058  // See if this is a redefinition of a variable in the same scope.
3059  if (!D.getCXXScopeSpec().isSet()) {
3060    bool IsLinkageLookup = false;
3061
3062    // If the declaration we're planning to build will be a function
3063    // or object with linkage, then look for another declaration with
3064    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3065    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3066      /* Do nothing*/;
3067    else if (R->isFunctionType()) {
3068      if (CurContext->isFunctionOrMethod() ||
3069          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3070        IsLinkageLookup = true;
3071    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3072      IsLinkageLookup = true;
3073    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3074             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3075      IsLinkageLookup = true;
3076
3077    if (IsLinkageLookup)
3078      Previous.clear(LookupRedeclarationWithLinkage);
3079
3080    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3081  } else { // Something like "int foo::x;"
3082    LookupQualifiedName(Previous, DC);
3083
3084    // Don't consider using declarations as previous declarations for
3085    // out-of-line members.
3086    RemoveUsingDecls(Previous);
3087
3088    // C++ 7.3.1.2p2:
3089    // Members (including explicit specializations of templates) of a named
3090    // namespace can also be defined outside that namespace by explicit
3091    // qualification of the name being defined, provided that the entity being
3092    // defined was already declared in the namespace and the definition appears
3093    // after the point of declaration in a namespace that encloses the
3094    // declarations namespace.
3095    //
3096    // Note that we only check the context at this point. We don't yet
3097    // have enough information to make sure that PrevDecl is actually
3098    // the declaration we want to match. For example, given:
3099    //
3100    //   class X {
3101    //     void f();
3102    //     void f(float);
3103    //   };
3104    //
3105    //   void X::f(int) { } // ill-formed
3106    //
3107    // In this case, PrevDecl will point to the overload set
3108    // containing the two f's declared in X, but neither of them
3109    // matches.
3110
3111    // First check whether we named the global scope.
3112    if (isa<TranslationUnitDecl>(DC)) {
3113      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3114        << Name << D.getCXXScopeSpec().getRange();
3115    } else {
3116      DeclContext *Cur = CurContext;
3117      while (isa<LinkageSpecDecl>(Cur))
3118        Cur = Cur->getParent();
3119      if (!Cur->Encloses(DC)) {
3120        // The qualifying scope doesn't enclose the original declaration.
3121        // Emit diagnostic based on current scope.
3122        SourceLocation L = D.getIdentifierLoc();
3123        SourceRange R = D.getCXXScopeSpec().getRange();
3124        if (isa<FunctionDecl>(Cur))
3125          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3126        else
3127          Diag(L, diag::err_invalid_declarator_scope)
3128            << Name << cast<NamedDecl>(DC) << R;
3129        D.setInvalidType();
3130      }
3131    }
3132  }
3133
3134  if (Previous.isSingleResult() &&
3135      Previous.getFoundDecl()->isTemplateParameter()) {
3136    // Maybe we will complain about the shadowed template parameter.
3137    if (!D.isInvalidType())
3138      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3139                                          Previous.getFoundDecl()))
3140        D.setInvalidType();
3141
3142    // Just pretend that we didn't see the previous declaration.
3143    Previous.clear();
3144  }
3145
3146  // In C++, the previous declaration we find might be a tag type
3147  // (class or enum). In this case, the new declaration will hide the
3148  // tag type. Note that this does does not apply if we're declaring a
3149  // typedef (C++ [dcl.typedef]p4).
3150  if (Previous.isSingleTagDecl() &&
3151      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3152    Previous.clear();
3153
3154  bool Redeclaration = false;
3155  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3156    if (TemplateParamLists.size()) {
3157      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3158      return 0;
3159    }
3160
3161    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3162  } else if (R->isFunctionType()) {
3163    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3164                                  move(TemplateParamLists),
3165                                  IsFunctionDefinition, Redeclaration);
3166  } else {
3167    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3168                                  move(TemplateParamLists),
3169                                  Redeclaration);
3170  }
3171
3172  if (New == 0)
3173    return 0;
3174
3175  // If this has an identifier and is not an invalid redeclaration or
3176  // function template specialization, add it to the scope stack.
3177  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3178    PushOnScopeChains(New, S);
3179
3180  return New;
3181}
3182
3183/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3184/// types into constant array types in certain situations which would otherwise
3185/// be errors (for GCC compatibility).
3186static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3187                                                    ASTContext &Context,
3188                                                    bool &SizeIsNegative,
3189                                                    llvm::APSInt &Oversized) {
3190  // This method tries to turn a variable array into a constant
3191  // array even when the size isn't an ICE.  This is necessary
3192  // for compatibility with code that depends on gcc's buggy
3193  // constant expression folding, like struct {char x[(int)(char*)2];}
3194  SizeIsNegative = false;
3195  Oversized = 0;
3196
3197  if (T->isDependentType())
3198    return QualType();
3199
3200  QualifierCollector Qs;
3201  const Type *Ty = Qs.strip(T);
3202
3203  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3204    QualType Pointee = PTy->getPointeeType();
3205    QualType FixedType =
3206        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3207                                            Oversized);
3208    if (FixedType.isNull()) return FixedType;
3209    FixedType = Context.getPointerType(FixedType);
3210    return Qs.apply(Context, FixedType);
3211  }
3212  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3213    QualType Inner = PTy->getInnerType();
3214    QualType FixedType =
3215        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3216                                            Oversized);
3217    if (FixedType.isNull()) return FixedType;
3218    FixedType = Context.getParenType(FixedType);
3219    return Qs.apply(Context, FixedType);
3220  }
3221
3222  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3223  if (!VLATy)
3224    return QualType();
3225  // FIXME: We should probably handle this case
3226  if (VLATy->getElementType()->isVariablyModifiedType())
3227    return QualType();
3228
3229  Expr::EvalResult EvalResult;
3230  if (!VLATy->getSizeExpr() ||
3231      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3232      !EvalResult.Val.isInt())
3233    return QualType();
3234
3235  // Check whether the array size is negative.
3236  llvm::APSInt &Res = EvalResult.Val.getInt();
3237  if (Res.isSigned() && Res.isNegative()) {
3238    SizeIsNegative = true;
3239    return QualType();
3240  }
3241
3242  // Check whether the array is too large to be addressed.
3243  unsigned ActiveSizeBits
3244    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3245                                              Res);
3246  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3247    Oversized = Res;
3248    return QualType();
3249  }
3250
3251  return Context.getConstantArrayType(VLATy->getElementType(),
3252                                      Res, ArrayType::Normal, 0);
3253}
3254
3255/// \brief Register the given locally-scoped external C declaration so
3256/// that it can be found later for redeclarations
3257void
3258Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3259                                       const LookupResult &Previous,
3260                                       Scope *S) {
3261  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3262         "Decl is not a locally-scoped decl!");
3263  // Note that we have a locally-scoped external with this name.
3264  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3265
3266  if (!Previous.isSingleResult())
3267    return;
3268
3269  NamedDecl *PrevDecl = Previous.getFoundDecl();
3270
3271  // If there was a previous declaration of this variable, it may be
3272  // in our identifier chain. Update the identifier chain with the new
3273  // declaration.
3274  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3275    // The previous declaration was found on the identifer resolver
3276    // chain, so remove it from its scope.
3277    while (S && !S->isDeclScope(PrevDecl))
3278      S = S->getParent();
3279
3280    if (S)
3281      S->RemoveDecl(PrevDecl);
3282  }
3283}
3284
3285/// \brief Diagnose function specifiers on a declaration of an identifier that
3286/// does not identify a function.
3287void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3288  // FIXME: We should probably indicate the identifier in question to avoid
3289  // confusion for constructs like "inline int a(), b;"
3290  if (D.getDeclSpec().isInlineSpecified())
3291    Diag(D.getDeclSpec().getInlineSpecLoc(),
3292         diag::err_inline_non_function);
3293
3294  if (D.getDeclSpec().isVirtualSpecified())
3295    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3296         diag::err_virtual_non_function);
3297
3298  if (D.getDeclSpec().isExplicitSpecified())
3299    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3300         diag::err_explicit_non_function);
3301}
3302
3303NamedDecl*
3304Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3305                             QualType R,  TypeSourceInfo *TInfo,
3306                             LookupResult &Previous, bool &Redeclaration) {
3307  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3308  if (D.getCXXScopeSpec().isSet()) {
3309    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3310      << D.getCXXScopeSpec().getRange();
3311    D.setInvalidType();
3312    // Pretend we didn't see the scope specifier.
3313    DC = CurContext;
3314    Previous.clear();
3315  }
3316
3317  if (getLangOptions().CPlusPlus) {
3318    // Check that there are no default arguments (C++ only).
3319    CheckExtraCXXDefaultArguments(D);
3320  }
3321
3322  DiagnoseFunctionSpecifiers(D);
3323
3324  if (D.getDeclSpec().isThreadSpecified())
3325    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3326
3327  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3328    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3329      << D.getName().getSourceRange();
3330    return 0;
3331  }
3332
3333  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3334  if (!NewTD) return 0;
3335
3336  // Handle attributes prior to checking for duplicates in MergeVarDecl
3337  ProcessDeclAttributes(S, NewTD, D);
3338
3339  CheckTypedefForVariablyModifiedType(S, NewTD);
3340
3341  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3342}
3343
3344void
3345Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3346  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3347  // then it shall have block scope.
3348  // Note that variably modified types must be fixed before merging the decl so
3349  // that redeclarations will match.
3350  QualType T = NewTD->getUnderlyingType();
3351  if (T->isVariablyModifiedType()) {
3352    getCurFunction()->setHasBranchProtectedScope();
3353
3354    if (S->getFnParent() == 0) {
3355      bool SizeIsNegative;
3356      llvm::APSInt Oversized;
3357      QualType FixedTy =
3358          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3359                                              Oversized);
3360      if (!FixedTy.isNull()) {
3361        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3362        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3363      } else {
3364        if (SizeIsNegative)
3365          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3366        else if (T->isVariableArrayType())
3367          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3368        else if (Oversized.getBoolValue())
3369          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3370        else
3371          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3372        NewTD->setInvalidDecl();
3373      }
3374    }
3375  }
3376}
3377
3378
3379/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3380/// declares a typedef-name, either using the 'typedef' type specifier or via
3381/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3382NamedDecl*
3383Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3384                           LookupResult &Previous, bool &Redeclaration) {
3385  // Merge the decl with the existing one if appropriate. If the decl is
3386  // in an outer scope, it isn't the same thing.
3387  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3388                       /*ExplicitInstantiationOrSpecialization=*/false);
3389  if (!Previous.empty()) {
3390    Redeclaration = true;
3391    MergeTypedefNameDecl(NewTD, Previous);
3392  }
3393
3394  // If this is the C FILE type, notify the AST context.
3395  if (IdentifierInfo *II = NewTD->getIdentifier())
3396    if (!NewTD->isInvalidDecl() &&
3397        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3398      if (II->isStr("FILE"))
3399        Context.setFILEDecl(NewTD);
3400      else if (II->isStr("jmp_buf"))
3401        Context.setjmp_bufDecl(NewTD);
3402      else if (II->isStr("sigjmp_buf"))
3403        Context.setsigjmp_bufDecl(NewTD);
3404      else if (II->isStr("__builtin_va_list"))
3405        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3406    }
3407
3408  return NewTD;
3409}
3410
3411/// \brief Determines whether the given declaration is an out-of-scope
3412/// previous declaration.
3413///
3414/// This routine should be invoked when name lookup has found a
3415/// previous declaration (PrevDecl) that is not in the scope where a
3416/// new declaration by the same name is being introduced. If the new
3417/// declaration occurs in a local scope, previous declarations with
3418/// linkage may still be considered previous declarations (C99
3419/// 6.2.2p4-5, C++ [basic.link]p6).
3420///
3421/// \param PrevDecl the previous declaration found by name
3422/// lookup
3423///
3424/// \param DC the context in which the new declaration is being
3425/// declared.
3426///
3427/// \returns true if PrevDecl is an out-of-scope previous declaration
3428/// for a new delcaration with the same name.
3429static bool
3430isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3431                                ASTContext &Context) {
3432  if (!PrevDecl)
3433    return false;
3434
3435  if (!PrevDecl->hasLinkage())
3436    return false;
3437
3438  if (Context.getLangOptions().CPlusPlus) {
3439    // C++ [basic.link]p6:
3440    //   If there is a visible declaration of an entity with linkage
3441    //   having the same name and type, ignoring entities declared
3442    //   outside the innermost enclosing namespace scope, the block
3443    //   scope declaration declares that same entity and receives the
3444    //   linkage of the previous declaration.
3445    DeclContext *OuterContext = DC->getRedeclContext();
3446    if (!OuterContext->isFunctionOrMethod())
3447      // This rule only applies to block-scope declarations.
3448      return false;
3449
3450    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3451    if (PrevOuterContext->isRecord())
3452      // We found a member function: ignore it.
3453      return false;
3454
3455    // Find the innermost enclosing namespace for the new and
3456    // previous declarations.
3457    OuterContext = OuterContext->getEnclosingNamespaceContext();
3458    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3459
3460    // The previous declaration is in a different namespace, so it
3461    // isn't the same function.
3462    if (!OuterContext->Equals(PrevOuterContext))
3463      return false;
3464  }
3465
3466  return true;
3467}
3468
3469static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3470  CXXScopeSpec &SS = D.getCXXScopeSpec();
3471  if (!SS.isSet()) return;
3472  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3473}
3474
3475NamedDecl*
3476Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3477                              QualType R, TypeSourceInfo *TInfo,
3478                              LookupResult &Previous,
3479                              MultiTemplateParamsArg TemplateParamLists,
3480                              bool &Redeclaration) {
3481  DeclarationName Name = GetNameForDeclarator(D).getName();
3482
3483  // Check that there are no default arguments (C++ only).
3484  if (getLangOptions().CPlusPlus)
3485    CheckExtraCXXDefaultArguments(D);
3486
3487  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3488  assert(SCSpec != DeclSpec::SCS_typedef &&
3489         "Parser allowed 'typedef' as storage class VarDecl.");
3490  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3491  if (SCSpec == DeclSpec::SCS_mutable) {
3492    // mutable can only appear on non-static class members, so it's always
3493    // an error here
3494    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3495    D.setInvalidType();
3496    SC = SC_None;
3497  }
3498  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3499  VarDecl::StorageClass SCAsWritten
3500    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3501
3502  IdentifierInfo *II = Name.getAsIdentifierInfo();
3503  if (!II) {
3504    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3505      << Name.getAsString();
3506    return 0;
3507  }
3508
3509  DiagnoseFunctionSpecifiers(D);
3510
3511  if (!DC->isRecord() && S->getFnParent() == 0) {
3512    // C99 6.9p2: The storage-class specifiers auto and register shall not
3513    // appear in the declaration specifiers in an external declaration.
3514    if (SC == SC_Auto || SC == SC_Register) {
3515
3516      // If this is a register variable with an asm label specified, then this
3517      // is a GNU extension.
3518      if (SC == SC_Register && D.getAsmLabel())
3519        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3520      else
3521        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3522      D.setInvalidType();
3523    }
3524  }
3525
3526  bool isExplicitSpecialization = false;
3527  VarDecl *NewVD;
3528  if (!getLangOptions().CPlusPlus) {
3529    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3530                            D.getIdentifierLoc(), II,
3531                            R, TInfo, SC, SCAsWritten);
3532
3533    if (D.isInvalidType())
3534      NewVD->setInvalidDecl();
3535  } else {
3536    if (DC->isRecord() && !CurContext->isRecord()) {
3537      // This is an out-of-line definition of a static data member.
3538      if (SC == SC_Static) {
3539        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3540             diag::err_static_out_of_line)
3541          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3542      } else if (SC == SC_None)
3543        SC = SC_Static;
3544    }
3545    if (SC == SC_Static) {
3546      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3547        if (RD->isLocalClass())
3548          Diag(D.getIdentifierLoc(),
3549               diag::err_static_data_member_not_allowed_in_local_class)
3550            << Name << RD->getDeclName();
3551
3552        // C++ [class.union]p1: If a union contains a static data member,
3553        // the program is ill-formed.
3554        //
3555        // We also disallow static data members in anonymous structs.
3556        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3557          Diag(D.getIdentifierLoc(),
3558               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3559            << Name << RD->isUnion();
3560      }
3561    }
3562
3563    // Match up the template parameter lists with the scope specifier, then
3564    // determine whether we have a template or a template specialization.
3565    isExplicitSpecialization = false;
3566    bool Invalid = false;
3567    if (TemplateParameterList *TemplateParams
3568        = MatchTemplateParametersToScopeSpecifier(
3569                                  D.getDeclSpec().getSourceRange().getBegin(),
3570                                                  D.getIdentifierLoc(),
3571                                                  D.getCXXScopeSpec(),
3572                                                  TemplateParamLists.get(),
3573                                                  TemplateParamLists.size(),
3574                                                  /*never a friend*/ false,
3575                                                  isExplicitSpecialization,
3576                                                  Invalid)) {
3577      if (TemplateParams->size() > 0) {
3578        // There is no such thing as a variable template.
3579        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3580          << II
3581          << SourceRange(TemplateParams->getTemplateLoc(),
3582                         TemplateParams->getRAngleLoc());
3583        return 0;
3584      } else {
3585        // There is an extraneous 'template<>' for this variable. Complain
3586        // about it, but allow the declaration of the variable.
3587        Diag(TemplateParams->getTemplateLoc(),
3588             diag::err_template_variable_noparams)
3589          << II
3590          << SourceRange(TemplateParams->getTemplateLoc(),
3591                         TemplateParams->getRAngleLoc());
3592      }
3593    }
3594
3595    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3596                            D.getIdentifierLoc(), II,
3597                            R, TInfo, SC, SCAsWritten);
3598
3599    // If this decl has an auto type in need of deduction, make a note of the
3600    // Decl so we can diagnose uses of it in its own initializer.
3601    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3602        R->getContainedAutoType())
3603      ParsingInitForAutoVars.insert(NewVD);
3604
3605    if (D.isInvalidType() || Invalid)
3606      NewVD->setInvalidDecl();
3607
3608    SetNestedNameSpecifier(NewVD, D);
3609
3610    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3611      NewVD->setTemplateParameterListsInfo(Context,
3612                                           TemplateParamLists.size(),
3613                                           TemplateParamLists.release());
3614    }
3615  }
3616
3617  if (D.getDeclSpec().isThreadSpecified()) {
3618    if (NewVD->hasLocalStorage())
3619      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3620    else if (!Context.Target.isTLSSupported())
3621      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3622    else
3623      NewVD->setThreadSpecified(true);
3624  }
3625
3626  // Set the lexical context. If the declarator has a C++ scope specifier, the
3627  // lexical context will be different from the semantic context.
3628  NewVD->setLexicalDeclContext(CurContext);
3629
3630  // Handle attributes prior to checking for duplicates in MergeVarDecl
3631  ProcessDeclAttributes(S, NewVD, D);
3632
3633  // Handle GNU asm-label extension (encoded as an attribute).
3634  if (Expr *E = (Expr*)D.getAsmLabel()) {
3635    // The parser guarantees this is a string.
3636    StringLiteral *SE = cast<StringLiteral>(E);
3637    llvm::StringRef Label = SE->getString();
3638    if (S->getFnParent() != 0) {
3639      switch (SC) {
3640      case SC_None:
3641      case SC_Auto:
3642        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3643        break;
3644      case SC_Register:
3645        if (!Context.Target.isValidGCCRegisterName(Label))
3646          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3647        break;
3648      case SC_Static:
3649      case SC_Extern:
3650      case SC_PrivateExtern:
3651        break;
3652      }
3653    }
3654
3655    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3656                                                Context, Label));
3657  }
3658
3659  // Diagnose shadowed variables before filtering for scope.
3660  if (!D.getCXXScopeSpec().isSet())
3661    CheckShadow(S, NewVD, Previous);
3662
3663  // Don't consider existing declarations that are in a different
3664  // scope and are out-of-semantic-context declarations (if the new
3665  // declaration has linkage).
3666  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3667                       isExplicitSpecialization);
3668
3669  if (!getLangOptions().CPlusPlus)
3670    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3671  else {
3672    // Merge the decl with the existing one if appropriate.
3673    if (!Previous.empty()) {
3674      if (Previous.isSingleResult() &&
3675          isa<FieldDecl>(Previous.getFoundDecl()) &&
3676          D.getCXXScopeSpec().isSet()) {
3677        // The user tried to define a non-static data member
3678        // out-of-line (C++ [dcl.meaning]p1).
3679        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3680          << D.getCXXScopeSpec().getRange();
3681        Previous.clear();
3682        NewVD->setInvalidDecl();
3683      }
3684    } else if (D.getCXXScopeSpec().isSet()) {
3685      // No previous declaration in the qualifying scope.
3686      Diag(D.getIdentifierLoc(), diag::err_no_member)
3687        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3688        << D.getCXXScopeSpec().getRange();
3689      NewVD->setInvalidDecl();
3690    }
3691
3692    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3693
3694    // This is an explicit specialization of a static data member. Check it.
3695    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3696        CheckMemberSpecialization(NewVD, Previous))
3697      NewVD->setInvalidDecl();
3698  }
3699
3700  // attributes declared post-definition are currently ignored
3701  // FIXME: This should be handled in attribute merging, not
3702  // here.
3703  if (Previous.isSingleResult()) {
3704    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3705    if (Def && (Def = Def->getDefinition()) &&
3706        Def != NewVD && D.hasAttributes()) {
3707      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3708      Diag(Def->getLocation(), diag::note_previous_definition);
3709    }
3710  }
3711
3712  // If this is a locally-scoped extern C variable, update the map of
3713  // such variables.
3714  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3715      !NewVD->isInvalidDecl())
3716    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3717
3718  // If there's a #pragma GCC visibility in scope, and this isn't a class
3719  // member, set the visibility of this variable.
3720  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3721    AddPushedVisibilityAttribute(NewVD);
3722
3723  MarkUnusedFileScopedDecl(NewVD);
3724
3725  return NewVD;
3726}
3727
3728/// \brief Diagnose variable or built-in function shadowing.  Implements
3729/// -Wshadow.
3730///
3731/// This method is called whenever a VarDecl is added to a "useful"
3732/// scope.
3733///
3734/// \param S the scope in which the shadowing name is being declared
3735/// \param R the lookup of the name
3736///
3737void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3738  // Return if warning is ignored.
3739  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3740        Diagnostic::Ignored)
3741    return;
3742
3743  // Don't diagnose declarations at file scope.
3744  if (D->hasGlobalStorage())
3745    return;
3746
3747  DeclContext *NewDC = D->getDeclContext();
3748
3749  // Only diagnose if we're shadowing an unambiguous field or variable.
3750  if (R.getResultKind() != LookupResult::Found)
3751    return;
3752
3753  NamedDecl* ShadowedDecl = R.getFoundDecl();
3754  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3755    return;
3756
3757  // Fields are not shadowed by variables in C++ static methods.
3758  if (isa<FieldDecl>(ShadowedDecl))
3759    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3760      if (MD->isStatic())
3761        return;
3762
3763  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3764    if (shadowedVar->isExternC()) {
3765      // For shadowing external vars, make sure that we point to the global
3766      // declaration, not a locally scoped extern declaration.
3767      for (VarDecl::redecl_iterator
3768             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3769           I != E; ++I)
3770        if (I->isFileVarDecl()) {
3771          ShadowedDecl = *I;
3772          break;
3773        }
3774    }
3775
3776  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3777
3778  // Only warn about certain kinds of shadowing for class members.
3779  if (NewDC && NewDC->isRecord()) {
3780    // In particular, don't warn about shadowing non-class members.
3781    if (!OldDC->isRecord())
3782      return;
3783
3784    // TODO: should we warn about static data members shadowing
3785    // static data members from base classes?
3786
3787    // TODO: don't diagnose for inaccessible shadowed members.
3788    // This is hard to do perfectly because we might friend the
3789    // shadowing context, but that's just a false negative.
3790  }
3791
3792  // Determine what kind of declaration we're shadowing.
3793  unsigned Kind;
3794  if (isa<RecordDecl>(OldDC)) {
3795    if (isa<FieldDecl>(ShadowedDecl))
3796      Kind = 3; // field
3797    else
3798      Kind = 2; // static data member
3799  } else if (OldDC->isFileContext())
3800    Kind = 1; // global
3801  else
3802    Kind = 0; // local
3803
3804  DeclarationName Name = R.getLookupName();
3805
3806  // Emit warning and note.
3807  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3808  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3809}
3810
3811/// \brief Check -Wshadow without the advantage of a previous lookup.
3812void Sema::CheckShadow(Scope *S, VarDecl *D) {
3813  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3814        Diagnostic::Ignored)
3815    return;
3816
3817  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3818                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3819  LookupName(R, S);
3820  CheckShadow(S, D, R);
3821}
3822
3823/// \brief Perform semantic checking on a newly-created variable
3824/// declaration.
3825///
3826/// This routine performs all of the type-checking required for a
3827/// variable declaration once it has been built. It is used both to
3828/// check variables after they have been parsed and their declarators
3829/// have been translated into a declaration, and to check variables
3830/// that have been instantiated from a template.
3831///
3832/// Sets NewVD->isInvalidDecl() if an error was encountered.
3833void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3834                                    LookupResult &Previous,
3835                                    bool &Redeclaration) {
3836  // If the decl is already known invalid, don't check it.
3837  if (NewVD->isInvalidDecl())
3838    return;
3839
3840  QualType T = NewVD->getType();
3841
3842  if (T->isObjCObjectType()) {
3843    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3844    return NewVD->setInvalidDecl();
3845  }
3846
3847  // Emit an error if an address space was applied to decl with local storage.
3848  // This includes arrays of objects with address space qualifiers, but not
3849  // automatic variables that point to other address spaces.
3850  // ISO/IEC TR 18037 S5.1.2
3851  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3852    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3853    return NewVD->setInvalidDecl();
3854  }
3855
3856  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3857      && !NewVD->hasAttr<BlocksAttr>()) {
3858    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3859      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3860    else
3861      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3862  }
3863
3864  bool isVM = T->isVariablyModifiedType();
3865  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3866      NewVD->hasAttr<BlocksAttr>())
3867    getCurFunction()->setHasBranchProtectedScope();
3868
3869  if ((isVM && NewVD->hasLinkage()) ||
3870      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3871    bool SizeIsNegative;
3872    llvm::APSInt Oversized;
3873    QualType FixedTy =
3874        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3875                                            Oversized);
3876
3877    if (FixedTy.isNull() && T->isVariableArrayType()) {
3878      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3879      // FIXME: This won't give the correct result for
3880      // int a[10][n];
3881      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3882
3883      if (NewVD->isFileVarDecl())
3884        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3885        << SizeRange;
3886      else if (NewVD->getStorageClass() == SC_Static)
3887        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3888        << SizeRange;
3889      else
3890        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3891        << SizeRange;
3892      return NewVD->setInvalidDecl();
3893    }
3894
3895    if (FixedTy.isNull()) {
3896      if (NewVD->isFileVarDecl())
3897        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3898      else
3899        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3900      return NewVD->setInvalidDecl();
3901    }
3902
3903    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3904    NewVD->setType(FixedTy);
3905  }
3906
3907  if (Previous.empty() && NewVD->isExternC()) {
3908    // Since we did not find anything by this name and we're declaring
3909    // an extern "C" variable, look for a non-visible extern "C"
3910    // declaration with the same name.
3911    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3912      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3913    if (Pos != LocallyScopedExternalDecls.end())
3914      Previous.addDecl(Pos->second);
3915  }
3916
3917  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3918    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3919      << T;
3920    return NewVD->setInvalidDecl();
3921  }
3922
3923  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3924    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3925    return NewVD->setInvalidDecl();
3926  }
3927
3928  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3929    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3930    return NewVD->setInvalidDecl();
3931  }
3932
3933  // Function pointers and references cannot have qualified function type, only
3934  // function pointer-to-members can do that.
3935  QualType Pointee;
3936  unsigned PtrOrRef = 0;
3937  if (const PointerType *Ptr = T->getAs<PointerType>())
3938    Pointee = Ptr->getPointeeType();
3939  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3940    Pointee = Ref->getPointeeType();
3941    PtrOrRef = 1;
3942  }
3943  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3944      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3945    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3946        << PtrOrRef;
3947    return NewVD->setInvalidDecl();
3948  }
3949
3950  if (!Previous.empty()) {
3951    Redeclaration = true;
3952    MergeVarDecl(NewVD, Previous);
3953  }
3954}
3955
3956/// \brief Data used with FindOverriddenMethod
3957struct FindOverriddenMethodData {
3958  Sema *S;
3959  CXXMethodDecl *Method;
3960};
3961
3962/// \brief Member lookup function that determines whether a given C++
3963/// method overrides a method in a base class, to be used with
3964/// CXXRecordDecl::lookupInBases().
3965static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3966                                 CXXBasePath &Path,
3967                                 void *UserData) {
3968  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3969
3970  FindOverriddenMethodData *Data
3971    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3972
3973  DeclarationName Name = Data->Method->getDeclName();
3974
3975  // FIXME: Do we care about other names here too?
3976  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3977    // We really want to find the base class destructor here.
3978    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3979    CanQualType CT = Data->S->Context.getCanonicalType(T);
3980
3981    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3982  }
3983
3984  for (Path.Decls = BaseRecord->lookup(Name);
3985       Path.Decls.first != Path.Decls.second;
3986       ++Path.Decls.first) {
3987    NamedDecl *D = *Path.Decls.first;
3988    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3989      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3990        return true;
3991    }
3992  }
3993
3994  return false;
3995}
3996
3997/// AddOverriddenMethods - See if a method overrides any in the base classes,
3998/// and if so, check that it's a valid override and remember it.
3999bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4000  // Look for virtual methods in base classes that this method might override.
4001  CXXBasePaths Paths;
4002  FindOverriddenMethodData Data;
4003  Data.Method = MD;
4004  Data.S = this;
4005  bool AddedAny = false;
4006  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4007    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4008         E = Paths.found_decls_end(); I != E; ++I) {
4009      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4010        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4011            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4012            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4013          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4014          AddedAny = true;
4015        }
4016      }
4017    }
4018  }
4019
4020  return AddedAny;
4021}
4022
4023static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4024  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4025                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4026  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4027  assert(!Prev.isAmbiguous() &&
4028         "Cannot have an ambiguity in previous-declaration lookup");
4029  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4030       Func != FuncEnd; ++Func) {
4031    if (isa<FunctionDecl>(*Func) &&
4032        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4033      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4034  }
4035}
4036
4037NamedDecl*
4038Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4039                              QualType R, TypeSourceInfo *TInfo,
4040                              LookupResult &Previous,
4041                              MultiTemplateParamsArg TemplateParamLists,
4042                              bool IsFunctionDefinition, bool &Redeclaration) {
4043  assert(R.getTypePtr()->isFunctionType());
4044
4045  // TODO: consider using NameInfo for diagnostic.
4046  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4047  DeclarationName Name = NameInfo.getName();
4048  FunctionDecl::StorageClass SC = SC_None;
4049  switch (D.getDeclSpec().getStorageClassSpec()) {
4050  default: assert(0 && "Unknown storage class!");
4051  case DeclSpec::SCS_auto:
4052  case DeclSpec::SCS_register:
4053  case DeclSpec::SCS_mutable:
4054    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4055         diag::err_typecheck_sclass_func);
4056    D.setInvalidType();
4057    break;
4058  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4059  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4060  case DeclSpec::SCS_static: {
4061    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4062      // C99 6.7.1p5:
4063      //   The declaration of an identifier for a function that has
4064      //   block scope shall have no explicit storage-class specifier
4065      //   other than extern
4066      // See also (C++ [dcl.stc]p4).
4067      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4068           diag::err_static_block_func);
4069      SC = SC_None;
4070    } else
4071      SC = SC_Static;
4072    break;
4073  }
4074  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4075  }
4076
4077  if (D.getDeclSpec().isThreadSpecified())
4078    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4079
4080  // Do not allow returning a objc interface by-value.
4081  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4082    Diag(D.getIdentifierLoc(),
4083         diag::err_object_cannot_be_passed_returned_by_value) << 0
4084    << R->getAs<FunctionType>()->getResultType();
4085    D.setInvalidType();
4086  }
4087
4088  FunctionDecl *NewFD;
4089  bool isInline = D.getDeclSpec().isInlineSpecified();
4090  bool isFriend = false;
4091  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4092  FunctionDecl::StorageClass SCAsWritten
4093    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4094  FunctionTemplateDecl *FunctionTemplate = 0;
4095  bool isExplicitSpecialization = false;
4096  bool isFunctionTemplateSpecialization = false;
4097
4098  if (!getLangOptions().CPlusPlus) {
4099    // Determine whether the function was written with a
4100    // prototype. This true when:
4101    //   - there is a prototype in the declarator, or
4102    //   - the type R of the function is some kind of typedef or other reference
4103    //     to a type name (which eventually refers to a function type).
4104    bool HasPrototype =
4105    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4106    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4107
4108    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4109                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4110                                 HasPrototype);
4111    if (D.isInvalidType())
4112      NewFD->setInvalidDecl();
4113
4114    // Set the lexical context.
4115    NewFD->setLexicalDeclContext(CurContext);
4116    // Filter out previous declarations that don't match the scope.
4117    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4118                         /*ExplicitInstantiationOrSpecialization=*/false);
4119  } else {
4120    isFriend = D.getDeclSpec().isFriendSpecified();
4121    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4122    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4123    bool isVirtualOkay = false;
4124
4125    // Check that the return type is not an abstract class type.
4126    // For record types, this is done by the AbstractClassUsageDiagnoser once
4127    // the class has been completely parsed.
4128    if (!DC->isRecord() &&
4129      RequireNonAbstractType(D.getIdentifierLoc(),
4130                             R->getAs<FunctionType>()->getResultType(),
4131                             diag::err_abstract_type_in_decl,
4132                             AbstractReturnType))
4133      D.setInvalidType();
4134
4135    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4136      // This is a C++ constructor declaration.
4137      assert(DC->isRecord() &&
4138             "Constructors can only be declared in a member context");
4139
4140      R = CheckConstructorDeclarator(D, R, SC);
4141
4142      // Create the new declaration
4143      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4144                                         Context,
4145                                         cast<CXXRecordDecl>(DC),
4146                                         D.getSourceRange().getBegin(),
4147                                         NameInfo, R, TInfo,
4148                                         isExplicit, isInline,
4149                                         /*isImplicitlyDeclared=*/false);
4150
4151      NewFD = NewCD;
4152    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4153      // This is a C++ destructor declaration.
4154      if (DC->isRecord()) {
4155        R = CheckDestructorDeclarator(D, R, SC);
4156        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4157
4158        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4159                                          D.getSourceRange().getBegin(),
4160                                          NameInfo, R, TInfo,
4161                                          isInline,
4162                                          /*isImplicitlyDeclared=*/false);
4163        NewFD = NewDD;
4164        isVirtualOkay = true;
4165
4166        // If the class is complete, then we now create the implicit exception
4167        // specification. If the class is incomplete or dependent, we can't do
4168        // it yet.
4169        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4170            Record->getDefinition() && !Record->isBeingDefined() &&
4171            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4172          AdjustDestructorExceptionSpec(Record, NewDD);
4173        }
4174
4175      } else {
4176        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4177
4178        // Create a FunctionDecl to satisfy the function definition parsing
4179        // code path.
4180        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4181                                     D.getIdentifierLoc(), Name, R, TInfo,
4182                                     SC, SCAsWritten, isInline,
4183                                     /*hasPrototype=*/true);
4184        D.setInvalidType();
4185      }
4186    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4187      if (!DC->isRecord()) {
4188        Diag(D.getIdentifierLoc(),
4189             diag::err_conv_function_not_member);
4190        return 0;
4191      }
4192
4193      CheckConversionDeclarator(D, R, SC);
4194      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4195                                        D.getSourceRange().getBegin(),
4196                                        NameInfo, R, TInfo,
4197                                        isInline, isExplicit,
4198                                        SourceLocation());
4199
4200      isVirtualOkay = true;
4201    } else if (DC->isRecord()) {
4202      // If the of the function is the same as the name of the record, then this
4203      // must be an invalid constructor that has a return type.
4204      // (The parser checks for a return type and makes the declarator a
4205      // constructor if it has no return type).
4206      // must have an invalid constructor that has a return type
4207      if (Name.getAsIdentifierInfo() &&
4208          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4209        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4210          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4211          << SourceRange(D.getIdentifierLoc());
4212        return 0;
4213      }
4214
4215      bool isStatic = SC == SC_Static;
4216
4217      // [class.free]p1:
4218      // Any allocation function for a class T is a static member
4219      // (even if not explicitly declared static).
4220      if (Name.getCXXOverloadedOperator() == OO_New ||
4221          Name.getCXXOverloadedOperator() == OO_Array_New)
4222        isStatic = true;
4223
4224      // [class.free]p6 Any deallocation function for a class X is a static member
4225      // (even if not explicitly declared static).
4226      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4227          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4228        isStatic = true;
4229
4230      // This is a C++ method declaration.
4231      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4232                                               Context, cast<CXXRecordDecl>(DC),
4233                                               D.getSourceRange().getBegin(),
4234                                               NameInfo, R, TInfo,
4235                                               isStatic, SCAsWritten, isInline,
4236                                               SourceLocation());
4237      NewFD = NewMD;
4238
4239      isVirtualOkay = !isStatic;
4240    } else {
4241      // Determine whether the function was written with a
4242      // prototype. This true when:
4243      //   - we're in C++ (where every function has a prototype),
4244      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4245                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4246                                   true/*HasPrototype*/);
4247    }
4248
4249    if (isFriend && !isInline && IsFunctionDefinition) {
4250      // C++ [class.friend]p5
4251      //   A function can be defined in a friend declaration of a
4252      //   class . . . . Such a function is implicitly inline.
4253      NewFD->setImplicitlyInline();
4254    }
4255
4256    SetNestedNameSpecifier(NewFD, D);
4257    isExplicitSpecialization = false;
4258    isFunctionTemplateSpecialization = false;
4259    if (D.isInvalidType())
4260      NewFD->setInvalidDecl();
4261
4262    // Set the lexical context. If the declarator has a C++
4263    // scope specifier, or is the object of a friend declaration, the
4264    // lexical context will be different from the semantic context.
4265    NewFD->setLexicalDeclContext(CurContext);
4266
4267    // Match up the template parameter lists with the scope specifier, then
4268    // determine whether we have a template or a template specialization.
4269    bool Invalid = false;
4270    if (TemplateParameterList *TemplateParams
4271          = MatchTemplateParametersToScopeSpecifier(
4272                                  D.getDeclSpec().getSourceRange().getBegin(),
4273                                  D.getIdentifierLoc(),
4274                                  D.getCXXScopeSpec(),
4275                                  TemplateParamLists.get(),
4276                                  TemplateParamLists.size(),
4277                                  isFriend,
4278                                  isExplicitSpecialization,
4279                                  Invalid)) {
4280      if (TemplateParams->size() > 0) {
4281        // This is a function template
4282
4283        // Check that we can declare a template here.
4284        if (CheckTemplateDeclScope(S, TemplateParams))
4285          return 0;
4286
4287        // A destructor cannot be a template.
4288        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4289          Diag(NewFD->getLocation(), diag::err_destructor_template);
4290          return 0;
4291        }
4292
4293        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4294                                                        NewFD->getLocation(),
4295                                                        Name, TemplateParams,
4296                                                        NewFD);
4297        FunctionTemplate->setLexicalDeclContext(CurContext);
4298        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4299
4300        // For source fidelity, store the other template param lists.
4301        if (TemplateParamLists.size() > 1) {
4302          NewFD->setTemplateParameterListsInfo(Context,
4303                                               TemplateParamLists.size() - 1,
4304                                               TemplateParamLists.release());
4305        }
4306      } else {
4307        // This is a function template specialization.
4308        isFunctionTemplateSpecialization = true;
4309        // For source fidelity, store all the template param lists.
4310        NewFD->setTemplateParameterListsInfo(Context,
4311                                             TemplateParamLists.size(),
4312                                             TemplateParamLists.release());
4313
4314        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4315        if (isFriend) {
4316          // We want to remove the "template<>", found here.
4317          SourceRange RemoveRange = TemplateParams->getSourceRange();
4318
4319          // If we remove the template<> and the name is not a
4320          // template-id, we're actually silently creating a problem:
4321          // the friend declaration will refer to an untemplated decl,
4322          // and clearly the user wants a template specialization.  So
4323          // we need to insert '<>' after the name.
4324          SourceLocation InsertLoc;
4325          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4326            InsertLoc = D.getName().getSourceRange().getEnd();
4327            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4328          }
4329
4330          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4331            << Name << RemoveRange
4332            << FixItHint::CreateRemoval(RemoveRange)
4333            << FixItHint::CreateInsertion(InsertLoc, "<>");
4334        }
4335      }
4336    }
4337    else {
4338      // All template param lists were matched against the scope specifier:
4339      // this is NOT (an explicit specialization of) a template.
4340      if (TemplateParamLists.size() > 0)
4341        // For source fidelity, store all the template param lists.
4342        NewFD->setTemplateParameterListsInfo(Context,
4343                                             TemplateParamLists.size(),
4344                                             TemplateParamLists.release());
4345    }
4346
4347    if (Invalid) {
4348      NewFD->setInvalidDecl();
4349      if (FunctionTemplate)
4350        FunctionTemplate->setInvalidDecl();
4351    }
4352
4353    // C++ [dcl.fct.spec]p5:
4354    //   The virtual specifier shall only be used in declarations of
4355    //   nonstatic class member functions that appear within a
4356    //   member-specification of a class declaration; see 10.3.
4357    //
4358    if (isVirtual && !NewFD->isInvalidDecl()) {
4359      if (!isVirtualOkay) {
4360        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4361             diag::err_virtual_non_function);
4362      } else if (!CurContext->isRecord()) {
4363        // 'virtual' was specified outside of the class.
4364        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4365             diag::err_virtual_out_of_class)
4366          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4367      } else if (NewFD->getDescribedFunctionTemplate()) {
4368        // C++ [temp.mem]p3:
4369        //  A member function template shall not be virtual.
4370        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4371             diag::err_virtual_member_function_template)
4372          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4373      } else {
4374        // Okay: Add virtual to the method.
4375        NewFD->setVirtualAsWritten(true);
4376      }
4377    }
4378
4379    // C++ [dcl.fct.spec]p3:
4380    //  The inline specifier shall not appear on a block scope function declaration.
4381    if (isInline && !NewFD->isInvalidDecl()) {
4382      if (CurContext->isFunctionOrMethod()) {
4383        // 'inline' is not allowed on block scope function declaration.
4384        Diag(D.getDeclSpec().getInlineSpecLoc(),
4385             diag::err_inline_declaration_block_scope) << Name
4386          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4387      }
4388    }
4389
4390    // C++ [dcl.fct.spec]p6:
4391    //  The explicit specifier shall be used only in the declaration of a
4392    //  constructor or conversion function within its class definition; see 12.3.1
4393    //  and 12.3.2.
4394    if (isExplicit && !NewFD->isInvalidDecl()) {
4395      if (!CurContext->isRecord()) {
4396        // 'explicit' was specified outside of the class.
4397        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4398             diag::err_explicit_out_of_class)
4399          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4400      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4401                 !isa<CXXConversionDecl>(NewFD)) {
4402        // 'explicit' was specified on a function that wasn't a constructor
4403        // or conversion function.
4404        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4405             diag::err_explicit_non_ctor_or_conv_function)
4406          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4407      }
4408    }
4409
4410    // Filter out previous declarations that don't match the scope.
4411    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4412                         isExplicitSpecialization ||
4413                         isFunctionTemplateSpecialization);
4414
4415    if (isFriend) {
4416      // For now, claim that the objects have no previous declaration.
4417      if (FunctionTemplate) {
4418        FunctionTemplate->setObjectOfFriendDecl(false);
4419        FunctionTemplate->setAccess(AS_public);
4420      }
4421      NewFD->setObjectOfFriendDecl(false);
4422      NewFD->setAccess(AS_public);
4423    }
4424
4425    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4426      // A method is implicitly inline if it's defined in its class
4427      // definition.
4428      NewFD->setImplicitlyInline();
4429    }
4430
4431    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4432        !CurContext->isRecord()) {
4433      // C++ [class.static]p1:
4434      //   A data or function member of a class may be declared static
4435      //   in a class definition, in which case it is a static member of
4436      //   the class.
4437
4438      // Complain about the 'static' specifier if it's on an out-of-line
4439      // member function definition.
4440      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4441           diag::err_static_out_of_line)
4442        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4443    }
4444  }
4445
4446  // Handle GNU asm-label extension (encoded as an attribute).
4447  if (Expr *E = (Expr*) D.getAsmLabel()) {
4448    // The parser guarantees this is a string.
4449    StringLiteral *SE = cast<StringLiteral>(E);
4450    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4451                                                SE->getString()));
4452  }
4453
4454  // Copy the parameter declarations from the declarator D to the function
4455  // declaration NewFD, if they are available.  First scavenge them into Params.
4456  llvm::SmallVector<ParmVarDecl*, 16> Params;
4457  if (D.isFunctionDeclarator()) {
4458    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4459
4460    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4461    // function that takes no arguments, not a function that takes a
4462    // single void argument.
4463    // We let through "const void" here because Sema::GetTypeForDeclarator
4464    // already checks for that case.
4465    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4466        FTI.ArgInfo[0].Param &&
4467        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4468      // Empty arg list, don't push any params.
4469      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4470
4471      // In C++, the empty parameter-type-list must be spelled "void"; a
4472      // typedef of void is not permitted.
4473      if (getLangOptions().CPlusPlus &&
4474          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4475        bool IsTypeAlias = false;
4476        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4477          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4478        else if (const TemplateSpecializationType *TST =
4479                   Param->getType()->getAs<TemplateSpecializationType>())
4480          IsTypeAlias = TST->isTypeAlias();
4481        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4482          << IsTypeAlias;
4483      }
4484    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4485      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4486        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4487        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4488        Param->setDeclContext(NewFD);
4489        Params.push_back(Param);
4490
4491        if (Param->isInvalidDecl())
4492          NewFD->setInvalidDecl();
4493      }
4494    }
4495
4496  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4497    // When we're declaring a function with a typedef, typeof, etc as in the
4498    // following example, we'll need to synthesize (unnamed)
4499    // parameters for use in the declaration.
4500    //
4501    // @code
4502    // typedef void fn(int);
4503    // fn f;
4504    // @endcode
4505
4506    // Synthesize a parameter for each argument type.
4507    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4508         AE = FT->arg_type_end(); AI != AE; ++AI) {
4509      ParmVarDecl *Param =
4510        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4511      Param->setScopeInfo(0, Params.size());
4512      Params.push_back(Param);
4513    }
4514  } else {
4515    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4516           "Should not need args for typedef of non-prototype fn");
4517  }
4518  // Finally, we know we have the right number of parameters, install them.
4519  NewFD->setParams(Params.data(), Params.size());
4520
4521  // Process the non-inheritable attributes on this declaration.
4522  ProcessDeclAttributes(S, NewFD, D,
4523                        /*NonInheritable=*/true, /*Inheritable=*/false);
4524
4525  if (!getLangOptions().CPlusPlus) {
4526    // Perform semantic checking on the function declaration.
4527    bool isExplicitSpecialization=false;
4528    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4529                             Redeclaration);
4530    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4531            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4532           "previous declaration set still overloaded");
4533  } else {
4534    // If the declarator is a template-id, translate the parser's template
4535    // argument list into our AST format.
4536    bool HasExplicitTemplateArgs = false;
4537    TemplateArgumentListInfo TemplateArgs;
4538    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4539      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4540      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4541      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4542      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4543                                         TemplateId->getTemplateArgs(),
4544                                         TemplateId->NumArgs);
4545      translateTemplateArguments(TemplateArgsPtr,
4546                                 TemplateArgs);
4547      TemplateArgsPtr.release();
4548
4549      HasExplicitTemplateArgs = true;
4550
4551      if (NewFD->isInvalidDecl()) {
4552        HasExplicitTemplateArgs = false;
4553      } else if (FunctionTemplate) {
4554        // Function template with explicit template arguments.
4555        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4556          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4557
4558        HasExplicitTemplateArgs = false;
4559      } else if (!isFunctionTemplateSpecialization &&
4560                 !D.getDeclSpec().isFriendSpecified()) {
4561        // We have encountered something that the user meant to be a
4562        // specialization (because it has explicitly-specified template
4563        // arguments) but that was not introduced with a "template<>" (or had
4564        // too few of them).
4565        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4566          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4567          << FixItHint::CreateInsertion(
4568                                        D.getDeclSpec().getSourceRange().getBegin(),
4569                                                  "template<> ");
4570        isFunctionTemplateSpecialization = true;
4571      } else {
4572        // "friend void foo<>(int);" is an implicit specialization decl.
4573        isFunctionTemplateSpecialization = true;
4574      }
4575    } else if (isFriend && isFunctionTemplateSpecialization) {
4576      // This combination is only possible in a recovery case;  the user
4577      // wrote something like:
4578      //   template <> friend void foo(int);
4579      // which we're recovering from as if the user had written:
4580      //   friend void foo<>(int);
4581      // Go ahead and fake up a template id.
4582      HasExplicitTemplateArgs = true;
4583        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4584      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4585    }
4586
4587    // If it's a friend (and only if it's a friend), it's possible
4588    // that either the specialized function type or the specialized
4589    // template is dependent, and therefore matching will fail.  In
4590    // this case, don't check the specialization yet.
4591    if (isFunctionTemplateSpecialization && isFriend &&
4592        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4593      assert(HasExplicitTemplateArgs &&
4594             "friend function specialization without template args");
4595      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4596                                                       Previous))
4597        NewFD->setInvalidDecl();
4598    } else if (isFunctionTemplateSpecialization) {
4599      if (CurContext->isDependentContext() && CurContext->isRecord()
4600          && !isFriend) {
4601        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4602          << NewFD->getDeclName();
4603        NewFD->setInvalidDecl();
4604        return 0;
4605      } else if (CheckFunctionTemplateSpecialization(NewFD,
4606                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4607                                                     Previous))
4608        NewFD->setInvalidDecl();
4609
4610      // C++ [dcl.stc]p1:
4611      //   A storage-class-specifier shall not be specified in an explicit
4612      //   specialization (14.7.3)
4613      if (SC != SC_None) {
4614        Diag(NewFD->getLocation(),
4615             diag::err_explicit_specialization_storage_class)
4616          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4617      }
4618
4619    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4620      if (CheckMemberSpecialization(NewFD, Previous))
4621          NewFD->setInvalidDecl();
4622    }
4623
4624    // Perform semantic checking on the function declaration.
4625    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4626                             Redeclaration);
4627
4628    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4629            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4630           "previous declaration set still overloaded");
4631
4632    NamedDecl *PrincipalDecl = (FunctionTemplate
4633                                ? cast<NamedDecl>(FunctionTemplate)
4634                                : NewFD);
4635
4636    if (isFriend && Redeclaration) {
4637      AccessSpecifier Access = AS_public;
4638      if (!NewFD->isInvalidDecl())
4639        Access = NewFD->getPreviousDeclaration()->getAccess();
4640
4641      NewFD->setAccess(Access);
4642      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4643
4644      PrincipalDecl->setObjectOfFriendDecl(true);
4645    }
4646
4647    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4648        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4649      PrincipalDecl->setNonMemberOperator();
4650
4651    // If we have a function template, check the template parameter
4652    // list. This will check and merge default template arguments.
4653    if (FunctionTemplate) {
4654      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4655      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4656                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4657                            D.getDeclSpec().isFriendSpecified()
4658                              ? (IsFunctionDefinition
4659                                   ? TPC_FriendFunctionTemplateDefinition
4660                                   : TPC_FriendFunctionTemplate)
4661                              : (D.getCXXScopeSpec().isSet() &&
4662                                 DC && DC->isRecord() &&
4663                                 DC->isDependentContext())
4664                                  ? TPC_ClassTemplateMember
4665                                  : TPC_FunctionTemplate);
4666    }
4667
4668    if (NewFD->isInvalidDecl()) {
4669      // Ignore all the rest of this.
4670    } else if (!Redeclaration) {
4671      // Fake up an access specifier if it's supposed to be a class member.
4672      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4673        NewFD->setAccess(AS_public);
4674
4675      // Qualified decls generally require a previous declaration.
4676      if (D.getCXXScopeSpec().isSet()) {
4677        // ...with the major exception of templated-scope or
4678        // dependent-scope friend declarations.
4679
4680        // TODO: we currently also suppress this check in dependent
4681        // contexts because (1) the parameter depth will be off when
4682        // matching friend templates and (2) we might actually be
4683        // selecting a friend based on a dependent factor.  But there
4684        // are situations where these conditions don't apply and we
4685        // can actually do this check immediately.
4686        if (isFriend &&
4687            (TemplateParamLists.size() ||
4688             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4689             CurContext->isDependentContext())) {
4690              // ignore these
4691            } else {
4692              // The user tried to provide an out-of-line definition for a
4693              // function that is a member of a class or namespace, but there
4694              // was no such member function declared (C++ [class.mfct]p2,
4695              // C++ [namespace.memdef]p2). For example:
4696              //
4697              // class X {
4698              //   void f() const;
4699              // };
4700              //
4701              // void X::f() { } // ill-formed
4702              //
4703              // Complain about this problem, and attempt to suggest close
4704              // matches (e.g., those that differ only in cv-qualifiers and
4705              // whether the parameter types are references).
4706              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4707              << Name << DC << D.getCXXScopeSpec().getRange();
4708              NewFD->setInvalidDecl();
4709
4710              DiagnoseInvalidRedeclaration(*this, NewFD);
4711            }
4712
4713        // Unqualified local friend declarations are required to resolve
4714        // to something.
4715        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4716          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4717          NewFD->setInvalidDecl();
4718          DiagnoseInvalidRedeclaration(*this, NewFD);
4719        }
4720
4721    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4722               !isFriend && !isFunctionTemplateSpecialization &&
4723               !isExplicitSpecialization) {
4724      // An out-of-line member function declaration must also be a
4725      // definition (C++ [dcl.meaning]p1).
4726      // Note that this is not the case for explicit specializations of
4727      // function templates or member functions of class templates, per
4728      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4729      // for compatibility with old SWIG code which likes to generate them.
4730      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4731        << D.getCXXScopeSpec().getRange();
4732    }
4733  }
4734
4735
4736  // Handle attributes. We need to have merged decls when handling attributes
4737  // (for example to check for conflicts, etc).
4738  // FIXME: This needs to happen before we merge declarations. Then,
4739  // let attribute merging cope with attribute conflicts.
4740  ProcessDeclAttributes(S, NewFD, D,
4741                        /*NonInheritable=*/false, /*Inheritable=*/true);
4742
4743  // attributes declared post-definition are currently ignored
4744  // FIXME: This should happen during attribute merging
4745  if (Redeclaration && Previous.isSingleResult()) {
4746    const FunctionDecl *Def;
4747    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4748    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4749      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4750      Diag(Def->getLocation(), diag::note_previous_definition);
4751    }
4752  }
4753
4754  AddKnownFunctionAttributes(NewFD);
4755
4756  if (NewFD->hasAttr<OverloadableAttr>() &&
4757      !NewFD->getType()->getAs<FunctionProtoType>()) {
4758    Diag(NewFD->getLocation(),
4759         diag::err_attribute_overloadable_no_prototype)
4760      << NewFD;
4761
4762    // Turn this into a variadic function with no parameters.
4763    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4764    FunctionProtoType::ExtProtoInfo EPI;
4765    EPI.Variadic = true;
4766    EPI.ExtInfo = FT->getExtInfo();
4767
4768    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4769    NewFD->setType(R);
4770  }
4771
4772  // If there's a #pragma GCC visibility in scope, and this isn't a class
4773  // member, set the visibility of this function.
4774  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4775    AddPushedVisibilityAttribute(NewFD);
4776
4777  // If this is a locally-scoped extern C function, update the
4778  // map of such names.
4779  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4780      && !NewFD->isInvalidDecl())
4781    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4782
4783  // Set this FunctionDecl's range up to the right paren.
4784  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4785
4786  if (getLangOptions().CPlusPlus) {
4787    if (FunctionTemplate) {
4788      if (NewFD->isInvalidDecl())
4789        FunctionTemplate->setInvalidDecl();
4790      return FunctionTemplate;
4791    }
4792  }
4793
4794  MarkUnusedFileScopedDecl(NewFD);
4795
4796  if (getLangOptions().CUDA)
4797    if (IdentifierInfo *II = NewFD->getIdentifier())
4798      if (!NewFD->isInvalidDecl() &&
4799          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4800        if (II->isStr("cudaConfigureCall")) {
4801          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4802            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4803
4804          Context.setcudaConfigureCallDecl(NewFD);
4805        }
4806      }
4807
4808  return NewFD;
4809}
4810
4811/// \brief Perform semantic checking of a new function declaration.
4812///
4813/// Performs semantic analysis of the new function declaration
4814/// NewFD. This routine performs all semantic checking that does not
4815/// require the actual declarator involved in the declaration, and is
4816/// used both for the declaration of functions as they are parsed
4817/// (called via ActOnDeclarator) and for the declaration of functions
4818/// that have been instantiated via C++ template instantiation (called
4819/// via InstantiateDecl).
4820///
4821/// \param IsExplicitSpecialiation whether this new function declaration is
4822/// an explicit specialization of the previous declaration.
4823///
4824/// This sets NewFD->isInvalidDecl() to true if there was an error.
4825void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4826                                    LookupResult &Previous,
4827                                    bool IsExplicitSpecialization,
4828                                    bool &Redeclaration) {
4829  // If NewFD is already known erroneous, don't do any of this checking.
4830  if (NewFD->isInvalidDecl()) {
4831    // If this is a class member, mark the class invalid immediately.
4832    // This avoids some consistency errors later.
4833    if (isa<CXXMethodDecl>(NewFD))
4834      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4835
4836    return;
4837  }
4838
4839  if (NewFD->getResultType()->isVariablyModifiedType()) {
4840    // Functions returning a variably modified type violate C99 6.7.5.2p2
4841    // because all functions have linkage.
4842    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4843    return NewFD->setInvalidDecl();
4844  }
4845
4846  if (NewFD->isMain())
4847    CheckMain(NewFD);
4848
4849  // Check for a previous declaration of this name.
4850  if (Previous.empty() && NewFD->isExternC()) {
4851    // Since we did not find anything by this name and we're declaring
4852    // an extern "C" function, look for a non-visible extern "C"
4853    // declaration with the same name.
4854    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4855      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4856    if (Pos != LocallyScopedExternalDecls.end())
4857      Previous.addDecl(Pos->second);
4858  }
4859
4860  // Merge or overload the declaration with an existing declaration of
4861  // the same name, if appropriate.
4862  if (!Previous.empty()) {
4863    // Determine whether NewFD is an overload of PrevDecl or
4864    // a declaration that requires merging. If it's an overload,
4865    // there's no more work to do here; we'll just add the new
4866    // function to the scope.
4867
4868    NamedDecl *OldDecl = 0;
4869    if (!AllowOverloadingOfFunction(Previous, Context)) {
4870      Redeclaration = true;
4871      OldDecl = Previous.getFoundDecl();
4872    } else {
4873      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4874                            /*NewIsUsingDecl*/ false)) {
4875      case Ovl_Match:
4876        Redeclaration = true;
4877        break;
4878
4879      case Ovl_NonFunction:
4880        Redeclaration = true;
4881        break;
4882
4883      case Ovl_Overload:
4884        Redeclaration = false;
4885        break;
4886      }
4887
4888      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4889        // If a function name is overloadable in C, then every function
4890        // with that name must be marked "overloadable".
4891        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4892          << Redeclaration << NewFD;
4893        NamedDecl *OverloadedDecl = 0;
4894        if (Redeclaration)
4895          OverloadedDecl = OldDecl;
4896        else if (!Previous.empty())
4897          OverloadedDecl = Previous.getRepresentativeDecl();
4898        if (OverloadedDecl)
4899          Diag(OverloadedDecl->getLocation(),
4900               diag::note_attribute_overloadable_prev_overload);
4901        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4902                                                        Context));
4903      }
4904    }
4905
4906    if (Redeclaration) {
4907      // NewFD and OldDecl represent declarations that need to be
4908      // merged.
4909      if (MergeFunctionDecl(NewFD, OldDecl))
4910        return NewFD->setInvalidDecl();
4911
4912      Previous.clear();
4913      Previous.addDecl(OldDecl);
4914
4915      if (FunctionTemplateDecl *OldTemplateDecl
4916                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4917        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4918        FunctionTemplateDecl *NewTemplateDecl
4919          = NewFD->getDescribedFunctionTemplate();
4920        assert(NewTemplateDecl && "Template/non-template mismatch");
4921        if (CXXMethodDecl *Method
4922              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4923          Method->setAccess(OldTemplateDecl->getAccess());
4924          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4925        }
4926
4927        // If this is an explicit specialization of a member that is a function
4928        // template, mark it as a member specialization.
4929        if (IsExplicitSpecialization &&
4930            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4931          NewTemplateDecl->setMemberSpecialization();
4932          assert(OldTemplateDecl->isMemberSpecialization());
4933        }
4934      } else {
4935        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4936          NewFD->setAccess(OldDecl->getAccess());
4937        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4938      }
4939    }
4940  }
4941
4942  // Semantic checking for this function declaration (in isolation).
4943  if (getLangOptions().CPlusPlus) {
4944    // C++-specific checks.
4945    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4946      CheckConstructor(Constructor);
4947    } else if (CXXDestructorDecl *Destructor =
4948                dyn_cast<CXXDestructorDecl>(NewFD)) {
4949      CXXRecordDecl *Record = Destructor->getParent();
4950      QualType ClassType = Context.getTypeDeclType(Record);
4951
4952      // FIXME: Shouldn't we be able to perform this check even when the class
4953      // type is dependent? Both gcc and edg can handle that.
4954      if (!ClassType->isDependentType()) {
4955        DeclarationName Name
4956          = Context.DeclarationNames.getCXXDestructorName(
4957                                        Context.getCanonicalType(ClassType));
4958        if (NewFD->getDeclName() != Name) {
4959          Diag(NewFD->getLocation(), diag::err_destructor_name);
4960          return NewFD->setInvalidDecl();
4961        }
4962      }
4963    } else if (CXXConversionDecl *Conversion
4964               = dyn_cast<CXXConversionDecl>(NewFD)) {
4965      ActOnConversionDeclarator(Conversion);
4966    }
4967
4968    // Find any virtual functions that this function overrides.
4969    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4970      if (!Method->isFunctionTemplateSpecialization() &&
4971          !Method->getDescribedFunctionTemplate()) {
4972        if (AddOverriddenMethods(Method->getParent(), Method)) {
4973          // If the function was marked as "static", we have a problem.
4974          if (NewFD->getStorageClass() == SC_Static) {
4975            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4976              << NewFD->getDeclName();
4977            for (CXXMethodDecl::method_iterator
4978                      Overridden = Method->begin_overridden_methods(),
4979                   OverriddenEnd = Method->end_overridden_methods();
4980                 Overridden != OverriddenEnd;
4981                 ++Overridden) {
4982              Diag((*Overridden)->getLocation(),
4983                   diag::note_overridden_virtual_function);
4984            }
4985          }
4986        }
4987      }
4988    }
4989
4990    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4991    if (NewFD->isOverloadedOperator() &&
4992        CheckOverloadedOperatorDeclaration(NewFD))
4993      return NewFD->setInvalidDecl();
4994
4995    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4996    if (NewFD->getLiteralIdentifier() &&
4997        CheckLiteralOperatorDeclaration(NewFD))
4998      return NewFD->setInvalidDecl();
4999
5000    // In C++, check default arguments now that we have merged decls. Unless
5001    // the lexical context is the class, because in this case this is done
5002    // during delayed parsing anyway.
5003    if (!CurContext->isRecord())
5004      CheckCXXDefaultArguments(NewFD);
5005
5006    // If this function declares a builtin function, check the type of this
5007    // declaration against the expected type for the builtin.
5008    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5009      ASTContext::GetBuiltinTypeError Error;
5010      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5011      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5012        // The type of this function differs from the type of the builtin,
5013        // so forget about the builtin entirely.
5014        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5015      }
5016    }
5017  }
5018}
5019
5020void Sema::CheckMain(FunctionDecl* FD) {
5021  // C++ [basic.start.main]p3:  A program that declares main to be inline
5022  //   or static is ill-formed.
5023  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5024  //   shall not appear in a declaration of main.
5025  // static main is not an error under C99, but we should warn about it.
5026  bool isInline = FD->isInlineSpecified();
5027  bool isStatic = FD->getStorageClass() == SC_Static;
5028  if (isInline || isStatic) {
5029    unsigned diagID = diag::warn_unusual_main_decl;
5030    if (isInline || getLangOptions().CPlusPlus)
5031      diagID = diag::err_unusual_main_decl;
5032
5033    int which = isStatic + (isInline << 1) - 1;
5034    Diag(FD->getLocation(), diagID) << which;
5035  }
5036
5037  QualType T = FD->getType();
5038  assert(T->isFunctionType() && "function decl is not of function type");
5039  const FunctionType* FT = T->getAs<FunctionType>();
5040
5041  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5042    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5043    FD->setInvalidDecl(true);
5044  }
5045
5046  // Treat protoless main() as nullary.
5047  if (isa<FunctionNoProtoType>(FT)) return;
5048
5049  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5050  unsigned nparams = FTP->getNumArgs();
5051  assert(FD->getNumParams() == nparams);
5052
5053  bool HasExtraParameters = (nparams > 3);
5054
5055  // Darwin passes an undocumented fourth argument of type char**.  If
5056  // other platforms start sprouting these, the logic below will start
5057  // getting shifty.
5058  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5059    HasExtraParameters = false;
5060
5061  if (HasExtraParameters) {
5062    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5063    FD->setInvalidDecl(true);
5064    nparams = 3;
5065  }
5066
5067  // FIXME: a lot of the following diagnostics would be improved
5068  // if we had some location information about types.
5069
5070  QualType CharPP =
5071    Context.getPointerType(Context.getPointerType(Context.CharTy));
5072  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5073
5074  for (unsigned i = 0; i < nparams; ++i) {
5075    QualType AT = FTP->getArgType(i);
5076
5077    bool mismatch = true;
5078
5079    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5080      mismatch = false;
5081    else if (Expected[i] == CharPP) {
5082      // As an extension, the following forms are okay:
5083      //   char const **
5084      //   char const * const *
5085      //   char * const *
5086
5087      QualifierCollector qs;
5088      const PointerType* PT;
5089      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5090          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5091          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5092        qs.removeConst();
5093        mismatch = !qs.empty();
5094      }
5095    }
5096
5097    if (mismatch) {
5098      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5099      // TODO: suggest replacing given type with expected type
5100      FD->setInvalidDecl(true);
5101    }
5102  }
5103
5104  if (nparams == 1 && !FD->isInvalidDecl()) {
5105    Diag(FD->getLocation(), diag::warn_main_one_arg);
5106  }
5107
5108  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5109    Diag(FD->getLocation(), diag::err_main_template_decl);
5110    FD->setInvalidDecl();
5111  }
5112}
5113
5114bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5115  // FIXME: Need strict checking.  In C89, we need to check for
5116  // any assignment, increment, decrement, function-calls, or
5117  // commas outside of a sizeof.  In C99, it's the same list,
5118  // except that the aforementioned are allowed in unevaluated
5119  // expressions.  Everything else falls under the
5120  // "may accept other forms of constant expressions" exception.
5121  // (We never end up here for C++, so the constant expression
5122  // rules there don't matter.)
5123  if (Init->isConstantInitializer(Context, false))
5124    return false;
5125  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5126    << Init->getSourceRange();
5127  return true;
5128}
5129
5130namespace {
5131  // Visits an initialization expression to see if OrigDecl is evaluated in
5132  // its own initialization and throws a warning if it does.
5133  class SelfReferenceChecker
5134      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5135    Sema &S;
5136    Decl *OrigDecl;
5137
5138  public:
5139    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5140
5141    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5142                                                    S(S), OrigDecl(OrigDecl) { }
5143
5144    void VisitExpr(Expr *E) {
5145      if (isa<ObjCMessageExpr>(*E)) return;
5146      Inherited::VisitExpr(E);
5147    }
5148
5149    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5150      CheckForSelfReference(E);
5151      Inherited::VisitImplicitCastExpr(E);
5152    }
5153
5154    void CheckForSelfReference(ImplicitCastExpr *E) {
5155      if (E->getCastKind() != CK_LValueToRValue) return;
5156      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5157      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5158      if (!DRE) return;
5159      Decl* ReferenceDecl = DRE->getDecl();
5160      if (OrigDecl != ReferenceDecl) return;
5161      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5162                          Sema::NotForRedeclaration);
5163      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5164                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5165                              << Result.getLookupName()
5166                              << OrigDecl->getLocation()
5167                              << SubExpr->getSourceRange());
5168    }
5169  };
5170}
5171
5172/// AddInitializerToDecl - Adds the initializer Init to the
5173/// declaration dcl. If DirectInit is true, this is C++ direct
5174/// initialization rather than copy initialization.
5175void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5176                                bool DirectInit, bool TypeMayContainAuto) {
5177  // If there is no declaration, there was an error parsing it.  Just ignore
5178  // the initializer.
5179  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5180    return;
5181
5182  // Check for self-references within variable initializers.
5183  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5184    // Variables declared within a function/method body are handled
5185    // by a dataflow analysis.
5186    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5187      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5188  }
5189  else {
5190    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5191  }
5192
5193  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5194    // With declarators parsed the way they are, the parser cannot
5195    // distinguish between a normal initializer and a pure-specifier.
5196    // Thus this grotesque test.
5197    IntegerLiteral *IL;
5198    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5199        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5200      CheckPureMethod(Method, Init->getSourceRange());
5201    else {
5202      Diag(Method->getLocation(), diag::err_member_function_initialization)
5203        << Method->getDeclName() << Init->getSourceRange();
5204      Method->setInvalidDecl();
5205    }
5206    return;
5207  }
5208
5209  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5210  if (!VDecl) {
5211    if (getLangOptions().CPlusPlus &&
5212        RealDecl->getLexicalDeclContext()->isRecord() &&
5213        isa<NamedDecl>(RealDecl))
5214      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5215    else
5216      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5217    RealDecl->setInvalidDecl();
5218    return;
5219  }
5220
5221  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5222  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5223    TypeSourceInfo *DeducedType = 0;
5224    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5225      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5226        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5227        << Init->getSourceRange();
5228    if (!DeducedType) {
5229      RealDecl->setInvalidDecl();
5230      return;
5231    }
5232    VDecl->setTypeSourceInfo(DeducedType);
5233    VDecl->setType(DeducedType->getType());
5234
5235    // If this is a redeclaration, check that the type we just deduced matches
5236    // the previously declared type.
5237    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5238      MergeVarDeclTypes(VDecl, Old);
5239  }
5240
5241
5242  // A definition must end up with a complete type, which means it must be
5243  // complete with the restriction that an array type might be completed by the
5244  // initializer; note that later code assumes this restriction.
5245  QualType BaseDeclType = VDecl->getType();
5246  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5247    BaseDeclType = Array->getElementType();
5248  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5249                          diag::err_typecheck_decl_incomplete_type)) {
5250    RealDecl->setInvalidDecl();
5251    return;
5252  }
5253
5254  // The variable can not have an abstract class type.
5255  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5256                             diag::err_abstract_type_in_decl,
5257                             AbstractVariableType))
5258    VDecl->setInvalidDecl();
5259
5260  const VarDecl *Def;
5261  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5262    Diag(VDecl->getLocation(), diag::err_redefinition)
5263      << VDecl->getDeclName();
5264    Diag(Def->getLocation(), diag::note_previous_definition);
5265    VDecl->setInvalidDecl();
5266    return;
5267  }
5268
5269  const VarDecl* PrevInit = 0;
5270  if (getLangOptions().CPlusPlus) {
5271    // C++ [class.static.data]p4
5272    //   If a static data member is of const integral or const
5273    //   enumeration type, its declaration in the class definition can
5274    //   specify a constant-initializer which shall be an integral
5275    //   constant expression (5.19). In that case, the member can appear
5276    //   in integral constant expressions. The member shall still be
5277    //   defined in a namespace scope if it is used in the program and the
5278    //   namespace scope definition shall not contain an initializer.
5279    //
5280    // We already performed a redefinition check above, but for static
5281    // data members we also need to check whether there was an in-class
5282    // declaration with an initializer.
5283    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5284      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5285      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5286      return;
5287    }
5288
5289    if (VDecl->hasLocalStorage())
5290      getCurFunction()->setHasBranchProtectedScope();
5291
5292    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5293      VDecl->setInvalidDecl();
5294      return;
5295    }
5296  }
5297
5298  // Capture the variable that is being initialized and the style of
5299  // initialization.
5300  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5301
5302  // FIXME: Poor source location information.
5303  InitializationKind Kind
5304    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5305                                                   Init->getLocStart(),
5306                                                   Init->getLocEnd())
5307                : InitializationKind::CreateCopy(VDecl->getLocation(),
5308                                                 Init->getLocStart());
5309
5310  // Get the decls type and save a reference for later, since
5311  // CheckInitializerTypes may change it.
5312  QualType DclT = VDecl->getType(), SavT = DclT;
5313  if (VDecl->isLocalVarDecl()) {
5314    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5315      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5316      VDecl->setInvalidDecl();
5317    } else if (!VDecl->isInvalidDecl()) {
5318      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5319      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5320                                                MultiExprArg(*this, &Init, 1),
5321                                                &DclT);
5322      if (Result.isInvalid()) {
5323        VDecl->setInvalidDecl();
5324        return;
5325      }
5326
5327      Init = Result.takeAs<Expr>();
5328
5329      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5330      // Don't check invalid declarations to avoid emitting useless diagnostics.
5331      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5332        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5333          CheckForConstantInitializer(Init, DclT);
5334      }
5335    }
5336  } else if (VDecl->isStaticDataMember() &&
5337             VDecl->getLexicalDeclContext()->isRecord()) {
5338    // This is an in-class initialization for a static data member, e.g.,
5339    //
5340    // struct S {
5341    //   static const int value = 17;
5342    // };
5343
5344    // Try to perform the initialization regardless.
5345    if (!VDecl->isInvalidDecl()) {
5346      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5347      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5348                                          MultiExprArg(*this, &Init, 1),
5349                                          &DclT);
5350      if (Result.isInvalid()) {
5351        VDecl->setInvalidDecl();
5352        return;
5353      }
5354
5355      Init = Result.takeAs<Expr>();
5356    }
5357
5358    // C++ [class.mem]p4:
5359    //   A member-declarator can contain a constant-initializer only
5360    //   if it declares a static member (9.4) of const integral or
5361    //   const enumeration type, see 9.4.2.
5362    QualType T = VDecl->getType();
5363
5364    // Do nothing on dependent types.
5365    if (T->isDependentType()) {
5366
5367    // Require constness.
5368    } else if (!T.isConstQualified()) {
5369      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5370        << Init->getSourceRange();
5371      VDecl->setInvalidDecl();
5372
5373    // We allow integer constant expressions in all cases.
5374    } else if (T->isIntegralOrEnumerationType()) {
5375      if (!Init->isValueDependent()) {
5376        // Check whether the expression is a constant expression.
5377        llvm::APSInt Value;
5378        SourceLocation Loc;
5379        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5380          Diag(Loc, diag::err_in_class_initializer_non_constant)
5381            << Init->getSourceRange();
5382          VDecl->setInvalidDecl();
5383        }
5384      }
5385
5386    // We allow floating-point constants as an extension in C++03, and
5387    // C++0x has far more complicated rules that we don't really
5388    // implement fully.
5389    } else {
5390      bool Allowed = false;
5391      if (getLangOptions().CPlusPlus0x) {
5392        Allowed = T->isLiteralType();
5393      } else if (T->isFloatingType()) { // also permits complex, which is ok
5394        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5395          << T << Init->getSourceRange();
5396        Allowed = true;
5397      }
5398
5399      if (!Allowed) {
5400        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5401          << T << Init->getSourceRange();
5402        VDecl->setInvalidDecl();
5403
5404      // TODO: there are probably expressions that pass here that shouldn't.
5405      } else if (!Init->isValueDependent() &&
5406                 !Init->isConstantInitializer(Context, false)) {
5407        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5408          << Init->getSourceRange();
5409        VDecl->setInvalidDecl();
5410      }
5411    }
5412  } else if (VDecl->isFileVarDecl()) {
5413    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5414        (!getLangOptions().CPlusPlus ||
5415         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5416      Diag(VDecl->getLocation(), diag::warn_extern_init);
5417    if (!VDecl->isInvalidDecl()) {
5418      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5419      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5420                                                MultiExprArg(*this, &Init, 1),
5421                                                &DclT);
5422      if (Result.isInvalid()) {
5423        VDecl->setInvalidDecl();
5424        return;
5425      }
5426
5427      Init = Result.takeAs<Expr>();
5428    }
5429
5430    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5431    // Don't check invalid declarations to avoid emitting useless diagnostics.
5432    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5433      // C99 6.7.8p4. All file scoped initializers need to be constant.
5434      CheckForConstantInitializer(Init, DclT);
5435    }
5436  }
5437  // If the type changed, it means we had an incomplete type that was
5438  // completed by the initializer. For example:
5439  //   int ary[] = { 1, 3, 5 };
5440  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5441  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5442    VDecl->setType(DclT);
5443    Init->setType(DclT);
5444  }
5445
5446
5447  // If this variable is a local declaration with record type, make sure it
5448  // doesn't have a flexible member initialization.  We only support this as a
5449  // global/static definition.
5450  if (VDecl->hasLocalStorage())
5451    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5452      if (RT->getDecl()->hasFlexibleArrayMember()) {
5453        // Check whether the initializer tries to initialize the flexible
5454        // array member itself to anything other than an empty initializer list.
5455        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5456          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5457                                         RT->getDecl()->field_end()) - 1;
5458          if (Index < ILE->getNumInits() &&
5459              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5460                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5461            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5462            VDecl->setInvalidDecl();
5463          }
5464        }
5465      }
5466
5467  // Check any implicit conversions within the expression.
5468  CheckImplicitConversions(Init, VDecl->getLocation());
5469
5470  Init = MaybeCreateExprWithCleanups(Init);
5471  // Attach the initializer to the decl.
5472  VDecl->setInit(Init);
5473
5474  CheckCompleteVariableDeclaration(VDecl);
5475}
5476
5477/// ActOnInitializerError - Given that there was an error parsing an
5478/// initializer for the given declaration, try to return to some form
5479/// of sanity.
5480void Sema::ActOnInitializerError(Decl *D) {
5481  // Our main concern here is re-establishing invariants like "a
5482  // variable's type is either dependent or complete".
5483  if (!D || D->isInvalidDecl()) return;
5484
5485  VarDecl *VD = dyn_cast<VarDecl>(D);
5486  if (!VD) return;
5487
5488  // Auto types are meaningless if we can't make sense of the initializer.
5489  if (ParsingInitForAutoVars.count(D)) {
5490    D->setInvalidDecl();
5491    return;
5492  }
5493
5494  QualType Ty = VD->getType();
5495  if (Ty->isDependentType()) return;
5496
5497  // Require a complete type.
5498  if (RequireCompleteType(VD->getLocation(),
5499                          Context.getBaseElementType(Ty),
5500                          diag::err_typecheck_decl_incomplete_type)) {
5501    VD->setInvalidDecl();
5502    return;
5503  }
5504
5505  // Require an abstract type.
5506  if (RequireNonAbstractType(VD->getLocation(), Ty,
5507                             diag::err_abstract_type_in_decl,
5508                             AbstractVariableType)) {
5509    VD->setInvalidDecl();
5510    return;
5511  }
5512
5513  // Don't bother complaining about constructors or destructors,
5514  // though.
5515}
5516
5517void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5518                                  bool TypeMayContainAuto) {
5519  // If there is no declaration, there was an error parsing it. Just ignore it.
5520  if (RealDecl == 0)
5521    return;
5522
5523  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5524    QualType Type = Var->getType();
5525
5526    // C++0x [dcl.spec.auto]p3
5527    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5528      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5529        << Var->getDeclName() << Type;
5530      Var->setInvalidDecl();
5531      return;
5532    }
5533
5534    switch (Var->isThisDeclarationADefinition()) {
5535    case VarDecl::Definition:
5536      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5537        break;
5538
5539      // We have an out-of-line definition of a static data member
5540      // that has an in-class initializer, so we type-check this like
5541      // a declaration.
5542      //
5543      // Fall through
5544
5545    case VarDecl::DeclarationOnly:
5546      // It's only a declaration.
5547
5548      // Block scope. C99 6.7p7: If an identifier for an object is
5549      // declared with no linkage (C99 6.2.2p6), the type for the
5550      // object shall be complete.
5551      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5552          !Var->getLinkage() && !Var->isInvalidDecl() &&
5553          RequireCompleteType(Var->getLocation(), Type,
5554                              diag::err_typecheck_decl_incomplete_type))
5555        Var->setInvalidDecl();
5556
5557      // Make sure that the type is not abstract.
5558      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5559          RequireNonAbstractType(Var->getLocation(), Type,
5560                                 diag::err_abstract_type_in_decl,
5561                                 AbstractVariableType))
5562        Var->setInvalidDecl();
5563      return;
5564
5565    case VarDecl::TentativeDefinition:
5566      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5567      // object that has file scope without an initializer, and without a
5568      // storage-class specifier or with the storage-class specifier "static",
5569      // constitutes a tentative definition. Note: A tentative definition with
5570      // external linkage is valid (C99 6.2.2p5).
5571      if (!Var->isInvalidDecl()) {
5572        if (const IncompleteArrayType *ArrayT
5573                                    = Context.getAsIncompleteArrayType(Type)) {
5574          if (RequireCompleteType(Var->getLocation(),
5575                                  ArrayT->getElementType(),
5576                                  diag::err_illegal_decl_array_incomplete_type))
5577            Var->setInvalidDecl();
5578        } else if (Var->getStorageClass() == SC_Static) {
5579          // C99 6.9.2p3: If the declaration of an identifier for an object is
5580          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5581          // declared type shall not be an incomplete type.
5582          // NOTE: code such as the following
5583          //     static struct s;
5584          //     struct s { int a; };
5585          // is accepted by gcc. Hence here we issue a warning instead of
5586          // an error and we do not invalidate the static declaration.
5587          // NOTE: to avoid multiple warnings, only check the first declaration.
5588          if (Var->getPreviousDeclaration() == 0)
5589            RequireCompleteType(Var->getLocation(), Type,
5590                                diag::ext_typecheck_decl_incomplete_type);
5591        }
5592      }
5593
5594      // Record the tentative definition; we're done.
5595      if (!Var->isInvalidDecl())
5596        TentativeDefinitions.push_back(Var);
5597      return;
5598    }
5599
5600    // Provide a specific diagnostic for uninitialized variable
5601    // definitions with incomplete array type.
5602    if (Type->isIncompleteArrayType()) {
5603      Diag(Var->getLocation(),
5604           diag::err_typecheck_incomplete_array_needs_initializer);
5605      Var->setInvalidDecl();
5606      return;
5607    }
5608
5609    // Provide a specific diagnostic for uninitialized variable
5610    // definitions with reference type.
5611    if (Type->isReferenceType()) {
5612      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5613        << Var->getDeclName()
5614        << SourceRange(Var->getLocation(), Var->getLocation());
5615      Var->setInvalidDecl();
5616      return;
5617    }
5618
5619    // Do not attempt to type-check the default initializer for a
5620    // variable with dependent type.
5621    if (Type->isDependentType())
5622      return;
5623
5624    if (Var->isInvalidDecl())
5625      return;
5626
5627    if (RequireCompleteType(Var->getLocation(),
5628                            Context.getBaseElementType(Type),
5629                            diag::err_typecheck_decl_incomplete_type)) {
5630      Var->setInvalidDecl();
5631      return;
5632    }
5633
5634    // The variable can not have an abstract class type.
5635    if (RequireNonAbstractType(Var->getLocation(), Type,
5636                               diag::err_abstract_type_in_decl,
5637                               AbstractVariableType)) {
5638      Var->setInvalidDecl();
5639      return;
5640    }
5641
5642    // Check for jumps past the implicit initializer.  C++0x
5643    // clarifies that this applies to a "variable with automatic
5644    // storage duration", not a "local variable".
5645    // C++0x [stmt.dcl]p3
5646    //   A program that jumps from a point where a variable with automatic
5647    //   storage duration is not in scope to a point where it is in scope is
5648    //   ill-formed unless the variable has scalar type, class type with a
5649    //   trivial default constructor and a trivial destructor, a cv-qualified
5650    //   version of one of these types, or an array of one of the preceding
5651    //   types and is declared without an initializer.
5652    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5653      if (const RecordType *Record
5654            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5655        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5656        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5657            (getLangOptions().CPlusPlus0x &&
5658             (!CXXRecord->hasTrivialDefaultConstructor() ||
5659              !CXXRecord->hasTrivialDestructor())))
5660          getCurFunction()->setHasBranchProtectedScope();
5661      }
5662    }
5663
5664    // C++03 [dcl.init]p9:
5665    //   If no initializer is specified for an object, and the
5666    //   object is of (possibly cv-qualified) non-POD class type (or
5667    //   array thereof), the object shall be default-initialized; if
5668    //   the object is of const-qualified type, the underlying class
5669    //   type shall have a user-declared default
5670    //   constructor. Otherwise, if no initializer is specified for
5671    //   a non- static object, the object and its subobjects, if
5672    //   any, have an indeterminate initial value); if the object
5673    //   or any of its subobjects are of const-qualified type, the
5674    //   program is ill-formed.
5675    // C++0x [dcl.init]p11:
5676    //   If no initializer is specified for an object, the object is
5677    //   default-initialized; [...].
5678    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5679    InitializationKind Kind
5680      = InitializationKind::CreateDefault(Var->getLocation());
5681
5682    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5683    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5684                                      MultiExprArg(*this, 0, 0));
5685    if (Init.isInvalid())
5686      Var->setInvalidDecl();
5687    else if (Init.get())
5688      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5689
5690    CheckCompleteVariableDeclaration(Var);
5691  }
5692}
5693
5694void Sema::ActOnCXXForRangeDecl(Decl *D) {
5695  VarDecl *VD = dyn_cast<VarDecl>(D);
5696  if (!VD) {
5697    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5698    D->setInvalidDecl();
5699    return;
5700  }
5701
5702  VD->setCXXForRangeDecl(true);
5703
5704  // for-range-declaration cannot be given a storage class specifier.
5705  int Error = -1;
5706  switch (VD->getStorageClassAsWritten()) {
5707  case SC_None:
5708    break;
5709  case SC_Extern:
5710    Error = 0;
5711    break;
5712  case SC_Static:
5713    Error = 1;
5714    break;
5715  case SC_PrivateExtern:
5716    Error = 2;
5717    break;
5718  case SC_Auto:
5719    Error = 3;
5720    break;
5721  case SC_Register:
5722    Error = 4;
5723    break;
5724  }
5725  // FIXME: constexpr isn't allowed here.
5726  //if (DS.isConstexprSpecified())
5727  //  Error = 5;
5728  if (Error != -1) {
5729    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5730      << VD->getDeclName() << Error;
5731    D->setInvalidDecl();
5732  }
5733}
5734
5735void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5736  if (var->isInvalidDecl()) return;
5737
5738  // All the following checks are C++ only.
5739  if (!getLangOptions().CPlusPlus) return;
5740
5741  QualType baseType = Context.getBaseElementType(var->getType());
5742  if (baseType->isDependentType()) return;
5743
5744  // __block variables might require us to capture a copy-initializer.
5745  if (var->hasAttr<BlocksAttr>()) {
5746    // It's currently invalid to ever have a __block variable with an
5747    // array type; should we diagnose that here?
5748
5749    // Regardless, we don't want to ignore array nesting when
5750    // constructing this copy.
5751    QualType type = var->getType();
5752
5753    if (type->isStructureOrClassType()) {
5754      SourceLocation poi = var->getLocation();
5755      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5756      ExprResult result =
5757        PerformCopyInitialization(
5758                        InitializedEntity::InitializeBlock(poi, type, false),
5759                                  poi, Owned(varRef));
5760      if (!result.isInvalid()) {
5761        result = MaybeCreateExprWithCleanups(result);
5762        Expr *init = result.takeAs<Expr>();
5763        Context.setBlockVarCopyInits(var, init);
5764      }
5765    }
5766  }
5767
5768  // Check for global constructors.
5769  if (!var->getDeclContext()->isDependentContext() &&
5770      var->hasGlobalStorage() &&
5771      !var->isStaticLocal() &&
5772      var->getInit() &&
5773      !var->getInit()->isConstantInitializer(Context,
5774                                             baseType->isReferenceType()))
5775    Diag(var->getLocation(), diag::warn_global_constructor)
5776      << var->getInit()->getSourceRange();
5777
5778  // Require the destructor.
5779  if (const RecordType *recordType = baseType->getAs<RecordType>())
5780    FinalizeVarWithDestructor(var, recordType);
5781}
5782
5783/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5784/// any semantic actions necessary after any initializer has been attached.
5785void
5786Sema::FinalizeDeclaration(Decl *ThisDecl) {
5787  // Note that we are no longer parsing the initializer for this declaration.
5788  ParsingInitForAutoVars.erase(ThisDecl);
5789}
5790
5791Sema::DeclGroupPtrTy
5792Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5793                              Decl **Group, unsigned NumDecls) {
5794  llvm::SmallVector<Decl*, 8> Decls;
5795
5796  if (DS.isTypeSpecOwned())
5797    Decls.push_back(DS.getRepAsDecl());
5798
5799  for (unsigned i = 0; i != NumDecls; ++i)
5800    if (Decl *D = Group[i])
5801      Decls.push_back(D);
5802
5803  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5804                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5805}
5806
5807/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5808/// group, performing any necessary semantic checking.
5809Sema::DeclGroupPtrTy
5810Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5811                           bool TypeMayContainAuto) {
5812  // C++0x [dcl.spec.auto]p7:
5813  //   If the type deduced for the template parameter U is not the same in each
5814  //   deduction, the program is ill-formed.
5815  // FIXME: When initializer-list support is added, a distinction is needed
5816  // between the deduced type U and the deduced type which 'auto' stands for.
5817  //   auto a = 0, b = { 1, 2, 3 };
5818  // is legal because the deduced type U is 'int' in both cases.
5819  if (TypeMayContainAuto && NumDecls > 1) {
5820    QualType Deduced;
5821    CanQualType DeducedCanon;
5822    VarDecl *DeducedDecl = 0;
5823    for (unsigned i = 0; i != NumDecls; ++i) {
5824      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5825        AutoType *AT = D->getType()->getContainedAutoType();
5826        // Don't reissue diagnostics when instantiating a template.
5827        if (AT && D->isInvalidDecl())
5828          break;
5829        if (AT && AT->isDeduced()) {
5830          QualType U = AT->getDeducedType();
5831          CanQualType UCanon = Context.getCanonicalType(U);
5832          if (Deduced.isNull()) {
5833            Deduced = U;
5834            DeducedCanon = UCanon;
5835            DeducedDecl = D;
5836          } else if (DeducedCanon != UCanon) {
5837            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5838                 diag::err_auto_different_deductions)
5839              << Deduced << DeducedDecl->getDeclName()
5840              << U << D->getDeclName()
5841              << DeducedDecl->getInit()->getSourceRange()
5842              << D->getInit()->getSourceRange();
5843            D->setInvalidDecl();
5844            break;
5845          }
5846        }
5847      }
5848    }
5849  }
5850
5851  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5852}
5853
5854
5855/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5856/// to introduce parameters into function prototype scope.
5857Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5858  const DeclSpec &DS = D.getDeclSpec();
5859
5860  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5861  VarDecl::StorageClass StorageClass = SC_None;
5862  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5863  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5864    StorageClass = SC_Register;
5865    StorageClassAsWritten = SC_Register;
5866  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5867    Diag(DS.getStorageClassSpecLoc(),
5868         diag::err_invalid_storage_class_in_func_decl);
5869    D.getMutableDeclSpec().ClearStorageClassSpecs();
5870  }
5871
5872  if (D.getDeclSpec().isThreadSpecified())
5873    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5874
5875  DiagnoseFunctionSpecifiers(D);
5876
5877  TagDecl *OwnedDecl = 0;
5878  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5879  QualType parmDeclType = TInfo->getType();
5880
5881  if (getLangOptions().CPlusPlus) {
5882    // Check that there are no default arguments inside the type of this
5883    // parameter.
5884    CheckExtraCXXDefaultArguments(D);
5885
5886    if (OwnedDecl && OwnedDecl->isDefinition()) {
5887      // C++ [dcl.fct]p6:
5888      //   Types shall not be defined in return or parameter types.
5889      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5890        << Context.getTypeDeclType(OwnedDecl);
5891    }
5892
5893    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5894    if (D.getCXXScopeSpec().isSet()) {
5895      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5896        << D.getCXXScopeSpec().getRange();
5897      D.getCXXScopeSpec().clear();
5898    }
5899  }
5900
5901  // Ensure we have a valid name
5902  IdentifierInfo *II = 0;
5903  if (D.hasName()) {
5904    II = D.getIdentifier();
5905    if (!II) {
5906      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5907        << GetNameForDeclarator(D).getName().getAsString();
5908      D.setInvalidType(true);
5909    }
5910  }
5911
5912  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5913  if (II) {
5914    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5915                   ForRedeclaration);
5916    LookupName(R, S);
5917    if (R.isSingleResult()) {
5918      NamedDecl *PrevDecl = R.getFoundDecl();
5919      if (PrevDecl->isTemplateParameter()) {
5920        // Maybe we will complain about the shadowed template parameter.
5921        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5922        // Just pretend that we didn't see the previous declaration.
5923        PrevDecl = 0;
5924      } else if (S->isDeclScope(PrevDecl)) {
5925        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5926        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5927
5928        // Recover by removing the name
5929        II = 0;
5930        D.SetIdentifier(0, D.getIdentifierLoc());
5931        D.setInvalidType(true);
5932      }
5933    }
5934  }
5935
5936  // Temporarily put parameter variables in the translation unit, not
5937  // the enclosing context.  This prevents them from accidentally
5938  // looking like class members in C++.
5939  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5940                                    D.getSourceRange().getBegin(),
5941                                    D.getIdentifierLoc(), II,
5942                                    parmDeclType, TInfo,
5943                                    StorageClass, StorageClassAsWritten);
5944
5945  if (D.isInvalidType())
5946    New->setInvalidDecl();
5947
5948  assert(S->isFunctionPrototypeScope());
5949  assert(S->getFunctionPrototypeDepth() >= 1);
5950  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5951                    S->getNextFunctionPrototypeIndex());
5952
5953  // Add the parameter declaration into this scope.
5954  S->AddDecl(New);
5955  if (II)
5956    IdResolver.AddDecl(New);
5957
5958  ProcessDeclAttributes(S, New, D);
5959
5960  if (New->hasAttr<BlocksAttr>()) {
5961    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5962  }
5963  return New;
5964}
5965
5966/// \brief Synthesizes a variable for a parameter arising from a
5967/// typedef.
5968ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5969                                              SourceLocation Loc,
5970                                              QualType T) {
5971  /* FIXME: setting StartLoc == Loc.
5972     Would it be worth to modify callers so as to provide proper source
5973     location for the unnamed parameters, embedding the parameter's type? */
5974  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5975                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5976                                           SC_None, SC_None, 0);
5977  Param->setImplicit();
5978  return Param;
5979}
5980
5981void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5982                                    ParmVarDecl * const *ParamEnd) {
5983  // Don't diagnose unused-parameter errors in template instantiations; we
5984  // will already have done so in the template itself.
5985  if (!ActiveTemplateInstantiations.empty())
5986    return;
5987
5988  for (; Param != ParamEnd; ++Param) {
5989    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5990        !(*Param)->hasAttr<UnusedAttr>()) {
5991      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5992        << (*Param)->getDeclName();
5993    }
5994  }
5995}
5996
5997void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5998                                                  ParmVarDecl * const *ParamEnd,
5999                                                  QualType ReturnTy,
6000                                                  NamedDecl *D) {
6001  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6002    return;
6003
6004  // Warn if the return value is pass-by-value and larger than the specified
6005  // threshold.
6006  if (ReturnTy->isPODType()) {
6007    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6008    if (Size > LangOpts.NumLargeByValueCopy)
6009      Diag(D->getLocation(), diag::warn_return_value_size)
6010          << D->getDeclName() << Size;
6011  }
6012
6013  // Warn if any parameter is pass-by-value and larger than the specified
6014  // threshold.
6015  for (; Param != ParamEnd; ++Param) {
6016    QualType T = (*Param)->getType();
6017    if (!T->isPODType())
6018      continue;
6019    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6020    if (Size > LangOpts.NumLargeByValueCopy)
6021      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6022          << (*Param)->getDeclName() << Size;
6023  }
6024}
6025
6026ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6027                                  SourceLocation NameLoc, IdentifierInfo *Name,
6028                                  QualType T, TypeSourceInfo *TSInfo,
6029                                  VarDecl::StorageClass StorageClass,
6030                                  VarDecl::StorageClass StorageClassAsWritten) {
6031  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6032                                         adjustParameterType(T), TSInfo,
6033                                         StorageClass, StorageClassAsWritten,
6034                                         0);
6035
6036  // Parameters can not be abstract class types.
6037  // For record types, this is done by the AbstractClassUsageDiagnoser once
6038  // the class has been completely parsed.
6039  if (!CurContext->isRecord() &&
6040      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6041                             AbstractParamType))
6042    New->setInvalidDecl();
6043
6044  // Parameter declarators cannot be interface types. All ObjC objects are
6045  // passed by reference.
6046  if (T->isObjCObjectType()) {
6047    Diag(NameLoc,
6048         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6049    New->setInvalidDecl();
6050  }
6051
6052  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6053  // duration shall not be qualified by an address-space qualifier."
6054  // Since all parameters have automatic store duration, they can not have
6055  // an address space.
6056  if (T.getAddressSpace() != 0) {
6057    Diag(NameLoc, diag::err_arg_with_address_space);
6058    New->setInvalidDecl();
6059  }
6060
6061  return New;
6062}
6063
6064void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6065                                           SourceLocation LocAfterDecls) {
6066  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6067
6068  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6069  // for a K&R function.
6070  if (!FTI.hasPrototype) {
6071    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6072      --i;
6073      if (FTI.ArgInfo[i].Param == 0) {
6074        llvm::SmallString<256> Code;
6075        llvm::raw_svector_ostream(Code) << "  int "
6076                                        << FTI.ArgInfo[i].Ident->getName()
6077                                        << ";\n";
6078        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6079          << FTI.ArgInfo[i].Ident
6080          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6081
6082        // Implicitly declare the argument as type 'int' for lack of a better
6083        // type.
6084        AttributeFactory attrs;
6085        DeclSpec DS(attrs);
6086        const char* PrevSpec; // unused
6087        unsigned DiagID; // unused
6088        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6089                           PrevSpec, DiagID);
6090        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6091        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6092        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6093      }
6094    }
6095  }
6096}
6097
6098Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6099                                         Declarator &D) {
6100  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6101  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6102  Scope *ParentScope = FnBodyScope->getParent();
6103
6104  Decl *DP = HandleDeclarator(ParentScope, D,
6105                              MultiTemplateParamsArg(*this),
6106                              /*IsFunctionDefinition=*/true);
6107  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6108}
6109
6110static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6111  // Don't warn about invalid declarations.
6112  if (FD->isInvalidDecl())
6113    return false;
6114
6115  // Or declarations that aren't global.
6116  if (!FD->isGlobal())
6117    return false;
6118
6119  // Don't warn about C++ member functions.
6120  if (isa<CXXMethodDecl>(FD))
6121    return false;
6122
6123  // Don't warn about 'main'.
6124  if (FD->isMain())
6125    return false;
6126
6127  // Don't warn about inline functions.
6128  if (FD->isInlined())
6129    return false;
6130
6131  // Don't warn about function templates.
6132  if (FD->getDescribedFunctionTemplate())
6133    return false;
6134
6135  // Don't warn about function template specializations.
6136  if (FD->isFunctionTemplateSpecialization())
6137    return false;
6138
6139  bool MissingPrototype = true;
6140  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6141       Prev; Prev = Prev->getPreviousDeclaration()) {
6142    // Ignore any declarations that occur in function or method
6143    // scope, because they aren't visible from the header.
6144    if (Prev->getDeclContext()->isFunctionOrMethod())
6145      continue;
6146
6147    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6148    break;
6149  }
6150
6151  return MissingPrototype;
6152}
6153
6154void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6155  // Don't complain if we're in GNU89 mode and the previous definition
6156  // was an extern inline function.
6157  const FunctionDecl *Definition;
6158  if (FD->isDefined(Definition) &&
6159      !canRedefineFunction(Definition, getLangOptions())) {
6160    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6161        Definition->getStorageClass() == SC_Extern)
6162      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6163        << FD->getDeclName() << getLangOptions().CPlusPlus;
6164    else
6165      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6166    Diag(Definition->getLocation(), diag::note_previous_definition);
6167  }
6168}
6169
6170Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6171  // Clear the last template instantiation error context.
6172  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6173
6174  if (!D)
6175    return D;
6176  FunctionDecl *FD = 0;
6177
6178  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6179    FD = FunTmpl->getTemplatedDecl();
6180  else
6181    FD = cast<FunctionDecl>(D);
6182
6183  // Enter a new function scope
6184  PushFunctionScope();
6185
6186  // See if this is a redefinition.
6187  if (!FD->isLateTemplateParsed())
6188    CheckForFunctionRedefinition(FD);
6189
6190  // Builtin functions cannot be defined.
6191  if (unsigned BuiltinID = FD->getBuiltinID()) {
6192    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6193      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6194      FD->setInvalidDecl();
6195    }
6196  }
6197
6198  // The return type of a function definition must be complete
6199  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6200  QualType ResultType = FD->getResultType();
6201  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6202      !FD->isInvalidDecl() &&
6203      RequireCompleteType(FD->getLocation(), ResultType,
6204                          diag::err_func_def_incomplete_result))
6205    FD->setInvalidDecl();
6206
6207  // GNU warning -Wmissing-prototypes:
6208  //   Warn if a global function is defined without a previous
6209  //   prototype declaration. This warning is issued even if the
6210  //   definition itself provides a prototype. The aim is to detect
6211  //   global functions that fail to be declared in header files.
6212  if (ShouldWarnAboutMissingPrototype(FD))
6213    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6214
6215  if (FnBodyScope)
6216    PushDeclContext(FnBodyScope, FD);
6217
6218  // Check the validity of our function parameters
6219  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6220                           /*CheckParameterNames=*/true);
6221
6222  // Introduce our parameters into the function scope
6223  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6224    ParmVarDecl *Param = FD->getParamDecl(p);
6225    Param->setOwningFunction(FD);
6226
6227    // If this has an identifier, add it to the scope stack.
6228    if (Param->getIdentifier() && FnBodyScope) {
6229      CheckShadow(FnBodyScope, Param);
6230
6231      PushOnScopeChains(Param, FnBodyScope);
6232    }
6233  }
6234
6235  // Checking attributes of current function definition
6236  // dllimport attribute.
6237  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6238  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6239    // dllimport attribute cannot be directly applied to definition.
6240    // Microsoft accepts dllimport for functions defined within class scope.
6241    if (!DA->isInherited() &&
6242        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6243      Diag(FD->getLocation(),
6244           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6245        << "dllimport";
6246      FD->setInvalidDecl();
6247      return FD;
6248    }
6249
6250    // Visual C++ appears to not think this is an issue, so only issue
6251    // a warning when Microsoft extensions are disabled.
6252    if (!LangOpts.Microsoft) {
6253      // If a symbol previously declared dllimport is later defined, the
6254      // attribute is ignored in subsequent references, and a warning is
6255      // emitted.
6256      Diag(FD->getLocation(),
6257           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6258        << FD->getName() << "dllimport";
6259    }
6260  }
6261  return FD;
6262}
6263
6264/// \brief Given the set of return statements within a function body,
6265/// compute the variables that are subject to the named return value
6266/// optimization.
6267///
6268/// Each of the variables that is subject to the named return value
6269/// optimization will be marked as NRVO variables in the AST, and any
6270/// return statement that has a marked NRVO variable as its NRVO candidate can
6271/// use the named return value optimization.
6272///
6273/// This function applies a very simplistic algorithm for NRVO: if every return
6274/// statement in the function has the same NRVO candidate, that candidate is
6275/// the NRVO variable.
6276///
6277/// FIXME: Employ a smarter algorithm that accounts for multiple return
6278/// statements and the lifetimes of the NRVO candidates. We should be able to
6279/// find a maximal set of NRVO variables.
6280static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6281  ReturnStmt **Returns = Scope->Returns.data();
6282
6283  const VarDecl *NRVOCandidate = 0;
6284  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6285    if (!Returns[I]->getNRVOCandidate())
6286      return;
6287
6288    if (!NRVOCandidate)
6289      NRVOCandidate = Returns[I]->getNRVOCandidate();
6290    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6291      return;
6292  }
6293
6294  if (NRVOCandidate)
6295    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6296}
6297
6298Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6299  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6300}
6301
6302Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6303                                    bool IsInstantiation) {
6304  FunctionDecl *FD = 0;
6305  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6306  if (FunTmpl)
6307    FD = FunTmpl->getTemplatedDecl();
6308  else
6309    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6310
6311  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6312  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6313
6314  if (FD) {
6315    FD->setBody(Body);
6316    if (FD->isMain()) {
6317      // C and C++ allow for main to automagically return 0.
6318      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6319      FD->setHasImplicitReturnZero(true);
6320      WP.disableCheckFallThrough();
6321    }
6322
6323    // MSVC permits the use of pure specifier (=0) on function definition,
6324    // defined at class scope, warn about this non standard construct.
6325    if (getLangOptions().Microsoft && FD->isPure())
6326      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6327
6328    if (!FD->isInvalidDecl()) {
6329      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6330      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6331                                             FD->getResultType(), FD);
6332
6333      // If this is a constructor, we need a vtable.
6334      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6335        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6336
6337      ComputeNRVO(Body, getCurFunction());
6338    }
6339
6340    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6341  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6342    assert(MD == getCurMethodDecl() && "Method parsing confused");
6343    MD->setBody(Body);
6344    if (Body)
6345      MD->setEndLoc(Body->getLocEnd());
6346    if (!MD->isInvalidDecl()) {
6347      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6348      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6349                                             MD->getResultType(), MD);
6350    }
6351  } else {
6352    return 0;
6353  }
6354
6355  // Verify and clean out per-function state.
6356  if (Body) {
6357    // C++ constructors that have function-try-blocks can't have return
6358    // statements in the handlers of that block. (C++ [except.handle]p14)
6359    // Verify this.
6360    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6361      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6362
6363    // Verify that that gotos and switch cases don't jump into scopes illegally.
6364    // Verify that that gotos and switch cases don't jump into scopes illegally.
6365    if (getCurFunction()->NeedsScopeChecking() &&
6366        !dcl->isInvalidDecl() &&
6367        !hasAnyErrorsInThisFunction())
6368      DiagnoseInvalidJumps(Body);
6369
6370    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6371      if (!Destructor->getParent()->isDependentType())
6372        CheckDestructor(Destructor);
6373
6374      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6375                                             Destructor->getParent());
6376    }
6377
6378    // If any errors have occurred, clear out any temporaries that may have
6379    // been leftover. This ensures that these temporaries won't be picked up for
6380    // deletion in some later function.
6381    if (PP.getDiagnostics().hasErrorOccurred() ||
6382        PP.getDiagnostics().getSuppressAllDiagnostics())
6383      ExprTemporaries.clear();
6384    else if (!isa<FunctionTemplateDecl>(dcl)) {
6385      // Since the body is valid, issue any analysis-based warnings that are
6386      // enabled.
6387      ActivePolicy = &WP;
6388    }
6389
6390    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6391  }
6392
6393  if (!IsInstantiation)
6394    PopDeclContext();
6395
6396  PopFunctionOrBlockScope(ActivePolicy, dcl);
6397
6398  // If any errors have occurred, clear out any temporaries that may have
6399  // been leftover. This ensures that these temporaries won't be picked up for
6400  // deletion in some later function.
6401  if (getDiagnostics().hasErrorOccurred())
6402    ExprTemporaries.clear();
6403
6404  return dcl;
6405}
6406
6407/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6408/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6409NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6410                                          IdentifierInfo &II, Scope *S) {
6411  // Before we produce a declaration for an implicitly defined
6412  // function, see whether there was a locally-scoped declaration of
6413  // this name as a function or variable. If so, use that
6414  // (non-visible) declaration, and complain about it.
6415  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6416    = LocallyScopedExternalDecls.find(&II);
6417  if (Pos != LocallyScopedExternalDecls.end()) {
6418    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6419    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6420    return Pos->second;
6421  }
6422
6423  // Extension in C99.  Legal in C90, but warn about it.
6424  if (II.getName().startswith("__builtin_"))
6425    Diag(Loc, diag::warn_builtin_unknown) << &II;
6426  else if (getLangOptions().C99)
6427    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6428  else
6429    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6430
6431  // Set a Declarator for the implicit definition: int foo();
6432  const char *Dummy;
6433  AttributeFactory attrFactory;
6434  DeclSpec DS(attrFactory);
6435  unsigned DiagID;
6436  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6437  (void)Error; // Silence warning.
6438  assert(!Error && "Error setting up implicit decl!");
6439  Declarator D(DS, Declarator::BlockContext);
6440  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6441                                             0, 0, true, SourceLocation(),
6442                                             EST_None, SourceLocation(),
6443                                             0, 0, 0, 0, Loc, Loc, D),
6444                DS.getAttributes(),
6445                SourceLocation());
6446  D.SetIdentifier(&II, Loc);
6447
6448  // Insert this function into translation-unit scope.
6449
6450  DeclContext *PrevDC = CurContext;
6451  CurContext = Context.getTranslationUnitDecl();
6452
6453  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6454  FD->setImplicit();
6455
6456  CurContext = PrevDC;
6457
6458  AddKnownFunctionAttributes(FD);
6459
6460  return FD;
6461}
6462
6463/// \brief Adds any function attributes that we know a priori based on
6464/// the declaration of this function.
6465///
6466/// These attributes can apply both to implicitly-declared builtins
6467/// (like __builtin___printf_chk) or to library-declared functions
6468/// like NSLog or printf.
6469void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6470  if (FD->isInvalidDecl())
6471    return;
6472
6473  // If this is a built-in function, map its builtin attributes to
6474  // actual attributes.
6475  if (unsigned BuiltinID = FD->getBuiltinID()) {
6476    // Handle printf-formatting attributes.
6477    unsigned FormatIdx;
6478    bool HasVAListArg;
6479    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6480      if (!FD->getAttr<FormatAttr>())
6481        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6482                                                "printf", FormatIdx+1,
6483                                               HasVAListArg ? 0 : FormatIdx+2));
6484    }
6485    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6486                                             HasVAListArg)) {
6487     if (!FD->getAttr<FormatAttr>())
6488       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6489                                              "scanf", FormatIdx+1,
6490                                              HasVAListArg ? 0 : FormatIdx+2));
6491    }
6492
6493    // Mark const if we don't care about errno and that is the only
6494    // thing preventing the function from being const. This allows
6495    // IRgen to use LLVM intrinsics for such functions.
6496    if (!getLangOptions().MathErrno &&
6497        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6498      if (!FD->getAttr<ConstAttr>())
6499        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6500    }
6501
6502    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6503      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6504    if (Context.BuiltinInfo.isConst(BuiltinID))
6505      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6506  }
6507
6508  IdentifierInfo *Name = FD->getIdentifier();
6509  if (!Name)
6510    return;
6511  if ((!getLangOptions().CPlusPlus &&
6512       FD->getDeclContext()->isTranslationUnit()) ||
6513      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6514       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6515       LinkageSpecDecl::lang_c)) {
6516    // Okay: this could be a libc/libm/Objective-C function we know
6517    // about.
6518  } else
6519    return;
6520
6521  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6522    // FIXME: NSLog and NSLogv should be target specific
6523    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6524      // FIXME: We known better than our headers.
6525      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6526    } else
6527      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6528                                             "printf", 1,
6529                                             Name->isStr("NSLogv") ? 0 : 2));
6530  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6531    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6532    // target-specific builtins, perhaps?
6533    if (!FD->getAttr<FormatAttr>())
6534      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6535                                             "printf", 2,
6536                                             Name->isStr("vasprintf") ? 0 : 3));
6537  }
6538}
6539
6540TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6541                                    TypeSourceInfo *TInfo) {
6542  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6543  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6544
6545  if (!TInfo) {
6546    assert(D.isInvalidType() && "no declarator info for valid type");
6547    TInfo = Context.getTrivialTypeSourceInfo(T);
6548  }
6549
6550  // Scope manipulation handled by caller.
6551  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6552                                           D.getSourceRange().getBegin(),
6553                                           D.getIdentifierLoc(),
6554                                           D.getIdentifier(),
6555                                           TInfo);
6556
6557  // Bail out immediately if we have an invalid declaration.
6558  if (D.isInvalidType()) {
6559    NewTD->setInvalidDecl();
6560    return NewTD;
6561  }
6562
6563  // C++ [dcl.typedef]p8:
6564  //   If the typedef declaration defines an unnamed class (or
6565  //   enum), the first typedef-name declared by the declaration
6566  //   to be that class type (or enum type) is used to denote the
6567  //   class type (or enum type) for linkage purposes only.
6568  // We need to check whether the type was declared in the declaration.
6569  switch (D.getDeclSpec().getTypeSpecType()) {
6570  case TST_enum:
6571  case TST_struct:
6572  case TST_union:
6573  case TST_class: {
6574    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6575
6576    // Do nothing if the tag is not anonymous or already has an
6577    // associated typedef (from an earlier typedef in this decl group).
6578    if (tagFromDeclSpec->getIdentifier()) break;
6579    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6580
6581    // A well-formed anonymous tag must always be a TUK_Definition.
6582    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6583
6584    // The type must match the tag exactly;  no qualifiers allowed.
6585    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6586      break;
6587
6588    // Otherwise, set this is the anon-decl typedef for the tag.
6589    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6590    break;
6591  }
6592
6593  default:
6594    break;
6595  }
6596
6597  return NewTD;
6598}
6599
6600
6601/// \brief Determine whether a tag with a given kind is acceptable
6602/// as a redeclaration of the given tag declaration.
6603///
6604/// \returns true if the new tag kind is acceptable, false otherwise.
6605bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6606                                        TagTypeKind NewTag, bool isDefinition,
6607                                        SourceLocation NewTagLoc,
6608                                        const IdentifierInfo &Name) {
6609  // C++ [dcl.type.elab]p3:
6610  //   The class-key or enum keyword present in the
6611  //   elaborated-type-specifier shall agree in kind with the
6612  //   declaration to which the name in the elaborated-type-specifier
6613  //   refers. This rule also applies to the form of
6614  //   elaborated-type-specifier that declares a class-name or
6615  //   friend class since it can be construed as referring to the
6616  //   definition of the class. Thus, in any
6617  //   elaborated-type-specifier, the enum keyword shall be used to
6618  //   refer to an enumeration (7.2), the union class-key shall be
6619  //   used to refer to a union (clause 9), and either the class or
6620  //   struct class-key shall be used to refer to a class (clause 9)
6621  //   declared using the class or struct class-key.
6622  TagTypeKind OldTag = Previous->getTagKind();
6623  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6624    if (OldTag == NewTag)
6625      return true;
6626
6627  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6628      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6629    // Warn about the struct/class tag mismatch.
6630    bool isTemplate = false;
6631    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6632      isTemplate = Record->getDescribedClassTemplate();
6633
6634    if (!ActiveTemplateInstantiations.empty()) {
6635      // In a template instantiation, do not offer fix-its for tag mismatches
6636      // since they usually mess up the template instead of fixing the problem.
6637      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6638        << (NewTag == TTK_Class) << isTemplate << &Name;
6639      return true;
6640    }
6641
6642    if (isDefinition) {
6643      // On definitions, check previous tags and issue a fix-it for each
6644      // one that doesn't match the current tag.
6645      if (Previous->getDefinition()) {
6646        // Don't suggest fix-its for redefinitions.
6647        return true;
6648      }
6649
6650      bool previousMismatch = false;
6651      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6652           E(Previous->redecls_end()); I != E; ++I) {
6653        if (I->getTagKind() != NewTag) {
6654          if (!previousMismatch) {
6655            previousMismatch = true;
6656            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6657              << (NewTag == TTK_Class) << isTemplate << &Name;
6658          }
6659          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6660            << (NewTag == TTK_Class)
6661            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6662                                            NewTag == TTK_Class?
6663                                            "class" : "struct");
6664        }
6665      }
6666      return true;
6667    }
6668
6669    // Check for a previous definition.  If current tag and definition
6670    // are same type, do nothing.  If no definition, but disagree with
6671    // with previous tag type, give a warning, but no fix-it.
6672    const TagDecl *Redecl = Previous->getDefinition() ?
6673                            Previous->getDefinition() : Previous;
6674    if (Redecl->getTagKind() == NewTag) {
6675      return true;
6676    }
6677
6678    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6679      << (NewTag == TTK_Class)
6680      << isTemplate << &Name;
6681    Diag(Redecl->getLocation(), diag::note_previous_use);
6682
6683    // If there is a previous defintion, suggest a fix-it.
6684    if (Previous->getDefinition()) {
6685        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6686          << (Redecl->getTagKind() == TTK_Class)
6687          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6688                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6689    }
6690
6691    return true;
6692  }
6693  return false;
6694}
6695
6696/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6697/// former case, Name will be non-null.  In the later case, Name will be null.
6698/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6699/// reference/declaration/definition of a tag.
6700Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6701                     SourceLocation KWLoc, CXXScopeSpec &SS,
6702                     IdentifierInfo *Name, SourceLocation NameLoc,
6703                     AttributeList *Attr, AccessSpecifier AS,
6704                     MultiTemplateParamsArg TemplateParameterLists,
6705                     bool &OwnedDecl, bool &IsDependent,
6706                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6707                     TypeResult UnderlyingType) {
6708  // If this is not a definition, it must have a name.
6709  assert((Name != 0 || TUK == TUK_Definition) &&
6710         "Nameless record must be a definition!");
6711  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6712
6713  OwnedDecl = false;
6714  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6715
6716  // FIXME: Check explicit specializations more carefully.
6717  bool isExplicitSpecialization = false;
6718  bool Invalid = false;
6719
6720  // We only need to do this matching if we have template parameters
6721  // or a scope specifier, which also conveniently avoids this work
6722  // for non-C++ cases.
6723  if (TemplateParameterLists.size() > 0 ||
6724      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6725    if (TemplateParameterList *TemplateParams
6726          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6727                                                TemplateParameterLists.get(),
6728                                                TemplateParameterLists.size(),
6729                                                    TUK == TUK_Friend,
6730                                                    isExplicitSpecialization,
6731                                                    Invalid)) {
6732      if (TemplateParams->size() > 0) {
6733        // This is a declaration or definition of a class template (which may
6734        // be a member of another template).
6735
6736        if (Invalid)
6737          return 0;
6738
6739        OwnedDecl = false;
6740        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6741                                               SS, Name, NameLoc, Attr,
6742                                               TemplateParams, AS,
6743                                           TemplateParameterLists.size() - 1,
6744                 (TemplateParameterList**) TemplateParameterLists.release());
6745        return Result.get();
6746      } else {
6747        // The "template<>" header is extraneous.
6748        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6749          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6750        isExplicitSpecialization = true;
6751      }
6752    }
6753  }
6754
6755  // Figure out the underlying type if this a enum declaration. We need to do
6756  // this early, because it's needed to detect if this is an incompatible
6757  // redeclaration.
6758  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6759
6760  if (Kind == TTK_Enum) {
6761    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6762      // No underlying type explicitly specified, or we failed to parse the
6763      // type, default to int.
6764      EnumUnderlying = Context.IntTy.getTypePtr();
6765    else if (UnderlyingType.get()) {
6766      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6767      // integral type; any cv-qualification is ignored.
6768      TypeSourceInfo *TI = 0;
6769      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6770      EnumUnderlying = TI;
6771
6772      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6773
6774      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6775        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6776          << T;
6777        // Recover by falling back to int.
6778        EnumUnderlying = Context.IntTy.getTypePtr();
6779      }
6780
6781      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6782                                          UPPC_FixedUnderlyingType))
6783        EnumUnderlying = Context.IntTy.getTypePtr();
6784
6785    } else if (getLangOptions().Microsoft)
6786      // Microsoft enums are always of int type.
6787      EnumUnderlying = Context.IntTy.getTypePtr();
6788  }
6789
6790  DeclContext *SearchDC = CurContext;
6791  DeclContext *DC = CurContext;
6792  bool isStdBadAlloc = false;
6793
6794  RedeclarationKind Redecl = ForRedeclaration;
6795  if (TUK == TUK_Friend || TUK == TUK_Reference)
6796    Redecl = NotForRedeclaration;
6797
6798  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6799
6800  if (Name && SS.isNotEmpty()) {
6801    // We have a nested-name tag ('struct foo::bar').
6802
6803    // Check for invalid 'foo::'.
6804    if (SS.isInvalid()) {
6805      Name = 0;
6806      goto CreateNewDecl;
6807    }
6808
6809    // If this is a friend or a reference to a class in a dependent
6810    // context, don't try to make a decl for it.
6811    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6812      DC = computeDeclContext(SS, false);
6813      if (!DC) {
6814        IsDependent = true;
6815        return 0;
6816      }
6817    } else {
6818      DC = computeDeclContext(SS, true);
6819      if (!DC) {
6820        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6821          << SS.getRange();
6822        return 0;
6823      }
6824    }
6825
6826    if (RequireCompleteDeclContext(SS, DC))
6827      return 0;
6828
6829    SearchDC = DC;
6830    // Look-up name inside 'foo::'.
6831    LookupQualifiedName(Previous, DC);
6832
6833    if (Previous.isAmbiguous())
6834      return 0;
6835
6836    if (Previous.empty()) {
6837      // Name lookup did not find anything. However, if the
6838      // nested-name-specifier refers to the current instantiation,
6839      // and that current instantiation has any dependent base
6840      // classes, we might find something at instantiation time: treat
6841      // this as a dependent elaborated-type-specifier.
6842      // But this only makes any sense for reference-like lookups.
6843      if (Previous.wasNotFoundInCurrentInstantiation() &&
6844          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6845        IsDependent = true;
6846        return 0;
6847      }
6848
6849      // A tag 'foo::bar' must already exist.
6850      Diag(NameLoc, diag::err_not_tag_in_scope)
6851        << Kind << Name << DC << SS.getRange();
6852      Name = 0;
6853      Invalid = true;
6854      goto CreateNewDecl;
6855    }
6856  } else if (Name) {
6857    // If this is a named struct, check to see if there was a previous forward
6858    // declaration or definition.
6859    // FIXME: We're looking into outer scopes here, even when we
6860    // shouldn't be. Doing so can result in ambiguities that we
6861    // shouldn't be diagnosing.
6862    LookupName(Previous, S);
6863
6864    if (Previous.isAmbiguous() &&
6865        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6866      LookupResult::Filter F = Previous.makeFilter();
6867      while (F.hasNext()) {
6868        NamedDecl *ND = F.next();
6869        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6870          F.erase();
6871      }
6872      F.done();
6873    }
6874
6875    // Note:  there used to be some attempt at recovery here.
6876    if (Previous.isAmbiguous())
6877      return 0;
6878
6879    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6880      // FIXME: This makes sure that we ignore the contexts associated
6881      // with C structs, unions, and enums when looking for a matching
6882      // tag declaration or definition. See the similar lookup tweak
6883      // in Sema::LookupName; is there a better way to deal with this?
6884      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6885        SearchDC = SearchDC->getParent();
6886    }
6887  } else if (S->isFunctionPrototypeScope()) {
6888    // If this is an enum declaration in function prototype scope, set its
6889    // initial context to the translation unit.
6890    SearchDC = Context.getTranslationUnitDecl();
6891  }
6892
6893  if (Previous.isSingleResult() &&
6894      Previous.getFoundDecl()->isTemplateParameter()) {
6895    // Maybe we will complain about the shadowed template parameter.
6896    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6897    // Just pretend that we didn't see the previous declaration.
6898    Previous.clear();
6899  }
6900
6901  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6902      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6903    // This is a declaration of or a reference to "std::bad_alloc".
6904    isStdBadAlloc = true;
6905
6906    if (Previous.empty() && StdBadAlloc) {
6907      // std::bad_alloc has been implicitly declared (but made invisible to
6908      // name lookup). Fill in this implicit declaration as the previous
6909      // declaration, so that the declarations get chained appropriately.
6910      Previous.addDecl(getStdBadAlloc());
6911    }
6912  }
6913
6914  // If we didn't find a previous declaration, and this is a reference
6915  // (or friend reference), move to the correct scope.  In C++, we
6916  // also need to do a redeclaration lookup there, just in case
6917  // there's a shadow friend decl.
6918  if (Name && Previous.empty() &&
6919      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6920    if (Invalid) goto CreateNewDecl;
6921    assert(SS.isEmpty());
6922
6923    if (TUK == TUK_Reference) {
6924      // C++ [basic.scope.pdecl]p5:
6925      //   -- for an elaborated-type-specifier of the form
6926      //
6927      //          class-key identifier
6928      //
6929      //      if the elaborated-type-specifier is used in the
6930      //      decl-specifier-seq or parameter-declaration-clause of a
6931      //      function defined in namespace scope, the identifier is
6932      //      declared as a class-name in the namespace that contains
6933      //      the declaration; otherwise, except as a friend
6934      //      declaration, the identifier is declared in the smallest
6935      //      non-class, non-function-prototype scope that contains the
6936      //      declaration.
6937      //
6938      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6939      // C structs and unions.
6940      //
6941      // It is an error in C++ to declare (rather than define) an enum
6942      // type, including via an elaborated type specifier.  We'll
6943      // diagnose that later; for now, declare the enum in the same
6944      // scope as we would have picked for any other tag type.
6945      //
6946      // GNU C also supports this behavior as part of its incomplete
6947      // enum types extension, while GNU C++ does not.
6948      //
6949      // Find the context where we'll be declaring the tag.
6950      // FIXME: We would like to maintain the current DeclContext as the
6951      // lexical context,
6952      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6953        SearchDC = SearchDC->getParent();
6954
6955      // Find the scope where we'll be declaring the tag.
6956      while (S->isClassScope() ||
6957             (getLangOptions().CPlusPlus &&
6958              S->isFunctionPrototypeScope()) ||
6959             ((S->getFlags() & Scope::DeclScope) == 0) ||
6960             (S->getEntity() &&
6961              ((DeclContext *)S->getEntity())->isTransparentContext()))
6962        S = S->getParent();
6963    } else {
6964      assert(TUK == TUK_Friend);
6965      // C++ [namespace.memdef]p3:
6966      //   If a friend declaration in a non-local class first declares a
6967      //   class or function, the friend class or function is a member of
6968      //   the innermost enclosing namespace.
6969      SearchDC = SearchDC->getEnclosingNamespaceContext();
6970    }
6971
6972    // In C++, we need to do a redeclaration lookup to properly
6973    // diagnose some problems.
6974    if (getLangOptions().CPlusPlus) {
6975      Previous.setRedeclarationKind(ForRedeclaration);
6976      LookupQualifiedName(Previous, SearchDC);
6977    }
6978  }
6979
6980  if (!Previous.empty()) {
6981    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6982
6983    // It's okay to have a tag decl in the same scope as a typedef
6984    // which hides a tag decl in the same scope.  Finding this
6985    // insanity with a redeclaration lookup can only actually happen
6986    // in C++.
6987    //
6988    // This is also okay for elaborated-type-specifiers, which is
6989    // technically forbidden by the current standard but which is
6990    // okay according to the likely resolution of an open issue;
6991    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6992    if (getLangOptions().CPlusPlus) {
6993      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6994        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6995          TagDecl *Tag = TT->getDecl();
6996          if (Tag->getDeclName() == Name &&
6997              Tag->getDeclContext()->getRedeclContext()
6998                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6999            PrevDecl = Tag;
7000            Previous.clear();
7001            Previous.addDecl(Tag);
7002            Previous.resolveKind();
7003          }
7004        }
7005      }
7006    }
7007
7008    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7009      // If this is a use of a previous tag, or if the tag is already declared
7010      // in the same scope (so that the definition/declaration completes or
7011      // rementions the tag), reuse the decl.
7012      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7013          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7014        // Make sure that this wasn't declared as an enum and now used as a
7015        // struct or something similar.
7016        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7017                                          TUK == TUK_Definition, KWLoc,
7018                                          *Name)) {
7019          bool SafeToContinue
7020            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7021               Kind != TTK_Enum);
7022          if (SafeToContinue)
7023            Diag(KWLoc, diag::err_use_with_wrong_tag)
7024              << Name
7025              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7026                                              PrevTagDecl->getKindName());
7027          else
7028            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7029          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7030
7031          if (SafeToContinue)
7032            Kind = PrevTagDecl->getTagKind();
7033          else {
7034            // Recover by making this an anonymous redefinition.
7035            Name = 0;
7036            Previous.clear();
7037            Invalid = true;
7038          }
7039        }
7040
7041        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7042          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7043
7044          // All conflicts with previous declarations are recovered by
7045          // returning the previous declaration.
7046          if (ScopedEnum != PrevEnum->isScoped()) {
7047            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7048              << PrevEnum->isScoped();
7049            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7050            return PrevTagDecl;
7051          }
7052          else if (EnumUnderlying && PrevEnum->isFixed()) {
7053            QualType T;
7054            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7055                T = TI->getType();
7056            else
7057                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7058
7059            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7060              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7061                   diag::err_enum_redeclare_type_mismatch)
7062                << T
7063                << PrevEnum->getIntegerType();
7064              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7065              return PrevTagDecl;
7066            }
7067          }
7068          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7069            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7070              << PrevEnum->isFixed();
7071            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7072            return PrevTagDecl;
7073          }
7074        }
7075
7076        if (!Invalid) {
7077          // If this is a use, just return the declaration we found.
7078
7079          // FIXME: In the future, return a variant or some other clue
7080          // for the consumer of this Decl to know it doesn't own it.
7081          // For our current ASTs this shouldn't be a problem, but will
7082          // need to be changed with DeclGroups.
7083          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7084               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7085            return PrevTagDecl;
7086
7087          // Diagnose attempts to redefine a tag.
7088          if (TUK == TUK_Definition) {
7089            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7090              // If we're defining a specialization and the previous definition
7091              // is from an implicit instantiation, don't emit an error
7092              // here; we'll catch this in the general case below.
7093              if (!isExplicitSpecialization ||
7094                  !isa<CXXRecordDecl>(Def) ||
7095                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7096                                               == TSK_ExplicitSpecialization) {
7097                Diag(NameLoc, diag::err_redefinition) << Name;
7098                Diag(Def->getLocation(), diag::note_previous_definition);
7099                // If this is a redefinition, recover by making this
7100                // struct be anonymous, which will make any later
7101                // references get the previous definition.
7102                Name = 0;
7103                Previous.clear();
7104                Invalid = true;
7105              }
7106            } else {
7107              // If the type is currently being defined, complain
7108              // about a nested redefinition.
7109              const TagType *Tag
7110                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7111              if (Tag->isBeingDefined()) {
7112                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7113                Diag(PrevTagDecl->getLocation(),
7114                     diag::note_previous_definition);
7115                Name = 0;
7116                Previous.clear();
7117                Invalid = true;
7118              }
7119            }
7120
7121            // Okay, this is definition of a previously declared or referenced
7122            // tag PrevDecl. We're going to create a new Decl for it.
7123          }
7124        }
7125        // If we get here we have (another) forward declaration or we
7126        // have a definition.  Just create a new decl.
7127
7128      } else {
7129        // If we get here, this is a definition of a new tag type in a nested
7130        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7131        // new decl/type.  We set PrevDecl to NULL so that the entities
7132        // have distinct types.
7133        Previous.clear();
7134      }
7135      // If we get here, we're going to create a new Decl. If PrevDecl
7136      // is non-NULL, it's a definition of the tag declared by
7137      // PrevDecl. If it's NULL, we have a new definition.
7138
7139
7140    // Otherwise, PrevDecl is not a tag, but was found with tag
7141    // lookup.  This is only actually possible in C++, where a few
7142    // things like templates still live in the tag namespace.
7143    } else {
7144      assert(getLangOptions().CPlusPlus);
7145
7146      // Use a better diagnostic if an elaborated-type-specifier
7147      // found the wrong kind of type on the first
7148      // (non-redeclaration) lookup.
7149      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7150          !Previous.isForRedeclaration()) {
7151        unsigned Kind = 0;
7152        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7153        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7154        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7155        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7156        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7157        Invalid = true;
7158
7159      // Otherwise, only diagnose if the declaration is in scope.
7160      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7161                                isExplicitSpecialization)) {
7162        // do nothing
7163
7164      // Diagnose implicit declarations introduced by elaborated types.
7165      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7166        unsigned Kind = 0;
7167        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7168        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7169        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7170        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7171        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7172        Invalid = true;
7173
7174      // Otherwise it's a declaration.  Call out a particularly common
7175      // case here.
7176      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7177        unsigned Kind = 0;
7178        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7179        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7180          << Name << Kind << TND->getUnderlyingType();
7181        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7182        Invalid = true;
7183
7184      // Otherwise, diagnose.
7185      } else {
7186        // The tag name clashes with something else in the target scope,
7187        // issue an error and recover by making this tag be anonymous.
7188        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7189        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7190        Name = 0;
7191        Invalid = true;
7192      }
7193
7194      // The existing declaration isn't relevant to us; we're in a
7195      // new scope, so clear out the previous declaration.
7196      Previous.clear();
7197    }
7198  }
7199
7200CreateNewDecl:
7201
7202  TagDecl *PrevDecl = 0;
7203  if (Previous.isSingleResult())
7204    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7205
7206  // If there is an identifier, use the location of the identifier as the
7207  // location of the decl, otherwise use the location of the struct/union
7208  // keyword.
7209  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7210
7211  // Otherwise, create a new declaration. If there is a previous
7212  // declaration of the same entity, the two will be linked via
7213  // PrevDecl.
7214  TagDecl *New;
7215
7216  bool IsForwardReference = false;
7217  if (Kind == TTK_Enum) {
7218    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7219    // enum X { A, B, C } D;    D should chain to X.
7220    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7221                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7222                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7223    // If this is an undefined enum, warn.
7224    if (TUK != TUK_Definition && !Invalid) {
7225      TagDecl *Def;
7226      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7227        // C++0x: 7.2p2: opaque-enum-declaration.
7228        // Conflicts are diagnosed above. Do nothing.
7229      }
7230      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7231        Diag(Loc, diag::ext_forward_ref_enum_def)
7232          << New;
7233        Diag(Def->getLocation(), diag::note_previous_definition);
7234      } else {
7235        unsigned DiagID = diag::ext_forward_ref_enum;
7236        if (getLangOptions().Microsoft)
7237          DiagID = diag::ext_ms_forward_ref_enum;
7238        else if (getLangOptions().CPlusPlus)
7239          DiagID = diag::err_forward_ref_enum;
7240        Diag(Loc, DiagID);
7241
7242        // If this is a forward-declared reference to an enumeration, make a
7243        // note of it; we won't actually be introducing the declaration into
7244        // the declaration context.
7245        if (TUK == TUK_Reference)
7246          IsForwardReference = true;
7247      }
7248    }
7249
7250    if (EnumUnderlying) {
7251      EnumDecl *ED = cast<EnumDecl>(New);
7252      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7253        ED->setIntegerTypeSourceInfo(TI);
7254      else
7255        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7256      ED->setPromotionType(ED->getIntegerType());
7257    }
7258
7259  } else {
7260    // struct/union/class
7261
7262    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7263    // struct X { int A; } D;    D should chain to X.
7264    if (getLangOptions().CPlusPlus) {
7265      // FIXME: Look for a way to use RecordDecl for simple structs.
7266      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7267                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7268
7269      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7270        StdBadAlloc = cast<CXXRecordDecl>(New);
7271    } else
7272      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7273                               cast_or_null<RecordDecl>(PrevDecl));
7274  }
7275
7276  // Maybe add qualifier info.
7277  if (SS.isNotEmpty()) {
7278    if (SS.isSet()) {
7279      New->setQualifierInfo(SS.getWithLocInContext(Context));
7280      if (TemplateParameterLists.size() > 0) {
7281        New->setTemplateParameterListsInfo(Context,
7282                                           TemplateParameterLists.size(),
7283                    (TemplateParameterList**) TemplateParameterLists.release());
7284      }
7285    }
7286    else
7287      Invalid = true;
7288  }
7289
7290  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7291    // Add alignment attributes if necessary; these attributes are checked when
7292    // the ASTContext lays out the structure.
7293    //
7294    // It is important for implementing the correct semantics that this
7295    // happen here (in act on tag decl). The #pragma pack stack is
7296    // maintained as a result of parser callbacks which can occur at
7297    // many points during the parsing of a struct declaration (because
7298    // the #pragma tokens are effectively skipped over during the
7299    // parsing of the struct).
7300    AddAlignmentAttributesForRecord(RD);
7301
7302    AddMsStructLayoutForRecord(RD);
7303  }
7304
7305  // If this is a specialization of a member class (of a class template),
7306  // check the specialization.
7307  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7308    Invalid = true;
7309
7310  if (Invalid)
7311    New->setInvalidDecl();
7312
7313  if (Attr)
7314    ProcessDeclAttributeList(S, New, Attr);
7315
7316  // If we're declaring or defining a tag in function prototype scope
7317  // in C, note that this type can only be used within the function.
7318  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7319    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7320
7321  // Set the lexical context. If the tag has a C++ scope specifier, the
7322  // lexical context will be different from the semantic context.
7323  New->setLexicalDeclContext(CurContext);
7324
7325  // Mark this as a friend decl if applicable.
7326  // In Microsoft mode, a friend declaration also acts as a forward
7327  // declaration so we always pass true to setObjectOfFriendDecl to make
7328  // the tag name visible.
7329  if (TUK == TUK_Friend)
7330    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7331                               getLangOptions().Microsoft);
7332
7333  // Set the access specifier.
7334  if (!Invalid && SearchDC->isRecord())
7335    SetMemberAccessSpecifier(New, PrevDecl, AS);
7336
7337  if (TUK == TUK_Definition)
7338    New->startDefinition();
7339
7340  // If this has an identifier, add it to the scope stack.
7341  if (TUK == TUK_Friend) {
7342    // We might be replacing an existing declaration in the lookup tables;
7343    // if so, borrow its access specifier.
7344    if (PrevDecl)
7345      New->setAccess(PrevDecl->getAccess());
7346
7347    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7348    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7349    if (Name) // can be null along some error paths
7350      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7351        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7352  } else if (Name) {
7353    S = getNonFieldDeclScope(S);
7354    PushOnScopeChains(New, S, !IsForwardReference);
7355    if (IsForwardReference)
7356      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7357
7358  } else {
7359    CurContext->addDecl(New);
7360  }
7361
7362  // If this is the C FILE type, notify the AST context.
7363  if (IdentifierInfo *II = New->getIdentifier())
7364    if (!New->isInvalidDecl() &&
7365        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7366        II->isStr("FILE"))
7367      Context.setFILEDecl(New);
7368
7369  OwnedDecl = true;
7370  return New;
7371}
7372
7373void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7374  AdjustDeclIfTemplate(TagD);
7375  TagDecl *Tag = cast<TagDecl>(TagD);
7376
7377  // Enter the tag context.
7378  PushDeclContext(S, Tag);
7379}
7380
7381void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7382                                           SourceLocation FinalLoc,
7383                                           SourceLocation LBraceLoc) {
7384  AdjustDeclIfTemplate(TagD);
7385  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7386
7387  FieldCollector->StartClass();
7388
7389  if (!Record->getIdentifier())
7390    return;
7391
7392  if (FinalLoc.isValid())
7393    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7394
7395  // C++ [class]p2:
7396  //   [...] The class-name is also inserted into the scope of the
7397  //   class itself; this is known as the injected-class-name. For
7398  //   purposes of access checking, the injected-class-name is treated
7399  //   as if it were a public member name.
7400  CXXRecordDecl *InjectedClassName
7401    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7402                            Record->getLocStart(), Record->getLocation(),
7403                            Record->getIdentifier(),
7404                            /*PrevDecl=*/0,
7405                            /*DelayTypeCreation=*/true);
7406  Context.getTypeDeclType(InjectedClassName, Record);
7407  InjectedClassName->setImplicit();
7408  InjectedClassName->setAccess(AS_public);
7409  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7410      InjectedClassName->setDescribedClassTemplate(Template);
7411  PushOnScopeChains(InjectedClassName, S);
7412  assert(InjectedClassName->isInjectedClassName() &&
7413         "Broken injected-class-name");
7414}
7415
7416void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7417                                    SourceLocation RBraceLoc) {
7418  AdjustDeclIfTemplate(TagD);
7419  TagDecl *Tag = cast<TagDecl>(TagD);
7420  Tag->setRBraceLoc(RBraceLoc);
7421
7422  if (isa<CXXRecordDecl>(Tag))
7423    FieldCollector->FinishClass();
7424
7425  // Exit this scope of this tag's definition.
7426  PopDeclContext();
7427
7428  // Notify the consumer that we've defined a tag.
7429  Consumer.HandleTagDeclDefinition(Tag);
7430}
7431
7432void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7433  AdjustDeclIfTemplate(TagD);
7434  TagDecl *Tag = cast<TagDecl>(TagD);
7435  Tag->setInvalidDecl();
7436
7437  // We're undoing ActOnTagStartDefinition here, not
7438  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7439  // the FieldCollector.
7440
7441  PopDeclContext();
7442}
7443
7444// Note that FieldName may be null for anonymous bitfields.
7445bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7446                          QualType FieldTy, const Expr *BitWidth,
7447                          bool *ZeroWidth) {
7448  // Default to true; that shouldn't confuse checks for emptiness
7449  if (ZeroWidth)
7450    *ZeroWidth = true;
7451
7452  // C99 6.7.2.1p4 - verify the field type.
7453  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7454  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7455    // Handle incomplete types with specific error.
7456    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7457      return true;
7458    if (FieldName)
7459      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7460        << FieldName << FieldTy << BitWidth->getSourceRange();
7461    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7462      << FieldTy << BitWidth->getSourceRange();
7463  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7464                                             UPPC_BitFieldWidth))
7465    return true;
7466
7467  // If the bit-width is type- or value-dependent, don't try to check
7468  // it now.
7469  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7470    return false;
7471
7472  llvm::APSInt Value;
7473  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7474    return true;
7475
7476  if (Value != 0 && ZeroWidth)
7477    *ZeroWidth = false;
7478
7479  // Zero-width bitfield is ok for anonymous field.
7480  if (Value == 0 && FieldName)
7481    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7482
7483  if (Value.isSigned() && Value.isNegative()) {
7484    if (FieldName)
7485      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7486               << FieldName << Value.toString(10);
7487    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7488      << Value.toString(10);
7489  }
7490
7491  if (!FieldTy->isDependentType()) {
7492    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7493    if (Value.getZExtValue() > TypeSize) {
7494      if (!getLangOptions().CPlusPlus) {
7495        if (FieldName)
7496          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7497            << FieldName << (unsigned)Value.getZExtValue()
7498            << (unsigned)TypeSize;
7499
7500        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7501          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7502      }
7503
7504      if (FieldName)
7505        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7506          << FieldName << (unsigned)Value.getZExtValue()
7507          << (unsigned)TypeSize;
7508      else
7509        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7510          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7511    }
7512  }
7513
7514  return false;
7515}
7516
7517/// ActOnField - Each field of a C struct/union is passed into this in order
7518/// to create a FieldDecl object for it.
7519Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7520                       Declarator &D, ExprTy *BitfieldWidth) {
7521  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7522                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7523                               /*HasInit=*/false, AS_public);
7524  return Res;
7525}
7526
7527/// HandleField - Analyze a field of a C struct or a C++ data member.
7528///
7529FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7530                             SourceLocation DeclStart,
7531                             Declarator &D, Expr *BitWidth, bool HasInit,
7532                             AccessSpecifier AS) {
7533  IdentifierInfo *II = D.getIdentifier();
7534  SourceLocation Loc = DeclStart;
7535  if (II) Loc = D.getIdentifierLoc();
7536
7537  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7538  QualType T = TInfo->getType();
7539  if (getLangOptions().CPlusPlus) {
7540    CheckExtraCXXDefaultArguments(D);
7541
7542    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7543                                        UPPC_DataMemberType)) {
7544      D.setInvalidType();
7545      T = Context.IntTy;
7546      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7547    }
7548  }
7549
7550  DiagnoseFunctionSpecifiers(D);
7551
7552  if (D.getDeclSpec().isThreadSpecified())
7553    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7554
7555  // Check to see if this name was declared as a member previously
7556  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7557  LookupName(Previous, S);
7558  assert((Previous.empty() || Previous.isOverloadedResult() ||
7559          Previous.isSingleResult())
7560    && "Lookup of member name should be either overloaded, single or null");
7561
7562  // If the name is overloaded then get any declaration else get the single result
7563  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7564    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7565
7566  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7567    // Maybe we will complain about the shadowed template parameter.
7568    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7569    // Just pretend that we didn't see the previous declaration.
7570    PrevDecl = 0;
7571  }
7572
7573  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7574    PrevDecl = 0;
7575
7576  bool Mutable
7577    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7578  SourceLocation TSSL = D.getSourceRange().getBegin();
7579  FieldDecl *NewFD
7580    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7581                     TSSL, AS, PrevDecl, &D);
7582
7583  if (NewFD->isInvalidDecl())
7584    Record->setInvalidDecl();
7585
7586  if (NewFD->isInvalidDecl() && PrevDecl) {
7587    // Don't introduce NewFD into scope; there's already something
7588    // with the same name in the same scope.
7589  } else if (II) {
7590    PushOnScopeChains(NewFD, S);
7591  } else
7592    Record->addDecl(NewFD);
7593
7594  return NewFD;
7595}
7596
7597/// \brief Build a new FieldDecl and check its well-formedness.
7598///
7599/// This routine builds a new FieldDecl given the fields name, type,
7600/// record, etc. \p PrevDecl should refer to any previous declaration
7601/// with the same name and in the same scope as the field to be
7602/// created.
7603///
7604/// \returns a new FieldDecl.
7605///
7606/// \todo The Declarator argument is a hack. It will be removed once
7607FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7608                                TypeSourceInfo *TInfo,
7609                                RecordDecl *Record, SourceLocation Loc,
7610                                bool Mutable, Expr *BitWidth, bool HasInit,
7611                                SourceLocation TSSL,
7612                                AccessSpecifier AS, NamedDecl *PrevDecl,
7613                                Declarator *D) {
7614  IdentifierInfo *II = Name.getAsIdentifierInfo();
7615  bool InvalidDecl = false;
7616  if (D) InvalidDecl = D->isInvalidType();
7617
7618  // If we receive a broken type, recover by assuming 'int' and
7619  // marking this declaration as invalid.
7620  if (T.isNull()) {
7621    InvalidDecl = true;
7622    T = Context.IntTy;
7623  }
7624
7625  QualType EltTy = Context.getBaseElementType(T);
7626  if (!EltTy->isDependentType() &&
7627      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7628    // Fields of incomplete type force their record to be invalid.
7629    Record->setInvalidDecl();
7630    InvalidDecl = true;
7631  }
7632
7633  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7634  // than a variably modified type.
7635  if (!InvalidDecl && T->isVariablyModifiedType()) {
7636    bool SizeIsNegative;
7637    llvm::APSInt Oversized;
7638    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7639                                                           SizeIsNegative,
7640                                                           Oversized);
7641    if (!FixedTy.isNull()) {
7642      Diag(Loc, diag::warn_illegal_constant_array_size);
7643      T = FixedTy;
7644    } else {
7645      if (SizeIsNegative)
7646        Diag(Loc, diag::err_typecheck_negative_array_size);
7647      else if (Oversized.getBoolValue())
7648        Diag(Loc, diag::err_array_too_large)
7649          << Oversized.toString(10);
7650      else
7651        Diag(Loc, diag::err_typecheck_field_variable_size);
7652      InvalidDecl = true;
7653    }
7654  }
7655
7656  // Fields can not have abstract class types
7657  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7658                                             diag::err_abstract_type_in_decl,
7659                                             AbstractFieldType))
7660    InvalidDecl = true;
7661
7662  bool ZeroWidth = false;
7663  // If this is declared as a bit-field, check the bit-field.
7664  if (!InvalidDecl && BitWidth &&
7665      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7666    InvalidDecl = true;
7667    BitWidth = 0;
7668    ZeroWidth = false;
7669  }
7670
7671  // Check that 'mutable' is consistent with the type of the declaration.
7672  if (!InvalidDecl && Mutable) {
7673    unsigned DiagID = 0;
7674    if (T->isReferenceType())
7675      DiagID = diag::err_mutable_reference;
7676    else if (T.isConstQualified())
7677      DiagID = diag::err_mutable_const;
7678
7679    if (DiagID) {
7680      SourceLocation ErrLoc = Loc;
7681      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7682        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7683      Diag(ErrLoc, DiagID);
7684      Mutable = false;
7685      InvalidDecl = true;
7686    }
7687  }
7688
7689  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7690                                       BitWidth, Mutable, HasInit);
7691  if (InvalidDecl)
7692    NewFD->setInvalidDecl();
7693
7694  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7695    Diag(Loc, diag::err_duplicate_member) << II;
7696    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7697    NewFD->setInvalidDecl();
7698  }
7699
7700  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7701    if (Record->isUnion()) {
7702      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7703        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7704        if (RDecl->getDefinition()) {
7705          // C++ [class.union]p1: An object of a class with a non-trivial
7706          // constructor, a non-trivial copy constructor, a non-trivial
7707          // destructor, or a non-trivial copy assignment operator
7708          // cannot be a member of a union, nor can an array of such
7709          // objects.
7710          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7711            NewFD->setInvalidDecl();
7712        }
7713      }
7714
7715      // C++ [class.union]p1: If a union contains a member of reference type,
7716      // the program is ill-formed.
7717      if (EltTy->isReferenceType()) {
7718        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7719          << NewFD->getDeclName() << EltTy;
7720        NewFD->setInvalidDecl();
7721      }
7722    }
7723  }
7724
7725  // FIXME: We need to pass in the attributes given an AST
7726  // representation, not a parser representation.
7727  if (D)
7728    // FIXME: What to pass instead of TUScope?
7729    ProcessDeclAttributes(TUScope, NewFD, *D);
7730
7731  if (T.isObjCGCWeak())
7732    Diag(Loc, diag::warn_attribute_weak_on_field);
7733
7734  NewFD->setAccess(AS);
7735  return NewFD;
7736}
7737
7738bool Sema::CheckNontrivialField(FieldDecl *FD) {
7739  assert(FD);
7740  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7741
7742  if (FD->isInvalidDecl())
7743    return true;
7744
7745  QualType EltTy = Context.getBaseElementType(FD->getType());
7746  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7747    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7748    if (RDecl->getDefinition()) {
7749      // We check for copy constructors before constructors
7750      // because otherwise we'll never get complaints about
7751      // copy constructors.
7752
7753      CXXSpecialMember member = CXXInvalid;
7754      if (!RDecl->hasTrivialCopyConstructor())
7755        member = CXXCopyConstructor;
7756      else if (!RDecl->hasTrivialDefaultConstructor())
7757        member = CXXDefaultConstructor;
7758      else if (!RDecl->hasTrivialCopyAssignment())
7759        member = CXXCopyAssignment;
7760      else if (!RDecl->hasTrivialDestructor())
7761        member = CXXDestructor;
7762
7763      if (member != CXXInvalid) {
7764        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7765              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7766        DiagnoseNontrivial(RT, member);
7767        return true;
7768      }
7769    }
7770  }
7771
7772  return false;
7773}
7774
7775/// DiagnoseNontrivial - Given that a class has a non-trivial
7776/// special member, figure out why.
7777void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7778  QualType QT(T, 0U);
7779  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7780
7781  // Check whether the member was user-declared.
7782  switch (member) {
7783  case CXXInvalid:
7784    break;
7785
7786  case CXXDefaultConstructor:
7787    if (RD->hasUserDeclaredConstructor()) {
7788      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7789      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7790        const FunctionDecl *body = 0;
7791        ci->hasBody(body);
7792        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7793          SourceLocation CtorLoc = ci->getLocation();
7794          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7795          return;
7796        }
7797      }
7798
7799      assert(0 && "found no user-declared constructors");
7800      return;
7801    }
7802    break;
7803
7804  case CXXCopyConstructor:
7805    if (RD->hasUserDeclaredCopyConstructor()) {
7806      SourceLocation CtorLoc =
7807        RD->getCopyConstructor(0)->getLocation();
7808      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7809      return;
7810    }
7811    break;
7812
7813  case CXXMoveConstructor:
7814    if (RD->hasUserDeclaredMoveConstructor()) {
7815      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7816      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7817      return;
7818    }
7819    break;
7820
7821  case CXXCopyAssignment:
7822    if (RD->hasUserDeclaredCopyAssignment()) {
7823      // FIXME: this should use the location of the copy
7824      // assignment, not the type.
7825      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7826      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7827      return;
7828    }
7829    break;
7830
7831  case CXXMoveAssignment:
7832    if (RD->hasUserDeclaredMoveAssignment()) {
7833      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7834      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7835      return;
7836    }
7837    break;
7838
7839  case CXXDestructor:
7840    if (RD->hasUserDeclaredDestructor()) {
7841      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7842      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7843      return;
7844    }
7845    break;
7846  }
7847
7848  typedef CXXRecordDecl::base_class_iterator base_iter;
7849
7850  // Virtual bases and members inhibit trivial copying/construction,
7851  // but not trivial destruction.
7852  if (member != CXXDestructor) {
7853    // Check for virtual bases.  vbases includes indirect virtual bases,
7854    // so we just iterate through the direct bases.
7855    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7856      if (bi->isVirtual()) {
7857        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7858        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7859        return;
7860      }
7861
7862    // Check for virtual methods.
7863    typedef CXXRecordDecl::method_iterator meth_iter;
7864    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7865         ++mi) {
7866      if (mi->isVirtual()) {
7867        SourceLocation MLoc = mi->getSourceRange().getBegin();
7868        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7869        return;
7870      }
7871    }
7872  }
7873
7874  bool (CXXRecordDecl::*hasTrivial)() const;
7875  switch (member) {
7876  case CXXDefaultConstructor:
7877    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7878  case CXXCopyConstructor:
7879    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7880  case CXXCopyAssignment:
7881    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7882  case CXXDestructor:
7883    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7884  default:
7885    assert(0 && "unexpected special member"); return;
7886  }
7887
7888  // Check for nontrivial bases (and recurse).
7889  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7890    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7891    assert(BaseRT && "Don't know how to handle dependent bases");
7892    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7893    if (!(BaseRecTy->*hasTrivial)()) {
7894      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7895      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7896      DiagnoseNontrivial(BaseRT, member);
7897      return;
7898    }
7899  }
7900
7901  // Check for nontrivial members (and recurse).
7902  typedef RecordDecl::field_iterator field_iter;
7903  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7904       ++fi) {
7905    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7906    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7907      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7908
7909      if (!(EltRD->*hasTrivial)()) {
7910        SourceLocation FLoc = (*fi)->getLocation();
7911        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7912        DiagnoseNontrivial(EltRT, member);
7913        return;
7914      }
7915    }
7916  }
7917
7918  assert(0 && "found no explanation for non-trivial member");
7919}
7920
7921/// TranslateIvarVisibility - Translate visibility from a token ID to an
7922///  AST enum value.
7923static ObjCIvarDecl::AccessControl
7924TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7925  switch (ivarVisibility) {
7926  default: assert(0 && "Unknown visitibility kind");
7927  case tok::objc_private: return ObjCIvarDecl::Private;
7928  case tok::objc_public: return ObjCIvarDecl::Public;
7929  case tok::objc_protected: return ObjCIvarDecl::Protected;
7930  case tok::objc_package: return ObjCIvarDecl::Package;
7931  }
7932}
7933
7934/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7935/// in order to create an IvarDecl object for it.
7936Decl *Sema::ActOnIvar(Scope *S,
7937                                SourceLocation DeclStart,
7938                                Decl *IntfDecl,
7939                                Declarator &D, ExprTy *BitfieldWidth,
7940                                tok::ObjCKeywordKind Visibility) {
7941
7942  IdentifierInfo *II = D.getIdentifier();
7943  Expr *BitWidth = (Expr*)BitfieldWidth;
7944  SourceLocation Loc = DeclStart;
7945  if (II) Loc = D.getIdentifierLoc();
7946
7947  // FIXME: Unnamed fields can be handled in various different ways, for
7948  // example, unnamed unions inject all members into the struct namespace!
7949
7950  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7951  QualType T = TInfo->getType();
7952
7953  if (BitWidth) {
7954    // 6.7.2.1p3, 6.7.2.1p4
7955    if (VerifyBitField(Loc, II, T, BitWidth)) {
7956      D.setInvalidType();
7957      BitWidth = 0;
7958    }
7959  } else {
7960    // Not a bitfield.
7961
7962    // validate II.
7963
7964  }
7965  if (T->isReferenceType()) {
7966    Diag(Loc, diag::err_ivar_reference_type);
7967    D.setInvalidType();
7968  }
7969  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7970  // than a variably modified type.
7971  else if (T->isVariablyModifiedType()) {
7972    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7973    D.setInvalidType();
7974  }
7975
7976  // Get the visibility (access control) for this ivar.
7977  ObjCIvarDecl::AccessControl ac =
7978    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7979                                        : ObjCIvarDecl::None;
7980  // Must set ivar's DeclContext to its enclosing interface.
7981  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7982  ObjCContainerDecl *EnclosingContext;
7983  if (ObjCImplementationDecl *IMPDecl =
7984      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7985    if (!LangOpts.ObjCNonFragileABI2) {
7986    // Case of ivar declared in an implementation. Context is that of its class.
7987      EnclosingContext = IMPDecl->getClassInterface();
7988      assert(EnclosingContext && "Implementation has no class interface!");
7989    }
7990    else
7991      EnclosingContext = EnclosingDecl;
7992  } else {
7993    if (ObjCCategoryDecl *CDecl =
7994        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7995      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7996        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7997        return 0;
7998      }
7999    }
8000    EnclosingContext = EnclosingDecl;
8001  }
8002
8003  // Construct the decl.
8004  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8005                                             DeclStart, Loc, II, T,
8006                                             TInfo, ac, (Expr *)BitfieldWidth);
8007
8008  if (II) {
8009    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8010                                           ForRedeclaration);
8011    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8012        && !isa<TagDecl>(PrevDecl)) {
8013      Diag(Loc, diag::err_duplicate_member) << II;
8014      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8015      NewID->setInvalidDecl();
8016    }
8017  }
8018
8019  // Process attributes attached to the ivar.
8020  ProcessDeclAttributes(S, NewID, D);
8021
8022  if (D.isInvalidType())
8023    NewID->setInvalidDecl();
8024
8025  if (II) {
8026    // FIXME: When interfaces are DeclContexts, we'll need to add
8027    // these to the interface.
8028    S->AddDecl(NewID);
8029    IdResolver.AddDecl(NewID);
8030  }
8031
8032  return NewID;
8033}
8034
8035/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8036/// class and class extensions. For every class @interface and class
8037/// extension @interface, if the last ivar is a bitfield of any type,
8038/// then add an implicit `char :0` ivar to the end of that interface.
8039void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8040                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8041  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8042    return;
8043
8044  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8045  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8046
8047  if (!Ivar->isBitField())
8048    return;
8049  uint64_t BitFieldSize =
8050    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8051  if (BitFieldSize == 0)
8052    return;
8053  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8054  if (!ID) {
8055    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8056      if (!CD->IsClassExtension())
8057        return;
8058    }
8059    // No need to add this to end of @implementation.
8060    else
8061      return;
8062  }
8063  // All conditions are met. Add a new bitfield to the tail end of ivars.
8064  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8065  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8066
8067  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8068                              DeclLoc, DeclLoc, 0,
8069                              Context.CharTy,
8070                              Context.CreateTypeSourceInfo(Context.CharTy),
8071                              ObjCIvarDecl::Private, BW,
8072                              true);
8073  AllIvarDecls.push_back(Ivar);
8074}
8075
8076void Sema::ActOnFields(Scope* S,
8077                       SourceLocation RecLoc, Decl *EnclosingDecl,
8078                       Decl **Fields, unsigned NumFields,
8079                       SourceLocation LBrac, SourceLocation RBrac,
8080                       AttributeList *Attr) {
8081  assert(EnclosingDecl && "missing record or interface decl");
8082
8083  // If the decl this is being inserted into is invalid, then it may be a
8084  // redeclaration or some other bogus case.  Don't try to add fields to it.
8085  if (EnclosingDecl->isInvalidDecl()) {
8086    // FIXME: Deallocate fields?
8087    return;
8088  }
8089
8090
8091  // Verify that all the fields are okay.
8092  unsigned NumNamedMembers = 0;
8093  llvm::SmallVector<FieldDecl*, 32> RecFields;
8094
8095  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8096  for (unsigned i = 0; i != NumFields; ++i) {
8097    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8098
8099    // Get the type for the field.
8100    const Type *FDTy = FD->getType().getTypePtr();
8101
8102    if (!FD->isAnonymousStructOrUnion()) {
8103      // Remember all fields written by the user.
8104      RecFields.push_back(FD);
8105    }
8106
8107    // If the field is already invalid for some reason, don't emit more
8108    // diagnostics about it.
8109    if (FD->isInvalidDecl()) {
8110      EnclosingDecl->setInvalidDecl();
8111      continue;
8112    }
8113
8114    // C99 6.7.2.1p2:
8115    //   A structure or union shall not contain a member with
8116    //   incomplete or function type (hence, a structure shall not
8117    //   contain an instance of itself, but may contain a pointer to
8118    //   an instance of itself), except that the last member of a
8119    //   structure with more than one named member may have incomplete
8120    //   array type; such a structure (and any union containing,
8121    //   possibly recursively, a member that is such a structure)
8122    //   shall not be a member of a structure or an element of an
8123    //   array.
8124    if (FDTy->isFunctionType()) {
8125      // Field declared as a function.
8126      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8127        << FD->getDeclName();
8128      FD->setInvalidDecl();
8129      EnclosingDecl->setInvalidDecl();
8130      continue;
8131    } else if (FDTy->isIncompleteArrayType() && Record &&
8132               ((i == NumFields - 1 && !Record->isUnion()) ||
8133                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8134                 (i == NumFields - 1 || Record->isUnion())))) {
8135      // Flexible array member.
8136      // Microsoft and g++ is more permissive regarding flexible array.
8137      // It will accept flexible array in union and also
8138      // as the sole element of a struct/class.
8139      if (getLangOptions().Microsoft) {
8140        if (Record->isUnion())
8141          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8142            << FD->getDeclName();
8143        else if (NumFields == 1)
8144          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8145            << FD->getDeclName() << Record->getTagKind();
8146      } else if (getLangOptions().CPlusPlus) {
8147        if (Record->isUnion())
8148          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8149            << FD->getDeclName();
8150        else if (NumFields == 1)
8151          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8152            << FD->getDeclName() << Record->getTagKind();
8153      } else if (NumNamedMembers < 1) {
8154        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8155          << FD->getDeclName();
8156        FD->setInvalidDecl();
8157        EnclosingDecl->setInvalidDecl();
8158        continue;
8159      }
8160      if (!FD->getType()->isDependentType() &&
8161          !Context.getBaseElementType(FD->getType())->isPODType()) {
8162        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8163          << FD->getDeclName() << FD->getType();
8164        FD->setInvalidDecl();
8165        EnclosingDecl->setInvalidDecl();
8166        continue;
8167      }
8168      // Okay, we have a legal flexible array member at the end of the struct.
8169      if (Record)
8170        Record->setHasFlexibleArrayMember(true);
8171    } else if (!FDTy->isDependentType() &&
8172               RequireCompleteType(FD->getLocation(), FD->getType(),
8173                                   diag::err_field_incomplete)) {
8174      // Incomplete type
8175      FD->setInvalidDecl();
8176      EnclosingDecl->setInvalidDecl();
8177      continue;
8178    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8179      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8180        // If this is a member of a union, then entire union becomes "flexible".
8181        if (Record && Record->isUnion()) {
8182          Record->setHasFlexibleArrayMember(true);
8183        } else {
8184          // If this is a struct/class and this is not the last element, reject
8185          // it.  Note that GCC supports variable sized arrays in the middle of
8186          // structures.
8187          if (i != NumFields-1)
8188            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8189              << FD->getDeclName() << FD->getType();
8190          else {
8191            // We support flexible arrays at the end of structs in
8192            // other structs as an extension.
8193            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8194              << FD->getDeclName();
8195            if (Record)
8196              Record->setHasFlexibleArrayMember(true);
8197          }
8198        }
8199      }
8200      if (Record && FDTTy->getDecl()->hasObjectMember())
8201        Record->setHasObjectMember(true);
8202    } else if (FDTy->isObjCObjectType()) {
8203      /// A field cannot be an Objective-c object
8204      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8205      FD->setInvalidDecl();
8206      EnclosingDecl->setInvalidDecl();
8207      continue;
8208    } else if (getLangOptions().ObjC1 &&
8209               getLangOptions().getGCMode() != LangOptions::NonGC &&
8210               Record &&
8211               (FD->getType()->isObjCObjectPointerType() ||
8212                FD->getType().isObjCGCStrong()))
8213      Record->setHasObjectMember(true);
8214    else if (Context.getAsArrayType(FD->getType())) {
8215      QualType BaseType = Context.getBaseElementType(FD->getType());
8216      if (Record && BaseType->isRecordType() &&
8217          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8218        Record->setHasObjectMember(true);
8219    }
8220    // Keep track of the number of named members.
8221    if (FD->getIdentifier())
8222      ++NumNamedMembers;
8223  }
8224
8225  // Okay, we successfully defined 'Record'.
8226  if (Record) {
8227    bool Completed = false;
8228    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8229      if (!CXXRecord->isInvalidDecl()) {
8230        // Set access bits correctly on the directly-declared conversions.
8231        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8232        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8233             I != E; ++I)
8234          Convs->setAccess(I, (*I)->getAccess());
8235
8236        if (!CXXRecord->isDependentType()) {
8237          // Adjust user-defined destructor exception spec.
8238          if (getLangOptions().CPlusPlus0x &&
8239              CXXRecord->hasUserDeclaredDestructor())
8240            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8241
8242          // Add any implicitly-declared members to this class.
8243          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8244
8245          // If we have virtual base classes, we may end up finding multiple
8246          // final overriders for a given virtual function. Check for this
8247          // problem now.
8248          if (CXXRecord->getNumVBases()) {
8249            CXXFinalOverriderMap FinalOverriders;
8250            CXXRecord->getFinalOverriders(FinalOverriders);
8251
8252            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8253                                             MEnd = FinalOverriders.end();
8254                 M != MEnd; ++M) {
8255              for (OverridingMethods::iterator SO = M->second.begin(),
8256                                            SOEnd = M->second.end();
8257                   SO != SOEnd; ++SO) {
8258                assert(SO->second.size() > 0 &&
8259                       "Virtual function without overridding functions?");
8260                if (SO->second.size() == 1)
8261                  continue;
8262
8263                // C++ [class.virtual]p2:
8264                //   In a derived class, if a virtual member function of a base
8265                //   class subobject has more than one final overrider the
8266                //   program is ill-formed.
8267                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8268                  << (NamedDecl *)M->first << Record;
8269                Diag(M->first->getLocation(),
8270                     diag::note_overridden_virtual_function);
8271                for (OverridingMethods::overriding_iterator
8272                          OM = SO->second.begin(),
8273                       OMEnd = SO->second.end();
8274                     OM != OMEnd; ++OM)
8275                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8276                    << (NamedDecl *)M->first << OM->Method->getParent();
8277
8278                Record->setInvalidDecl();
8279              }
8280            }
8281            CXXRecord->completeDefinition(&FinalOverriders);
8282            Completed = true;
8283          }
8284        }
8285      }
8286    }
8287
8288    if (!Completed)
8289      Record->completeDefinition();
8290
8291    // Now that the record is complete, do any delayed exception spec checks
8292    // we were missing.
8293    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8294      const CXXDestructorDecl *Dtor =
8295              DelayedDestructorExceptionSpecChecks.back().first;
8296      if (Dtor->getParent() != Record)
8297        break;
8298
8299      assert(!Dtor->getParent()->isDependentType() &&
8300          "Should not ever add destructors of templates into the list.");
8301      CheckOverridingFunctionExceptionSpec(Dtor,
8302          DelayedDestructorExceptionSpecChecks.back().second);
8303      DelayedDestructorExceptionSpecChecks.pop_back();
8304    }
8305
8306  } else {
8307    ObjCIvarDecl **ClsFields =
8308      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8309    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8310      ID->setLocEnd(RBrac);
8311      // Add ivar's to class's DeclContext.
8312      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8313        ClsFields[i]->setLexicalDeclContext(ID);
8314        ID->addDecl(ClsFields[i]);
8315      }
8316      // Must enforce the rule that ivars in the base classes may not be
8317      // duplicates.
8318      if (ID->getSuperClass())
8319        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8320    } else if (ObjCImplementationDecl *IMPDecl =
8321                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8322      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8323      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8324        // Ivar declared in @implementation never belongs to the implementation.
8325        // Only it is in implementation's lexical context.
8326        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8327      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8328    } else if (ObjCCategoryDecl *CDecl =
8329                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8330      // case of ivars in class extension; all other cases have been
8331      // reported as errors elsewhere.
8332      // FIXME. Class extension does not have a LocEnd field.
8333      // CDecl->setLocEnd(RBrac);
8334      // Add ivar's to class extension's DeclContext.
8335      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8336        ClsFields[i]->setLexicalDeclContext(CDecl);
8337        CDecl->addDecl(ClsFields[i]);
8338      }
8339    }
8340  }
8341
8342  if (Attr)
8343    ProcessDeclAttributeList(S, Record, Attr);
8344
8345  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8346  // set the visibility of this record.
8347  if (Record && !Record->getDeclContext()->isRecord())
8348    AddPushedVisibilityAttribute(Record);
8349}
8350
8351/// \brief Determine whether the given integral value is representable within
8352/// the given type T.
8353static bool isRepresentableIntegerValue(ASTContext &Context,
8354                                        llvm::APSInt &Value,
8355                                        QualType T) {
8356  assert(T->isIntegralType(Context) && "Integral type required!");
8357  unsigned BitWidth = Context.getIntWidth(T);
8358
8359  if (Value.isUnsigned() || Value.isNonNegative()) {
8360    if (T->isSignedIntegerOrEnumerationType())
8361      --BitWidth;
8362    return Value.getActiveBits() <= BitWidth;
8363  }
8364  return Value.getMinSignedBits() <= BitWidth;
8365}
8366
8367// \brief Given an integral type, return the next larger integral type
8368// (or a NULL type of no such type exists).
8369static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8370  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8371  // enum checking below.
8372  assert(T->isIntegralType(Context) && "Integral type required!");
8373  const unsigned NumTypes = 4;
8374  QualType SignedIntegralTypes[NumTypes] = {
8375    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8376  };
8377  QualType UnsignedIntegralTypes[NumTypes] = {
8378    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8379    Context.UnsignedLongLongTy
8380  };
8381
8382  unsigned BitWidth = Context.getTypeSize(T);
8383  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8384                                                        : UnsignedIntegralTypes;
8385  for (unsigned I = 0; I != NumTypes; ++I)
8386    if (Context.getTypeSize(Types[I]) > BitWidth)
8387      return Types[I];
8388
8389  return QualType();
8390}
8391
8392EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8393                                          EnumConstantDecl *LastEnumConst,
8394                                          SourceLocation IdLoc,
8395                                          IdentifierInfo *Id,
8396                                          Expr *Val) {
8397  unsigned IntWidth = Context.Target.getIntWidth();
8398  llvm::APSInt EnumVal(IntWidth);
8399  QualType EltTy;
8400
8401  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8402    Val = 0;
8403
8404  if (Val) {
8405    if (Enum->isDependentType() || Val->isTypeDependent())
8406      EltTy = Context.DependentTy;
8407    else {
8408      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8409      SourceLocation ExpLoc;
8410      if (!Val->isValueDependent() &&
8411          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8412        Val = 0;
8413      } else {
8414        if (!getLangOptions().CPlusPlus) {
8415          // C99 6.7.2.2p2:
8416          //   The expression that defines the value of an enumeration constant
8417          //   shall be an integer constant expression that has a value
8418          //   representable as an int.
8419
8420          // Complain if the value is not representable in an int.
8421          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8422            Diag(IdLoc, diag::ext_enum_value_not_int)
8423              << EnumVal.toString(10) << Val->getSourceRange()
8424              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8425          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8426            // Force the type of the expression to 'int'.
8427            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8428          }
8429        }
8430
8431        if (Enum->isFixed()) {
8432          EltTy = Enum->getIntegerType();
8433
8434          // C++0x [dcl.enum]p5:
8435          //   ... if the initializing value of an enumerator cannot be
8436          //   represented by the underlying type, the program is ill-formed.
8437          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8438            if (getLangOptions().Microsoft) {
8439              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8440              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8441            } else
8442              Diag(IdLoc, diag::err_enumerator_too_large)
8443                << EltTy;
8444          } else
8445            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8446        }
8447        else {
8448          // C++0x [dcl.enum]p5:
8449          //   If the underlying type is not fixed, the type of each enumerator
8450          //   is the type of its initializing value:
8451          //     - If an initializer is specified for an enumerator, the
8452          //       initializing value has the same type as the expression.
8453          EltTy = Val->getType();
8454        }
8455      }
8456    }
8457  }
8458
8459  if (!Val) {
8460    if (Enum->isDependentType())
8461      EltTy = Context.DependentTy;
8462    else if (!LastEnumConst) {
8463      // C++0x [dcl.enum]p5:
8464      //   If the underlying type is not fixed, the type of each enumerator
8465      //   is the type of its initializing value:
8466      //     - If no initializer is specified for the first enumerator, the
8467      //       initializing value has an unspecified integral type.
8468      //
8469      // GCC uses 'int' for its unspecified integral type, as does
8470      // C99 6.7.2.2p3.
8471      if (Enum->isFixed()) {
8472        EltTy = Enum->getIntegerType();
8473      }
8474      else {
8475        EltTy = Context.IntTy;
8476      }
8477    } else {
8478      // Assign the last value + 1.
8479      EnumVal = LastEnumConst->getInitVal();
8480      ++EnumVal;
8481      EltTy = LastEnumConst->getType();
8482
8483      // Check for overflow on increment.
8484      if (EnumVal < LastEnumConst->getInitVal()) {
8485        // C++0x [dcl.enum]p5:
8486        //   If the underlying type is not fixed, the type of each enumerator
8487        //   is the type of its initializing value:
8488        //
8489        //     - Otherwise the type of the initializing value is the same as
8490        //       the type of the initializing value of the preceding enumerator
8491        //       unless the incremented value is not representable in that type,
8492        //       in which case the type is an unspecified integral type
8493        //       sufficient to contain the incremented value. If no such type
8494        //       exists, the program is ill-formed.
8495        QualType T = getNextLargerIntegralType(Context, EltTy);
8496        if (T.isNull() || Enum->isFixed()) {
8497          // There is no integral type larger enough to represent this
8498          // value. Complain, then allow the value to wrap around.
8499          EnumVal = LastEnumConst->getInitVal();
8500          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8501          ++EnumVal;
8502          if (Enum->isFixed())
8503            // When the underlying type is fixed, this is ill-formed.
8504            Diag(IdLoc, diag::err_enumerator_wrapped)
8505              << EnumVal.toString(10)
8506              << EltTy;
8507          else
8508            Diag(IdLoc, diag::warn_enumerator_too_large)
8509              << EnumVal.toString(10);
8510        } else {
8511          EltTy = T;
8512        }
8513
8514        // Retrieve the last enumerator's value, extent that type to the
8515        // type that is supposed to be large enough to represent the incremented
8516        // value, then increment.
8517        EnumVal = LastEnumConst->getInitVal();
8518        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8519        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8520        ++EnumVal;
8521
8522        // If we're not in C++, diagnose the overflow of enumerator values,
8523        // which in C99 means that the enumerator value is not representable in
8524        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8525        // permits enumerator values that are representable in some larger
8526        // integral type.
8527        if (!getLangOptions().CPlusPlus && !T.isNull())
8528          Diag(IdLoc, diag::warn_enum_value_overflow);
8529      } else if (!getLangOptions().CPlusPlus &&
8530                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8531        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8532        Diag(IdLoc, diag::ext_enum_value_not_int)
8533          << EnumVal.toString(10) << 1;
8534      }
8535    }
8536  }
8537
8538  if (!EltTy->isDependentType()) {
8539    // Make the enumerator value match the signedness and size of the
8540    // enumerator's type.
8541    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8542    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8543  }
8544
8545  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8546                                  Val, EnumVal);
8547}
8548
8549
8550Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8551                              SourceLocation IdLoc, IdentifierInfo *Id,
8552                              AttributeList *Attr,
8553                              SourceLocation EqualLoc, ExprTy *val) {
8554  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8555  EnumConstantDecl *LastEnumConst =
8556    cast_or_null<EnumConstantDecl>(lastEnumConst);
8557  Expr *Val = static_cast<Expr*>(val);
8558
8559  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8560  // we find one that is.
8561  S = getNonFieldDeclScope(S);
8562
8563  // Verify that there isn't already something declared with this name in this
8564  // scope.
8565  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8566                                         ForRedeclaration);
8567  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8568    // Maybe we will complain about the shadowed template parameter.
8569    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8570    // Just pretend that we didn't see the previous declaration.
8571    PrevDecl = 0;
8572  }
8573
8574  if (PrevDecl) {
8575    // When in C++, we may get a TagDecl with the same name; in this case the
8576    // enum constant will 'hide' the tag.
8577    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8578           "Received TagDecl when not in C++!");
8579    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8580      if (isa<EnumConstantDecl>(PrevDecl))
8581        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8582      else
8583        Diag(IdLoc, diag::err_redefinition) << Id;
8584      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8585      return 0;
8586    }
8587  }
8588
8589  // C++ [class.mem]p13:
8590  //   If T is the name of a class, then each of the following shall have a
8591  //   name different from T:
8592  //     - every enumerator of every member of class T that is an enumerated
8593  //       type
8594  if (CXXRecordDecl *Record
8595                      = dyn_cast<CXXRecordDecl>(
8596                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8597    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8598      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8599
8600  EnumConstantDecl *New =
8601    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8602
8603  if (New) {
8604    // Process attributes.
8605    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8606
8607    // Register this decl in the current scope stack.
8608    New->setAccess(TheEnumDecl->getAccess());
8609    PushOnScopeChains(New, S);
8610  }
8611
8612  return New;
8613}
8614
8615void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8616                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8617                         Decl **Elements, unsigned NumElements,
8618                         Scope *S, AttributeList *Attr) {
8619  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8620  QualType EnumType = Context.getTypeDeclType(Enum);
8621
8622  if (Attr)
8623    ProcessDeclAttributeList(S, Enum, Attr);
8624
8625  if (Enum->isDependentType()) {
8626    for (unsigned i = 0; i != NumElements; ++i) {
8627      EnumConstantDecl *ECD =
8628        cast_or_null<EnumConstantDecl>(Elements[i]);
8629      if (!ECD) continue;
8630
8631      ECD->setType(EnumType);
8632    }
8633
8634    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8635    return;
8636  }
8637
8638  // TODO: If the result value doesn't fit in an int, it must be a long or long
8639  // long value.  ISO C does not support this, but GCC does as an extension,
8640  // emit a warning.
8641  unsigned IntWidth = Context.Target.getIntWidth();
8642  unsigned CharWidth = Context.Target.getCharWidth();
8643  unsigned ShortWidth = Context.Target.getShortWidth();
8644
8645  // Verify that all the values are okay, compute the size of the values, and
8646  // reverse the list.
8647  unsigned NumNegativeBits = 0;
8648  unsigned NumPositiveBits = 0;
8649
8650  // Keep track of whether all elements have type int.
8651  bool AllElementsInt = true;
8652
8653  for (unsigned i = 0; i != NumElements; ++i) {
8654    EnumConstantDecl *ECD =
8655      cast_or_null<EnumConstantDecl>(Elements[i]);
8656    if (!ECD) continue;  // Already issued a diagnostic.
8657
8658    const llvm::APSInt &InitVal = ECD->getInitVal();
8659
8660    // Keep track of the size of positive and negative values.
8661    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8662      NumPositiveBits = std::max(NumPositiveBits,
8663                                 (unsigned)InitVal.getActiveBits());
8664    else
8665      NumNegativeBits = std::max(NumNegativeBits,
8666                                 (unsigned)InitVal.getMinSignedBits());
8667
8668    // Keep track of whether every enum element has type int (very commmon).
8669    if (AllElementsInt)
8670      AllElementsInt = ECD->getType() == Context.IntTy;
8671  }
8672
8673  // Figure out the type that should be used for this enum.
8674  QualType BestType;
8675  unsigned BestWidth;
8676
8677  // C++0x N3000 [conv.prom]p3:
8678  //   An rvalue of an unscoped enumeration type whose underlying
8679  //   type is not fixed can be converted to an rvalue of the first
8680  //   of the following types that can represent all the values of
8681  //   the enumeration: int, unsigned int, long int, unsigned long
8682  //   int, long long int, or unsigned long long int.
8683  // C99 6.4.4.3p2:
8684  //   An identifier declared as an enumeration constant has type int.
8685  // The C99 rule is modified by a gcc extension
8686  QualType BestPromotionType;
8687
8688  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8689  // -fshort-enums is the equivalent to specifying the packed attribute on all
8690  // enum definitions.
8691  if (LangOpts.ShortEnums)
8692    Packed = true;
8693
8694  if (Enum->isFixed()) {
8695    BestType = BestPromotionType = Enum->getIntegerType();
8696    // We don't need to set BestWidth, because BestType is going to be the type
8697    // of the enumerators, but we do anyway because otherwise some compilers
8698    // warn that it might be used uninitialized.
8699    BestWidth = CharWidth;
8700  }
8701  else if (NumNegativeBits) {
8702    // If there is a negative value, figure out the smallest integer type (of
8703    // int/long/longlong) that fits.
8704    // If it's packed, check also if it fits a char or a short.
8705    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8706      BestType = Context.SignedCharTy;
8707      BestWidth = CharWidth;
8708    } else if (Packed && NumNegativeBits <= ShortWidth &&
8709               NumPositiveBits < ShortWidth) {
8710      BestType = Context.ShortTy;
8711      BestWidth = ShortWidth;
8712    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8713      BestType = Context.IntTy;
8714      BestWidth = IntWidth;
8715    } else {
8716      BestWidth = Context.Target.getLongWidth();
8717
8718      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8719        BestType = Context.LongTy;
8720      } else {
8721        BestWidth = Context.Target.getLongLongWidth();
8722
8723        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8724          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8725        BestType = Context.LongLongTy;
8726      }
8727    }
8728    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8729  } else {
8730    // If there is no negative value, figure out the smallest type that fits
8731    // all of the enumerator values.
8732    // If it's packed, check also if it fits a char or a short.
8733    if (Packed && NumPositiveBits <= CharWidth) {
8734      BestType = Context.UnsignedCharTy;
8735      BestPromotionType = Context.IntTy;
8736      BestWidth = CharWidth;
8737    } else if (Packed && NumPositiveBits <= ShortWidth) {
8738      BestType = Context.UnsignedShortTy;
8739      BestPromotionType = Context.IntTy;
8740      BestWidth = ShortWidth;
8741    } else if (NumPositiveBits <= IntWidth) {
8742      BestType = Context.UnsignedIntTy;
8743      BestWidth = IntWidth;
8744      BestPromotionType
8745        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8746                           ? Context.UnsignedIntTy : Context.IntTy;
8747    } else if (NumPositiveBits <=
8748               (BestWidth = Context.Target.getLongWidth())) {
8749      BestType = Context.UnsignedLongTy;
8750      BestPromotionType
8751        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8752                           ? Context.UnsignedLongTy : Context.LongTy;
8753    } else {
8754      BestWidth = Context.Target.getLongLongWidth();
8755      assert(NumPositiveBits <= BestWidth &&
8756             "How could an initializer get larger than ULL?");
8757      BestType = Context.UnsignedLongLongTy;
8758      BestPromotionType
8759        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8760                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8761    }
8762  }
8763
8764  // Loop over all of the enumerator constants, changing their types to match
8765  // the type of the enum if needed.
8766  for (unsigned i = 0; i != NumElements; ++i) {
8767    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8768    if (!ECD) continue;  // Already issued a diagnostic.
8769
8770    // Standard C says the enumerators have int type, but we allow, as an
8771    // extension, the enumerators to be larger than int size.  If each
8772    // enumerator value fits in an int, type it as an int, otherwise type it the
8773    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8774    // that X has type 'int', not 'unsigned'.
8775
8776    // Determine whether the value fits into an int.
8777    llvm::APSInt InitVal = ECD->getInitVal();
8778
8779    // If it fits into an integer type, force it.  Otherwise force it to match
8780    // the enum decl type.
8781    QualType NewTy;
8782    unsigned NewWidth;
8783    bool NewSign;
8784    if (!getLangOptions().CPlusPlus &&
8785        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8786      NewTy = Context.IntTy;
8787      NewWidth = IntWidth;
8788      NewSign = true;
8789    } else if (ECD->getType() == BestType) {
8790      // Already the right type!
8791      if (getLangOptions().CPlusPlus)
8792        // C++ [dcl.enum]p4: Following the closing brace of an
8793        // enum-specifier, each enumerator has the type of its
8794        // enumeration.
8795        ECD->setType(EnumType);
8796      continue;
8797    } else {
8798      NewTy = BestType;
8799      NewWidth = BestWidth;
8800      NewSign = BestType->isSignedIntegerOrEnumerationType();
8801    }
8802
8803    // Adjust the APSInt value.
8804    InitVal = InitVal.extOrTrunc(NewWidth);
8805    InitVal.setIsSigned(NewSign);
8806    ECD->setInitVal(InitVal);
8807
8808    // Adjust the Expr initializer and type.
8809    if (ECD->getInitExpr() &&
8810	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8811      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8812                                                CK_IntegralCast,
8813                                                ECD->getInitExpr(),
8814                                                /*base paths*/ 0,
8815                                                VK_RValue));
8816    if (getLangOptions().CPlusPlus)
8817      // C++ [dcl.enum]p4: Following the closing brace of an
8818      // enum-specifier, each enumerator has the type of its
8819      // enumeration.
8820      ECD->setType(EnumType);
8821    else
8822      ECD->setType(NewTy);
8823  }
8824
8825  Enum->completeDefinition(BestType, BestPromotionType,
8826                           NumPositiveBits, NumNegativeBits);
8827}
8828
8829Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8830                                  SourceLocation StartLoc,
8831                                  SourceLocation EndLoc) {
8832  StringLiteral *AsmString = cast<StringLiteral>(expr);
8833
8834  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8835                                                   AsmString, StartLoc,
8836                                                   EndLoc);
8837  CurContext->addDecl(New);
8838  return New;
8839}
8840
8841void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8842                             SourceLocation PragmaLoc,
8843                             SourceLocation NameLoc) {
8844  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8845
8846  if (PrevDecl) {
8847    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8848  } else {
8849    (void)WeakUndeclaredIdentifiers.insert(
8850      std::pair<IdentifierInfo*,WeakInfo>
8851        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8852  }
8853}
8854
8855void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8856                                IdentifierInfo* AliasName,
8857                                SourceLocation PragmaLoc,
8858                                SourceLocation NameLoc,
8859                                SourceLocation AliasNameLoc) {
8860  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8861                                    LookupOrdinaryName);
8862  WeakInfo W = WeakInfo(Name, NameLoc);
8863
8864  if (PrevDecl) {
8865    if (!PrevDecl->hasAttr<AliasAttr>())
8866      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8867        DeclApplyPragmaWeak(TUScope, ND, W);
8868  } else {
8869    (void)WeakUndeclaredIdentifiers.insert(
8870      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8871  }
8872}
8873